1 //===-- Process.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <atomic> 10 #include <memory> 11 #include <mutex> 12 13 #include "llvm/ADT/ScopeExit.h" 14 #include "llvm/Support/ScopedPrinter.h" 15 #include "llvm/Support/Threading.h" 16 17 #include "lldb/Breakpoint/BreakpointLocation.h" 18 #include "lldb/Breakpoint/StoppointCallbackContext.h" 19 #include "lldb/Core/Debugger.h" 20 #include "lldb/Core/Module.h" 21 #include "lldb/Core/ModuleSpec.h" 22 #include "lldb/Core/PluginManager.h" 23 #include "lldb/Core/StreamFile.h" 24 #include "lldb/Expression/DiagnosticManager.h" 25 #include "lldb/Expression/DynamicCheckerFunctions.h" 26 #include "lldb/Expression/UserExpression.h" 27 #include "lldb/Expression/UtilityFunction.h" 28 #include "lldb/Host/ConnectionFileDescriptor.h" 29 #include "lldb/Host/FileSystem.h" 30 #include "lldb/Host/Host.h" 31 #include "lldb/Host/HostInfo.h" 32 #include "lldb/Host/OptionParser.h" 33 #include "lldb/Host/Pipe.h" 34 #include "lldb/Host/Terminal.h" 35 #include "lldb/Host/ThreadLauncher.h" 36 #include "lldb/Interpreter/CommandInterpreter.h" 37 #include "lldb/Interpreter/OptionArgParser.h" 38 #include "lldb/Interpreter/OptionValueProperties.h" 39 #include "lldb/Symbol/Function.h" 40 #include "lldb/Symbol/Symbol.h" 41 #include "lldb/Target/ABI.h" 42 #include "lldb/Target/AssertFrameRecognizer.h" 43 #include "lldb/Target/DynamicLoader.h" 44 #include "lldb/Target/InstrumentationRuntime.h" 45 #include "lldb/Target/JITLoader.h" 46 #include "lldb/Target/JITLoaderList.h" 47 #include "lldb/Target/Language.h" 48 #include "lldb/Target/LanguageRuntime.h" 49 #include "lldb/Target/MemoryHistory.h" 50 #include "lldb/Target/MemoryRegionInfo.h" 51 #include "lldb/Target/OperatingSystem.h" 52 #include "lldb/Target/Platform.h" 53 #include "lldb/Target/Process.h" 54 #include "lldb/Target/RegisterContext.h" 55 #include "lldb/Target/StopInfo.h" 56 #include "lldb/Target/StructuredDataPlugin.h" 57 #include "lldb/Target/SystemRuntime.h" 58 #include "lldb/Target/Target.h" 59 #include "lldb/Target/TargetList.h" 60 #include "lldb/Target/Thread.h" 61 #include "lldb/Target/ThreadPlan.h" 62 #include "lldb/Target/ThreadPlanBase.h" 63 #include "lldb/Target/ThreadPlanCallFunction.h" 64 #include "lldb/Target/ThreadPlanStack.h" 65 #include "lldb/Target/UnixSignals.h" 66 #include "lldb/Utility/Event.h" 67 #include "lldb/Utility/Log.h" 68 #include "lldb/Utility/NameMatches.h" 69 #include "lldb/Utility/ProcessInfo.h" 70 #include "lldb/Utility/SelectHelper.h" 71 #include "lldb/Utility/State.h" 72 #include "lldb/Utility/Timer.h" 73 74 using namespace lldb; 75 using namespace lldb_private; 76 using namespace std::chrono; 77 78 // Comment out line below to disable memory caching, overriding the process 79 // setting target.process.disable-memory-cache 80 #define ENABLE_MEMORY_CACHING 81 82 #ifdef ENABLE_MEMORY_CACHING 83 #define DISABLE_MEM_CACHE_DEFAULT false 84 #else 85 #define DISABLE_MEM_CACHE_DEFAULT true 86 #endif 87 88 class ProcessOptionValueProperties 89 : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> { 90 public: 91 ProcessOptionValueProperties(ConstString name) : Cloneable(name) {} 92 93 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 94 bool will_modify, 95 uint32_t idx) const override { 96 // When getting the value for a key from the process options, we will 97 // always try and grab the setting from the current process if there is 98 // one. Else we just use the one from this instance. 99 if (exe_ctx) { 100 Process *process = exe_ctx->GetProcessPtr(); 101 if (process) { 102 ProcessOptionValueProperties *instance_properties = 103 static_cast<ProcessOptionValueProperties *>( 104 process->GetValueProperties().get()); 105 if (this != instance_properties) 106 return instance_properties->ProtectedGetPropertyAtIndex(idx); 107 } 108 } 109 return ProtectedGetPropertyAtIndex(idx); 110 } 111 }; 112 113 static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = { 114 { 115 eFollowParent, 116 "parent", 117 "Continue tracing the parent process and detach the child.", 118 }, 119 { 120 eFollowChild, 121 "child", 122 "Trace the child process and detach the parent.", 123 }, 124 }; 125 126 #define LLDB_PROPERTIES_process 127 #include "TargetProperties.inc" 128 129 enum { 130 #define LLDB_PROPERTIES_process 131 #include "TargetPropertiesEnum.inc" 132 ePropertyExperimental, 133 }; 134 135 #define LLDB_PROPERTIES_process_experimental 136 #include "TargetProperties.inc" 137 138 enum { 139 #define LLDB_PROPERTIES_process_experimental 140 #include "TargetPropertiesEnum.inc" 141 }; 142 143 class ProcessExperimentalOptionValueProperties 144 : public Cloneable<ProcessExperimentalOptionValueProperties, 145 OptionValueProperties> { 146 public: 147 ProcessExperimentalOptionValueProperties() 148 : Cloneable( 149 ConstString(Properties::GetExperimentalSettingsName())) {} 150 }; 151 152 ProcessExperimentalProperties::ProcessExperimentalProperties() 153 : Properties(OptionValuePropertiesSP( 154 new ProcessExperimentalOptionValueProperties())) { 155 m_collection_sp->Initialize(g_process_experimental_properties); 156 } 157 158 ProcessProperties::ProcessProperties(lldb_private::Process *process) 159 : Properties(), 160 m_process(process) // Can be nullptr for global ProcessProperties 161 { 162 if (process == nullptr) { 163 // Global process properties, set them up one time 164 m_collection_sp = 165 std::make_shared<ProcessOptionValueProperties>(ConstString("process")); 166 m_collection_sp->Initialize(g_process_properties); 167 m_collection_sp->AppendProperty( 168 ConstString("thread"), ConstString("Settings specific to threads."), 169 true, Thread::GetGlobalProperties()->GetValueProperties()); 170 } else { 171 m_collection_sp = 172 OptionValueProperties::CreateLocalCopy(*Process::GetGlobalProperties()); 173 m_collection_sp->SetValueChangedCallback( 174 ePropertyPythonOSPluginPath, 175 [this] { m_process->LoadOperatingSystemPlugin(true); }); 176 } 177 178 m_experimental_properties_up = 179 std::make_unique<ProcessExperimentalProperties>(); 180 m_collection_sp->AppendProperty( 181 ConstString(Properties::GetExperimentalSettingsName()), 182 ConstString("Experimental settings - setting these won't produce " 183 "errors if the setting is not present."), 184 true, m_experimental_properties_up->GetValueProperties()); 185 } 186 187 ProcessProperties::~ProcessProperties() = default; 188 189 bool ProcessProperties::GetDisableMemoryCache() const { 190 const uint32_t idx = ePropertyDisableMemCache; 191 return m_collection_sp->GetPropertyAtIndexAsBoolean( 192 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 193 } 194 195 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 196 const uint32_t idx = ePropertyMemCacheLineSize; 197 return m_collection_sp->GetPropertyAtIndexAsUInt64( 198 nullptr, idx, g_process_properties[idx].default_uint_value); 199 } 200 201 Args ProcessProperties::GetExtraStartupCommands() const { 202 Args args; 203 const uint32_t idx = ePropertyExtraStartCommand; 204 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 205 return args; 206 } 207 208 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 209 const uint32_t idx = ePropertyExtraStartCommand; 210 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 211 } 212 213 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 214 const uint32_t idx = ePropertyPythonOSPluginPath; 215 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 216 } 217 218 uint32_t ProcessProperties::GetVirtualAddressableBits() const { 219 const uint32_t idx = ePropertyVirtualAddressableBits; 220 return m_collection_sp->GetPropertyAtIndexAsUInt64( 221 nullptr, idx, g_process_properties[idx].default_uint_value); 222 } 223 224 void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) { 225 const uint32_t idx = ePropertyVirtualAddressableBits; 226 m_collection_sp->SetPropertyAtIndexAsUInt64(nullptr, idx, bits); 227 } 228 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 229 const uint32_t idx = ePropertyPythonOSPluginPath; 230 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 231 } 232 233 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 234 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 235 return m_collection_sp->GetPropertyAtIndexAsBoolean( 236 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 237 } 238 239 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 240 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 241 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 242 } 243 244 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 245 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 246 return m_collection_sp->GetPropertyAtIndexAsBoolean( 247 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 248 } 249 250 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 251 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 252 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 253 } 254 255 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 256 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 257 return m_collection_sp->GetPropertyAtIndexAsBoolean( 258 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 259 } 260 261 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 262 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 263 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 264 } 265 266 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const { 267 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 268 return m_collection_sp->GetPropertyAtIndexAsBoolean( 269 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 270 } 271 272 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) { 273 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 274 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, disable); 275 m_process->Flush(); 276 } 277 278 bool ProcessProperties::GetDetachKeepsStopped() const { 279 const uint32_t idx = ePropertyDetachKeepsStopped; 280 return m_collection_sp->GetPropertyAtIndexAsBoolean( 281 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 282 } 283 284 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 285 const uint32_t idx = ePropertyDetachKeepsStopped; 286 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 287 } 288 289 bool ProcessProperties::GetWarningsOptimization() const { 290 const uint32_t idx = ePropertyWarningOptimization; 291 return m_collection_sp->GetPropertyAtIndexAsBoolean( 292 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 293 } 294 295 bool ProcessProperties::GetWarningsUnsupportedLanguage() const { 296 const uint32_t idx = ePropertyWarningUnsupportedLanguage; 297 return m_collection_sp->GetPropertyAtIndexAsBoolean( 298 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 299 } 300 301 bool ProcessProperties::GetStopOnExec() const { 302 const uint32_t idx = ePropertyStopOnExec; 303 return m_collection_sp->GetPropertyAtIndexAsBoolean( 304 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 305 } 306 307 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { 308 const uint32_t idx = ePropertyUtilityExpressionTimeout; 309 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 310 nullptr, idx, g_process_properties[idx].default_uint_value); 311 return std::chrono::seconds(value); 312 } 313 314 std::chrono::seconds ProcessProperties::GetInterruptTimeout() const { 315 const uint32_t idx = ePropertyInterruptTimeout; 316 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 317 nullptr, idx, g_process_properties[idx].default_uint_value); 318 return std::chrono::seconds(value); 319 } 320 321 bool ProcessProperties::GetSteppingRunsAllThreads() const { 322 const uint32_t idx = ePropertySteppingRunsAllThreads; 323 return m_collection_sp->GetPropertyAtIndexAsBoolean( 324 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 325 } 326 327 bool ProcessProperties::GetOSPluginReportsAllThreads() const { 328 const bool fail_value = true; 329 const Property *exp_property = 330 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 331 OptionValueProperties *exp_values = 332 exp_property->GetValue()->GetAsProperties(); 333 if (!exp_values) 334 return fail_value; 335 336 return exp_values->GetPropertyAtIndexAsBoolean( 337 nullptr, ePropertyOSPluginReportsAllThreads, fail_value); 338 } 339 340 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) { 341 const Property *exp_property = 342 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 343 OptionValueProperties *exp_values = 344 exp_property->GetValue()->GetAsProperties(); 345 if (exp_values) 346 exp_values->SetPropertyAtIndexAsBoolean( 347 nullptr, ePropertyOSPluginReportsAllThreads, does_report); 348 } 349 350 FollowForkMode ProcessProperties::GetFollowForkMode() const { 351 const uint32_t idx = ePropertyFollowForkMode; 352 return (FollowForkMode)m_collection_sp->GetPropertyAtIndexAsEnumeration( 353 nullptr, idx, g_process_properties[idx].default_uint_value); 354 } 355 356 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 357 llvm::StringRef plugin_name, 358 ListenerSP listener_sp, 359 const FileSpec *crash_file_path, 360 bool can_connect) { 361 static uint32_t g_process_unique_id = 0; 362 363 ProcessSP process_sp; 364 ProcessCreateInstance create_callback = nullptr; 365 if (!plugin_name.empty()) { 366 ConstString const_plugin_name(plugin_name); 367 create_callback = 368 PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name); 369 if (create_callback) { 370 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 371 can_connect); 372 if (process_sp) { 373 if (process_sp->CanDebug(target_sp, true)) { 374 process_sp->m_process_unique_id = ++g_process_unique_id; 375 } else 376 process_sp.reset(); 377 } 378 } 379 } else { 380 for (uint32_t idx = 0; 381 (create_callback = 382 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 383 ++idx) { 384 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 385 can_connect); 386 if (process_sp) { 387 if (process_sp->CanDebug(target_sp, false)) { 388 process_sp->m_process_unique_id = ++g_process_unique_id; 389 break; 390 } else 391 process_sp.reset(); 392 } 393 } 394 } 395 return process_sp; 396 } 397 398 ConstString &Process::GetStaticBroadcasterClass() { 399 static ConstString class_name("lldb.process"); 400 return class_name; 401 } 402 403 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 404 : Process(target_sp, listener_sp, 405 UnixSignals::Create(HostInfo::GetArchitecture())) { 406 // This constructor just delegates to the full Process constructor, 407 // defaulting to using the Host's UnixSignals. 408 } 409 410 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 411 const UnixSignalsSP &unix_signals_sp) 412 : ProcessProperties(this), 413 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 414 Process::GetStaticBroadcasterClass().AsCString()), 415 m_target_wp(target_sp), m_public_state(eStateUnloaded), 416 m_private_state(eStateUnloaded), 417 m_private_state_broadcaster(nullptr, 418 "lldb.process.internal_state_broadcaster"), 419 m_private_state_control_broadcaster( 420 nullptr, "lldb.process.internal_state_control_broadcaster"), 421 m_private_state_listener_sp( 422 Listener::MakeListener("lldb.process.internal_state_listener")), 423 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 424 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 425 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 426 m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this), 427 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 428 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 429 m_breakpoint_site_list(), m_dynamic_checkers_up(), 430 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 431 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 432 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 433 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 434 m_memory_cache(*this), m_allocated_memory_cache(*this), 435 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), 436 m_private_run_lock(), m_finalizing(false), 437 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 438 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 439 m_can_interpret_function_calls(false), m_warnings_issued(), 440 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 441 CheckInWithManager(); 442 443 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 444 LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this)); 445 446 if (!m_unix_signals_sp) 447 m_unix_signals_sp = std::make_shared<UnixSignals>(); 448 449 SetEventName(eBroadcastBitStateChanged, "state-changed"); 450 SetEventName(eBroadcastBitInterrupt, "interrupt"); 451 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 452 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 453 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 454 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 455 456 m_private_state_control_broadcaster.SetEventName( 457 eBroadcastInternalStateControlStop, "control-stop"); 458 m_private_state_control_broadcaster.SetEventName( 459 eBroadcastInternalStateControlPause, "control-pause"); 460 m_private_state_control_broadcaster.SetEventName( 461 eBroadcastInternalStateControlResume, "control-resume"); 462 463 m_listener_sp->StartListeningForEvents( 464 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 465 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 466 eBroadcastBitProfileData | eBroadcastBitStructuredData); 467 468 m_private_state_listener_sp->StartListeningForEvents( 469 &m_private_state_broadcaster, 470 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 471 472 m_private_state_listener_sp->StartListeningForEvents( 473 &m_private_state_control_broadcaster, 474 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 475 eBroadcastInternalStateControlResume); 476 // We need something valid here, even if just the default UnixSignalsSP. 