1 //===-- Process.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <atomic> 10 #include <memory> 11 #include <mutex> 12 13 #include "llvm/Support/ScopedPrinter.h" 14 #include "llvm/Support/Threading.h" 15 16 #include "lldb/Breakpoint/BreakpointLocation.h" 17 #include "lldb/Breakpoint/StoppointCallbackContext.h" 18 #include "lldb/Core/Debugger.h" 19 #include "lldb/Core/Module.h" 20 #include "lldb/Core/ModuleSpec.h" 21 #include "lldb/Core/PluginManager.h" 22 #include "lldb/Core/StreamFile.h" 23 #include "lldb/Expression/DiagnosticManager.h" 24 #include "lldb/Expression/DynamicCheckerFunctions.h" 25 #include "lldb/Expression/UserExpression.h" 26 #include "lldb/Expression/UtilityFunction.h" 27 #include "lldb/Host/ConnectionFileDescriptor.h" 28 #include "lldb/Host/FileSystem.h" 29 #include "lldb/Host/Host.h" 30 #include "lldb/Host/HostInfo.h" 31 #include "lldb/Host/OptionParser.h" 32 #include "lldb/Host/Pipe.h" 33 #include "lldb/Host/Terminal.h" 34 #include "lldb/Host/ThreadLauncher.h" 35 #include "lldb/Interpreter/CommandInterpreter.h" 36 #include "lldb/Interpreter/OptionArgParser.h" 37 #include "lldb/Interpreter/OptionValueProperties.h" 38 #include "lldb/Symbol/Function.h" 39 #include "lldb/Symbol/Symbol.h" 40 #include "lldb/Target/ABI.h" 41 #include "lldb/Target/AssertFrameRecognizer.h" 42 #include "lldb/Target/DynamicLoader.h" 43 #include "lldb/Target/InstrumentationRuntime.h" 44 #include "lldb/Target/JITLoader.h" 45 #include "lldb/Target/JITLoaderList.h" 46 #include "lldb/Target/Language.h" 47 #include "lldb/Target/LanguageRuntime.h" 48 #include "lldb/Target/MemoryHistory.h" 49 #include "lldb/Target/MemoryRegionInfo.h" 50 #include "lldb/Target/OperatingSystem.h" 51 #include "lldb/Target/Platform.h" 52 #include "lldb/Target/Process.h" 53 #include "lldb/Target/RegisterContext.h" 54 #include "lldb/Target/StopInfo.h" 55 #include "lldb/Target/StructuredDataPlugin.h" 56 #include "lldb/Target/SystemRuntime.h" 57 #include "lldb/Target/Target.h" 58 #include "lldb/Target/TargetList.h" 59 #include "lldb/Target/Thread.h" 60 #include "lldb/Target/ThreadPlan.h" 61 #include "lldb/Target/ThreadPlanBase.h" 62 #include "lldb/Target/ThreadPlanCallFunction.h" 63 #include "lldb/Target/ThreadPlanStack.h" 64 #include "lldb/Target/UnixSignals.h" 65 #include "lldb/Utility/Event.h" 66 #include "lldb/Utility/Log.h" 67 #include "lldb/Utility/NameMatches.h" 68 #include "lldb/Utility/ProcessInfo.h" 69 #include "lldb/Utility/SelectHelper.h" 70 #include "lldb/Utility/State.h" 71 72 using namespace lldb; 73 using namespace lldb_private; 74 using namespace std::chrono; 75 76 // Comment out line below to disable memory caching, overriding the process 77 // setting target.process.disable-memory-cache 78 #define ENABLE_MEMORY_CACHING 79 80 #ifdef ENABLE_MEMORY_CACHING 81 #define DISABLE_MEM_CACHE_DEFAULT false 82 #else 83 #define DISABLE_MEM_CACHE_DEFAULT true 84 #endif 85 86 class ProcessOptionValueProperties : public OptionValueProperties { 87 public: 88 ProcessOptionValueProperties(ConstString name) 89 : OptionValueProperties(name) {} 90 91 // This constructor is used when creating ProcessOptionValueProperties when 92 // it is part of a new lldb_private::Process instance. It will copy all 93 // current global property values as needed 94 ProcessOptionValueProperties(ProcessProperties *global_properties) 95 : OptionValueProperties(*global_properties->GetValueProperties()) {} 96 97 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 98 bool will_modify, 99 uint32_t idx) const override { 100 // When getting the value for a key from the process options, we will 101 // always try and grab the setting from the current process if there is 102 // one. Else we just use the one from this instance. 103 if (exe_ctx) { 104 Process *process = exe_ctx->GetProcessPtr(); 105 if (process) { 106 ProcessOptionValueProperties *instance_properties = 107 static_cast<ProcessOptionValueProperties *>( 108 process->GetValueProperties().get()); 109 if (this != instance_properties) 110 return instance_properties->ProtectedGetPropertyAtIndex(idx); 111 } 112 } 113 return ProtectedGetPropertyAtIndex(idx); 114 } 115 }; 116 117 #define LLDB_PROPERTIES_process 118 #include "TargetProperties.inc" 119 120 enum { 121 #define LLDB_PROPERTIES_process 122 #include "TargetPropertiesEnum.inc" 123 ePropertyExperimental, 124 }; 125 126 #define LLDB_PROPERTIES_process_experimental 127 #include "TargetProperties.inc" 128 129 enum { 130 #define LLDB_PROPERTIES_process_experimental 131 #include "TargetPropertiesEnum.inc" 132 }; 133 134 class ProcessExperimentalOptionValueProperties : public OptionValueProperties { 135 public: 136 ProcessExperimentalOptionValueProperties() 137 : OptionValueProperties( 138 ConstString(Properties::GetExperimentalSettingsName())) {} 139 }; 140 141 ProcessExperimentalProperties::ProcessExperimentalProperties() 142 : Properties(OptionValuePropertiesSP( 143 new ProcessExperimentalOptionValueProperties())) { 144 m_collection_sp->Initialize(g_process_experimental_properties); 145 } 146 147 ProcessProperties::ProcessProperties(lldb_private::Process *process) 148 : Properties(), 149 m_process(process) // Can be nullptr for global ProcessProperties 150 { 151 if (process == nullptr) { 152 // Global process properties, set them up one time 153 m_collection_sp = 154 std::make_shared<ProcessOptionValueProperties>(ConstString("process")); 155 m_collection_sp->Initialize(g_process_properties); 156 m_collection_sp->AppendProperty( 157 ConstString("thread"), ConstString("Settings specific to threads."), 158 true, Thread::GetGlobalProperties()->GetValueProperties()); 159 } else { 160 m_collection_sp = std::make_shared<ProcessOptionValueProperties>( 161 Process::GetGlobalProperties().get()); 162 m_collection_sp->SetValueChangedCallback( 163 ePropertyPythonOSPluginPath, 164 [this] { m_process->LoadOperatingSystemPlugin(true); }); 165 } 166 167 m_experimental_properties_up = 168 std::make_unique<ProcessExperimentalProperties>(); 169 m_collection_sp->AppendProperty( 170 ConstString(Properties::GetExperimentalSettingsName()), 171 ConstString("Experimental settings - setting these won't produce " 172 "errors if the setting is not present."), 173 true, m_experimental_properties_up->GetValueProperties()); 174 } 175 176 ProcessProperties::~ProcessProperties() = default; 177 178 bool ProcessProperties::GetDisableMemoryCache() const { 179 const uint32_t idx = ePropertyDisableMemCache; 180 return m_collection_sp->GetPropertyAtIndexAsBoolean( 181 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 182 } 183 184 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 185 const uint32_t idx = ePropertyMemCacheLineSize; 186 return m_collection_sp->GetPropertyAtIndexAsUInt64( 187 nullptr, idx, g_process_properties[idx].default_uint_value); 188 } 189 190 Args ProcessProperties::GetExtraStartupCommands() const { 191 Args args; 192 const uint32_t idx = ePropertyExtraStartCommand; 193 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 194 return args; 195 } 196 197 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 198 const uint32_t idx = ePropertyExtraStartCommand; 199 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 200 } 201 202 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 203 const uint32_t idx = ePropertyPythonOSPluginPath; 204 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 205 } 206 207 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 208 const uint32_t idx = ePropertyPythonOSPluginPath; 209 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 210 } 211 212 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 213 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 214 return m_collection_sp->GetPropertyAtIndexAsBoolean( 215 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 216 } 217 218 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 219 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 220 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 221 } 222 223 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 224 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 225 return m_collection_sp->GetPropertyAtIndexAsBoolean( 226 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 227 } 228 229 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 230 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 231 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 232 } 233 234 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 235 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 236 return m_collection_sp->GetPropertyAtIndexAsBoolean( 237 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 238 } 239 240 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 241 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 242 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 243 } 244 245 bool ProcessProperties::GetDetachKeepsStopped() const { 246 const uint32_t idx = ePropertyDetachKeepsStopped; 247 return m_collection_sp->GetPropertyAtIndexAsBoolean( 248 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 249 } 250 251 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 252 const uint32_t idx = ePropertyDetachKeepsStopped; 253 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 254 } 255 256 bool ProcessProperties::GetWarningsOptimization() const { 257 const uint32_t idx = ePropertyWarningOptimization; 258 return m_collection_sp->GetPropertyAtIndexAsBoolean( 259 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 260 } 261 262 bool ProcessProperties::GetWarningsUnsupportedLanguage() const { 263 const uint32_t idx = ePropertyWarningUnsupportedLanguage; 264 return m_collection_sp->GetPropertyAtIndexAsBoolean( 265 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 266 } 267 268 bool ProcessProperties::GetStopOnExec() const { 269 const uint32_t idx = ePropertyStopOnExec; 270 return m_collection_sp->GetPropertyAtIndexAsBoolean( 271 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 272 } 273 274 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { 275 const uint32_t idx = ePropertyUtilityExpressionTimeout; 276 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 277 nullptr, idx, g_process_properties[idx].default_uint_value); 278 return std::chrono::seconds(value); 279 } 280 281 bool ProcessProperties::GetSteppingRunsAllThreads() const { 282 const uint32_t idx = ePropertySteppingRunsAllThreads; 283 return m_collection_sp->GetPropertyAtIndexAsBoolean( 284 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 285 } 286 287 bool ProcessProperties::GetOSPluginReportsAllThreads() const { 288 const bool fail_value = true; 289 const Property *exp_property = 290 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 291 OptionValueProperties *exp_values = 292 exp_property->GetValue()->GetAsProperties(); 293 if (!exp_values) 294 return fail_value; 295 296 return exp_values->GetPropertyAtIndexAsBoolean( 297 nullptr, ePropertyOSPluginReportsAllThreads, fail_value); 298 } 299 300 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) { 301 const Property *exp_property = 302 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 303 OptionValueProperties *exp_values = 304 exp_property->GetValue()->GetAsProperties(); 305 if (exp_values) 306 exp_values->SetPropertyAtIndexAsBoolean( 307 nullptr, ePropertyOSPluginReportsAllThreads, does_report); 308 } 309 310 Status ProcessLaunchCommandOptions::SetOptionValue( 311 uint32_t option_idx, llvm::StringRef option_arg, 312 ExecutionContext *execution_context) { 313 Status error; 314 const int short_option = m_getopt_table[option_idx].val; 315 316 switch (short_option) { 317 case 's': // Stop at program entry point 318 launch_info.GetFlags().Set(eLaunchFlagStopAtEntry); 319 break; 320 321 case 'i': // STDIN for read only 322 { 323 FileAction action; 324 if (action.Open(STDIN_FILENO, FileSpec(option_arg), true, false)) 325 launch_info.AppendFileAction(action); 326 break; 327 } 328 329 case 'o': // Open STDOUT for write only 330 { 331 FileAction action; 332 if (action.Open(STDOUT_FILENO, FileSpec(option_arg), false, true)) 333 launch_info.AppendFileAction(action); 334 break; 335 } 336 337 case 'e': // STDERR for write only 338 { 339 FileAction action; 340 if (action.Open(STDERR_FILENO, FileSpec(option_arg), false, true)) 341 launch_info.AppendFileAction(action); 342 break; 343 } 344 345 case 'p': // Process plug-in name 346 launch_info.SetProcessPluginName(option_arg); 347 break; 348 349 case 'n': // Disable STDIO 350 { 351 FileAction action; 352 const FileSpec dev_null(FileSystem::DEV_NULL); 353 if (action.Open(STDIN_FILENO, dev_null, true, false)) 354 launch_info.AppendFileAction(action); 355 if (action.Open(STDOUT_FILENO, dev_null, false, true)) 356 launch_info.AppendFileAction(action); 357 if (action.Open(STDERR_FILENO, dev_null, false, true)) 358 launch_info.AppendFileAction(action); 359 break; 360 } 361 362 case 'w': 363 launch_info.SetWorkingDirectory(FileSpec(option_arg)); 364 break; 365 366 case 't': // Open process in new terminal window 367 launch_info.GetFlags().Set(eLaunchFlagLaunchInTTY); 368 break; 369 370 case 'a': { 371 TargetSP target_sp = 372 execution_context ? execution_context->GetTargetSP() : TargetSP(); 373 PlatformSP platform_sp = 374 target_sp ? target_sp->GetPlatform() : PlatformSP(); 375 launch_info.GetArchitecture() = 376 Platform::GetAugmentedArchSpec(platform_sp.get(), option_arg); 377 } break; 378 379 case 'A': // Disable ASLR. 380 { 381 bool success; 382 const bool disable_aslr_arg = 383 OptionArgParser::ToBoolean(option_arg, true, &success); 384 if (success) 385 disable_aslr = disable_aslr_arg ? eLazyBoolYes : eLazyBoolNo; 386 else 387 error.SetErrorStringWithFormat( 388 "Invalid boolean value for disable-aslr option: '%s'", 389 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 390 break; 391 } 392 393 case 'X': // shell expand args. 394 { 395 bool success; 396 const bool expand_args = 397 OptionArgParser::ToBoolean(option_arg, true, &success); 398 if (success) 399 launch_info.SetShellExpandArguments(expand_args); 400 else 401 error.SetErrorStringWithFormat( 402 "Invalid boolean value for shell-expand-args option: '%s'", 403 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 404 break; 405 } 406 407 case 'c': 408 if (!option_arg.empty()) 409 launch_info.SetShell(FileSpec(option_arg)); 410 else 411 launch_info.SetShell(HostInfo::GetDefaultShell()); 412 break; 413 414 case 'v': 415 launch_info.GetEnvironment().insert(option_arg); 416 break; 417 418 default: 419 error.SetErrorStringWithFormat("unrecognized short option character '%c'", 420 short_option); 421 break; 422 } 423 return error; 424 } 425 426 static constexpr OptionDefinition g_process_launch_options[] = { 427 {LLDB_OPT_SET_ALL, false, "stop-at-entry", 's', OptionParser::eNoArgument, 428 nullptr, {}, 0, eArgTypeNone, 429 "Stop at the entry point of the program when launching a process."}, 430 {LLDB_OPT_SET_ALL, false, "disable-aslr", 'A', 431 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeBoolean, 432 "Set whether to disable address space layout randomization when launching " 433 "a process."}, 434 {LLDB_OPT_SET_ALL, false, "plugin", 'p', OptionParser::eRequiredArgument, 435 nullptr, {}, 0, eArgTypePlugin, 436 "Name of the process plugin you want to use."}, 437 {LLDB_OPT_SET_ALL, false, "working-dir", 'w', 438 OptionParser::eRequiredArgument, nullptr, {}, 0, 439 eArgTypeDirectoryName, 440 "Set the current working directory to <path> when running the inferior."}, 441 {LLDB_OPT_SET_ALL, false, "arch", 'a', OptionParser::eRequiredArgument, 442 nullptr, {}, 0, eArgTypeArchitecture, 443 "Set the architecture for the process to launch when ambiguous."}, 444 {LLDB_OPT_SET_ALL, false, "environment", 'v', 445 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeNone, 446 "Specify an environment variable name/value string (--environment " 447 "NAME=VALUE). Can be specified multiple times for subsequent environment " 448 "entries."}, 449 {LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3, false, "shell", 'c', 450 OptionParser::eOptionalArgument, nullptr, {}, 0, eArgTypeFilename, 451 "Run the process in a shell (not supported on all platforms)."}, 452 453 {LLDB_OPT_SET_1, false, "stdin", 'i', OptionParser::eRequiredArgument, 454 nullptr, {}, 0, eArgTypeFilename, 455 "Redirect stdin for the process to <filename>."}, 456 {LLDB_OPT_SET_1, false, "stdout", 'o', OptionParser::eRequiredArgument, 457 nullptr, {}, 0, eArgTypeFilename, 458 "Redirect stdout for the process to <filename>."}, 459 {LLDB_OPT_SET_1, false, "stderr", 'e', OptionParser::eRequiredArgument, 460 nullptr, {}, 0, eArgTypeFilename, 461 "Redirect stderr for the process to <filename>."}, 462 463 {LLDB_OPT_SET_2, false, "tty", 't', OptionParser::eNoArgument, nullptr, 464 {}, 0, eArgTypeNone, 465 "Start the process in a terminal (not supported on all platforms)."}, 466 467 {LLDB_OPT_SET_3, false, "no-stdio", 'n', OptionParser::eNoArgument, nullptr, 468 {}, 0, eArgTypeNone, 469 "Do not set up for terminal I/O to go to running process."}, 470 {LLDB_OPT_SET_4, false, "shell-expand-args", 'X', 471 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeBoolean, 472 "Set whether to shell expand arguments to the process when launching."}, 473 }; 474 475 llvm::ArrayRef<OptionDefinition> ProcessLaunchCommandOptions::GetDefinitions() { 476 return llvm::makeArrayRef(g_process_launch_options); 477 } 478 479 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 480 llvm::StringRef plugin_name, 481 ListenerSP listener_sp, 482 const FileSpec *crash_file_path, 483 bool can_connect) { 484 static uint32_t g_process_unique_id = 0; 485 486 ProcessSP process_sp; 487 ProcessCreateInstance create_callback = nullptr; 488 if (!plugin_name.empty()) { 489 ConstString const_plugin_name(plugin_name); 490 create_callback = 491 PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name); 492 if (create_callback) { 493 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 494 can_connect); 495 if (process_sp) { 496 if (process_sp->CanDebug(target_sp, true)) { 497 process_sp->m_process_unique_id = ++g_process_unique_id; 498 } else 499 process_sp.reset(); 500 } 501 } 502 } else { 503 for (uint32_t idx = 0; 504 (create_callback = 505 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 506 ++idx) { 507 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 508 can_connect); 509 if (process_sp) { 510 if (process_sp->CanDebug(target_sp, false)) { 511 process_sp->m_process_unique_id = ++g_process_unique_id; 512 break; 513 } else 514 process_sp.reset(); 515 } 516 } 517 } 518 return process_sp; 519 } 520 521 ConstString &Process::GetStaticBroadcasterClass() { 522 static ConstString class_name("lldb.process"); 523 return class_name; 524 } 525 526 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 527 : Process(target_sp, listener_sp, 528 UnixSignals::Create(HostInfo::GetArchitecture())) { 529 // This constructor just delegates to the full Process constructor, 530 // defaulting to using the Host's UnixSignals. 531 } 532 533 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 534 const UnixSignalsSP &unix_signals_sp) 535 : ProcessProperties(this), 536 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 537 Process::GetStaticBroadcasterClass().AsCString()), 538 m_target_wp(target_sp), m_public_state(eStateUnloaded), 539 m_private_state(eStateUnloaded), 540 m_private_state_broadcaster(nullptr, 541 "lldb.process.internal_state_broadcaster"), 542 m_private_state_control_broadcaster( 543 nullptr, "lldb.process.internal_state_control_broadcaster"), 544 m_private_state_listener_sp( 545 Listener::MakeListener("lldb.process.internal_state_listener")), 546 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 547 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 548 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 549 m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this), 550 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 551 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 552 m_breakpoint_site_list(), m_dynamic_checkers_up(), 553 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 554 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 555 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 556 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 557 m_memory_cache(*this), m_allocated_memory_cache(*this), 558 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), 559 m_private_run_lock(), m_finalizing(false), 560 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 561 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 562 m_can_interpret_function_calls(false), m_warnings_issued(), 563 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 564 CheckInWithManager(); 565 566 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 567 LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this)); 568 569 if (!m_unix_signals_sp) 570 m_unix_signals_sp = std::make_shared<UnixSignals>(); 571 572 SetEventName(eBroadcastBitStateChanged, "state-changed"); 573 SetEventName(eBroadcastBitInterrupt, "interrupt"); 574 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 575 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 576 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 577 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 578 579 m_private_state_control_broadcaster.SetEventName( 580 eBroadcastInternalStateControlStop, "control-stop"); 581 m_private_state_control_broadcaster.SetEventName( 582 eBroadcastInternalStateControlPause, "control-pause"); 583 m_private_state_control_broadcaster.SetEventName( 584 eBroadcastInternalStateControlResume, "control-resume"); 585 586 m_listener_sp->StartListeningForEvents( 587 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 588 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 589 eBroadcastBitProfileData | eBroadcastBitStructuredData); 590 591 m_private_state_listener_sp->StartListeningForEvents( 592 &m_private_state_broadcaster, 593 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 594 595 m_private_state_listener_sp->StartListeningForEvents( 596 &m_private_state_control_broadcaster, 597 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 598 eBroadcastInternalStateControlResume); 599 // We need something valid here, even if just the default UnixSignalsSP. 600 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 601 602 // Allow the platform to override the default cache line size 603 OptionValueSP value_sp = 604 m_collection_sp 605 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 606 ->GetValue(); 607 uint32_t platform_cache_line_size = 608 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 609 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 610 value_sp->SetUInt64Value(platform_cache_line_size); 611 612 RegisterAssertFrameRecognizer(this); 613 } 614 615 Process::~Process() { 616 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 617 LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this)); 618 StopPrivateStateThread(); 619 620 // ThreadList::Clear() will try to acquire this process's mutex, so 621 // explicitly clear the thread list here to ensure that the mutex is not 622 // destroyed before the thread list. 623 m_thread_list.Clear(); 624 } 625 626 const ProcessPropertiesSP &Process::GetGlobalProperties() { 627 // NOTE: intentional leak so we don't crash if global destructor chain gets 628 // called as other threads still use the result of this function 629 static ProcessPropertiesSP *g_settings_sp_ptr = 630 new ProcessPropertiesSP(new ProcessProperties(nullptr)); 631 return *g_settings_sp_ptr; 632 } 633 634 void Process::Finalize() { 635 if (m_finalizing.exchange(true)) 636 return; 637 638 // Destroy this process if needed 639 switch (GetPrivateState()) { 640 case eStateConnected: 641 case eStateAttaching: 642 case eStateLaunching: 643 case eStateStopped: 644 case eStateRunning: 645 case eStateStepping: 646 case eStateCrashed: 647 case eStateSuspended: 648 DestroyImpl(false); 649 break; 650 651 case eStateInvalid: 652 case eStateUnloaded: 653 case eStateDetached: 654 case eStateExited: 655 break; 656 } 657 658 // Clear our broadcaster before we proceed with destroying 659 Broadcaster::Clear(); 660 661 // Do any cleanup needed prior to being destructed... Subclasses that 662 // override this method should call this superclass method as well. 663 664 // We need to destroy the loader before the derived Process class gets 665 // destroyed since it is very likely that undoing the loader will require 666 // access to the real process. 667 m_dynamic_checkers_up.reset(); 668 m_abi_sp.reset(); 669 m_os_up.reset(); 670 m_system_runtime_up.reset(); 671 m_dyld_up.reset(); 672 m_jit_loaders_up.reset(); 673 m_thread_plans.Clear(); 674 m_thread_list_real.Destroy(); 675 m_thread_list.Destroy(); 676 m_extended_thread_list.Destroy(); 677 m_queue_list.Clear(); 678 m_queue_list_stop_id = 0; 679 std::vector<Notifications> empty_notifications; 680 m_notifications.swap(empty_notifications); 681 m_image_tokens.clear(); 682 m_memory_cache.Clear(); 683 m_allocated_memory_cache.Clear(); 684 { 685 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 686 m_language_runtimes.clear(); 687 } 688 m_instrumentation_runtimes.clear(); 689 m_next_event_action_up.reset(); 690 // Clear the last natural stop ID since it has a strong reference to this 691 // process 692 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 693 //#ifdef LLDB_CONFIGURATION_DEBUG 694 // StreamFile s(stdout, false); 695 // EventSP event_sp; 696 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 697 // { 698 // event_sp->Dump (&s); 699 // s.EOL(); 700 // } 701 //#endif 702 // We have to be very careful here as the m_private_state_listener might 703 // contain events that have ProcessSP values in them which can keep this 704 // process around forever. These events need to be cleared out. 705 m_private_state_listener_sp->Clear(); 706 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 707 m_public_run_lock.SetStopped(); 708 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 709 m_private_run_lock.SetStopped(); 710 m_structured_data_plugin_map.clear(); 711 } 712 713 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 714 m_notifications.push_back(callbacks); 715 if (callbacks.initialize != nullptr) 716 callbacks.initialize(callbacks.baton, this); 717 } 718 719 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 720 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 721 for (pos = m_notifications.begin(); pos != end; ++pos) { 722 if (pos->baton == callbacks.baton && 723 pos->initialize == callbacks.initialize && 724 pos->process_state_changed == callbacks.process_state_changed) { 725 m_notifications.erase(pos); 726 return true; 727 } 728 } 729 return false; 730 } 731 732 void Process::SynchronouslyNotifyStateChanged(StateType state) { 733 std::vector<Notifications>::iterator notification_pos, 734 notification_end = m_notifications.end(); 735 for (notification_pos = m_notifications.begin(); 736 notification_pos != notification_end; ++notification_pos) { 737 if (notification_pos->process_state_changed) 738 notification_pos->process_state_changed(notification_pos->baton, this, 739 state); 740 } 741 } 742 743 // FIXME: We need to do some work on events before the general Listener sees 744 // them. 745 // For instance if we are continuing from a breakpoint, we need to ensure that 746 // we do the little "insert real insn, step & stop" trick. But we can't do 747 // that when the event is delivered by the broadcaster - since that is done on 748 // the thread that is waiting for new events, so if we needed more than one 749 // event for our handling, we would stall. So instead we do it when we fetch 750 // the event off of the queue. 