1 //===-- Process.cpp ---------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // C Includes 11 // C++ Includes 12 #include <atomic> 13 #include <mutex> 14 15 // Other libraries and framework includes 16 #include "llvm/Support/ScopedPrinter.h" 17 #include "llvm/Support/Threading.h" 18 19 // Project includes 20 #include "Plugins/Process/Utility/InferiorCallPOSIX.h" 21 #include "lldb/Breakpoint/BreakpointLocation.h" 22 #include "lldb/Breakpoint/StoppointCallbackContext.h" 23 #include "lldb/Core/Debugger.h" 24 #include "lldb/Core/Event.h" 25 #include "lldb/Core/Module.h" 26 #include "lldb/Core/ModuleSpec.h" 27 #include "lldb/Core/PluginManager.h" 28 #include "lldb/Core/State.h" 29 #include "lldb/Core/StreamFile.h" 30 #include "lldb/Expression/DiagnosticManager.h" 31 #include "lldb/Expression/IRDynamicChecks.h" 32 #include "lldb/Expression/UserExpression.h" 33 #include "lldb/Expression/UtilityFunction.h" 34 #include "lldb/Host/ConnectionFileDescriptor.h" 35 #include "lldb/Host/FileSystem.h" 36 #include "lldb/Host/Host.h" 37 #include "lldb/Host/HostInfo.h" 38 #include "lldb/Host/OptionParser.h" 39 #include "lldb/Host/Pipe.h" 40 #include "lldb/Host/Terminal.h" 41 #include "lldb/Host/ThreadLauncher.h" 42 #include "lldb/Interpreter/CommandInterpreter.h" 43 #include "lldb/Interpreter/OptionArgParser.h" 44 #include "lldb/Interpreter/OptionValueProperties.h" 45 #include "lldb/Symbol/Function.h" 46 #include "lldb/Symbol/Symbol.h" 47 #include "lldb/Target/ABI.h" 48 #include "lldb/Target/CPPLanguageRuntime.h" 49 #include "lldb/Target/DynamicLoader.h" 50 #include "lldb/Target/InstrumentationRuntime.h" 51 #include "lldb/Target/JITLoader.h" 52 #include "lldb/Target/JITLoaderList.h" 53 #include "lldb/Target/LanguageRuntime.h" 54 #include "lldb/Target/MemoryHistory.h" 55 #include "lldb/Target/MemoryRegionInfo.h" 56 #include "lldb/Target/ObjCLanguageRuntime.h" 57 #include "lldb/Target/OperatingSystem.h" 58 #include "lldb/Target/Platform.h" 59 #include "lldb/Target/Process.h" 60 #include "lldb/Target/RegisterContext.h" 61 #include "lldb/Target/StopInfo.h" 62 #include "lldb/Target/StructuredDataPlugin.h" 63 #include "lldb/Target/SystemRuntime.h" 64 #include "lldb/Target/Target.h" 65 #include "lldb/Target/TargetList.h" 66 #include "lldb/Target/Thread.h" 67 #include "lldb/Target/ThreadPlan.h" 68 #include "lldb/Target/ThreadPlanBase.h" 69 #include "lldb/Target/UnixSignals.h" 70 #include "lldb/Utility/Log.h" 71 #include "lldb/Utility/NameMatches.h" 72 #include "lldb/Utility/SelectHelper.h" 73 74 using namespace lldb; 75 using namespace lldb_private; 76 using namespace std::chrono; 77 78 // Comment out line below to disable memory caching, overriding the process 79 // setting target.process.disable-memory-cache 80 #define ENABLE_MEMORY_CACHING 81 82 #ifdef ENABLE_MEMORY_CACHING 83 #define DISABLE_MEM_CACHE_DEFAULT false 84 #else 85 #define DISABLE_MEM_CACHE_DEFAULT true 86 #endif 87 88 class ProcessOptionValueProperties : public OptionValueProperties { 89 public: 90 ProcessOptionValueProperties(const ConstString &name) 91 : OptionValueProperties(name) {} 92 93 // This constructor is used when creating ProcessOptionValueProperties when 94 // it is part of a new lldb_private::Process instance. It will copy all 95 // current global property values as needed 96 ProcessOptionValueProperties(ProcessProperties *global_properties) 97 : OptionValueProperties(*global_properties->GetValueProperties()) {} 98 99 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 100 bool will_modify, 101 uint32_t idx) const override { 102 // When getting the value for a key from the process options, we will 103 // always try and grab the setting from the current process if there is 104 // one. Else we just use the one from this instance. 105 if (exe_ctx) { 106 Process *process = exe_ctx->GetProcessPtr(); 107 if (process) { 108 ProcessOptionValueProperties *instance_properties = 109 static_cast<ProcessOptionValueProperties *>( 110 process->GetValueProperties().get()); 111 if (this != instance_properties) 112 return instance_properties->ProtectedGetPropertyAtIndex(idx); 113 } 114 } 115 return ProtectedGetPropertyAtIndex(idx); 116 } 117 }; 118 119 static PropertyDefinition g_properties[] = { 120 {"disable-memory-cache", OptionValue::eTypeBoolean, false, 121 DISABLE_MEM_CACHE_DEFAULT, nullptr, nullptr, 122 "Disable reading and caching of memory in fixed-size units."}, 123 {"extra-startup-command", OptionValue::eTypeArray, false, 124 OptionValue::eTypeString, nullptr, nullptr, 125 "A list containing extra commands understood by the particular process " 126 "plugin used. " 127 "For instance, to turn on debugserver logging set this to " 128 "\"QSetLogging:bitmask=LOG_DEFAULT;\""}, 129 {"ignore-breakpoints-in-expressions", OptionValue::eTypeBoolean, true, true, 130 nullptr, nullptr, 131 "If true, breakpoints will be ignored during expression evaluation."}, 132 {"unwind-on-error-in-expressions", OptionValue::eTypeBoolean, true, true, 133 nullptr, nullptr, "If true, errors in expression evaluation will unwind " 134 "the stack back to the state before the call."}, 135 {"python-os-plugin-path", OptionValue::eTypeFileSpec, false, true, nullptr, 136 nullptr, "A path to a python OS plug-in module file that contains a " 137 "OperatingSystemPlugIn class."}, 138 {"stop-on-sharedlibrary-events", OptionValue::eTypeBoolean, true, false, 139 nullptr, nullptr, 140 "If true, stop when a shared library is loaded or unloaded."}, 141 {"detach-keeps-stopped", OptionValue::eTypeBoolean, true, false, nullptr, 142 nullptr, "If true, detach will attempt to keep the process stopped."}, 143 {"memory-cache-line-size", OptionValue::eTypeUInt64, false, 512, nullptr, 144 nullptr, "The memory cache line size"}, 145 {"optimization-warnings", OptionValue::eTypeBoolean, false, true, nullptr, 146 nullptr, "If true, warn when stopped in code that is optimized where " 147 "stepping and variable availability may not behave as expected."}, 148 {"stop-on-exec", OptionValue::eTypeBoolean, true, true, 149 nullptr, nullptr, 150 "If true, stop when a shared library is loaded or unloaded."}, 151 {nullptr, OptionValue::eTypeInvalid, false, 0, nullptr, nullptr, nullptr}}; 152 153 enum { 154 ePropertyDisableMemCache, 155 ePropertyExtraStartCommand, 156 ePropertyIgnoreBreakpointsInExpressions, 157 ePropertyUnwindOnErrorInExpressions, 158 ePropertyPythonOSPluginPath, 159 ePropertyStopOnSharedLibraryEvents, 160 ePropertyDetachKeepsStopped, 161 ePropertyMemCacheLineSize, 162 ePropertyWarningOptimization, 163 ePropertyStopOnExec 164 }; 165 166 ProcessProperties::ProcessProperties(lldb_private::Process *process) 167 : Properties(), 168 m_process(process) // Can be nullptr for global ProcessProperties 169 { 170 if (process == nullptr) { 171 // Global process properties, set them up one time 172 m_collection_sp.reset( 173 new ProcessOptionValueProperties(ConstString("process"))); 174 m_collection_sp->Initialize(g_properties); 175 m_collection_sp->AppendProperty( 176 ConstString("thread"), ConstString("Settings specific to threads."), 177 true, Thread::GetGlobalProperties()->GetValueProperties()); 178 } else { 179 m_collection_sp.reset( 180 new ProcessOptionValueProperties(Process::GetGlobalProperties().get())); 181 m_collection_sp->SetValueChangedCallback( 182 ePropertyPythonOSPluginPath, 183 ProcessProperties::OptionValueChangedCallback, this); 184 } 185 } 186 187 ProcessProperties::~ProcessProperties() = default; 188 189 void ProcessProperties::OptionValueChangedCallback(void *baton, 190 OptionValue *option_value) { 191 ProcessProperties *properties = (ProcessProperties *)baton; 192 if (properties->m_process) 193 properties->m_process->LoadOperatingSystemPlugin(true); 194 } 195 196 bool ProcessProperties::GetDisableMemoryCache() const { 197 const uint32_t idx = ePropertyDisableMemCache; 198 return m_collection_sp->GetPropertyAtIndexAsBoolean( 199 nullptr, idx, g_properties[idx].default_uint_value != 0); 200 } 201 202 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 203 const uint32_t idx = ePropertyMemCacheLineSize; 204 return m_collection_sp->GetPropertyAtIndexAsUInt64( 205 nullptr, idx, g_properties[idx].default_uint_value); 206 } 207 208 Args ProcessProperties::GetExtraStartupCommands() const { 209 Args args; 210 const uint32_t idx = ePropertyExtraStartCommand; 211 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 212 return args; 213 } 214 215 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 216 const uint32_t idx = ePropertyExtraStartCommand; 217 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 218 } 219 220 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 221 const uint32_t idx = ePropertyPythonOSPluginPath; 222 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 223 } 224 225 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 226 const uint32_t idx = ePropertyPythonOSPluginPath; 227 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 228 } 229 230 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 231 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 232 return m_collection_sp->GetPropertyAtIndexAsBoolean( 233 nullptr, idx, g_properties[idx].default_uint_value != 0); 234 } 235 236 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 237 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 238 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 239 } 240 241 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 242 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 243 return m_collection_sp->GetPropertyAtIndexAsBoolean( 244 nullptr, idx, g_properties[idx].default_uint_value != 0); 245 } 246 247 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 248 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 249 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 250 } 251 252 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 253 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 254 return m_collection_sp->GetPropertyAtIndexAsBoolean( 255 nullptr, idx, g_properties[idx].default_uint_value != 0); 256 } 257 258 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 259 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 260 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 261 } 262 263 bool ProcessProperties::GetDetachKeepsStopped() const { 264 const uint32_t idx = ePropertyDetachKeepsStopped; 265 return m_collection_sp->GetPropertyAtIndexAsBoolean( 266 nullptr, idx, g_properties[idx].default_uint_value != 0); 267 } 268 269 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 270 const uint32_t idx = ePropertyDetachKeepsStopped; 271 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 272 } 273 274 bool ProcessProperties::GetWarningsOptimization() const { 275 const uint32_t idx = ePropertyWarningOptimization; 276 return m_collection_sp->GetPropertyAtIndexAsBoolean( 277 nullptr, idx, g_properties[idx].default_uint_value != 0); 278 } 279 280 bool ProcessProperties::GetStopOnExec() const { 281 const uint32_t idx = ePropertyStopOnExec; 282 return m_collection_sp->GetPropertyAtIndexAsBoolean( 283 nullptr, idx, g_properties[idx].default_uint_value != 0); 284 } 285 286 void ProcessInstanceInfo::Dump(Stream &s, Platform *platform) const { 287 const char *cstr; 288 if (m_pid != LLDB_INVALID_PROCESS_ID) 289 s.Printf(" pid = %" PRIu64 "\n", m_pid); 290 291 if (m_parent_pid != LLDB_INVALID_PROCESS_ID) 292 s.Printf(" parent = %" PRIu64 "\n", m_parent_pid); 293 294 if (m_executable) { 295 s.Printf(" name = %s\n", m_executable.GetFilename().GetCString()); 296 s.PutCString(" file = "); 297 m_executable.Dump(&s); 298 s.EOL(); 299 } 300 const uint32_t argc = m_arguments.GetArgumentCount(); 301 if (argc > 0) { 302 for (uint32_t i = 0; i < argc; i++) { 303 const char *arg = m_arguments.GetArgumentAtIndex(i); 304 if (i < 10) 305 s.Printf(" arg[%u] = %s\n", i, arg); 306 else 307 s.Printf("arg[%u] = %s\n", i, arg); 308 } 309 } 310 311 s.Format("{0}", m_environment); 312 313 if (m_arch.IsValid()) { 314 s.Printf(" arch = "); 315 m_arch.DumpTriple(s); 316 s.EOL(); 317 } 318 319 if (m_uid != UINT32_MAX) { 320 cstr = platform->GetUserName(m_uid); 321 s.Printf(" uid = %-5u (%s)\n", m_uid, cstr ? cstr : ""); 322 } 323 if (m_gid != UINT32_MAX) { 324 cstr = platform->GetGroupName(m_gid); 325 s.Printf(" gid = %-5u (%s)\n", m_gid, cstr ? cstr : ""); 326 } 327 if (m_euid != UINT32_MAX) { 328 cstr = platform->GetUserName(m_euid); 329 s.Printf(" euid = %-5u (%s)\n", m_euid, cstr ? cstr : ""); 330 } 331 if (m_egid != UINT32_MAX) { 332 cstr = platform->GetGroupName(m_egid); 333 s.Printf(" egid = %-5u (%s)\n", m_egid, cstr ? cstr : ""); 334 } 335 } 336 337 void ProcessInstanceInfo::DumpTableHeader(Stream &s, Platform *platform, 338 bool show_args, bool verbose) { 339 const char *label; 340 if (show_args || verbose) 341 label = "ARGUMENTS"; 342 else 343 label = "NAME"; 344 345 if (verbose) { 346 s.Printf("PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE " 347 " %s\n", 348 label); 349 s.PutCString("====== ====== ========== ========== ========== ========== " 350 "======================== ============================\n"); 351 } else { 352 s.Printf("PID PARENT USER TRIPLE %s\n", label); 353 s.PutCString("====== ====== ========== ======================== " 354 "============================\n"); 355 } 356 } 357 358 void ProcessInstanceInfo::DumpAsTableRow(Stream &s, Platform *platform, 359 bool show_args, bool verbose) const { 360 if (m_pid != LLDB_INVALID_PROCESS_ID) { 361 const char *cstr; 362 s.Printf("%-6" PRIu64 " %-6" PRIu64 " ", m_pid, m_parent_pid); 363 364 StreamString arch_strm; 365 if (m_arch.IsValid()) 366 m_arch.DumpTriple(arch_strm); 367 368 if (verbose) { 369 cstr = platform->GetUserName(m_uid); 370 if (cstr && 371 cstr[0]) // Watch for empty string that indicates lookup failed 372 s.Printf("%-10s ", cstr); 373 else 374 s.Printf("%-10u ", m_uid); 375 376 cstr = platform->GetGroupName(m_gid); 377 if (cstr && 378 cstr[0]) // Watch for empty string that indicates lookup failed 379 s.Printf("%-10s ", cstr); 380 else 381 s.Printf("%-10u ", m_gid); 382 383 cstr = platform->GetUserName(m_euid); 384 if (cstr && 385 cstr[0]) // Watch for empty string that indicates lookup failed 386 s.Printf("%-10s ", cstr); 387 else 388 s.Printf("%-10u ", m_euid); 389 390 cstr = platform->GetGroupName(m_egid); 391 if (cstr && 392 cstr[0]) // Watch for empty string that indicates lookup failed 393 s.Printf("%-10s ", cstr); 394 else 395 s.Printf("%-10u ", m_egid); 396 397 s.Printf("%-24s ", arch_strm.GetData()); 398 } else { 399 s.Printf("%-10s %-24s ", platform->GetUserName(m_euid), 400 arch_strm.GetData()); 401 } 402 403 if (verbose || show_args) { 404 const uint32_t argc = m_arguments.GetArgumentCount(); 405 if (argc > 0) { 406 for (uint32_t i = 0; i < argc; i++) { 407 if (i > 0) 408 s.PutChar(' '); 409 s.PutCString(m_arguments.GetArgumentAtIndex(i)); 410 } 411 } 412 } else { 413 s.PutCString(GetName()); 414 } 415 416 s.EOL(); 417 } 418 } 419 420 Status ProcessLaunchCommandOptions::SetOptionValue( 421 uint32_t option_idx, llvm::StringRef option_arg, 422 ExecutionContext *execution_context) { 423 Status error; 424 const int short_option = m_getopt_table[option_idx].val; 425 426 switch (short_option) { 427 case 's': // Stop at program entry point 428 launch_info.GetFlags().Set(eLaunchFlagStopAtEntry); 429 break; 430 431 case 'i': // STDIN for read only 432 { 433 FileAction action; 434 if (action.Open(STDIN_FILENO, FileSpec{option_arg, false}, true, false)) 435 launch_info.AppendFileAction(action); 436 break; 437 } 438 439 case 'o': // Open STDOUT for write only 440 { 441 FileAction action; 442 if (action.Open(STDOUT_FILENO, FileSpec{option_arg, false}, false, true)) 443 launch_info.AppendFileAction(action); 444 break; 445 } 446 447 case 'e': // STDERR for write only 448 { 449 FileAction action; 450 if (action.Open(STDERR_FILENO, FileSpec{option_arg, false}, false, true)) 451 launch_info.AppendFileAction(action); 452 break; 453 } 454 455 case 'p': // Process plug-in name 456 launch_info.SetProcessPluginName(option_arg); 457 break; 458 459 case 'n': // Disable STDIO 460 { 461 FileAction action; 462 const FileSpec dev_null{FileSystem::DEV_NULL, false}; 463 if (action.Open(STDIN_FILENO, dev_null, true, false)) 464 launch_info.AppendFileAction(action); 465 if (action.Open(STDOUT_FILENO, dev_null, false, true)) 466 launch_info.AppendFileAction(action); 467 if (action.Open(STDERR_FILENO, dev_null, false, true)) 468 launch_info.AppendFileAction(action); 469 break; 470 } 471 472 case 'w': 473 launch_info.SetWorkingDirectory(FileSpec{option_arg, false}); 474 break; 475 476 case 't': // Open process in new terminal window 477 launch_info.GetFlags().Set(eLaunchFlagLaunchInTTY); 478 break; 479 480 case 'a': { 481 TargetSP target_sp = 482 execution_context ? execution_context->GetTargetSP() : TargetSP(); 483 PlatformSP platform_sp = 484 target_sp ? target_sp->GetPlatform() : PlatformSP(); 485 launch_info.GetArchitecture() = 486 Platform::GetAugmentedArchSpec(platform_sp.get(), option_arg); 487 } break; 488 489 case 'A': // Disable ASLR. 490 { 491 bool success; 492 const bool disable_aslr_arg = 493 OptionArgParser::ToBoolean(option_arg, true, &success); 494 if (success) 495 disable_aslr = disable_aslr_arg ? eLazyBoolYes : eLazyBoolNo; 496 else 497 error.SetErrorStringWithFormat( 498 "Invalid boolean value for disable-aslr option: '%s'", 499 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 500 break; 501 } 502 503 case 'X': // shell expand args. 504 { 505 bool success; 506 const bool expand_args = 507 OptionArgParser::ToBoolean(option_arg, true, &success); 508 if (success) 509 launch_info.SetShellExpandArguments(expand_args); 510 else 511 error.SetErrorStringWithFormat( 512 "Invalid boolean value for shell-expand-args option: '%s'", 513 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 514 break; 515 } 516 517 case 'c': 518 if (!option_arg.empty()) 519 launch_info.SetShell(FileSpec(option_arg, false)); 520 else 521 launch_info.SetShell(HostInfo::GetDefaultShell()); 522 break; 523 524 case 'v': 525 launch_info.GetEnvironment().insert(option_arg); 526 break; 527 528 default: 529 error.SetErrorStringWithFormat("unrecognized short option character '%c'", 530 short_option); 531 break; 532 } 533 return error; 534 } 535 536 static OptionDefinition g_process_launch_options[] = { 537 {LLDB_OPT_SET_ALL, false, "stop-at-entry", 's', OptionParser::eNoArgument, 538 nullptr, nullptr, 0, eArgTypeNone, 539 "Stop at the entry point of the program when launching a process."}, 540 {LLDB_OPT_SET_ALL, false, "disable-aslr", 'A', 541 OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeBoolean, 542 "Set whether to disable address space layout randomization when launching " 543 "a process."}, 544 {LLDB_OPT_SET_ALL, false, "plugin", 'p', OptionParser::eRequiredArgument, 545 nullptr, nullptr, 0, eArgTypePlugin, 546 "Name of the process plugin you want to use."}, 547 {LLDB_OPT_SET_ALL, false, "working-dir", 'w', 548 OptionParser::eRequiredArgument, nullptr, nullptr, 0, 549 eArgTypeDirectoryName, 550 "Set the current working directory to <path> when running the inferior."}, 551 {LLDB_OPT_SET_ALL, false, "arch", 'a', OptionParser::eRequiredArgument, 552 nullptr, nullptr, 0, eArgTypeArchitecture, 553 "Set the architecture for the process to launch when ambiguous."}, 554 {LLDB_OPT_SET_ALL, false, "environment", 'v', 555 OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeNone, 556 "Specify an environment variable name/value string (--environment " 557 "NAME=VALUE). Can be specified multiple times for subsequent environment " 558 "entries."}, 559 {LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3, false, "shell", 'c', 560 OptionParser::eOptionalArgument, nullptr, nullptr, 0, eArgTypeFilename, 561 "Run the process in a shell (not supported on all platforms)."}, 562 563 {LLDB_OPT_SET_1, false, "stdin", 'i', OptionParser::eRequiredArgument, 564 nullptr, nullptr, 0, eArgTypeFilename, 565 "Redirect stdin for the process to <filename>."}, 566 {LLDB_OPT_SET_1, false, "stdout", 'o', OptionParser::eRequiredArgument, 567 nullptr, nullptr, 0, eArgTypeFilename, 568 "Redirect stdout for the process to <filename>."}, 569 {LLDB_OPT_SET_1, false, "stderr", 'e', OptionParser::eRequiredArgument, 570 nullptr, nullptr, 0, eArgTypeFilename, 571 "Redirect stderr for the process to <filename>."}, 572 573 {LLDB_OPT_SET_2, false, "tty", 't', OptionParser::eNoArgument, nullptr, 574 nullptr, 0, eArgTypeNone, 575 "Start the process in a terminal (not supported on all platforms)."}, 576 577 {LLDB_OPT_SET_3, false, "no-stdio", 'n', OptionParser::eNoArgument, nullptr, 578 nullptr, 0, eArgTypeNone, 579 "Do not set up for terminal I/O to go to running process."}, 580 {LLDB_OPT_SET_4, false, "shell-expand-args", 'X', 581 OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeBoolean, 582 "Set whether to shell expand arguments to the process when launching."}, 583 }; 584 585 llvm::ArrayRef<OptionDefinition> ProcessLaunchCommandOptions::GetDefinitions() { 586 return llvm::makeArrayRef(g_process_launch_options); 587 } 588 589 bool ProcessInstanceInfoMatch::NameMatches(const char *process_name) const { 590 if (m_name_match_type == NameMatch::Ignore || process_name == nullptr) 591 return true; 592 const char *match_name = m_match_info.GetName(); 593 if (!match_name) 594 return true; 595 596 return lldb_private::NameMatches(process_name, m_name_match_type, match_name); 597 } 598 599 bool ProcessInstanceInfoMatch::Matches( 600 const ProcessInstanceInfo &proc_info) const { 601 if (!NameMatches(proc_info.GetName())) 602 return false; 603 604 if (m_match_info.ProcessIDIsValid() && 605 m_match_info.GetProcessID() != proc_info.GetProcessID()) 606 return false; 607 608 if (m_match_info.ParentProcessIDIsValid() && 609 m_match_info.GetParentProcessID() != proc_info.GetParentProcessID()) 610 return false; 611 612 if (m_match_info.UserIDIsValid() && 613 m_match_info.GetUserID() != proc_info.GetUserID()) 614 return false; 615 616 if (m_match_info.GroupIDIsValid() && 617 m_match_info.GetGroupID() != proc_info.GetGroupID()) 618 return false; 619 620 if (m_match_info.EffectiveUserIDIsValid() && 621 m_match_info.GetEffectiveUserID() != proc_info.GetEffectiveUserID()) 622 return false; 623 624 if (m_match_info.EffectiveGroupIDIsValid() && 625 m_match_info.GetEffectiveGroupID() != proc_info.GetEffectiveGroupID()) 626 return false; 627 628 if (m_match_info.GetArchitecture().IsValid() && 629 !m_match_info.GetArchitecture().IsCompatibleMatch( 630 proc_info.GetArchitecture())) 631 return false; 632 return true; 633 } 634 635 bool ProcessInstanceInfoMatch::MatchAllProcesses() const { 636 if (m_name_match_type != NameMatch::Ignore) 637 return false; 638 639 if (m_match_info.ProcessIDIsValid()) 640 return false; 641 642 if (m_match_info.ParentProcessIDIsValid()) 643 return false; 644 645 if (m_match_info.UserIDIsValid()) 646 return false; 647 648 if (m_match_info.GroupIDIsValid()) 649 return false; 650 651 if (m_match_info.EffectiveUserIDIsValid()) 652 return false; 653 654 if (m_match_info.EffectiveGroupIDIsValid()) 655 return false; 656 657 if (m_match_info.GetArchitecture().IsValid()) 658 return false; 659 660 if (m_match_all_users) 661 return false; 662 663 return true; 664 } 665 666 void ProcessInstanceInfoMatch::Clear() { 667 m_match_info.Clear(); 668 m_name_match_type = NameMatch::Ignore; 669 m_match_all_users = false; 670 } 671 672 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 673 llvm::StringRef plugin_name, 674 ListenerSP listener_sp, 675 const FileSpec *crash_file_path) { 676 static uint32_t g_process_unique_id = 0; 677 678 ProcessSP process_sp; 679 ProcessCreateInstance create_callback = nullptr; 680 if (!plugin_name.empty()) { 681 ConstString const_plugin_name(plugin_name); 682 create_callback = 683 PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name); 684 if (create_callback) { 685 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 686 if (process_sp) { 687 if (process_sp->CanDebug(target_sp, true)) { 688 process_sp->m_process_unique_id = ++g_process_unique_id; 689 } else 690 process_sp.reset(); 691 } 692 } 693 } else { 694 for (uint32_t idx = 0; 695 (create_callback = 696 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 697 ++idx) { 698 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 699 if (process_sp) { 700 if (process_sp->CanDebug(target_sp, false)) { 701 process_sp->m_process_unique_id = ++g_process_unique_id; 702 break; 703 } else 704 process_sp.reset(); 705 } 706 } 707 } 708 return process_sp; 709 } 710 711 ConstString &Process::GetStaticBroadcasterClass() { 712 static ConstString class_name("lldb.process"); 713 return class_name; 714 } 715 716 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 717 : Process(target_sp, listener_sp, 718 UnixSignals::Create(HostInfo::GetArchitecture())) { 719 // This constructor just delegates to the full Process constructor, 720 // defaulting to using the Host's UnixSignals. 