477 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 478 479 // Allow the platform to override the default cache line size 480 OptionValueSP value_sp = 481 m_collection_sp 482 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 483 ->GetValue(); 484 uint32_t platform_cache_line_size = 485 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 486 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 487 value_sp->SetUInt64Value(platform_cache_line_size); 488 489 RegisterAssertFrameRecognizer(this); 490 } 491 492 Process::~Process() { 493 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 494 LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this)); 495 StopPrivateStateThread(); 496 497 // ThreadList::Clear() will try to acquire this process's mutex, so 498 // explicitly clear the thread list here to ensure that the mutex is not 499 // destroyed before the thread list. 500 m_thread_list.Clear(); 501 } 502 503 const ProcessPropertiesSP &Process::GetGlobalProperties() { 504 // NOTE: intentional leak so we don't crash if global destructor chain gets 505 // called as other threads still use the result of this function 506 static ProcessPropertiesSP *g_settings_sp_ptr = 507 new ProcessPropertiesSP(new ProcessProperties(nullptr)); 508 return *g_settings_sp_ptr; 509 } 510 511 void Process::Finalize() { 512 if (m_finalizing.exchange(true)) 513 return; 514 515 // Destroy the process. This will call the virtual function DoDestroy under 516 // the hood, giving our derived class a chance to do the ncessary tear down. 517 DestroyImpl(false); 518 519 // Clear our broadcaster before we proceed with destroying 520 Broadcaster::Clear(); 521 522 // Do any cleanup needed prior to being destructed... Subclasses that 523 // override this method should call this superclass method as well. 524 525 // We need to destroy the loader before the derived Process class gets 526 // destroyed since it is very likely that undoing the loader will require 527 // access to the real process. 528 m_dynamic_checkers_up.reset(); 529 m_abi_sp.reset(); 530 m_os_up.reset(); 531 m_system_runtime_up.reset(); 532 m_dyld_up.reset(); 533 m_jit_loaders_up.reset(); 534 m_thread_plans.Clear(); 535 m_thread_list_real.Destroy(); 536 m_thread_list.Destroy(); 537 m_extended_thread_list.Destroy(); 538 m_queue_list.Clear(); 539 m_queue_list_stop_id = 0; 540 std::vector<Notifications> empty_notifications; 541 m_notifications.swap(empty_notifications); 542 m_image_tokens.clear(); 543 m_memory_cache.Clear(); 544 m_allocated_memory_cache.Clear(); 545 { 546 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 547 m_language_runtimes.clear(); 548 } 549 m_instrumentation_runtimes.clear(); 550 m_next_event_action_up.reset(); 551 // Clear the last natural stop ID since it has a strong reference to this 552 // process 553 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 554 //#ifdef LLDB_CONFIGURATION_DEBUG 555 // StreamFile s(stdout, false); 556 // EventSP event_sp; 557 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 558 // { 559 // event_sp->Dump (&s); 560 // s.EOL(); 561 // } 562 //#endif 563 // We have to be very careful here as the m_private_state_listener might 564 // contain events that have ProcessSP values in them which can keep this 565 // process around forever. These events need to be cleared out. 566 m_private_state_listener_sp->Clear(); 567 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 568 m_public_run_lock.SetStopped(); 569 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 570 m_private_run_lock.SetStopped(); 571 m_structured_data_plugin_map.clear(); 572 } 573 574 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 575 m_notifications.push_back(callbacks); 576 if (callbacks.initialize != nullptr) 577 callbacks.initialize(callbacks.baton, this); 578 } 579 580 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 581 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 582 for (pos = m_notifications.begin(); pos != end; ++pos) { 583 if (pos->baton == callbacks.baton && 584 pos->initialize == callbacks.initialize && 585 pos->process_state_changed == callbacks.process_state_changed) { 586 m_notifications.erase(pos); 587 return true; 588 } 589 } 590 return false; 591 } 592 593 void Process::SynchronouslyNotifyStateChanged(StateType state) { 594 std::vector<Notifications>::iterator notification_pos, 595 notification_end = m_notifications.end(); 596 for (notification_pos = m_notifications.begin(); 597 notification_pos != notification_end; ++notification_pos) { 598 if (notification_pos->process_state_changed) 599 notification_pos->process_state_changed(notification_pos->baton, this, 600 state); 601 } 602 } 603 604 // FIXME: We need to do some work on events before the general Listener sees 605 // them. 606 // For instance if we are continuing from a breakpoint, we need to ensure that 607 // we do the little "insert real insn, step & stop" trick. But we can't do 608 // that when the event is delivered by the broadcaster - since that is done on 609 // the thread that is waiting for new events, so if we needed more than one 610 // event for our handling, we would stall. So instead we do it when we fetch 611 // the event off of the queue. 612 // 613 614 StateType Process::GetNextEvent(EventSP &event_sp) { 615 StateType state = eStateInvalid; 616 617 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 618 std::chrono::seconds(0)) && 619 event_sp) 620 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 621 622 return state; 623 } 624 625 void Process::SyncIOHandler(uint32_t iohandler_id, 626 const Timeout<std::micro> &timeout) { 627 // don't sync (potentially context switch) in case where there is no process 628 // IO 629 if (!m_process_input_reader) 630 return; 631 632 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 633 634 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 635 if (Result) { 636 LLDB_LOG( 637 log, 638 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 639 iohandler_id, *Result); 640 } else { 641 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 642 iohandler_id); 643 } 644 } 645 646 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 647 EventSP *event_sp_ptr, bool wait_always, 648 ListenerSP hijack_listener_sp, 649 Stream *stream, bool use_run_lock) { 650 // We can't just wait for a "stopped" event, because the stopped event may 651 // have restarted the target. We have to actually check each event, and in 652 // the case of a stopped event check the restarted flag on the event. 653 if (event_sp_ptr) 654 event_sp_ptr->reset(); 655 StateType state = GetState(); 656 // If we are exited or detached, we won't ever get back to any other valid 657 // state... 658 if (state == eStateDetached || state == eStateExited) 659 return state; 660 661 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 662 LLDB_LOG(log, "timeout = {0}", timeout); 663 664 if (!wait_always && StateIsStoppedState(state, true) && 665 StateIsStoppedState(GetPrivateState(), true)) { 666 LLDB_LOGF(log, 667 "Process::%s returning without waiting for events; process " 668 "private and public states are already 'stopped'.", 669 __FUNCTION__); 670 // We need to toggle the run lock as this won't get done in 671 // SetPublicState() if the process is hijacked. 672 if (hijack_listener_sp && use_run_lock) 673 m_public_run_lock.SetStopped(); 674 return state; 675 } 676 677 while (state != eStateInvalid) { 678 EventSP event_sp; 679 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 680 if (event_sp_ptr && event_sp) 681 *event_sp_ptr = event_sp; 682 683 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 684 Process::HandleProcessStateChangedEvent(event_sp, stream, 685 pop_process_io_handler); 686 687 switch (state) { 688 case eStateCrashed: 689 case eStateDetached: 690 case eStateExited: 691 case eStateUnloaded: 692 // We need to toggle the run lock as this won't get done in 693 // SetPublicState() if the process is hijacked. 694 if (hijack_listener_sp && use_run_lock) 695 m_public_run_lock.SetStopped(); 696 return state; 697 case eStateStopped: 698 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 699 continue; 700 else { 701 // We need to toggle the run lock as this won't get done in 702 // SetPublicState() if the process is hijacked. 703 if (hijack_listener_sp && use_run_lock) 704 m_public_run_lock.SetStopped(); 705 return state; 706 } 707 default: 708 continue; 709 } 710 } 711 return state; 712 } 713 714 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 715 Stream *stream, 716 bool &pop_process_io_handler) { 717 const bool handle_pop = pop_process_io_handler; 718 719 pop_process_io_handler = false; 720 ProcessSP process_sp = 721 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 722 723 if (!process_sp) 724 return false; 725 726 StateType event_state = 727 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 728 if (event_state == eStateInvalid) 729 return false; 730 731 switch (event_state) { 732 case eStateInvalid: 733 case eStateUnloaded: 734 case eStateAttaching: 735 case eStateLaunching: 736 case eStateStepping: 737 case eStateDetached: 738 if (stream) 739 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 740 StateAsCString(event_state)); 741 if (event_state == eStateDetached) 742 pop_process_io_handler = true; 743 break; 744 745 case eStateConnected: 746 case eStateRunning: 747 // Don't be chatty when we run... 748 break; 749 750 case eStateExited: 751 if (stream) 752 process_sp->GetStatus(*stream); 753 pop_process_io_handler = true; 754 break; 755 756 case eStateStopped: 757 case eStateCrashed: 758 case eStateSuspended: 759 // Make sure the program hasn't been auto-restarted: 760 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 761 if (stream) { 762 size_t num_reasons = 763 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 764 if (num_reasons > 0) { 765 // FIXME: Do we want to report this, or would that just be annoyingly 766 // chatty? 767 if (num_reasons == 1) { 768 const char *reason = 769 Process::ProcessEventData::GetRestartedReasonAtIndex( 770 event_sp.get(), 0); 771 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 772 process_sp->GetID(), 773 reason ? reason : "<UNKNOWN REASON>"); 774 } else { 775 stream->Printf("Process %" PRIu64 776 " stopped and restarted, reasons:\n", 777 process_sp->GetID()); 778 779 for (size_t i = 0; i < num_reasons; i++) { 780 const char *reason = 781 Process::ProcessEventData::GetRestartedReasonAtIndex( 782 event_sp.get(), i); 783 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 784 } 785 } 786 } 787 } 788 } else { 789 StopInfoSP curr_thread_stop_info_sp; 790 // Lock the thread list so it doesn't change on us, this is the scope for 791 // the locker: 792 { 793 ThreadList &thread_list = process_sp->GetThreadList(); 794 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 795 796 ThreadSP curr_thread(thread_list.GetSelectedThread()); 797 ThreadSP thread; 798 StopReason curr_thread_stop_reason = eStopReasonInvalid; 799 bool prefer_curr_thread = false; 800 if (curr_thread && curr_thread->IsValid()) { 801 curr_thread_stop_reason = curr_thread->GetStopReason(); 802 switch (curr_thread_stop_reason) { 803 case eStopReasonNone: 804 case eStopReasonInvalid: 805 // Don't prefer the current thread if it didn't stop for a reason. 806 break; 807 case eStopReasonSignal: { 808 // We need to do the same computation we do for other threads 809 // below in case the current thread happens to be the one that 810 // stopped for the no-stop signal. 811 uint64_t signo = curr_thread->GetStopInfo()->GetValue(); 812 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) 813 prefer_curr_thread = true; 814 } break; 815 default: 816 prefer_curr_thread = true; 817 break; 818 } 819 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 820 } 821 822 if (!prefer_curr_thread) { 823 // Prefer a thread that has just completed its plan over another 824 // thread as current thread. 825 ThreadSP plan_thread; 826 ThreadSP other_thread; 827 828 const size_t num_threads = thread_list.GetSize(); 829 size_t i; 830 for (i = 0; i < num_threads; ++i) { 831 thread = thread_list.GetThreadAtIndex(i); 832 StopReason thread_stop_reason = thread->GetStopReason(); 833 switch (thread_stop_reason) { 834 case eStopReasonInvalid: 835 case eStopReasonNone: 836 break; 837 838 case eStopReasonSignal: { 839 // Don't select a signal thread if we weren't going to stop at 840 // that signal. We have to have had another reason for stopping 841 // here, and the user doesn't want to see this thread. 842 uint64_t signo = thread->GetStopInfo()->GetValue(); 843 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 844 if (!other_thread) 845 other_thread = thread; 846 } 847 break; 848 } 849 case eStopReasonTrace: 850 case eStopReasonBreakpoint: 851 case eStopReasonWatchpoint: 852 case eStopReasonException: 853 case eStopReasonExec: 854 case eStopReasonFork: 855 case eStopReasonVFork: 856 case eStopReasonVForkDone: 857 case eStopReasonThreadExiting: 858 case eStopReasonInstrumentation: 859 case eStopReasonProcessorTrace: 860 if (!other_thread) 861 other_thread = thread; 862 break; 863 case eStopReasonPlanComplete: 864 if (!plan_thread) 865 plan_thread = thread; 866 break; 867 } 868 } 869 if (plan_thread) 870 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 871 else if (other_thread) 872 thread_list.SetSelectedThreadByID(other_thread->GetID()); 873 else { 874 if (curr_thread && curr_thread->IsValid()) 875 thread = curr_thread; 876 else 877 thread = thread_list.GetThreadAtIndex(0); 878 879 if (thread) 880 thread_list.SetSelectedThreadByID(thread->GetID()); 881 } 882 } 883 } 884 // Drop the ThreadList mutex by here, since GetThreadStatus below might 885 // have to run code, e.g. for Data formatters, and if we hold the 886 // ThreadList mutex, then the process is going to have a hard time 887 // restarting the process. 888 if (stream) { 889 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 890 if (debugger.GetTargetList().GetSelectedTarget().get() == 891 &process_sp->GetTarget()) { 892 ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); 893 894 if (!thread_sp || !thread_sp->IsValid()) 895 return false; 896 897 const bool only_threads_with_stop_reason = true; 898 const uint32_t start_frame = thread_sp->GetSelectedFrameIndex(); 899 const uint32_t num_frames = 1; 900 const uint32_t num_frames_with_source = 1; 901 const bool stop_format = true; 902 903 process_sp->GetStatus(*stream); 904 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 905 start_frame, num_frames, 906 num_frames_with_source, 907 stop_format); 908 if (curr_thread_stop_info_sp) { 909 lldb::addr_t crashing_address; 910 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 911 curr_thread_stop_info_sp, &crashing_address); 912 if (valobj_sp) { 913 const ValueObject::GetExpressionPathFormat format = 914 ValueObject::GetExpressionPathFormat:: 915 eGetExpressionPathFormatHonorPointers; 916 stream->PutCString("Likely cause: "); 917 valobj_sp->GetExpressionPath(*stream, format); 918 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 919 } 920 } 921 } else { 922 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 923 process_sp->GetTarget().shared_from_this()); 924 if (target_idx != UINT32_MAX) 925 stream->Printf("Target %d: (", target_idx); 926 else 927 stream->Printf("Target <unknown index>: ("); 928 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 929 stream->Printf(") stopped.