751 // 752 753 StateType Process::GetNextEvent(EventSP &event_sp) { 754 StateType state = eStateInvalid; 755 756 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 757 std::chrono::seconds(0)) && 758 event_sp) 759 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 760 761 return state; 762 } 763 764 void Process::SyncIOHandler(uint32_t iohandler_id, 765 const Timeout<std::micro> &timeout) { 766 // don't sync (potentially context switch) in case where there is no process 767 // IO 768 if (!m_process_input_reader) 769 return; 770 771 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 772 773 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 774 if (Result) { 775 LLDB_LOG( 776 log, 777 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 778 iohandler_id, *Result); 779 } else { 780 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 781 iohandler_id); 782 } 783 } 784 785 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 786 EventSP *event_sp_ptr, bool wait_always, 787 ListenerSP hijack_listener_sp, 788 Stream *stream, bool use_run_lock) { 789 // We can't just wait for a "stopped" event, because the stopped event may 790 // have restarted the target. We have to actually check each event, and in 791 // the case of a stopped event check the restarted flag on the event. 792 if (event_sp_ptr) 793 event_sp_ptr->reset(); 794 StateType state = GetState(); 795 // If we are exited or detached, we won't ever get back to any other valid 796 // state... 797 if (state == eStateDetached || state == eStateExited) 798 return state; 799 800 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 801 LLDB_LOG(log, "timeout = {0}", timeout); 802 803 if (!wait_always && StateIsStoppedState(state, true) && 804 StateIsStoppedState(GetPrivateState(), true)) { 805 LLDB_LOGF(log, 806 "Process::%s returning without waiting for events; process " 807 "private and public states are already 'stopped'.", 808 __FUNCTION__); 809 // We need to toggle the run lock as this won't get done in 810 // SetPublicState() if the process is hijacked. 811 if (hijack_listener_sp && use_run_lock) 812 m_public_run_lock.SetStopped(); 813 return state; 814 } 815 816 while (state != eStateInvalid) { 817 EventSP event_sp; 818 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 819 if (event_sp_ptr && event_sp) 820 *event_sp_ptr = event_sp; 821 822 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 823 Process::HandleProcessStateChangedEvent(event_sp, stream, 824 pop_process_io_handler); 825 826 switch (state) { 827 case eStateCrashed: 828 case eStateDetached: 829 case eStateExited: 830 case eStateUnloaded: 831 // We need to toggle the run lock as this won't get done in 832 // SetPublicState() if the process is hijacked. 833 if (hijack_listener_sp && use_run_lock) 834 m_public_run_lock.SetStopped(); 835 return state; 836 case eStateStopped: 837 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 838 continue; 839 else { 840 // We need to toggle the run lock as this won't get done in 841 // SetPublicState() if the process is hijacked. 842 if (hijack_listener_sp && use_run_lock) 843 m_public_run_lock.SetStopped(); 844 return state; 845 } 846 default: 847 continue; 848 } 849 } 850 return state; 851 } 852 853 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 854 Stream *stream, 855 bool &pop_process_io_handler) { 856 const bool handle_pop = pop_process_io_handler; 857 858 pop_process_io_handler = false; 859 ProcessSP process_sp = 860 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 861 862 if (!process_sp) 863 return false; 864 865 StateType event_state = 866 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 867 if (event_state == eStateInvalid) 868 return false; 869 870 switch (event_state) { 871 case eStateInvalid: 872 case eStateUnloaded: 873 case eStateAttaching: 874 case eStateLaunching: 875 case eStateStepping: 876 case eStateDetached: 877 if (stream) 878 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 879 StateAsCString(event_state)); 880 if (event_state == eStateDetached) 881 pop_process_io_handler = true; 882 break; 883 884 case eStateConnected: 885 case eStateRunning: 886 // Don't be chatty when we run... 887 break; 888 889 case eStateExited: 890 if (stream) 891 process_sp->GetStatus(*stream); 892 pop_process_io_handler = true; 893 break; 894 895 case eStateStopped: 896 case eStateCrashed: 897 case eStateSuspended: 898 // Make sure the program hasn't been auto-restarted: 899 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 900 if (stream) { 901 size_t num_reasons = 902 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 903 if (num_reasons > 0) { 904 // FIXME: Do we want to report this, or would that just be annoyingly 905 // chatty? 906 if (num_reasons == 1) { 907 const char *reason = 908 Process::ProcessEventData::GetRestartedReasonAtIndex( 909 event_sp.get(), 0); 910 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 911 process_sp->GetID(), 912 reason ? reason : "<UNKNOWN REASON>"); 913 } else { 914 stream->Printf("Process %" PRIu64 915 " stopped and restarted, reasons:\n", 916 process_sp->GetID()); 917 918 for (size_t i = 0; i < num_reasons; i++) { 919 const char *reason = 920 Process::ProcessEventData::GetRestartedReasonAtIndex( 921 event_sp.get(), i); 922 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 923 } 924 } 925 } 926 } 927 } else { 928 StopInfoSP curr_thread_stop_info_sp; 929 // Lock the thread list so it doesn't change on us, this is the scope for 930 // the locker: 931 { 932 ThreadList &thread_list = process_sp->GetThreadList(); 933 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 934 935 ThreadSP curr_thread(thread_list.GetSelectedThread()); 936 ThreadSP thread; 937 StopReason curr_thread_stop_reason = eStopReasonInvalid; 938 if (curr_thread) { 939 curr_thread_stop_reason = curr_thread->GetStopReason(); 940 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 941 } 942 if (!curr_thread || !curr_thread->IsValid() || 943 curr_thread_stop_reason == eStopReasonInvalid || 944 curr_thread_stop_reason == eStopReasonNone) { 945 // Prefer a thread that has just completed its plan over another 946 // thread as current thread. 947 ThreadSP plan_thread; 948 ThreadSP other_thread; 949 950 const size_t num_threads = thread_list.GetSize(); 951 size_t i; 952 for (i = 0; i < num_threads; ++i) { 953 thread = thread_list.GetThreadAtIndex(i); 954 StopReason thread_stop_reason = thread->GetStopReason(); 955 switch (thread_stop_reason) { 956 case eStopReasonInvalid: 957 case eStopReasonNone: 958 break; 959 960 case eStopReasonSignal: { 961 // Don't select a signal thread if we weren't going to stop at 962 // that signal. We have to have had another reason for stopping 963 // here, and the user doesn't want to see this thread. 964 uint64_t signo = thread->GetStopInfo()->GetValue(); 965 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 966 if (!other_thread) 967 other_thread = thread; 968 } 969 break; 970 } 971 case eStopReasonTrace: 972 case eStopReasonBreakpoint: 973 case eStopReasonWatchpoint: 974 case eStopReasonException: 975 case eStopReasonExec: 976 case eStopReasonThreadExiting: 977 case eStopReasonInstrumentation: 978 if (!other_thread) 979 other_thread = thread; 980 break; 981 case eStopReasonPlanComplete: 982 if (!plan_thread) 983 plan_thread = thread; 984 break; 985 } 986 } 987 if (plan_thread) 988 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 989 else if (other_thread) 990 thread_list.SetSelectedThreadByID(other_thread->GetID()); 991 else { 992 if (curr_thread && curr_thread->IsValid()) 993 thread = curr_thread; 994 else 995 thread = thread_list.GetThreadAtIndex(0); 996 997 if (thread) 998 thread_list.SetSelectedThreadByID(thread->GetID()); 999 } 1000 } 1001 } 1002 // Drop the ThreadList mutex by here, since GetThreadStatus below might 1003 // have to run code, e.g. for Data formatters, and if we hold the 1004 // ThreadList mutex, then the process is going to have a hard time 1005 // restarting the process. 1006 if (stream) { 1007 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 1008 if (debugger.GetTargetList().GetSelectedTarget().get() == 1009 &process_sp->GetTarget()) { 1010 ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); 1011 1012 if (!thread_sp || !thread_sp->IsValid()) 1013 return false; 1014 1015 const bool only_threads_with_stop_reason = true; 1016 const uint32_t start_frame = thread_sp->GetSelectedFrameIndex(); 1017 const uint32_t num_frames = 1; 1018 const uint32_t num_frames_with_source = 1; 1019 const bool stop_format = true; 1020 1021 process_sp->GetStatus(*stream); 1022 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 1023 start_frame, num_frames, 1024 num_frames_with_source, 1025 stop_format); 1026 if (curr_thread_stop_info_sp) { 1027 lldb::addr_t crashing_address; 1028 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 1029 curr_thread_stop_info_sp, &crashing_address); 1030 if (valobj_sp) { 1031 const ValueObject::GetExpressionPathFormat format = 1032 ValueObject::GetExpressionPathFormat:: 1033 eGetExpressionPathFormatHonorPointers; 1034 stream->PutCString("Likely cause: "); 1035 valobj_sp->GetExpressionPath(*stream, format); 1036 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 1037 } 1038 } 1039 } else { 1040 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 1041 process_sp->GetTarget().shared_from_this()); 1042 if (target_idx != UINT32_MAX) 1043 stream->Printf("Target %d: (", target_idx); 1044 else 1045 stream->Printf("Target <unknown index>: ("); 1046 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 1047 stream->Printf(") stopped.\n"); 1048 } 1049 } 1050 1051 // Pop the process IO handler 1052 pop_process_io_handler = true; 1053 } 1054 break; 1055 } 1056 1057 if (handle_pop && pop_process_io_handler) 1058 process_sp->PopProcessIOHandler(); 1059 1060 return true; 1061 } 1062 1063 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 1064 if (listener_sp) { 1065 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 1066 eBroadcastBitInterrupt); 1067 } else 1068 return false; 1069 } 1070 1071 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 1072 1073 StateType Process::GetStateChangedEvents(EventSP &event_sp, 1074 const Timeout<std::micro> &timeout, 1075 ListenerSP hijack_listener_sp) { 1076 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1077 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1078 1079 ListenerSP listener_sp = hijack_listener_sp; 1080 if (!listener_sp) 1081 listener_sp = m_listener_sp; 1082 1083 StateType state = eStateInvalid; 1084 if (listener_sp->GetEventForBroadcasterWithType( 1085 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1086 timeout)) { 1087 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1088 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1089 else 1090 LLDB_LOG(log, "got no event or was interrupted."); 1091 } 1092 1093 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 1094 return state; 1095 } 1096 1097 Event *Process::PeekAtStateChangedEvents() { 1098 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1099 1100 LLDB_LOGF(log, "Process::%s...", __FUNCTION__); 1101 1102 Event *event_ptr; 1103 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 1104 this, eBroadcastBitStateChanged); 1105 if (log) { 1106 if (event_ptr) { 1107 LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, 1108 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 1109 } else { 1110 LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); 1111 } 1112 } 1113 return event_ptr; 1114 } 1115 1116 StateType 1117 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 1118 const Timeout<std::micro> &timeout) { 1119 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1120 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1121 1122 StateType state = eStateInvalid; 1123 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1124 &m_private_state_broadcaster, 1125 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1126 timeout)) 1127 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1128 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1129 1130 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1131 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1132 return state; 1133 } 1134 1135 bool Process::GetEventsPrivate(EventSP &event_sp, 1136 const Timeout<std::micro> &timeout, 1137 bool control_only) { 1138 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1139 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1140 1141 if (control_only) 1142 return m_private_state_listener_sp->GetEventForBroadcaster( 1143 &m_private_state_control_broadcaster, event_sp, timeout); 1144 else 1145 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1146 } 1147 1148 bool Process::IsRunning() const { 1149 return StateIsRunningState(m_public_state.GetValue()); 1150 } 1151 1152 int Process::GetExitStatus() { 1153 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1154 1155 if (m_public_state.GetValue() == eStateExited) 1156 return m_exit_status; 1157 return -1; 1158 } 1159 1160 const char *Process::GetExitDescription() { 1161 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1162 1163 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1164 return m_exit_string.c_str(); 1165 return nullptr; 1166 } 1167 1168 bool Process::SetExitStatus(int status, const char *cstr) { 1169 // Use a mutex to protect setting the exit status. 1170 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1171 1172 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1173 LIBLLDB_LOG_PROCESS)); 1174 LLDB_LOGF( 1175 log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1176 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : ""); 1177 1178 // We were already in the exited state 1179 if (m_private_state.GetValue() == eStateExited) { 1180 LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because " 1181 "state was already set to eStateExited"); 1182 return false; 1183 } 1184 1185 m_exit_status = status; 1186 if (cstr) 1187 m_exit_string = cstr; 1188 else 1189 m_exit_string.clear(); 1190 1191 // Clear the last natural stop ID since it has a strong reference to this 1192 // process 1193 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1194 1195 SetPrivateState(eStateExited); 1196 1197 // Allow subclasses to do some cleanup 1198 DidExit(); 1199 1200 return true; 1201 } 1202 1203 bool Process::IsAlive() { 1204 switch (m_private_state.GetValue()) { 1205 case eStateConnected: 1206 case eStateAttaching: 1207 case eStateLaunching: 1208 case eStateStopped: 1209 case eStateRunning: 1210 case eStateStepping: 1211 case eStateCrashed: 1212 case eStateSuspended: 1213 return true; 1214 default: 1215 return false; 1216 } 1217 } 1218 1219 // This static callback can be used to watch for local child processes on the 1220 // current host. The child process exits, the process will be found in the 1221 // global target list (we want to be completely sure that the 1222 // lldb_private::Process doesn't go away before we can deliver the signal. 1223 bool Process::SetProcessExitStatus( 1224 lldb::pid_t pid, bool exited, 1225 int signo, // Zero for no signal 1226 int exit_status // Exit value of process if signal is zero 1227 ) { 1228 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 1229 LLDB_LOGF(log, 1230 "Process::SetProcessExitStatus (pid=%" PRIu64 1231 ", exited=%i, signal=%i, exit_status=%i)\n", 1232 pid, exited, signo, exit_status); 1233 1234 if (exited) { 1235 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1236 if (target_sp) { 1237 ProcessSP process_sp(target_sp->GetProcessSP()); 1238 if (process_sp) { 1239 const char *signal_cstr = nullptr; 1240 if (signo) 1241 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1242 1243 process_sp->SetExitStatus(exit_status, signal_cstr); 1244 } 1245 } 1246 return true; 1247 } 1248 return false; 1249 } 1250 1251 void Process::UpdateThreadListIfNeeded() { 1252 const uint32_t stop_id = GetStopID(); 1253 if (m_thread_list.GetSize(false) == 0 || 1254 stop_id != m_thread_list.GetStopID()) { 1255 bool clear_unused_threads = true; 1256 const StateType state = GetPrivateState(); 1257 if (StateIsStoppedState(state, true)) { 1258 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1259 m_thread_list.SetStopID(stop_id); 1260 1261 // m_thread_list does have its own mutex, but we need to hold onto the 1262 // mutex between the call to UpdateThreadList(...) and the 1263 // os->UpdateThreadList(...) so it doesn't change on us 1264 ThreadList &old_thread_list = m_thread_list; 1265 ThreadList real_thread_list(this); 1266 ThreadList new_thread_list(this); 1267 // Always update the thread list with the protocol specific thread list, 1268 // but only update if "true" is returned 1269 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1270 // Don't call into the OperatingSystem to update the thread list if we 1271 // are shutting down, since that may call back into the SBAPI's, 1272 // requiring the API lock which is already held by whoever is shutting 1273 // us down, causing a deadlock. 1274 OperatingSystem *os = GetOperatingSystem(); 1275 if (os && !m_destroy_in_process) { 1276 // Clear any old backing threads where memory threads might have been 1277 // backed by actual threads from the lldb_private::Process subclass 1278 size_t num_old_threads = old_thread_list.GetSize(false); 1279 for (size_t i = 0; i < num_old_threads; ++i) 1280 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1281 // See if the OS plugin reports all threads. If it does, then 1282 // it is safe to clear unseen thread's plans here. Otherwise we 1283 // should preserve them in case they show up again: 1284 clear_unused_threads = GetOSPluginReportsAllThreads(); 1285 1286 // Turn off dynamic types to ensure we don't run any expressions. 1287 // Objective-C can run an expression to determine if a SBValue is a 1288 // dynamic type or not and we need to avoid this. OperatingSystem 1289 // plug-ins can't run expressions that require running code... 1290 1291 Target &target = GetTarget(); 1292 const lldb::DynamicValueType saved_prefer_dynamic = 1293 target.GetPreferDynamicValue(); 1294 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1295 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1296 1297 // Now let the OperatingSystem plug-in update the thread list 1298 1299 os->UpdateThreadList( 1300 old_thread_list, // Old list full of threads created by OS plug-in 1301 real_thread_list, // The actual thread list full of threads 1302 // created by each lldb_private::Process 1303 // subclass 1304 new_thread_list); // The new thread list that we will show to the 1305 // user that gets filled in 1306 1307 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1308 target.SetPreferDynamicValue(saved_prefer_dynamic); 1309 } else { 1310 // No OS plug-in, the new thread list is the same as the real thread 1311 // list. 1312 new_thread_list = real_thread_list; 1313 } 1314 1315 m_thread_list_real.Update(real_thread_list); 1316 m_thread_list.Update(new_thread_list); 1317 m_thread_list.SetStopID(stop_id); 1318 1319 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1320 // Clear any extended threads that we may have accumulated previously 1321 m_extended_thread_list.Clear(); 1322 m_extended_thread_stop_id = GetLastNaturalStopID(); 1323 1324 m_queue_list.Clear(); 1325 m_queue_list_stop_id = GetLastNaturalStopID(); 1326 } 1327 } 1328 // Now update the plan stack map. 1329 // If we do have an OS plugin, any absent real threads in the 1330 // m_thread_list have already been removed from the ThreadPlanStackMap. 1331 // So any remaining threads are OS Plugin threads, and those we want to 1332 // preserve in case they show up again. 1333 m_thread_plans.Update(m_thread_list, clear_unused_threads); 1334 } 1335 } 1336 } 1337 1338 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) { 1339 return m_thread_plans.Find(tid); 1340 } 1341 1342 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) { 1343 return m_thread_plans.PrunePlansForTID(tid); 1344 } 1345 1346 void Process::PruneThreadPlans() { 1347 m_thread_plans.Update(GetThreadList(), true, false); 1348 } 1349 1350 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid, 1351 lldb::DescriptionLevel desc_level, 1352 bool internal, bool condense_trivial, 1353 bool skip_unreported_plans) { 1354 return m_thread_plans.DumpPlansForTID( 1355 strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans); 1356 } 1357 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level, 1358 bool internal, bool condense_trivial, 1359 bool skip_unreported_plans) { 1360 m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial, 1361 skip_unreported_plans); 1362 } 1363 1364 void Process::UpdateQueueListIfNeeded() { 1365 if (m_system_runtime_up) { 1366 if (m_queue_list.GetSize() == 0 || 1367 m_queue_list_stop_id != GetLastNaturalStopID()) { 1368 const StateType state = GetPrivateState(); 1369 if (StateIsStoppedState(state, true)) { 1370 m_system_runtime_up->PopulateQueueList(m_queue_list); 1371 m_queue_list_stop_id = GetLastNaturalStopID(); 1372 } 1373 } 1374 } 1375 } 1376 1377 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1378 OperatingSystem *os = GetOperatingSystem(); 1379 if (os) 1380 return os->CreateThread(tid, context); 1381 return ThreadSP(); 1382 } 1383 1384 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1385 return AssignIndexIDToThread(thread_id); 1386 } 1387 1388 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1389 return (m_thread_id_to_index_id_map.find(thread_id) != 1390 m_thread_id_to_index_id_map.end()); 1391 } 1392 1393 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1394 uint32_t result = 0; 1395 std::map<uint64_t, uint32_t>::iterator iterator = 1396 m_thread_id_to_index_id_map.find(thread_id); 1397 if (iterator == m_thread_id_to_index_id_map.end()) { 1398 result = ++m_thread_index_id; 1399 m_thread_id_to_index_id_map[thread_id] = result; 1400 } else { 1401 result = iterator->second; 1402 } 1403 1404 return result; 1405 } 1406 1407 StateType Process::GetState() { 1408 return m_public_state.GetValue(); 1409 } 1410 1411 void Process::SetPublicState(StateType new_state, bool restarted) { 1412 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1413 LIBLLDB_LOG_PROCESS)); 1414 LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)", 1415 StateAsCString(new_state), restarted); 1416 const StateType old_state = m_public_state.GetValue(); 1417 m_public_state.SetValue(new_state); 1418 1419 // On the transition from Run to Stopped, we unlock the writer end of the run 1420 // lock. The lock gets locked in Resume, which is the public API to tell the 1421 // program to run. 1422 if (!StateChangedIsExternallyHijacked()) { 1423 if (new_state == eStateDetached) { 1424 LLDB_LOGF(log, 1425 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1426 StateAsCString(new_state)); 1427 m_public_run_lock.SetStopped(); 1428 } else { 1429 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1430 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1431 if ((old_state_is_stopped != new_state_is_stopped)) { 1432 if (new_state_is_stopped && !restarted) { 1433 LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock", 1434 StateAsCString(new_state)); 1435 m_public_run_lock.SetStopped(); 1436 } 1437 } 1438 } 1439 } 1440 } 1441 1442 Status Process::Resume() { 1443 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1444 LIBLLDB_LOG_PROCESS)); 1445 LLDB_LOGF(log, "Process::Resume -- locking run lock"); 1446 if (!m_public_run_lock.TrySetRunning()) { 1447 Status error("Resume request failed - process still running."); 1448 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1449 return error; 1450 } 1451 Status error = PrivateResume(); 1452 if (!error.Success()) { 1453 // Undo running state change 1454 m_public_run_lock.SetStopped(); 1455 } 1456 return error; 1457 } 1458 1459 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack"; 1460 1461 Status Process::ResumeSynchronous(Stream *stream) { 1462 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1463 LIBLLDB_LOG_PROCESS)); 1464 LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); 1465 if (!m_public_run_lock.TrySetRunning()) { 1466 Status error("Resume request failed - process still running."); 1467 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1468 return error; 1469 } 1470 1471 ListenerSP listener_sp( 1472 Listener::MakeListener(g_resume_sync_name)); 1473 HijackProcessEvents(listener_sp); 1474 1475 Status error = PrivateResume(); 1476 if (error.Success()) { 1477 StateType state = 1478 WaitForProcessToStop(llvm::None, nullptr, true, listener_sp, stream); 1479 const bool must_be_alive = 1480 false; // eStateExited is ok, so this must be false 1481 if (!StateIsStoppedState(state, must_be_alive)) 1482 error.SetErrorStringWithFormat( 1483 "process not in stopped state after synchronous resume: %s", 1484 StateAsCString(state)); 1485 } else { 1486 // Undo running state change 1487 m_public_run_lock.SetStopped(); 1488 } 1489 1490 // Undo the hijacking of process events... 