721 } 722 723 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 724 const UnixSignalsSP &unix_signals_sp) 725 : ProcessProperties(this), UserID(LLDB_INVALID_PROCESS_ID), 726 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 727 Process::GetStaticBroadcasterClass().AsCString()), 728 m_target_wp(target_sp), m_public_state(eStateUnloaded), 729 m_private_state(eStateUnloaded), 730 m_private_state_broadcaster(nullptr, 731 "lldb.process.internal_state_broadcaster"), 732 m_private_state_control_broadcaster( 733 nullptr, "lldb.process.internal_state_control_broadcaster"), 734 m_private_state_listener_sp( 735 Listener::MakeListener("lldb.process.internal_state_listener")), 736 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 737 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 738 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 739 m_thread_list(this), m_extended_thread_list(this), 740 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 741 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 742 m_breakpoint_site_list(), m_dynamic_checkers_ap(), 743 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 744 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 745 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 746 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 747 m_memory_cache(*this), m_allocated_memory_cache(*this), 748 m_should_detach(false), m_next_event_action_ap(), m_public_run_lock(), 749 m_private_run_lock(), m_finalizing(false), m_finalize_called(false), 750 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 751 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 752 m_can_interpret_function_calls(false), m_warnings_issued(), 753 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 754 CheckInWithManager(); 755 756 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 757 if (log) 758 log->Printf("%p Process::Process()", static_cast<void *>(this)); 759 760 if (!m_unix_signals_sp) 761 m_unix_signals_sp = std::make_shared<UnixSignals>(); 762 763 SetEventName(eBroadcastBitStateChanged, "state-changed"); 764 SetEventName(eBroadcastBitInterrupt, "interrupt"); 765 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 766 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 767 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 768 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 769 770 m_private_state_control_broadcaster.SetEventName( 771 eBroadcastInternalStateControlStop, "control-stop"); 772 m_private_state_control_broadcaster.SetEventName( 773 eBroadcastInternalStateControlPause, "control-pause"); 774 m_private_state_control_broadcaster.SetEventName( 775 eBroadcastInternalStateControlResume, "control-resume"); 776 777 m_listener_sp->StartListeningForEvents( 778 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 779 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 780 eBroadcastBitProfileData | eBroadcastBitStructuredData); 781 782 m_private_state_listener_sp->StartListeningForEvents( 783 &m_private_state_broadcaster, 784 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 785 786 m_private_state_listener_sp->StartListeningForEvents( 787 &m_private_state_control_broadcaster, 788 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 789 eBroadcastInternalStateControlResume); 790 // We need something valid here, even if just the default UnixSignalsSP. 791 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 792 793 // Allow the platform to override the default cache line size 794 OptionValueSP value_sp = 795 m_collection_sp 796 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 797 ->GetValue(); 798 uint32_t platform_cache_line_size = 799 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 800 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 801 value_sp->SetUInt64Value(platform_cache_line_size); 802 } 803 804 Process::~Process() { 805 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 806 if (log) 807 log->Printf("%p Process::~Process()", static_cast<void *>(this)); 808 StopPrivateStateThread(); 809 810 // ThreadList::Clear() will try to acquire this process's mutex, so 811 // explicitly clear the thread list here to ensure that the mutex is not 812 // destroyed before the thread list. 813 m_thread_list.Clear(); 814 } 815 816 const ProcessPropertiesSP &Process::GetGlobalProperties() { 817 // NOTE: intentional leak so we don't crash if global destructor chain gets 818 // called as other threads still use the result of this function 819 static ProcessPropertiesSP *g_settings_sp_ptr = 820 new ProcessPropertiesSP(new ProcessProperties(nullptr)); 821 return *g_settings_sp_ptr; 822 } 823 824 void Process::Finalize() { 825 m_finalizing = true; 826 827 // Destroy this process if needed 828 switch (GetPrivateState()) { 829 case eStateConnected: 830 case eStateAttaching: 831 case eStateLaunching: 832 case eStateStopped: 833 case eStateRunning: 834 case eStateStepping: 835 case eStateCrashed: 836 case eStateSuspended: 837 Destroy(false); 838 break; 839 840 case eStateInvalid: 841 case eStateUnloaded: 842 case eStateDetached: 843 case eStateExited: 844 break; 845 } 846 847 // Clear our broadcaster before we proceed with destroying 848 Broadcaster::Clear(); 849 850 // Do any cleanup needed prior to being destructed... Subclasses that 851 // override this method should call this superclass method as well. 852 853 // We need to destroy the loader before the derived Process class gets 854 // destroyed since it is very likely that undoing the loader will require 855 // access to the real process. 856 m_dynamic_checkers_ap.reset(); 857 m_abi_sp.reset(); 858 m_os_ap.reset(); 859 m_system_runtime_ap.reset(); 860 m_dyld_ap.reset(); 861 m_jit_loaders_ap.reset(); 862 m_thread_list_real.Destroy(); 863 m_thread_list.Destroy(); 864 m_extended_thread_list.Destroy(); 865 m_queue_list.Clear(); 866 m_queue_list_stop_id = 0; 867 std::vector<Notifications> empty_notifications; 868 m_notifications.swap(empty_notifications); 869 m_image_tokens.clear(); 870 m_memory_cache.Clear(); 871 m_allocated_memory_cache.Clear(); 872 m_language_runtimes.clear(); 873 m_instrumentation_runtimes.clear(); 874 m_next_event_action_ap.reset(); 875 // Clear the last natural stop ID since it has a strong reference to this 876 // process 877 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 878 //#ifdef LLDB_CONFIGURATION_DEBUG 879 // StreamFile s(stdout, false); 880 // EventSP event_sp; 881 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 882 // { 883 // event_sp->Dump (&s); 884 // s.EOL(); 885 // } 886 //#endif 887 // We have to be very careful here as the m_private_state_listener might 888 // contain events that have ProcessSP values in them which can keep this 889 // process around forever. These events need to be cleared out. 890 m_private_state_listener_sp->Clear(); 891 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 892 m_public_run_lock.SetStopped(); 893 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 894 m_private_run_lock.SetStopped(); 895 m_structured_data_plugin_map.clear(); 896 m_finalize_called = true; 897 } 898 899 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 900 m_notifications.push_back(callbacks); 901 if (callbacks.initialize != nullptr) 902 callbacks.initialize(callbacks.baton, this); 903 } 904 905 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 906 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 907 for (pos = m_notifications.begin(); pos != end; ++pos) { 908 if (pos->baton == callbacks.baton && 909 pos->initialize == callbacks.initialize && 910 pos->process_state_changed == callbacks.process_state_changed) { 911 m_notifications.erase(pos); 912 return true; 913 } 914 } 915 return false; 916 } 917 918 void Process::SynchronouslyNotifyStateChanged(StateType state) { 919 std::vector<Notifications>::iterator notification_pos, 920 notification_end = m_notifications.end(); 921 for (notification_pos = m_notifications.begin(); 922 notification_pos != notification_end; ++notification_pos) { 923 if (notification_pos->process_state_changed) 924 notification_pos->process_state_changed(notification_pos->baton, this, 925 state); 926 } 927 } 928 929 // FIXME: We need to do some work on events before the general Listener sees 930 // them. 931 // For instance if we are continuing from a breakpoint, we need to ensure that 932 // we do the little "insert real insn, step & stop" trick. But we can't do 933 // that when the event is delivered by the broadcaster - since that is done on 934 // the thread that is waiting for new events, so if we needed more than one 935 // event for our handling, we would stall. So instead we do it when we fetch 936 // the event off of the queue. 937 // 938 939 StateType Process::GetNextEvent(EventSP &event_sp) { 940 StateType state = eStateInvalid; 941 942 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 943 std::chrono::seconds(0)) && 944 event_sp) 945 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 946 947 return state; 948 } 949 950 void Process::SyncIOHandler(uint32_t iohandler_id, 951 const Timeout<std::micro> &timeout) { 952 // don't sync (potentially context switch) in case where there is no process 953 // IO 954 if (!m_process_input_reader) 955 return; 956 957 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 958 959 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 960 if (Result) { 961 LLDB_LOG( 962 log, 963 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 964 iohandler_id, *Result); 965 } else { 966 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 967 iohandler_id); 968 } 969 } 970 971 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 972 EventSP *event_sp_ptr, bool wait_always, 973 ListenerSP hijack_listener_sp, 974 Stream *stream, bool use_run_lock) { 975 // We can't just wait for a "stopped" event, because the stopped event may 976 // have restarted the target. We have to actually check each event, and in 977 // the case of a stopped event check the restarted flag on the event. 978 if (event_sp_ptr) 979 event_sp_ptr->reset(); 980 StateType state = GetState(); 981 // If we are exited or detached, we won't ever get back to any other valid 982 // state... 983 if (state == eStateDetached || state == eStateExited) 984 return state; 985 986 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 987 LLDB_LOG(log, "timeout = {0}", timeout); 988 989 if (!wait_always && StateIsStoppedState(state, true) && 990 StateIsStoppedState(GetPrivateState(), true)) { 991 if (log) 992 log->Printf("Process::%s returning without waiting for events; process " 993 "private and public states are already 'stopped'.", 994 __FUNCTION__); 995 // We need to toggle the run lock as this won't get done in 996 // SetPublicState() if the process is hijacked. 997 if (hijack_listener_sp && use_run_lock) 998 m_public_run_lock.SetStopped(); 999 return state; 1000 } 1001 1002 while (state != eStateInvalid) { 1003 EventSP event_sp; 1004 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 1005 if (event_sp_ptr && event_sp) 1006 *event_sp_ptr = event_sp; 1007 1008 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 1009 Process::HandleProcessStateChangedEvent(event_sp, stream, 1010 pop_process_io_handler); 1011 1012 switch (state) { 1013 case eStateCrashed: 1014 case eStateDetached: 1015 case eStateExited: 1016 case eStateUnloaded: 1017 // We need to toggle the run lock as this won't get done in 1018 // SetPublicState() if the process is hijacked. 1019 if (hijack_listener_sp && use_run_lock) 1020 m_public_run_lock.SetStopped(); 1021 return state; 1022 case eStateStopped: 1023 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 1024 continue; 1025 else { 1026 // We need to toggle the run lock as this won't get done in 1027 // SetPublicState() if the process is hijacked. 1028 if (hijack_listener_sp && use_run_lock) 1029 m_public_run_lock.SetStopped(); 1030 return state; 1031 } 1032 default: 1033 continue; 1034 } 1035 } 1036 return state; 1037 } 1038 1039 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 1040 Stream *stream, 1041 bool &pop_process_io_handler) { 1042 const bool handle_pop = pop_process_io_handler; 1043 1044 pop_process_io_handler = false; 1045 ProcessSP process_sp = 1046 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 1047 1048 if (!process_sp) 1049 return false; 1050 1051 StateType event_state = 1052 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1053 if (event_state == eStateInvalid) 1054 return false; 1055 1056 switch (event_state) { 1057 case eStateInvalid: 1058 case eStateUnloaded: 1059 case eStateAttaching: 1060 case eStateLaunching: 1061 case eStateStepping: 1062 case eStateDetached: 1063 if (stream) 1064 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 1065 StateAsCString(event_state)); 1066 if (event_state == eStateDetached) 1067 pop_process_io_handler = true; 1068 break; 1069 1070 case eStateConnected: 1071 case eStateRunning: 1072 // Don't be chatty when we run... 1073 break; 1074 1075 case eStateExited: 1076 if (stream) 1077 process_sp->GetStatus(*stream); 1078 pop_process_io_handler = true; 1079 break; 1080 1081 case eStateStopped: 1082 case eStateCrashed: 1083 case eStateSuspended: 1084 // Make sure the program hasn't been auto-restarted: 1085 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 1086 if (stream) { 1087 size_t num_reasons = 1088 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 1089 if (num_reasons > 0) { 1090 // FIXME: Do we want to report this, or would that just be annoyingly 1091 // chatty? 1092 if (num_reasons == 1) { 1093 const char *reason = 1094 Process::ProcessEventData::GetRestartedReasonAtIndex( 1095 event_sp.get(), 0); 1096 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 1097 process_sp->GetID(), 1098 reason ? reason : "<UNKNOWN REASON>"); 1099 } else { 1100 stream->Printf("Process %" PRIu64 1101 " stopped and restarted, reasons:\n", 1102 process_sp->GetID()); 1103 1104 for (size_t i = 0; i < num_reasons; i++) { 1105 const char *reason = 1106 Process::ProcessEventData::GetRestartedReasonAtIndex( 1107 event_sp.get(), i); 1108 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 1109 } 1110 } 1111 } 1112 } 1113 } else { 1114 StopInfoSP curr_thread_stop_info_sp; 1115 // Lock the thread list so it doesn't change on us, this is the scope for 1116 // the locker: 1117 { 1118 ThreadList &thread_list = process_sp->GetThreadList(); 1119 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 1120 1121 ThreadSP curr_thread(thread_list.GetSelectedThread()); 1122 ThreadSP thread; 1123 StopReason curr_thread_stop_reason = eStopReasonInvalid; 1124 if (curr_thread) { 1125 curr_thread_stop_reason = curr_thread->GetStopReason(); 1126 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 1127 } 1128 if (!curr_thread || !curr_thread->IsValid() || 1129 curr_thread_stop_reason == eStopReasonInvalid || 1130 curr_thread_stop_reason == eStopReasonNone) { 1131 // Prefer a thread that has just completed its plan over another 1132 // thread as current thread. 1133 ThreadSP plan_thread; 1134 ThreadSP other_thread; 1135 1136 const size_t num_threads = thread_list.GetSize(); 1137 size_t i; 1138 for (i = 0; i < num_threads; ++i) { 1139 thread = thread_list.GetThreadAtIndex(i); 1140 StopReason thread_stop_reason = thread->GetStopReason(); 1141 switch (thread_stop_reason) { 1142 case eStopReasonInvalid: 1143 case eStopReasonNone: 1144 break; 1145 1146 case eStopReasonSignal: { 1147 // Don't select a signal thread if we weren't going to stop at 1148 // that signal. We have to have had another reason for stopping 1149 // here, and the user doesn't want to see this thread. 1150 uint64_t signo = thread->GetStopInfo()->GetValue(); 1151 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 1152 if (!other_thread) 1153 other_thread = thread; 1154 } 1155 break; 1156 } 1157 case eStopReasonTrace: 1158 case eStopReasonBreakpoint: 1159 case eStopReasonWatchpoint: 1160 case eStopReasonException: 1161 case eStopReasonExec: 1162 case eStopReasonThreadExiting: 1163 case eStopReasonInstrumentation: 1164 if (!other_thread) 1165 other_thread = thread; 1166 break; 1167 case eStopReasonPlanComplete: 1168 if (!plan_thread) 1169 plan_thread = thread; 1170 break; 1171 } 1172 } 1173 if (plan_thread) 1174 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 1175 else if (other_thread) 1176 thread_list.SetSelectedThreadByID(other_thread->GetID()); 1177 else { 1178 if (curr_thread && curr_thread->IsValid()) 1179 thread = curr_thread; 1180 else 1181 thread = thread_list.GetThreadAtIndex(0); 1182 1183 if (thread) 1184 thread_list.SetSelectedThreadByID(thread->GetID()); 1185 } 1186 } 1187 } 1188 // Drop the ThreadList mutex by here, since GetThreadStatus below might 1189 // have to run code, e.g. for Data formatters, and if we hold the 1190 // ThreadList mutex, then the process is going to have a hard time 1191 // restarting the process. 1192 if (stream) { 1193 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 1194 if (debugger.GetTargetList().GetSelectedTarget().get() == 1195 &process_sp->GetTarget()) { 1196 const bool only_threads_with_stop_reason = true; 1197 const uint32_t start_frame = 0; 1198 const uint32_t num_frames = 1; 1199 const uint32_t num_frames_with_source = 1; 1200 const bool stop_format = true; 1201 process_sp->GetStatus(*stream); 1202 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 1203 start_frame, num_frames, 1204 num_frames_with_source, 1205 stop_format); 1206 if (curr_thread_stop_info_sp) { 1207 lldb::addr_t crashing_address; 1208 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 1209 curr_thread_stop_info_sp, &crashing_address); 1210 if (valobj_sp) { 1211 const bool qualify_cxx_base_classes = false; 1212 1213 const ValueObject::GetExpressionPathFormat format = 1214 ValueObject::GetExpressionPathFormat:: 1215 eGetExpressionPathFormatHonorPointers; 1216 stream->PutCString("Likely cause: "); 1217 valobj_sp->GetExpressionPath(*stream, qualify_cxx_base_classes, 1218 format); 1219 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 1220 } 1221 } 1222 } else { 1223 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 1224 process_sp->GetTarget().shared_from_this()); 1225 if (target_idx != UINT32_MAX) 1226 stream->Printf("Target %d: (", target_idx); 1227 else 1228 stream->Printf("Target <unknown index>: ("); 1229 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 1230 stream->Printf(") stopped.\n"); 1231 } 1232 } 1233 1234 // Pop the process IO handler 1235 pop_process_io_handler = true; 1236 } 1237 break; 1238 } 1239 1240 if (handle_pop && pop_process_io_handler) 1241 process_sp->PopProcessIOHandler(); 1242 1243 return true; 1244 } 1245 1246 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 1247 if (listener_sp) { 1248 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 1249 eBroadcastBitInterrupt); 1250 } else 1251 return false; 1252 } 1253 1254 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 1255 1256 StateType Process::GetStateChangedEvents(EventSP &event_sp, 1257 const Timeout<std::micro> &timeout, 1258 ListenerSP hijack_listener_sp) { 1259 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1260 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1261 1262 ListenerSP listener_sp = hijack_listener_sp; 1263 if (!listener_sp) 1264 listener_sp = m_listener_sp; 1265 1266 StateType state = eStateInvalid; 1267 if (listener_sp->GetEventForBroadcasterWithType( 1268 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1269 timeout)) { 1270 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1271 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1272 else 1273 LLDB_LOG(log, "got no event or was interrupted."); 1274 } 1275 1276 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 1277 return state; 1278 } 1279 1280 Event *Process::PeekAtStateChangedEvents() { 1281 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1282 1283 if (log) 1284 log->Printf("Process::%s...", __FUNCTION__); 1285 1286 Event *event_ptr; 1287 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 1288 this, eBroadcastBitStateChanged); 1289 if (log) { 1290 if (event_ptr) { 1291 log->Printf( 1292 "Process::%s (event_ptr) => %s", __FUNCTION__, 1293 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 1294 } else { 1295 log->Printf("Process::%s no events found", __FUNCTION__); 1296 } 1297 } 1298 return event_ptr; 1299 } 1300 1301 StateType 1302 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 1303 const Timeout<std::micro> &timeout) { 1304 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1305 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1306 1307 StateType state = eStateInvalid; 1308 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1309 &m_private_state_broadcaster, 1310 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1311 timeout)) 1312 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1313 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1314 1315 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1316 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1317 return state; 1318 } 1319 1320 bool Process::GetEventsPrivate(EventSP &event_sp, 1321 const Timeout<std::micro> &timeout, 1322 bool control_only) { 1323 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1324 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1325 1326 if (control_only) 1327 return m_private_state_listener_sp->GetEventForBroadcaster( 1328 &m_private_state_control_broadcaster, event_sp, timeout); 1329 else 1330 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1331 } 1332 1333 bool Process::IsRunning() const { 1334 return StateIsRunningState(m_public_state.GetValue()); 1335 } 1336 1337 int Process::GetExitStatus() { 1338 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1339 1340 if (m_public_state.GetValue() == eStateExited) 1341 return m_exit_status; 1342 return -1; 1343 } 1344 1345 const char *Process::GetExitDescription() { 1346 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1347 1348 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1349 return m_exit_string.c_str(); 1350 return nullptr; 1351 } 1352 1353 bool Process::SetExitStatus(int status, const char *cstr) { 1354 // Use a mutex to protect setting the exit status. 1355 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1356 1357 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1358 LIBLLDB_LOG_PROCESS)); 1359 if (log) 1360 log->Printf( 1361 "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1362 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", 1363 cstr ? "\"" : ""); 1364 1365 // We were already in the exited state 1366 if (m_private_state.GetValue() == eStateExited) { 1367 if (log) 1368 log->Printf("Process::SetExitStatus () ignoring exit status because " 1369 "state was already set to eStateExited"); 1370 return false; 1371 } 1372 1373 m_exit_status = status; 1374 if (cstr) 1375 m_exit_string = cstr; 1376 else 1377 m_exit_string.clear(); 1378 1379 // Clear the last natural stop ID since it has a strong reference to this 1380 // process 1381 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1382 1383 SetPrivateState(eStateExited); 1384 1385 // Allow subclasses to do some cleanup 1386 DidExit(); 1387 1388 return true; 1389 } 1390 1391 bool Process::IsAlive() { 1392 switch (m_private_state.GetValue()) { 1393 case eStateConnected: 1394 case eStateAttaching: 1395 case eStateLaunching: 1396 case eStateStopped: 1397 case eStateRunning: 1398 case eStateStepping: 1399 case eStateCrashed: 1400 case eStateSuspended: 1401 return true; 1402 default: 1403 return false; 1404 } 1405 } 1406 1407 // This static callback can be used to watch for local child processes on the 1408 // current host. The child process exits, the process will be found in the 1409 // global target list (we want to be completely sure that the 1410 // lldb_private::Process doesn't go away before we can deliver the signal. 1411 bool Process::SetProcessExitStatus( 1412 lldb::pid_t pid, bool exited, 1413 int signo, // Zero for no signal 1414 int exit_status // Exit value of process if signal is zero 1415 ) { 1416 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 1417 if (log) 1418 log->Printf("Process::SetProcessExitStatus (pid=%" PRIu64 1419 ", exited=%i, signal=%i, exit_status=%i)\n", 1420 pid, exited, signo, exit_status); 1421 1422 if (exited) { 1423 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1424 if (target_sp) { 1425 ProcessSP process_sp(target_sp->GetProcessSP()); 1426 if (process_sp) { 1427 const char *signal_cstr = nullptr; 1428 if (signo) 1429 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1430 1431 process_sp->SetExitStatus(exit_status, signal_cstr); 1432 } 1433 } 1434 return true; 1435 } 1436 return false; 1437 } 1438 1439 void Process::UpdateThreadListIfNeeded() { 1440 const uint32_t stop_id = GetStopID(); 1441 if (m_thread_list.GetSize(false) == 0 || 1442 stop_id != m_thread_list.GetStopID()) { 1443 const StateType state = GetPrivateState(); 1444 if (StateIsStoppedState(state, true)) { 1445 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1446 // m_thread_list does have its own mutex, but we need to hold onto the 1447 // mutex between the call to UpdateThreadList(...) and the 1448 // os->UpdateThreadList(...) so it doesn't change on us 1449 ThreadList &old_thread_list = m_thread_list; 1450 ThreadList real_thread_list(this); 1451 ThreadList new_thread_list(this); 1452 // Always update the thread list with the protocol specific thread list, 1453 // but only update if "true" is returned 1454 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1455 // Don't call into the OperatingSystem to update the thread list if we 1456 // are shutting down, since that may call back into the SBAPI's, 1457 // requiring the API lock which is already held by whoever is shutting 1458 // us down, causing a deadlock. 1459 OperatingSystem *os = GetOperatingSystem(); 1460 if (os && !m_destroy_in_process) { 1461 // Clear any old backing threads where memory threads might have been 1462 // backed by actual threads from the lldb_private::Process subclass 1463 size_t num_old_threads = old_thread_list.GetSize(false); 1464 for (size_t i = 0; i < num_old_threads; ++i) 1465 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1466 1467 // Turn off dynamic types to ensure we don't run any expressions. 