\n"); 930 } 931 } 932 933 // Pop the process IO handler 934 pop_process_io_handler = true; 935 } 936 break; 937 } 938 939 if (handle_pop && pop_process_io_handler) 940 process_sp->PopProcessIOHandler(); 941 942 return true; 943 } 944 945 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 946 if (listener_sp) { 947 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 948 eBroadcastBitInterrupt); 949 } else 950 return false; 951 } 952 953 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 954 955 StateType Process::GetStateChangedEvents(EventSP &event_sp, 956 const Timeout<std::micro> &timeout, 957 ListenerSP hijack_listener_sp) { 958 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 959 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 960 961 ListenerSP listener_sp = hijack_listener_sp; 962 if (!listener_sp) 963 listener_sp = m_listener_sp; 964 965 StateType state = eStateInvalid; 966 if (listener_sp->GetEventForBroadcasterWithType( 967 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 968 timeout)) { 969 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 970 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 971 else 972 LLDB_LOG(log, "got no event or was interrupted."); 973 } 974 975 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 976 return state; 977 } 978 979 Event *Process::PeekAtStateChangedEvents() { 980 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 981 982 LLDB_LOGF(log, "Process::%s...", __FUNCTION__); 983 984 Event *event_ptr; 985 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 986 this, eBroadcastBitStateChanged); 987 if (log) { 988 if (event_ptr) { 989 LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, 990 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 991 } else { 992 LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); 993 } 994 } 995 return event_ptr; 996 } 997 998 StateType 999 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 1000 const Timeout<std::micro> &timeout) { 1001 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1002 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1003 1004 StateType state = eStateInvalid; 1005 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1006 &m_private_state_broadcaster, 1007 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1008 timeout)) 1009 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1010 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1011 1012 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1013 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1014 return state; 1015 } 1016 1017 bool Process::GetEventsPrivate(EventSP &event_sp, 1018 const Timeout<std::micro> &timeout, 1019 bool control_only) { 1020 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1021 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1022 1023 if (control_only) 1024 return m_private_state_listener_sp->GetEventForBroadcaster( 1025 &m_private_state_control_broadcaster, event_sp, timeout); 1026 else 1027 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1028 } 1029 1030 bool Process::IsRunning() const { 1031 return StateIsRunningState(m_public_state.GetValue()); 1032 } 1033 1034 int Process::GetExitStatus() { 1035 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1036 1037 if (m_public_state.GetValue() == eStateExited) 1038 return m_exit_status; 1039 return -1; 1040 } 1041 1042 const char *Process::GetExitDescription() { 1043 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1044 1045 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1046 return m_exit_string.c_str(); 1047 return nullptr; 1048 } 1049 1050 bool Process::SetExitStatus(int status, const char *cstr) { 1051 // Use a mutex to protect setting the exit status. 1052 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1053 1054 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1055 LIBLLDB_LOG_PROCESS)); 1056 LLDB_LOGF( 1057 log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1058 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : ""); 1059 1060 // We were already in the exited state 1061 if (m_private_state.GetValue() == eStateExited) { 1062 LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because " 1063 "state was already set to eStateExited"); 1064 return false; 1065 } 1066 1067 m_exit_status = status; 1068 if (cstr) 1069 m_exit_string = cstr; 1070 else 1071 m_exit_string.clear(); 1072 1073 // Clear the last natural stop ID since it has a strong reference to this 1074 // process 1075 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1076 1077 SetPrivateState(eStateExited); 1078 1079 // Allow subclasses to do some cleanup 1080 DidExit(); 1081 1082 return true; 1083 } 1084 1085 bool Process::IsAlive() { 1086 switch (m_private_state.GetValue()) { 1087 case eStateConnected: 1088 case eStateAttaching: 1089 case eStateLaunching: 1090 case eStateStopped: 1091 case eStateRunning: 1092 case eStateStepping: 1093 case eStateCrashed: 1094 case eStateSuspended: 1095 return true; 1096 default: 1097 return false; 1098 } 1099 } 1100 1101 // This static callback can be used to watch for local child processes on the 1102 // current host. The child process exits, the process will be found in the 1103 // global target list (we want to be completely sure that the 1104 // lldb_private::Process doesn't go away before we can deliver the signal. 1105 bool Process::SetProcessExitStatus( 1106 lldb::pid_t pid, bool exited, 1107 int signo, // Zero for no signal 1108 int exit_status // Exit value of process if signal is zero 1109 ) { 1110 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 1111 LLDB_LOGF(log, 1112 "Process::SetProcessExitStatus (pid=%" PRIu64 1113 ", exited=%i, signal=%i, exit_status=%i)\n", 1114 pid, exited, signo, exit_status); 1115 1116 if (exited) { 1117 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1118 if (target_sp) { 1119 ProcessSP process_sp(target_sp->GetProcessSP()); 1120 if (process_sp) { 1121 const char *signal_cstr = nullptr; 1122 if (signo) 1123 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1124 1125 process_sp->SetExitStatus(exit_status, signal_cstr); 1126 } 1127 } 1128 return true; 1129 } 1130 return false; 1131 } 1132 1133 bool Process::UpdateThreadList(ThreadList &old_thread_list, 1134 ThreadList &new_thread_list) { 1135 m_thread_plans.ClearThreadCache(); 1136 return DoUpdateThreadList(old_thread_list, new_thread_list); 1137 } 1138 1139 void Process::UpdateThreadListIfNeeded() { 1140 const uint32_t stop_id = GetStopID(); 1141 if (m_thread_list.GetSize(false) == 0 || 1142 stop_id != m_thread_list.GetStopID()) { 1143 bool clear_unused_threads = true; 1144 const StateType state = GetPrivateState(); 1145 if (StateIsStoppedState(state, true)) { 1146 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1147 m_thread_list.SetStopID(stop_id); 1148 1149 // m_thread_list does have its own mutex, but we need to hold onto the 1150 // mutex between the call to UpdateThreadList(...) and the 1151 // os->UpdateThreadList(...) so it doesn't change on us 1152 ThreadList &old_thread_list = m_thread_list; 1153 ThreadList real_thread_list(this); 1154 ThreadList new_thread_list(this); 1155 // Always update the thread list with the protocol specific thread list, 1156 // but only update if "true" is returned 1157 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1158 // Don't call into the OperatingSystem to update the thread list if we 1159 // are shutting down, since that may call back into the SBAPI's, 1160 // requiring the API lock which is already held by whoever is shutting 1161 // us down, causing a deadlock. 1162 OperatingSystem *os = GetOperatingSystem(); 1163 if (os && !m_destroy_in_process) { 1164 // Clear any old backing threads where memory threads might have been 1165 // backed by actual threads from the lldb_private::Process subclass 1166 size_t num_old_threads = old_thread_list.GetSize(false); 1167 for (size_t i = 0; i < num_old_threads; ++i) 1168 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1169 // See if the OS plugin reports all threads. If it does, then 1170 // it is safe to clear unseen thread's plans here. Otherwise we 1171 // should preserve them in case they show up again: 1172 clear_unused_threads = GetOSPluginReportsAllThreads(); 1173 1174 // Turn off dynamic types to ensure we don't run any expressions. 1175 // Objective-C can run an expression to determine if a SBValue is a 1176 // dynamic type or not and we need to avoid this. OperatingSystem 1177 // plug-ins can't run expressions that require running code... 1178 1179 Target &target = GetTarget(); 1180 const lldb::DynamicValueType saved_prefer_dynamic = 1181 target.GetPreferDynamicValue(); 1182 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1183 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1184 1185 // Now let the OperatingSystem plug-in update the thread list 1186 1187 os->UpdateThreadList( 1188 old_thread_list, // Old list full of threads created by OS plug-in 1189 real_thread_list, // The actual thread list full of threads 1190 // created by each lldb_private::Process 1191 // subclass 1192 new_thread_list); // The new thread list that we will show to the 1193 // user that gets filled in 1194 1195 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1196 target.SetPreferDynamicValue(saved_prefer_dynamic); 1197 } else { 1198 // No OS plug-in, the new thread list is the same as the real thread 1199 // list. 1200 new_thread_list = real_thread_list; 1201 } 1202 1203 m_thread_list_real.Update(real_thread_list); 1204 m_thread_list.Update(new_thread_list); 1205 m_thread_list.SetStopID(stop_id); 1206 1207 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1208 // Clear any extended threads that we may have accumulated previously 1209 m_extended_thread_list.Clear(); 1210 m_extended_thread_stop_id = GetLastNaturalStopID(); 1211 1212 m_queue_list.Clear(); 1213 m_queue_list_stop_id = GetLastNaturalStopID(); 1214 } 1215 } 1216 // Now update the plan stack map. 1217 // If we do have an OS plugin, any absent real threads in the 1218 // m_thread_list have already been removed from the ThreadPlanStackMap. 1219 // So any remaining threads are OS Plugin threads, and those we want to 1220 // preserve in case they show up again. 1221 m_thread_plans.Update(m_thread_list, clear_unused_threads); 1222 } 1223 } 1224 } 1225 1226 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) { 1227 return m_thread_plans.Find(tid); 1228 } 1229 1230 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) { 1231 return m_thread_plans.PrunePlansForTID(tid); 1232 } 1233 1234 void Process::PruneThreadPlans() { 1235 m_thread_plans.Update(GetThreadList(), true, false); 1236 } 1237 1238 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid, 1239 lldb::DescriptionLevel desc_level, 1240 bool internal, bool condense_trivial, 1241 bool skip_unreported_plans) { 1242 return m_thread_plans.DumpPlansForTID( 1243 strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans); 1244 } 1245 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level, 1246 bool internal, bool condense_trivial, 1247 bool skip_unreported_plans) { 1248 m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial, 1249 skip_unreported_plans); 1250 } 1251 1252 void Process::UpdateQueueListIfNeeded() { 1253 if (m_system_runtime_up) { 1254 if (m_queue_list.GetSize() == 0 || 1255 m_queue_list_stop_id != GetLastNaturalStopID()) { 1256 const StateType state = GetPrivateState(); 1257 if (StateIsStoppedState(state, true)) { 1258 m_system_runtime_up->PopulateQueueList(m_queue_list); 1259 m_queue_list_stop_id = GetLastNaturalStopID(); 1260 } 1261 } 1262 } 1263 } 1264 1265 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1266 OperatingSystem *os = GetOperatingSystem(); 1267 if (os) 1268 return os->CreateThread(tid, context); 1269 return ThreadSP(); 1270 } 1271 1272 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1273 return AssignIndexIDToThread(thread_id); 1274 } 1275 1276 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1277 return (m_thread_id_to_index_id_map.find(thread_id) != 1278 m_thread_id_to_index_id_map.end()); 1279 } 1280 1281 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1282 uint32_t result = 0; 1283 std::map<uint64_t, uint32_t>::iterator iterator = 1284 m_thread_id_to_index_id_map.find(thread_id); 1285 if (iterator == m_thread_id_to_index_id_map.end()) { 1286 result = ++m_thread_index_id; 1287 m_thread_id_to_index_id_map[thread_id] = result; 1288 } else { 1289 result = iterator->second; 1290 } 1291 1292 return result; 1293 } 1294 1295 StateType Process::GetState() { 1296 return m_public_state.GetValue(); 1297 } 1298 1299 void Process::SetPublicState(StateType new_state, bool restarted) { 1300 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1301 LIBLLDB_LOG_PROCESS)); 1302 LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)", 1303 StateAsCString(new_state), restarted); 1304 const StateType old_state = m_public_state.GetValue(); 1305 m_public_state.SetValue(new_state); 1306 1307 // On the transition from Run to Stopped, we unlock the writer end of the run 1308 // lock. The lock gets locked in Resume, which is the public API to tell the 1309 // program to run. 1310 if (!StateChangedIsExternallyHijacked()) { 1311 if (new_state == eStateDetached) { 1312 LLDB_LOGF(log, 1313 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1314 StateAsCString(new_state)); 1315 m_public_run_lock.SetStopped(); 1316 } else { 1317 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1318 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1319 if ((old_state_is_stopped != new_state_is_stopped)) { 1320 if (new_state_is_stopped && !restarted) { 1321 LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock", 1322 StateAsCString(new_state)); 1323 m_public_run_lock.SetStopped(); 1324 } 1325 } 1326 } 1327 } 1328 } 1329 1330 Status Process::Resume() { 1331 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1332 LIBLLDB_LOG_PROCESS)); 1333 LLDB_LOGF(log, "Process::Resume -- locking run lock"); 1334 if (!m_public_run_lock.TrySetRunning()) { 1335 Status error("Resume request failed - process still running."); 1336 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1337 return error; 1338 } 1339 Status error = PrivateResume(); 1340 if (!error.Success()) { 1341 // Undo running state change 1342 m_public_run_lock.SetStopped(); 1343 } 1344 return error; 1345 } 1346 1347 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack"; 1348 1349 Status Process::ResumeSynchronous(Stream *stream) { 1350 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1351 LIBLLDB_LOG_PROCESS)); 1352 LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); 1353 if (!m_public_run_lock.TrySetRunning()) { 1354 Status error("Resume request failed - process still running."); 1355 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1356 return error; 1357 } 1358 1359 ListenerSP listener_sp( 1360 Listener::MakeListener(g_resume_sync_name)); 1361 HijackProcessEvents(listener_sp); 1362 1363 Status error = PrivateResume(); 1364 if (error.Success()) { 1365 StateType state = WaitForProcessToStop(llvm::None, nullptr, true, 1366 listener_sp, stream); 1367 const bool must_be_alive = 1368 false; // eStateExited is ok, so this must be false 1369 if (!StateIsStoppedState(state, must_be_alive)) 1370 error.SetErrorStringWithFormat( 1371 "process not in stopped state after synchronous resume: %s", 1372 StateAsCString(state)); 1373 } else { 1374 // Undo running state change 1375 m_public_run_lock.SetStopped(); 1376 } 1377 1378 // Undo the hijacking of process events... 1379 RestoreProcessEvents(); 1380 1381 return error; 1382 } 1383 1384 bool Process::StateChangedIsExternallyHijacked() { 1385 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1386 const char *hijacking_name = GetHijackingListenerName(); 1387 if (hijacking_name && 1388 strcmp(hijacking_name, g_resume_sync_name)) 1389 return true; 1390 } 1391 return false; 1392 } 1393 1394 bool Process::StateChangedIsHijackedForSynchronousResume() { 1395 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1396 const char *hijacking_name = GetHijackingListenerName(); 1397 if (hijacking_name && 1398 strcmp(hijacking_name, g_resume_sync_name) == 0) 1399 return true; 1400 } 1401 return false; 1402 } 1403 1404 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1405 1406 void Process::SetPrivateState(StateType new_state) { 1407 if (m_finalizing) 1408 return; 1409 1410 Log *log(lldb_private::GetLogIfAnyCategoriesSet( 1411 LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_UNWIND)); 1412 bool state_changed = false; 1413 1414 LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state)); 1415 1416 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1417 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1418 1419 const StateType old_state = m_private_state.GetValueNoLock(); 1420 state_changed = old_state != new_state; 1421 1422 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1423 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1424 if (old_state_is_stopped != new_state_is_stopped) { 1425 if (new_state_is_stopped) 1426 m_private_run_lock.SetStopped(); 1427 else 1428 m_private_run_lock.SetRunning(); 1429 } 1430 1431 if (state_changed) { 1432 m_private_state.SetValueNoLock(new_state); 1433 EventSP event_sp( 1434 new Event(eBroadcastBitStateChanged, 1435 new ProcessEventData(shared_from_this(), new_state))); 1436 if (StateIsStoppedState(new_state, false)) { 1437 // Note, this currently assumes that all threads in the list stop when 1438 // the process stops. In the future we will want to support a debugging 1439 // model where some threads continue to run while others are stopped. 1440 // When that happens we will either need a way for the thread list to 1441 // identify which threads are stopping or create a special thread list 1442 // containing only threads which actually stopped. 