1491 RestoreProcessEvents(); 1492 1493 return error; 1494 } 1495 1496 bool Process::StateChangedIsExternallyHijacked() { 1497 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1498 const char *hijacking_name = GetHijackingListenerName(); 1499 if (hijacking_name && 1500 strcmp(hijacking_name, g_resume_sync_name)) 1501 return true; 1502 } 1503 return false; 1504 } 1505 1506 bool Process::StateChangedIsHijackedForSynchronousResume() { 1507 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1508 const char *hijacking_name = GetHijackingListenerName(); 1509 if (hijacking_name && 1510 strcmp(hijacking_name, g_resume_sync_name) == 0) 1511 return true; 1512 } 1513 return false; 1514 } 1515 1516 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1517 1518 void Process::SetPrivateState(StateType new_state) { 1519 if (m_finalizing) 1520 return; 1521 1522 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1523 LIBLLDB_LOG_PROCESS)); 1524 bool state_changed = false; 1525 1526 LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state)); 1527 1528 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1529 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1530 1531 const StateType old_state = m_private_state.GetValueNoLock(); 1532 state_changed = old_state != new_state; 1533 1534 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1535 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1536 if (old_state_is_stopped != new_state_is_stopped) { 1537 if (new_state_is_stopped) 1538 m_private_run_lock.SetStopped(); 1539 else 1540 m_private_run_lock.SetRunning(); 1541 } 1542 1543 if (state_changed) { 1544 m_private_state.SetValueNoLock(new_state); 1545 EventSP event_sp( 1546 new Event(eBroadcastBitStateChanged, 1547 new ProcessEventData(shared_from_this(), new_state))); 1548 if (StateIsStoppedState(new_state, false)) { 1549 // Note, this currently assumes that all threads in the list stop when 1550 // the process stops. In the future we will want to support a debugging 1551 // model where some threads continue to run while others are stopped. 1552 // When that happens we will either need a way for the thread list to 1553 // identify which threads are stopping or create a special thread list 1554 // containing only threads which actually stopped. 1555 // 1556 // The process plugin is responsible for managing the actual behavior of 1557 // the threads and should have stopped any threads that are going to stop 1558 // before we get here. 1559 m_thread_list.DidStop(); 1560 1561 m_mod_id.BumpStopID(); 1562 if (!m_mod_id.IsLastResumeForUserExpression()) 1563 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1564 m_memory_cache.Clear(); 1565 LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u", 1566 StateAsCString(new_state), m_mod_id.GetStopID()); 1567 } 1568 1569 m_private_state_broadcaster.BroadcastEvent(event_sp); 1570 } else { 1571 LLDB_LOGF(log, 1572 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1573 StateAsCString(new_state)); 1574 } 1575 } 1576 1577 void Process::SetRunningUserExpression(bool on) { 1578 m_mod_id.SetRunningUserExpression(on); 1579 } 1580 1581 void Process::SetRunningUtilityFunction(bool on) { 1582 m_mod_id.SetRunningUtilityFunction(on); 1583 } 1584 1585 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1586 1587 const lldb::ABISP &Process::GetABI() { 1588 if (!m_abi_sp) 1589 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1590 return m_abi_sp; 1591 } 1592 1593 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { 1594 std::vector<LanguageRuntime *> language_runtimes; 1595 1596 if (m_finalizing) 1597 return language_runtimes; 1598 1599 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1600 // Before we pass off a copy of the language runtimes, we must make sure that 1601 // our collection is properly populated. It's possible that some of the 1602 // language runtimes were not loaded yet, either because nobody requested it 1603 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so 1604 // hadn't been loaded). 1605 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 1606 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 1607 language_runtimes.emplace_back(runtime); 1608 } 1609 1610 return language_runtimes; 1611 } 1612 1613 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { 1614 if (m_finalizing) 1615 return nullptr; 1616 1617 LanguageRuntime *runtime = nullptr; 1618 1619 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1620 LanguageRuntimeCollection::iterator pos; 1621 pos = m_language_runtimes.find(language); 1622 if (pos == m_language_runtimes.end() || !pos->second) { 1623 lldb::LanguageRuntimeSP runtime_sp( 1624 LanguageRuntime::FindPlugin(this, language)); 1625 1626 m_language_runtimes[language] = runtime_sp; 1627 runtime = runtime_sp.get(); 1628 } else 1629 runtime = pos->second.get(); 1630 1631 if (runtime) 1632 // It's possible that a language runtime can support multiple LanguageTypes, 1633 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, 1634 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the 1635 // primary language type and make sure that our runtime supports it. 1636 assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); 1637 1638 return runtime; 1639 } 1640 1641 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1642 if (m_finalizing) 1643 return false; 1644 1645 if (in_value.IsDynamic()) 1646 return false; 1647 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1648 1649 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1650 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1651 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1652 } 1653 1654 for (LanguageRuntime *runtime : GetLanguageRuntimes()) { 1655 if (runtime->CouldHaveDynamicValue(in_value)) 1656 return true; 1657 } 1658 1659 return false; 1660 } 1661 1662 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1663 m_dynamic_checkers_up.reset(dynamic_checkers); 1664 } 1665 1666 BreakpointSiteList &Process::GetBreakpointSiteList() { 1667 return m_breakpoint_site_list; 1668 } 1669 1670 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1671 return m_breakpoint_site_list; 1672 } 1673 1674 void Process::DisableAllBreakpointSites() { 1675 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1676 // bp_site->SetEnabled(true); 1677 DisableBreakpointSite(bp_site); 1678 }); 1679 } 1680 1681 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1682 Status error(DisableBreakpointSiteByID(break_id)); 1683 1684 if (error.Success()) 1685 m_breakpoint_site_list.Remove(break_id); 1686 1687 return error; 1688 } 1689 1690 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1691 Status error; 1692 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1693 if (bp_site_sp) { 1694 if (bp_site_sp->IsEnabled()) 1695 error = DisableBreakpointSite(bp_site_sp.get()); 1696 } else { 1697 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1698 break_id); 1699 } 1700 1701 return error; 1702 } 1703 1704 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1705 Status error; 1706 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1707 if (bp_site_sp) { 1708 if (!bp_site_sp->IsEnabled()) 1709 error = EnableBreakpointSite(bp_site_sp.get()); 1710 } else { 1711 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1712 break_id); 1713 } 1714 return error; 1715 } 1716 1717 lldb::break_id_t 1718 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1719 bool use_hardware) { 1720 addr_t load_addr = LLDB_INVALID_ADDRESS; 1721 1722 bool show_error = true; 1723 switch (GetState()) { 1724 case eStateInvalid: 1725 case eStateUnloaded: 1726 case eStateConnected: 1727 case eStateAttaching: 1728 case eStateLaunching: 1729 case eStateDetached: 1730 case eStateExited: 1731 show_error = false; 1732 break; 1733 1734 case eStateStopped: 1735 case eStateRunning: 1736 case eStateStepping: 1737 case eStateCrashed: 1738 case eStateSuspended: 1739 show_error = IsAlive(); 1740 break; 1741 } 1742 1743 // Reset the IsIndirect flag here, in case the location changes from pointing 1744 // to a indirect symbol to a regular symbol. 1745 owner->SetIsIndirect(false); 1746 1747 if (owner->ShouldResolveIndirectFunctions()) { 1748 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1749 if (symbol && symbol->IsIndirect()) { 1750 Status error; 1751 Address symbol_address = symbol->GetAddress(); 1752 load_addr = ResolveIndirectFunction(&symbol_address, error); 1753 if (!error.Success() && show_error) { 1754 GetTarget().GetDebugger().GetErrorStream().Printf( 1755 "warning: failed to resolve indirect function at 0x%" PRIx64 1756 " for breakpoint %i.%i: %s\n", 1757 symbol->GetLoadAddress(&GetTarget()), 1758 owner->GetBreakpoint().GetID(), owner->GetID(), 1759 error.AsCString() ? error.AsCString() : "unknown error"); 1760 return LLDB_INVALID_BREAK_ID; 1761 } 1762 Address resolved_address(load_addr); 1763 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1764 owner->SetIsIndirect(true); 1765 } else 1766 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1767 } else 1768 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1769 1770 if (load_addr != LLDB_INVALID_ADDRESS) { 1771 BreakpointSiteSP bp_site_sp; 1772 1773 // Look up this breakpoint site. If it exists, then add this new owner, 1774 // otherwise create a new breakpoint site and add it. 1775 1776 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1777 1778 if (bp_site_sp) { 1779 bp_site_sp->AddOwner(owner); 1780 owner->SetBreakpointSite(bp_site_sp); 1781 return bp_site_sp->GetID(); 1782 } else { 1783 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1784 load_addr, use_hardware)); 1785 if (bp_site_sp) { 1786 Status error = EnableBreakpointSite(bp_site_sp.get()); 1787 if (error.Success()) { 1788 owner->SetBreakpointSite(bp_site_sp); 1789 return m_breakpoint_site_list.Add(bp_site_sp); 1790 } else { 1791 if (show_error || use_hardware) { 1792 // Report error for setting breakpoint... 1793 GetTarget().GetDebugger().GetErrorStream().Printf( 1794 "warning: failed to set breakpoint site at 0x%" PRIx64 1795 " for breakpoint %i.%i: %s\n", 1796 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1797 error.AsCString() ? error.AsCString() : "unknown error"); 1798 } 1799 } 1800 } 1801 } 1802 } 1803 // We failed to enable the breakpoint 1804 return LLDB_INVALID_BREAK_ID; 1805 } 1806 1807 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1808 lldb::user_id_t owner_loc_id, 1809 BreakpointSiteSP &bp_site_sp) { 1810 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1811 if (num_owners == 0) { 1812 // Don't try to disable the site if we don't have a live process anymore. 1813 if (IsAlive()) 1814 DisableBreakpointSite(bp_site_sp.get()); 1815 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1816 } 1817 } 1818 1819 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1820 uint8_t *buf) const { 1821 size_t bytes_removed = 0; 1822 BreakpointSiteList bp_sites_in_range; 1823 1824 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1825 bp_sites_in_range)) { 1826 bp_sites_in_range.ForEach([bp_addr, size, 1827 buf](BreakpointSite *bp_site) -> void { 1828 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1829 addr_t intersect_addr; 1830 size_t intersect_size; 1831 size_t opcode_offset; 1832 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1833 &intersect_size, &opcode_offset)) { 1834 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1835 assert(bp_addr < intersect_addr + intersect_size && 1836 intersect_addr + intersect_size <= bp_addr + size); 1837 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1838 size_t buf_offset = intersect_addr - bp_addr; 1839 ::memcpy(buf + buf_offset, 1840 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1841 intersect_size); 1842 } 1843 } 1844 }); 1845 } 1846 return bytes_removed; 1847 } 1848 1849 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1850 PlatformSP platform_sp(GetTarget().GetPlatform()); 1851 if (platform_sp) 1852 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1853 return 0; 1854 } 1855 1856 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1857 Status error; 1858 assert(bp_site != nullptr); 1859 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1860 const addr_t bp_addr = bp_site->GetLoadAddress(); 1861 LLDB_LOGF( 1862 log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1863 bp_site->GetID(), (uint64_t)bp_addr); 1864 if (bp_site->IsEnabled()) { 1865 LLDB_LOGF( 1866 log, 1867 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1868 " -- already enabled", 1869 bp_site->GetID(), (uint64_t)bp_addr); 1870 return error; 1871 } 1872 1873 if (bp_addr == LLDB_INVALID_ADDRESS) { 1874 error.SetErrorString("BreakpointSite contains an invalid load address."); 1875 return error; 1876 } 1877 // Ask the lldb::Process subclass to fill in the correct software breakpoint 1878 // trap for the breakpoint site 1879 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 1880 1881 if (bp_opcode_size == 0) { 1882 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 1883 "returned zero, unable to get breakpoint " 1884 "trap for address 0x%" PRIx64, 1885 bp_addr); 1886 } else { 1887 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 1888 1889 if (bp_opcode_bytes == nullptr) { 1890 error.SetErrorString( 1891 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 1892 return error; 1893 } 1894 1895 // Save the original opcode by reading it 1896 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 1897 error) == bp_opcode_size) { 1898 // Write a software breakpoint in place of the original opcode 1899 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 1900 bp_opcode_size) { 1901 uint8_t verify_bp_opcode_bytes[64]; 1902 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 1903 error) == bp_opcode_size) { 1904 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 1905 bp_opcode_size) == 0) { 1906 bp_site->SetEnabled(true); 1907 bp_site->SetType(BreakpointSite::eSoftware); 1908 LLDB_LOGF(log, 1909 "Process::EnableSoftwareBreakpoint (site_id = %d) " 1910 "addr = 0x%" PRIx64 " -- SUCCESS", 1911 bp_site->GetID(), (uint64_t)bp_addr); 1912 } else 1913 error.SetErrorString( 1914 "failed to verify the breakpoint trap in memory."); 1915 } else 1916 error.SetErrorString( 1917 "Unable to read memory to verify breakpoint trap."); 1918 } else 1919 error.SetErrorString("Unable to write breakpoint trap to memory."); 1920 } else 1921 error.SetErrorString("Unable to read memory at breakpoint address."); 1922 } 1923 if (log && error.Fail()) 1924 LLDB_LOGF( 1925 log, 1926 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1927 " -- FAILED: %s", 1928 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1929 return error; 1930 } 1931 1932 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 1933 Status error; 1934 assert(bp_site != nullptr); 1935 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1936 addr_t bp_addr = bp_site->GetLoadAddress(); 1937 lldb::user_id_t breakID = bp_site->GetID(); 1938 LLDB_LOGF(log, 1939 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 1940 ") addr = 0x%" PRIx64, 1941 breakID, (uint64_t)bp_addr); 1942 1943 if (bp_site->IsHardware()) { 1944 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 1945 } else if (bp_site->IsEnabled()) { 1946 const size_t break_op_size = bp_site->GetByteSize(); 1947 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 1948 if (break_op_size > 0) { 1949 // Clear a software breakpoint instruction 1950 uint8_t curr_break_op[8]; 1951 assert(break_op_size <= sizeof(curr_break_op)); 1952 bool break_op_found = false; 1953 1954 // Read the breakpoint opcode 1955 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 1956 break_op_size) { 1957 bool verify = false; 1958 // Make sure the breakpoint opcode exists at this address 1959 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 1960 break_op_found = true; 1961 // We found a valid breakpoint opcode at this address, now restore 1962 // the saved opcode. 1963 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 1964 break_op_size, error) == break_op_size) { 1965 verify = true; 1966 } else 1967 error.SetErrorString( 1968 "Memory write failed when restoring original opcode."); 1969 } else { 1970 error.SetErrorString( 1971 "Original breakpoint trap is no longer in memory."); 1972 // Set verify to true and so we can check if the original opcode has 1973 // already been restored 1974 verify = true; 1975 } 1976 1977 if (verify) { 1978 uint8_t verify_opcode[8]; 1979 assert(break_op_size < sizeof(verify_opcode)); 1980 // Verify that our original opcode made it back to the inferior 1981 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 1982 break_op_size) { 1983 // compare the memory we just read with the original opcode 1984 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 1985 break_op_size) == 0) { 1986 // SUCCESS 1987 bp_site->SetEnabled(false); 1988 LLDB_LOGF(log, 1989 "Process::DisableSoftwareBreakpoint (site_id = %d) " 1990 "addr = 0x%" PRIx64 " -- SUCCESS", 1991 bp_site->GetID(), (uint64_t)bp_addr); 1992 return error; 1993 } else { 1994 if (break_op_found) 1995 error.SetErrorString("Failed to restore original opcode."); 1996 } 1997 } else 1998 error.SetErrorString("Failed to read memory to verify that " 1999 "breakpoint trap was restored."); 2000 } 2001 } else 2002 error.SetErrorString( 2003 "Unable to read memory that should contain the breakpoint trap."); 2004 } 2005 } else { 2006 LLDB_LOGF( 2007 log, 2008 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2009 " -- already disabled", 2010 bp_site->GetID(), (uint64_t)bp_addr); 2011 return error; 2012 } 2013 2014 LLDB_LOGF( 2015 log, 2016 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2017 " -- FAILED: %s", 2018 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 2019 return error; 2020 } 2021 2022 // Uncomment to verify memory caching works after making changes to caching 2023 // code 2024 //#define VERIFY_MEMORY_READS 2025 2026 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 2027 error.Clear(); 2028 if (!GetDisableMemoryCache()) { 2029 #if defined(VERIFY_MEMORY_READS) 2030 // Memory caching is enabled, with debug verification 2031 2032 if (buf && size) { 2033 // Uncomment the line below to make sure memory caching is working. 2034 // I ran this through the test suite and got no assertions, so I am 2035 // pretty confident this is working well. If any changes are made to 2036 // memory caching, uncomment the line below and test your changes! 2037 2038 // Verify all memory reads by using the cache first, then redundantly 2039 // reading the same memory from the inferior and comparing to make sure 2040 // everything is exactly the same. 2041 std::string verify_buf(size, '\0'); 2042 assert(verify_buf.size() == size); 2043 const size_t cache_bytes_read = 2044 m_memory_cache.Read(this, addr, buf, size, error); 2045 Status verify_error; 2046 const size_t verify_bytes_read = 2047 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 2048 verify_buf.size(), verify_error); 2049 assert(cache_bytes_read == verify_bytes_read); 2050 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 2051 assert(verify_error.Success() == error.Success()); 2052 return cache_bytes_read; 2053 } 2054 return 0; 2055 #else // !defined(VERIFY_MEMORY_READS) 2056 // Memory caching is enabled, without debug verification 2057 2058 return m_memory_cache.Read(addr, buf, size, error); 2059 #endif // defined (VERIFY_MEMORY_READS) 2060 } else { 2061 // Memory caching is disabled 2062 2063 return ReadMemoryFromInferior(addr, buf, size, error); 2064 } 2065 } 2066 2067 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 2068 Status &error) { 2069 char buf[256]; 2070 out_str.clear(); 2071 addr_t curr_addr = addr; 2072 while (true) { 2073 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 2074 if (length == 0) 2075 break; 2076 out_str.append(buf, length); 2077 // If we got "length - 1" bytes, we didn't get the whole C string, we need 2078 // to read some more characters 2079 if (length == sizeof(buf) - 1) 2080 curr_addr += length; 2081 else 2082 break; 2083 } 2084 return out_str.size(); 2085 } 2086 2087 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes, 2088 Status &error, size_t type_width) { 2089 size_t total_bytes_read = 0; 2090 if (dst && max_bytes && type_width && max_bytes >= type_width) { 2091 // Ensure a null terminator independent of the number of bytes that is 2092 // read. 2093 memset(dst, 0, max_bytes); 2094 size_t bytes_left = max_bytes - type_width; 2095 2096 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 2097 assert(sizeof(terminator) >= type_width && "Attempting to validate a " 2098 "string with more than 4 bytes " 2099 "per character!"); 2100 2101 addr_t curr_addr = addr; 2102 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2103 char *curr_dst = dst; 2104 2105 error.Clear(); 2106 while (bytes_left > 0 && error.Success()) { 2107 addr_t cache_line_bytes_left = 2108 cache_line_size - (curr_addr % cache_line_size); 2109 addr_t bytes_to_read = 2110 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2111 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2112 2113 if (bytes_read == 0) 2114 break; 2115 2116 // Search for a null terminator of correct size and alignment in 2117 // bytes_read 2118 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 2119 for (size_t i = aligned_start; 2120 i + type_width <= total_bytes_read + bytes_read; i += type_width) 2121 if (::memcmp(&dst[i], terminator, type_width) == 0) { 2122 error.Clear(); 2123 return i; 2124 } 2125 2126 total_bytes_read += bytes_read; 2127 curr_dst += bytes_read; 2128 curr_addr += bytes_read; 2129 bytes_left -= bytes_read; 2130 } 2131 } else { 2132 if (max_bytes) 2133 error.SetErrorString("invalid arguments"); 2134 } 2135 return total_bytes_read; 2136 } 2137 2138 // Deprecated in favor of ReadStringFromMemory which has wchar support and 2139 // correct code to find null terminators. 2140 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 2141 size_t dst_max_len, 2142 Status &result_error) { 2143 size_t total_cstr_len = 0; 2144 if (dst && dst_max_len) { 2145 result_error.Clear(); 2146 // NULL out everything just to be safe 2147 memset(dst, 0, dst_max_len); 2148 Status error; 2149 addr_t curr_addr = addr; 2150 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2151 size_t bytes_left = dst_max_len - 1; 2152 char *curr_dst = dst; 2153 2154 while (bytes_left > 0) { 2155 addr_t cache_line_bytes_left = 2156 cache_line_size - (curr_addr % cache_line_size); 2157 addr_t bytes_to_read = 2158 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2159 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2160 2161 if (bytes_read == 0) { 2162 result_error = error; 2163 dst[total_cstr_len] = '\0'; 2164 break; 2165 } 2166 const size_t len = strlen(curr_dst); 2167 2168 total_cstr_len += len; 2169 2170 if (len < bytes_to_read) 2171 break; 2172 2173 curr_dst += bytes_read; 2174 curr_addr += bytes_read; 2175 bytes_left -= bytes_read; 2176 } 2177 } else { 2178 if (dst == nullptr) 2179 result_error.SetErrorString("invalid arguments"); 2180 else 2181 result_error.Clear(); 2182 } 2183 return total_cstr_len; 2184 } 2185 2186 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2187 Status &error) { 2188 if (buf == nullptr || size == 0) 2189 return 0; 2190 2191 size_t bytes_read = 0; 2192 uint8_t *bytes = (uint8_t *)buf; 2193 2194 while (bytes_read < size) { 2195 const size_t curr_size = size - bytes_read; 2196 const size_t curr_bytes_read = 2197 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2198 bytes_read += curr_bytes_read; 2199 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2200 break; 2201 } 2202 2203 // Replace any software breakpoint opcodes that fall into this range back 2204 // into "buf" before we return 2205 if (bytes_read > 0) 2206 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2207 return bytes_read; 2208 } 2209 2210 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2211 size_t integer_byte_size, 2212 uint64_t fail_value, 2213 Status &error) { 2214 Scalar scalar; 2215 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2216 error)) 2217 return scalar.ULongLong(fail_value); 2218 return fail_value; 2219 } 2220 2221 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2222 size_t integer_byte_size, 2223 int64_t fail_value, 2224 Status &error) { 2225 Scalar scalar; 2226 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2227 error)) 2228 return scalar.SLongLong(fail_value); 2229 return fail_value; 2230 } 2231 2232 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2233 Scalar scalar; 2234 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2235 error)) 2236 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2237 return LLDB_INVALID_ADDRESS; 2238 } 2239 2240 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2241 Status &error) { 2242 Scalar scalar; 2243 const uint32_t addr_byte_size = GetAddressByteSize(); 2244 if (addr_byte_size <= 4) 2245 scalar = (uint32_t)ptr_value; 2246 else 2247 scalar = ptr_value; 2248 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2249 addr_byte_size; 2250 } 2251 2252 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2253 Status &error) { 2254 size_t bytes_written = 0; 2255 const uint8_t *bytes = (const uint8_t *)buf; 2256 2257 while (bytes_written < size) { 2258 const size_t curr_size = size - bytes_written; 2259 const size_t curr_bytes_written = DoWriteMemory( 2260 addr + bytes_written, bytes + bytes_written, curr_size, error); 2261 bytes_written += curr_bytes_written; 2262 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2263 break; 2264 } 2265 return bytes_written; 2266 } 2267 2268 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2269 Status &error) { 2270 #if defined(ENABLE_MEMORY_CACHING) 2271 m_memory_cache.Flush(addr, size); 2272 #endif 2273 2274 if (buf == nullptr || size == 0) 2275 return 0; 2276 2277 m_mod_id.BumpMemoryID(); 2278 2279 // We need to write any data that would go where any current software traps 2280 // (enabled software breakpoints) any software traps (breakpoints) that we 2281 // may have placed in our tasks memory. 