1468 // Objective-C can run an expression to determine if a SBValue is a 1469 // dynamic type or not and we need to avoid this. OperatingSystem 1470 // plug-ins can't run expressions that require running code... 1471 1472 Target &target = GetTarget(); 1473 const lldb::DynamicValueType saved_prefer_dynamic = 1474 target.GetPreferDynamicValue(); 1475 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1476 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1477 1478 // Now let the OperatingSystem plug-in update the thread list 1479 1480 os->UpdateThreadList( 1481 old_thread_list, // Old list full of threads created by OS plug-in 1482 real_thread_list, // The actual thread list full of threads 1483 // created by each lldb_private::Process 1484 // subclass 1485 new_thread_list); // The new thread list that we will show to the 1486 // user that gets filled in 1487 1488 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1489 target.SetPreferDynamicValue(saved_prefer_dynamic); 1490 } else { 1491 // No OS plug-in, the new thread list is the same as the real thread 1492 // list 1493 new_thread_list = real_thread_list; 1494 } 1495 1496 m_thread_list_real.Update(real_thread_list); 1497 m_thread_list.Update(new_thread_list); 1498 m_thread_list.SetStopID(stop_id); 1499 1500 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1501 // Clear any extended threads that we may have accumulated previously 1502 m_extended_thread_list.Clear(); 1503 m_extended_thread_stop_id = GetLastNaturalStopID(); 1504 1505 m_queue_list.Clear(); 1506 m_queue_list_stop_id = GetLastNaturalStopID(); 1507 } 1508 } 1509 } 1510 } 1511 } 1512 1513 void Process::UpdateQueueListIfNeeded() { 1514 if (m_system_runtime_ap) { 1515 if (m_queue_list.GetSize() == 0 || 1516 m_queue_list_stop_id != GetLastNaturalStopID()) { 1517 const StateType state = GetPrivateState(); 1518 if (StateIsStoppedState(state, true)) { 1519 m_system_runtime_ap->PopulateQueueList(m_queue_list); 1520 m_queue_list_stop_id = GetLastNaturalStopID(); 1521 } 1522 } 1523 } 1524 } 1525 1526 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1527 OperatingSystem *os = GetOperatingSystem(); 1528 if (os) 1529 return os->CreateThread(tid, context); 1530 return ThreadSP(); 1531 } 1532 1533 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1534 return AssignIndexIDToThread(thread_id); 1535 } 1536 1537 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1538 return (m_thread_id_to_index_id_map.find(thread_id) != 1539 m_thread_id_to_index_id_map.end()); 1540 } 1541 1542 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1543 uint32_t result = 0; 1544 std::map<uint64_t, uint32_t>::iterator iterator = 1545 m_thread_id_to_index_id_map.find(thread_id); 1546 if (iterator == m_thread_id_to_index_id_map.end()) { 1547 result = ++m_thread_index_id; 1548 m_thread_id_to_index_id_map[thread_id] = result; 1549 } else { 1550 result = iterator->second; 1551 } 1552 1553 return result; 1554 } 1555 1556 StateType Process::GetState() { 1557 return m_public_state.GetValue(); 1558 } 1559 1560 bool Process::StateChangedIsExternallyHijacked() { 1561 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1562 const char *hijacking_name = GetHijackingListenerName(); 1563 if (hijacking_name && 1564 strcmp(hijacking_name, "lldb.Process.ResumeSynchronous.hijack")) 1565 return true; 1566 } 1567 return false; 1568 } 1569 1570 void Process::SetPublicState(StateType new_state, bool restarted) { 1571 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1572 LIBLLDB_LOG_PROCESS)); 1573 if (log) 1574 log->Printf("Process::SetPublicState (state = %s, restarted = %i)", 1575 StateAsCString(new_state), restarted); 1576 const StateType old_state = m_public_state.GetValue(); 1577 m_public_state.SetValue(new_state); 1578 1579 // On the transition from Run to Stopped, we unlock the writer end of the run 1580 // lock. The lock gets locked in Resume, which is the public API to tell the 1581 // program to run. 1582 if (!StateChangedIsExternallyHijacked()) { 1583 if (new_state == eStateDetached) { 1584 if (log) 1585 log->Printf( 1586 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1587 StateAsCString(new_state)); 1588 m_public_run_lock.SetStopped(); 1589 } else { 1590 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1591 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1592 if ((old_state_is_stopped != new_state_is_stopped)) { 1593 if (new_state_is_stopped && !restarted) { 1594 if (log) 1595 log->Printf("Process::SetPublicState (%s) -- unlocking run lock", 1596 StateAsCString(new_state)); 1597 m_public_run_lock.SetStopped(); 1598 } 1599 } 1600 } 1601 } 1602 } 1603 1604 Status Process::Resume() { 1605 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1606 LIBLLDB_LOG_PROCESS)); 1607 if (log) 1608 log->Printf("Process::Resume -- locking run lock"); 1609 if (!m_public_run_lock.TrySetRunning()) { 1610 Status error("Resume request failed - process still running."); 1611 if (log) 1612 log->Printf("Process::Resume: -- TrySetRunning failed, not resuming."); 1613 return error; 1614 } 1615 Status error = PrivateResume(); 1616 if (!error.Success()) { 1617 // Undo running state change 1618 m_public_run_lock.SetStopped(); 1619 } 1620 return error; 1621 } 1622 1623 Status Process::ResumeSynchronous(Stream *stream) { 1624 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1625 LIBLLDB_LOG_PROCESS)); 1626 if (log) 1627 log->Printf("Process::ResumeSynchronous -- locking run lock"); 1628 if (!m_public_run_lock.TrySetRunning()) { 1629 Status error("Resume request failed - process still running."); 1630 if (log) 1631 log->Printf("Process::Resume: -- TrySetRunning failed, not resuming."); 1632 return error; 1633 } 1634 1635 ListenerSP listener_sp( 1636 Listener::MakeListener("lldb.Process.ResumeSynchronous.hijack")); 1637 HijackProcessEvents(listener_sp); 1638 1639 Status error = PrivateResume(); 1640 if (error.Success()) { 1641 StateType state = 1642 WaitForProcessToStop(llvm::None, NULL, true, listener_sp, stream); 1643 const bool must_be_alive = 1644 false; // eStateExited is ok, so this must be false 1645 if (!StateIsStoppedState(state, must_be_alive)) 1646 error.SetErrorStringWithFormat( 1647 "process not in stopped state after synchronous resume: %s", 1648 StateAsCString(state)); 1649 } else { 1650 // Undo running state change 1651 m_public_run_lock.SetStopped(); 1652 } 1653 1654 // Undo the hijacking of process events... 1655 RestoreProcessEvents(); 1656 1657 return error; 1658 } 1659 1660 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1661 1662 void Process::SetPrivateState(StateType new_state) { 1663 if (m_finalize_called) 1664 return; 1665 1666 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1667 LIBLLDB_LOG_PROCESS)); 1668 bool state_changed = false; 1669 1670 if (log) 1671 log->Printf("Process::SetPrivateState (%s)", StateAsCString(new_state)); 1672 1673 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1674 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1675 1676 const StateType old_state = m_private_state.GetValueNoLock(); 1677 state_changed = old_state != new_state; 1678 1679 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1680 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1681 if (old_state_is_stopped != new_state_is_stopped) { 1682 if (new_state_is_stopped) 1683 m_private_run_lock.SetStopped(); 1684 else 1685 m_private_run_lock.SetRunning(); 1686 } 1687 1688 if (state_changed) { 1689 m_private_state.SetValueNoLock(new_state); 1690 EventSP event_sp( 1691 new Event(eBroadcastBitStateChanged, 1692 new ProcessEventData(shared_from_this(), new_state))); 1693 if (StateIsStoppedState(new_state, false)) { 1694 // Note, this currently assumes that all threads in the list stop when 1695 // the process stops. In the future we will want to support a debugging 1696 // model where some threads continue to run while others are stopped. 1697 // When that happens we will either need a way for the thread list to 1698 // identify which threads are stopping or create a special thread list 1699 // containing only threads which actually stopped. 1700 // 1701 // The process plugin is responsible for managing the actual behavior of 1702 // the threads and should have stopped any threads that are going to stop 1703 // before we get here. 1704 m_thread_list.DidStop(); 1705 1706 m_mod_id.BumpStopID(); 1707 if (!m_mod_id.IsLastResumeForUserExpression()) 1708 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1709 m_memory_cache.Clear(); 1710 if (log) 1711 log->Printf("Process::SetPrivateState (%s) stop_id = %u", 1712 StateAsCString(new_state), m_mod_id.GetStopID()); 1713 } 1714 1715 // Use our target to get a shared pointer to ourselves... 1716 if (m_finalize_called && !PrivateStateThreadIsValid()) 1717 BroadcastEvent(event_sp); 1718 else 1719 m_private_state_broadcaster.BroadcastEvent(event_sp); 1720 } else { 1721 if (log) 1722 log->Printf( 1723 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1724 StateAsCString(new_state)); 1725 } 1726 } 1727 1728 void Process::SetRunningUserExpression(bool on) { 1729 m_mod_id.SetRunningUserExpression(on); 1730 } 1731 1732 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1733 1734 const lldb::ABISP &Process::GetABI() { 1735 if (!m_abi_sp) 1736 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1737 return m_abi_sp; 1738 } 1739 1740 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language, 1741 bool retry_if_null) { 1742 if (m_finalizing) 1743 return nullptr; 1744 1745 LanguageRuntimeCollection::iterator pos; 1746 pos = m_language_runtimes.find(language); 1747 if (pos == m_language_runtimes.end() || (retry_if_null && !(*pos).second)) { 1748 lldb::LanguageRuntimeSP runtime_sp( 1749 LanguageRuntime::FindPlugin(this, language)); 1750 1751 m_language_runtimes[language] = runtime_sp; 1752 return runtime_sp.get(); 1753 } else 1754 return (*pos).second.get(); 1755 } 1756 1757 CPPLanguageRuntime *Process::GetCPPLanguageRuntime(bool retry_if_null) { 1758 LanguageRuntime *runtime = 1759 GetLanguageRuntime(eLanguageTypeC_plus_plus, retry_if_null); 1760 if (runtime != nullptr && 1761 runtime->GetLanguageType() == eLanguageTypeC_plus_plus) 1762 return static_cast<CPPLanguageRuntime *>(runtime); 1763 return nullptr; 1764 } 1765 1766 ObjCLanguageRuntime *Process::GetObjCLanguageRuntime(bool retry_if_null) { 1767 LanguageRuntime *runtime = 1768 GetLanguageRuntime(eLanguageTypeObjC, retry_if_null); 1769 if (runtime != nullptr && runtime->GetLanguageType() == eLanguageTypeObjC) 1770 return static_cast<ObjCLanguageRuntime *>(runtime); 1771 return nullptr; 1772 } 1773 1774 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1775 if (m_finalizing) 1776 return false; 1777 1778 if (in_value.IsDynamic()) 1779 return false; 1780 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1781 1782 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1783 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1784 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1785 } 1786 1787 LanguageRuntime *cpp_runtime = GetLanguageRuntime(eLanguageTypeC_plus_plus); 1788 if (cpp_runtime && cpp_runtime->CouldHaveDynamicValue(in_value)) 1789 return true; 1790 1791 LanguageRuntime *objc_runtime = GetLanguageRuntime(eLanguageTypeObjC); 1792 return objc_runtime ? objc_runtime->CouldHaveDynamicValue(in_value) : false; 1793 } 1794 1795 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1796 m_dynamic_checkers_ap.reset(dynamic_checkers); 1797 } 1798 1799 BreakpointSiteList &Process::GetBreakpointSiteList() { 1800 return m_breakpoint_site_list; 1801 } 1802 1803 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1804 return m_breakpoint_site_list; 1805 } 1806 1807 void Process::DisableAllBreakpointSites() { 1808 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1809 // bp_site->SetEnabled(true); 1810 DisableBreakpointSite(bp_site); 1811 }); 1812 } 1813 1814 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1815 Status error(DisableBreakpointSiteByID(break_id)); 1816 1817 if (error.Success()) 1818 m_breakpoint_site_list.Remove(break_id); 1819 1820 return error; 1821 } 1822 1823 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1824 Status error; 1825 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1826 if (bp_site_sp) { 1827 if (bp_site_sp->IsEnabled()) 1828 error = DisableBreakpointSite(bp_site_sp.get()); 1829 } else { 1830 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1831 break_id); 1832 } 1833 1834 return error; 1835 } 1836 1837 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1838 Status error; 1839 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1840 if (bp_site_sp) { 1841 if (!bp_site_sp->IsEnabled()) 1842 error = EnableBreakpointSite(bp_site_sp.get()); 1843 } else { 1844 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1845 break_id); 1846 } 1847 return error; 1848 } 1849 1850 lldb::break_id_t 1851 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1852 bool use_hardware) { 1853 addr_t load_addr = LLDB_INVALID_ADDRESS; 1854 1855 bool show_error = true; 1856 switch (GetState()) { 1857 case eStateInvalid: 1858 case eStateUnloaded: 1859 case eStateConnected: 1860 case eStateAttaching: 1861 case eStateLaunching: 1862 case eStateDetached: 1863 case eStateExited: 1864 show_error = false; 1865 break; 1866 1867 case eStateStopped: 1868 case eStateRunning: 1869 case eStateStepping: 1870 case eStateCrashed: 1871 case eStateSuspended: 1872 show_error = IsAlive(); 1873 break; 1874 } 1875 1876 // Reset the IsIndirect flag here, in case the location changes from pointing 1877 // to a indirect symbol to a regular symbol. 1878 owner->SetIsIndirect(false); 1879 1880 if (owner->ShouldResolveIndirectFunctions()) { 1881 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1882 if (symbol && symbol->IsIndirect()) { 1883 Status error; 1884 Address symbol_address = symbol->GetAddress(); 1885 load_addr = ResolveIndirectFunction(&symbol_address, error); 1886 if (!error.Success() && show_error) { 1887 GetTarget().GetDebugger().GetErrorFile()->Printf( 1888 "warning: failed to resolve indirect function at 0x%" PRIx64 1889 " for breakpoint %i.%i: %s\n", 1890 symbol->GetLoadAddress(&GetTarget()), 1891 owner->GetBreakpoint().GetID(), owner->GetID(), 1892 error.AsCString() ? error.AsCString() : "unknown error"); 1893 return LLDB_INVALID_BREAK_ID; 1894 } 1895 Address resolved_address(load_addr); 1896 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1897 owner->SetIsIndirect(true); 1898 } else 1899 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1900 } else 1901 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1902 1903 if (load_addr != LLDB_INVALID_ADDRESS) { 1904 BreakpointSiteSP bp_site_sp; 1905 1906 // Look up this breakpoint site. If it exists, then add this new owner, 1907 // otherwise create a new breakpoint site and add it. 1908 1909 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1910 1911 if (bp_site_sp) { 1912 bp_site_sp->AddOwner(owner); 1913 owner->SetBreakpointSite(bp_site_sp); 1914 return bp_site_sp->GetID(); 1915 } else { 1916 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1917 load_addr, use_hardware)); 1918 if (bp_site_sp) { 1919 Status error = EnableBreakpointSite(bp_site_sp.get()); 1920 if (error.Success()) { 1921 owner->SetBreakpointSite(bp_site_sp); 1922 return m_breakpoint_site_list.Add(bp_site_sp); 1923 } else { 1924 if (show_error) { 1925 // Report error for setting breakpoint... 1926 GetTarget().GetDebugger().GetErrorFile()->Printf( 1927 "warning: failed to set breakpoint site at 0x%" PRIx64 1928 " for breakpoint %i.%i: %s\n", 1929 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1930 error.AsCString() ? error.AsCString() : "unknown error"); 1931 } 1932 } 1933 } 1934 } 1935 } 1936 // We failed to enable the breakpoint 1937 return LLDB_INVALID_BREAK_ID; 1938 } 1939 1940 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1941 lldb::user_id_t owner_loc_id, 1942 BreakpointSiteSP &bp_site_sp) { 1943 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1944 if (num_owners == 0) { 1945 // Don't try to disable the site if we don't have a live process anymore. 1946 if (IsAlive()) 1947 DisableBreakpointSite(bp_site_sp.get()); 1948 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1949 } 1950 } 1951 1952 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1953 uint8_t *buf) const { 1954 size_t bytes_removed = 0; 1955 BreakpointSiteList bp_sites_in_range; 1956 1957 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1958 bp_sites_in_range)) { 1959 bp_sites_in_range.ForEach([bp_addr, size, 1960 buf](BreakpointSite *bp_site) -> void { 1961 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1962 addr_t intersect_addr; 1963 size_t intersect_size; 1964 size_t opcode_offset; 1965 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1966 &intersect_size, &opcode_offset)) { 1967 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1968 assert(bp_addr < intersect_addr + intersect_size && 1969 intersect_addr + intersect_size <= bp_addr + size); 1970 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1971 size_t buf_offset = intersect_addr - bp_addr; 1972 ::memcpy(buf + buf_offset, 1973 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1974 intersect_size); 1975 } 1976 } 1977 }); 1978 } 1979 return bytes_removed; 1980 } 1981 1982 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1983 PlatformSP platform_sp(GetTarget().GetPlatform()); 1984 if (platform_sp) 1985 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1986 return 0; 1987 } 1988 1989 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1990 Status error; 1991 assert(bp_site != nullptr); 1992 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1993 const addr_t bp_addr = bp_site->GetLoadAddress(); 1994 if (log) 1995 log->Printf( 1996 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1997 bp_site->GetID(), (uint64_t)bp_addr); 1998 if (bp_site->IsEnabled()) { 1999 if (log) 2000 log->Printf( 2001 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2002 " -- already enabled", 2003 bp_site->GetID(), (uint64_t)bp_addr); 2004 return error; 2005 } 2006 2007 if (bp_addr == LLDB_INVALID_ADDRESS) { 2008 error.SetErrorString("BreakpointSite contains an invalid load address."); 2009 return error; 2010 } 2011 // Ask the lldb::Process subclass to fill in the correct software breakpoint 2012 // trap for the breakpoint site 2013 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 2014 2015 if (bp_opcode_size == 0) { 2016 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 2017 "returned zero, unable to get breakpoint " 2018 "trap for address 0x%" PRIx64, 2019 bp_addr); 2020 } else { 2021 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 2022 2023 if (bp_opcode_bytes == nullptr) { 2024 error.SetErrorString( 2025 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 2026 return error; 2027 } 2028 2029 // Save the original opcode by reading it 2030 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 2031 error) == bp_opcode_size) { 2032 // Write a software breakpoint in place of the original opcode 2033 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 2034 bp_opcode_size) { 2035 uint8_t verify_bp_opcode_bytes[64]; 2036 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 2037 error) == bp_opcode_size) { 2038 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 2039 bp_opcode_size) == 0) { 2040 bp_site->SetEnabled(true); 2041 bp_site->SetType(BreakpointSite::eSoftware); 2042 if (log) 2043 log->Printf("Process::EnableSoftwareBreakpoint (site_id = %d) " 2044 "addr = 0x%" PRIx64 " -- SUCCESS", 2045 bp_site->GetID(), (uint64_t)bp_addr); 2046 } else 2047 error.SetErrorString( 2048 "failed to verify the breakpoint trap in memory."); 2049 } else 2050 error.SetErrorString( 2051 "Unable to read memory to verify breakpoint trap."); 2052 } else 2053 error.SetErrorString("Unable to write breakpoint trap to memory."); 2054 } else 2055 error.SetErrorString("Unable to read memory at breakpoint address."); 2056 } 2057 if (log && error.Fail()) 2058 log->Printf( 2059 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2060 " -- FAILED: %s", 2061 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 2062 return error; 2063 } 2064 2065 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 2066 Status error; 2067 assert(bp_site != nullptr); 2068 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 2069 addr_t bp_addr = bp_site->GetLoadAddress(); 2070 lldb::user_id_t breakID = bp_site->GetID(); 2071 if (log) 2072 log->Printf("Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 2073 ") addr = 0x%" PRIx64, 2074 breakID, (uint64_t)bp_addr); 2075 2076 if (bp_site->IsHardware()) { 2077 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 2078 } else if (bp_site->IsEnabled()) { 2079 const size_t break_op_size = bp_site->GetByteSize(); 2080 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 2081 if (break_op_size > 0) { 2082 // Clear a software breakpoint instruction 2083 uint8_t curr_break_op[8]; 2084 assert(break_op_size <= sizeof(curr_break_op)); 2085 bool break_op_found = false; 2086 2087 // Read the breakpoint opcode 2088 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 2089 break_op_size) { 2090 bool verify = false; 2091 // Make sure the breakpoint opcode exists at this address 2092 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 2093 break_op_found = true; 2094 // We found a valid breakpoint opcode at this address, now restore 2095 // the saved opcode. 2096 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 2097 break_op_size, error) == break_op_size) { 2098 verify = true; 2099 } else 2100 error.SetErrorString( 2101 "Memory write failed when restoring original opcode."); 2102 } else { 2103 error.SetErrorString( 2104 "Original breakpoint trap is no longer in memory."); 2105 // Set verify to true and so we can check if the original opcode has 2106 // already been restored 2107 verify = true; 2108 } 2109 2110 if (verify) { 2111 uint8_t verify_opcode[8]; 2112 assert(break_op_size < sizeof(verify_opcode)); 2113 // Verify that our original opcode made it back to the inferior 2114 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 2115 break_op_size) { 2116 // compare the memory we just read with the original opcode 2117 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 2118 break_op_size) == 0) { 2119 // SUCCESS 2120 bp_site->SetEnabled(false); 2121 if (log) 2122 log->Printf("Process::DisableSoftwareBreakpoint (site_id = %d) " 2123 "addr = 0x%" PRIx64 " -- SUCCESS", 2124 bp_site->GetID(), (uint64_t)bp_addr); 2125 return error; 2126 } else { 2127 if (break_op_found) 2128 error.SetErrorString("Failed to restore original opcode."); 2129 } 2130 } else 2131 error.SetErrorString("Failed to read memory to verify that " 2132 "breakpoint trap was restored."); 2133 } 2134 } else 2135 error.SetErrorString( 2136 "Unable to read memory that should contain the breakpoint trap."); 2137 } 2138 } else { 2139 if (log) 2140 log->Printf( 2141 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2142 " -- already disabled", 2143 bp_site->GetID(), (uint64_t)bp_addr); 2144 return error; 2145 } 2146 2147 if (log) 2148 log->Printf( 2149 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2150 " -- FAILED: %s", 2151 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 2152 return error; 2153 } 2154 2155 // Uncomment to verify memory caching works after making changes to caching 2156 // code 2157 //#define VERIFY_MEMORY_READS 2158 2159 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 2160 error.Clear(); 2161 if (!GetDisableMemoryCache()) { 2162 #if defined(VERIFY_MEMORY_READS) 2163 // Memory caching is enabled, with debug verification 2164 2165 if (buf && size) { 2166 // Uncomment the line below to make sure memory caching is working. 2167 // I ran this through the test suite and got no assertions, so I am 2168 // pretty confident this is working well. If any changes are made to 2169 // memory caching, uncomment the line below and test your changes! 2170 2171 // Verify all memory reads by using the cache first, then redundantly 2172 // reading the same memory from the inferior and comparing to make sure 2173 // everything is exactly the same. 2174 std::string verify_buf(size, '\0'); 2175 assert(verify_buf.size() == size); 2176 const size_t cache_bytes_read = 2177 m_memory_cache.Read(this, addr, buf, size, error); 2178 Status verify_error; 2179 const size_t verify_bytes_read = 2180 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 2181 verify_buf.size(), verify_error); 2182 assert(cache_bytes_read == verify_bytes_read); 2183 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 2184 assert(verify_error.Success() == error.Success()); 2185 return cache_bytes_read; 2186 } 2187 return 0; 2188 #else // !defined(VERIFY_MEMORY_READS) 2189 // Memory caching is enabled, without debug verification 2190 2191 return m_memory_cache.Read(addr, buf, size, error); 2192 #endif // defined (VERIFY_MEMORY_READS) 2193 } else { 2194 // Memory caching is disabled 2195 2196 return ReadMemoryFromInferior(addr, buf, size, error); 2197 } 2198 } 2199 2200 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 2201 Status &error) { 2202 char buf[256]; 2203 out_str.clear(); 2204 addr_t curr_addr = addr; 2205 while (true) { 2206 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 2207 if (length == 0) 2208 break; 2209 out_str.append(buf, length); 2210 // If we got "length - 1" bytes, we didn't get the whole C string, we need 2211 // to read some more characters 2212 if (length == sizeof(buf) - 1) 2213 curr_addr += length; 2214 else 2215 break; 2216 } 2217 return out_str.size(); 2218 } 2219 2220 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes, 2221 Status &error, size_t type_width) { 2222 size_t total_bytes_read = 0; 2223 if (dst && max_bytes && type_width && max_bytes >= type_width) { 2224 // Ensure a null terminator independent of the number of bytes that is 2225 // read. 2226 memset(dst, 0, max_bytes); 2227 size_t bytes_left = max_bytes - type_width; 2228 2229 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 2230 assert(sizeof(terminator) >= type_width && "Attempting to validate a " 2231 "string with more than 4 bytes " 2232 "per character!"); 2233 2234 addr_t curr_addr = addr; 2235 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2236 char *curr_dst = dst; 2237 2238 error.Clear(); 2239 while (bytes_left > 0 && error.Success()) { 2240 addr_t cache_line_bytes_left = 2241 cache_line_size - (curr_addr % cache_line_size); 2242 addr_t bytes_to_read = 2243 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2244 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2245 2246 if (bytes_read == 0) 2247 break; 2248 2249 // Search for a null terminator of correct size and alignment in 2250 // bytes_read 2251 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 2252 for (size_t i = aligned_start; 2253 i + type_width <= total_bytes_read + bytes_read; i += type_width) 2254 if (::memcmp(&dst[i], terminator, type_width) == 0) { 2255 error.Clear(); 2256 return i; 2257 } 2258 2259 total_bytes_read += bytes_read; 2260 curr_dst += bytes_read; 2261 curr_addr += bytes_read; 2262 bytes_left -= bytes_read; 2263 } 2264 } else { 2265 if (max_bytes) 2266 error.SetErrorString("invalid arguments"); 2267 } 2268 return total_bytes_read; 2269 } 2270 2271 // Deprecated in favor of ReadStringFromMemory which has wchar support and 2272 // correct code to find null terminators. 