1443 // 1444 // The process plugin is responsible for managing the actual behavior of 1445 // the threads and should have stopped any threads that are going to stop 1446 // before we get here. 1447 m_thread_list.DidStop(); 1448 1449 m_mod_id.BumpStopID(); 1450 if (!m_mod_id.IsLastResumeForUserExpression()) 1451 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1452 m_memory_cache.Clear(); 1453 LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u", 1454 StateAsCString(new_state), m_mod_id.GetStopID()); 1455 } 1456 1457 m_private_state_broadcaster.BroadcastEvent(event_sp); 1458 } else { 1459 LLDB_LOGF(log, 1460 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1461 StateAsCString(new_state)); 1462 } 1463 } 1464 1465 void Process::SetRunningUserExpression(bool on) { 1466 m_mod_id.SetRunningUserExpression(on); 1467 } 1468 1469 void Process::SetRunningUtilityFunction(bool on) { 1470 m_mod_id.SetRunningUtilityFunction(on); 1471 } 1472 1473 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1474 1475 const lldb::ABISP &Process::GetABI() { 1476 if (!m_abi_sp) 1477 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1478 return m_abi_sp; 1479 } 1480 1481 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { 1482 std::vector<LanguageRuntime *> language_runtimes; 1483 1484 if (m_finalizing) 1485 return language_runtimes; 1486 1487 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1488 // Before we pass off a copy of the language runtimes, we must make sure that 1489 // our collection is properly populated. It's possible that some of the 1490 // language runtimes were not loaded yet, either because nobody requested it 1491 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so 1492 // hadn't been loaded). 1493 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 1494 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 1495 language_runtimes.emplace_back(runtime); 1496 } 1497 1498 return language_runtimes; 1499 } 1500 1501 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { 1502 if (m_finalizing) 1503 return nullptr; 1504 1505 LanguageRuntime *runtime = nullptr; 1506 1507 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1508 LanguageRuntimeCollection::iterator pos; 1509 pos = m_language_runtimes.find(language); 1510 if (pos == m_language_runtimes.end() || !pos->second) { 1511 lldb::LanguageRuntimeSP runtime_sp( 1512 LanguageRuntime::FindPlugin(this, language)); 1513 1514 m_language_runtimes[language] = runtime_sp; 1515 runtime = runtime_sp.get(); 1516 } else 1517 runtime = pos->second.get(); 1518 1519 if (runtime) 1520 // It's possible that a language runtime can support multiple LanguageTypes, 1521 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, 1522 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the 1523 // primary language type and make sure that our runtime supports it. 1524 assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); 1525 1526 return runtime; 1527 } 1528 1529 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1530 if (m_finalizing) 1531 return false; 1532 1533 if (in_value.IsDynamic()) 1534 return false; 1535 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1536 1537 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1538 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1539 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1540 } 1541 1542 for (LanguageRuntime *runtime : GetLanguageRuntimes()) { 1543 if (runtime->CouldHaveDynamicValue(in_value)) 1544 return true; 1545 } 1546 1547 return false; 1548 } 1549 1550 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1551 m_dynamic_checkers_up.reset(dynamic_checkers); 1552 } 1553 1554 BreakpointSiteList &Process::GetBreakpointSiteList() { 1555 return m_breakpoint_site_list; 1556 } 1557 1558 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1559 return m_breakpoint_site_list; 1560 } 1561 1562 void Process::DisableAllBreakpointSites() { 1563 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1564 // bp_site->SetEnabled(true); 1565 DisableBreakpointSite(bp_site); 1566 }); 1567 } 1568 1569 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1570 Status error(DisableBreakpointSiteByID(break_id)); 1571 1572 if (error.Success()) 1573 m_breakpoint_site_list.Remove(break_id); 1574 1575 return error; 1576 } 1577 1578 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1579 Status error; 1580 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1581 if (bp_site_sp) { 1582 if (bp_site_sp->IsEnabled()) 1583 error = DisableBreakpointSite(bp_site_sp.get()); 1584 } else { 1585 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1586 break_id); 1587 } 1588 1589 return error; 1590 } 1591 1592 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1593 Status error; 1594 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1595 if (bp_site_sp) { 1596 if (!bp_site_sp->IsEnabled()) 1597 error = EnableBreakpointSite(bp_site_sp.get()); 1598 } else { 1599 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1600 break_id); 1601 } 1602 return error; 1603 } 1604 1605 lldb::break_id_t 1606 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1607 bool use_hardware) { 1608 addr_t load_addr = LLDB_INVALID_ADDRESS; 1609 1610 bool show_error = true; 1611 switch (GetState()) { 1612 case eStateInvalid: 1613 case eStateUnloaded: 1614 case eStateConnected: 1615 case eStateAttaching: 1616 case eStateLaunching: 1617 case eStateDetached: 1618 case eStateExited: 1619 show_error = false; 1620 break; 1621 1622 case eStateStopped: 1623 case eStateRunning: 1624 case eStateStepping: 1625 case eStateCrashed: 1626 case eStateSuspended: 1627 show_error = IsAlive(); 1628 break; 1629 } 1630 1631 // Reset the IsIndirect flag here, in case the location changes from pointing 1632 // to a indirect symbol to a regular symbol. 1633 owner->SetIsIndirect(false); 1634 1635 if (owner->ShouldResolveIndirectFunctions()) { 1636 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1637 if (symbol && symbol->IsIndirect()) { 1638 Status error; 1639 Address symbol_address = symbol->GetAddress(); 1640 load_addr = ResolveIndirectFunction(&symbol_address, error); 1641 if (!error.Success() && show_error) { 1642 GetTarget().GetDebugger().GetErrorStream().Printf( 1643 "warning: failed to resolve indirect function at 0x%" PRIx64 1644 " for breakpoint %i.%i: %s\n", 1645 symbol->GetLoadAddress(&GetTarget()), 1646 owner->GetBreakpoint().GetID(), owner->GetID(), 1647 error.AsCString() ? error.AsCString() : "unknown error"); 1648 return LLDB_INVALID_BREAK_ID; 1649 } 1650 Address resolved_address(load_addr); 1651 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1652 owner->SetIsIndirect(true); 1653 } else 1654 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1655 } else 1656 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1657 1658 if (load_addr != LLDB_INVALID_ADDRESS) { 1659 BreakpointSiteSP bp_site_sp; 1660 1661 // Look up this breakpoint site. If it exists, then add this new owner, 1662 // otherwise create a new breakpoint site and add it. 1663 1664 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1665 1666 if (bp_site_sp) { 1667 bp_site_sp->AddOwner(owner); 1668 owner->SetBreakpointSite(bp_site_sp); 1669 return bp_site_sp->GetID(); 1670 } else { 1671 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1672 load_addr, use_hardware)); 1673 if (bp_site_sp) { 1674 Status error = EnableBreakpointSite(bp_site_sp.get()); 1675 if (error.Success()) { 1676 owner->SetBreakpointSite(bp_site_sp); 1677 return m_breakpoint_site_list.Add(bp_site_sp); 1678 } else { 1679 if (show_error || use_hardware) { 1680 // Report error for setting breakpoint... 1681 GetTarget().GetDebugger().GetErrorStream().Printf( 1682 "warning: failed to set breakpoint site at 0x%" PRIx64 1683 " for breakpoint %i.%i: %s\n", 1684 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1685 error.AsCString() ? error.AsCString() : "unknown error"); 1686 } 1687 } 1688 } 1689 } 1690 } 1691 // We failed to enable the breakpoint 1692 return LLDB_INVALID_BREAK_ID; 1693 } 1694 1695 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1696 lldb::user_id_t owner_loc_id, 1697 BreakpointSiteSP &bp_site_sp) { 1698 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1699 if (num_owners == 0) { 1700 // Don't try to disable the site if we don't have a live process anymore. 1701 if (IsAlive()) 1702 DisableBreakpointSite(bp_site_sp.get()); 1703 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1704 } 1705 } 1706 1707 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1708 uint8_t *buf) const { 1709 size_t bytes_removed = 0; 1710 BreakpointSiteList bp_sites_in_range; 1711 1712 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1713 bp_sites_in_range)) { 1714 bp_sites_in_range.ForEach([bp_addr, size, 1715 buf](BreakpointSite *bp_site) -> void { 1716 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1717 addr_t intersect_addr; 1718 size_t intersect_size; 1719 size_t opcode_offset; 1720 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1721 &intersect_size, &opcode_offset)) { 1722 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1723 assert(bp_addr < intersect_addr + intersect_size && 1724 intersect_addr + intersect_size <= bp_addr + size); 1725 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1726 size_t buf_offset = intersect_addr - bp_addr; 1727 ::memcpy(buf + buf_offset, 1728 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1729 intersect_size); 1730 } 1731 } 1732 }); 1733 } 1734 return bytes_removed; 1735 } 1736 1737 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1738 PlatformSP platform_sp(GetTarget().GetPlatform()); 1739 if (platform_sp) 1740 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1741 return 0; 1742 } 1743 1744 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1745 Status error; 1746 assert(bp_site != nullptr); 1747 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1748 const addr_t bp_addr = bp_site->GetLoadAddress(); 1749 LLDB_LOGF( 1750 log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1751 bp_site->GetID(), (uint64_t)bp_addr); 1752 if (bp_site->IsEnabled()) { 1753 LLDB_LOGF( 1754 log, 1755 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1756 " -- already enabled", 1757 bp_site->GetID(), (uint64_t)bp_addr); 1758 return error; 1759 } 1760 1761 if (bp_addr == LLDB_INVALID_ADDRESS) { 1762 error.SetErrorString("BreakpointSite contains an invalid load address."); 1763 return error; 1764 } 1765 // Ask the lldb::Process subclass to fill in the correct software breakpoint 1766 // trap for the breakpoint site 1767 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 1768 1769 if (bp_opcode_size == 0) { 1770 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 1771 "returned zero, unable to get breakpoint " 1772 "trap for address 0x%" PRIx64, 1773 bp_addr); 1774 } else { 1775 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 1776 1777 if (bp_opcode_bytes == nullptr) { 1778 error.SetErrorString( 1779 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 1780 return error; 1781 } 1782 1783 // Save the original opcode by reading it 1784 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 1785 error) == bp_opcode_size) { 1786 // Write a software breakpoint in place of the original opcode 1787 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 1788 bp_opcode_size) { 1789 uint8_t verify_bp_opcode_bytes[64]; 1790 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 1791 error) == bp_opcode_size) { 1792 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 1793 bp_opcode_size) == 0) { 1794 bp_site->SetEnabled(true); 1795 bp_site->SetType(BreakpointSite::eSoftware); 1796 LLDB_LOGF(log, 1797 "Process::EnableSoftwareBreakpoint (site_id = %d) " 1798 "addr = 0x%" PRIx64 " -- SUCCESS", 1799 bp_site->GetID(), (uint64_t)bp_addr); 1800 } else 1801 error.SetErrorString( 1802 "failed to verify the breakpoint trap in memory."); 1803 } else 1804 error.SetErrorString( 1805 "Unable to read memory to verify breakpoint trap."); 1806 } else 1807 error.SetErrorString("Unable to write breakpoint trap to memory."); 1808 } else 1809 error.SetErrorString("Unable to read memory at breakpoint address."); 1810 } 1811 if (log && error.Fail()) 1812 LLDB_LOGF( 1813 log, 1814 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1815 " -- FAILED: %s", 1816 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1817 return error; 1818 } 1819 1820 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 1821 Status error; 1822 assert(bp_site != nullptr); 1823 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1824 addr_t bp_addr = bp_site->GetLoadAddress(); 1825 lldb::user_id_t breakID = bp_site->GetID(); 1826 LLDB_LOGF(log, 1827 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 1828 ") addr = 0x%" PRIx64, 1829 breakID, (uint64_t)bp_addr); 1830 1831 if (bp_site->IsHardware()) { 1832 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 1833 } else if (bp_site->IsEnabled()) { 1834 const size_t break_op_size = bp_site->GetByteSize(); 1835 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 1836 if (break_op_size > 0) { 1837 // Clear a software breakpoint instruction 1838 uint8_t curr_break_op[8]; 1839 assert(break_op_size <= sizeof(curr_break_op)); 1840 bool break_op_found = false; 1841 1842 // Read the breakpoint opcode 1843 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 1844 break_op_size) { 1845 bool verify = false; 1846 // Make sure the breakpoint opcode exists at this address 1847 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 1848 break_op_found = true; 1849 // We found a valid breakpoint opcode at this address, now restore 1850 // the saved opcode. 1851 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 1852 break_op_size, error) == break_op_size) { 1853 verify = true; 1854 } else 1855 error.SetErrorString( 1856 "Memory write failed when restoring original opcode."); 1857 } else { 1858 error.SetErrorString( 1859 "Original breakpoint trap is no longer in memory."); 1860 // Set verify to true and so we can check if the original opcode has 1861 // already been restored 1862 verify = true; 1863 } 1864 1865 if (verify) { 1866 uint8_t verify_opcode[8]; 1867 assert(break_op_size < sizeof(verify_opcode)); 1868 // Verify that our original opcode made it back to the inferior 1869 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 1870 break_op_size) { 1871 // compare the memory we just read with the original opcode 1872 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 1873 break_op_size) == 0) { 1874 // SUCCESS 1875 bp_site->SetEnabled(false); 1876 LLDB_LOGF(log, 1877 "Process::DisableSoftwareBreakpoint (site_id = %d) " 1878 "addr = 0x%" PRIx64 " -- SUCCESS", 1879 bp_site->GetID(), (uint64_t)bp_addr); 1880 return error; 1881 } else { 1882 if (break_op_found) 1883 error.SetErrorString("Failed to restore original opcode."); 1884 } 1885 } else 1886 error.SetErrorString("Failed to read memory to verify that " 1887 "breakpoint trap was restored."); 1888 } 1889 } else 1890 error.SetErrorString( 1891 "Unable to read memory that should contain the breakpoint trap."); 1892 } 1893 } else { 1894 LLDB_LOGF( 1895 log, 1896 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1897 " -- already disabled", 1898 bp_site->GetID(), (uint64_t)bp_addr); 1899 return error; 1900 } 1901 1902 LLDB_LOGF( 1903 log, 1904 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1905 " -- FAILED: %s", 1906 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1907 return error; 1908 } 1909 1910 // Uncomment to verify memory caching works after making changes to caching 1911 // code 1912 //#define VERIFY_MEMORY_READS 1913 1914 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 1915 error.Clear(); 1916 if (!GetDisableMemoryCache()) { 1917 #if defined(VERIFY_MEMORY_READS) 1918 // Memory caching is enabled, with debug verification 1919 1920 if (buf && size) { 1921 // Uncomment the line below to make sure memory caching is working. 1922 // I ran this through the test suite and got no assertions, so I am 1923 // pretty confident this is working well. If any changes are made to 1924 // memory caching, uncomment the line below and test your changes! 1925 1926 // Verify all memory reads by using the cache first, then redundantly 1927 // reading the same memory from the inferior and comparing to make sure 1928 // everything is exactly the same. 1929 std::string verify_buf(size, '\0'); 1930 assert(verify_buf.size() == size); 1931 const size_t cache_bytes_read = 1932 m_memory_cache.Read(this, addr, buf, size, error); 1933 Status verify_error; 1934 const size_t verify_bytes_read = 1935 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 1936 verify_buf.size(), verify_error); 1937 assert(cache_bytes_read == verify_bytes_read); 1938 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 1939 assert(verify_error.Success() == error.Success()); 1940 return cache_bytes_read; 1941 } 1942 return 0; 1943 #else // !defined(VERIFY_MEMORY_READS) 1944 // Memory caching is enabled, without debug verification 1945 1946 return m_memory_cache.Read(addr, buf, size, error); 1947 #endif // defined (VERIFY_MEMORY_READS) 1948 } else { 1949 // Memory caching is disabled 1950 1951 return ReadMemoryFromInferior(addr, buf, size, error); 1952 } 1953 } 1954 1955 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 1956 Status &error) { 1957 char buf[256]; 1958 out_str.clear(); 1959 addr_t curr_addr = addr; 1960 while (true) { 1961 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 1962 if (length == 0) 1963 break; 1964 out_str.append(buf, length); 1965 // If we got "length - 1" bytes, we didn't get the whole C string, we need 1966 // to read some more characters 1967 if (length == sizeof(buf) - 1) 1968 curr_addr += length; 1969 else 1970 break; 1971 } 1972 return out_str.size(); 1973 } 1974 1975 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes, 1976 Status &error, size_t type_width) { 1977 size_t total_bytes_read = 0; 1978 if (dst && max_bytes && type_width && max_bytes >= type_width) { 1979 // Ensure a null terminator independent of the number of bytes that is 1980 // read. 1981 memset(dst, 0, max_bytes); 1982 size_t bytes_left = max_bytes - type_width; 1983 1984 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 1985 assert(sizeof(terminator) >= type_width && "Attempting to validate a " 1986 "string with more than 4 bytes " 1987 "per character!"); 1988 1989 addr_t curr_addr = addr; 1990 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 1991 char *curr_dst = dst; 1992 1993 error.Clear(); 1994 while (bytes_left > 0 && error.Success()) { 1995 addr_t cache_line_bytes_left = 1996 cache_line_size - (curr_addr % cache_line_size); 1997 addr_t bytes_to_read = 1998 std::min<addr_t>(bytes_left, cache_line_bytes_left); 1999 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2000 2001 if (bytes_read == 0) 2002 break; 2003 2004 // Search for a null terminator of correct size and alignment in 2005 // bytes_read 2006 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 2007 for (size_t i = aligned_start; 2008 i + type_width <= total_bytes_read + bytes_read; i += type_width) 2009 if (::memcmp(&dst[i], terminator, type_width) == 0) { 2010 error.Clear(); 2011 return i; 2012 } 2013 2014 total_bytes_read += bytes_read; 2015 curr_dst += bytes_read; 2016 curr_addr += bytes_read; 2017 bytes_left -= bytes_read; 2018 } 2019 } else { 2020 if (max_bytes) 2021 error.SetErrorString("invalid arguments"); 2022 } 2023 return total_bytes_read; 2024 } 2025 2026 // Deprecated in favor of ReadStringFromMemory which has wchar support and 2027 // correct code to find null terminators. 