2282 2283 BreakpointSiteList bp_sites_in_range; 2284 if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range)) 2285 return WriteMemoryPrivate(addr, buf, size, error); 2286 2287 // No breakpoint sites overlap 2288 if (bp_sites_in_range.IsEmpty()) 2289 return WriteMemoryPrivate(addr, buf, size, error); 2290 2291 const uint8_t *ubuf = (const uint8_t *)buf; 2292 uint64_t bytes_written = 0; 2293 2294 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2295 &error](BreakpointSite *bp) -> void { 2296 if (error.Fail()) 2297 return; 2298 2299 if (bp->GetType() != BreakpointSite::eSoftware) 2300 return; 2301 2302 addr_t intersect_addr; 2303 size_t intersect_size; 2304 size_t opcode_offset; 2305 const bool intersects = bp->IntersectsRange( 2306 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2307 UNUSED_IF_ASSERT_DISABLED(intersects); 2308 assert(intersects); 2309 assert(addr <= intersect_addr && intersect_addr < addr + size); 2310 assert(addr < intersect_addr + intersect_size && 2311 intersect_addr + intersect_size <= addr + size); 2312 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2313 2314 // Check for bytes before this breakpoint 2315 const addr_t curr_addr = addr + bytes_written; 2316 if (intersect_addr > curr_addr) { 2317 // There are some bytes before this breakpoint that we need to just 2318 // write to memory 2319 size_t curr_size = intersect_addr - curr_addr; 2320 size_t curr_bytes_written = 2321 WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error); 2322 bytes_written += curr_bytes_written; 2323 if (curr_bytes_written != curr_size) { 2324 // We weren't able to write all of the requested bytes, we are 2325 // done looping and will return the number of bytes that we have 2326 // written so far. 2327 if (error.Success()) 2328 error.SetErrorToGenericError(); 2329 } 2330 } 2331 // Now write any bytes that would cover up any software breakpoints 2332 // directly into the breakpoint opcode buffer 2333 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, 2334 intersect_size); 2335 bytes_written += intersect_size; 2336 }); 2337 2338 // Write any remaining bytes after the last breakpoint if we have any left 2339 if (bytes_written < size) 2340 bytes_written += 2341 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2342 size - bytes_written, error); 2343 2344 return bytes_written; 2345 } 2346 2347 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2348 size_t byte_size, Status &error) { 2349 if (byte_size == UINT32_MAX) 2350 byte_size = scalar.GetByteSize(); 2351 if (byte_size > 0) { 2352 uint8_t buf[32]; 2353 const size_t mem_size = 2354 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2355 if (mem_size > 0) 2356 return WriteMemory(addr, buf, mem_size, error); 2357 else 2358 error.SetErrorString("failed to get scalar as memory data"); 2359 } else { 2360 error.SetErrorString("invalid scalar value"); 2361 } 2362 return 0; 2363 } 2364 2365 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2366 bool is_signed, Scalar &scalar, 2367 Status &error) { 2368 uint64_t uval = 0; 2369 if (byte_size == 0) { 2370 error.SetErrorString("byte size is zero"); 2371 } else if (byte_size & (byte_size - 1)) { 2372 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2373 byte_size); 2374 } else if (byte_size <= sizeof(uval)) { 2375 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2376 if (bytes_read == byte_size) { 2377 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2378 GetAddressByteSize()); 2379 lldb::offset_t offset = 0; 2380 if (byte_size <= 4) 2381 scalar = data.GetMaxU32(&offset, byte_size); 2382 else 2383 scalar = data.GetMaxU64(&offset, byte_size); 2384 if (is_signed) 2385 scalar.SignExtend(byte_size * 8); 2386 return bytes_read; 2387 } 2388 } else { 2389 error.SetErrorStringWithFormat( 2390 "byte size of %u is too large for integer scalar type", byte_size); 2391 } 2392 return 0; 2393 } 2394 2395 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2396 Status error; 2397 for (const auto &Entry : entries) { 2398 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2399 error); 2400 if (!error.Success()) 2401 break; 2402 } 2403 return error; 2404 } 2405 2406 #define USE_ALLOCATE_MEMORY_CACHE 1 2407 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2408 Status &error) { 2409 if (GetPrivateState() != eStateStopped) { 2410 error.SetErrorToGenericError(); 2411 return LLDB_INVALID_ADDRESS; 2412 } 2413 2414 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2415 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2416 #else 2417 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2418 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2419 LLDB_LOGF(log, 2420 "Process::AllocateMemory(size=%" PRIu64 2421 ", permissions=%s) => 0x%16.16" PRIx64 2422 " (m_stop_id = %u m_memory_id = %u)", 2423 (uint64_t)size, GetPermissionsAsCString(permissions), 2424 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2425 m_mod_id.GetMemoryID()); 2426 return allocated_addr; 2427 #endif 2428 } 2429 2430 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2431 Status &error) { 2432 addr_t return_addr = AllocateMemory(size, permissions, error); 2433 if (error.Success()) { 2434 std::string buffer(size, 0); 2435 WriteMemory(return_addr, buffer.c_str(), size, error); 2436 } 2437 return return_addr; 2438 } 2439 2440 bool Process::CanJIT() { 2441 if (m_can_jit == eCanJITDontKnow) { 2442 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2443 Status err; 2444 2445 uint64_t allocated_memory = AllocateMemory( 2446 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2447 err); 2448 2449 if (err.Success()) { 2450 m_can_jit = eCanJITYes; 2451 LLDB_LOGF(log, 2452 "Process::%s pid %" PRIu64 2453 " allocation test passed, CanJIT () is true", 2454 __FUNCTION__, GetID()); 2455 } else { 2456 m_can_jit = eCanJITNo; 2457 LLDB_LOGF(log, 2458 "Process::%s pid %" PRIu64 2459 " allocation test failed, CanJIT () is false: %s", 2460 __FUNCTION__, GetID(), err.AsCString()); 2461 } 2462 2463 DeallocateMemory(allocated_memory); 2464 } 2465 2466 return m_can_jit == eCanJITYes; 2467 } 2468 2469 void Process::SetCanJIT(bool can_jit) { 2470 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2471 } 2472 2473 void Process::SetCanRunCode(bool can_run_code) { 2474 SetCanJIT(can_run_code); 2475 m_can_interpret_function_calls = can_run_code; 2476 } 2477 2478 Status Process::DeallocateMemory(addr_t ptr) { 2479 Status error; 2480 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2481 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2482 error.SetErrorStringWithFormat( 2483 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2484 } 2485 #else 2486 error = DoDeallocateMemory(ptr); 2487 2488 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2489 LLDB_LOGF(log, 2490 "Process::DeallocateMemory(addr=0x%16.16" PRIx64 2491 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2492 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2493 m_mod_id.GetMemoryID()); 2494 #endif 2495 return error; 2496 } 2497 2498 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2499 lldb::addr_t header_addr, 2500 size_t size_to_read) { 2501 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2502 if (log) { 2503 LLDB_LOGF(log, 2504 "Process::ReadModuleFromMemory reading %s binary from memory", 2505 file_spec.GetPath().c_str()); 2506 } 2507 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2508 if (module_sp) { 2509 Status error; 2510 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2511 shared_from_this(), header_addr, error, size_to_read); 2512 if (objfile) 2513 return module_sp; 2514 } 2515 return ModuleSP(); 2516 } 2517 2518 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2519 uint32_t &permissions) { 2520 MemoryRegionInfo range_info; 2521 permissions = 0; 2522 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2523 if (!error.Success()) 2524 return false; 2525 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2526 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2527 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2528 return false; 2529 } 2530 2531 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2532 permissions |= lldb::ePermissionsReadable; 2533 2534 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2535 permissions |= lldb::ePermissionsWritable; 2536 2537 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2538 permissions |= lldb::ePermissionsExecutable; 2539 2540 return true; 2541 } 2542 2543 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2544 Status error; 2545 error.SetErrorString("watchpoints are not supported"); 2546 return error; 2547 } 2548 2549 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2550 Status error; 2551 error.SetErrorString("watchpoints are not supported"); 2552 return error; 2553 } 2554 2555 StateType 2556 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2557 const Timeout<std::micro> &timeout) { 2558 StateType state; 2559 2560 while (true) { 2561 event_sp.reset(); 2562 state = GetStateChangedEventsPrivate(event_sp, timeout); 2563 2564 if (StateIsStoppedState(state, false)) 2565 break; 2566 2567 // If state is invalid, then we timed out 2568 if (state == eStateInvalid) 2569 break; 2570 2571 if (event_sp) 2572 HandlePrivateEvent(event_sp); 2573 } 2574 return state; 2575 } 2576 2577 void Process::LoadOperatingSystemPlugin(bool flush) { 2578 if (flush) 2579 m_thread_list.Clear(); 2580 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); 2581 if (flush) 2582 Flush(); 2583 } 2584 2585 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2586 Status error; 2587 m_abi_sp.reset(); 2588 m_dyld_up.reset(); 2589 m_jit_loaders_up.reset(); 2590 m_system_runtime_up.reset(); 2591 m_os_up.reset(); 2592 m_process_input_reader.reset(); 2593 2594 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2595 if (!exe_module) { 2596 error.SetErrorString("executable module does not exist"); 2597 return error; 2598 } 2599 2600 char local_exec_file_path[PATH_MAX]; 2601 char platform_exec_file_path[PATH_MAX]; 2602 exe_module->GetFileSpec().GetPath(local_exec_file_path, 2603 sizeof(local_exec_file_path)); 2604 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, 2605 sizeof(platform_exec_file_path)); 2606 if (FileSystem::Instance().Exists(exe_module->GetFileSpec())) { 2607 // Install anything that might need to be installed prior to launching. 2608 // For host systems, this will do nothing, but if we are connected to a 2609 // remote platform it will install any needed binaries 2610 error = GetTarget().Install(&launch_info); 2611 if (error.Fail()) 2612 return error; 2613 2614 if (PrivateStateThreadIsValid()) 2615 PausePrivateStateThread(); 2616 2617 error = WillLaunch(exe_module); 2618 if (error.Success()) { 2619 const bool restarted = false; 2620 SetPublicState(eStateLaunching, restarted); 2621 m_should_detach = false; 2622 2623 if (m_public_run_lock.TrySetRunning()) { 2624 // Now launch using these arguments. 2625 error = DoLaunch(exe_module, launch_info); 2626 } else { 2627 // This shouldn't happen 2628 error.SetErrorString("failed to acquire process run lock"); 2629 } 2630 2631 if (error.Fail()) { 2632 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2633 SetID(LLDB_INVALID_PROCESS_ID); 2634 const char *error_string = error.AsCString(); 2635 if (error_string == nullptr) 2636 error_string = "launch failed"; 2637 SetExitStatus(-1, error_string); 2638 } 2639 } else { 2640 EventSP event_sp; 2641 2642 // Now wait for the process to launch and return control to us, and then 2643 // call DidLaunch: 2644 StateType state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2645 2646 if (state == eStateInvalid || !event_sp) { 2647 // We were able to launch the process, but we failed to catch the 2648 // initial stop. 2649 error.SetErrorString("failed to catch stop after launch"); 2650 SetExitStatus(0, "failed to catch stop after launch"); 2651 Destroy(false); 2652 } else if (state == eStateStopped || state == eStateCrashed) { 2653 DidLaunch(); 2654 2655 DynamicLoader *dyld = GetDynamicLoader(); 2656 if (dyld) 2657 dyld->DidLaunch(); 2658 2659 GetJITLoaders().DidLaunch(); 2660 2661 SystemRuntime *system_runtime = GetSystemRuntime(); 2662 if (system_runtime) 2663 system_runtime->DidLaunch(); 2664 2665 if (!m_os_up) 2666 LoadOperatingSystemPlugin(false); 2667 2668 // We successfully launched the process and stopped, now it the 2669 // right time to set up signal filters before resuming. 2670 UpdateAutomaticSignalFiltering(); 2671 2672 // Note, the stop event was consumed above, but not handled. This 2673 // was done to give DidLaunch a chance to run. The target is either 2674 // stopped or crashed. Directly set the state. This is done to 2675 // prevent a stop message with a bunch of spurious output on thread 2676 // status, as well as not pop a ProcessIOHandler. 2677 SetPublicState(state, false); 2678 2679 if (PrivateStateThreadIsValid()) 2680 ResumePrivateStateThread(); 2681 else 2682 StartPrivateStateThread(); 2683 2684 // Target was stopped at entry as was intended. Need to notify the 2685 // listeners about it. 2686 if (state == eStateStopped && 2687 launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2688 HandlePrivateEvent(event_sp); 2689 } else if (state == eStateExited) { 2690 // We exited while trying to launch somehow. Don't call DidLaunch 2691 // as that's not likely to work, and return an invalid pid. 2692 HandlePrivateEvent(event_sp); 2693 } 2694 } 2695 } 2696 } else { 2697 error.SetErrorStringWithFormat("file doesn't exist: '%s'", 2698 local_exec_file_path); 2699 } 2700 2701 return error; 2702 } 2703 2704 Status Process::LoadCore() { 2705 Status error = DoLoadCore(); 2706 if (error.Success()) { 2707 ListenerSP listener_sp( 2708 Listener::MakeListener("lldb.process.load_core_listener")); 2709 HijackProcessEvents(listener_sp); 2710 2711 if (PrivateStateThreadIsValid()) 2712 ResumePrivateStateThread(); 2713 else 2714 StartPrivateStateThread(); 2715 2716 DynamicLoader *dyld = GetDynamicLoader(); 2717 if (dyld) 2718 dyld->DidAttach(); 2719 2720 GetJITLoaders().DidAttach(); 2721 2722 SystemRuntime *system_runtime = GetSystemRuntime(); 2723 if (system_runtime) 2724 system_runtime->DidAttach(); 2725 2726 if (!m_os_up) 2727 LoadOperatingSystemPlugin(false); 2728 2729 // We successfully loaded a core file, now pretend we stopped so we can 2730 // show all of the threads in the core file and explore the crashed state. 2731 SetPrivateState(eStateStopped); 2732 2733 // Wait for a stopped event since we just posted one above... 2734 lldb::EventSP event_sp; 2735 StateType state = 2736 WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp); 2737 2738 if (!StateIsStoppedState(state, false)) { 2739 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2740 LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", 2741 StateAsCString(state)); 2742 error.SetErrorString( 2743 "Did not get stopped event after loading the core file."); 2744 } 2745 RestoreProcessEvents(); 2746 } 2747 return error; 2748 } 2749 2750 DynamicLoader *Process::GetDynamicLoader() { 2751 if (!m_dyld_up) 2752 m_dyld_up.reset(DynamicLoader::FindPlugin(this, nullptr)); 2753 return m_dyld_up.get(); 2754 } 2755 2756 DataExtractor Process::GetAuxvData() { return DataExtractor(); } 2757 2758 JITLoaderList &Process::GetJITLoaders() { 2759 if (!m_jit_loaders_up) { 2760 m_jit_loaders_up = std::make_unique<JITLoaderList>(); 2761 JITLoader::LoadPlugins(this, *m_jit_loaders_up); 2762 } 2763 return *m_jit_loaders_up; 2764 } 2765 2766 SystemRuntime *Process::GetSystemRuntime() { 2767 if (!m_system_runtime_up) 2768 m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); 2769 return m_system_runtime_up.get(); 2770 } 2771 2772 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2773 uint32_t exec_count) 2774 : NextEventAction(process), m_exec_count(exec_count) { 2775 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2776 LLDB_LOGF( 2777 log, 2778 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2779 __FUNCTION__, static_cast<void *>(process), exec_count); 2780 } 2781 2782 Process::NextEventAction::EventActionResult 2783 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2784 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2785 2786 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2787 LLDB_LOGF(log, 2788 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2789 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2790 2791 switch (state) { 2792 case eStateAttaching: 2793 return eEventActionSuccess; 2794 2795 case eStateRunning: 2796 case eStateConnected: 2797 return eEventActionRetry; 2798 2799 case eStateStopped: 2800 case eStateCrashed: 2801 // During attach, prior to sending the eStateStopped event, 2802 // lldb_private::Process subclasses must set the new process ID. 2803 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2804 // We don't want these events to be reported, so go set the 2805 // ShouldReportStop here: 2806 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2807 2808 if (m_exec_count > 0) { 2809 --m_exec_count; 2810 2811 LLDB_LOGF(log, 2812 "Process::AttachCompletionHandler::%s state %s: reduced " 2813 "remaining exec count to %" PRIu32 ", requesting resume", 2814 __FUNCTION__, StateAsCString(state), m_exec_count); 2815 2816 RequestResume(); 2817 return eEventActionRetry; 2818 } else { 2819 LLDB_LOGF(log, 2820 "Process::AttachCompletionHandler::%s state %s: no more " 2821 "execs expected to start, continuing with attach", 2822 __FUNCTION__, StateAsCString(state)); 2823 2824 m_process->CompleteAttach(); 2825 return eEventActionSuccess; 2826 } 2827 break; 2828 2829 default: 2830 case eStateExited: 2831 case eStateInvalid: 2832 break; 2833 } 2834 2835 m_exit_string.assign("No valid Process"); 2836 return eEventActionExit; 2837 } 2838 2839 Process::NextEventAction::EventActionResult 2840 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2841 return eEventActionSuccess; 2842 } 2843 2844 const char *Process::AttachCompletionHandler::GetExitString() { 2845 return m_exit_string.c_str(); 2846 } 2847 2848 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2849 if (m_listener_sp) 2850 return m_listener_sp; 2851 else 2852 return debugger.GetListener(); 2853 } 2854 2855 Status Process::Attach(ProcessAttachInfo &attach_info) { 2856 m_abi_sp.reset(); 2857 m_process_input_reader.reset(); 2858 m_dyld_up.reset(); 2859 m_jit_loaders_up.reset(); 2860 m_system_runtime_up.reset(); 2861 m_os_up.reset(); 2862 2863 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2864 Status error; 2865 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2866 char process_name[PATH_MAX]; 2867 2868 if (attach_info.GetExecutableFile().GetPath(process_name, 2869 sizeof(process_name))) { 2870 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2871 2872 if (wait_for_launch) { 2873 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2874 if (error.Success()) { 2875 if (m_public_run_lock.TrySetRunning()) { 2876 m_should_detach = true; 2877 const bool restarted = false; 2878 SetPublicState(eStateAttaching, restarted); 2879 // Now attach using these arguments. 2880 error = DoAttachToProcessWithName(process_name, attach_info); 2881 } else { 2882 // This shouldn't happen 2883 error.SetErrorString("failed to acquire process run lock"); 2884 } 2885 2886 if (error.Fail()) { 2887 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2888 SetID(LLDB_INVALID_PROCESS_ID); 2889 if (error.AsCString() == nullptr) 2890 error.SetErrorString("attach failed"); 2891 2892 SetExitStatus(-1, error.AsCString()); 2893 } 2894 } else { 2895 SetNextEventAction(new Process::AttachCompletionHandler( 2896 this, attach_info.GetResumeCount())); 2897 StartPrivateStateThread(); 2898 } 2899 return error; 2900 } 2901 } else { 2902 ProcessInstanceInfoList process_infos; 2903 PlatformSP platform_sp(GetTarget().GetPlatform()); 2904 2905 if (platform_sp) { 2906 ProcessInstanceInfoMatch match_info; 2907 match_info.GetProcessInfo() = attach_info; 2908 match_info.SetNameMatchType(NameMatch::Equals); 2909 platform_sp->FindProcesses(match_info, process_infos); 2910 const uint32_t num_matches = process_infos.size(); 2911 if (num_matches == 1) { 2912 attach_pid = process_infos[0].GetProcessID(); 2913 // Fall through and attach using the above process ID 2914 } else { 2915 match_info.GetProcessInfo().GetExecutableFile().GetPath( 2916 process_name, sizeof(process_name)); 2917 if (num_matches > 1) { 2918 StreamString s; 2919 ProcessInstanceInfo::DumpTableHeader(s, true, false); 2920 for (size_t i = 0; i < num_matches; i++) { 2921 process_infos[i].DumpAsTableRow( 2922 s, platform_sp->GetUserIDResolver(), true, false); 2923 } 2924 error.SetErrorStringWithFormat( 2925 "more than one process named %s:\n%s", process_name, 2926 s.GetData()); 2927 } else 2928 error.SetErrorStringWithFormat( 2929 "could not find a process named %s", process_name); 2930 } 2931 } else { 2932 error.SetErrorString( 2933 "invalid platform, can't find processes by name"); 2934 return error; 2935 } 2936 } 2937 } else { 2938 error.SetErrorString("invalid process name"); 2939 } 2940 } 2941 2942 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 2943 error = WillAttachToProcessWithID(attach_pid); 2944 if (error.Success()) { 2945 2946 if (m_public_run_lock.TrySetRunning()) { 2947 // Now attach using these arguments. 2948 m_should_detach = true; 2949 const bool restarted = false; 2950 SetPublicState(eStateAttaching, restarted); 2951 error = DoAttachToProcessWithID(attach_pid, attach_info); 2952 } else { 2953 // This shouldn't happen 2954 error.SetErrorString("failed to acquire process run lock"); 2955 } 2956 2957 if (error.Success()) { 2958 SetNextEventAction(new Process::AttachCompletionHandler( 2959 this, attach_info.GetResumeCount())); 2960 StartPrivateStateThread(); 2961 } else { 2962 if (GetID() != LLDB_INVALID_PROCESS_ID) 2963 SetID(LLDB_INVALID_PROCESS_ID); 2964 2965 const char *error_string = error.AsCString(); 2966 if (error_string == nullptr) 2967 error_string = "attach failed"; 2968 2969 SetExitStatus(-1, error_string); 2970 } 2971 } 2972 } 2973 return error; 2974 } 2975 2976 void Process::CompleteAttach() { 2977 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 2978 LIBLLDB_LOG_TARGET)); 2979 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 2980 2981 // Let the process subclass figure out at much as it can about the process 2982 // before we go looking for a dynamic loader plug-in. 2983 ArchSpec process_arch; 2984 DidAttach(process_arch); 2985 2986 if (process_arch.IsValid()) { 2987 GetTarget().SetArchitecture(process_arch); 2988 if (log) { 2989 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 2990 LLDB_LOGF(log, 2991 "Process::%s replacing process architecture with DidAttach() " 2992 "architecture: %s", 2993 __FUNCTION__, triple_str ? triple_str : "<null>"); 2994 } 2995 } 2996 2997 // We just attached. If we have a platform, ask it for the process 2998 // architecture, and if it isn't the same as the one we've already set, 2999 // switch architectures. 3000 PlatformSP platform_sp(GetTarget().GetPlatform()); 3001 assert(platform_sp); 3002 if (platform_sp) { 3003 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 3004 if (target_arch.IsValid() && 3005 !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) { 3006 ArchSpec platform_arch; 3007 platform_sp = 3008 platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch); 3009 if (platform_sp) { 3010 GetTarget().SetPlatform(platform_sp); 3011 GetTarget().SetArchitecture(platform_arch); 3012 LLDB_LOGF(log, 3013 "Process::%s switching platform to %s and architecture " 3014 "to %s based on info from attach", 3015 __FUNCTION__, platform_sp->GetName().AsCString(""), 3016 platform_arch.GetTriple().getTriple().c_str()); 3017 } 3018 } else if (!process_arch.IsValid()) { 3019 ProcessInstanceInfo process_info; 3020 GetProcessInfo(process_info); 3021 const ArchSpec &process_arch = process_info.GetArchitecture(); 3022 if (process_arch.IsValid() && 3023 !GetTarget().GetArchitecture().IsExactMatch(process_arch)) { 3024 GetTarget().SetArchitecture(process_arch); 3025 LLDB_LOGF(log, 3026 "Process::%s switching architecture to %s based on info " 3027 "the platform retrieved for pid %" PRIu64, 3028 __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), 3029 GetID()); 3030 } 3031 } 3032 } 3033 3034 // We have completed the attach, now it is time to find the dynamic loader 3035 // plug-in 3036 DynamicLoader *dyld = GetDynamicLoader(); 3037 if (dyld) { 3038 dyld->DidAttach(); 3039 if (log) { 3040 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3041 LLDB_LOGF(log, 3042 "Process::%s after DynamicLoader::DidAttach(), target " 3043 "executable is %s (using %s plugin)", 3044 __FUNCTION__, 3045 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3046 : "<none>", 3047 dyld->GetPluginName().AsCString("<unnamed>")); 3048 } 3049 } 3050 3051 GetJITLoaders().DidAttach(); 3052 3053 SystemRuntime *system_runtime = GetSystemRuntime(); 3054 if (system_runtime) { 3055 system_runtime->DidAttach(); 3056 if (log) { 3057 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3058 LLDB_LOGF(log, 3059 "Process::%s after SystemRuntime::DidAttach(), target " 3060 "executable is %s (using %s plugin)", 3061 __FUNCTION__, 3062 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3063 : "<none>", 3064 system_runtime->GetPluginName().AsCString("<unnamed>")); 3065 } 3066 } 3067 3068 if (!m_os_up) { 3069 LoadOperatingSystemPlugin(false); 3070 if (m_os_up) { 3071 // Somebody might have gotten threads before now, but we need to force the 3072 // update after we've loaded the OperatingSystem plugin or it won't get a 3073 // chance to process the threads. 3074 m_thread_list.Clear(); 3075 UpdateThreadListIfNeeded(); 3076 } 3077 } 3078 // Figure out which one is the executable, and set that in our target: 3079 const ModuleList &target_modules = GetTarget().GetImages(); 3080 std::lock_guard<std::recursive_mutex> guard(target_modules.GetMutex()); 3081 size_t num_modules = target_modules.GetSize(); 3082 ModuleSP new_executable_module_sp; 3083 3084 for (size_t i = 0; i < num_modules; i++) { 3085 ModuleSP module_sp(target_modules.GetModuleAtIndexUnlocked(i)); 3086 if (module_sp && module_sp->IsExecutable()) { 3087 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 3088 new_executable_module_sp = module_sp; 3089 break; 3090 } 3091 } 3092 if (new_executable_module_sp) { 3093 GetTarget().SetExecutableModule(new_executable_module_sp, 3094 eLoadDependentsNo); 3095 if (log) { 3096 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3097 LLDB_LOGF( 3098 log, 3099 "Process::%s after looping through modules, target executable is %s", 3100 __FUNCTION__, 3101 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3102 : "<none>"); 3103 } 3104 } 3105 } 3106 3107 Status Process::ConnectRemote(llvm::StringRef remote_url) { 3108 m_abi_sp.reset(); 3109 m_process_input_reader.reset(); 3110 3111 // Find the process and its architecture. Make sure it matches the 3112 // architecture of the current Target, and if not adjust it. 3113 3114 Status error(DoConnectRemote(remote_url)); 3115 if (error.Success()) { 3116 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3117 EventSP event_sp; 3118 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 3119 3120 if (state == eStateStopped || state == eStateCrashed) { 3121 // If we attached and actually have a process on the other end, then 3122 // this ended up being the equivalent of an attach. 3123 CompleteAttach(); 3124 3125 // This delays passing the stopped event to listeners till 3126 // CompleteAttach gets a chance to complete... 