2273 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 2274 size_t dst_max_len, 2275 Status &result_error) { 2276 size_t total_cstr_len = 0; 2277 if (dst && dst_max_len) { 2278 result_error.Clear(); 2279 // NULL out everything just to be safe 2280 memset(dst, 0, dst_max_len); 2281 Status error; 2282 addr_t curr_addr = addr; 2283 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2284 size_t bytes_left = dst_max_len - 1; 2285 char *curr_dst = dst; 2286 2287 while (bytes_left > 0) { 2288 addr_t cache_line_bytes_left = 2289 cache_line_size - (curr_addr % cache_line_size); 2290 addr_t bytes_to_read = 2291 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2292 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2293 2294 if (bytes_read == 0) { 2295 result_error = error; 2296 dst[total_cstr_len] = '\0'; 2297 break; 2298 } 2299 const size_t len = strlen(curr_dst); 2300 2301 total_cstr_len += len; 2302 2303 if (len < bytes_to_read) 2304 break; 2305 2306 curr_dst += bytes_read; 2307 curr_addr += bytes_read; 2308 bytes_left -= bytes_read; 2309 } 2310 } else { 2311 if (dst == nullptr) 2312 result_error.SetErrorString("invalid arguments"); 2313 else 2314 result_error.Clear(); 2315 } 2316 return total_cstr_len; 2317 } 2318 2319 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2320 Status &error) { 2321 if (buf == nullptr || size == 0) 2322 return 0; 2323 2324 size_t bytes_read = 0; 2325 uint8_t *bytes = (uint8_t *)buf; 2326 2327 while (bytes_read < size) { 2328 const size_t curr_size = size - bytes_read; 2329 const size_t curr_bytes_read = 2330 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2331 bytes_read += curr_bytes_read; 2332 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2333 break; 2334 } 2335 2336 // Replace any software breakpoint opcodes that fall into this range back 2337 // into "buf" before we return 2338 if (bytes_read > 0) 2339 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2340 return bytes_read; 2341 } 2342 2343 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2344 size_t integer_byte_size, 2345 uint64_t fail_value, 2346 Status &error) { 2347 Scalar scalar; 2348 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2349 error)) 2350 return scalar.ULongLong(fail_value); 2351 return fail_value; 2352 } 2353 2354 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2355 size_t integer_byte_size, 2356 int64_t fail_value, 2357 Status &error) { 2358 Scalar scalar; 2359 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2360 error)) 2361 return scalar.SLongLong(fail_value); 2362 return fail_value; 2363 } 2364 2365 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2366 Scalar scalar; 2367 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2368 error)) 2369 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2370 return LLDB_INVALID_ADDRESS; 2371 } 2372 2373 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2374 Status &error) { 2375 Scalar scalar; 2376 const uint32_t addr_byte_size = GetAddressByteSize(); 2377 if (addr_byte_size <= 4) 2378 scalar = (uint32_t)ptr_value; 2379 else 2380 scalar = ptr_value; 2381 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2382 addr_byte_size; 2383 } 2384 2385 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2386 Status &error) { 2387 size_t bytes_written = 0; 2388 const uint8_t *bytes = (const uint8_t *)buf; 2389 2390 while (bytes_written < size) { 2391 const size_t curr_size = size - bytes_written; 2392 const size_t curr_bytes_written = DoWriteMemory( 2393 addr + bytes_written, bytes + bytes_written, curr_size, error); 2394 bytes_written += curr_bytes_written; 2395 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2396 break; 2397 } 2398 return bytes_written; 2399 } 2400 2401 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2402 Status &error) { 2403 #if defined(ENABLE_MEMORY_CACHING) 2404 m_memory_cache.Flush(addr, size); 2405 #endif 2406 2407 if (buf == nullptr || size == 0) 2408 return 0; 2409 2410 m_mod_id.BumpMemoryID(); 2411 2412 // We need to write any data that would go where any current software traps 2413 // (enabled software breakpoints) any software traps (breakpoints) that we 2414 // may have placed in our tasks memory. 2415 2416 BreakpointSiteList bp_sites_in_range; 2417 2418 if (m_breakpoint_site_list.FindInRange(addr, addr + size, 2419 bp_sites_in_range)) { 2420 // No breakpoint sites overlap 2421 if (bp_sites_in_range.IsEmpty()) 2422 return WriteMemoryPrivate(addr, buf, size, error); 2423 else { 2424 const uint8_t *ubuf = (const uint8_t *)buf; 2425 uint64_t bytes_written = 0; 2426 2427 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2428 &error](BreakpointSite *bp) -> void { 2429 2430 if (error.Success()) { 2431 addr_t intersect_addr; 2432 size_t intersect_size; 2433 size_t opcode_offset; 2434 const bool intersects = bp->IntersectsRange( 2435 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2436 UNUSED_IF_ASSERT_DISABLED(intersects); 2437 assert(intersects); 2438 assert(addr <= intersect_addr && intersect_addr < addr + size); 2439 assert(addr < intersect_addr + intersect_size && 2440 intersect_addr + intersect_size <= addr + size); 2441 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2442 2443 // Check for bytes before this breakpoint 2444 const addr_t curr_addr = addr + bytes_written; 2445 if (intersect_addr > curr_addr) { 2446 // There are some bytes before this breakpoint that we need to just 2447 // write to memory 2448 size_t curr_size = intersect_addr - curr_addr; 2449 size_t curr_bytes_written = WriteMemoryPrivate( 2450 curr_addr, ubuf + bytes_written, curr_size, error); 2451 bytes_written += curr_bytes_written; 2452 if (curr_bytes_written != curr_size) { 2453 // We weren't able to write all of the requested bytes, we are 2454 // done looping and will return the number of bytes that we have 2455 // written so far. 2456 if (error.Success()) 2457 error.SetErrorToGenericError(); 2458 } 2459 } 2460 // Now write any bytes that would cover up any software breakpoints 2461 // directly into the breakpoint opcode buffer 2462 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, 2463 ubuf + bytes_written, intersect_size); 2464 bytes_written += intersect_size; 2465 } 2466 }); 2467 2468 if (bytes_written < size) 2469 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2470 size - bytes_written, error); 2471 } 2472 } else { 2473 return WriteMemoryPrivate(addr, buf, size, error); 2474 } 2475 2476 // Write any remaining bytes after the last breakpoint if we have any left 2477 return 0; // bytes_written; 2478 } 2479 2480 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2481 size_t byte_size, Status &error) { 2482 if (byte_size == UINT32_MAX) 2483 byte_size = scalar.GetByteSize(); 2484 if (byte_size > 0) { 2485 uint8_t buf[32]; 2486 const size_t mem_size = 2487 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2488 if (mem_size > 0) 2489 return WriteMemory(addr, buf, mem_size, error); 2490 else 2491 error.SetErrorString("failed to get scalar as memory data"); 2492 } else { 2493 error.SetErrorString("invalid scalar value"); 2494 } 2495 return 0; 2496 } 2497 2498 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2499 bool is_signed, Scalar &scalar, 2500 Status &error) { 2501 uint64_t uval = 0; 2502 if (byte_size == 0) { 2503 error.SetErrorString("byte size is zero"); 2504 } else if (byte_size & (byte_size - 1)) { 2505 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2506 byte_size); 2507 } else if (byte_size <= sizeof(uval)) { 2508 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2509 if (bytes_read == byte_size) { 2510 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2511 GetAddressByteSize()); 2512 lldb::offset_t offset = 0; 2513 if (byte_size <= 4) 2514 scalar = data.GetMaxU32(&offset, byte_size); 2515 else 2516 scalar = data.GetMaxU64(&offset, byte_size); 2517 if (is_signed) 2518 scalar.SignExtend(byte_size * 8); 2519 return bytes_read; 2520 } 2521 } else { 2522 error.SetErrorStringWithFormat( 2523 "byte size of %u is too large for integer scalar type", byte_size); 2524 } 2525 return 0; 2526 } 2527 2528 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2529 Status error; 2530 for (const auto &Entry : entries) { 2531 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2532 error); 2533 if (!error.Success()) 2534 break; 2535 } 2536 return error; 2537 } 2538 2539 #define USE_ALLOCATE_MEMORY_CACHE 1 2540 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2541 Status &error) { 2542 if (GetPrivateState() != eStateStopped) { 2543 error.SetErrorToGenericError(); 2544 return LLDB_INVALID_ADDRESS; 2545 } 2546 2547 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2548 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2549 #else 2550 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2551 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2552 if (log) 2553 log->Printf("Process::AllocateMemory(size=%" PRIu64 2554 ", permissions=%s) => 0x%16.16" PRIx64 2555 " (m_stop_id = %u m_memory_id = %u)", 2556 (uint64_t)size, GetPermissionsAsCString(permissions), 2557 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2558 m_mod_id.GetMemoryID()); 2559 return allocated_addr; 2560 #endif 2561 } 2562 2563 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2564 Status &error) { 2565 addr_t return_addr = AllocateMemory(size, permissions, error); 2566 if (error.Success()) { 2567 std::string buffer(size, 0); 2568 WriteMemory(return_addr, buffer.c_str(), size, error); 2569 } 2570 return return_addr; 2571 } 2572 2573 bool Process::CanJIT() { 2574 if (m_can_jit == eCanJITDontKnow) { 2575 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2576 Status err; 2577 2578 uint64_t allocated_memory = AllocateMemory( 2579 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2580 err); 2581 2582 if (err.Success()) { 2583 m_can_jit = eCanJITYes; 2584 if (log) 2585 log->Printf("Process::%s pid %" PRIu64 2586 " allocation test passed, CanJIT () is true", 2587 __FUNCTION__, GetID()); 2588 } else { 2589 m_can_jit = eCanJITNo; 2590 if (log) 2591 log->Printf("Process::%s pid %" PRIu64 2592 " allocation test failed, CanJIT () is false: %s", 2593 __FUNCTION__, GetID(), err.AsCString()); 2594 } 2595 2596 DeallocateMemory(allocated_memory); 2597 } 2598 2599 return m_can_jit == eCanJITYes; 2600 } 2601 2602 void Process::SetCanJIT(bool can_jit) { 2603 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2604 } 2605 2606 void Process::SetCanRunCode(bool can_run_code) { 2607 SetCanJIT(can_run_code); 2608 m_can_interpret_function_calls = can_run_code; 2609 } 2610 2611 Status Process::DeallocateMemory(addr_t ptr) { 2612 Status error; 2613 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2614 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2615 error.SetErrorStringWithFormat( 2616 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2617 } 2618 #else 2619 error = DoDeallocateMemory(ptr); 2620 2621 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2622 if (log) 2623 log->Printf("Process::DeallocateMemory(addr=0x%16.16" PRIx64 2624 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2625 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2626 m_mod_id.GetMemoryID()); 2627 #endif 2628 return error; 2629 } 2630 2631 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2632 lldb::addr_t header_addr, 2633 size_t size_to_read) { 2634 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2635 if (log) { 2636 log->Printf("Process::ReadModuleFromMemory reading %s binary from memory", 2637 file_spec.GetPath().c_str()); 2638 } 2639 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2640 if (module_sp) { 2641 Status error; 2642 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2643 shared_from_this(), header_addr, error, size_to_read); 2644 if (objfile) 2645 return module_sp; 2646 } 2647 return ModuleSP(); 2648 } 2649 2650 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2651 uint32_t &permissions) { 2652 MemoryRegionInfo range_info; 2653 permissions = 0; 2654 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2655 if (!error.Success()) 2656 return false; 2657 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2658 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2659 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2660 return false; 2661 } 2662 2663 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2664 permissions |= lldb::ePermissionsReadable; 2665 2666 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2667 permissions |= lldb::ePermissionsWritable; 2668 2669 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2670 permissions |= lldb::ePermissionsExecutable; 2671 2672 return true; 2673 } 2674 2675 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2676 Status error; 2677 error.SetErrorString("watchpoints are not supported"); 2678 return error; 2679 } 2680 2681 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2682 Status error; 2683 error.SetErrorString("watchpoints are not supported"); 2684 return error; 2685 } 2686 2687 StateType 2688 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2689 const Timeout<std::micro> &timeout) { 2690 StateType state; 2691 2692 while (true) { 2693 event_sp.reset(); 2694 state = GetStateChangedEventsPrivate(event_sp, timeout); 2695 2696 if (StateIsStoppedState(state, false)) 2697 break; 2698 2699 // If state is invalid, then we timed out 2700 if (state == eStateInvalid) 2701 break; 2702 2703 if (event_sp) 2704 HandlePrivateEvent(event_sp); 2705 } 2706 return state; 2707 } 2708 2709 void Process::LoadOperatingSystemPlugin(bool flush) { 2710 if (flush) 2711 m_thread_list.Clear(); 2712 m_os_ap.reset(OperatingSystem::FindPlugin(this, nullptr)); 2713 if (flush) 2714 Flush(); 2715 } 2716 2717 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2718 Status error; 2719 m_abi_sp.reset(); 2720 m_dyld_ap.reset(); 2721 m_jit_loaders_ap.reset(); 2722 m_system_runtime_ap.reset(); 2723 m_os_ap.reset(); 2724 m_process_input_reader.reset(); 2725 2726 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2727 if (exe_module) { 2728 char local_exec_file_path[PATH_MAX]; 2729 char platform_exec_file_path[PATH_MAX]; 2730 exe_module->GetFileSpec().GetPath(local_exec_file_path, 2731 sizeof(local_exec_file_path)); 2732 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, 2733 sizeof(platform_exec_file_path)); 2734 if (exe_module->GetFileSpec().Exists()) { 2735 // Install anything that might need to be installed prior to launching. 2736 // For host systems, this will do nothing, but if we are connected to a 2737 // remote platform it will install any needed binaries 2738 error = GetTarget().Install(&launch_info); 2739 if (error.Fail()) 2740 return error; 2741 2742 if (PrivateStateThreadIsValid()) 2743 PausePrivateStateThread(); 2744 2745 error = WillLaunch(exe_module); 2746 if (error.Success()) { 2747 const bool restarted = false; 2748 SetPublicState(eStateLaunching, restarted); 2749 m_should_detach = false; 2750 2751 if (m_public_run_lock.TrySetRunning()) { 2752 // Now launch using these arguments. 2753 error = DoLaunch(exe_module, launch_info); 2754 } else { 2755 // This shouldn't happen 2756 error.SetErrorString("failed to acquire process run lock"); 2757 } 2758 2759 if (error.Fail()) { 2760 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2761 SetID(LLDB_INVALID_PROCESS_ID); 2762 const char *error_string = error.AsCString(); 2763 if (error_string == nullptr) 2764 error_string = "launch failed"; 2765 SetExitStatus(-1, error_string); 2766 } 2767 } else { 2768 EventSP event_sp; 2769 2770 // Now wait for the process to launch and return control to us, and then call 2771 // DidLaunch: 2772 StateType state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2773 2774 if (state == eStateInvalid || !event_sp) { 2775 // We were able to launch the process, but we failed to catch the 2776 // initial stop. 2777 error.SetErrorString("failed to catch stop after launch"); 2778 SetExitStatus(0, "failed to catch stop after launch"); 2779 Destroy(false); 2780 } else if (state == eStateStopped || state == eStateCrashed) { 2781 DidLaunch(); 2782 2783 DynamicLoader *dyld = GetDynamicLoader(); 2784 if (dyld) 2785 dyld->DidLaunch(); 2786 2787 GetJITLoaders().DidLaunch(); 2788 2789 SystemRuntime *system_runtime = GetSystemRuntime(); 2790 if (system_runtime) 2791 system_runtime->DidLaunch(); 2792 2793 if (!m_os_ap) 2794 LoadOperatingSystemPlugin(false); 2795 2796 // We successfully launched the process and stopped, now it the 2797 // right time to set up signal filters before resuming. 2798 UpdateAutomaticSignalFiltering(); 2799 2800 // Note, the stop event was consumed above, but not handled. This 2801 // was done to give DidLaunch a chance to run. The target is either 2802 // stopped or crashed. Directly set the state. This is done to 2803 // prevent a stop message with a bunch of spurious output on thread 2804 // status, as well as not pop a ProcessIOHandler. 2805 SetPublicState(state, false); 2806 2807 if (PrivateStateThreadIsValid()) 2808 ResumePrivateStateThread(); 2809 else 2810 StartPrivateStateThread(); 2811 2812 // Target was stopped at entry as was intended. Need to notify the 2813 // listeners about it. 2814 if (state == eStateStopped && 2815 launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2816 HandlePrivateEvent(event_sp); 2817 } else if (state == eStateExited) { 2818 // We exited while trying to launch somehow. Don't call DidLaunch 2819 // as that's not likely to work, and return an invalid pid. 2820 HandlePrivateEvent(event_sp); 2821 } 2822 } 2823 } 2824 } else { 2825 error.SetErrorStringWithFormat("file doesn't exist: '%s'", 2826 local_exec_file_path); 2827 } 2828 } 2829 return error; 2830 } 2831 2832 Status Process::LoadCore() { 2833 Status error = DoLoadCore(); 2834 if (error.Success()) { 2835 ListenerSP listener_sp( 2836 Listener::MakeListener("lldb.process.load_core_listener")); 2837 HijackProcessEvents(listener_sp); 2838 2839 if (PrivateStateThreadIsValid()) 2840 ResumePrivateStateThread(); 2841 else 2842 StartPrivateStateThread(); 2843 2844 DynamicLoader *dyld = GetDynamicLoader(); 2845 if (dyld) 2846 dyld->DidAttach(); 2847 2848 GetJITLoaders().DidAttach(); 2849 2850 SystemRuntime *system_runtime = GetSystemRuntime(); 2851 if (system_runtime) 2852 system_runtime->DidAttach(); 2853 2854 if (!m_os_ap) 2855 LoadOperatingSystemPlugin(false); 2856 2857 // We successfully loaded a core file, now pretend we stopped so we can 2858 // show all of the threads in the core file and explore the crashed state. 2859 SetPrivateState(eStateStopped); 2860 2861 // Wait for a stopped event since we just posted one above... 2862 lldb::EventSP event_sp; 2863 StateType state = 2864 WaitForProcessToStop(seconds(10), &event_sp, true, listener_sp); 2865 2866 if (!StateIsStoppedState(state, false)) { 2867 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2868 if (log) 2869 log->Printf("Process::Halt() failed to stop, state is: %s", 2870 StateAsCString(state)); 2871 error.SetErrorString( 2872 "Did not get stopped event after loading the core file."); 2873 } 2874 RestoreProcessEvents(); 2875 } 2876 return error; 2877 } 2878 2879 DynamicLoader *Process::GetDynamicLoader() { 2880 if (!m_dyld_ap) 2881 m_dyld_ap.reset(DynamicLoader::FindPlugin(this, nullptr)); 2882 return m_dyld_ap.get(); 2883 } 2884 2885 const lldb::DataBufferSP Process::GetAuxvData() { return DataBufferSP(); } 2886 2887 JITLoaderList &Process::GetJITLoaders() { 2888 if (!m_jit_loaders_ap) { 2889 m_jit_loaders_ap.reset(new JITLoaderList()); 2890 JITLoader::LoadPlugins(this, *m_jit_loaders_ap); 2891 } 2892 return *m_jit_loaders_ap; 2893 } 2894 2895 SystemRuntime *Process::GetSystemRuntime() { 2896 if (!m_system_runtime_ap) 2897 m_system_runtime_ap.reset(SystemRuntime::FindPlugin(this)); 2898 return m_system_runtime_ap.get(); 2899 } 2900 2901 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2902 uint32_t exec_count) 2903 : NextEventAction(process), m_exec_count(exec_count) { 2904 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2905 if (log) 2906 log->Printf( 2907 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2908 __FUNCTION__, static_cast<void *>(process), exec_count); 2909 } 2910 2911 Process::NextEventAction::EventActionResult 2912 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2913 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2914 2915 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2916 if (log) 2917 log->Printf( 2918 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2919 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2920 2921 switch (state) { 2922 case eStateAttaching: 2923 return eEventActionSuccess; 2924 2925 case eStateRunning: 2926 case eStateConnected: 2927 return eEventActionRetry; 2928 2929 case eStateStopped: 2930 case eStateCrashed: 2931 // During attach, prior to sending the eStateStopped event, 2932 // lldb_private::Process subclasses must set the new process ID. 2933 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2934 // We don't want these events to be reported, so go set the 2935 // ShouldReportStop here: 2936 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2937 2938 if (m_exec_count > 0) { 2939 --m_exec_count; 2940 2941 if (log) 2942 log->Printf("Process::AttachCompletionHandler::%s state %s: reduced " 2943 "remaining exec count to %" PRIu32 ", requesting resume", 2944 __FUNCTION__, StateAsCString(state), m_exec_count); 2945 2946 RequestResume(); 2947 return eEventActionRetry; 2948 } else { 2949 if (log) 2950 log->Printf("Process::AttachCompletionHandler::%s state %s: no more " 2951 "execs expected to start, continuing with attach", 2952 __FUNCTION__, StateAsCString(state)); 2953 2954 m_process->CompleteAttach(); 2955 return eEventActionSuccess; 2956 } 2957 break; 2958 2959 default: 2960 case eStateExited: 2961 case eStateInvalid: 2962 break; 2963 } 2964 2965 m_exit_string.assign("No valid Process"); 2966 return eEventActionExit; 2967 } 2968 2969 Process::NextEventAction::EventActionResult 2970 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2971 return eEventActionSuccess; 2972 } 2973 2974 const char *Process::AttachCompletionHandler::GetExitString() { 2975 return m_exit_string.c_str(); 2976 } 2977 2978 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2979 if (m_listener_sp) 2980 return m_listener_sp; 2981 else 2982 return debugger.GetListener(); 2983 } 2984 2985 Status Process::Attach(ProcessAttachInfo &attach_info) { 2986 m_abi_sp.reset(); 2987 m_process_input_reader.reset(); 2988 m_dyld_ap.reset(); 2989 m_jit_loaders_ap.reset(); 2990 m_system_runtime_ap.reset(); 2991 m_os_ap.reset(); 2992 2993 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2994 Status error; 2995 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2996 char process_name[PATH_MAX]; 2997 2998 if (attach_info.GetExecutableFile().GetPath(process_name, 2999 sizeof(process_name))) { 3000 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 3001 3002 if (wait_for_launch) { 3003 error = WillAttachToProcessWithName(process_name, wait_for_launch); 3004 if (error.Success()) { 3005 if (m_public_run_lock.TrySetRunning()) { 3006 m_should_detach = true; 3007 const bool restarted = false; 3008 SetPublicState(eStateAttaching, restarted); 3009 // Now attach using these arguments. 3010 error = DoAttachToProcessWithName(process_name, attach_info); 3011 } else { 3012 // This shouldn't happen 3013 error.SetErrorString("failed to acquire process run lock"); 3014 } 3015 3016 if (error.Fail()) { 3017 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3018 SetID(LLDB_INVALID_PROCESS_ID); 3019 if (error.AsCString() == nullptr) 3020 error.SetErrorString("attach failed"); 3021 3022 SetExitStatus(-1, error.AsCString()); 3023 } 3024 } else { 3025 SetNextEventAction(new Process::AttachCompletionHandler( 3026 this, attach_info.GetResumeCount())); 3027 StartPrivateStateThread(); 3028 } 3029 return error; 3030 } 3031 } else { 3032 ProcessInstanceInfoList process_infos; 3033 PlatformSP platform_sp(GetTarget().GetPlatform()); 3034 3035 if (platform_sp) { 3036 ProcessInstanceInfoMatch match_info; 3037 match_info.GetProcessInfo() = attach_info; 3038 match_info.SetNameMatchType(NameMatch::Equals); 3039 platform_sp->FindProcesses(match_info, process_infos); 3040 const uint32_t num_matches = process_infos.GetSize(); 3041 if (num_matches == 1) { 3042 attach_pid = process_infos.GetProcessIDAtIndex(0); 3043 // Fall through and attach using the above process ID 3044 } else { 3045 match_info.GetProcessInfo().GetExecutableFile().GetPath( 3046 process_name, sizeof(process_name)); 3047 if (num_matches > 1) { 3048 StreamString s; 3049 ProcessInstanceInfo::DumpTableHeader(s, platform_sp.get(), true, 3050 false); 3051 for (size_t i = 0; i < num_matches; i++) { 3052 process_infos.GetProcessInfoAtIndex(i).DumpAsTableRow( 3053 s, platform_sp.get(), true, false); 3054 } 3055 error.SetErrorStringWithFormat( 3056 "more than one process named %s:\n%s", process_name, 3057 s.GetData()); 3058 } else 3059 error.SetErrorStringWithFormat( 3060 "could not find a process named %s", process_name); 3061 } 3062 } else { 3063 error.SetErrorString( 3064 "invalid platform, can't find processes by name"); 3065 return error; 3066 } 3067 } 3068 } else { 3069 error.SetErrorString("invalid process name"); 3070 } 3071 } 3072 3073 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 3074 error = WillAttachToProcessWithID(attach_pid); 3075 if (error.Success()) { 3076 3077 if (m_public_run_lock.TrySetRunning()) { 3078 // Now attach using these arguments. 3079 m_should_detach = true; 3080 const bool restarted = false; 3081 SetPublicState(eStateAttaching, restarted); 3082 error = DoAttachToProcessWithID(attach_pid, attach_info); 3083 } else { 3084 // This shouldn't happen 3085 error.SetErrorString("failed to acquire process run lock"); 3086 } 3087 3088 if (error.Success()) { 3089 SetNextEventAction(new Process::AttachCompletionHandler( 3090 this, attach_info.GetResumeCount())); 3091 StartPrivateStateThread(); 3092 } else { 3093 if (GetID() != LLDB_INVALID_PROCESS_ID) 3094 SetID(LLDB_INVALID_PROCESS_ID); 3095 3096 const char *error_string = error.AsCString(); 3097 if (error_string == nullptr) 3098 error_string = "attach failed"; 3099 3100 SetExitStatus(-1, error_string); 3101 } 3102 } 3103 } 3104 return error; 3105 } 3106 3107 void Process::CompleteAttach() { 3108 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3109 LIBLLDB_LOG_TARGET)); 3110 if (log) 3111 log->Printf("Process::%s()", __FUNCTION__); 3112 3113 // Let the process subclass figure out at much as it can about the process 3114 // before we go looking for a dynamic loader plug-in. 3115 ArchSpec process_arch; 3116 DidAttach(process_arch); 3117 3118 if (process_arch.IsValid()) { 3119 GetTarget().SetArchitecture(process_arch); 3120 if (log) { 3121 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 3122 log->Printf("Process::%s replacing process architecture with DidAttach() " 3123 "architecture: %s", 3124 __FUNCTION__, triple_str ? triple_str : "<null>"); 3125 } 3126 } 3127 3128 // We just attached. If we have a platform, ask it for the process 3129 // architecture, and if it isn't the same as the one we've already set, 3130 // switch architectures. 3131 PlatformSP platform_sp(GetTarget().GetPlatform()); 3132 assert(platform_sp); 3133 if (platform_sp) { 3134 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 3135 if (target_arch.IsValid() && 3136 !