2028 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 2029 size_t dst_max_len, 2030 Status &result_error) { 2031 size_t total_cstr_len = 0; 2032 if (dst && dst_max_len) { 2033 result_error.Clear(); 2034 // NULL out everything just to be safe 2035 memset(dst, 0, dst_max_len); 2036 Status error; 2037 addr_t curr_addr = addr; 2038 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2039 size_t bytes_left = dst_max_len - 1; 2040 char *curr_dst = dst; 2041 2042 while (bytes_left > 0) { 2043 addr_t cache_line_bytes_left = 2044 cache_line_size - (curr_addr % cache_line_size); 2045 addr_t bytes_to_read = 2046 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2047 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2048 2049 if (bytes_read == 0) { 2050 result_error = error; 2051 dst[total_cstr_len] = '\0'; 2052 break; 2053 } 2054 const size_t len = strlen(curr_dst); 2055 2056 total_cstr_len += len; 2057 2058 if (len < bytes_to_read) 2059 break; 2060 2061 curr_dst += bytes_read; 2062 curr_addr += bytes_read; 2063 bytes_left -= bytes_read; 2064 } 2065 } else { 2066 if (dst == nullptr) 2067 result_error.SetErrorString("invalid arguments"); 2068 else 2069 result_error.Clear(); 2070 } 2071 return total_cstr_len; 2072 } 2073 2074 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2075 Status &error) { 2076 LLDB_SCOPED_TIMER(); 2077 2078 if (buf == nullptr || size == 0) 2079 return 0; 2080 2081 size_t bytes_read = 0; 2082 uint8_t *bytes = (uint8_t *)buf; 2083 2084 while (bytes_read < size) { 2085 const size_t curr_size = size - bytes_read; 2086 const size_t curr_bytes_read = 2087 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2088 bytes_read += curr_bytes_read; 2089 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2090 break; 2091 } 2092 2093 // Replace any software breakpoint opcodes that fall into this range back 2094 // into "buf" before we return 2095 if (bytes_read > 0) 2096 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2097 return bytes_read; 2098 } 2099 2100 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2101 size_t integer_byte_size, 2102 uint64_t fail_value, 2103 Status &error) { 2104 Scalar scalar; 2105 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2106 error)) 2107 return scalar.ULongLong(fail_value); 2108 return fail_value; 2109 } 2110 2111 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2112 size_t integer_byte_size, 2113 int64_t fail_value, 2114 Status &error) { 2115 Scalar scalar; 2116 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2117 error)) 2118 return scalar.SLongLong(fail_value); 2119 return fail_value; 2120 } 2121 2122 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2123 Scalar scalar; 2124 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2125 error)) 2126 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2127 return LLDB_INVALID_ADDRESS; 2128 } 2129 2130 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2131 Status &error) { 2132 Scalar scalar; 2133 const uint32_t addr_byte_size = GetAddressByteSize(); 2134 if (addr_byte_size <= 4) 2135 scalar = (uint32_t)ptr_value; 2136 else 2137 scalar = ptr_value; 2138 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2139 addr_byte_size; 2140 } 2141 2142 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2143 Status &error) { 2144 size_t bytes_written = 0; 2145 const uint8_t *bytes = (const uint8_t *)buf; 2146 2147 while (bytes_written < size) { 2148 const size_t curr_size = size - bytes_written; 2149 const size_t curr_bytes_written = DoWriteMemory( 2150 addr + bytes_written, bytes + bytes_written, curr_size, error); 2151 bytes_written += curr_bytes_written; 2152 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2153 break; 2154 } 2155 return bytes_written; 2156 } 2157 2158 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2159 Status &error) { 2160 #if defined(ENABLE_MEMORY_CACHING) 2161 m_memory_cache.Flush(addr, size); 2162 #endif 2163 2164 if (buf == nullptr || size == 0) 2165 return 0; 2166 2167 m_mod_id.BumpMemoryID(); 2168 2169 // We need to write any data that would go where any current software traps 2170 // (enabled software breakpoints) any software traps (breakpoints) that we 2171 // may have placed in our tasks memory. 2172 2173 BreakpointSiteList bp_sites_in_range; 2174 if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range)) 2175 return WriteMemoryPrivate(addr, buf, size, error); 2176 2177 // No breakpoint sites overlap 2178 if (bp_sites_in_range.IsEmpty()) 2179 return WriteMemoryPrivate(addr, buf, size, error); 2180 2181 const uint8_t *ubuf = (const uint8_t *)buf; 2182 uint64_t bytes_written = 0; 2183 2184 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2185 &error](BreakpointSite *bp) -> void { 2186 if (error.Fail()) 2187 return; 2188 2189 if (bp->GetType() != BreakpointSite::eSoftware) 2190 return; 2191 2192 addr_t intersect_addr; 2193 size_t intersect_size; 2194 size_t opcode_offset; 2195 const bool intersects = bp->IntersectsRange( 2196 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2197 UNUSED_IF_ASSERT_DISABLED(intersects); 2198 assert(intersects); 2199 assert(addr <= intersect_addr && intersect_addr < addr + size); 2200 assert(addr < intersect_addr + intersect_size && 2201 intersect_addr + intersect_size <= addr + size); 2202 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2203 2204 // Check for bytes before this breakpoint 2205 const addr_t curr_addr = addr + bytes_written; 2206 if (intersect_addr > curr_addr) { 2207 // There are some bytes before this breakpoint that we need to just 2208 // write to memory 2209 size_t curr_size = intersect_addr - curr_addr; 2210 size_t curr_bytes_written = 2211 WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error); 2212 bytes_written += curr_bytes_written; 2213 if (curr_bytes_written != curr_size) { 2214 // We weren't able to write all of the requested bytes, we are 2215 // done looping and will return the number of bytes that we have 2216 // written so far. 2217 if (error.Success()) 2218 error.SetErrorToGenericError(); 2219 } 2220 } 2221 // Now write any bytes that would cover up any software breakpoints 2222 // directly into the breakpoint opcode buffer 2223 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, 2224 intersect_size); 2225 bytes_written += intersect_size; 2226 }); 2227 2228 // Write any remaining bytes after the last breakpoint if we have any left 2229 if (bytes_written < size) 2230 bytes_written += 2231 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2232 size - bytes_written, error); 2233 2234 return bytes_written; 2235 } 2236 2237 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2238 size_t byte_size, Status &error) { 2239 if (byte_size == UINT32_MAX) 2240 byte_size = scalar.GetByteSize(); 2241 if (byte_size > 0) { 2242 uint8_t buf[32]; 2243 const size_t mem_size = 2244 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2245 if (mem_size > 0) 2246 return WriteMemory(addr, buf, mem_size, error); 2247 else 2248 error.SetErrorString("failed to get scalar as memory data"); 2249 } else { 2250 error.SetErrorString("invalid scalar value"); 2251 } 2252 return 0; 2253 } 2254 2255 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2256 bool is_signed, Scalar &scalar, 2257 Status &error) { 2258 uint64_t uval = 0; 2259 if (byte_size == 0) { 2260 error.SetErrorString("byte size is zero"); 2261 } else if (byte_size & (byte_size - 1)) { 2262 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2263 byte_size); 2264 } else if (byte_size <= sizeof(uval)) { 2265 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2266 if (bytes_read == byte_size) { 2267 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2268 GetAddressByteSize()); 2269 lldb::offset_t offset = 0; 2270 if (byte_size <= 4) 2271 scalar = data.GetMaxU32(&offset, byte_size); 2272 else 2273 scalar = data.GetMaxU64(&offset, byte_size); 2274 if (is_signed) 2275 scalar.SignExtend(byte_size * 8); 2276 return bytes_read; 2277 } 2278 } else { 2279 error.SetErrorStringWithFormat( 2280 "byte size of %u is too large for integer scalar type", byte_size); 2281 } 2282 return 0; 2283 } 2284 2285 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2286 Status error; 2287 for (const auto &Entry : entries) { 2288 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2289 error); 2290 if (!error.Success()) 2291 break; 2292 } 2293 return error; 2294 } 2295 2296 #define USE_ALLOCATE_MEMORY_CACHE 1 2297 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2298 Status &error) { 2299 if (GetPrivateState() != eStateStopped) { 2300 error.SetErrorToGenericError(); 2301 return LLDB_INVALID_ADDRESS; 2302 } 2303 2304 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2305 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2306 #else 2307 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2308 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2309 LLDB_LOGF(log, 2310 "Process::AllocateMemory(size=%" PRIu64 2311 ", permissions=%s) => 0x%16.16" PRIx64 2312 " (m_stop_id = %u m_memory_id = %u)", 2313 (uint64_t)size, GetPermissionsAsCString(permissions), 2314 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2315 m_mod_id.GetMemoryID()); 2316 return allocated_addr; 2317 #endif 2318 } 2319 2320 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2321 Status &error) { 2322 addr_t return_addr = AllocateMemory(size, permissions, error); 2323 if (error.Success()) { 2324 std::string buffer(size, 0); 2325 WriteMemory(return_addr, buffer.c_str(), size, error); 2326 } 2327 return return_addr; 2328 } 2329 2330 bool Process::CanJIT() { 2331 if (m_can_jit == eCanJITDontKnow) { 2332 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2333 Status err; 2334 2335 uint64_t allocated_memory = AllocateMemory( 2336 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2337 err); 2338 2339 if (err.Success()) { 2340 m_can_jit = eCanJITYes; 2341 LLDB_LOGF(log, 2342 "Process::%s pid %" PRIu64 2343 " allocation test passed, CanJIT () is true", 2344 __FUNCTION__, GetID()); 2345 } else { 2346 m_can_jit = eCanJITNo; 2347 LLDB_LOGF(log, 2348 "Process::%s pid %" PRIu64 2349 " allocation test failed, CanJIT () is false: %s", 2350 __FUNCTION__, GetID(), err.AsCString()); 2351 } 2352 2353 DeallocateMemory(allocated_memory); 2354 } 2355 2356 return m_can_jit == eCanJITYes; 2357 } 2358 2359 void Process::SetCanJIT(bool can_jit) { 2360 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2361 } 2362 2363 void Process::SetCanRunCode(bool can_run_code) { 2364 SetCanJIT(can_run_code); 2365 m_can_interpret_function_calls = can_run_code; 2366 } 2367 2368 Status Process::DeallocateMemory(addr_t ptr) { 2369 Status error; 2370 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2371 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2372 error.SetErrorStringWithFormat( 2373 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2374 } 2375 #else 2376 error = DoDeallocateMemory(ptr); 2377 2378 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2379 LLDB_LOGF(log, 2380 "Process::DeallocateMemory(addr=0x%16.16" PRIx64 2381 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2382 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2383 m_mod_id.GetMemoryID()); 2384 #endif 2385 return error; 2386 } 2387 2388 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2389 lldb::addr_t header_addr, 2390 size_t size_to_read) { 2391 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2392 if (log) { 2393 LLDB_LOGF(log, 2394 "Process::ReadModuleFromMemory reading %s binary from memory", 2395 file_spec.GetPath().c_str()); 2396 } 2397 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2398 if (module_sp) { 2399 Status error; 2400 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2401 shared_from_this(), header_addr, error, size_to_read); 2402 if (objfile) 2403 return module_sp; 2404 } 2405 return ModuleSP(); 2406 } 2407 2408 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2409 uint32_t &permissions) { 2410 MemoryRegionInfo range_info; 2411 permissions = 0; 2412 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2413 if (!error.Success()) 2414 return false; 2415 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2416 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2417 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2418 return false; 2419 } 2420 2421 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2422 permissions |= lldb::ePermissionsReadable; 2423 2424 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2425 permissions |= lldb::ePermissionsWritable; 2426 2427 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2428 permissions |= lldb::ePermissionsExecutable; 2429 2430 return true; 2431 } 2432 2433 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2434 Status error; 2435 error.SetErrorString("watchpoints are not supported"); 2436 return error; 2437 } 2438 2439 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2440 Status error; 2441 error.SetErrorString("watchpoints are not supported"); 2442 return error; 2443 } 2444 2445 StateType 2446 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2447 const Timeout<std::micro> &timeout) { 2448 StateType state; 2449 2450 while (true) { 2451 event_sp.reset(); 2452 state = GetStateChangedEventsPrivate(event_sp, timeout); 2453 2454 if (StateIsStoppedState(state, false)) 2455 break; 2456 2457 // If state is invalid, then we timed out 2458 if (state == eStateInvalid) 2459 break; 2460 2461 if (event_sp) 2462 HandlePrivateEvent(event_sp); 2463 } 2464 return state; 2465 } 2466 2467 void Process::LoadOperatingSystemPlugin(bool flush) { 2468 if (flush) 2469 m_thread_list.Clear(); 2470 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); 2471 if (flush) 2472 Flush(); 2473 } 2474 2475 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2476 Status error; 2477 m_abi_sp.reset(); 2478 m_dyld_up.reset(); 2479 m_jit_loaders_up.reset(); 2480 m_system_runtime_up.reset(); 2481 m_os_up.reset(); 2482 m_process_input_reader.reset(); 2483 2484 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2485 if (!exe_module) { 2486 error.SetErrorString("executable module does not exist"); 2487 return error; 2488 } 2489 2490 char local_exec_file_path[PATH_MAX]; 2491 char platform_exec_file_path[PATH_MAX]; 2492 exe_module->GetFileSpec().GetPath(local_exec_file_path, 2493 sizeof(local_exec_file_path)); 2494 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, 2495 sizeof(platform_exec_file_path)); 2496 if (FileSystem::Instance().Exists(exe_module->GetFileSpec())) { 2497 // Install anything that might need to be installed prior to launching. 2498 // For host systems, this will do nothing, but if we are connected to a 2499 // remote platform it will install any needed binaries 2500 error = GetTarget().Install(&launch_info); 2501 if (error.Fail()) 2502 return error; 2503 2504 // Listen and queue events that are broadcasted during the process launch. 2505 ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack")); 2506 HijackProcessEvents(listener_sp); 2507 auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); }); 2508 2509 if (PrivateStateThreadIsValid()) 2510 PausePrivateStateThread(); 2511 2512 error = WillLaunch(exe_module); 2513 if (error.Success()) { 2514 const bool restarted = false; 2515 SetPublicState(eStateLaunching, restarted); 2516 m_should_detach = false; 2517 2518 if (m_public_run_lock.TrySetRunning()) { 2519 // Now launch using these arguments. 