3127 HandlePrivateEvent(event_sp); 3128 } 3129 } 3130 3131 if (PrivateStateThreadIsValid()) 3132 ResumePrivateStateThread(); 3133 else 3134 StartPrivateStateThread(); 3135 } 3136 return error; 3137 } 3138 3139 Status Process::PrivateResume() { 3140 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3141 LIBLLDB_LOG_STEP)); 3142 LLDB_LOGF(log, 3143 "Process::PrivateResume() m_stop_id = %u, public state: %s " 3144 "private state: %s", 3145 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3146 StateAsCString(m_private_state.GetValue())); 3147 3148 // If signals handing status changed we might want to update our signal 3149 // filters before resuming. 3150 UpdateAutomaticSignalFiltering(); 3151 3152 Status error(WillResume()); 3153 // Tell the process it is about to resume before the thread list 3154 if (error.Success()) { 3155 // Now let the thread list know we are about to resume so it can let all of 3156 // our threads know that they are about to be resumed. Threads will each be 3157 // called with Thread::WillResume(StateType) where StateType contains the 3158 // state that they are supposed to have when the process is resumed 3159 // (suspended/running/stepping). Threads should also check their resume 3160 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3161 // start back up with a signal. 3162 if (m_thread_list.WillResume()) { 3163 // Last thing, do the PreResumeActions. 3164 if (!RunPreResumeActions()) { 3165 error.SetErrorString( 3166 "Process::PrivateResume PreResumeActions failed, not resuming."); 3167 } else { 3168 m_mod_id.BumpResumeID(); 3169 error = DoResume(); 3170 if (error.Success()) { 3171 DidResume(); 3172 m_thread_list.DidResume(); 3173 LLDB_LOGF(log, "Process thinks the process has resumed."); 3174 } else { 3175 LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); 3176 return error; 3177 } 3178 } 3179 } else { 3180 // Somebody wanted to run without running (e.g. we were faking a step 3181 // from one frame of a set of inlined frames that share the same PC to 3182 // another.) So generate a continue & a stopped event, and let the world 3183 // handle them. 3184 LLDB_LOGF(log, 3185 "Process::PrivateResume() asked to simulate a start & stop."); 3186 3187 SetPrivateState(eStateRunning); 3188 SetPrivateState(eStateStopped); 3189 } 3190 } else 3191 LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", 3192 error.AsCString("<unknown error>")); 3193 return error; 3194 } 3195 3196 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3197 if (!StateIsRunningState(m_public_state.GetValue())) 3198 return Status("Process is not running."); 3199 3200 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3201 // case it was already set and some thread plan logic calls halt on its own. 3202 m_clear_thread_plans_on_stop |= clear_thread_plans; 3203 3204 ListenerSP halt_listener_sp( 3205 Listener::MakeListener("lldb.process.halt_listener")); 3206 HijackProcessEvents(halt_listener_sp); 3207 3208 EventSP event_sp; 3209 3210 SendAsyncInterrupt(); 3211 3212 if (m_public_state.GetValue() == eStateAttaching) { 3213 // Don't hijack and eat the eStateExited as the code that was doing the 3214 // attach will be waiting for this event... 3215 RestoreProcessEvents(); 3216 SetExitStatus(SIGKILL, "Cancelled async attach."); 3217 Destroy(false); 3218 return Status(); 3219 } 3220 3221 // Wait for 10 second for the process to stop. 3222 StateType state = WaitForProcessToStop( 3223 seconds(10), &event_sp, true, halt_listener_sp, nullptr, use_run_lock); 3224 RestoreProcessEvents(); 3225 3226 if (state == eStateInvalid || !event_sp) { 3227 // We timed out and didn't get a stop event... 3228 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3229 } 3230 3231 BroadcastEvent(event_sp); 3232 3233 return Status(); 3234 } 3235 3236 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3237 Status error; 3238 3239 // Check both the public & private states here. If we're hung evaluating an 3240 // expression, for instance, then the public state will be stopped, but we 3241 // still need to interrupt. 3242 if (m_public_state.GetValue() == eStateRunning || 3243 m_private_state.GetValue() == eStateRunning) { 3244 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3245 LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); 3246 3247 ListenerSP listener_sp( 3248 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3249 HijackProcessEvents(listener_sp); 3250 3251 SendAsyncInterrupt(); 3252 3253 // Consume the interrupt event. 3254 StateType state = 3255 WaitForProcessToStop(seconds(10), &exit_event_sp, true, listener_sp); 3256 3257 RestoreProcessEvents(); 3258 3259 // If the process exited while we were waiting for it to stop, put the 3260 // exited event into the shared pointer passed in and return. Our caller 3261 // doesn't need to do anything else, since they don't have a process 3262 // anymore... 3263 3264 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3265 LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", 3266 __FUNCTION__); 3267 return error; 3268 } else 3269 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3270 3271 if (state != eStateStopped) { 3272 LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, 3273 StateAsCString(state)); 3274 // If we really couldn't stop the process then we should just error out 3275 // here, but if the lower levels just bobbled sending the event and we 3276 // really are stopped, then continue on. 3277 StateType private_state = m_private_state.GetValue(); 3278 if (private_state != eStateStopped) { 3279 return Status( 3280 "Attempt to stop the target in order to detach timed out. " 3281 "State = %s", 3282 StateAsCString(GetState())); 3283 } 3284 } 3285 } 3286 return error; 3287 } 3288 3289 Status Process::Detach(bool keep_stopped) { 3290 EventSP exit_event_sp; 3291 Status error; 3292 m_destroy_in_process = true; 3293 3294 error = WillDetach(); 3295 3296 if (error.Success()) { 3297 if (DetachRequiresHalt()) { 3298 error = StopForDestroyOrDetach(exit_event_sp); 3299 if (!error.Success()) { 3300 m_destroy_in_process = false; 3301 return error; 3302 } else if (exit_event_sp) { 3303 // We shouldn't need to do anything else here. There's no process left 3304 // to detach from... 3305 StopPrivateStateThread(); 3306 m_destroy_in_process = false; 3307 return error; 3308 } 3309 } 3310 3311 m_thread_list.DiscardThreadPlans(); 3312 DisableAllBreakpointSites(); 3313 3314 error = DoDetach(keep_stopped); 3315 if (error.Success()) { 3316 DidDetach(); 3317 StopPrivateStateThread(); 3318 } else { 3319 return error; 3320 } 3321 } 3322 m_destroy_in_process = false; 3323 3324 // If we exited when we were waiting for a process to stop, then forward the 3325 // event here so we don't lose the event 3326 if (exit_event_sp) { 3327 // Directly broadcast our exited event because we shut down our private 3328 // state thread above 3329 BroadcastEvent(exit_event_sp); 3330 } 3331 3332 // If we have been interrupted (to kill us) in the middle of running, we may 3333 // not end up propagating the last events through the event system, in which 3334 // case we might strand the write lock. Unlock it here so when we do to tear 3335 // down the process we don't get an error destroying the lock. 3336 3337 m_public_run_lock.SetStopped(); 3338 return error; 3339 } 3340 3341 Status Process::Destroy(bool force_kill) { 3342 // If we've already called Process::Finalize then there's nothing useful to 3343 // be done here. Finalize has actually called Destroy already. 3344 if (m_finalizing) 3345 return {}; 3346 return DestroyImpl(force_kill); 3347 } 3348 3349 Status Process::DestroyImpl(bool force_kill) { 3350 // Tell ourselves we are in the process of destroying the process, so that we 3351 // don't do any unnecessary work that might hinder the destruction. Remember 3352 // to set this back to false when we are done. That way if the attempt 3353 // failed and the process stays around for some reason it won't be in a 3354 // confused state. 3355 3356 if (force_kill) 3357 m_should_detach = false; 3358 3359 if (GetShouldDetach()) { 3360 // FIXME: This will have to be a process setting: 3361 bool keep_stopped = false; 3362 Detach(keep_stopped); 3363 } 3364 3365 m_destroy_in_process = true; 3366 3367 Status error(WillDestroy()); 3368 if (error.Success()) { 3369 EventSP exit_event_sp; 3370 if (DestroyRequiresHalt()) { 3371 error = StopForDestroyOrDetach(exit_event_sp); 3372 } 3373 3374 if (m_public_state.GetValue() != eStateRunning) { 3375 // Ditch all thread plans, and remove all our breakpoints: in case we 3376 // have to restart the target to kill it, we don't want it hitting a 3377 // breakpoint... Only do this if we've stopped, however, since if we 3378 // didn't manage to halt it above, then we're not going to have much luck 3379 // doing this now. 3380 m_thread_list.DiscardThreadPlans(); 3381 DisableAllBreakpointSites(); 3382 } 3383 3384 error = DoDestroy(); 3385 if (error.Success()) { 3386 DidDestroy(); 3387 StopPrivateStateThread(); 3388 } 3389 m_stdio_communication.StopReadThread(); 3390 m_stdio_communication.Disconnect(); 3391 m_stdin_forward = false; 3392 3393 if (m_process_input_reader) { 3394 m_process_input_reader->SetIsDone(true); 3395 m_process_input_reader->Cancel(); 3396 m_process_input_reader.reset(); 3397 } 3398 3399 // If we exited when we were waiting for a process to stop, then forward 3400 // the event here so we don't lose the event 3401 if (exit_event_sp) { 3402 // Directly broadcast our exited event because we shut down our private 3403 // state thread above 3404 BroadcastEvent(exit_event_sp); 3405 } 3406 3407 // If we have been interrupted (to kill us) in the middle of running, we 3408 // may not end up propagating the last events through the event system, in 3409 // which case we might strand the write lock. Unlock it here so when we do 3410 // to tear down the process we don't get an error destroying the lock. 3411 m_public_run_lock.SetStopped(); 3412 } 3413 3414 m_destroy_in_process = false; 3415 3416 return error; 3417 } 3418 3419 Status Process::Signal(int signal) { 3420 Status error(WillSignal()); 3421 if (error.Success()) { 3422 error = DoSignal(signal); 3423 if (error.Success()) 3424 DidSignal(); 3425 } 3426 return error; 3427 } 3428 3429 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3430 assert(signals_sp && "null signals_sp"); 3431 m_unix_signals_sp = signals_sp; 3432 } 3433 3434 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3435 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3436 return m_unix_signals_sp; 3437 } 3438 3439 lldb::ByteOrder Process::GetByteOrder() const { 3440 return GetTarget().GetArchitecture().GetByteOrder(); 3441 } 3442 3443 uint32_t Process::GetAddressByteSize() const { 3444 return GetTarget().GetArchitecture().GetAddressByteSize(); 3445 } 3446 3447 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3448 const StateType state = 3449 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3450 bool return_value = true; 3451 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | 3452 LIBLLDB_LOG_PROCESS)); 3453 3454 switch (state) { 3455 case eStateDetached: 3456 case eStateExited: 3457 case eStateUnloaded: 3458 m_stdio_communication.SynchronizeWithReadThread(); 3459 m_stdio_communication.StopReadThread(); 3460 m_stdio_communication.Disconnect(); 3461 m_stdin_forward = false; 3462 3463 LLVM_FALLTHROUGH; 3464 case eStateConnected: 3465 case eStateAttaching: 3466 case eStateLaunching: 3467 // These events indicate changes in the state of the debugging session, 3468 // always report them. 3469 return_value = true; 3470 break; 3471 case eStateInvalid: 3472 // We stopped for no apparent reason, don't report it. 3473 return_value = false; 3474 break; 3475 case eStateRunning: 3476 case eStateStepping: 3477 // If we've started the target running, we handle the cases where we are 3478 // already running and where there is a transition from stopped to running 3479 // differently. running -> running: Automatically suppress extra running 3480 // events stopped -> running: Report except when there is one or more no 3481 // votes 3482 // and no yes votes. 3483 SynchronouslyNotifyStateChanged(state); 3484 if (m_force_next_event_delivery) 3485 return_value = true; 3486 else { 3487 switch (m_last_broadcast_state) { 3488 case eStateRunning: 3489 case eStateStepping: 3490 // We always suppress multiple runnings with no PUBLIC stop in between. 3491 return_value = false; 3492 break; 3493 default: 3494 // TODO: make this work correctly. For now always report 3495 // run if we aren't running so we don't miss any running events. If I 3496 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3497 // and hit the breakpoints on multiple threads, then somehow during the 3498 // stepping over of all breakpoints no run gets reported. 3499 3500 // This is a transition from stop to run. 3501 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3502 case eVoteYes: 3503 case eVoteNoOpinion: 3504 return_value = true; 3505 break; 3506 case eVoteNo: 3507 return_value = false; 3508 break; 3509 } 3510 break; 3511 } 3512 } 3513 break; 3514 case eStateStopped: 3515 case eStateCrashed: 3516 case eStateSuspended: 3517 // We've stopped. First see if we're going to restart the target. If we 3518 // are going to stop, then we always broadcast the event. If we aren't 3519 // going to stop, let the thread plans decide if we're going to report this 3520 // event. If no thread has an opinion, we don't report it. 3521 3522 m_stdio_communication.SynchronizeWithReadThread(); 3523 RefreshStateAfterStop(); 3524 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3525 LLDB_LOGF(log, 3526 "Process::ShouldBroadcastEvent (%p) stopped due to an " 3527 "interrupt, state: %s", 3528 static_cast<void *>(event_ptr), StateAsCString(state)); 3529 // Even though we know we are going to stop, we should let the threads 3530 // have a look at the stop, so they can properly set their state. 3531 m_thread_list.ShouldStop(event_ptr); 3532 return_value = true; 3533 } else { 3534 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3535 bool should_resume = false; 3536 3537 // It makes no sense to ask "ShouldStop" if we've already been 3538 // restarted... Asking the thread list is also not likely to go well, 3539 // since we are running again. So in that case just report the event. 3540 3541 if (!was_restarted) 3542 should_resume = !m_thread_list.ShouldStop(event_ptr); 3543 3544 if (was_restarted || should_resume || m_resume_requested) { 3545 Vote stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3546 LLDB_LOGF(log, 3547 "Process::ShouldBroadcastEvent: should_resume: %i state: " 3548 "%s was_restarted: %i stop_vote: %d.", 3549 should_resume, StateAsCString(state), was_restarted, 3550 stop_vote); 3551 3552 switch (stop_vote) { 3553 case eVoteYes: 3554 return_value = true; 3555 break; 3556 case eVoteNoOpinion: 3557 case eVoteNo: 3558 return_value = false; 3559 break; 3560 } 3561 3562 if (!was_restarted) { 3563 LLDB_LOGF(log, 3564 "Process::ShouldBroadcastEvent (%p) Restarting process " 3565 "from state: %s", 3566 static_cast<void *>(event_ptr), StateAsCString(state)); 3567 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3568 PrivateResume(); 3569 } 3570 } else { 3571 return_value = true; 3572 SynchronouslyNotifyStateChanged(state); 3573 } 3574 } 3575 break; 3576 } 3577 3578 // Forcing the next event delivery is a one shot deal. So reset it here. 3579 m_force_next_event_delivery = false; 3580 3581 // We do some coalescing of events (for instance two consecutive running 3582 // events get coalesced.) But we only coalesce against events we actually 3583 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3584 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3585 // done, because the PublicState reflects the last event pulled off the 3586 // queue, and there may be several events stacked up on the queue unserviced. 3587 // So the PublicState may not reflect the last broadcasted event yet. 3588 // m_last_broadcast_state gets updated here. 3589 3590 if (return_value) 3591 m_last_broadcast_state = state; 3592 3593 LLDB_LOGF(log, 3594 "Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3595 "broadcast state: %s - %s", 3596 static_cast<void *>(event_ptr), StateAsCString(state), 3597 StateAsCString(m_last_broadcast_state), 3598 return_value ? "YES" : "NO"); 3599 return return_value; 3600 } 3601 3602 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3603 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 3604 3605 bool already_running = PrivateStateThreadIsValid(); 3606 LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, 3607 already_running ? " already running" 3608 : " starting private state thread"); 3609 3610 if (!is_secondary_thread && already_running) 3611 return true; 3612 3613 // Create a thread that watches our internal state and controls which events 3614 // make it to clients (into the DCProcess event queue). 3615 char thread_name[1024]; 3616 uint32_t max_len = llvm::get_max_thread_name_length(); 3617 if (max_len > 0 && max_len <= 30) { 3618 // On platforms with abbreviated thread name lengths, choose thread names 3619 // that fit within the limit. 3620 if (already_running) 3621 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3622 else 3623 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3624 } else { 3625 if (already_running) 3626 snprintf(thread_name, sizeof(thread_name), 3627 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3628 GetID()); 3629 else 3630 snprintf(thread_name, sizeof(thread_name), 3631 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3632 } 3633 3634 // Create the private state thread, and start it running. 3635 PrivateStateThreadArgs *args_ptr = 3636 new PrivateStateThreadArgs(this, is_secondary_thread); 3637 llvm::Expected<HostThread> private_state_thread = 3638 ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, 3639 (void *)args_ptr, 8 * 1024 * 1024); 3640 if (!private_state_thread) { 3641 LLDB_LOG(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST), 3642 "failed to launch host thread: {}", 3643 llvm::toString(private_state_thread.takeError())); 3644 return false; 3645 } 3646 3647 assert(private_state_thread->IsJoinable()); 3648 m_private_state_thread = *private_state_thread; 3649 ResumePrivateStateThread(); 3650 return true; 3651 } 3652 3653 void Process::PausePrivateStateThread() { 3654 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3655 } 3656 3657 void Process::ResumePrivateStateThread() { 3658 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3659 } 3660 3661 void Process::StopPrivateStateThread() { 3662 if (m_private_state_thread.IsJoinable()) 3663 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3664 else { 3665 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3666 LLDB_LOGF( 3667 log, 3668 "Went to stop the private state thread, but it was already invalid."); 3669 } 3670 } 3671 3672 void Process::ControlPrivateStateThread(uint32_t signal) { 3673 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3674 3675 assert(signal == eBroadcastInternalStateControlStop || 3676 signal == eBroadcastInternalStateControlPause || 3677 signal == eBroadcastInternalStateControlResume); 3678 3679 LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); 3680 3681 // Signal the private state thread 3682 if (m_private_state_thread.IsJoinable()) { 3683 // Broadcast the event. 3684 // It is important to do this outside of the if below, because it's 3685 // possible that the thread state is invalid but that the thread is waiting 3686 // on a control event instead of simply being on its way out (this should 3687 // not happen, but it apparently can). 3688 LLDB_LOGF(log, "Sending control event of type: %d.", signal); 3689 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3690 m_private_state_control_broadcaster.BroadcastEvent(signal, 3691 event_receipt_sp); 3692 3693 // Wait for the event receipt or for the private state thread to exit 3694 bool receipt_received = false; 3695 if (PrivateStateThreadIsValid()) { 3696 while (!receipt_received) { 3697 // Check for a receipt for n seconds and then check if the private 3698 // state thread is still around. 3699 receipt_received = 3700 event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout()); 3701 if (!receipt_received) { 3702 // Check if the private state thread is still around. If it isn't 3703 // then we are done waiting 3704 if (!PrivateStateThreadIsValid()) 3705 break; // Private state thread exited or is exiting, we are done 3706 } 3707 } 3708 } 3709 3710 if (signal == eBroadcastInternalStateControlStop) { 3711 thread_result_t result = {}; 3712 m_private_state_thread.Join(&result); 3713 m_private_state_thread.Reset(); 3714 } 3715 } else { 3716 LLDB_LOGF( 3717 log, 3718 "Private state thread already dead, no need to signal it to stop."); 3719 } 3720 } 3721 3722 void Process::SendAsyncInterrupt() { 3723 if (PrivateStateThreadIsValid()) 3724 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3725 nullptr); 3726 else 3727 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3728 } 3729 3730 void Process::HandlePrivateEvent(EventSP &event_sp) { 3731 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3732 m_resume_requested = false; 3733 3734 const StateType new_state = 3735 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3736 3737 // First check to see if anybody wants a shot at this event: 3738 if (m_next_event_action_up) { 3739 NextEventAction::EventActionResult action_result = 3740 m_next_event_action_up->PerformAction(event_sp); 3741 LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); 3742 3743 switch (action_result) { 3744 case NextEventAction::eEventActionSuccess: 3745 SetNextEventAction(nullptr); 3746 break; 3747 3748 case NextEventAction::eEventActionRetry: 3749 break; 3750 3751 case NextEventAction::eEventActionExit: 3752 // Handle Exiting Here. If we already got an exited event, we should 3753 // just propagate it. Otherwise, swallow this event, and set our state 3754 // to exit so the next event will kill us. 3755 if (new_state != eStateExited) { 3756 // FIXME: should cons up an exited event, and discard this one. 3757 SetExitStatus(0, m_next_event_action_up->GetExitString()); 3758 SetNextEventAction(nullptr); 3759 return; 3760 } 3761 SetNextEventAction(nullptr); 3762 break; 3763 } 3764 } 3765 3766 // See if we should broadcast this state to external clients? 3767 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3768 3769 if (should_broadcast) { 3770 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3771 if (log) { 3772 LLDB_LOGF(log, 3773 "Process::%s (pid = %" PRIu64 3774 ") broadcasting new state %s (old state %s) to %s", 3775 __FUNCTION__, GetID(), StateAsCString(new_state), 3776 StateAsCString(GetState()), 3777 is_hijacked ? "hijacked" : "public"); 3778 } 3779 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3780 if (StateIsRunningState(new_state)) { 3781 // Only push the input handler if we aren't fowarding events, as this 3782 // means the curses GUI is in use... Or don't push it if we are launching 3783 // since it will come up stopped. 3784 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3785 new_state != eStateLaunching && new_state != eStateAttaching) { 3786 PushProcessIOHandler(); 3787 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3788 eBroadcastAlways); 3789 LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", 3790 __FUNCTION__, m_iohandler_sync.GetValue()); 3791 } 3792 } else if (StateIsStoppedState(new_state, false)) { 3793 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3794 // If the lldb_private::Debugger is handling the events, we don't want 3795 // to pop the process IOHandler here, we want to do it when we receive 3796 // the stopped event so we can carefully control when the process 3797 // IOHandler is popped because when we stop we want to display some 3798 // text stating how and why we stopped, then maybe some 3799 // process/thread/frame info, and then we want the "(lldb) " prompt to 3800 // show up. If we pop the process IOHandler here, then we will cause 3801 // the command interpreter to become the top IOHandler after the 3802 // process pops off and it will update its prompt right away... See the 3803 // Debugger.cpp file where it calls the function as 3804 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3805 // Otherwise we end up getting overlapping "(lldb) " prompts and 3806 // garbled output. 3807 // 3808 // If we aren't handling the events in the debugger (which is indicated 3809 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3810 // we are hijacked, then we always pop the process IO handler manually. 3811 // Hijacking happens when the internal process state thread is running 3812 // thread plans, or when commands want to run in synchronous mode and 3813 // they call "process->WaitForProcessToStop()". An example of something 3814 // that will hijack the events is a simple expression: 3815 // 3816 // (lldb) expr (int)puts("hello") 3817 // 3818 // This will cause the internal process state thread to resume and halt 3819 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3820 // events) and we do need the IO handler to be pushed and popped 3821 // correctly. 