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) { 3137 ArchSpec platform_arch; 3138 platform_sp = 3139 platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch); 3140 if (platform_sp) { 3141 GetTarget().SetPlatform(platform_sp); 3142 GetTarget().SetArchitecture(platform_arch); 3143 if (log) 3144 log->Printf("Process::%s switching platform to %s and architecture " 3145 "to %s based on info from attach", 3146 __FUNCTION__, platform_sp->GetName().AsCString(""), 3147 platform_arch.GetTriple().getTriple().c_str()); 3148 } 3149 } else if (!process_arch.IsValid()) { 3150 ProcessInstanceInfo process_info; 3151 GetProcessInfo(process_info); 3152 const ArchSpec &process_arch = process_info.GetArchitecture(); 3153 if (process_arch.IsValid() && 3154 !GetTarget().GetArchitecture().IsExactMatch(process_arch)) { 3155 GetTarget().SetArchitecture(process_arch); 3156 if (log) 3157 log->Printf("Process::%s switching architecture to %s based on info " 3158 "the platform retrieved for pid %" PRIu64, 3159 __FUNCTION__, 3160 process_arch.GetTriple().getTriple().c_str(), GetID()); 3161 } 3162 } 3163 } 3164 3165 // We have completed the attach, now it is time to find the dynamic loader 3166 // plug-in 3167 DynamicLoader *dyld = GetDynamicLoader(); 3168 if (dyld) { 3169 dyld->DidAttach(); 3170 if (log) { 3171 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3172 log->Printf("Process::%s after DynamicLoader::DidAttach(), target " 3173 "executable is %s (using %s plugin)", 3174 __FUNCTION__, 3175 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3176 : "<none>", 3177 dyld->GetPluginName().AsCString("<unnamed>")); 3178 } 3179 } 3180 3181 GetJITLoaders().DidAttach(); 3182 3183 SystemRuntime *system_runtime = GetSystemRuntime(); 3184 if (system_runtime) { 3185 system_runtime->DidAttach(); 3186 if (log) { 3187 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3188 log->Printf("Process::%s after SystemRuntime::DidAttach(), target " 3189 "executable is %s (using %s plugin)", 3190 __FUNCTION__, 3191 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3192 : "<none>", 3193 system_runtime->GetPluginName().AsCString("<unnamed>")); 3194 } 3195 } 3196 3197 if (!m_os_ap) 3198 LoadOperatingSystemPlugin(false); 3199 // Figure out which one is the executable, and set that in our target: 3200 const ModuleList &target_modules = GetTarget().GetImages(); 3201 std::lock_guard<std::recursive_mutex> guard(target_modules.GetMutex()); 3202 size_t num_modules = target_modules.GetSize(); 3203 ModuleSP new_executable_module_sp; 3204 3205 for (size_t i = 0; i < num_modules; i++) { 3206 ModuleSP module_sp(target_modules.GetModuleAtIndexUnlocked(i)); 3207 if (module_sp && module_sp->IsExecutable()) { 3208 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 3209 new_executable_module_sp = module_sp; 3210 break; 3211 } 3212 } 3213 if (new_executable_module_sp) { 3214 GetTarget().SetExecutableModule(new_executable_module_sp, false); 3215 if (log) { 3216 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3217 log->Printf( 3218 "Process::%s after looping through modules, target executable is %s", 3219 __FUNCTION__, 3220 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3221 : "<none>"); 3222 } 3223 } 3224 } 3225 3226 Status Process::ConnectRemote(Stream *strm, llvm::StringRef remote_url) { 3227 m_abi_sp.reset(); 3228 m_process_input_reader.reset(); 3229 3230 // Find the process and its architecture. Make sure it matches the 3231 // architecture of the current Target, and if not adjust it. 3232 3233 Status error(DoConnectRemote(strm, remote_url)); 3234 if (error.Success()) { 3235 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3236 EventSP event_sp; 3237 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 3238 3239 if (state == eStateStopped || state == eStateCrashed) { 3240 // If we attached and actually have a process on the other end, then 3241 // this ended up being the equivalent of an attach. 3242 CompleteAttach(); 3243 3244 // This delays passing the stopped event to listeners till 3245 // CompleteAttach gets a chance to complete... 3246 HandlePrivateEvent(event_sp); 3247 } 3248 } 3249 3250 if (PrivateStateThreadIsValid()) 3251 ResumePrivateStateThread(); 3252 else 3253 StartPrivateStateThread(); 3254 } 3255 return error; 3256 } 3257 3258 Status Process::PrivateResume() { 3259 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3260 LIBLLDB_LOG_STEP)); 3261 if (log) 3262 log->Printf("Process::PrivateResume() m_stop_id = %u, public state: %s " 3263 "private state: %s", 3264 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3265 StateAsCString(m_private_state.GetValue())); 3266 3267 // If signals handing status changed we might want to update our signal 3268 // filters before resuming. 3269 UpdateAutomaticSignalFiltering(); 3270 3271 Status error(WillResume()); 3272 // Tell the process it is about to resume before the thread list 3273 if (error.Success()) { 3274 // Now let the thread list know we are about to resume so it can let all of 3275 // our threads know that they are about to be resumed. Threads will each be 3276 // called with Thread::WillResume(StateType) where StateType contains the 3277 // state that they are supposed to have when the process is resumed 3278 // (suspended/running/stepping). Threads should also check their resume 3279 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3280 // start back up with a signal. 3281 if (m_thread_list.WillResume()) { 3282 // Last thing, do the PreResumeActions. 3283 if (!RunPreResumeActions()) { 3284 error.SetErrorStringWithFormat( 3285 "Process::PrivateResume PreResumeActions failed, not resuming."); 3286 } else { 3287 m_mod_id.BumpResumeID(); 3288 error = DoResume(); 3289 if (error.Success()) { 3290 DidResume(); 3291 m_thread_list.DidResume(); 3292 if (log) 3293 log->Printf("Process thinks the process has resumed."); 3294 } 3295 } 3296 } else { 3297 // Somebody wanted to run without running (e.g. we were faking a step 3298 // from one frame of a set of inlined frames that share the same PC to 3299 // another.) So generate a continue & a stopped event, and let the world 3300 // handle them. 3301 if (log) 3302 log->Printf( 3303 "Process::PrivateResume() asked to simulate a start & stop."); 3304 3305 SetPrivateState(eStateRunning); 3306 SetPrivateState(eStateStopped); 3307 } 3308 } else if (log) 3309 log->Printf("Process::PrivateResume() got an error \"%s\".", 3310 error.AsCString("<unknown error>")); 3311 return error; 3312 } 3313 3314 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3315 if (!StateIsRunningState(m_public_state.GetValue())) 3316 return Status("Process is not running."); 3317 3318 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3319 // case it was already set and some thread plan logic calls halt on its own. 3320 m_clear_thread_plans_on_stop |= clear_thread_plans; 3321 3322 ListenerSP halt_listener_sp( 3323 Listener::MakeListener("lldb.process.halt_listener")); 3324 HijackProcessEvents(halt_listener_sp); 3325 3326 EventSP event_sp; 3327 3328 SendAsyncInterrupt(); 3329 3330 if (m_public_state.GetValue() == eStateAttaching) { 3331 // Don't hijack and eat the eStateExited as the code that was doing the 3332 // attach will be waiting for this event... 3333 RestoreProcessEvents(); 3334 SetExitStatus(SIGKILL, "Cancelled async attach."); 3335 Destroy(false); 3336 return Status(); 3337 } 3338 3339 // Wait for 10 second for the process to stop. 3340 StateType state = WaitForProcessToStop( 3341 seconds(10), &event_sp, true, halt_listener_sp, nullptr, use_run_lock); 3342 RestoreProcessEvents(); 3343 3344 if (state == eStateInvalid || !event_sp) { 3345 // We timed out and didn't get a stop event... 3346 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3347 } 3348 3349 BroadcastEvent(event_sp); 3350 3351 return Status(); 3352 } 3353 3354 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3355 Status error; 3356 3357 // Check both the public & private states here. If we're hung evaluating an 3358 // expression, for instance, then the public state will be stopped, but we 3359 // still need to interrupt. 3360 if (m_public_state.GetValue() == eStateRunning || 3361 m_private_state.GetValue() == eStateRunning) { 3362 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3363 if (log) 3364 log->Printf("Process::%s() About to stop.", __FUNCTION__); 3365 3366 ListenerSP listener_sp( 3367 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3368 HijackProcessEvents(listener_sp); 3369 3370 SendAsyncInterrupt(); 3371 3372 // Consume the interrupt event. 3373 StateType state = 3374 WaitForProcessToStop(seconds(10), &exit_event_sp, true, listener_sp); 3375 3376 RestoreProcessEvents(); 3377 3378 // If the process exited while we were waiting for it to stop, put the 3379 // exited event into the shared pointer passed in and return. Our caller 3380 // doesn't need to do anything else, since they don't have a process 3381 // anymore... 3382 3383 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3384 if (log) 3385 log->Printf("Process::%s() Process exited while waiting to stop.", 3386 __FUNCTION__); 3387 return error; 3388 } else 3389 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3390 3391 if (state != eStateStopped) { 3392 if (log) 3393 log->Printf("Process::%s() failed to stop, state is: %s", __FUNCTION__, 3394 StateAsCString(state)); 3395 // If we really couldn't stop the process then we should just error out 3396 // here, but if the lower levels just bobbled sending the event and we 3397 // really are stopped, then continue on. 3398 StateType private_state = m_private_state.GetValue(); 3399 if (private_state != eStateStopped) { 3400 return Status( 3401 "Attempt to stop the target in order to detach timed out. " 3402 "State = %s", 3403 StateAsCString(GetState())); 3404 } 3405 } 3406 } 3407 return error; 3408 } 3409 3410 Status Process::Detach(bool keep_stopped) { 3411 EventSP exit_event_sp; 3412 Status error; 3413 m_destroy_in_process = true; 3414 3415 error = WillDetach(); 3416 3417 if (error.Success()) { 3418 if (DetachRequiresHalt()) { 3419 error = StopForDestroyOrDetach(exit_event_sp); 3420 if (!error.Success()) { 3421 m_destroy_in_process = false; 3422 return error; 3423 } else if (exit_event_sp) { 3424 // We shouldn't need to do anything else here. There's no process left 3425 // to detach from... 3426 StopPrivateStateThread(); 3427 m_destroy_in_process = false; 3428 return error; 3429 } 3430 } 3431 3432 m_thread_list.DiscardThreadPlans(); 3433 DisableAllBreakpointSites(); 3434 3435 error = DoDetach(keep_stopped); 3436 if (error.Success()) { 3437 DidDetach(); 3438 StopPrivateStateThread(); 3439 } else { 3440 return error; 3441 } 3442 } 3443 m_destroy_in_process = false; 3444 3445 // If we exited when we were waiting for a process to stop, then forward the 3446 // event here so we don't lose the event 3447 if (exit_event_sp) { 3448 // Directly broadcast our exited event because we shut down our private 3449 // state thread above 3450 BroadcastEvent(exit_event_sp); 3451 } 3452 3453 // If we have been interrupted (to kill us) in the middle of running, we may 3454 // not end up propagating the last events through the event system, in which 3455 // case we might strand the write lock. Unlock it here so when we do to tear 3456 // down the process we don't get an error destroying the lock. 3457 3458 m_public_run_lock.SetStopped(); 3459 return error; 3460 } 3461 3462 Status Process::Destroy(bool force_kill) { 3463 3464 // Tell ourselves we are in the process of destroying the process, so that we 3465 // don't do any unnecessary work that might hinder the destruction. Remember 3466 // to set this back to false when we are done. That way if the attempt 3467 // failed and the process stays around for some reason it won't be in a 3468 // confused state. 3469 3470 if (force_kill) 3471 m_should_detach = false; 3472 3473 if (GetShouldDetach()) { 3474 // FIXME: This will have to be a process setting: 3475 bool keep_stopped = false; 3476 Detach(keep_stopped); 3477 } 3478 3479 m_destroy_in_process = true; 3480 3481 Status error(WillDestroy()); 3482 if (error.Success()) { 3483 EventSP exit_event_sp; 3484 if (DestroyRequiresHalt()) { 3485 error = StopForDestroyOrDetach(exit_event_sp); 3486 } 3487 3488 if (m_public_state.GetValue() != eStateRunning) { 3489 // Ditch all thread plans, and remove all our breakpoints: in case we 3490 // have to restart the target to kill it, we don't want it hitting a 3491 // breakpoint... Only do this if we've stopped, however, since if we 3492 // didn't manage to halt it above, then we're not going to have much luck 3493 // doing this now. 3494 m_thread_list.DiscardThreadPlans(); 3495 DisableAllBreakpointSites(); 3496 } 3497 3498 error = DoDestroy(); 3499 if (error.Success()) { 3500 DidDestroy(); 3501 StopPrivateStateThread(); 3502 } 3503 m_stdio_communication.Disconnect(); 3504 m_stdio_communication.StopReadThread(); 3505 m_stdin_forward = false; 3506 3507 if (m_process_input_reader) { 3508 m_process_input_reader->SetIsDone(true); 3509 m_process_input_reader->Cancel(); 3510 m_process_input_reader.reset(); 3511 } 3512 3513 // If we exited when we were waiting for a process to stop, then forward 3514 // the event here so we don't lose the event 3515 if (exit_event_sp) { 3516 // Directly broadcast our exited event because we shut down our private 3517 // state thread above 3518 BroadcastEvent(exit_event_sp); 3519 } 3520 3521 // If we have been interrupted (to kill us) in the middle of running, we 3522 // may not end up propagating the last events through the event system, in 3523 // which case we might strand the write lock. Unlock it here so when we do 3524 // to tear down the process we don't get an error destroying the lock. 3525 m_public_run_lock.SetStopped(); 3526 } 3527 3528 m_destroy_in_process = false; 3529 3530 return error; 3531 } 3532 3533 Status Process::Signal(int signal) { 3534 Status error(WillSignal()); 3535 if (error.Success()) { 3536 error = DoSignal(signal); 3537 if (error.Success()) 3538 DidSignal(); 3539 } 3540 return error; 3541 } 3542 3543 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3544 assert(signals_sp && "null signals_sp"); 3545 m_unix_signals_sp = signals_sp; 3546 } 3547 3548 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3549 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3550 return m_unix_signals_sp; 3551 } 3552 3553 lldb::ByteOrder Process::GetByteOrder() const { 3554 return GetTarget().GetArchitecture().GetByteOrder(); 3555 } 3556 3557 uint32_t Process::GetAddressByteSize() const { 3558 return GetTarget().GetArchitecture().GetAddressByteSize(); 3559 } 3560 3561 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3562 const StateType state = 3563 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3564 bool return_value = true; 3565 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | 3566 LIBLLDB_LOG_PROCESS)); 3567 3568 switch (state) { 3569 case eStateDetached: 3570 case eStateExited: 3571 case eStateUnloaded: 3572 m_stdio_communication.SynchronizeWithReadThread(); 3573 m_stdio_communication.Disconnect(); 3574 m_stdio_communication.StopReadThread(); 3575 m_stdin_forward = false; 3576 3577 LLVM_FALLTHROUGH; 3578 case eStateConnected: 3579 case eStateAttaching: 3580 case eStateLaunching: 3581 // These events indicate changes in the state of the debugging session, 3582 // always report them. 3583 return_value = true; 3584 break; 3585 case eStateInvalid: 3586 // We stopped for no apparent reason, don't report it. 3587 return_value = false; 3588 break; 3589 case eStateRunning: 3590 case eStateStepping: 3591 // If we've started the target running, we handle the cases where we are 3592 // already running and where there is a transition from stopped to running 3593 // differently. running -> running: Automatically suppress extra running 3594 // events stopped -> running: Report except when there is one or more no 3595 // votes 3596 // and no yes votes. 3597 SynchronouslyNotifyStateChanged(state); 3598 if (m_force_next_event_delivery) 3599 return_value = true; 3600 else { 3601 switch (m_last_broadcast_state) { 3602 case eStateRunning: 3603 case eStateStepping: 3604 // We always suppress multiple runnings with no PUBLIC stop in between. 3605 return_value = false; 3606 break; 3607 default: 3608 // TODO: make this work correctly. For now always report 3609 // run if we aren't running so we don't miss any running events. If I 3610 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3611 // and hit the breakpoints on multiple threads, then somehow during the 3612 // stepping over of all breakpoints no run gets reported. 3613 3614 // This is a transition from stop to run. 3615 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3616 case eVoteYes: 3617 case eVoteNoOpinion: 3618 return_value = true; 3619 break; 3620 case eVoteNo: 3621 return_value = false; 3622 break; 3623 } 3624 break; 3625 } 3626 } 3627 break; 3628 case eStateStopped: 3629 case eStateCrashed: 3630 case eStateSuspended: 3631 // We've stopped. First see if we're going to restart the target. If we 3632 // are going to stop, then we always broadcast the event. If we aren't 3633 // going to stop, let the thread plans decide if we're going to report this 3634 // event. If no thread has an opinion, we don't report it. 3635 3636 m_stdio_communication.SynchronizeWithReadThread(); 3637 RefreshStateAfterStop(); 3638 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3639 if (log) 3640 log->Printf("Process::ShouldBroadcastEvent (%p) stopped due to an " 3641 "interrupt, state: %s", 3642 static_cast<void *>(event_ptr), StateAsCString(state)); 3643 // Even though we know we are going to stop, we should let the threads 3644 // have a look at the stop, so they can properly set their state. 3645 m_thread_list.ShouldStop(event_ptr); 3646 return_value = true; 3647 } else { 3648 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3649 bool should_resume = false; 3650 3651 // It makes no sense to ask "ShouldStop" if we've already been 3652 // restarted... Asking the thread list is also not likely to go well, 3653 // since we are running again. So in that case just report the event. 3654 3655 if (!was_restarted) 3656 should_resume = !m_thread_list.ShouldStop(event_ptr); 3657 3658 if (was_restarted || should_resume || m_resume_requested) { 3659 Vote stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3660 if (log) 3661 log->Printf("Process::ShouldBroadcastEvent: should_resume: %i state: " 3662 "%s was_restarted: %i stop_vote: %d.", 3663 should_resume, StateAsCString(state), was_restarted, 3664 stop_vote); 3665 3666 switch (stop_vote) { 3667 case eVoteYes: 3668 return_value = true; 3669 break; 3670 case eVoteNoOpinion: 3671 case eVoteNo: 3672 return_value = false; 3673 break; 3674 } 3675 3676 if (!was_restarted) { 3677 if (log) 3678 log->Printf("Process::ShouldBroadcastEvent (%p) Restarting process " 3679 "from state: %s", 3680 static_cast<void *>(event_ptr), StateAsCString(state)); 3681 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3682 PrivateResume(); 3683 } 3684 } else { 3685 return_value = true; 3686 SynchronouslyNotifyStateChanged(state); 3687 } 3688 } 3689 break; 3690 } 3691 3692 // Forcing the next event delivery is a one shot deal. So reset it here. 3693 m_force_next_event_delivery = false; 3694 3695 // We do some coalescing of events (for instance two consecutive running 3696 // events get coalesced.) But we only coalesce against events we actually 3697 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3698 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3699 // done, because the PublicState reflects the last event pulled off the 3700 // queue, and there may be several events stacked up on the queue unserviced. 3701 // So the PublicState may not reflect the last broadcasted event yet. 3702 // m_last_broadcast_state gets updated here. 3703 3704 if (return_value) 3705 m_last_broadcast_state = state; 3706 3707 if (log) 3708 log->Printf("Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3709 "broadcast state: %s - %s", 3710 static_cast<void *>(event_ptr), StateAsCString(state), 3711 StateAsCString(m_last_broadcast_state), 3712 return_value ? "YES" : "NO"); 3713 return return_value; 3714 } 3715 3716 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3717 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 3718 3719 bool already_running = PrivateStateThreadIsValid(); 3720 if (log) 3721 log->Printf("Process::%s()%s ", __FUNCTION__, 3722 already_running ? " already running" 3723 : " starting private state thread"); 3724 3725 if (!is_secondary_thread && already_running) 3726 return true; 3727 3728 // Create a thread that watches our internal state and controls which events 3729 // make it to clients (into the DCProcess event queue). 3730 char thread_name[1024]; 3731 uint32_t max_len = llvm::get_max_thread_name_length(); 3732 if (max_len > 0 && max_len <= 30) { 3733 // On platforms with abbreviated thread name lengths, choose thread names 3734 // that fit within the limit. 3735 if (already_running) 3736 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3737 else 3738 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3739 } else { 3740 if (already_running) 3741 snprintf(thread_name, sizeof(thread_name), 3742 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3743 GetID()); 3744 else 3745 snprintf(thread_name, sizeof(thread_name), 3746 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3747 } 3748 3749 // Create the private state thread, and start it running. 3750 PrivateStateThreadArgs *args_ptr = 3751 new PrivateStateThreadArgs(this, is_secondary_thread); 3752 m_private_state_thread = 3753 ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, 3754 (void *)args_ptr, nullptr, 8 * 1024 * 1024); 3755 if (m_private_state_thread.IsJoinable()) { 3756 ResumePrivateStateThread(); 3757 return true; 3758 } else 3759 return false; 3760 } 3761 3762 void Process::PausePrivateStateThread() { 3763 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3764 } 3765 3766 void Process::ResumePrivateStateThread() { 3767 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3768 } 3769 3770 void Process::StopPrivateStateThread() { 3771 if (m_private_state_thread.IsJoinable()) 3772 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3773 else { 3774 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3775 if (log) 3776 log->Printf( 3777 "Went to stop the private state thread, but it was already invalid."); 3778 } 3779 } 3780 3781 void Process::ControlPrivateStateThread(uint32_t signal) { 3782 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3783 3784 assert(signal == eBroadcastInternalStateControlStop || 3785 signal == eBroadcastInternalStateControlPause || 3786 signal == eBroadcastInternalStateControlResume); 3787 3788 if (log) 3789 log->Printf("Process::%s (signal = %d)", __FUNCTION__, signal); 3790 3791 // Signal the private state thread 3792 if (m_private_state_thread.IsJoinable()) { 3793 // Broadcast the event. 3794 // It is important to do this outside of the if below, because it's 3795 // possible that the thread state is invalid but that the thread is waiting 3796 // on a control event instead of simply being on its way out (this should 3797 // not happen, but it apparently can). 3798 if (log) 3799 log->Printf("Sending control event of type: %d.", signal); 3800 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3801 m_private_state_control_broadcaster.BroadcastEvent(signal, 3802 event_receipt_sp); 3803 3804 // Wait for the event receipt or for the private state thread to exit 3805 bool receipt_received = false; 3806 if (PrivateStateThreadIsValid()) { 3807 while (!receipt_received) { 3808 // Check for a receipt for 2 seconds and then check if the private 3809 // state thread is still around. 3810 receipt_received = 3811 event_receipt_sp->WaitForEventReceived(std::chrono::seconds(2)); 3812 if (!receipt_received) { 3813 // Check if the private state thread is still around. If it isn't 3814 // then we are done waiting 3815 if (!PrivateStateThreadIsValid()) 3816 break; // Private state thread exited or is exiting, we are done 3817 } 3818 } 3819 } 3820 3821 if (signal == eBroadcastInternalStateControlStop) { 3822 thread_result_t result = NULL; 3823 m_private_state_thread.Join(&result); 3824 m_private_state_thread.Reset(); 3825 } 3826 } else { 3827 if (log) 3828 log->Printf( 3829 "Private state thread already dead, no need to signal it to stop."); 3830 } 3831 } 3832 3833 void Process::SendAsyncInterrupt() { 3834 if (PrivateStateThreadIsValid()) 3835 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3836 nullptr); 3837 else 3838 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3839 } 3840 3841 void Process::HandlePrivateEvent(EventSP &event_sp) { 3842 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3843 m_resume_requested = false; 3844 3845 const StateType new_state = 3846 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3847 3848 // First check to see if anybody wants a shot at this event: 3849 if (m_next_event_action_ap) { 3850 NextEventAction::EventActionResult action_result = 3851 m_next_event_action_ap->PerformAction(event_sp); 3852 if (log) 3853 log->Printf("Ran next event action, result was %d.", action_result); 3854 3855 switch (action_result) { 3856 case NextEventAction::eEventActionSuccess: 3857 SetNextEventAction(nullptr); 3858 break; 3859 3860 case NextEventAction::eEventActionRetry: 3861 break; 3862 3863 case NextEventAction::eEventActionExit: 3864 // Handle Exiting Here. If we already got an exited event, we should 3865 // just propagate it. Otherwise, swallow this event, and set our state 3866 // to exit so the next event will kill us. 3867 if (new_state != eStateExited) { 3868 // FIXME: should cons up an exited event, and discard this one. 3869 SetExitStatus(0, m_next_event_action_ap->GetExitString()); 3870 SetNextEventAction(nullptr); 3871 return; 3872 } 3873 SetNextEventAction(nullptr); 3874 break; 3875 } 3876 } 3877 3878 // See if we should broadcast this state to external clients? 3879 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3880 3881 if (should_broadcast) { 3882 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3883 if (log) { 3884 log->Printf("Process::%s (pid = %" PRIu64 3885 ") broadcasting new state %s (old state %s) to %s", 3886 __FUNCTION__, GetID(), StateAsCString(new_state), 3887 StateAsCString(GetState()), 3888 is_hijacked ? "hijacked" : "public"); 3889 } 3890 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3891 if (StateIsRunningState(new_state)) { 3892 // Only push the input handler if we aren't fowarding events, as this 3893 // means the curses GUI is in use... Or don't push it if we are launching 3894 // since it will come up stopped. 