2520 error = DoLaunch(exe_module, launch_info); 2521 } else { 2522 // This shouldn't happen 2523 error.SetErrorString("failed to acquire process run lock"); 2524 } 2525 2526 if (error.Fail()) { 2527 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2528 SetID(LLDB_INVALID_PROCESS_ID); 2529 const char *error_string = error.AsCString(); 2530 if (error_string == nullptr) 2531 error_string = "launch failed"; 2532 SetExitStatus(-1, error_string); 2533 } 2534 } else { 2535 EventSP event_sp; 2536 2537 // Now wait for the process to launch and return control to us, and then 2538 // call DidLaunch: 2539 StateType state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2540 2541 if (state == eStateInvalid || !event_sp) { 2542 // We were able to launch the process, but we failed to catch the 2543 // initial stop. 2544 error.SetErrorString("failed to catch stop after launch"); 2545 SetExitStatus(0, "failed to catch stop after launch"); 2546 Destroy(false); 2547 } else if (state == eStateStopped || state == eStateCrashed) { 2548 DidLaunch(); 2549 2550 DynamicLoader *dyld = GetDynamicLoader(); 2551 if (dyld) 2552 dyld->DidLaunch(); 2553 2554 GetJITLoaders().DidLaunch(); 2555 2556 SystemRuntime *system_runtime = GetSystemRuntime(); 2557 if (system_runtime) 2558 system_runtime->DidLaunch(); 2559 2560 if (!m_os_up) 2561 LoadOperatingSystemPlugin(false); 2562 2563 // We successfully launched the process and stopped, now it the 2564 // right time to set up signal filters before resuming. 2565 UpdateAutomaticSignalFiltering(); 2566 2567 // Note, the stop event was consumed above, but not handled. This 2568 // was done to give DidLaunch a chance to run. The target is either 2569 // stopped or crashed. Directly set the state. This is done to 2570 // prevent a stop message with a bunch of spurious output on thread 2571 // status, as well as not pop a ProcessIOHandler. 2572 SetPublicState(state, false); 2573 2574 if (PrivateStateThreadIsValid()) 2575 ResumePrivateStateThread(); 2576 else 2577 StartPrivateStateThread(); 2578 2579 // Target was stopped at entry as was intended. Need to notify the 2580 // listeners about it. 2581 if (state == eStateStopped && 2582 launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2583 HandlePrivateEvent(event_sp); 2584 } else if (state == eStateExited) { 2585 // We exited while trying to launch somehow. Don't call DidLaunch 2586 // as that's not likely to work, and return an invalid pid. 2587 HandlePrivateEvent(event_sp); 2588 } 2589 } 2590 } 2591 } else { 2592 error.SetErrorStringWithFormat("file doesn't exist: '%s'", 2593 local_exec_file_path); 2594 } 2595 2596 return error; 2597 } 2598 2599 Status Process::LoadCore() { 2600 Status error = DoLoadCore(); 2601 if (error.Success()) { 2602 ListenerSP listener_sp( 2603 Listener::MakeListener("lldb.process.load_core_listener")); 2604 HijackProcessEvents(listener_sp); 2605 2606 if (PrivateStateThreadIsValid()) 2607 ResumePrivateStateThread(); 2608 else 2609 StartPrivateStateThread(); 2610 2611 DynamicLoader *dyld = GetDynamicLoader(); 2612 if (dyld) 2613 dyld->DidAttach(); 2614 2615 GetJITLoaders().DidAttach(); 2616 2617 SystemRuntime *system_runtime = GetSystemRuntime(); 2618 if (system_runtime) 2619 system_runtime->DidAttach(); 2620 2621 if (!m_os_up) 2622 LoadOperatingSystemPlugin(false); 2623 2624 // We successfully loaded a core file, now pretend we stopped so we can 2625 // show all of the threads in the core file and explore the crashed state. 2626 SetPrivateState(eStateStopped); 2627 2628 // Wait for a stopped event since we just posted one above... 2629 lldb::EventSP event_sp; 2630 StateType state = 2631 WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp); 2632 2633 if (!StateIsStoppedState(state, false)) { 2634 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2635 LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", 2636 StateAsCString(state)); 2637 error.SetErrorString( 2638 "Did not get stopped event after loading the core file."); 2639 } 2640 RestoreProcessEvents(); 2641 } 2642 return error; 2643 } 2644 2645 DynamicLoader *Process::GetDynamicLoader() { 2646 if (!m_dyld_up) 2647 m_dyld_up.reset(DynamicLoader::FindPlugin(this, nullptr)); 2648 return m_dyld_up.get(); 2649 } 2650 2651 DataExtractor Process::GetAuxvData() { return DataExtractor(); } 2652 2653 llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) { 2654 return false; 2655 } 2656 2657 JITLoaderList &Process::GetJITLoaders() { 2658 if (!m_jit_loaders_up) { 2659 m_jit_loaders_up = std::make_unique<JITLoaderList>(); 2660 JITLoader::LoadPlugins(this, *m_jit_loaders_up); 2661 } 2662 return *m_jit_loaders_up; 2663 } 2664 2665 SystemRuntime *Process::GetSystemRuntime() { 2666 if (!m_system_runtime_up) 2667 m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); 2668 return m_system_runtime_up.get(); 2669 } 2670 2671 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2672 uint32_t exec_count) 2673 : NextEventAction(process), m_exec_count(exec_count) { 2674 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2675 LLDB_LOGF( 2676 log, 2677 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2678 __FUNCTION__, static_cast<void *>(process), exec_count); 2679 } 2680 2681 Process::NextEventAction::EventActionResult 2682 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2683 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2684 2685 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2686 LLDB_LOGF(log, 2687 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2688 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2689 2690 switch (state) { 2691 case eStateAttaching: 2692 return eEventActionSuccess; 2693 2694 case eStateRunning: 2695 case eStateConnected: 2696 return eEventActionRetry; 2697 2698 case eStateStopped: 2699 case eStateCrashed: 2700 // During attach, prior to sending the eStateStopped event, 2701 // lldb_private::Process subclasses must set the new process ID. 2702 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2703 // We don't want these events to be reported, so go set the 2704 // ShouldReportStop here: 2705 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2706 2707 if (m_exec_count > 0) { 2708 --m_exec_count; 2709 2710 LLDB_LOGF(log, 2711 "Process::AttachCompletionHandler::%s state %s: reduced " 2712 "remaining exec count to %" PRIu32 ", requesting resume", 2713 __FUNCTION__, StateAsCString(state), m_exec_count); 2714 2715 RequestResume(); 2716 return eEventActionRetry; 2717 } else { 2718 LLDB_LOGF(log, 2719 "Process::AttachCompletionHandler::%s state %s: no more " 2720 "execs expected to start, continuing with attach", 2721 __FUNCTION__, StateAsCString(state)); 2722 2723 m_process->CompleteAttach(); 2724 return eEventActionSuccess; 2725 } 2726 break; 2727 2728 default: 2729 case eStateExited: 2730 case eStateInvalid: 2731 break; 2732 } 2733 2734 m_exit_string.assign("No valid Process"); 2735 return eEventActionExit; 2736 } 2737 2738 Process::NextEventAction::EventActionResult 2739 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2740 return eEventActionSuccess; 2741 } 2742 2743 const char *Process::AttachCompletionHandler::GetExitString() { 2744 return m_exit_string.c_str(); 2745 } 2746 2747 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2748 if (m_listener_sp) 2749 return m_listener_sp; 2750 else 2751 return debugger.GetListener(); 2752 } 2753 2754 Status Process::Attach(ProcessAttachInfo &attach_info) { 2755 m_abi_sp.reset(); 2756 m_process_input_reader.reset(); 2757 m_dyld_up.reset(); 2758 m_jit_loaders_up.reset(); 2759 m_system_runtime_up.reset(); 2760 m_os_up.reset(); 2761 2762 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2763 Status error; 2764 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2765 char process_name[PATH_MAX]; 2766 2767 if (attach_info.GetExecutableFile().GetPath(process_name, 2768 sizeof(process_name))) { 2769 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2770 2771 if (wait_for_launch) { 2772 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2773 if (error.Success()) { 2774 if (m_public_run_lock.TrySetRunning()) { 2775 m_should_detach = true; 2776 const bool restarted = false; 2777 SetPublicState(eStateAttaching, restarted); 2778 // Now attach using these arguments. 2779 error = DoAttachToProcessWithName(process_name, attach_info); 2780 } else { 2781 // This shouldn't happen 2782 error.SetErrorString("failed to acquire process run lock"); 2783 } 2784 2785 if (error.Fail()) { 2786 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2787 SetID(LLDB_INVALID_PROCESS_ID); 2788 if (error.AsCString() == nullptr) 2789 error.SetErrorString("attach failed"); 2790 2791 SetExitStatus(-1, error.AsCString()); 2792 } 2793 } else { 2794 SetNextEventAction(new Process::AttachCompletionHandler( 2795 this, attach_info.GetResumeCount())); 2796 StartPrivateStateThread(); 2797 } 2798 return error; 2799 } 2800 } else { 2801 ProcessInstanceInfoList process_infos; 2802 PlatformSP platform_sp(GetTarget().GetPlatform()); 2803 2804 if (platform_sp) { 2805 ProcessInstanceInfoMatch match_info; 2806 match_info.GetProcessInfo() = attach_info; 2807 match_info.SetNameMatchType(NameMatch::Equals); 2808 platform_sp->FindProcesses(match_info, process_infos); 2809 const uint32_t num_matches = process_infos.size(); 2810 if (num_matches == 1) { 2811 attach_pid = process_infos[0].GetProcessID(); 2812 // Fall through and attach using the above process ID 2813 } else { 2814 match_info.GetProcessInfo().GetExecutableFile().GetPath( 2815 process_name, sizeof(process_name)); 2816 if (num_matches > 1) { 2817 StreamString s; 2818 ProcessInstanceInfo::DumpTableHeader(s, true, false); 2819 for (size_t i = 0; i < num_matches; i++) { 2820 process_infos[i].DumpAsTableRow( 2821 s, platform_sp->GetUserIDResolver(), true, false); 2822 } 2823 error.SetErrorStringWithFormat( 2824 "more than one process named %s:\n%s", process_name, 2825 s.GetData()); 2826 } else 2827 error.SetErrorStringWithFormat( 2828 "could not find a process named %s", process_name); 2829 } 2830 } else { 2831 error.SetErrorString( 2832 "invalid platform, can't find processes by name"); 2833 return error; 2834 } 2835 } 2836 } else { 2837 error.SetErrorString("invalid process name"); 2838 } 2839 } 2840 2841 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 2842 error = WillAttachToProcessWithID(attach_pid); 2843 if (error.Success()) { 2844 2845 if (m_public_run_lock.TrySetRunning()) { 2846 // Now attach using these arguments. 2847 m_should_detach = true; 2848 const bool restarted = false; 2849 SetPublicState(eStateAttaching, restarted); 2850 error = DoAttachToProcessWithID(attach_pid, attach_info); 2851 } else { 2852 // This shouldn't happen 2853 error.SetErrorString("failed to acquire process run lock"); 2854 } 2855 2856 if (error.Success()) { 2857 SetNextEventAction(new Process::AttachCompletionHandler( 2858 this, attach_info.GetResumeCount())); 2859 StartPrivateStateThread(); 2860 } else { 2861 if (GetID() != LLDB_INVALID_PROCESS_ID) 2862 SetID(LLDB_INVALID_PROCESS_ID); 2863 2864 const char *error_string = error.AsCString(); 2865 if (error_string == nullptr) 2866 error_string = "attach failed"; 2867 2868 SetExitStatus(-1, error_string); 2869 } 2870 } 2871 } 2872 return error; 2873 } 2874 2875 void Process::CompleteAttach() { 2876 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 2877 LIBLLDB_LOG_TARGET)); 2878 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 2879 2880 // Let the process subclass figure out at much as it can about the process 2881 // before we go looking for a dynamic loader plug-in. 2882 ArchSpec process_arch; 2883 DidAttach(process_arch); 2884 2885 if (process_arch.IsValid()) { 2886 GetTarget().SetArchitecture(process_arch); 2887 if (log) { 2888 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 2889 LLDB_LOGF(log, 2890 "Process::%s replacing process architecture with DidAttach() " 2891 "architecture: %s", 2892 __FUNCTION__, triple_str ? triple_str : "<null>"); 2893 } 2894 } 2895 2896 // We just attached. If we have a platform, ask it for the process 2897 // architecture, and if it isn't the same as the one we've already set, 2898 // switch architectures. 2899 PlatformSP platform_sp(GetTarget().GetPlatform()); 2900 assert(platform_sp); 2901 if (platform_sp) { 2902 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2903 if (target_arch.IsValid() && 2904 !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) { 2905 ArchSpec platform_arch; 2906 platform_sp = 2907 platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch); 2908 if (platform_sp) { 2909 GetTarget().SetPlatform(platform_sp); 2910 GetTarget().SetArchitecture(platform_arch); 2911 LLDB_LOGF(log, 2912 "Process::%s switching platform to %s and architecture " 2913 "to %s based on info from attach", 2914 __FUNCTION__, platform_sp->GetName().AsCString(""), 2915 platform_arch.GetTriple().getTriple().c_str()); 2916 } 2917 } else if (!process_arch.IsValid()) { 2918 ProcessInstanceInfo process_info; 2919 GetProcessInfo(process_info); 2920 const ArchSpec &process_arch = process_info.GetArchitecture(); 2921 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2922 if (process_arch.IsValid() && 2923 target_arch.IsCompatibleMatch(process_arch) && 2924 !target_arch.IsExactMatch(process_arch)) { 2925 GetTarget().SetArchitecture(process_arch); 2926 LLDB_LOGF(log, 2927 "Process::%s switching architecture to %s based on info " 2928 "the platform retrieved for pid %" PRIu64, 2929 __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), 2930 GetID()); 2931 } 2932 } 2933 } 2934 2935 // We have completed the attach, now it is time to find the dynamic loader 2936 // plug-in 2937 DynamicLoader *dyld = GetDynamicLoader(); 2938 if (dyld) { 2939 dyld->DidAttach(); 2940 if (log) { 2941 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2942 LLDB_LOGF(log, 2943 "Process::%s after DynamicLoader::DidAttach(), target " 2944 "executable is %s (using %s plugin)", 2945 __FUNCTION__, 2946 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2947 : "<none>", 2948 dyld->GetPluginName().AsCString("<unnamed>")); 2949 } 2950 } 2951 2952 GetJITLoaders().DidAttach(); 2953 2954 SystemRuntime *system_runtime = GetSystemRuntime(); 2955 if (system_runtime) { 2956 system_runtime->DidAttach(); 2957 if (log) { 2958 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2959 LLDB_LOGF(log, 2960 "Process::%s after SystemRuntime::DidAttach(), target " 2961 "executable is %s (using %s plugin)", 2962 __FUNCTION__, 2963 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2964 : "<none>", 2965 system_runtime->GetPluginName().AsCString("<unnamed>")); 2966 } 2967 } 2968 2969 if (!m_os_up) { 2970 LoadOperatingSystemPlugin(false); 2971 if (m_os_up) { 2972 // Somebody might have gotten threads before now, but we need to force the 2973 // update after we've loaded the OperatingSystem plugin or it won't get a 2974 // chance to process the threads. 2975 m_thread_list.Clear(); 2976 UpdateThreadListIfNeeded(); 2977 } 2978 } 2979 // Figure out which one is the executable, and set that in our target: 2980 ModuleSP new_executable_module_sp; 2981 for (ModuleSP module_sp : GetTarget().GetImages().Modules()) { 2982 if (module_sp && module_sp->IsExecutable()) { 2983 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 2984 new_executable_module_sp = module_sp; 2985 break; 2986 } 2987 } 2988 if (new_executable_module_sp) { 2989 GetTarget().SetExecutableModule(new_executable_module_sp, 2990 eLoadDependentsNo); 2991 if (log) { 2992 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2993 LLDB_LOGF( 2994 log, 2995 "Process::%s after looping through modules, target executable is %s", 2996 __FUNCTION__, 2997 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2998 : "<none>"); 2999 } 3000 } 3001 } 3002 3003 Status Process::ConnectRemote(llvm::StringRef remote_url) { 3004 m_abi_sp.reset(); 3005 m_process_input_reader.reset(); 3006 3007 // Find the process and its architecture. Make sure it matches the 3008 // architecture of the current Target, and if not adjust it. 3009 3010 Status error(DoConnectRemote(remote_url)); 3011 if (error.Success()) { 3012 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3013 EventSP event_sp; 3014 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 3015 3016 if (state == eStateStopped || state == eStateCrashed) { 3017 // If we attached and actually have a process on the other end, then 3018 // this ended up being the equivalent of an attach. 3019 CompleteAttach(); 3020 3021 // This delays passing the stopped event to listeners till 3022 // CompleteAttach gets a chance to complete... 3023 HandlePrivateEvent(event_sp); 3024 } 3025 } 3026 3027 if (PrivateStateThreadIsValid()) 3028 ResumePrivateStateThread(); 3029 else 3030 StartPrivateStateThread(); 3031 } 3032 return error; 3033 } 3034 3035 Status Process::PrivateResume() { 3036 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3037 LIBLLDB_LOG_STEP)); 3038 LLDB_LOGF(log, 3039 "Process::PrivateResume() m_stop_id = %u, public state: %s " 3040 "private state: %s", 3041 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3042 StateAsCString(m_private_state.GetValue())); 3043 3044 // If signals handing status changed we might want to update our signal 3045 // filters before resuming. 3046 UpdateAutomaticSignalFiltering(); 3047 3048 Status error(WillResume()); 3049 // Tell the process it is about to resume before the thread list 3050 if (error.Success()) { 3051 // Now let the thread list know we are about to resume so it can let all of 3052 // our threads know that they are about to be resumed. Threads will each be 3053 // called with Thread::WillResume(StateType) where StateType contains the 3054 // state that they are supposed to have when the process is resumed 3055 // (suspended/running/stepping). Threads should also check their resume 3056 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3057 // start back up with a signal. 