3822 3823 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3824 PopProcessIOHandler(); 3825 } 3826 } 3827 3828 BroadcastEvent(event_sp); 3829 } else { 3830 if (log) { 3831 LLDB_LOGF( 3832 log, 3833 "Process::%s (pid = %" PRIu64 3834 ") suppressing state %s (old state %s): should_broadcast == false", 3835 __FUNCTION__, GetID(), StateAsCString(new_state), 3836 StateAsCString(GetState())); 3837 } 3838 } 3839 } 3840 3841 Status Process::HaltPrivate() { 3842 EventSP event_sp; 3843 Status error(WillHalt()); 3844 if (error.Fail()) 3845 return error; 3846 3847 // Ask the process subclass to actually halt our process 3848 bool caused_stop; 3849 error = DoHalt(caused_stop); 3850 3851 DidHalt(); 3852 return error; 3853 } 3854 3855 thread_result_t Process::PrivateStateThread(void *arg) { 3856 std::unique_ptr<PrivateStateThreadArgs> args_up( 3857 static_cast<PrivateStateThreadArgs *>(arg)); 3858 thread_result_t result = 3859 args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 3860 return result; 3861 } 3862 3863 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3864 bool control_only = true; 3865 3866 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3867 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3868 __FUNCTION__, static_cast<void *>(this), GetID()); 3869 3870 bool exit_now = false; 3871 bool interrupt_requested = false; 3872 while (!exit_now) { 3873 EventSP event_sp; 3874 GetEventsPrivate(event_sp, llvm::None, control_only); 3875 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3876 LLDB_LOGF(log, 3877 "Process::%s (arg = %p, pid = %" PRIu64 3878 ") got a control event: %d", 3879 __FUNCTION__, static_cast<void *>(this), GetID(), 3880 event_sp->GetType()); 3881 3882 switch (event_sp->GetType()) { 3883 case eBroadcastInternalStateControlStop: 3884 exit_now = true; 3885 break; // doing any internal state management below 3886 3887 case eBroadcastInternalStateControlPause: 3888 control_only = true; 3889 break; 3890 3891 case eBroadcastInternalStateControlResume: 3892 control_only = false; 3893 break; 3894 } 3895 3896 continue; 3897 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 3898 if (m_public_state.GetValue() == eStateAttaching) { 3899 LLDB_LOGF(log, 3900 "Process::%s (arg = %p, pid = %" PRIu64 3901 ") woke up with an interrupt while attaching - " 3902 "forwarding interrupt.", 3903 __FUNCTION__, static_cast<void *>(this), GetID()); 3904 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 3905 } else if (StateIsRunningState(m_last_broadcast_state)) { 3906 LLDB_LOGF(log, 3907 "Process::%s (arg = %p, pid = %" PRIu64 3908 ") woke up with an interrupt - Halting.", 3909 __FUNCTION__, static_cast<void *>(this), GetID()); 3910 Status error = HaltPrivate(); 3911 if (error.Fail() && log) 3912 LLDB_LOGF(log, 3913 "Process::%s (arg = %p, pid = %" PRIu64 3914 ") failed to halt the process: %s", 3915 __FUNCTION__, static_cast<void *>(this), GetID(), 3916 error.AsCString()); 3917 // Halt should generate a stopped event. Make a note of the fact that 3918 // we were doing the interrupt, so we can set the interrupted flag 3919 // after we receive the event. We deliberately set this to true even if 3920 // HaltPrivate failed, so that we can interrupt on the next natural 3921 // stop. 3922 interrupt_requested = true; 3923 } else { 3924 // This can happen when someone (e.g. Process::Halt) sees that we are 3925 // running and sends an interrupt request, but the process actually 3926 // stops before we receive it. In that case, we can just ignore the 3927 // request. We use m_last_broadcast_state, because the Stopped event 3928 // may not have been popped of the event queue yet, which is when the 3929 // public state gets updated. 3930 LLDB_LOGF(log, 3931 "Process::%s ignoring interrupt as we have already stopped.", 3932 __FUNCTION__); 3933 } 3934 continue; 3935 } 3936 3937 const StateType internal_state = 3938 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3939 3940 if (internal_state != eStateInvalid) { 3941 if (m_clear_thread_plans_on_stop && 3942 StateIsStoppedState(internal_state, true)) { 3943 m_clear_thread_plans_on_stop = false; 3944 m_thread_list.DiscardThreadPlans(); 3945 } 3946 3947 if (interrupt_requested) { 3948 if (StateIsStoppedState(internal_state, true)) { 3949 // We requested the interrupt, so mark this as such in the stop event 3950 // so clients can tell an interrupted process from a natural stop 3951 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 3952 interrupt_requested = false; 3953 } else if (log) { 3954 LLDB_LOGF(log, 3955 "Process::%s interrupt_requested, but a non-stopped " 3956 "state '%s' received.", 3957 __FUNCTION__, StateAsCString(internal_state)); 3958 } 3959 } 3960 3961 HandlePrivateEvent(event_sp); 3962 } 3963 3964 if (internal_state == eStateInvalid || internal_state == eStateExited || 3965 internal_state == eStateDetached) { 3966 LLDB_LOGF(log, 3967 "Process::%s (arg = %p, pid = %" PRIu64 3968 ") about to exit with internal state %s...", 3969 __FUNCTION__, static_cast<void *>(this), GetID(), 3970 StateAsCString(internal_state)); 3971 3972 break; 3973 } 3974 } 3975 3976 // Verify log is still enabled before attempting to write to it... 3977 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 3978 __FUNCTION__, static_cast<void *>(this), GetID()); 3979 3980 // If we are a secondary thread, then the primary thread we are working for 3981 // will have already acquired the public_run_lock, and isn't done with what 3982 // it was doing yet, so don't try to change it on the way out. 3983 if (!is_secondary_thread) 3984 m_public_run_lock.SetStopped(); 3985 return {}; 3986 } 3987 3988 // Process Event Data 3989 3990 Process::ProcessEventData::ProcessEventData() 3991 : EventData(), m_process_wp(), m_state(eStateInvalid), m_restarted(false), 3992 m_update_state(0), m_interrupted(false) {} 3993 3994 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 3995 StateType state) 3996 : EventData(), m_process_wp(), m_state(state), m_restarted(false), 3997 m_update_state(0), m_interrupted(false) { 3998 if (process_sp) 3999 m_process_wp = process_sp; 4000 } 4001 4002 Process::ProcessEventData::~ProcessEventData() = default; 4003 4004 ConstString Process::ProcessEventData::GetFlavorString() { 4005 static ConstString g_flavor("Process::ProcessEventData"); 4006 return g_flavor; 4007 } 4008 4009 ConstString Process::ProcessEventData::GetFlavor() const { 4010 return ProcessEventData::GetFlavorString(); 4011 } 4012 4013 bool Process::ProcessEventData::ShouldStop(Event *event_ptr, 4014 bool &found_valid_stopinfo) { 4015 found_valid_stopinfo = false; 4016 4017 ProcessSP process_sp(m_process_wp.lock()); 4018 if (!process_sp) 4019 return false; 4020 4021 ThreadList &curr_thread_list = process_sp->GetThreadList(); 4022 uint32_t num_threads = curr_thread_list.GetSize(); 4023 uint32_t idx; 4024 4025 // The actions might change one of the thread's stop_info's opinions about 4026 // whether we should stop the process, so we need to query that as we go. 4027 4028 // One other complication here, is that we try to catch any case where the 4029 // target has run (except for expressions) and immediately exit, but if we 4030 // get that wrong (which is possible) then the thread list might have 4031 // changed, and that would cause our iteration here to crash. We could 4032 // make a copy of the thread list, but we'd really like to also know if it 4033 // has changed at all, so we make up a vector of the thread ID's and check 4034 // what we get back against this list & bag out if anything differs. 4035 ThreadList not_suspended_thread_list(process_sp.get()); 4036 std::vector<uint32_t> thread_index_array(num_threads); 4037 uint32_t not_suspended_idx = 0; 4038 for (idx = 0; idx < num_threads; ++idx) { 4039 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 4040 4041 /* 4042 Filter out all suspended threads, they could not be the reason 4043 of stop and no need to perform any actions on them. 4044 */ 4045 if (thread_sp->GetResumeState() != eStateSuspended) { 4046 not_suspended_thread_list.AddThread(thread_sp); 4047 thread_index_array[not_suspended_idx] = thread_sp->GetIndexID(); 4048 not_suspended_idx++; 4049 } 4050 } 4051 4052 // Use this to track whether we should continue from here. We will only 4053 // continue the target running if no thread says we should stop. Of course 4054 // if some thread's PerformAction actually sets the target running, then it 4055 // doesn't matter what the other threads say... 4056 4057 bool still_should_stop = false; 4058 4059 // Sometimes - for instance if we have a bug in the stub we are talking to, 4060 // we stop but no thread has a valid stop reason. In that case we should 4061 // just stop, because we have no way of telling what the right thing to do 4062 // is, and it's better to let the user decide than continue behind their 4063 // backs. 4064 4065 for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) { 4066 curr_thread_list = process_sp->GetThreadList(); 4067 if (curr_thread_list.GetSize() != num_threads) { 4068 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4069 LIBLLDB_LOG_PROCESS)); 4070 LLDB_LOGF( 4071 log, 4072 "Number of threads changed from %u to %u while processing event.", 4073 num_threads, curr_thread_list.GetSize()); 4074 break; 4075 } 4076 4077 lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx); 4078 4079 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 4080 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4081 LIBLLDB_LOG_PROCESS)); 4082 LLDB_LOGF(log, 4083 "The thread at position %u changed from %u to %u while " 4084 "processing event.", 4085 idx, thread_index_array[idx], thread_sp->GetIndexID()); 4086 break; 4087 } 4088 4089 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4090 if (stop_info_sp && stop_info_sp->IsValid()) { 4091 found_valid_stopinfo = true; 4092 bool this_thread_wants_to_stop; 4093 if (stop_info_sp->GetOverrideShouldStop()) { 4094 this_thread_wants_to_stop = 4095 stop_info_sp->GetOverriddenShouldStopValue(); 4096 } else { 4097 stop_info_sp->PerformAction(event_ptr); 4098 // The stop action might restart the target. If it does, then we 4099 // want to mark that in the event so that whoever is receiving it 4100 // will know to wait for the running event and reflect that state 4101 // appropriately. We also need to stop processing actions, since they 4102 // aren't expecting the target to be running. 4103 4104 // FIXME: we might have run. 4105 if (stop_info_sp->HasTargetRunSinceMe()) { 4106 SetRestarted(true); 4107 break; 4108 } 4109 4110 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4111 } 4112 4113 if (!still_should_stop) 4114 still_should_stop = this_thread_wants_to_stop; 4115 } 4116 } 4117 4118 return still_should_stop; 4119 } 4120 4121 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 4122 ProcessSP process_sp(m_process_wp.lock()); 4123 4124 if (!process_sp) 4125 return; 4126 4127 // This function gets called twice for each event, once when the event gets 4128 // pulled off of the private process event queue, and then any number of 4129 // times, first when it gets pulled off of the public event queue, then other 4130 // times when we're pretending that this is where we stopped at the end of 4131 // expression evaluation. m_update_state is used to distinguish these three 4132 // cases; it is 0 when we're just pulling it off for private handling, and > 4133 // 1 for expression evaluation, and we don't want to do the breakpoint 4134 // command handling then. 4135 if (m_update_state != 1) 4136 return; 4137 4138 process_sp->SetPublicState( 4139 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4140 4141 if (m_state == eStateStopped && !m_restarted) { 4142 // Let process subclasses know we are about to do a public stop and do 4143 // anything they might need to in order to speed up register and memory 4144 // accesses. 4145 process_sp->WillPublicStop(); 4146 } 4147 4148 // If this is a halt event, even if the halt stopped with some reason other 4149 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 4150 // the halt request came through) don't do the StopInfo actions, as they may 4151 // end up restarting the process. 4152 if (m_interrupted) 4153 return; 4154 4155 // If we're not stopped or have restarted, then skip the StopInfo actions: 4156 if (m_state != eStateStopped || m_restarted) { 4157 return; 4158 } 4159 4160 bool does_anybody_have_an_opinion = false; 4161 bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion); 4162 4163 if (GetRestarted()) { 4164 return; 4165 } 4166 4167 if (!still_should_stop && does_anybody_have_an_opinion) { 4168 // We've been asked to continue, so do that here. 4169 SetRestarted(true); 4170 // Use the public resume method here, since this is just extending a 4171 // public resume. 4172 process_sp->PrivateResume(); 4173 } else { 4174 bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) && 4175 !process_sp->StateChangedIsHijackedForSynchronousResume(); 4176 4177 if (!hijacked) { 4178 // If we didn't restart, run the Stop Hooks here. 4179 // Don't do that if state changed events aren't hooked up to the 4180 // public (or SyncResume) broadcasters. StopHooks are just for 4181 // real public stops. They might also restart the target, 4182 // so watch for that. 4183 if (process_sp->GetTarget().RunStopHooks()) 4184 SetRestarted(true); 4185 } 4186 } 4187 } 4188 4189 void Process::ProcessEventData::Dump(Stream *s) const { 4190 ProcessSP process_sp(m_process_wp.lock()); 4191 4192 if (process_sp) 4193 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4194 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4195 else 4196 s->PutCString(" process = NULL, "); 4197 4198 s->Printf("state = %s", StateAsCString(GetState())); 4199 } 4200 4201 const Process::ProcessEventData * 4202 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4203 if (event_ptr) { 4204 const EventData *event_data = event_ptr->GetData(); 4205 if (event_data && 4206 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4207 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4208 } 4209 return nullptr; 4210 } 4211 4212 ProcessSP 4213 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4214 ProcessSP process_sp; 4215 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4216 if (data) 4217 process_sp = data->GetProcessSP(); 4218 return process_sp; 4219 } 4220 4221 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4222 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4223 if (data == nullptr) 4224 return eStateInvalid; 4225 else 4226 return data->GetState(); 4227 } 4228 4229 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4230 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4231 if (data == nullptr) 4232 return false; 4233 else 4234 return data->GetRestarted(); 4235 } 4236 4237 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4238 bool new_value) { 4239 ProcessEventData *data = 4240 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4241 if (data != nullptr) 4242 data->SetRestarted(new_value); 4243 } 4244 4245 size_t 4246 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4247 ProcessEventData *data = 4248 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4249 if (data != nullptr) 4250 return data->GetNumRestartedReasons(); 4251 else 4252 return 0; 4253 } 4254 4255 const char * 4256 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4257 size_t idx) { 4258 ProcessEventData *data = 4259 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4260 if (data != nullptr) 4261 return data->GetRestartedReasonAtIndex(idx); 4262 else 4263 return nullptr; 4264 } 4265 4266 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4267 const char *reason) { 4268 ProcessEventData *data = 4269 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4270 if (data != nullptr) 4271 data->AddRestartedReason(reason); 4272 } 4273 4274 bool Process::ProcessEventData::GetInterruptedFromEvent( 4275 const Event *event_ptr) { 4276 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4277 if (data == nullptr) 4278 return false; 4279 else 4280 return data->GetInterrupted(); 4281 } 4282 4283 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4284 bool new_value) { 4285 ProcessEventData *data = 4286 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4287 if (data != nullptr) 4288 data->SetInterrupted(new_value); 4289 } 4290 4291 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4292 ProcessEventData *data = 4293 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4294 if (data) { 4295 data->SetUpdateStateOnRemoval(); 4296 return true; 4297 } 4298 return false; 4299 } 4300 4301 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4302 4303 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4304 exe_ctx.SetTargetPtr(&GetTarget()); 4305 exe_ctx.SetProcessPtr(this); 4306 exe_ctx.SetThreadPtr(nullptr); 4307 exe_ctx.SetFramePtr(nullptr); 4308 } 4309 4310 // uint32_t 4311 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4312 // std::vector<lldb::pid_t> &pids) 4313 //{ 4314 // return 0; 4315 //} 4316 // 4317 // ArchSpec 4318 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4319 //{ 4320 // return Host::GetArchSpecForExistingProcess (pid); 4321 //} 4322 // 4323 // ArchSpec 4324 // Process::GetArchSpecForExistingProcess (const char *process_name) 4325 //{ 4326 // return Host::GetArchSpecForExistingProcess (process_name); 4327 //} 4328 4329 void Process::AppendSTDOUT(const char *s, size_t len) { 4330 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4331 m_stdout_data.append(s, len); 4332 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4333 new ProcessEventData(shared_from_this(), GetState())); 4334 } 4335 4336 void Process::AppendSTDERR(const char *s, size_t len) { 4337 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4338 m_stderr_data.append(s, len); 4339 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4340 new ProcessEventData(shared_from_this(), GetState())); 4341 } 4342 4343 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4344 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4345 m_profile_data.push_back(one_profile_data); 4346 BroadcastEventIfUnique(eBroadcastBitProfileData, 4347 new ProcessEventData(shared_from_this(), GetState())); 4348 } 4349 4350 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4351 const StructuredDataPluginSP &plugin_sp) { 4352 BroadcastEvent( 4353 eBroadcastBitStructuredData, 4354 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4355 } 4356 4357 StructuredDataPluginSP 4358 Process::GetStructuredDataPlugin(ConstString type_name) const { 4359 auto find_it = m_structured_data_plugin_map.find(type_name); 4360 if (find_it != m_structured_data_plugin_map.end()) 4361 return find_it->second; 4362 else 4363 return StructuredDataPluginSP(); 4364 } 4365 4366 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4367 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4368 if (m_profile_data.empty()) 4369 return 0; 4370 4371 std::string &one_profile_data = m_profile_data.front(); 4372 size_t bytes_available = one_profile_data.size(); 4373 if (bytes_available > 0) { 4374 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4375 LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4376 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4377 if (bytes_available > buf_size) { 4378 memcpy(buf, one_profile_data.c_str(), buf_size); 4379 one_profile_data.erase(0, buf_size); 4380 bytes_available = buf_size; 4381 } else { 4382 memcpy(buf, one_profile_data.c_str(), bytes_available); 4383 m_profile_data.erase(m_profile_data.begin()); 4384 } 4385 } 4386 return bytes_available; 4387 } 4388 4389 // Process STDIO 4390 4391 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4392 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4393 size_t bytes_available = m_stdout_data.size(); 4394 if (bytes_available > 0) { 4395 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4396 LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4397 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4398 if (bytes_available > buf_size) { 4399 memcpy(buf, m_stdout_data.c_str(), buf_size); 4400 m_stdout_data.erase(0, buf_size); 4401 bytes_available = buf_size; 4402 } else { 4403 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4404 m_stdout_data.clear(); 4405 } 4406 } 4407 return bytes_available; 4408 } 4409 4410 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4411 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4412 size_t bytes_available = m_stderr_data.size(); 4413 if (bytes_available > 0) { 4414 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4415 LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4416 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4417 if (bytes_available > buf_size) { 4418 memcpy(buf, m_stderr_data.c_str(), buf_size); 4419 m_stderr_data.erase(0, buf_size); 4420 bytes_available = buf_size; 4421 } else { 4422 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4423 m_stderr_data.clear(); 4424 } 4425 } 4426 return bytes_available; 4427 } 4428 4429 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4430 size_t src_len) { 4431 Process *process = (Process *)baton; 4432 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4433 } 4434 4435 class IOHandlerProcessSTDIO : public IOHandler { 4436 public: 4437 IOHandlerProcessSTDIO(Process *process, int write_fd) 4438 : IOHandler(process->GetTarget().GetDebugger(), 4439 IOHandler::Type::ProcessIO), 4440 m_process(process), 4441 m_read_file(GetInputFD(), File::eOpenOptionRead, false), 4442 m_write_file(write_fd, File::eOpenOptionWrite, false) { 4443 m_pipe.CreateNew(false); 4444 } 4445 4446 ~IOHandlerProcessSTDIO() override = default; 4447 4448 // Each IOHandler gets to run until it is done. It should read data from the 4449 // "in" and place output into "out" and "err and return when done. 4450 void Run() override { 4451 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4452 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4453 SetIsDone(true); 4454 return; 4455 } 4456 4457 SetIsDone(false); 4458 const int read_fd = m_read_file.GetDescriptor(); 4459 TerminalState terminal_state; 4460 terminal_state.Save(read_fd, false); 4461 Terminal terminal(read_fd); 4462 terminal.SetCanonical(false); 4463 terminal.SetEcho(false); 4464 // FD_ZERO, FD_SET are not supported on windows 4465 #ifndef _WIN32 4466 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4467 m_is_running = true; 4468 while (!GetIsDone()) { 4469 SelectHelper select_helper; 4470 select_helper.FDSetRead(read_fd); 4471 select_helper.FDSetRead(pipe_read_fd); 4472 Status error = select_helper.Select(); 4473 4474 if (error.Fail()) { 4475 SetIsDone(true); 4476 } else { 4477 char ch = 0; 4478 size_t n; 4479 if (select_helper.FDIsSetRead(read_fd)) { 4480 n = 1; 4481 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4482 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4483 SetIsDone(true); 4484 } else 4485 SetIsDone(true); 4486 } 4487 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4488 size_t bytes_read; 4489 // Consume the interrupt byte 4490 Status error = m_pipe.Read(&ch, 1, bytes_read); 4491 if (error.Success()) { 4492 switch (ch) { 4493 case 'q': 4494 SetIsDone(true); 4495 break; 4496 case 'i': 4497 if (StateIsRunningState(m_process->GetState())) 4498 m_process->SendAsyncInterrupt(); 4499 break; 4500 } 4501 } 4502 } 4503 } 4504 } 4505 m_is_running = false; 4506 #endif 4507 terminal_state.Restore(); 4508 } 4509 4510 void Cancel() override { 4511 SetIsDone(true); 4512 // Only write to our pipe to cancel if we are in 4513 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4514 // is being run from the command interpreter: 4515 // 4516 // (lldb) step_process_thousands_of_times 4517 // 4518 // In this case the command interpreter will be in the middle of handling 4519 // the command and if the process pushes and pops the IOHandler thousands 4520 // of times, we can end up writing to m_pipe without ever consuming the 4521 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4522 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4523 if (m_is_running) { 4524 char ch = 'q'; // Send 'q' for quit 4525 size_t bytes_written = 0; 4526 m_pipe.Write(&ch, 1, bytes_written); 4527 } 4528 } 4529 4530 bool Interrupt() override { 4531 // Do only things that are safe to do in an interrupt context (like in a 4532 // SIGINT handler), like write 1 byte to a file descriptor. This will 4533 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4534 // that was written to the pipe and then call 4535 // m_process->SendAsyncInterrupt() from a much safer location in code. 4536 if (m_active) { 4537 char ch = 'i'; // Send 'i' for interrupt 4538 size_t bytes_written = 0; 4539 Status result = m_pipe.Write(&ch, 1, bytes_written); 4540 return result.Success(); 4541 } else { 4542 // This IOHandler might be pushed on the stack, but not being run 4543 // currently so do the right thing if we aren't actively watching for 4544 // STDIN by sending the interrupt to the process. Otherwise the write to 4545 // the pipe above would do nothing. This can happen when the command 4546 // interpreter is running and gets a "expression ...". It will be on the 4547 // IOHandler thread and sending the input is complete to the delegate 4548 // which will cause the expression to run, which will push the process IO 4549 // handler, but not run it. 4550 4551 if (StateIsRunningState(m_process->GetState())) { 4552 m_process->SendAsyncInterrupt(); 4553 return true; 4554 } 4555 } 4556 return false; 4557 } 4558 4559 void GotEOF() override {} 4560 4561 protected: 4562 Process *m_process; 4563 NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB 4564 NativeFile m_write_file; // Write to this file (usually the master pty for 4565 // getting io to debuggee) 4566 Pipe m_pipe; 4567 std::atomic<bool> m_is_running{false}; 4568 }; 4569 4570 void Process::SetSTDIOFileDescriptor(int fd) { 4571 // First set up the Read Thread for reading/handling process I/O 4572 m_stdio_communication.SetConnection( 4573 std::make_unique<ConnectionFileDescriptor>(fd, true)); 4574 if (m_stdio_communication.IsConnected()) { 4575 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4576 STDIOReadThreadBytesReceived, this); 4577 m_stdio_communication.StartReadThread(); 4578 4579 // Now read thread is set up, set up input reader. 4580 4581 if (!m_process_input_reader) 4582 m_process_input_reader = 4583 std::make_shared<IOHandlerProcessSTDIO>(this, fd); 4584 } 4585 } 4586 4587 bool Process::ProcessIOHandlerIsActive() { 4588 IOHandlerSP io_handler_sp(m_process_input_reader); 4589 if (io_handler_sp) 4590 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4591 return false; 4592 } 4593 bool Process::PushProcessIOHandler() { 4594 IOHandlerSP io_handler_sp(m_process_input_reader); 4595 if (io_handler_sp) { 4596 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4597 LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); 4598 4599 io_handler_sp->SetIsDone(false); 4600 // If we evaluate an utility function, then we don't cancel the current 4601 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the 4602 // existing IOHandler that potentially provides the user interface (e.g. 4603 // the IOHandler for Editline). 4604 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); 4605 GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp, 4606 cancel_top_handler); 4607 return true; 4608 } 4609 return false; 4610 } 4611 4612 bool Process::PopProcessIOHandler() { 4613 IOHandlerSP io_handler_sp(m_process_input_reader); 4614 if (io_handler_sp) 4615 return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp); 4616 return false; 4617 } 4618 4619 // The process needs to know about installed plug-ins 4620 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4621 4622 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4623 4624 namespace { 4625 // RestorePlanState is used to record the "is private", "is master" and "okay 4626 // to discard" fields of the plan we are running, and reset it on Clean or on 4627 // destruction. It will only reset the state once, so you can call Clean and 4628 // then monkey with the state and it won't get reset on you again. 