3895 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3896 new_state != eStateLaunching && new_state != eStateAttaching) { 3897 PushProcessIOHandler(); 3898 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3899 eBroadcastAlways); 3900 if (log) 3901 log->Printf("Process::%s updated m_iohandler_sync to %d", 3902 __FUNCTION__, m_iohandler_sync.GetValue()); 3903 } 3904 } else if (StateIsStoppedState(new_state, false)) { 3905 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3906 // If the lldb_private::Debugger is handling the events, we don't want 3907 // to pop the process IOHandler here, we want to do it when we receive 3908 // the stopped event so we can carefully control when the process 3909 // IOHandler is popped because when we stop we want to display some 3910 // text stating how and why we stopped, then maybe some 3911 // process/thread/frame info, and then we want the "(lldb) " prompt to 3912 // show up. If we pop the process IOHandler here, then we will cause 3913 // the command interpreter to become the top IOHandler after the 3914 // process pops off and it will update its prompt right away... See the 3915 // Debugger.cpp file where it calls the function as 3916 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3917 // Otherwise we end up getting overlapping "(lldb) " prompts and 3918 // garbled output. 3919 // 3920 // If we aren't handling the events in the debugger (which is indicated 3921 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3922 // we are hijacked, then we always pop the process IO handler manually. 3923 // Hijacking happens when the internal process state thread is running 3924 // thread plans, or when commands want to run in synchronous mode and 3925 // they call "process->WaitForProcessToStop()". An example of something 3926 // that will hijack the events is a simple expression: 3927 // 3928 // (lldb) expr (int)puts("hello") 3929 // 3930 // This will cause the internal process state thread to resume and halt 3931 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3932 // events) and we do need the IO handler to be pushed and popped 3933 // correctly. 3934 3935 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3936 PopProcessIOHandler(); 3937 } 3938 } 3939 3940 BroadcastEvent(event_sp); 3941 } else { 3942 if (log) { 3943 log->Printf( 3944 "Process::%s (pid = %" PRIu64 3945 ") suppressing state %s (old state %s): should_broadcast == false", 3946 __FUNCTION__, GetID(), StateAsCString(new_state), 3947 StateAsCString(GetState())); 3948 } 3949 } 3950 } 3951 3952 Status Process::HaltPrivate() { 3953 EventSP event_sp; 3954 Status error(WillHalt()); 3955 if (error.Fail()) 3956 return error; 3957 3958 // Ask the process subclass to actually halt our process 3959 bool caused_stop; 3960 error = DoHalt(caused_stop); 3961 3962 DidHalt(); 3963 return error; 3964 } 3965 3966 thread_result_t Process::PrivateStateThread(void *arg) { 3967 std::unique_ptr<PrivateStateThreadArgs> args_up( 3968 static_cast<PrivateStateThreadArgs *>(arg)); 3969 thread_result_t result = 3970 args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 3971 return result; 3972 } 3973 3974 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3975 bool control_only = true; 3976 3977 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3978 if (log) 3979 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3980 __FUNCTION__, static_cast<void *>(this), GetID()); 3981 3982 bool exit_now = false; 3983 bool interrupt_requested = false; 3984 while (!exit_now) { 3985 EventSP event_sp; 3986 GetEventsPrivate(event_sp, llvm::None, control_only); 3987 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3988 if (log) 3989 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 3990 ") got a control event: %d", 3991 __FUNCTION__, static_cast<void *>(this), GetID(), 3992 event_sp->GetType()); 3993 3994 switch (event_sp->GetType()) { 3995 case eBroadcastInternalStateControlStop: 3996 exit_now = true; 3997 break; // doing any internal state management below 3998 3999 case eBroadcastInternalStateControlPause: 4000 control_only = true; 4001 break; 4002 4003 case eBroadcastInternalStateControlResume: 4004 control_only = false; 4005 break; 4006 } 4007 4008 continue; 4009 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 4010 if (m_public_state.GetValue() == eStateAttaching) { 4011 if (log) 4012 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4013 ") woke up with an interrupt while attaching - " 4014 "forwarding interrupt.", 4015 __FUNCTION__, static_cast<void *>(this), GetID()); 4016 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 4017 } else if (StateIsRunningState(m_last_broadcast_state)) { 4018 if (log) 4019 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4020 ") woke up with an interrupt - Halting.", 4021 __FUNCTION__, static_cast<void *>(this), GetID()); 4022 Status error = HaltPrivate(); 4023 if (error.Fail() && log) 4024 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4025 ") failed to halt the process: %s", 4026 __FUNCTION__, static_cast<void *>(this), GetID(), 4027 error.AsCString()); 4028 // Halt should generate a stopped event. Make a note of the fact that 4029 // we were doing the interrupt, so we can set the interrupted flag 4030 // after we receive the event. We deliberately set this to true even if 4031 // HaltPrivate failed, so that we can interrupt on the next natural 4032 // stop. 4033 interrupt_requested = true; 4034 } else { 4035 // This can happen when someone (e.g. Process::Halt) sees that we are 4036 // running and sends an interrupt request, but the process actually 4037 // stops before we receive it. In that case, we can just ignore the 4038 // request. We use m_last_broadcast_state, because the Stopped event 4039 // may not have been popped of the event queue yet, which is when the 4040 // public state gets updated. 4041 if (log) 4042 log->Printf( 4043 "Process::%s ignoring interrupt as we have already stopped.", 4044 __FUNCTION__); 4045 } 4046 continue; 4047 } 4048 4049 const StateType internal_state = 4050 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4051 4052 if (internal_state != eStateInvalid) { 4053 if (m_clear_thread_plans_on_stop && 4054 StateIsStoppedState(internal_state, true)) { 4055 m_clear_thread_plans_on_stop = false; 4056 m_thread_list.DiscardThreadPlans(); 4057 } 4058 4059 if (interrupt_requested) { 4060 if (StateIsStoppedState(internal_state, true)) { 4061 // We requested the interrupt, so mark this as such in the stop event 4062 // so clients can tell an interrupted process from a natural stop 4063 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 4064 interrupt_requested = false; 4065 } else if (log) { 4066 log->Printf("Process::%s interrupt_requested, but a non-stopped " 4067 "state '%s' received.", 4068 __FUNCTION__, StateAsCString(internal_state)); 4069 } 4070 } 4071 4072 HandlePrivateEvent(event_sp); 4073 } 4074 4075 if (internal_state == eStateInvalid || internal_state == eStateExited || 4076 internal_state == eStateDetached) { 4077 if (log) 4078 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4079 ") about to exit with internal state %s...", 4080 __FUNCTION__, static_cast<void *>(this), GetID(), 4081 StateAsCString(internal_state)); 4082 4083 break; 4084 } 4085 } 4086 4087 // Verify log is still enabled before attempting to write to it... 4088 if (log) 4089 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 4090 __FUNCTION__, static_cast<void *>(this), GetID()); 4091 4092 // If we are a secondary thread, then the primary thread we are working for 4093 // will have already acquired the public_run_lock, and isn't done with what 4094 // it was doing yet, so don't try to change it on the way out. 4095 if (!is_secondary_thread) 4096 m_public_run_lock.SetStopped(); 4097 return NULL; 4098 } 4099 4100 //------------------------------------------------------------------ 4101 // Process Event Data 4102 //------------------------------------------------------------------ 4103 4104 Process::ProcessEventData::ProcessEventData() 4105 : EventData(), m_process_wp(), m_state(eStateInvalid), m_restarted(false), 4106 m_update_state(0), m_interrupted(false) {} 4107 4108 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 4109 StateType state) 4110 : EventData(), m_process_wp(), m_state(state), m_restarted(false), 4111 m_update_state(0), m_interrupted(false) { 4112 if (process_sp) 4113 m_process_wp = process_sp; 4114 } 4115 4116 Process::ProcessEventData::~ProcessEventData() = default; 4117 4118 const ConstString &Process::ProcessEventData::GetFlavorString() { 4119 static ConstString g_flavor("Process::ProcessEventData"); 4120 return g_flavor; 4121 } 4122 4123 const ConstString &Process::ProcessEventData::GetFlavor() const { 4124 return ProcessEventData::GetFlavorString(); 4125 } 4126 4127 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 4128 ProcessSP process_sp(m_process_wp.lock()); 4129 4130 if (!process_sp) 4131 return; 4132 4133 // This function gets called twice for each event, once when the event gets 4134 // pulled off of the private process event queue, and then any number of 4135 // times, first when it gets pulled off of the public event queue, then other 4136 // times when we're pretending that this is where we stopped at the end of 4137 // expression evaluation. m_update_state is used to distinguish these three 4138 // cases; it is 0 when we're just pulling it off for private handling, and > 4139 // 1 for expression evaluation, and we don't want to do the breakpoint 4140 // command handling then. 4141 if (m_update_state != 1) 4142 return; 4143 4144 process_sp->SetPublicState( 4145 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4146 4147 if (m_state == eStateStopped && !m_restarted) { 4148 // Let process subclasses know we are about to do a public stop and do 4149 // anything they might need to in order to speed up register and memory 4150 // accesses. 4151 process_sp->WillPublicStop(); 4152 } 4153 4154 // If this is a halt event, even if the halt stopped with some reason other 4155 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 4156 // the halt request came through) don't do the StopInfo actions, as they may 4157 // end up restarting the process. 4158 if (m_interrupted) 4159 return; 4160 4161 // If we're stopped and haven't restarted, then do the StopInfo actions here: 4162 if (m_state == eStateStopped && !m_restarted) { 4163 ThreadList &curr_thread_list = process_sp->GetThreadList(); 4164 uint32_t num_threads = curr_thread_list.GetSize(); 4165 uint32_t idx; 4166 4167 // The actions might change one of the thread's stop_info's opinions about 4168 // whether we should stop the process, so we need to query that as we go. 4169 4170 // One other complication here, is that we try to catch any case where the 4171 // target has run (except for expressions) and immediately exit, but if we 4172 // get that wrong (which is possible) then the thread list might have 4173 // changed, and that would cause our iteration here to crash. We could 4174 // make a copy of the thread list, but we'd really like to also know if it 4175 // has changed at all, so we make up a vector of the thread ID's and check 4176 // what we get back against this list & bag out if anything differs. 4177 std::vector<uint32_t> thread_index_array(num_threads); 4178 for (idx = 0; idx < num_threads; ++idx) 4179 thread_index_array[idx] = 4180 curr_thread_list.GetThreadAtIndex(idx)->GetIndexID(); 4181 4182 // Use this to track whether we should continue from here. We will only 4183 // continue the target running if no thread says we should stop. Of course 4184 // if some thread's PerformAction actually sets the target running, then it 4185 // doesn't matter what the other threads say... 4186 4187 bool still_should_stop = false; 4188 4189 // Sometimes - for instance if we have a bug in the stub we are talking to, 4190 // we stop but no thread has a valid stop reason. In that case we should 4191 // just stop, because we have no way of telling what the right thing to do 4192 // is, and it's better to let the user decide than continue behind their 4193 // backs. 4194 4195 bool does_anybody_have_an_opinion = false; 4196 4197 for (idx = 0; idx < num_threads; ++idx) { 4198 curr_thread_list = process_sp->GetThreadList(); 4199 if (curr_thread_list.GetSize() != num_threads) { 4200 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4201 LIBLLDB_LOG_PROCESS)); 4202 if (log) 4203 log->Printf( 4204 "Number of threads changed from %u to %u while processing event.", 4205 num_threads, curr_thread_list.GetSize()); 4206 break; 4207 } 4208 4209 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 4210 4211 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 4212 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4213 LIBLLDB_LOG_PROCESS)); 4214 if (log) 4215 log->Printf("The thread at position %u changed from %u to %u while " 4216 "processing event.", 4217 idx, thread_index_array[idx], thread_sp->GetIndexID()); 4218 break; 4219 } 4220 4221 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4222 if (stop_info_sp && stop_info_sp->IsValid()) { 4223 does_anybody_have_an_opinion = true; 4224 bool this_thread_wants_to_stop; 4225 if (stop_info_sp->GetOverrideShouldStop()) { 4226 this_thread_wants_to_stop = 4227 stop_info_sp->GetOverriddenShouldStopValue(); 4228 } else { 4229 stop_info_sp->PerformAction(event_ptr); 4230 // The stop action might restart the target. If it does, then we 4231 // want to mark that in the event so that whoever is receiving it 4232 // will know to wait for the running event and reflect that state 4233 // appropriately. We also need to stop processing actions, since they 4234 // aren't expecting the target to be running. 4235 4236 // FIXME: we might have run. 4237 if (stop_info_sp->HasTargetRunSinceMe()) { 4238 SetRestarted(true); 4239 break; 4240 } 4241 4242 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4243 } 4244 4245 if (!still_should_stop) 4246 still_should_stop = this_thread_wants_to_stop; 4247 } 4248 } 4249 4250 if (!GetRestarted()) { 4251 if (!still_should_stop && does_anybody_have_an_opinion) { 4252 // We've been asked to continue, so do that here. 4253 SetRestarted(true); 4254 // Use the public resume method here, since this is just extending a 4255 // public resume. 4256 process_sp->PrivateResume(); 4257 } else { 4258 // If we didn't restart, run the Stop Hooks here: They might also 4259 // restart the target, so watch for that. 4260 process_sp->GetTarget().RunStopHooks(); 4261 if (process_sp->GetPrivateState() == eStateRunning) 4262 SetRestarted(true); 4263 } 4264 } 4265 } 4266 } 4267 4268 void Process::ProcessEventData::Dump(Stream *s) const { 4269 ProcessSP process_sp(m_process_wp.lock()); 4270 4271 if (process_sp) 4272 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4273 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4274 else 4275 s->PutCString(" process = NULL, "); 4276 4277 s->Printf("state = %s", StateAsCString(GetState())); 4278 } 4279 4280 const Process::ProcessEventData * 4281 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4282 if (event_ptr) { 4283 const EventData *event_data = event_ptr->GetData(); 4284 if (event_data && 4285 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4286 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4287 } 4288 return nullptr; 4289 } 4290 4291 ProcessSP 4292 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4293 ProcessSP process_sp; 4294 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4295 if (data) 4296 process_sp = data->GetProcessSP(); 4297 return process_sp; 4298 } 4299 4300 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4301 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4302 if (data == nullptr) 4303 return eStateInvalid; 4304 else 4305 return data->GetState(); 4306 } 4307 4308 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4309 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4310 if (data == nullptr) 4311 return false; 4312 else 4313 return data->GetRestarted(); 4314 } 4315 4316 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4317 bool new_value) { 4318 ProcessEventData *data = 4319 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4320 if (data != nullptr) 4321 data->SetRestarted(new_value); 4322 } 4323 4324 size_t 4325 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4326 ProcessEventData *data = 4327 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4328 if (data != nullptr) 4329 return data->GetNumRestartedReasons(); 4330 else 4331 return 0; 4332 } 4333 4334 const char * 4335 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4336 size_t idx) { 4337 ProcessEventData *data = 4338 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4339 if (data != nullptr) 4340 return data->GetRestartedReasonAtIndex(idx); 4341 else 4342 return nullptr; 4343 } 4344 4345 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4346 const char *reason) { 4347 ProcessEventData *data = 4348 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4349 if (data != nullptr) 4350 data->AddRestartedReason(reason); 4351 } 4352 4353 bool Process::ProcessEventData::GetInterruptedFromEvent( 4354 const Event *event_ptr) { 4355 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4356 if (data == nullptr) 4357 return false; 4358 else 4359 return data->GetInterrupted(); 4360 } 4361 4362 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4363 bool new_value) { 4364 ProcessEventData *data = 4365 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4366 if (data != nullptr) 4367 data->SetInterrupted(new_value); 4368 } 4369 4370 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4371 ProcessEventData *data = 4372 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4373 if (data) { 4374 data->SetUpdateStateOnRemoval(); 4375 return true; 4376 } 4377 return false; 4378 } 4379 4380 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4381 4382 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4383 exe_ctx.SetTargetPtr(&GetTarget()); 4384 exe_ctx.SetProcessPtr(this); 4385 exe_ctx.SetThreadPtr(nullptr); 4386 exe_ctx.SetFramePtr(nullptr); 4387 } 4388 4389 // uint32_t 4390 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4391 // std::vector<lldb::pid_t> &pids) 4392 //{ 4393 // return 0; 4394 //} 4395 // 4396 // ArchSpec 4397 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4398 //{ 4399 // return Host::GetArchSpecForExistingProcess (pid); 4400 //} 4401 // 4402 // ArchSpec 4403 // Process::GetArchSpecForExistingProcess (const char *process_name) 4404 //{ 4405 // return Host::GetArchSpecForExistingProcess (process_name); 4406 //} 4407 4408 void Process::AppendSTDOUT(const char *s, size_t len) { 4409 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4410 m_stdout_data.append(s, len); 4411 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4412 new ProcessEventData(shared_from_this(), GetState())); 4413 } 4414 4415 void Process::AppendSTDERR(const char *s, size_t len) { 4416 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4417 m_stderr_data.append(s, len); 4418 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4419 new ProcessEventData(shared_from_this(), GetState())); 4420 } 4421 4422 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4423 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4424 m_profile_data.push_back(one_profile_data); 4425 BroadcastEventIfUnique(eBroadcastBitProfileData, 4426 new ProcessEventData(shared_from_this(), GetState())); 4427 } 4428 4429 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4430 const StructuredDataPluginSP &plugin_sp) { 4431 BroadcastEvent( 4432 eBroadcastBitStructuredData, 4433 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4434 } 4435 4436 StructuredDataPluginSP 4437 Process::GetStructuredDataPlugin(const ConstString &type_name) const { 4438 auto find_it = m_structured_data_plugin_map.find(type_name); 4439 if (find_it != m_structured_data_plugin_map.end()) 4440 return find_it->second; 4441 else 4442 return StructuredDataPluginSP(); 4443 } 4444 4445 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4446 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4447 if (m_profile_data.empty()) 4448 return 0; 4449 4450 std::string &one_profile_data = m_profile_data.front(); 4451 size_t bytes_available = one_profile_data.size(); 4452 if (bytes_available > 0) { 4453 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4454 if (log) 4455 log->Printf("Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4456 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4457 if (bytes_available > buf_size) { 4458 memcpy(buf, one_profile_data.c_str(), buf_size); 4459 one_profile_data.erase(0, buf_size); 4460 bytes_available = buf_size; 4461 } else { 4462 memcpy(buf, one_profile_data.c_str(), bytes_available); 4463 m_profile_data.erase(m_profile_data.begin()); 4464 } 4465 } 4466 return bytes_available; 4467 } 4468 4469 //------------------------------------------------------------------ 4470 // Process STDIO 4471 //------------------------------------------------------------------ 4472 4473 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4474 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4475 size_t bytes_available = m_stdout_data.size(); 4476 if (bytes_available > 0) { 4477 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4478 if (log) 4479 log->Printf("Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4480 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4481 if (bytes_available > buf_size) { 4482 memcpy(buf, m_stdout_data.c_str(), buf_size); 4483 m_stdout_data.erase(0, buf_size); 4484 bytes_available = buf_size; 4485 } else { 4486 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4487 m_stdout_data.clear(); 4488 } 4489 } 4490 return bytes_available; 4491 } 4492 4493 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4494 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4495 size_t bytes_available = m_stderr_data.size(); 4496 if (bytes_available > 0) { 4497 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4498 if (log) 4499 log->Printf("Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4500 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4501 if (bytes_available > buf_size) { 4502 memcpy(buf, m_stderr_data.c_str(), buf_size); 4503 m_stderr_data.erase(0, buf_size); 4504 bytes_available = buf_size; 4505 } else { 4506 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4507 m_stderr_data.clear(); 4508 } 4509 } 4510 return bytes_available; 4511 } 4512 4513 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4514 size_t src_len) { 4515 Process *process = (Process *)baton; 4516 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4517 } 4518 4519 class IOHandlerProcessSTDIO : public IOHandler { 4520 public: 4521 IOHandlerProcessSTDIO(Process *process, int write_fd) 4522 : IOHandler(process->GetTarget().GetDebugger(), 4523 IOHandler::Type::ProcessIO), 4524 m_process(process), m_write_file(write_fd, false) { 4525 m_pipe.CreateNew(false); 4526 m_read_file.SetDescriptor(GetInputFD(), false); 4527 } 4528 4529 ~IOHandlerProcessSTDIO() override = default; 4530 4531 // Each IOHandler gets to run until it is done. It should read data from the 4532 // "in" and place output into "out" and "err and return when done. 4533 void Run() override { 4534 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4535 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4536 SetIsDone(true); 4537 return; 4538 } 4539 4540 SetIsDone(false); 4541 const int read_fd = m_read_file.GetDescriptor(); 4542 TerminalState terminal_state; 4543 terminal_state.Save(read_fd, false); 4544 Terminal terminal(read_fd); 4545 terminal.SetCanonical(false); 4546 terminal.SetEcho(false); 4547 // FD_ZERO, FD_SET are not supported on windows 4548 #ifndef _WIN32 4549 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4550 m_is_running = true; 4551 while (!GetIsDone()) { 4552 SelectHelper select_helper; 4553 select_helper.FDSetRead(read_fd); 4554 select_helper.FDSetRead(pipe_read_fd); 4555 Status error = select_helper.Select(); 4556 4557 if (error.Fail()) { 4558 SetIsDone(true); 4559 } else { 4560 char ch = 0; 4561 size_t n; 4562 if (select_helper.FDIsSetRead(read_fd)) { 4563 n = 1; 4564 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4565 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4566 SetIsDone(true); 4567 } else 4568 SetIsDone(true); 4569 } 4570 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4571 size_t bytes_read; 4572 // Consume the interrupt byte 4573 Status error = m_pipe.Read(&ch, 1, bytes_read); 4574 if (error.Success()) { 4575 switch (ch) { 4576 case 'q': 4577 SetIsDone(true); 4578 break; 4579 case 'i': 4580 if (StateIsRunningState(m_process->GetState())) 4581 m_process->SendAsyncInterrupt(); 4582 break; 4583 } 4584 } 4585 } 4586 } 4587 } 4588 m_is_running = false; 4589 #endif 4590 terminal_state.Restore(); 4591 } 4592 4593 void Cancel() override { 4594 SetIsDone(true); 4595 // Only write to our pipe to cancel if we are in 4596 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4597 // is being run from the command interpreter: 4598 // 4599 // (lldb) step_process_thousands_of_times 4600 // 4601 // In this case the command interpreter will be in the middle of handling 4602 // the command and if the process pushes and pops the IOHandler thousands 4603 // of times, we can end up writing to m_pipe without ever consuming the 4604 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4605 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4606 if (m_is_running) { 4607 char ch = 'q'; // Send 'q' for quit 4608 size_t bytes_written = 0; 4609 m_pipe.Write(&ch, 1, bytes_written); 4610 } 4611 } 4612 4613 bool Interrupt() override { 4614 // Do only things that are safe to do in an interrupt context (like in a 4615 // SIGINT handler), like write 1 byte to a file descriptor. This will 4616 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4617 // that was written to the pipe and then call 4618 // m_process->SendAsyncInterrupt() from a much safer location in code. 4619 if (m_active) { 4620 char ch = 'i'; // Send 'i' for interrupt 4621 size_t bytes_written = 0; 4622 Status result = m_pipe.Write(&ch, 1, bytes_written); 4623 return result.Success(); 4624 } else { 4625 // This IOHandler might be pushed on the stack, but not being run 4626 // currently so do the right thing if we aren't actively watching for 4627 // STDIN by sending the interrupt to the process. Otherwise the write to 4628 // the pipe above would do nothing. This can happen when the command 4629 // interpreter is running and gets a "expression ...". It will be on the 4630 // IOHandler thread and sending the input is complete to the delegate 4631 // which will cause the expression to run, which will push the process IO 4632 // handler, but not run it. 4633 4634 if (StateIsRunningState(m_process->GetState())) { 4635 m_process->SendAsyncInterrupt(); 4636 return true; 4637 } 4638 } 4639 return false; 4640 } 4641 4642 void GotEOF() override {} 4643 4644 protected: 4645 Process *m_process; 4646 File m_read_file; // Read from this file (usually actual STDIN for LLDB 4647 File m_write_file; // Write to this file (usually the master pty for getting 4648 // io to debuggee) 4649 Pipe m_pipe; 4650 std::atomic<bool> m_is_running{false}; 4651 }; 4652 4653 void Process::SetSTDIOFileDescriptor(int fd) { 4654 // First set up the Read Thread for reading/handling process I/O 4655 4656 std::unique_ptr<ConnectionFileDescriptor> conn_ap( 4657 new ConnectionFileDescriptor(fd, true)); 4658 4659 if (conn_ap) { 4660 m_stdio_communication.SetConnection(conn_ap.release()); 4661 if (m_stdio_communication.IsConnected()) { 4662 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4663 STDIOReadThreadBytesReceived, this); 4664 m_stdio_communication.StartReadThread(); 4665 4666 // Now read thread is set up, set up input reader. 