3058 if (m_thread_list.WillResume()) { 3059 // Last thing, do the PreResumeActions. 3060 if (!RunPreResumeActions()) { 3061 error.SetErrorString( 3062 "Process::PrivateResume PreResumeActions failed, not resuming."); 3063 } else { 3064 m_mod_id.BumpResumeID(); 3065 error = DoResume(); 3066 if (error.Success()) { 3067 DidResume(); 3068 m_thread_list.DidResume(); 3069 LLDB_LOGF(log, "Process thinks the process has resumed."); 3070 } else { 3071 LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); 3072 return error; 3073 } 3074 } 3075 } else { 3076 // Somebody wanted to run without running (e.g. we were faking a step 3077 // from one frame of a set of inlined frames that share the same PC to 3078 // another.) So generate a continue & a stopped event, and let the world 3079 // handle them. 3080 LLDB_LOGF(log, 3081 "Process::PrivateResume() asked to simulate a start & stop."); 3082 3083 SetPrivateState(eStateRunning); 3084 SetPrivateState(eStateStopped); 3085 } 3086 } else 3087 LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", 3088 error.AsCString("<unknown error>")); 3089 return error; 3090 } 3091 3092 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3093 if (!StateIsRunningState(m_public_state.GetValue())) 3094 return Status("Process is not running."); 3095 3096 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3097 // case it was already set and some thread plan logic calls halt on its own. 3098 m_clear_thread_plans_on_stop |= clear_thread_plans; 3099 3100 ListenerSP halt_listener_sp( 3101 Listener::MakeListener("lldb.process.halt_listener")); 3102 HijackProcessEvents(halt_listener_sp); 3103 3104 EventSP event_sp; 3105 3106 SendAsyncInterrupt(); 3107 3108 if (m_public_state.GetValue() == eStateAttaching) { 3109 // Don't hijack and eat the eStateExited as the code that was doing the 3110 // attach will be waiting for this event... 3111 RestoreProcessEvents(); 3112 SetExitStatus(SIGKILL, "Cancelled async attach."); 3113 Destroy(false); 3114 return Status(); 3115 } 3116 3117 // Wait for the process halt timeout seconds for the process to stop. 3118 StateType state = 3119 WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true, 3120 halt_listener_sp, nullptr, use_run_lock); 3121 RestoreProcessEvents(); 3122 3123 if (state == eStateInvalid || !event_sp) { 3124 // We timed out and didn't get a stop event... 3125 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3126 } 3127 3128 BroadcastEvent(event_sp); 3129 3130 return Status(); 3131 } 3132 3133 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3134 Status error; 3135 3136 // Check both the public & private states here. If we're hung evaluating an 3137 // expression, for instance, then the public state will be stopped, but we 3138 // still need to interrupt. 3139 if (m_public_state.GetValue() == eStateRunning || 3140 m_private_state.GetValue() == eStateRunning) { 3141 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3142 LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); 3143 3144 ListenerSP listener_sp( 3145 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3146 HijackProcessEvents(listener_sp); 3147 3148 SendAsyncInterrupt(); 3149 3150 // Consume the interrupt event. 3151 StateType state = WaitForProcessToStop(GetInterruptTimeout(), 3152 &exit_event_sp, true, listener_sp); 3153 3154 RestoreProcessEvents(); 3155 3156 // If the process exited while we were waiting for it to stop, put the 3157 // exited event into the shared pointer passed in and return. Our caller 3158 // doesn't need to do anything else, since they don't have a process 3159 // anymore... 3160 3161 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3162 LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", 3163 __FUNCTION__); 3164 return error; 3165 } else 3166 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3167 3168 if (state != eStateStopped) { 3169 LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, 3170 StateAsCString(state)); 3171 // If we really couldn't stop the process then we should just error out 3172 // here, but if the lower levels just bobbled sending the event and we 3173 // really are stopped, then continue on. 3174 StateType private_state = m_private_state.GetValue(); 3175 if (private_state != eStateStopped) { 3176 return Status( 3177 "Attempt to stop the target in order to detach timed out. " 3178 "State = %s", 3179 StateAsCString(GetState())); 3180 } 3181 } 3182 } 3183 return error; 3184 } 3185 3186 Status Process::Detach(bool keep_stopped) { 3187 EventSP exit_event_sp; 3188 Status error; 3189 m_destroy_in_process = true; 3190 3191 error = WillDetach(); 3192 3193 if (error.Success()) { 3194 if (DetachRequiresHalt()) { 3195 error = StopForDestroyOrDetach(exit_event_sp); 3196 if (!error.Success()) { 3197 m_destroy_in_process = false; 3198 return error; 3199 } else if (exit_event_sp) { 3200 // We shouldn't need to do anything else here. There's no process left 3201 // to detach from... 3202 StopPrivateStateThread(); 3203 m_destroy_in_process = false; 3204 return error; 3205 } 3206 } 3207 3208 m_thread_list.DiscardThreadPlans(); 3209 DisableAllBreakpointSites(); 3210 3211 error = DoDetach(keep_stopped); 3212 if (error.Success()) { 3213 DidDetach(); 3214 StopPrivateStateThread(); 3215 } else { 3216 return error; 3217 } 3218 } 3219 m_destroy_in_process = false; 3220 3221 // If we exited when we were waiting for a process to stop, then forward the 3222 // event here so we don't lose the event 3223 if (exit_event_sp) { 3224 // Directly broadcast our exited event because we shut down our private 3225 // state thread above 3226 BroadcastEvent(exit_event_sp); 3227 } 3228 3229 // If we have been interrupted (to kill us) in the middle of running, we may 3230 // not end up propagating the last events through the event system, in which 3231 // case we might strand the write lock. Unlock it here so when we do to tear 3232 // down the process we don't get an error destroying the lock. 3233 3234 m_public_run_lock.SetStopped(); 3235 return error; 3236 } 3237 3238 Status Process::Destroy(bool force_kill) { 3239 // If we've already called Process::Finalize then there's nothing useful to 3240 // be done here. Finalize has actually called Destroy already. 3241 if (m_finalizing) 3242 return {}; 3243 return DestroyImpl(force_kill); 3244 } 3245 3246 Status Process::DestroyImpl(bool force_kill) { 3247 // Tell ourselves we are in the process of destroying the process, so that we 3248 // don't do any unnecessary work that might hinder the destruction. Remember 3249 // to set this back to false when we are done. That way if the attempt 3250 // failed and the process stays around for some reason it won't be in a 3251 // confused state. 3252 3253 if (force_kill) 3254 m_should_detach = false; 3255 3256 if (GetShouldDetach()) { 3257 // FIXME: This will have to be a process setting: 3258 bool keep_stopped = false; 3259 Detach(keep_stopped); 3260 } 3261 3262 m_destroy_in_process = true; 3263 3264 Status error(WillDestroy()); 3265 if (error.Success()) { 3266 EventSP exit_event_sp; 3267 if (DestroyRequiresHalt()) { 3268 error = StopForDestroyOrDetach(exit_event_sp); 3269 } 3270 3271 if (m_public_state.GetValue() == eStateStopped) { 3272 // Ditch all thread plans, and remove all our breakpoints: in case we 3273 // have to restart the target to kill it, we don't want it hitting a 3274 // breakpoint... Only do this if we've stopped, however, since if we 3275 // didn't manage to halt it above, then we're not going to have much luck 3276 // doing this now. 3277 m_thread_list.DiscardThreadPlans(); 3278 DisableAllBreakpointSites(); 3279 } 3280 3281 error = DoDestroy(); 3282 if (error.Success()) { 3283 DidDestroy(); 3284 StopPrivateStateThread(); 3285 } 3286 m_stdio_communication.StopReadThread(); 3287 m_stdio_communication.Disconnect(); 3288 m_stdin_forward = false; 3289 3290 if (m_process_input_reader) { 3291 m_process_input_reader->SetIsDone(true); 3292 m_process_input_reader->Cancel(); 3293 m_process_input_reader.reset(); 3294 } 3295 3296 // If we exited when we were waiting for a process to stop, then forward 3297 // the event here so we don't lose the event 3298 if (exit_event_sp) { 3299 // Directly broadcast our exited event because we shut down our private 3300 // state thread above 3301 BroadcastEvent(exit_event_sp); 3302 } 3303 3304 // If we have been interrupted (to kill us) in the middle of running, we 3305 // may not end up propagating the last events through the event system, in 3306 // which case we might strand the write lock. Unlock it here so when we do 3307 // to tear down the process we don't get an error destroying the lock. 3308 m_public_run_lock.SetStopped(); 3309 } 3310 3311 m_destroy_in_process = false; 3312 3313 return error; 3314 } 3315 3316 Status Process::Signal(int signal) { 3317 Status error(WillSignal()); 3318 if (error.Success()) { 3319 error = DoSignal(signal); 3320 if (error.Success()) 3321 DidSignal(); 3322 } 3323 return error; 3324 } 3325 3326 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3327 assert(signals_sp && "null signals_sp"); 3328 m_unix_signals_sp = signals_sp; 3329 } 3330 3331 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3332 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3333 return m_unix_signals_sp; 3334 } 3335 3336 lldb::ByteOrder Process::GetByteOrder() const { 3337 return GetTarget().GetArchitecture().GetByteOrder(); 3338 } 3339 3340 uint32_t Process::GetAddressByteSize() const { 3341 return GetTarget().GetArchitecture().GetAddressByteSize(); 3342 } 3343 3344 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3345 const StateType state = 3346 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3347 bool return_value = true; 3348 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | 3349 LIBLLDB_LOG_PROCESS)); 3350 3351 switch (state) { 3352 case eStateDetached: 3353 case eStateExited: 3354 case eStateUnloaded: 3355 m_stdio_communication.SynchronizeWithReadThread(); 3356 m_stdio_communication.StopReadThread(); 3357 m_stdio_communication.Disconnect(); 3358 m_stdin_forward = false; 3359 3360 LLVM_FALLTHROUGH; 3361 case eStateConnected: 3362 case eStateAttaching: 3363 case eStateLaunching: 3364 // These events indicate changes in the state of the debugging session, 3365 // always report them. 3366 return_value = true; 3367 break; 3368 case eStateInvalid: 3369 // We stopped for no apparent reason, don't report it. 3370 return_value = false; 3371 break; 3372 case eStateRunning: 3373 case eStateStepping: 3374 // If we've started the target running, we handle the cases where we are 3375 // already running and where there is a transition from stopped to running 3376 // differently. running -> running: Automatically suppress extra running 3377 // events stopped -> running: Report except when there is one or more no 3378 // votes 3379 // and no yes votes. 3380 SynchronouslyNotifyStateChanged(state); 3381 if (m_force_next_event_delivery) 3382 return_value = true; 3383 else { 3384 switch (m_last_broadcast_state) { 3385 case eStateRunning: 3386 case eStateStepping: 3387 // We always suppress multiple runnings with no PUBLIC stop in between. 3388 return_value = false; 3389 break; 3390 default: 3391 // TODO: make this work correctly. For now always report 3392 // run if we aren't running so we don't miss any running events. If I 3393 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3394 // and hit the breakpoints on multiple threads, then somehow during the 3395 // stepping over of all breakpoints no run gets reported. 3396 3397 // This is a transition from stop to run. 3398 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3399 case eVoteYes: 3400 case eVoteNoOpinion: 3401 return_value = true; 3402 break; 3403 case eVoteNo: 3404 return_value = false; 3405 break; 3406 } 3407 break; 3408 } 3409 } 3410 break; 3411 case eStateStopped: 3412 case eStateCrashed: 3413 case eStateSuspended: 3414 // We've stopped. First see if we're going to restart the target. If we 3415 // are going to stop, then we always broadcast the event. If we aren't 3416 // going to stop, let the thread plans decide if we're going to report this 3417 // event. If no thread has an opinion, we don't report it. 3418 3419 m_stdio_communication.SynchronizeWithReadThread(); 3420 RefreshStateAfterStop(); 3421 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3422 LLDB_LOGF(log, 3423 "Process::ShouldBroadcastEvent (%p) stopped due to an " 3424 "interrupt, state: %s", 3425 static_cast<void *>(event_ptr), StateAsCString(state)); 3426 // Even though we know we are going to stop, we should let the threads 3427 // have a look at the stop, so they can properly set their state. 3428 m_thread_list.ShouldStop(event_ptr); 3429 return_value = true; 3430 } else { 3431 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3432 bool should_resume = false; 3433 3434 // It makes no sense to ask "ShouldStop" if we've already been 3435 // restarted... Asking the thread list is also not likely to go well, 3436 // since we are running again. So in that case just report the event. 3437 3438 if (!was_restarted) 3439 should_resume = !m_thread_list.ShouldStop(event_ptr); 3440 3441 if (was_restarted || should_resume || m_resume_requested) { 3442 Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3443 LLDB_LOGF(log, 3444 "Process::ShouldBroadcastEvent: should_resume: %i state: " 3445 "%s was_restarted: %i report_stop_vote: %d.", 3446 should_resume, StateAsCString(state), was_restarted, 3447 report_stop_vote); 3448 3449 switch (report_stop_vote) { 3450 case eVoteYes: 3451 return_value = true; 3452 break; 3453 case eVoteNoOpinion: 3454 case eVoteNo: 3455 return_value = false; 3456 break; 3457 } 3458 3459 if (!was_restarted) { 3460 LLDB_LOGF(log, 3461 "Process::ShouldBroadcastEvent (%p) Restarting process " 3462 "from state: %s", 3463 static_cast<void *>(event_ptr), StateAsCString(state)); 3464 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3465 PrivateResume(); 3466 } 3467 } else { 3468 return_value = true; 3469 SynchronouslyNotifyStateChanged(state); 3470 } 3471 } 3472 break; 3473 } 3474 3475 // Forcing the next event delivery is a one shot deal. So reset it here. 3476 m_force_next_event_delivery = false; 3477 3478 // We do some coalescing of events (for instance two consecutive running 3479 // events get coalesced.) But we only coalesce against events we actually 3480 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3481 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3482 // done, because the PublicState reflects the last event pulled off the 3483 // queue, and there may be several events stacked up on the queue unserviced. 3484 // So the PublicState may not reflect the last broadcasted event yet. 3485 // m_last_broadcast_state gets updated here. 3486 3487 if (return_value) 3488 m_last_broadcast_state = state; 3489 3490 LLDB_LOGF(log, 3491 "Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3492 "broadcast state: %s - %s", 3493 static_cast<void *>(event_ptr), StateAsCString(state), 3494 StateAsCString(m_last_broadcast_state), 3495 return_value ? "YES" : "NO"); 3496 return return_value; 3497 } 3498 3499 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3500 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 3501 3502 bool already_running = PrivateStateThreadIsValid(); 3503 LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, 3504 already_running ? " already running" 3505 : " starting private state thread"); 3506 3507 if (!is_secondary_thread && already_running) 3508 return true; 3509 3510 // Create a thread that watches our internal state and controls which events 3511 // make it to clients (into the DCProcess event queue). 3512 char thread_name[1024]; 3513 uint32_t max_len = llvm::get_max_thread_name_length(); 3514 if (max_len > 0 && max_len <= 30) { 3515 // On platforms with abbreviated thread name lengths, choose thread names 3516 // that fit within the limit. 3517 if (already_running) 3518 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3519 else 3520 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3521 } else { 3522 if (already_running) 3523 snprintf(thread_name, sizeof(thread_name), 3524 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3525 GetID()); 3526 else 3527 snprintf(thread_name, sizeof(thread_name), 3528 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3529 } 3530 3531 // Create the private state thread, and start it running. 