4629 4630 class RestorePlanState { 4631 public: 4632 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4633 : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) { 4634 if (m_thread_plan_sp) { 4635 m_private = m_thread_plan_sp->GetPrivate(); 4636 m_is_master = m_thread_plan_sp->IsMasterPlan(); 4637 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4638 } 4639 } 4640 4641 ~RestorePlanState() { Clean(); } 4642 4643 void Clean() { 4644 if (!m_already_reset && m_thread_plan_sp) { 4645 m_already_reset = true; 4646 m_thread_plan_sp->SetPrivate(m_private); 4647 m_thread_plan_sp->SetIsMasterPlan(m_is_master); 4648 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4649 } 4650 } 4651 4652 private: 4653 lldb::ThreadPlanSP m_thread_plan_sp; 4654 bool m_already_reset; 4655 bool m_private; 4656 bool m_is_master; 4657 bool m_okay_to_discard; 4658 }; 4659 } // anonymous namespace 4660 4661 static microseconds 4662 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4663 const milliseconds default_one_thread_timeout(250); 4664 4665 // If the overall wait is forever, then we don't need to worry about it. 4666 if (!options.GetTimeout()) { 4667 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4668 : default_one_thread_timeout; 4669 } 4670 4671 // If the one thread timeout is set, use it. 4672 if (options.GetOneThreadTimeout()) 4673 return *options.GetOneThreadTimeout(); 4674 4675 // Otherwise use half the total timeout, bounded by the 4676 // default_one_thread_timeout. 4677 return std::min<microseconds>(default_one_thread_timeout, 4678 *options.GetTimeout() / 2); 4679 } 4680 4681 static Timeout<std::micro> 4682 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4683 bool before_first_timeout) { 4684 // If we are going to run all threads the whole time, or if we are only going 4685 // to run one thread, we can just return the overall timeout. 4686 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4687 return options.GetTimeout(); 4688 4689 if (before_first_timeout) 4690 return GetOneThreadExpressionTimeout(options); 4691 4692 if (!options.GetTimeout()) 4693 return llvm::None; 4694 else 4695 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4696 } 4697 4698 static llvm::Optional<ExpressionResults> 4699 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp, 4700 RestorePlanState &restorer, const EventSP &event_sp, 4701 EventSP &event_to_broadcast_sp, 4702 const EvaluateExpressionOptions &options, 4703 bool handle_interrupts) { 4704 Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS); 4705 4706 ThreadSP thread_sp = thread_plan_sp->GetTarget() 4707 .GetProcessSP() 4708 ->GetThreadList() 4709 .FindThreadByID(thread_id); 4710 if (!thread_sp) { 4711 LLDB_LOG(log, 4712 "The thread on which we were running the " 4713 "expression: tid = {0}, exited while " 4714 "the expression was running.", 4715 thread_id); 4716 return eExpressionThreadVanished; 4717 } 4718 4719 ThreadPlanSP plan = thread_sp->GetCompletedPlan(); 4720 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4721 LLDB_LOG(log, "execution completed successfully"); 4722 4723 // Restore the plan state so it will get reported as intended when we are 4724 // done. 4725 restorer.Clean(); 4726 return eExpressionCompleted; 4727 } 4728 4729 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4730 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4731 stop_info_sp->ShouldNotify(event_sp.get())) { 4732 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4733 if (!options.DoesIgnoreBreakpoints()) { 4734 // Restore the plan state and then force Private to false. We are going 4735 // to stop because of this plan so we need it to become a public plan or 4736 // it won't report correctly when we continue to its termination later 4737 // on. 4738 restorer.Clean(); 4739 thread_plan_sp->SetPrivate(false); 4740 event_to_broadcast_sp = event_sp; 4741 } 4742 return eExpressionHitBreakpoint; 4743 } 4744 4745 if (!handle_interrupts && 4746 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4747 return llvm::None; 4748 4749 LLDB_LOG(log, "thread plan did not successfully complete"); 4750 if (!options.DoesUnwindOnError()) 4751 event_to_broadcast_sp = event_sp; 4752 return eExpressionInterrupted; 4753 } 4754 4755 ExpressionResults 4756 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4757 lldb::ThreadPlanSP &thread_plan_sp, 4758 const EvaluateExpressionOptions &options, 4759 DiagnosticManager &diagnostic_manager) { 4760 ExpressionResults return_value = eExpressionSetupError; 4761 4762 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4763 4764 if (!thread_plan_sp) { 4765 diagnostic_manager.PutString( 4766 eDiagnosticSeverityError, 4767 "RunThreadPlan called with empty thread plan."); 4768 return eExpressionSetupError; 4769 } 4770 4771 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4772 diagnostic_manager.PutString( 4773 eDiagnosticSeverityError, 4774 "RunThreadPlan called with an invalid thread plan."); 4775 return eExpressionSetupError; 4776 } 4777 4778 if (exe_ctx.GetProcessPtr() != this) { 4779 diagnostic_manager.PutString(eDiagnosticSeverityError, 4780 "RunThreadPlan called on wrong process."); 4781 return eExpressionSetupError; 4782 } 4783 4784 Thread *thread = exe_ctx.GetThreadPtr(); 4785 if (thread == nullptr) { 4786 diagnostic_manager.PutString(eDiagnosticSeverityError, 4787 "RunThreadPlan called with invalid thread."); 4788 return eExpressionSetupError; 4789 } 4790 4791 // Record the thread's id so we can tell when a thread we were using 4792 // to run the expression exits during the expression evaluation. 4793 lldb::tid_t expr_thread_id = thread->GetID(); 4794 4795 // We need to change some of the thread plan attributes for the thread plan 4796 // runner. This will restore them when we are done: 4797 4798 RestorePlanState thread_plan_restorer(thread_plan_sp); 4799 4800 // We rely on the thread plan we are running returning "PlanCompleted" if 4801 // when it successfully completes. For that to be true the plan can't be 4802 // private - since private plans suppress themselves in the GetCompletedPlan 4803 // call. 4804 4805 thread_plan_sp->SetPrivate(false); 4806 4807 // The plans run with RunThreadPlan also need to be terminal master plans or 4808 // when they are done we will end up asking the plan above us whether we 4809 // should stop, which may give the wrong answer. 4810 4811 thread_plan_sp->SetIsMasterPlan(true); 4812 thread_plan_sp->SetOkayToDiscard(false); 4813 4814 // If we are running some utility expression for LLDB, we now have to mark 4815 // this in the ProcesModID of this process. This RAII takes care of marking 4816 // and reverting the mark it once we are done running the expression. 4817 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); 4818 4819 if (m_private_state.GetValue() != eStateStopped) { 4820 diagnostic_manager.PutString( 4821 eDiagnosticSeverityError, 4822 "RunThreadPlan called while the private state was not stopped."); 4823 return eExpressionSetupError; 4824 } 4825 4826 // Save the thread & frame from the exe_ctx for restoration after we run 4827 const uint32_t thread_idx_id = thread->GetIndexID(); 4828 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4829 if (!selected_frame_sp) { 4830 thread->SetSelectedFrame(nullptr); 4831 selected_frame_sp = thread->GetSelectedFrame(); 4832 if (!selected_frame_sp) { 4833 diagnostic_manager.Printf( 4834 eDiagnosticSeverityError, 4835 "RunThreadPlan called without a selected frame on thread %d", 4836 thread_idx_id); 4837 return eExpressionSetupError; 4838 } 4839 } 4840 4841 // Make sure the timeout values make sense. The one thread timeout needs to 4842 // be smaller than the overall timeout. 4843 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4844 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4845 diagnostic_manager.PutString(eDiagnosticSeverityError, 4846 "RunThreadPlan called with one thread " 4847 "timeout greater than total timeout"); 4848 return eExpressionSetupError; 4849 } 4850 4851 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4852 4853 // N.B. Running the target may unset the currently selected thread and frame. 4854 // We don't want to do that either, so we should arrange to reset them as 4855 // well. 4856 4857 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4858 4859 uint32_t selected_tid; 4860 StackID selected_stack_id; 4861 if (selected_thread_sp) { 4862 selected_tid = selected_thread_sp->GetIndexID(); 4863 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4864 } else { 4865 selected_tid = LLDB_INVALID_THREAD_ID; 4866 } 4867 4868 HostThread backup_private_state_thread; 4869 lldb::StateType old_state = eStateInvalid; 4870 lldb::ThreadPlanSP stopper_base_plan_sp; 4871 4872 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4873 LIBLLDB_LOG_PROCESS)); 4874 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4875 // Yikes, we are running on the private state thread! So we can't wait for 4876 // public events on this thread, since we are the thread that is generating 4877 // public events. The simplest thing to do is to spin up a temporary thread 4878 // to handle private state thread events while we are fielding public 4879 // events here. 4880 LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " 4881 "another state thread to handle the events."); 4882 4883 backup_private_state_thread = m_private_state_thread; 4884 4885 // One other bit of business: we want to run just this thread plan and 4886 // anything it pushes, and then stop, returning control here. But in the 4887 // normal course of things, the plan above us on the stack would be given a 4888 // shot at the stop event before deciding to stop, and we don't want that. 4889 // So we insert a "stopper" base plan on the stack before the plan we want 4890 // to run. Since base plans always stop and return control to the user, 4891 // that will do just what we want. 4892 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4893 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4894 // Have to make sure our public state is stopped, since otherwise the 4895 // reporting logic below doesn't work correctly. 4896 old_state = m_public_state.GetValue(); 4897 m_public_state.SetValueNoLock(eStateStopped); 4898 4899 // Now spin up the private state thread: 4900 StartPrivateStateThread(true); 4901 } 4902 4903 thread->QueueThreadPlan( 4904 thread_plan_sp, false); // This used to pass "true" does that make sense? 4905 4906 if (options.GetDebug()) { 4907 // In this case, we aren't actually going to run, we just want to stop 4908 // right away. Flush this thread so we will refetch the stacks and show the 4909 // correct backtrace. 4910 // FIXME: To make this prettier we should invent some stop reason for this, 4911 // but that 4912 // is only cosmetic, and this functionality is only of use to lldb 4913 // developers who can live with not pretty... 4914 thread->Flush(); 4915 return eExpressionStoppedForDebug; 4916 } 4917 4918 ListenerSP listener_sp( 4919 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4920 4921 lldb::EventSP event_to_broadcast_sp; 4922 4923 { 4924 // This process event hijacker Hijacks the Public events and its destructor 4925 // makes sure that the process events get restored on exit to the function. 4926 // 4927 // If the event needs to propagate beyond the hijacker (e.g., the process 4928 // exits during execution), then the event is put into 4929 // event_to_broadcast_sp for rebroadcasting. 4930 4931 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 4932 4933 if (log) { 4934 StreamString s; 4935 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 4936 LLDB_LOGF(log, 4937 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 4938 " to run thread plan \"%s\".", 4939 thread_idx_id, expr_thread_id, s.GetData()); 4940 } 4941 4942 bool got_event; 4943 lldb::EventSP event_sp; 4944 lldb::StateType stop_state = lldb::eStateInvalid; 4945 4946 bool before_first_timeout = true; // This is set to false the first time 4947 // that we have to halt the target. 4948 bool do_resume = true; 4949 bool handle_running_event = true; 4950 4951 // This is just for accounting: 4952 uint32_t num_resumes = 0; 4953 4954 // If we are going to run all threads the whole time, or if we are only 4955 // going to run one thread, then we don't need the first timeout. So we 4956 // pretend we are after the first timeout already. 4957 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4958 before_first_timeout = false; 4959 4960 LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", 4961 options.GetStopOthers(), options.GetTryAllThreads(), 4962 before_first_timeout); 4963 4964 // This isn't going to work if there are unfetched events on the queue. Are 4965 // there cases where we might want to run the remaining events here, and 4966 // then try to call the function? That's probably being too tricky for our 4967 // own good. 4968 4969 Event *other_events = listener_sp->PeekAtNextEvent(); 4970 if (other_events != nullptr) { 4971 diagnostic_manager.PutString( 4972 eDiagnosticSeverityError, 4973 "RunThreadPlan called with pending events on the queue."); 4974 return eExpressionSetupError; 4975 } 4976 4977 // We also need to make sure that the next event is delivered. We might be 4978 // calling a function as part of a thread plan, in which case the last 4979 // delivered event could be the running event, and we don't want event 4980 // coalescing to cause us to lose OUR running event... 4981 ForceNextEventDelivery(); 4982 4983 // This while loop must exit out the bottom, there's cleanup that we need to do 4984 // when we are done. So don't call return anywhere within it. 4985 4986 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4987 // It's pretty much impossible to write test cases for things like: One 4988 // thread timeout expires, I go to halt, but the process already stopped on 4989 // the function call stop breakpoint. Turning on this define will make us 4990 // not fetch the first event till after the halt. So if you run a quick 4991 // function, it will have completed, and the completion event will be 4992 // waiting, when you interrupt for halt. The expression evaluation should 4993 // still succeed. 4994 bool miss_first_event = true; 4995 #endif 4996 while (true) { 4997 // We usually want to resume the process if we get to the top of the 4998 // loop. The only exception is if we get two running events with no 4999 // intervening stop, which can happen, we will just wait for then next 5000 // stop event. 5001 LLDB_LOGF(log, 5002 "Top of while loop: do_resume: %i handle_running_event: %i " 5003 "before_first_timeout: %i.", 5004 do_resume, handle_running_event, before_first_timeout); 5005 5006 if (do_resume || handle_running_event) { 5007 // Do the initial resume and wait for the running event before going 5008 // further. 5009 5010 if (do_resume) { 5011 num_resumes++; 5012 Status resume_error = PrivateResume(); 5013 if (!resume_error.Success()) { 5014 diagnostic_manager.Printf( 5015 eDiagnosticSeverityError, 5016 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 5017 resume_error.AsCString()); 5018 return_value = eExpressionSetupError; 5019 break; 5020 } 5021 } 5022 5023 got_event = 5024 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5025 if (!got_event) { 5026 LLDB_LOGF(log, 5027 "Process::RunThreadPlan(): didn't get any event after " 5028 "resume %" PRIu32 ", exiting.", 5029 num_resumes); 5030 5031 diagnostic_manager.Printf(eDiagnosticSeverityError, 5032 "didn't get any event after resume %" PRIu32 5033 ", exiting.", 5034 num_resumes); 5035 return_value = eExpressionSetupError; 5036 break; 5037 } 5038 5039 stop_state = 5040 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5041 5042 if (stop_state != eStateRunning) { 5043 bool restarted = false; 5044 5045 if (stop_state == eStateStopped) { 5046 restarted = Process::ProcessEventData::GetRestartedFromEvent( 5047 event_sp.get()); 5048 LLDB_LOGF( 5049 log, 5050 "Process::RunThreadPlan(): didn't get running event after " 5051 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 5052 "handle_running_event: %i).", 5053 num_resumes, StateAsCString(stop_state), restarted, do_resume, 5054 handle_running_event); 5055 } 5056 5057 if (restarted) { 5058 // This is probably an overabundance of caution, I don't think I 5059 // should ever get a stopped & restarted event here. But if I do, 5060 // the best thing is to Halt and then get out of here. 5061 const bool clear_thread_plans = false; 5062 const bool use_run_lock = false; 5063 Halt(clear_thread_plans, use_run_lock); 5064 } 5065 5066 diagnostic_manager.Printf( 5067 eDiagnosticSeverityError, 5068 "didn't get running event after initial resume, got %s instead.", 5069 StateAsCString(stop_state)); 5070 return_value = eExpressionSetupError; 5071 break; 5072 } 5073 5074 if (log) 5075 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 5076 // We need to call the function synchronously, so spin waiting for it 5077 // to return. If we get interrupted while executing, we're going to 5078 // lose our context, and won't be able to gather the result at this 5079 // point. We set the timeout AFTER the resume, since the resume takes 5080 // some time and we don't want to charge that to the timeout. 5081 } else { 5082 if (log) 5083 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 5084 } 5085 5086 do_resume = true; 5087 handle_running_event = true; 5088 5089 // Now wait for the process to stop again: 5090 event_sp.reset(); 5091 5092 Timeout<std::micro> timeout = 5093 GetExpressionTimeout(options, before_first_timeout); 5094 if (log) { 5095 if (timeout) { 5096 auto now = system_clock::now(); 5097 LLDB_LOGF(log, 5098 "Process::RunThreadPlan(): about to wait - now is %s - " 5099 "endpoint is %s", 5100 llvm::to_string(now).c_str(), 5101 llvm::to_string(now + *timeout).c_str()); 5102 } else { 5103 LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); 5104 } 5105 } 5106 5107 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5108 // See comment above... 5109 if (miss_first_event) { 5110 std::this_thread::sleep_for(std::chrono::milliseconds(1)); 5111 miss_first_event = false; 5112 got_event = false; 5113 } else 5114 #endif 5115 got_event = listener_sp->GetEvent(event_sp, timeout); 5116 5117 if (got_event) { 5118 if (event_sp) { 5119 bool keep_going = false; 5120 if (event_sp->GetType() == eBroadcastBitInterrupt) { 5121 const bool clear_thread_plans = false; 5122 const bool use_run_lock = false; 5123 Halt(clear_thread_plans, use_run_lock); 5124 return_value = eExpressionInterrupted; 5125 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 5126 "execution halted by user interrupt."); 5127 LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " 5128 "eBroadcastBitInterrupted, exiting."); 5129 break; 5130 } else { 5131 stop_state = 5132 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5133 LLDB_LOGF(log, 5134 "Process::RunThreadPlan(): in while loop, got event: %s.", 5135 StateAsCString(stop_state)); 5136 5137 switch (stop_state) { 5138 case lldb::eStateStopped: { 5139 if (Process::ProcessEventData::GetRestartedFromEvent( 5140 event_sp.get())) { 5141 // If we were restarted, we just need to go back up to fetch 5142 // another event. 5143 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " 5144 "restart, so we'll continue waiting."); 5145 keep_going = true; 5146 do_resume = false; 5147 handle_running_event = true; 5148 } else { 5149 const bool handle_interrupts = true; 5150 return_value = *HandleStoppedEvent( 5151 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5152 event_sp, event_to_broadcast_sp, options, 5153 handle_interrupts); 5154 if (return_value == eExpressionThreadVanished) 5155 keep_going = false; 5156 } 5157 } break; 5158 5159 case lldb::eStateRunning: 5160 // This shouldn't really happen, but sometimes we do get two 5161 // running events without an intervening stop, and in that case 5162 // we should just go back to waiting for the stop. 5163 do_resume = false; 5164 keep_going = true; 5165 handle_running_event = false; 5166 break; 5167 5168 default: 5169 LLDB_LOGF(log, 5170 "Process::RunThreadPlan(): execution stopped with " 5171 "unexpected state: %s.", 5172 StateAsCString(stop_state)); 5173 5174 if (stop_state == eStateExited) 5175 event_to_broadcast_sp = event_sp; 5176 5177 diagnostic_manager.PutString( 5178 eDiagnosticSeverityError, 5179 "execution stopped with unexpected state."); 5180 return_value = eExpressionInterrupted; 5181 break; 5182 } 5183 } 5184 5185 if (keep_going) 5186 continue; 5187 else 5188 break; 5189 } else { 5190 if (log) 5191 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5192 "the event pointer was null. How odd..."); 5193 return_value = eExpressionInterrupted; 5194 break; 5195 } 5196 } else { 5197 // If we didn't get an event that means we've timed out... We will 5198 // interrupt the process here. Depending on what we were asked to do 5199 // we will either exit, or try with all threads running for the same 5200 // timeout. 5201 5202 if (log) { 5203 if (options.GetTryAllThreads()) { 5204 if (before_first_timeout) { 5205 LLDB_LOG(log, 5206 "Running function with one thread timeout timed out."); 5207 } else 5208 LLDB_LOG(log, "Restarting function with all threads enabled and " 5209 "timeout: {0} timed out, abandoning execution.", 5210 timeout); 5211 } else 5212 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5213 "abandoning execution.", 5214 timeout); 5215 } 5216 5217 // It is possible that between the time we issued the Halt, and we get 5218 // around to calling Halt the target could have stopped. That's fine, 5219 // Halt will figure that out and send the appropriate Stopped event. 5220 // BUT it is also possible that we stopped & restarted (e.g. hit a 5221 // signal with "stop" set to false.) In 5222 // that case, we'll get the stopped & restarted event, and we should go 5223 // back to waiting for the Halt's stopped event. That's what this 5224 // while loop does. 5225 5226 bool back_to_top = true; 5227 uint32_t try_halt_again = 0; 5228 bool do_halt = true; 5229 const uint32_t num_retries = 5; 5230 while (try_halt_again < num_retries) { 5231 Status halt_error; 5232 if (do_halt) { 5233 LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); 5234 const bool clear_thread_plans = false; 5235 const bool use_run_lock = false; 5236 Halt(clear_thread_plans, use_run_lock); 5237 } 5238 if (halt_error.Success()) { 5239 if (log) 5240 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5241 5242 got_event = 5243 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5244 5245 if (got_event) { 5246 stop_state = 5247 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5248 if (log) { 5249 LLDB_LOGF(log, 5250 "Process::RunThreadPlan(): Stopped with event: %s", 5251 StateAsCString(stop_state)); 5252 if (stop_state == lldb::eStateStopped && 5253 Process::ProcessEventData::GetInterruptedFromEvent( 5254 event_sp.get())) 5255 log->PutCString(" Event was the Halt interruption event."); 5256 } 5257 5258 if (stop_state == lldb::eStateStopped) { 5259 if (Process::ProcessEventData::GetRestartedFromEvent( 5260 event_sp.get())) { 5261 if (log) 5262 log->PutCString("Process::RunThreadPlan(): Went to halt " 5263 "but got a restarted event, there must be " 5264 "an un-restarted stopped event so try " 5265 "again... " 5266 "Exiting wait loop."); 5267 try_halt_again++; 5268 do_halt = false; 5269 continue; 5270 } 5271 5272 // Between the time we initiated the Halt and the time we 5273 // delivered it, the process could have already finished its 5274 // job. Check that here: 5275 const bool handle_interrupts = false; 5276 if (auto result = HandleStoppedEvent( 5277 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5278 event_sp, event_to_broadcast_sp, options, 5279 handle_interrupts)) { 5280 return_value = *result; 5281 back_to_top = false; 5282 break; 5283 } 5284 5285 if (!options.GetTryAllThreads()) { 5286 if (log) 5287 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5288 "was false, we stopped so now we're " 5289 "quitting."); 5290 return_value = eExpressionInterrupted; 5291 back_to_top = false; 5292 break; 5293 } 5294 5295 if (before_first_timeout) { 5296 // Set all the other threads to run, and return to the top of 5297 // the loop, which will continue; 5298 before_first_timeout = false; 5299 thread_plan_sp->SetStopOthers(false); 5300 if (log) 5301 log->PutCString( 5302 "Process::RunThreadPlan(): about to resume."); 5303 5304 back_to_top = true; 5305 break; 5306 } else { 5307 // Running all threads failed, so return Interrupted. 5308 if (log) 5309 log->PutCString("Process::RunThreadPlan(): running all " 5310 "threads timed out."); 5311 return_value = eExpressionInterrupted; 5312 back_to_top = false; 5313 break; 5314 } 5315 } 5316 } else { 5317 if (log) 5318 log->PutCString("Process::RunThreadPlan(): halt said it " 5319 "succeeded, but I got no event. " 5320 "I'm getting out of here passing Interrupted."); 5321 return_value = eExpressionInterrupted; 5322 back_to_top = false; 5323 break; 5324 } 5325 } else { 5326 try_halt_again++; 5327 continue; 5328 } 5329 } 5330 5331 if (!back_to_top || try_halt_again > num_retries) 5332 break; 5333 else 5334 continue; 5335 } 5336 } // END WAIT LOOP 5337 5338 // If we had to start up a temporary private state thread to run this 5339 // thread plan, shut it down now. 5340 if (backup_private_state_thread.IsJoinable()) { 5341 StopPrivateStateThread(); 5342 Status error; 5343 m_private_state_thread = backup_private_state_thread; 5344 if (stopper_base_plan_sp) { 5345 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5346 } 5347 if (old_state != eStateInvalid) 5348 m_public_state.SetValueNoLock(old_state); 5349 } 5350 5351 // If our thread went away on us, we need to get out of here without 5352 // doing any more work. We don't have to clean up the thread plan, that 5353 // will have happened when the Thread was destroyed. 5354 if (return_value == eExpressionThreadVanished) { 5355 return return_value; 5356 } 5357 5358 if (return_value != eExpressionCompleted && log) { 5359 // Print a backtrace into the log so we can figure out where we are: 5360 StreamString s; 5361 s.PutCString("Thread state after unsuccessful completion: \n"); 5362 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5363 log->PutString(s.GetString()); 5364 } 5365 // Restore the thread state if we are going to discard the plan execution. 