4667 4668 if (!m_process_input_reader) 4669 m_process_input_reader.reset(new IOHandlerProcessSTDIO(this, fd)); 4670 } 4671 } 4672 } 4673 4674 bool Process::ProcessIOHandlerIsActive() { 4675 IOHandlerSP io_handler_sp(m_process_input_reader); 4676 if (io_handler_sp) 4677 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4678 return false; 4679 } 4680 bool Process::PushProcessIOHandler() { 4681 IOHandlerSP io_handler_sp(m_process_input_reader); 4682 if (io_handler_sp) { 4683 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4684 if (log) 4685 log->Printf("Process::%s pushing IO handler", __FUNCTION__); 4686 4687 io_handler_sp->SetIsDone(false); 4688 GetTarget().GetDebugger().PushIOHandler(io_handler_sp); 4689 return true; 4690 } 4691 return false; 4692 } 4693 4694 bool Process::PopProcessIOHandler() { 4695 IOHandlerSP io_handler_sp(m_process_input_reader); 4696 if (io_handler_sp) 4697 return GetTarget().GetDebugger().PopIOHandler(io_handler_sp); 4698 return false; 4699 } 4700 4701 // The process needs to know about installed plug-ins 4702 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4703 4704 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4705 4706 namespace { 4707 // RestorePlanState is used to record the "is private", "is master" and "okay 4708 // to discard" fields of the plan we are running, and reset it on Clean or on 4709 // destruction. It will only reset the state once, so you can call Clean and 4710 // then monkey with the state and it won't get reset on you again. 4711 4712 class RestorePlanState { 4713 public: 4714 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4715 : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) { 4716 if (m_thread_plan_sp) { 4717 m_private = m_thread_plan_sp->GetPrivate(); 4718 m_is_master = m_thread_plan_sp->IsMasterPlan(); 4719 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4720 } 4721 } 4722 4723 ~RestorePlanState() { Clean(); } 4724 4725 void Clean() { 4726 if (!m_already_reset && m_thread_plan_sp) { 4727 m_already_reset = true; 4728 m_thread_plan_sp->SetPrivate(m_private); 4729 m_thread_plan_sp->SetIsMasterPlan(m_is_master); 4730 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4731 } 4732 } 4733 4734 private: 4735 lldb::ThreadPlanSP m_thread_plan_sp; 4736 bool m_already_reset; 4737 bool m_private; 4738 bool m_is_master; 4739 bool m_okay_to_discard; 4740 }; 4741 } // anonymous namespace 4742 4743 static microseconds 4744 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4745 const milliseconds default_one_thread_timeout(250); 4746 4747 // If the overall wait is forever, then we don't need to worry about it. 4748 if (!options.GetTimeout()) { 4749 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4750 : default_one_thread_timeout; 4751 } 4752 4753 // If the one thread timeout is set, use it. 4754 if (options.GetOneThreadTimeout()) 4755 return *options.GetOneThreadTimeout(); 4756 4757 // Otherwise use half the total timeout, bounded by the 4758 // default_one_thread_timeout. 4759 return std::min<microseconds>(default_one_thread_timeout, 4760 *options.GetTimeout() / 2); 4761 } 4762 4763 static Timeout<std::micro> 4764 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4765 bool before_first_timeout) { 4766 // If we are going to run all threads the whole time, or if we are only going 4767 // to run one thread, we can just return the overall timeout. 4768 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4769 return options.GetTimeout(); 4770 4771 if (before_first_timeout) 4772 return GetOneThreadExpressionTimeout(options); 4773 4774 if (!options.GetTimeout()) 4775 return llvm::None; 4776 else 4777 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4778 } 4779 4780 static llvm::Optional<ExpressionResults> 4781 HandleStoppedEvent(Thread &thread, const ThreadPlanSP &thread_plan_sp, 4782 RestorePlanState &restorer, const EventSP &event_sp, 4783 EventSP &event_to_broadcast_sp, 4784 const EvaluateExpressionOptions &options, bool handle_interrupts) { 4785 Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS); 4786 4787 ThreadPlanSP plan = thread.GetCompletedPlan(); 4788 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4789 LLDB_LOG(log, "execution completed successfully"); 4790 4791 // Restore the plan state so it will get reported as intended when we are 4792 // done. 4793 restorer.Clean(); 4794 return eExpressionCompleted; 4795 } 4796 4797 StopInfoSP stop_info_sp = thread.GetStopInfo(); 4798 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4799 stop_info_sp->ShouldNotify(event_sp.get())) { 4800 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4801 if (!options.DoesIgnoreBreakpoints()) { 4802 // Restore the plan state and then force Private to false. We are going 4803 // to stop because of this plan so we need it to become a public plan or 4804 // it won't report correctly when we continue to its termination later 4805 // on. 4806 restorer.Clean(); 4807 thread_plan_sp->SetPrivate(false); 4808 event_to_broadcast_sp = event_sp; 4809 } 4810 return eExpressionHitBreakpoint; 4811 } 4812 4813 if (!handle_interrupts && 4814 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4815 return llvm::None; 4816 4817 LLDB_LOG(log, "thread plan did not successfully complete"); 4818 if (!options.DoesUnwindOnError()) 4819 event_to_broadcast_sp = event_sp; 4820 return eExpressionInterrupted; 4821 } 4822 4823 ExpressionResults 4824 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4825 lldb::ThreadPlanSP &thread_plan_sp, 4826 const EvaluateExpressionOptions &options, 4827 DiagnosticManager &diagnostic_manager) { 4828 ExpressionResults return_value = eExpressionSetupError; 4829 4830 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4831 4832 if (!thread_plan_sp) { 4833 diagnostic_manager.PutString( 4834 eDiagnosticSeverityError, 4835 "RunThreadPlan called with empty thread plan."); 4836 return eExpressionSetupError; 4837 } 4838 4839 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4840 diagnostic_manager.PutString( 4841 eDiagnosticSeverityError, 4842 "RunThreadPlan called with an invalid thread plan."); 4843 return eExpressionSetupError; 4844 } 4845 4846 if (exe_ctx.GetProcessPtr() != this) { 4847 diagnostic_manager.PutString(eDiagnosticSeverityError, 4848 "RunThreadPlan called on wrong process."); 4849 return eExpressionSetupError; 4850 } 4851 4852 Thread *thread = exe_ctx.GetThreadPtr(); 4853 if (thread == nullptr) { 4854 diagnostic_manager.PutString(eDiagnosticSeverityError, 4855 "RunThreadPlan called with invalid thread."); 4856 return eExpressionSetupError; 4857 } 4858 4859 // We need to change some of the thread plan attributes for the thread plan 4860 // runner. This will restore them when we are done: 4861 4862 RestorePlanState thread_plan_restorer(thread_plan_sp); 4863 4864 // We rely on the thread plan we are running returning "PlanCompleted" if 4865 // when it successfully completes. For that to be true the plan can't be 4866 // private - since private plans suppress themselves in the GetCompletedPlan 4867 // call. 4868 4869 thread_plan_sp->SetPrivate(false); 4870 4871 // The plans run with RunThreadPlan also need to be terminal master plans or 4872 // when they are done we will end up asking the plan above us whether we 4873 // should stop, which may give the wrong answer. 4874 4875 thread_plan_sp->SetIsMasterPlan(true); 4876 thread_plan_sp->SetOkayToDiscard(false); 4877 4878 if (m_private_state.GetValue() != eStateStopped) { 4879 diagnostic_manager.PutString( 4880 eDiagnosticSeverityError, 4881 "RunThreadPlan called while the private state was not stopped."); 4882 return eExpressionSetupError; 4883 } 4884 4885 // Save the thread & frame from the exe_ctx for restoration after we run 4886 const uint32_t thread_idx_id = thread->GetIndexID(); 4887 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4888 if (!selected_frame_sp) { 4889 thread->SetSelectedFrame(nullptr); 4890 selected_frame_sp = thread->GetSelectedFrame(); 4891 if (!selected_frame_sp) { 4892 diagnostic_manager.Printf( 4893 eDiagnosticSeverityError, 4894 "RunThreadPlan called without a selected frame on thread %d", 4895 thread_idx_id); 4896 return eExpressionSetupError; 4897 } 4898 } 4899 4900 // Make sure the timeout values make sense. The one thread timeout needs to 4901 // be smaller than the overall timeout. 4902 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4903 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4904 diagnostic_manager.PutString(eDiagnosticSeverityError, 4905 "RunThreadPlan called with one thread " 4906 "timeout greater than total timeout"); 4907 return eExpressionSetupError; 4908 } 4909 4910 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4911 4912 // N.B. Running the target may unset the currently selected thread and frame. 4913 // We don't want to do that either, so we should arrange to reset them as 4914 // well. 4915 4916 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4917 4918 uint32_t selected_tid; 4919 StackID selected_stack_id; 4920 if (selected_thread_sp) { 4921 selected_tid = selected_thread_sp->GetIndexID(); 4922 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4923 } else { 4924 selected_tid = LLDB_INVALID_THREAD_ID; 4925 } 4926 4927 HostThread backup_private_state_thread; 4928 lldb::StateType old_state = eStateInvalid; 4929 lldb::ThreadPlanSP stopper_base_plan_sp; 4930 4931 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4932 LIBLLDB_LOG_PROCESS)); 4933 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4934 // Yikes, we are running on the private state thread! So we can't wait for 4935 // public events on this thread, since we are the thread that is generating 4936 // public events. The simplest thing to do is to spin up a temporary thread 4937 // to handle private state thread events while we are fielding public 4938 // events here. 4939 if (log) 4940 log->Printf("Running thread plan on private state thread, spinning up " 4941 "another state thread to handle the events."); 4942 4943 backup_private_state_thread = m_private_state_thread; 4944 4945 // One other bit of business: we want to run just this thread plan and 4946 // anything it pushes, and then stop, returning control here. But in the 4947 // normal course of things, the plan above us on the stack would be given a 4948 // shot at the stop event before deciding to stop, and we don't want that. 4949 // So we insert a "stopper" base plan on the stack before the plan we want 4950 // to run. Since base plans always stop and return control to the user, 4951 // that will do just what we want. 4952 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4953 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4954 // Have to make sure our public state is stopped, since otherwise the 4955 // reporting logic below doesn't work correctly. 4956 old_state = m_public_state.GetValue(); 4957 m_public_state.SetValueNoLock(eStateStopped); 4958 4959 // Now spin up the private state thread: 4960 StartPrivateStateThread(true); 4961 } 4962 4963 thread->QueueThreadPlan( 4964 thread_plan_sp, false); // This used to pass "true" does that make sense? 4965 4966 if (options.GetDebug()) { 4967 // In this case, we aren't actually going to run, we just want to stop 4968 // right away. Flush this thread so we will refetch the stacks and show the 4969 // correct backtrace. 4970 // FIXME: To make this prettier we should invent some stop reason for this, 4971 // but that 4972 // is only cosmetic, and this functionality is only of use to lldb 4973 // developers who can live with not pretty... 4974 thread->Flush(); 4975 return eExpressionStoppedForDebug; 4976 } 4977 4978 ListenerSP listener_sp( 4979 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4980 4981 lldb::EventSP event_to_broadcast_sp; 4982 4983 { 4984 // This process event hijacker Hijacks the Public events and its destructor 4985 // makes sure that the process events get restored on exit to the function. 4986 // 4987 // If the event needs to propagate beyond the hijacker (e.g., the process 4988 // exits during execution), then the event is put into 4989 // event_to_broadcast_sp for rebroadcasting. 4990 4991 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 4992 4993 if (log) { 4994 StreamString s; 4995 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 4996 log->Printf("Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 4997 " to run thread plan \"%s\".", 4998 thread->GetIndexID(), thread->GetID(), s.GetData()); 4999 } 5000 5001 bool got_event; 5002 lldb::EventSP event_sp; 5003 lldb::StateType stop_state = lldb::eStateInvalid; 5004 5005 bool before_first_timeout = true; // This is set to false the first time 5006 // that we have to halt the target. 5007 bool do_resume = true; 5008 bool handle_running_event = true; 5009 5010 // This is just for accounting: 5011 uint32_t num_resumes = 0; 5012 5013 // If we are going to run all threads the whole time, or if we are only 5014 // going to run one thread, then we don't need the first timeout. So we 5015 // pretend we are after the first timeout already. 5016 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 5017 before_first_timeout = false; 5018 5019 if (log) 5020 log->Printf("Stop others: %u, try all: %u, before_first: %u.\n", 5021 options.GetStopOthers(), options.GetTryAllThreads(), 5022 before_first_timeout); 5023 5024 // This isn't going to work if there are unfetched events on the queue. Are 5025 // there cases where we might want to run the remaining events here, and 5026 // then try to call the function? That's probably being too tricky for our 5027 // own good. 5028 5029 Event *other_events = listener_sp->PeekAtNextEvent(); 5030 if (other_events != nullptr) { 5031 diagnostic_manager.PutString( 5032 eDiagnosticSeverityError, 5033 "RunThreadPlan called with pending events on the queue."); 5034 return eExpressionSetupError; 5035 } 5036 5037 // We also need to make sure that the next event is delivered. We might be 5038 // calling a function as part of a thread plan, in which case the last 5039 // delivered event could be the running event, and we don't want event 5040 // coalescing to cause us to lose OUR running event... 5041 ForceNextEventDelivery(); 5042 5043 // This while loop must exit out the bottom, there's cleanup that we need to do 5044 // when we are done. So don't call return anywhere within it. 5045 5046 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5047 // It's pretty much impossible to write test cases for things like: One 5048 // thread timeout expires, I go to halt, but the process already stopped on 5049 // the function call stop breakpoint. Turning on this define will make us 5050 // not fetch the first event till after the halt. So if you run a quick 5051 // function, it will have completed, and the completion event will be 5052 // waiting, when you interrupt for halt. The expression evaluation should 5053 // still succeed. 5054 bool miss_first_event = true; 5055 #endif 5056 while (true) { 5057 // We usually want to resume the process if we get to the top of the 5058 // loop. The only exception is if we get two running events with no 5059 // intervening stop, which can happen, we will just wait for then next 5060 // stop event. 5061 if (log) 5062 log->Printf("Top of while loop: do_resume: %i handle_running_event: %i " 5063 "before_first_timeout: %i.", 5064 do_resume, handle_running_event, before_first_timeout); 5065 5066 if (do_resume || handle_running_event) { 5067 // Do the initial resume and wait for the running event before going 5068 // further. 5069 5070 if (do_resume) { 5071 num_resumes++; 5072 Status resume_error = PrivateResume(); 5073 if (!resume_error.Success()) { 5074 diagnostic_manager.Printf( 5075 eDiagnosticSeverityError, 5076 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 5077 resume_error.AsCString()); 5078 return_value = eExpressionSetupError; 5079 break; 5080 } 5081 } 5082 5083 got_event = 5084 listener_sp->GetEvent(event_sp, std::chrono::milliseconds(500)); 5085 if (!got_event) { 5086 if (log) 5087 log->Printf("Process::RunThreadPlan(): didn't get any event after " 5088 "resume %" PRIu32 ", exiting.", 5089 num_resumes); 5090 5091 diagnostic_manager.Printf(eDiagnosticSeverityError, 5092 "didn't get any event after resume %" PRIu32 5093 ", exiting.", 5094 num_resumes); 5095 return_value = eExpressionSetupError; 5096 break; 5097 } 5098 5099 stop_state = 5100 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5101 5102 if (stop_state != eStateRunning) { 5103 bool restarted = false; 5104 5105 if (stop_state == eStateStopped) { 5106 restarted = Process::ProcessEventData::GetRestartedFromEvent( 5107 event_sp.get()); 5108 if (log) 5109 log->Printf( 5110 "Process::RunThreadPlan(): didn't get running event after " 5111 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 5112 "handle_running_event: %i).", 5113 num_resumes, StateAsCString(stop_state), restarted, do_resume, 5114 handle_running_event); 5115 } 5116 5117 if (restarted) { 5118 // This is probably an overabundance of caution, I don't think I 5119 // should ever get a stopped & restarted event here. But if I do, 5120 // the best thing is to Halt and then get out of here. 5121 const bool clear_thread_plans = false; 5122 const bool use_run_lock = false; 5123 Halt(clear_thread_plans, use_run_lock); 5124 } 5125 5126 diagnostic_manager.Printf( 5127 eDiagnosticSeverityError, 5128 "didn't get running event after initial resume, got %s instead.", 5129 StateAsCString(stop_state)); 5130 return_value = eExpressionSetupError; 5131 break; 5132 } 5133 5134 if (log) 5135 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 5136 // We need to call the function synchronously, so spin waiting for it 5137 // to return. If we get interrupted while executing, we're going to 5138 // lose our context, and won't be able to gather the result at this 5139 // point. We set the timeout AFTER the resume, since the resume takes 5140 // some time and we don't want to charge that to the timeout. 5141 } else { 5142 if (log) 5143 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 5144 } 5145 5146 do_resume = true; 5147 handle_running_event = true; 5148 5149 // Now wait for the process to stop again: 5150 event_sp.reset(); 5151 5152 Timeout<std::micro> timeout = 5153 GetExpressionTimeout(options, before_first_timeout); 5154 if (log) { 5155 if (timeout) { 5156 auto now = system_clock::now(); 5157 log->Printf("Process::RunThreadPlan(): about to wait - now is %s - " 5158 "endpoint is %s", 5159 llvm::to_string(now).c_str(), 5160 llvm::to_string(now + *timeout).c_str()); 5161 } else { 5162 log->Printf("Process::RunThreadPlan(): about to wait forever."); 5163 } 5164 } 5165 5166 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5167 // See comment above... 5168 if (miss_first_event) { 5169 usleep(1000); 5170 miss_first_event = false; 5171 got_event = false; 5172 } else 5173 #endif 5174 got_event = listener_sp->GetEvent(event_sp, timeout); 5175 5176 if (got_event) { 5177 if (event_sp) { 5178 bool keep_going = false; 5179 if (event_sp->GetType() == eBroadcastBitInterrupt) { 5180 const bool clear_thread_plans = false; 5181 const bool use_run_lock = false; 5182 Halt(clear_thread_plans, use_run_lock); 5183 return_value = eExpressionInterrupted; 5184 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 5185 "execution halted by user interrupt."); 5186 if (log) 5187 log->Printf("Process::RunThreadPlan(): Got interrupted by " 5188 "eBroadcastBitInterrupted, exiting."); 5189 break; 5190 } else { 5191 stop_state = 5192 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5193 if (log) 5194 log->Printf( 5195 "Process::RunThreadPlan(): in while loop, got event: %s.", 5196 StateAsCString(stop_state)); 5197 5198 switch (stop_state) { 5199 case lldb::eStateStopped: { 5200 // We stopped, figure out what we are going to do now. 5201 ThreadSP thread_sp = 5202 GetThreadList().FindThreadByIndexID(thread_idx_id); 5203 if (!thread_sp) { 5204 // Ooh, our thread has vanished. Unlikely that this was 5205 // successful execution... 5206 if (log) 5207 log->Printf("Process::RunThreadPlan(): execution completed " 5208 "but our thread (index-id=%u) has vanished.", 5209 thread_idx_id); 5210 return_value = eExpressionInterrupted; 5211 } else if (Process::ProcessEventData::GetRestartedFromEvent( 5212 event_sp.get())) { 5213 // If we were restarted, we just need to go back up to fetch 5214 // another event. 5215 if (log) { 5216 log->Printf("Process::RunThreadPlan(): Got a stop and " 5217 "restart, so we'll continue waiting."); 5218 } 5219 keep_going = true; 5220 do_resume = false; 5221 handle_running_event = true; 5222 } else { 5223 const bool handle_interrupts = true; 5224 return_value = *HandleStoppedEvent( 5225 *thread, thread_plan_sp, thread_plan_restorer, event_sp, 5226 event_to_broadcast_sp, options, handle_interrupts); 5227 } 5228 } break; 5229 5230 case lldb::eStateRunning: 5231 // This shouldn't really happen, but sometimes we do get two 5232 // running events without an intervening stop, and in that case 5233 // we should just go back to waiting for the stop. 5234 do_resume = false; 5235 keep_going = true; 5236 handle_running_event = false; 5237 break; 5238 5239 default: 5240 if (log) 5241 log->Printf("Process::RunThreadPlan(): execution stopped with " 5242 "unexpected state: %s.", 5243 StateAsCString(stop_state)); 5244 5245 if (stop_state == eStateExited) 5246 event_to_broadcast_sp = event_sp; 5247 5248 diagnostic_manager.PutString( 5249 eDiagnosticSeverityError, 5250 "execution stopped with unexpected state."); 5251 return_value = eExpressionInterrupted; 5252 break; 5253 } 5254 } 5255 5256 if (keep_going) 5257 continue; 5258 else 5259 break; 5260 } else { 5261 if (log) 5262 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5263 "the event pointer was null. How odd..."); 5264 return_value = eExpressionInterrupted; 5265 break; 5266 } 5267 } else { 5268 // If we didn't get an event that means we've timed out... We will 5269 // interrupt the process here. Depending on what we were asked to do 5270 // we will either exit, or try with all threads running for the same 5271 // timeout. 5272 5273 if (log) { 5274 if (options.GetTryAllThreads()) { 5275 if (before_first_timeout) { 5276 LLDB_LOG(log, 5277 "Running function with one thread timeout timed out."); 5278 } else 5279 LLDB_LOG(log, "Restarting function with all threads enabled and " 5280 "timeout: {0} timed out, abandoning execution.", 5281 timeout); 5282 } else 5283 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5284 "abandoning execution.", 5285 timeout); 5286 } 5287 5288 // It is possible that between the time we issued the Halt, and we get 5289 // around to calling Halt the target could have stopped. That's fine, 5290 // Halt will figure that out and send the appropriate Stopped event. 5291 // BUT it is also possible that we stopped & restarted (e.g. hit a 5292 // signal with "stop" set to false.) In 5293 // that case, we'll get the stopped & restarted event, and we should go 5294 // back to waiting for the Halt's stopped event. That's what this 5295 // while loop does. 5296 5297 bool back_to_top = true; 5298 uint32_t try_halt_again = 0; 5299 bool do_halt = true; 5300 const uint32_t num_retries = 5; 5301 while (try_halt_again < num_retries) { 5302 Status halt_error; 5303 if (do_halt) { 5304 if (log) 5305 log->Printf("Process::RunThreadPlan(): Running Halt."); 5306 const bool clear_thread_plans = false; 5307 const bool use_run_lock = false; 5308 Halt(clear_thread_plans, use_run_lock); 5309 } 5310 if (halt_error.Success()) { 5311 if (log) 5312 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5313 5314 got_event = 5315 listener_sp->GetEvent(event_sp, std::chrono::milliseconds(500)); 5316 5317 if (got_event) { 5318 stop_state = 5319 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5320 if (log) { 5321 log->Printf("Process::RunThreadPlan(): Stopped with event: %s", 5322 StateAsCString(stop_state)); 5323 if (stop_state == lldb::eStateStopped && 5324 Process::ProcessEventData::GetInterruptedFromEvent( 5325 event_sp.get())) 5326 log->PutCString(" Event was the Halt interruption event."); 5327 } 5328 5329 if (stop_state == lldb::eStateStopped) { 5330 if (Process::ProcessEventData::GetRestartedFromEvent( 5331 event_sp.get())) { 5332 if (log) 5333 log->PutCString("Process::RunThreadPlan(): Went to halt " 5334 "but got a restarted event, there must be " 5335 "an un-restarted stopped event so try " 5336 "again... " 5337 "Exiting wait loop."); 5338 try_halt_again++; 5339 do_halt = false; 5340 continue; 5341 } 5342 5343 // Between the time we initiated the Halt and the time we 5344 // delivered it, the process could have already finished its 5345 // job. Check that here: 5346 const bool handle_interrupts = false; 5347 if (auto result = HandleStoppedEvent( 5348 *thread, thread_plan_sp, thread_plan_restorer, event_sp, 5349 event_to_broadcast_sp, options, handle_interrupts)) { 5350 return_value = *result; 5351 back_to_top = false; 5352 break; 5353 } 5354 5355 if (!options.GetTryAllThreads()) { 5356 if (log) 5357 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5358 "was false, we stopped so now we're " 5359 "quitting."); 5360 return_value = eExpressionInterrupted; 5361 back_to_top = false; 5362 break; 5363 } 5364 5365 if (before_first_timeout) { 5366 // Set all the other threads to run, and return to the top of 5367 // the loop, which will continue; 5368 before_first_timeout = false; 5369 thread_plan_sp->SetStopOthers(false); 5370 if (log) 5371 log->PutCString( 5372 "Process::RunThreadPlan(): about to resume."); 5373 5374 back_to_top = true; 5375 break; 5376 } else { 5377 // Running all threads failed, so return Interrupted. 