5366 // There are three cases where this could happen: 1) The execution 5367 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5368 // was true 3) We got some other error, and discard_on_error was true 5369 bool should_unwind = (return_value == eExpressionInterrupted && 5370 options.DoesUnwindOnError()) || 5371 (return_value == eExpressionHitBreakpoint && 5372 options.DoesIgnoreBreakpoints()); 5373 5374 if (return_value == eExpressionCompleted || should_unwind) { 5375 thread_plan_sp->RestoreThreadState(); 5376 } 5377 5378 // Now do some processing on the results of the run: 5379 if (return_value == eExpressionInterrupted || 5380 return_value == eExpressionHitBreakpoint) { 5381 if (log) { 5382 StreamString s; 5383 if (event_sp) 5384 event_sp->Dump(&s); 5385 else { 5386 log->PutCString("Process::RunThreadPlan(): Stop event that " 5387 "interrupted us is NULL."); 5388 } 5389 5390 StreamString ts; 5391 5392 const char *event_explanation = nullptr; 5393 5394 do { 5395 if (!event_sp) { 5396 event_explanation = "<no event>"; 5397 break; 5398 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5399 event_explanation = "<user interrupt>"; 5400 break; 5401 } else { 5402 const Process::ProcessEventData *event_data = 5403 Process::ProcessEventData::GetEventDataFromEvent( 5404 event_sp.get()); 5405 5406 if (!event_data) { 5407 event_explanation = "<no event data>"; 5408 break; 5409 } 5410 5411 Process *process = event_data->GetProcessSP().get(); 5412 5413 if (!process) { 5414 event_explanation = "<no process>"; 5415 break; 5416 } 5417 5418 ThreadList &thread_list = process->GetThreadList(); 5419 5420 uint32_t num_threads = thread_list.GetSize(); 5421 uint32_t thread_index; 5422 5423 ts.Printf("<%u threads> ", num_threads); 5424 5425 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5426 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5427 5428 if (!thread) { 5429 ts.Printf("<?> "); 5430 continue; 5431 } 5432 5433 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5434 RegisterContext *register_context = 5435 thread->GetRegisterContext().get(); 5436 5437 if (register_context) 5438 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5439 else 5440 ts.Printf("[ip unknown] "); 5441 5442 // Show the private stop info here, the public stop info will be 5443 // from the last natural stop. 5444 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5445 if (stop_info_sp) { 5446 const char *stop_desc = stop_info_sp->GetDescription(); 5447 if (stop_desc) 5448 ts.PutCString(stop_desc); 5449 } 5450 ts.Printf(">"); 5451 } 5452 5453 event_explanation = ts.GetData(); 5454 } 5455 } while (false); 5456 5457 if (event_explanation) 5458 LLDB_LOGF(log, 5459 "Process::RunThreadPlan(): execution interrupted: %s %s", 5460 s.GetData(), event_explanation); 5461 else 5462 LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", 5463 s.GetData()); 5464 } 5465 5466 if (should_unwind) { 5467 LLDB_LOGF(log, 5468 "Process::RunThreadPlan: ExecutionInterrupted - " 5469 "discarding thread plans up to %p.", 5470 static_cast<void *>(thread_plan_sp.get())); 5471 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5472 } else { 5473 LLDB_LOGF(log, 5474 "Process::RunThreadPlan: ExecutionInterrupted - for " 5475 "plan: %p not discarding.", 5476 static_cast<void *>(thread_plan_sp.get())); 5477 } 5478 } else if (return_value == eExpressionSetupError) { 5479 if (log) 5480 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5481 5482 if (options.DoesUnwindOnError()) { 5483 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5484 } 5485 } else { 5486 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5487 if (log) 5488 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5489 return_value = eExpressionCompleted; 5490 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5491 if (log) 5492 log->PutCString( 5493 "Process::RunThreadPlan(): thread plan was discarded"); 5494 return_value = eExpressionDiscarded; 5495 } else { 5496 if (log) 5497 log->PutCString( 5498 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5499 if (options.DoesUnwindOnError() && thread_plan_sp) { 5500 if (log) 5501 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5502 "'cause unwind_on_error is set."); 5503 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5504 } 5505 } 5506 } 5507 5508 // Thread we ran the function in may have gone away because we ran the 5509 // target Check that it's still there, and if it is put it back in the 5510 // context. Also restore the frame in the context if it is still present. 5511 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5512 if (thread) { 5513 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5514 } 5515 5516 // Also restore the current process'es selected frame & thread, since this 5517 // function calling may be done behind the user's back. 5518 5519 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5520 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5521 selected_stack_id.IsValid()) { 5522 // We were able to restore the selected thread, now restore the frame: 5523 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5524 StackFrameSP old_frame_sp = 5525 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5526 selected_stack_id); 5527 if (old_frame_sp) 5528 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5529 old_frame_sp.get()); 5530 } 5531 } 5532 } 5533 5534 // If the process exited during the run of the thread plan, notify everyone. 5535 5536 if (event_to_broadcast_sp) { 5537 if (log) 5538 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5539 BroadcastEvent(event_to_broadcast_sp); 5540 } 5541 5542 return return_value; 5543 } 5544 5545 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5546 const char *result_name = "<unknown>"; 5547 5548 switch (result) { 5549 case eExpressionCompleted: 5550 result_name = "eExpressionCompleted"; 5551 break; 5552 case eExpressionDiscarded: 5553 result_name = "eExpressionDiscarded"; 5554 break; 5555 case eExpressionInterrupted: 5556 result_name = "eExpressionInterrupted"; 5557 break; 5558 case eExpressionHitBreakpoint: 5559 result_name = "eExpressionHitBreakpoint"; 5560 break; 5561 case eExpressionSetupError: 5562 result_name = "eExpressionSetupError"; 5563 break; 5564 case eExpressionParseError: 5565 result_name = "eExpressionParseError"; 5566 break; 5567 case eExpressionResultUnavailable: 5568 result_name = "eExpressionResultUnavailable"; 5569 break; 5570 case eExpressionTimedOut: 5571 result_name = "eExpressionTimedOut"; 5572 break; 5573 case eExpressionStoppedForDebug: 5574 result_name = "eExpressionStoppedForDebug"; 5575 break; 5576 case eExpressionThreadVanished: 5577 result_name = "eExpressionThreadVanished"; 5578 } 5579 return result_name; 5580 } 5581 5582 void Process::GetStatus(Stream &strm) { 5583 const StateType state = GetState(); 5584 if (StateIsStoppedState(state, false)) { 5585 if (state == eStateExited) { 5586 int exit_status = GetExitStatus(); 5587 const char *exit_description = GetExitDescription(); 5588 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5589 GetID(), exit_status, exit_status, 5590 exit_description ? exit_description : ""); 5591 } else { 5592 if (state == eStateConnected) 5593 strm.Printf("Connected to remote target.\n"); 5594 else 5595 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5596 } 5597 } else { 5598 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5599 } 5600 } 5601 5602 size_t Process::GetThreadStatus(Stream &strm, 5603 bool only_threads_with_stop_reason, 5604 uint32_t start_frame, uint32_t num_frames, 5605 uint32_t num_frames_with_source, 5606 bool stop_format) { 5607 size_t num_thread_infos_dumped = 0; 5608 5609 // You can't hold the thread list lock while calling Thread::GetStatus. That 5610 // very well might run code (e.g. if we need it to get return values or 5611 // arguments.) For that to work the process has to be able to acquire it. 5612 // So instead copy the thread ID's, and look them up one by one: 5613 5614 uint32_t num_threads; 5615 std::vector<lldb::tid_t> thread_id_array; 5616 // Scope for thread list locker; 5617 { 5618 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5619 ThreadList &curr_thread_list = GetThreadList(); 5620 num_threads = curr_thread_list.GetSize(); 5621 uint32_t idx; 5622 thread_id_array.resize(num_threads); 5623 for (idx = 0; idx < num_threads; ++idx) 5624 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5625 } 5626 5627 for (uint32_t i = 0; i < num_threads; i++) { 5628 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5629 if (thread_sp) { 5630 if (only_threads_with_stop_reason) { 5631 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5632 if (!stop_info_sp || !stop_info_sp->IsValid()) 5633 continue; 5634 } 5635 thread_sp->GetStatus(strm, start_frame, num_frames, 5636 num_frames_with_source, 5637 stop_format); 5638 ++num_thread_infos_dumped; 5639 } else { 5640 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5641 LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 5642 " vanished while running Thread::GetStatus."); 5643 } 5644 } 5645 return num_thread_infos_dumped; 5646 } 5647 5648 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5649 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5650 } 5651 5652 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5653 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5654 region.GetByteSize()); 5655 } 5656 5657 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5658 void *baton) { 5659 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5660 } 5661 5662 bool Process::RunPreResumeActions() { 5663 bool result = true; 5664 while (!m_pre_resume_actions.empty()) { 5665 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5666 m_pre_resume_actions.pop_back(); 5667 bool this_result = action.callback(action.baton); 5668 if (result) 5669 result = this_result; 5670 } 5671 return result; 5672 } 5673 5674 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5675 5676 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5677 { 5678 PreResumeCallbackAndBaton element(callback, baton); 5679 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5680 if (found_iter != m_pre_resume_actions.end()) 5681 { 5682 m_pre_resume_actions.erase(found_iter); 5683 } 5684 } 5685 5686 ProcessRunLock &Process::GetRunLock() { 5687 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5688 return m_private_run_lock; 5689 else 5690 return m_public_run_lock; 5691 } 5692 5693 bool Process::CurrentThreadIsPrivateStateThread() 5694 { 5695 return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); 5696 } 5697 5698 5699 void Process::Flush() { 5700 m_thread_list.Flush(); 5701 m_extended_thread_list.Flush(); 5702 m_extended_thread_stop_id = 0; 5703 m_queue_list.Clear(); 5704 m_queue_list_stop_id = 0; 5705 } 5706 5707 void Process::DidExec() { 5708 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 5709 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 5710 5711 Target &target = GetTarget(); 5712 target.CleanupProcess(); 5713 target.ClearModules(false); 5714 m_dynamic_checkers_up.reset(); 5715 m_abi_sp.reset(); 5716 m_system_runtime_up.reset(); 5717 m_os_up.reset(); 5718 m_dyld_up.reset(); 5719 m_jit_loaders_up.reset(); 5720 m_image_tokens.clear(); 5721 m_allocated_memory_cache.Clear(); 5722 { 5723 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5724 m_language_runtimes.clear(); 5725 } 5726 m_instrumentation_runtimes.clear(); 5727 m_thread_list.DiscardThreadPlans(); 5728 m_memory_cache.Clear(true); 5729 DoDidExec(); 5730 CompleteAttach(); 5731 // Flush the process (threads and all stack frames) after running 5732 // CompleteAttach() in case the dynamic loader loaded things in new 5733 // locations. 5734 Flush(); 5735 5736 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5737 // let the target know so it can do any cleanup it needs to. 5738 target.DidExec(); 5739 } 5740 5741 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5742 if (address == nullptr) { 5743 error.SetErrorString("Invalid address argument"); 5744 return LLDB_INVALID_ADDRESS; 5745 } 5746 5747 addr_t function_addr = LLDB_INVALID_ADDRESS; 5748 5749 addr_t addr = address->GetLoadAddress(&GetTarget()); 5750 std::map<addr_t, addr_t>::const_iterator iter = 5751 m_resolved_indirect_addresses.find(addr); 5752 if (iter != m_resolved_indirect_addresses.end()) { 5753 function_addr = (*iter).second; 5754 } else { 5755 if (!CallVoidArgVoidPtrReturn(address, function_addr)) { 5756 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5757 error.SetErrorStringWithFormat( 5758 "Unable to call resolver for indirect function %s", 5759 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5760 function_addr = LLDB_INVALID_ADDRESS; 5761 } else { 5762 m_resolved_indirect_addresses.insert( 5763 std::pair<addr_t, addr_t>(addr, function_addr)); 5764 } 5765 } 5766 return function_addr; 5767 } 5768 5769 void Process::ModulesDidLoad(ModuleList &module_list) { 5770 // Inform the system runtime of the modified modules. 5771 SystemRuntime *sys_runtime = GetSystemRuntime(); 5772 if (sys_runtime) 5773 sys_runtime->ModulesDidLoad(module_list); 5774 5775 GetJITLoaders().ModulesDidLoad(module_list); 5776 5777 // Give the instrumentation runtimes a chance to be created before informing 5778 // them of the modified modules. 5779 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5780 m_instrumentation_runtimes); 5781 for (auto &runtime : m_instrumentation_runtimes) 5782 runtime.second->ModulesDidLoad(module_list); 5783 5784 // Give the language runtimes a chance to be created before informing them of 5785 // the modified modules. 5786 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 5787 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 5788 runtime->ModulesDidLoad(module_list); 5789 } 5790 5791 // If we don't have an operating system plug-in, try to load one since 5792 // loading shared libraries might cause a new one to try and load 5793 if (!m_os_up) 5794 LoadOperatingSystemPlugin(false); 5795 5796 // Inform the structured-data plugins of the modified modules. 5797 for (auto pair : m_structured_data_plugin_map) { 5798 if (pair.second) 5799 pair.second->ModulesDidLoad(*this, module_list); 5800 } 5801 } 5802 5803 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5804 const char *fmt, ...) { 5805 bool print_warning = true; 5806 5807 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5808 if (!stream_sp) 5809 return; 5810 5811 if (repeat_key != nullptr) { 5812 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5813 if (it == m_warnings_issued.end()) { 5814 m_warnings_issued[warning_type] = WarningsPointerSet(); 5815 m_warnings_issued[warning_type].insert(repeat_key); 5816 } else { 5817 if (it->second.find(repeat_key) != it->second.end()) { 5818 print_warning = false; 5819 } else { 5820 it->second.insert(repeat_key); 5821 } 5822 } 5823 } 5824 5825 if (print_warning) { 5826 va_list args; 5827 va_start(args, fmt); 5828 stream_sp->PrintfVarArg(fmt, args); 5829 va_end(args); 5830 } 5831 } 5832 5833 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5834 if (!GetWarningsOptimization()) 5835 return; 5836 if (!sc.module_sp) 5837 return; 5838 if (!sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5839 sc.function->GetIsOptimized()) { 5840 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5841 "%s was compiled with optimization - stepping may behave " 5842 "oddly; variables may not be available.\n", 5843 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5844 } 5845 } 5846 5847 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) { 5848 if (!GetWarningsUnsupportedLanguage()) 5849 return; 5850 if (!sc.module_sp) 5851 return; 5852 LanguageType language = sc.GetLanguage(); 5853 if (language == eLanguageTypeUnknown) 5854 return; 5855 auto type_system_or_err = sc.module_sp->GetTypeSystemForLanguage(language); 5856 if (auto err = type_system_or_err.takeError()) { 5857 llvm::consumeError(std::move(err)); 5858 PrintWarning(Process::Warnings::eWarningsUnsupportedLanguage, 5859 sc.module_sp.get(), 5860 "This version of LLDB has no plugin for the %s language. " 5861 "Inspection of frame variables will be limited.\n", 5862 Language::GetNameForLanguageType(language)); 5863 } 5864 } 5865 5866 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5867 info.Clear(); 5868 5869 PlatformSP platform_sp = GetTarget().GetPlatform(); 5870 if (!platform_sp) 5871 return false; 5872 5873 return platform_sp->GetProcessInfo(GetID(), info); 5874 } 5875 5876 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5877 ThreadCollectionSP threads; 5878 5879 const MemoryHistorySP &memory_history = 5880 MemoryHistory::FindPlugin(shared_from_this()); 5881 5882 if (!memory_history) { 5883 return threads; 5884 } 5885 5886 threads = std::make_shared<ThreadCollection>( 5887 memory_history->GetHistoryThreads(addr)); 5888 5889 return threads; 5890 } 5891 5892 InstrumentationRuntimeSP 5893 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5894 InstrumentationRuntimeCollection::iterator pos; 5895 pos = m_instrumentation_runtimes.find(type); 5896 if (pos == m_instrumentation_runtimes.end()) { 5897 return InstrumentationRuntimeSP(); 5898 } else 5899 return (*pos).second; 5900 } 5901 5902 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5903 const ArchSpec &arch, ModuleSpec &module_spec) { 5904 module_spec.Clear(); 5905 return false; 5906 } 5907 5908 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5909 m_image_tokens.push_back(image_ptr); 5910 return m_image_tokens.size() - 1; 5911 } 5912 5913 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5914 if (token < m_image_tokens.size()) 5915 return m_image_tokens[token]; 5916 return LLDB_INVALID_ADDRESS; 5917 } 5918 5919 void Process::ResetImageToken(size_t token) { 5920 if (token < m_image_tokens.size()) 5921 m_image_tokens[token] = LLDB_INVALID_ADDRESS; 5922 } 5923 5924 Address 5925 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5926 AddressRange range_bounds) { 5927 Target &target = GetTarget(); 5928 DisassemblerSP disassembler_sp; 5929 InstructionList *insn_list = nullptr; 5930 5931 Address retval = default_stop_addr; 5932 5933 if (!target.GetUseFastStepping()) 5934 return retval; 5935 if (!default_stop_addr.IsValid()) 5936 return retval; 5937 5938 const char *plugin_name = nullptr; 5939 const char *flavor = nullptr; 5940 const bool prefer_file_cache = true; 5941 disassembler_sp = Disassembler::DisassembleRange( 5942 target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds, 5943 prefer_file_cache); 5944 if (disassembler_sp) 5945 insn_list = &disassembler_sp->GetInstructionList(); 5946 5947 if (insn_list == nullptr) { 5948 return retval; 5949 } 5950 5951 size_t insn_offset = 5952 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 5953 if (insn_offset == UINT32_MAX) { 5954 return retval; 5955 } 5956 5957 uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction( 5958 insn_offset, false /* ignore_calls*/, nullptr); 5959 if (branch_index == UINT32_MAX) { 5960 return retval; 5961 } 5962 5963 if (branch_index > insn_offset) { 5964 Address next_branch_insn_address = 5965 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 5966 if (next_branch_insn_address.IsValid() && 5967 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 5968 retval = next_branch_insn_address; 5969 } 5970 } 5971 5972 return retval; 5973 } 5974 5975 Status 5976 Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { 5977 5978 Status error; 5979 5980 lldb::addr_t range_end = 0; 5981 5982 region_list.clear(); 5983 do { 5984 lldb_private::MemoryRegionInfo region_info; 5985 error = GetMemoryRegionInfo(range_end, region_info); 5986 // GetMemoryRegionInfo should only return an error if it is unimplemented. 5987 if (error.Fail()) { 5988 region_list.clear(); 5989 break; 5990 } 5991 5992 range_end = region_info.GetRange().GetRangeEnd(); 5993 if (region_info.GetMapped() == MemoryRegionInfo::eYes) { 5994 region_list.push_back(std::move(region_info)); 5995 } 5996 } while (range_end != LLDB_INVALID_ADDRESS); 5997 5998 return error; 5999 } 6000 6001 Status 6002 Process::ConfigureStructuredData(ConstString type_name, 6003 const StructuredData::ObjectSP &config_sp) { 6004 // If you get this, the Process-derived class needs to implement a method to 6005 // enable an already-reported asynchronous structured data feature. See 6006 // ProcessGDBRemote for an example implementation over gdb-remote. 6007 return Status("unimplemented"); 6008 } 6009 6010 void Process::MapSupportedStructuredDataPlugins( 6011 const StructuredData::Array &supported_type_names) { 6012 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 6013 6014 // Bail out early if there are no type names to map. 6015 if (supported_type_names.GetSize() == 0) { 6016 LLDB_LOGF(log, "Process::%s(): no structured data types supported", 6017 __FUNCTION__); 6018 return; 6019 } 6020 6021 // Convert StructuredData type names to ConstString instances. 6022 std::set<ConstString> const_type_names; 6023 6024 LLDB_LOGF(log, 6025 "Process::%s(): the process supports the following async " 6026 "structured data types:", 6027 __FUNCTION__); 6028 6029 supported_type_names.ForEach( 6030 [&const_type_names, &log](StructuredData::Object *object) { 6031 if (!object) { 6032 // Invalid - shouldn't be null objects in the array. 6033 return false; 6034 } 6035 6036 auto type_name = object->GetAsString(); 6037 if (!type_name) { 6038 // Invalid format - all type names should be strings. 6039 return false; 6040 } 6041 6042 const_type_names.insert(ConstString(type_name->GetValue())); 6043 LLDB_LOG(log, "- {0}", type_name->GetValue()); 6044 return true; 6045 }); 6046 6047 // For each StructuredDataPlugin, if the plugin handles any of the types in 6048 // the supported_type_names, map that type name to that plugin. Stop when 6049 // we've consumed all the type names. 6050 // FIXME: should we return an error if there are type names nobody 6051 // supports? 6052 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 6053 auto create_instance = 6054 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 6055 plugin_index); 6056 if (!create_instance) 6057 break; 6058 6059 // Create the plugin. 6060 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 6061 if (!plugin_sp) { 6062 // This plugin doesn't think it can work with the process. Move on to the 6063 // next. 6064 continue; 6065 } 6066 6067 // For any of the remaining type names, map any that this plugin supports. 6068 std::vector<ConstString> names_to_remove; 6069 for (auto &type_name : const_type_names) { 6070 if (plugin_sp->SupportsStructuredDataType(type_name)) { 6071 m_structured_data_plugin_map.insert( 6072 std::make_pair(type_name, plugin_sp)); 6073 names_to_remove.push_back(type_name); 6074 LLDB_LOGF(log, 6075 "Process::%s(): using plugin %s for type name " 6076 "%s", 6077 __FUNCTION__, plugin_sp->GetPluginName().GetCString(), 6078 type_name.GetCString()); 6079 } 6080 } 6081 6082 // Remove the type names that were consumed by this plugin. 6083 for (auto &type_name : names_to_remove) 6084 const_type_names.erase(type_name); 6085 } 6086 } 6087 6088 bool Process::RouteAsyncStructuredData( 6089 const StructuredData::ObjectSP object_sp) { 6090 // Nothing to do if there's no data. 6091 if (!object_sp) 6092 return false; 6093 6094 // The contract is this must be a dictionary, so we can look up the routing 6095 // key via the top-level 'type' string value within the dictionary. 6096 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 6097 if (!dictionary) 6098 return false; 6099 6100 // Grab the async structured type name (i.e. the feature/plugin name). 6101 ConstString type_name; 6102 if (!dictionary->GetValueForKeyAsString("type", type_name)) 6103 return false; 6104 6105 // Check if there's a plugin registered for this type name. 6106 auto find_it = m_structured_data_plugin_map.find(type_name); 6107 if (find_it == m_structured_data_plugin_map.end()) { 6108 // We don't have a mapping for this structured data type. 6109 return false; 6110 } 6111 6112 // Route the structured data to the plugin. 6113 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 6114 return true; 6115 } 6116 6117 Status Process::UpdateAutomaticSignalFiltering() { 6118 // Default implementation does nothign. 6119 // No automatic signal filtering to speak of. 6120 return Status(); 6121 } 6122 6123 UtilityFunction *Process::GetLoadImageUtilityFunction( 6124 Platform *platform, 6125 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 6126 if (platform != GetTarget().GetPlatform().get()) 6127 return nullptr; 6128 llvm::call_once(m_dlopen_utility_func_flag_once, 6129 [&] { m_dlopen_utility_func_up = factory(); }); 6130 return m_dlopen_utility_func_up.get(); 6131 } 6132 6133 llvm::Expected<TraceTypeInfo> Process::GetSupportedTraceType() { 6134 if (!IsLiveDebugSession()) 6135 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6136 "Can't trace a non-live process."); 6137 return llvm::make_error<UnimplementedError>(); 6138 } 6139 6140 bool Process::CallVoidArgVoidPtrReturn(const Address *address, 6141 addr_t &returned_func, 6142 bool trap_exceptions) { 6143 Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); 6144 if (thread == nullptr || address == nullptr) 6145 return false; 6146 6147 EvaluateExpressionOptions options; 6148 options.SetStopOthers(true); 6149 options.SetUnwindOnError(true); 6150 options.SetIgnoreBreakpoints(true); 6151 options.SetTryAllThreads(true); 6152 options.SetDebug(false); 6153 options.SetTimeout(GetUtilityExpressionTimeout()); 6154 options.SetTrapExceptions(trap_exceptions); 6155 6156 auto type_system_or_err = 6157 GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC); 6158 if (!type_system_or_err) { 6159 llvm::consumeError(type_system_or_err.takeError()); 6160 return false; 6161 } 6162 CompilerType void_ptr_type = 6163 type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType(); 6164 lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( 6165 *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); 6166 if (call_plan_sp) { 6167 DiagnosticManager diagnostics; 6168 6169 StackFrame *frame = thread->GetStackFrameAtIndex(0).get(); 6170 if (frame) { 6171 ExecutionContext exe_ctx; 6172 frame->CalculateExecutionContext(exe_ctx); 6173 ExpressionResults result = 6174 RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics); 6175 if (result == eExpressionCompleted) { 6176 returned_func = 6177 call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( 6178 LLDB_INVALID_ADDRESS); 6179 6180 if (GetAddressByteSize() == 4) { 6181 if (returned_func == UINT32_MAX) 6182 return false; 6183 } else if (GetAddressByteSize() == 8) { 6184 if (returned_func == UINT64_MAX) 6185 return false; 6186 } 6187 return true; 6188 } 6189 } 6190 } 6191 6192 return false; 6193 } 6194