5378 if (log) 5379 log->PutCString("Process::RunThreadPlan(): running all " 5380 "threads timed out."); 5381 return_value = eExpressionInterrupted; 5382 back_to_top = false; 5383 break; 5384 } 5385 } 5386 } else { 5387 if (log) 5388 log->PutCString("Process::RunThreadPlan(): halt said it " 5389 "succeeded, but I got no event. " 5390 "I'm getting out of here passing Interrupted."); 5391 return_value = eExpressionInterrupted; 5392 back_to_top = false; 5393 break; 5394 } 5395 } else { 5396 try_halt_again++; 5397 continue; 5398 } 5399 } 5400 5401 if (!back_to_top || try_halt_again > num_retries) 5402 break; 5403 else 5404 continue; 5405 } 5406 } // END WAIT LOOP 5407 5408 // If we had to start up a temporary private state thread to run this 5409 // thread plan, shut it down now. 5410 if (backup_private_state_thread.IsJoinable()) { 5411 StopPrivateStateThread(); 5412 Status error; 5413 m_private_state_thread = backup_private_state_thread; 5414 if (stopper_base_plan_sp) { 5415 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5416 } 5417 if (old_state != eStateInvalid) 5418 m_public_state.SetValueNoLock(old_state); 5419 } 5420 5421 if (return_value != eExpressionCompleted && log) { 5422 // Print a backtrace into the log so we can figure out where we are: 5423 StreamString s; 5424 s.PutCString("Thread state after unsuccessful completion: \n"); 5425 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5426 log->PutString(s.GetString()); 5427 } 5428 // Restore the thread state if we are going to discard the plan execution. 5429 // There are three cases where this could happen: 1) The execution 5430 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5431 // was true 3) We got some other error, and discard_on_error was true 5432 bool should_unwind = (return_value == eExpressionInterrupted && 5433 options.DoesUnwindOnError()) || 5434 (return_value == eExpressionHitBreakpoint && 5435 options.DoesIgnoreBreakpoints()); 5436 5437 if (return_value == eExpressionCompleted || should_unwind) { 5438 thread_plan_sp->RestoreThreadState(); 5439 } 5440 5441 // Now do some processing on the results of the run: 5442 if (return_value == eExpressionInterrupted || 5443 return_value == eExpressionHitBreakpoint) { 5444 if (log) { 5445 StreamString s; 5446 if (event_sp) 5447 event_sp->Dump(&s); 5448 else { 5449 log->PutCString("Process::RunThreadPlan(): Stop event that " 5450 "interrupted us is NULL."); 5451 } 5452 5453 StreamString ts; 5454 5455 const char *event_explanation = nullptr; 5456 5457 do { 5458 if (!event_sp) { 5459 event_explanation = "<no event>"; 5460 break; 5461 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5462 event_explanation = "<user interrupt>"; 5463 break; 5464 } else { 5465 const Process::ProcessEventData *event_data = 5466 Process::ProcessEventData::GetEventDataFromEvent( 5467 event_sp.get()); 5468 5469 if (!event_data) { 5470 event_explanation = "<no event data>"; 5471 break; 5472 } 5473 5474 Process *process = event_data->GetProcessSP().get(); 5475 5476 if (!process) { 5477 event_explanation = "<no process>"; 5478 break; 5479 } 5480 5481 ThreadList &thread_list = process->GetThreadList(); 5482 5483 uint32_t num_threads = thread_list.GetSize(); 5484 uint32_t thread_index; 5485 5486 ts.Printf("<%u threads> ", num_threads); 5487 5488 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5489 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5490 5491 if (!thread) { 5492 ts.Printf("<?> "); 5493 continue; 5494 } 5495 5496 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5497 RegisterContext *register_context = 5498 thread->GetRegisterContext().get(); 5499 5500 if (register_context) 5501 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5502 else 5503 ts.Printf("[ip unknown] "); 5504 5505 // Show the private stop info here, the public stop info will be 5506 // from the last natural stop. 5507 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5508 if (stop_info_sp) { 5509 const char *stop_desc = stop_info_sp->GetDescription(); 5510 if (stop_desc) 5511 ts.PutCString(stop_desc); 5512 } 5513 ts.Printf(">"); 5514 } 5515 5516 event_explanation = ts.GetData(); 5517 } 5518 } while (0); 5519 5520 if (event_explanation) 5521 log->Printf("Process::RunThreadPlan(): execution interrupted: %s %s", 5522 s.GetData(), event_explanation); 5523 else 5524 log->Printf("Process::RunThreadPlan(): execution interrupted: %s", 5525 s.GetData()); 5526 } 5527 5528 if (should_unwind) { 5529 if (log) 5530 log->Printf("Process::RunThreadPlan: ExecutionInterrupted - " 5531 "discarding thread plans up to %p.", 5532 static_cast<void *>(thread_plan_sp.get())); 5533 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5534 } else { 5535 if (log) 5536 log->Printf("Process::RunThreadPlan: ExecutionInterrupted - for " 5537 "plan: %p not discarding.", 5538 static_cast<void *>(thread_plan_sp.get())); 5539 } 5540 } else if (return_value == eExpressionSetupError) { 5541 if (log) 5542 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5543 5544 if (options.DoesUnwindOnError()) { 5545 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5546 } 5547 } else { 5548 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5549 if (log) 5550 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5551 return_value = eExpressionCompleted; 5552 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5553 if (log) 5554 log->PutCString( 5555 "Process::RunThreadPlan(): thread plan was discarded"); 5556 return_value = eExpressionDiscarded; 5557 } else { 5558 if (log) 5559 log->PutCString( 5560 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5561 if (options.DoesUnwindOnError() && thread_plan_sp) { 5562 if (log) 5563 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5564 "'cause unwind_on_error is set."); 5565 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5566 } 5567 } 5568 } 5569 5570 // Thread we ran the function in may have gone away because we ran the 5571 // target Check that it's still there, and if it is put it back in the 5572 // context. Also restore the frame in the context if it is still present. 5573 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5574 if (thread) { 5575 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5576 } 5577 5578 // Also restore the current process'es selected frame & thread, since this 5579 // function calling may be done behind the user's back. 5580 5581 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5582 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5583 selected_stack_id.IsValid()) { 5584 // We were able to restore the selected thread, now restore the frame: 5585 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5586 StackFrameSP old_frame_sp = 5587 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5588 selected_stack_id); 5589 if (old_frame_sp) 5590 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5591 old_frame_sp.get()); 5592 } 5593 } 5594 } 5595 5596 // If the process exited during the run of the thread plan, notify everyone. 5597 5598 if (event_to_broadcast_sp) { 5599 if (log) 5600 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5601 BroadcastEvent(event_to_broadcast_sp); 5602 } 5603 5604 return return_value; 5605 } 5606 5607 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5608 const char *result_name; 5609 5610 switch (result) { 5611 case eExpressionCompleted: 5612 result_name = "eExpressionCompleted"; 5613 break; 5614 case eExpressionDiscarded: 5615 result_name = "eExpressionDiscarded"; 5616 break; 5617 case eExpressionInterrupted: 5618 result_name = "eExpressionInterrupted"; 5619 break; 5620 case eExpressionHitBreakpoint: 5621 result_name = "eExpressionHitBreakpoint"; 5622 break; 5623 case eExpressionSetupError: 5624 result_name = "eExpressionSetupError"; 5625 break; 5626 case eExpressionParseError: 5627 result_name = "eExpressionParseError"; 5628 break; 5629 case eExpressionResultUnavailable: 5630 result_name = "eExpressionResultUnavailable"; 5631 break; 5632 case eExpressionTimedOut: 5633 result_name = "eExpressionTimedOut"; 5634 break; 5635 case eExpressionStoppedForDebug: 5636 result_name = "eExpressionStoppedForDebug"; 5637 break; 5638 } 5639 return result_name; 5640 } 5641 5642 void Process::GetStatus(Stream &strm) { 5643 const StateType state = GetState(); 5644 if (StateIsStoppedState(state, false)) { 5645 if (state == eStateExited) { 5646 int exit_status = GetExitStatus(); 5647 const char *exit_description = GetExitDescription(); 5648 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5649 GetID(), exit_status, exit_status, 5650 exit_description ? exit_description : ""); 5651 } else { 5652 if (state == eStateConnected) 5653 strm.Printf("Connected to remote target.\n"); 5654 else 5655 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5656 } 5657 } else { 5658 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5659 } 5660 } 5661 5662 size_t Process::GetThreadStatus(Stream &strm, 5663 bool only_threads_with_stop_reason, 5664 uint32_t start_frame, uint32_t num_frames, 5665 uint32_t num_frames_with_source, 5666 bool stop_format) { 5667 size_t num_thread_infos_dumped = 0; 5668 5669 // You can't hold the thread list lock while calling Thread::GetStatus. That 5670 // very well might run code (e.g. if we need it to get return values or 5671 // arguments.) For that to work the process has to be able to acquire it. 5672 // So instead copy the thread ID's, and look them up one by one: 5673 5674 uint32_t num_threads; 5675 std::vector<lldb::tid_t> thread_id_array; 5676 // Scope for thread list locker; 5677 { 5678 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5679 ThreadList &curr_thread_list = GetThreadList(); 5680 num_threads = curr_thread_list.GetSize(); 5681 uint32_t idx; 5682 thread_id_array.resize(num_threads); 5683 for (idx = 0; idx < num_threads; ++idx) 5684 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5685 } 5686 5687 for (uint32_t i = 0; i < num_threads; i++) { 5688 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5689 if (thread_sp) { 5690 if (only_threads_with_stop_reason) { 5691 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5692 if (!stop_info_sp || !stop_info_sp->IsValid()) 5693 continue; 5694 } 5695 thread_sp->GetStatus(strm, start_frame, num_frames, 5696 num_frames_with_source, 5697 stop_format); 5698 ++num_thread_infos_dumped; 5699 } else { 5700 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5701 if (log) 5702 log->Printf("Process::GetThreadStatus - thread 0x" PRIu64 5703 " vanished while running Thread::GetStatus."); 5704 } 5705 } 5706 return num_thread_infos_dumped; 5707 } 5708 5709 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5710 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5711 } 5712 5713 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5714 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5715 region.GetByteSize()); 5716 } 5717 5718 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5719 void *baton) { 5720 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5721 } 5722 5723 bool Process::RunPreResumeActions() { 5724 bool result = true; 5725 while (!m_pre_resume_actions.empty()) { 5726 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5727 m_pre_resume_actions.pop_back(); 5728 bool this_result = action.callback(action.baton); 5729 if (result) 5730 result = this_result; 5731 } 5732 return result; 5733 } 5734 5735 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5736 5737 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5738 { 5739 PreResumeCallbackAndBaton element(callback, baton); 5740 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5741 if (found_iter != m_pre_resume_actions.end()) 5742 { 5743 m_pre_resume_actions.erase(found_iter); 5744 } 5745 } 5746 5747 ProcessRunLock &Process::GetRunLock() { 5748 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5749 return m_private_run_lock; 5750 else 5751 return m_public_run_lock; 5752 } 5753 5754 void Process::Flush() { 5755 m_thread_list.Flush(); 5756 m_extended_thread_list.Flush(); 5757 m_extended_thread_stop_id = 0; 5758 m_queue_list.Clear(); 5759 m_queue_list_stop_id = 0; 5760 } 5761 5762 void Process::DidExec() { 5763 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 5764 if (log) 5765 log->Printf("Process::%s()", __FUNCTION__); 5766 5767 Target &target = GetTarget(); 5768 target.CleanupProcess(); 5769 target.ClearModules(false); 5770 m_dynamic_checkers_ap.reset(); 5771 m_abi_sp.reset(); 5772 m_system_runtime_ap.reset(); 5773 m_os_ap.reset(); 5774 m_dyld_ap.reset(); 5775 m_jit_loaders_ap.reset(); 5776 m_image_tokens.clear(); 5777 m_allocated_memory_cache.Clear(); 5778 m_language_runtimes.clear(); 5779 m_instrumentation_runtimes.clear(); 5780 m_thread_list.DiscardThreadPlans(); 5781 m_memory_cache.Clear(true); 5782 DoDidExec(); 5783 CompleteAttach(); 5784 // Flush the process (threads and all stack frames) after running 5785 // CompleteAttach() in case the dynamic loader loaded things in new 5786 // locations. 5787 Flush(); 5788 5789 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5790 // let the target know so it can do any cleanup it needs to. 5791 target.DidExec(); 5792 } 5793 5794 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5795 if (address == nullptr) { 5796 error.SetErrorString("Invalid address argument"); 5797 return LLDB_INVALID_ADDRESS; 5798 } 5799 5800 addr_t function_addr = LLDB_INVALID_ADDRESS; 5801 5802 addr_t addr = address->GetLoadAddress(&GetTarget()); 5803 std::map<addr_t, addr_t>::const_iterator iter = 5804 m_resolved_indirect_addresses.find(addr); 5805 if (iter != m_resolved_indirect_addresses.end()) { 5806 function_addr = (*iter).second; 5807 } else { 5808 if (!InferiorCall(this, address, function_addr)) { 5809 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5810 error.SetErrorStringWithFormat( 5811 "Unable to call resolver for indirect function %s", 5812 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5813 function_addr = LLDB_INVALID_ADDRESS; 5814 } else { 5815 m_resolved_indirect_addresses.insert( 5816 std::pair<addr_t, addr_t>(addr, function_addr)); 5817 } 5818 } 5819 return function_addr; 5820 } 5821 5822 void Process::ModulesDidLoad(ModuleList &module_list) { 5823 SystemRuntime *sys_runtime = GetSystemRuntime(); 5824 if (sys_runtime) { 5825 sys_runtime->ModulesDidLoad(module_list); 5826 } 5827 5828 GetJITLoaders().ModulesDidLoad(module_list); 5829 5830 // Give runtimes a chance to be created. 5831 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5832 m_instrumentation_runtimes); 5833 5834 // Tell runtimes about new modules. 5835 for (auto pos = m_instrumentation_runtimes.begin(); 5836 pos != m_instrumentation_runtimes.end(); ++pos) { 5837 InstrumentationRuntimeSP runtime = pos->second; 5838 runtime->ModulesDidLoad(module_list); 5839 } 5840 5841 // Let any language runtimes we have already created know about the modules 5842 // that loaded. 5843 5844 // Iterate over a copy of this language runtime list in case the language 5845 // runtime ModulesDidLoad somehow causes the language riuntime to be 5846 // unloaded. 5847 LanguageRuntimeCollection language_runtimes(m_language_runtimes); 5848 for (const auto &pair : language_runtimes) { 5849 // We must check language_runtime_sp to make sure it is not nullptr as we 5850 // might cache the fact that we didn't have a language runtime for a 5851 // language. 5852 LanguageRuntimeSP language_runtime_sp = pair.second; 5853 if (language_runtime_sp) 5854 language_runtime_sp->ModulesDidLoad(module_list); 5855 } 5856 5857 // If we don't have an operating system plug-in, try to load one since 5858 // loading shared libraries might cause a new one to try and load 5859 if (!m_os_ap) 5860 LoadOperatingSystemPlugin(false); 5861 5862 // Give structured-data plugins a chance to see the modified modules. 5863 for (auto pair : m_structured_data_plugin_map) { 5864 if (pair.second) 5865 pair.second->ModulesDidLoad(*this, module_list); 5866 } 5867 } 5868 5869 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5870 const char *fmt, ...) { 5871 bool print_warning = true; 5872 5873 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5874 if (!stream_sp) 5875 return; 5876 if (warning_type == eWarningsOptimization && !GetWarningsOptimization()) { 5877 return; 5878 } 5879 5880 if (repeat_key != nullptr) { 5881 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5882 if (it == m_warnings_issued.end()) { 5883 m_warnings_issued[warning_type] = WarningsPointerSet(); 5884 m_warnings_issued[warning_type].insert(repeat_key); 5885 } else { 5886 if (it->second.find(repeat_key) != it->second.end()) { 5887 print_warning = false; 5888 } else { 5889 it->second.insert(repeat_key); 5890 } 5891 } 5892 } 5893 5894 if (print_warning) { 5895 va_list args; 5896 va_start(args, fmt); 5897 stream_sp->PrintfVarArg(fmt, args); 5898 va_end(args); 5899 } 5900 } 5901 5902 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5903 if (GetWarningsOptimization() && sc.module_sp && 5904 !sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5905 sc.function->GetIsOptimized()) { 5906 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5907 "%s was compiled with optimization - stepping may behave " 5908 "oddly; variables may not be available.\n", 5909 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5910 } 5911 } 5912 5913 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5914 info.Clear(); 5915 5916 PlatformSP platform_sp = GetTarget().GetPlatform(); 5917 if (!platform_sp) 5918 return false; 5919 5920 return platform_sp->GetProcessInfo(GetID(), info); 5921 } 5922 5923 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5924 ThreadCollectionSP threads; 5925 5926 const MemoryHistorySP &memory_history = 5927 MemoryHistory::FindPlugin(shared_from_this()); 5928 5929 if (!memory_history) { 5930 return threads; 5931 } 5932 5933 threads.reset(new ThreadCollection(memory_history->GetHistoryThreads(addr))); 5934 5935 return threads; 5936 } 5937 5938 InstrumentationRuntimeSP 5939 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5940 InstrumentationRuntimeCollection::iterator pos; 5941 pos = m_instrumentation_runtimes.find(type); 5942 if (pos == m_instrumentation_runtimes.end()) { 5943 return InstrumentationRuntimeSP(); 5944 } else 5945 return (*pos).second; 5946 } 5947 5948 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5949 const ArchSpec &arch, ModuleSpec &module_spec) { 5950 module_spec.Clear(); 5951 return false; 5952 } 5953 5954 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5955 m_image_tokens.push_back(image_ptr); 5956 return m_image_tokens.size() - 1; 5957 } 5958 5959 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5960 if (token < m_image_tokens.size()) 5961 return m_image_tokens[token]; 5962 return LLDB_INVALID_IMAGE_TOKEN; 5963 } 5964 5965 void Process::ResetImageToken(size_t token) { 5966 if (token < m_image_tokens.size()) 5967 m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN; 5968 } 5969 5970 Address 5971 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5972 AddressRange range_bounds) { 5973 Target &target = GetTarget(); 5974 DisassemblerSP disassembler_sp; 5975 InstructionList *insn_list = nullptr; 5976 5977 Address retval = default_stop_addr; 5978 5979 if (!target.GetUseFastStepping()) 5980 return retval; 5981 if (!default_stop_addr.IsValid()) 5982 return retval; 5983 5984 ExecutionContext exe_ctx(this); 5985 const char *plugin_name = nullptr; 5986 const char *flavor = nullptr; 5987 const bool prefer_file_cache = true; 5988 disassembler_sp = Disassembler::DisassembleRange( 5989 target.GetArchitecture(), plugin_name, flavor, exe_ctx, range_bounds, 5990 prefer_file_cache); 5991 if (disassembler_sp) 5992 insn_list = &disassembler_sp->GetInstructionList(); 5993 5994 if (insn_list == nullptr) { 5995 return retval; 5996 } 5997 5998 size_t insn_offset = 5999 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 6000 if (insn_offset == UINT32_MAX) { 6001 return retval; 6002 } 6003 6004 uint32_t branch_index = 6005 insn_list->GetIndexOfNextBranchInstruction(insn_offset, target); 6006 if (branch_index == UINT32_MAX) { 6007 return retval; 6008 } 6009 6010 if (branch_index > insn_offset) { 6011 Address next_branch_insn_address = 6012 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 6013 if (next_branch_insn_address.IsValid() && 6014 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 6015 retval = next_branch_insn_address; 6016 } 6017 } 6018 6019 return retval; 6020 } 6021 6022 Status 6023 Process::GetMemoryRegions(std::vector<lldb::MemoryRegionInfoSP> ®ion_list) { 6024 6025 Status error; 6026 6027 lldb::addr_t range_end = 0; 6028 6029 region_list.clear(); 6030 do { 6031 lldb::MemoryRegionInfoSP region_info(new lldb_private::MemoryRegionInfo()); 6032 error = GetMemoryRegionInfo(range_end, *region_info); 6033 // GetMemoryRegionInfo should only return an error if it is unimplemented. 6034 if (error.Fail()) { 6035 region_list.clear(); 6036 break; 6037 } 6038 6039 range_end = region_info->GetRange().GetRangeEnd(); 6040 if (region_info->GetMapped() == MemoryRegionInfo::eYes) { 6041 region_list.push_back(region_info); 6042 } 6043 } while (range_end != LLDB_INVALID_ADDRESS); 6044 6045 return error; 6046 } 6047 6048 Status 6049 Process::ConfigureStructuredData(const ConstString &type_name, 6050 const StructuredData::ObjectSP &config_sp) { 6051 // If you get this, the Process-derived class needs to implement a method to 6052 // enable an already-reported asynchronous structured data feature. See 6053 // ProcessGDBRemote for an example implementation over gdb-remote. 6054 return Status("unimplemented"); 6055 } 6056 6057 void Process::MapSupportedStructuredDataPlugins( 6058 const StructuredData::Array &supported_type_names) { 6059 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 6060 6061 // Bail out early if there are no type names to map. 6062 if (supported_type_names.GetSize() == 0) { 6063 if (log) 6064 log->Printf("Process::%s(): no structured data types supported", 6065 __FUNCTION__); 6066 return; 6067 } 6068 6069 // Convert StructuredData type names to ConstString instances. 6070 std::set<ConstString> const_type_names; 6071 6072 if (log) 6073 log->Printf("Process::%s(): the process supports the following async " 6074 "structured data types:", 6075 __FUNCTION__); 6076 6077 supported_type_names.ForEach( 6078 [&const_type_names, &log](StructuredData::Object *object) { 6079 if (!object) { 6080 // Invalid - shouldn't be null objects in the array. 6081 return false; 6082 } 6083 6084 auto type_name = object->GetAsString(); 6085 if (!type_name) { 6086 // Invalid format - all type names should be strings. 6087 return false; 6088 } 6089 6090 const_type_names.insert(ConstString(type_name->GetValue())); 6091 LLDB_LOG(log, "- {0}", type_name->GetValue()); 6092 return true; 6093 }); 6094 6095 // For each StructuredDataPlugin, if the plugin handles any of the types in 6096 // the supported_type_names, map that type name to that plugin. Stop when 6097 // we've consumed all the type names. 6098 // FIXME: should we return an error if there are type names nobody 6099 // supports? 6100 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 6101 auto create_instance = 6102 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 6103 plugin_index); 6104 if (!create_instance) 6105 break; 6106 6107 // Create the plugin. 6108 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 6109 if (!plugin_sp) { 6110 // This plugin doesn't think it can work with the process. Move on to the 6111 // next. 6112 continue; 6113 } 6114 6115 // For any of the remaining type names, map any that this plugin supports. 6116 std::vector<ConstString> names_to_remove; 6117 for (auto &type_name : const_type_names) { 6118 if (plugin_sp->SupportsStructuredDataType(type_name)) { 6119 m_structured_data_plugin_map.insert( 6120 std::make_pair(type_name, plugin_sp)); 6121 names_to_remove.push_back(type_name); 6122 if (log) 6123 log->Printf("Process::%s(): using plugin %s for type name " 6124 "%s", 6125 __FUNCTION__, plugin_sp->GetPluginName().GetCString(), 6126 type_name.GetCString()); 6127 } 6128 } 6129 6130 // Remove the type names that were consumed by this plugin. 6131 for (auto &type_name : names_to_remove) 6132 const_type_names.erase(type_name); 6133 } 6134 } 6135 6136 bool Process::RouteAsyncStructuredData( 6137 const StructuredData::ObjectSP object_sp) { 6138 // Nothing to do if there's no data. 6139 if (!object_sp) 6140 return false; 6141 6142 // The contract is this must be a dictionary, so we can look up the routing 6143 // key via the top-level 'type' string value within the dictionary. 6144 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 6145 if (!dictionary) 6146 return false; 6147 6148 // Grab the async structured type name (i.e. the feature/plugin name). 6149 ConstString type_name; 6150 if (!dictionary->GetValueForKeyAsString("type", type_name)) 6151 return false; 6152 6153 // Check if there's a plugin registered for this type name. 6154 auto find_it = m_structured_data_plugin_map.find(type_name); 6155 if (find_it == m_structured_data_plugin_map.end()) { 6156 // We don't have a mapping for this structured data type. 6157 return false; 6158 } 6159 6160 // Route the structured data to the plugin. 6161 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 6162 return true; 6163 } 6164 6165 Status Process::UpdateAutomaticSignalFiltering() { 6166 // Default implementation does nothign. 6167 // No automatic signal filtering to speak of. 6168 return Status(); 6169 } 6170 6171 UtilityFunction *Process::GetLoadImageUtilityFunction( 6172 Platform *platform, 6173 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 6174 if (platform != GetTarget().GetPlatform().get()) 6175 return nullptr; 6176 std::call_once(m_dlopen_utility_func_flag_once, 6177 [&] { m_dlopen_utility_func_up = factory(); }); 6178 return m_dlopen_utility_func_up.get(); 6179 } 6180