3532 PrivateStateThreadArgs *args_ptr = 3533 new PrivateStateThreadArgs(this, is_secondary_thread); 3534 llvm::Expected<HostThread> private_state_thread = 3535 ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, 3536 (void *)args_ptr, 8 * 1024 * 1024); 3537 if (!private_state_thread) { 3538 LLDB_LOG(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST), 3539 "failed to launch host thread: {}", 3540 llvm::toString(private_state_thread.takeError())); 3541 return false; 3542 } 3543 3544 assert(private_state_thread->IsJoinable()); 3545 m_private_state_thread = *private_state_thread; 3546 ResumePrivateStateThread(); 3547 return true; 3548 } 3549 3550 void Process::PausePrivateStateThread() { 3551 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3552 } 3553 3554 void Process::ResumePrivateStateThread() { 3555 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3556 } 3557 3558 void Process::StopPrivateStateThread() { 3559 if (m_private_state_thread.IsJoinable()) 3560 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3561 else { 3562 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3563 LLDB_LOGF( 3564 log, 3565 "Went to stop the private state thread, but it was already invalid."); 3566 } 3567 } 3568 3569 void Process::ControlPrivateStateThread(uint32_t signal) { 3570 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3571 3572 assert(signal == eBroadcastInternalStateControlStop || 3573 signal == eBroadcastInternalStateControlPause || 3574 signal == eBroadcastInternalStateControlResume); 3575 3576 LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); 3577 3578 // Signal the private state thread 3579 if (m_private_state_thread.IsJoinable()) { 3580 // Broadcast the event. 3581 // It is important to do this outside of the if below, because it's 3582 // possible that the thread state is invalid but that the thread is waiting 3583 // on a control event instead of simply being on its way out (this should 3584 // not happen, but it apparently can). 3585 LLDB_LOGF(log, "Sending control event of type: %d.", signal); 3586 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3587 m_private_state_control_broadcaster.BroadcastEvent(signal, 3588 event_receipt_sp); 3589 3590 // Wait for the event receipt or for the private state thread to exit 3591 bool receipt_received = false; 3592 if (PrivateStateThreadIsValid()) { 3593 while (!receipt_received) { 3594 // Check for a receipt for n seconds and then check if the private 3595 // state thread is still around. 3596 receipt_received = 3597 event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout()); 3598 if (!receipt_received) { 3599 // Check if the private state thread is still around. If it isn't 3600 // then we are done waiting 3601 if (!PrivateStateThreadIsValid()) 3602 break; // Private state thread exited or is exiting, we are done 3603 } 3604 } 3605 } 3606 3607 if (signal == eBroadcastInternalStateControlStop) { 3608 thread_result_t result = {}; 3609 m_private_state_thread.Join(&result); 3610 m_private_state_thread.Reset(); 3611 } 3612 } else { 3613 LLDB_LOGF( 3614 log, 3615 "Private state thread already dead, no need to signal it to stop."); 3616 } 3617 } 3618 3619 void Process::SendAsyncInterrupt() { 3620 if (PrivateStateThreadIsValid()) 3621 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3622 nullptr); 3623 else 3624 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3625 } 3626 3627 void Process::HandlePrivateEvent(EventSP &event_sp) { 3628 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3629 m_resume_requested = false; 3630 3631 const StateType new_state = 3632 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3633 3634 // First check to see if anybody wants a shot at this event: 3635 if (m_next_event_action_up) { 3636 NextEventAction::EventActionResult action_result = 3637 m_next_event_action_up->PerformAction(event_sp); 3638 LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); 3639 3640 switch (action_result) { 3641 case NextEventAction::eEventActionSuccess: 3642 SetNextEventAction(nullptr); 3643 break; 3644 3645 case NextEventAction::eEventActionRetry: 3646 break; 3647 3648 case NextEventAction::eEventActionExit: 3649 // Handle Exiting Here. If we already got an exited event, we should 3650 // just propagate it. Otherwise, swallow this event, and set our state 3651 // to exit so the next event will kill us. 3652 if (new_state != eStateExited) { 3653 // FIXME: should cons up an exited event, and discard this one. 3654 SetExitStatus(0, m_next_event_action_up->GetExitString()); 3655 SetNextEventAction(nullptr); 3656 return; 3657 } 3658 SetNextEventAction(nullptr); 3659 break; 3660 } 3661 } 3662 3663 // See if we should broadcast this state to external clients? 3664 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3665 3666 if (should_broadcast) { 3667 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3668 if (log) { 3669 LLDB_LOGF(log, 3670 "Process::%s (pid = %" PRIu64 3671 ") broadcasting new state %s (old state %s) to %s", 3672 __FUNCTION__, GetID(), StateAsCString(new_state), 3673 StateAsCString(GetState()), 3674 is_hijacked ? "hijacked" : "public"); 3675 } 3676 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3677 if (StateIsRunningState(new_state)) { 3678 // Only push the input handler if we aren't fowarding events, as this 3679 // means the curses GUI is in use... Or don't push it if we are launching 3680 // since it will come up stopped. 3681 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3682 new_state != eStateLaunching && new_state != eStateAttaching) { 3683 PushProcessIOHandler(); 3684 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3685 eBroadcastAlways); 3686 LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", 3687 __FUNCTION__, m_iohandler_sync.GetValue()); 3688 } 3689 } else if (StateIsStoppedState(new_state, false)) { 3690 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3691 // If the lldb_private::Debugger is handling the events, we don't want 3692 // to pop the process IOHandler here, we want to do it when we receive 3693 // the stopped event so we can carefully control when the process 3694 // IOHandler is popped because when we stop we want to display some 3695 // text stating how and why we stopped, then maybe some 3696 // process/thread/frame info, and then we want the "(lldb) " prompt to 3697 // show up. If we pop the process IOHandler here, then we will cause 3698 // the command interpreter to become the top IOHandler after the 3699 // process pops off and it will update its prompt right away... See the 3700 // Debugger.cpp file where it calls the function as 3701 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3702 // Otherwise we end up getting overlapping "(lldb) " prompts and 3703 // garbled output. 3704 // 3705 // If we aren't handling the events in the debugger (which is indicated 3706 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3707 // we are hijacked, then we always pop the process IO handler manually. 3708 // Hijacking happens when the internal process state thread is running 3709 // thread plans, or when commands want to run in synchronous mode and 3710 // they call "process->WaitForProcessToStop()". An example of something 3711 // that will hijack the events is a simple expression: 3712 // 3713 // (lldb) expr (int)puts("hello") 3714 // 3715 // This will cause the internal process state thread to resume and halt 3716 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3717 // events) and we do need the IO handler to be pushed and popped 3718 // correctly. 3719 3720 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3721 PopProcessIOHandler(); 3722 } 3723 } 3724 3725 BroadcastEvent(event_sp); 3726 } else { 3727 if (log) { 3728 LLDB_LOGF( 3729 log, 3730 "Process::%s (pid = %" PRIu64 3731 ") suppressing state %s (old state %s): should_broadcast == false", 3732 __FUNCTION__, GetID(), StateAsCString(new_state), 3733 StateAsCString(GetState())); 3734 } 3735 } 3736 } 3737 3738 Status Process::HaltPrivate() { 3739 EventSP event_sp; 3740 Status error(WillHalt()); 3741 if (error.Fail()) 3742 return error; 3743 3744 // Ask the process subclass to actually halt our process 3745 bool caused_stop; 3746 error = DoHalt(caused_stop); 3747 3748 DidHalt(); 3749 return error; 3750 } 3751 3752 thread_result_t Process::PrivateStateThread(void *arg) { 3753 std::unique_ptr<PrivateStateThreadArgs> args_up( 3754 static_cast<PrivateStateThreadArgs *>(arg)); 3755 thread_result_t result = 3756 args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 3757 return result; 3758 } 3759 3760 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3761 bool control_only = true; 3762 3763 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3764 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3765 __FUNCTION__, static_cast<void *>(this), GetID()); 3766 3767 bool exit_now = false; 3768 bool interrupt_requested = false; 3769 while (!exit_now) { 3770 EventSP event_sp; 3771 GetEventsPrivate(event_sp, llvm::None, control_only); 3772 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3773 LLDB_LOGF(log, 3774 "Process::%s (arg = %p, pid = %" PRIu64 3775 ") got a control event: %d", 3776 __FUNCTION__, static_cast<void *>(this), GetID(), 3777 event_sp->GetType()); 3778 3779 switch (event_sp->GetType()) { 3780 case eBroadcastInternalStateControlStop: 3781 exit_now = true; 3782 break; // doing any internal state management below 3783 3784 case eBroadcastInternalStateControlPause: 3785 control_only = true; 3786 break; 3787 3788 case eBroadcastInternalStateControlResume: 3789 control_only = false; 3790 break; 3791 } 3792 3793 continue; 3794 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 3795 if (m_public_state.GetValue() == eStateAttaching) { 3796 LLDB_LOGF(log, 3797 "Process::%s (arg = %p, pid = %" PRIu64 3798 ") woke up with an interrupt while attaching - " 3799 "forwarding interrupt.", 3800 __FUNCTION__, static_cast<void *>(this), GetID()); 3801 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 3802 } else if (StateIsRunningState(m_last_broadcast_state)) { 3803 LLDB_LOGF(log, 3804 "Process::%s (arg = %p, pid = %" PRIu64 3805 ") woke up with an interrupt - Halting.", 3806 __FUNCTION__, static_cast<void *>(this), GetID()); 3807 Status error = HaltPrivate(); 3808 if (error.Fail() && log) 3809 LLDB_LOGF(log, 3810 "Process::%s (arg = %p, pid = %" PRIu64 3811 ") failed to halt the process: %s", 3812 __FUNCTION__, static_cast<void *>(this), GetID(), 3813 error.AsCString()); 3814 // Halt should generate a stopped event. Make a note of the fact that 3815 // we were doing the interrupt, so we can set the interrupted flag 3816 // after we receive the event. We deliberately set this to true even if 3817 // HaltPrivate failed, so that we can interrupt on the next natural 3818 // stop. 3819 interrupt_requested = true; 3820 } else { 3821 // This can happen when someone (e.g. Process::Halt) sees that we are 3822 // running and sends an interrupt request, but the process actually 3823 // stops before we receive it. In that case, we can just ignore the 3824 // request. We use m_last_broadcast_state, because the Stopped event 3825 // may not have been popped of the event queue yet, which is when the 3826 // public state gets updated. 3827 LLDB_LOGF(log, 3828 "Process::%s ignoring interrupt as we have already stopped.", 3829 __FUNCTION__); 3830 } 3831 continue; 3832 } 3833 3834 const StateType internal_state = 3835 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3836 3837 if (internal_state != eStateInvalid) { 3838 if (m_clear_thread_plans_on_stop && 3839 StateIsStoppedState(internal_state, true)) { 3840 m_clear_thread_plans_on_stop = false; 3841 m_thread_list.DiscardThreadPlans(); 3842 } 3843 3844 if (interrupt_requested) { 3845 if (StateIsStoppedState(internal_state, true)) { 3846 // We requested the interrupt, so mark this as such in the stop event 3847 // so clients can tell an interrupted process from a natural stop 3848 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 3849 interrupt_requested = false; 3850 } else if (log) { 3851 LLDB_LOGF(log, 3852 "Process::%s interrupt_requested, but a non-stopped " 3853 "state '%s' received.", 3854 __FUNCTION__, StateAsCString(internal_state)); 3855 } 3856 } 3857 3858 HandlePrivateEvent(event_sp); 3859 } 3860 3861 if (internal_state == eStateInvalid || internal_state == eStateExited || 3862 internal_state == eStateDetached) { 3863 LLDB_LOGF(log, 3864 "Process::%s (arg = %p, pid = %" PRIu64 3865 ") about to exit with internal state %s...", 3866 __FUNCTION__, static_cast<void *>(this), GetID(), 3867 StateAsCString(internal_state)); 3868 3869 break; 3870 } 3871 } 3872 3873 // Verify log is still enabled before attempting to write to it... 3874 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 3875 __FUNCTION__, static_cast<void *>(this), GetID()); 3876 3877 // If we are a secondary thread, then the primary thread we are working for 3878 // will have already acquired the public_run_lock, and isn't done with what 3879 // it was doing yet, so don't try to change it on the way out. 3880 if (!is_secondary_thread) 3881 m_public_run_lock.SetStopped(); 3882 return {}; 3883 } 3884 3885 // Process Event Data 3886 3887 Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {} 3888 3889 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 3890 StateType state) 3891 : EventData(), m_process_wp(), m_state(state), m_restarted(false), 3892 m_update_state(0), m_interrupted(false) { 3893 if (process_sp) 3894 m_process_wp = process_sp; 3895 } 3896 3897 Process::ProcessEventData::~ProcessEventData() = default; 3898 3899 ConstString Process::ProcessEventData::GetFlavorString() { 3900 static ConstString g_flavor("Process::ProcessEventData"); 3901 return g_flavor; 3902 } 3903 3904 ConstString Process::ProcessEventData::GetFlavor() const { 3905 return ProcessEventData::GetFlavorString(); 3906 } 3907 3908 bool Process::ProcessEventData::ShouldStop(Event *event_ptr, 3909 bool &found_valid_stopinfo) { 3910 found_valid_stopinfo = false; 3911 3912 ProcessSP process_sp(m_process_wp.lock()); 3913 if (!process_sp) 3914 return false; 3915 3916 ThreadList &curr_thread_list = process_sp->GetThreadList(); 3917 uint32_t num_threads = curr_thread_list.GetSize(); 3918 uint32_t idx; 3919 3920 // The actions might change one of the thread's stop_info's opinions about 3921 // whether we should stop the process, so we need to query that as we go. 3922 3923 // One other complication here, is that we try to catch any case where the 3924 // target has run (except for expressions) and immediately exit, but if we 3925 // get that wrong (which is possible) then the thread list might have 3926 // changed, and that would cause our iteration here to crash. We could 3927 // make a copy of the thread list, but we'd really like to also know if it 3928 // has changed at all, so we make up a vector of the thread ID's and check 3929 // what we get back against this list & bag out if anything differs. 3930 ThreadList not_suspended_thread_list(process_sp.get()); 3931 std::vector<uint32_t> thread_index_array(num_threads); 3932 uint32_t not_suspended_idx = 0; 3933 for (idx = 0; idx < num_threads; ++idx) { 3934 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 3935 3936 /* 3937 Filter out all suspended threads, they could not be the reason 3938 of stop and no need to perform any actions on them. 3939 */ 3940 if (thread_sp->GetResumeState() != eStateSuspended) { 3941 not_suspended_thread_list.AddThread(thread_sp); 3942 thread_index_array[not_suspended_idx] = thread_sp->GetIndexID(); 3943 not_suspended_idx++; 3944 } 3945 } 3946 3947 // Use this to track whether we should continue from here. We will only 3948 // continue the target running if no thread says we should stop. Of course 3949 // if some thread's PerformAction actually sets the target running, then it 3950 // doesn't matter what the other threads say... 3951 3952 bool still_should_stop = false; 3953 3954 // Sometimes - for instance if we have a bug in the stub we are talking to, 3955 // we stop but no thread has a valid stop reason. In that case we should 3956 // just stop, because we have no way of telling what the right thing to do 3957 // is, and it's better to let the user decide than continue behind their 3958 // backs. 3959 3960 for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) { 3961 curr_thread_list = process_sp->GetThreadList(); 3962 if (curr_thread_list.GetSize() != num_threads) { 3963 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 3964 LIBLLDB_LOG_PROCESS)); 3965 LLDB_LOGF( 3966 log, 3967 "Number of threads changed from %u to %u while processing event.", 3968 num_threads, curr_thread_list.GetSize()); 3969 break; 3970 } 3971 3972 lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx); 3973 3974 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 3975 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 3976 LIBLLDB_LOG_PROCESS)); 3977 LLDB_LOGF(log, 3978 "The thread at position %u changed from %u to %u while " 3979 "processing event.", 3980 idx, thread_index_array[idx], thread_sp->GetIndexID()); 3981 break; 3982 } 3983 3984 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 3985 if (stop_info_sp && stop_info_sp->IsValid()) { 3986 found_valid_stopinfo = true; 3987 bool this_thread_wants_to_stop; 3988 if (stop_info_sp->GetOverrideShouldStop()) { 3989 this_thread_wants_to_stop = 3990 stop_info_sp->GetOverriddenShouldStopValue(); 3991 } else { 3992 stop_info_sp->PerformAction(event_ptr); 3993 // The stop action might restart the target. If it does, then we 3994 // want to mark that in the event so that whoever is receiving it 3995 // will know to wait for the running event and reflect that state 3996 // appropriately. We also need to stop processing actions, since they 3997 // aren't expecting the target to be running. 3998 3999 // FIXME: we might have run. 4000 if (stop_info_sp->HasTargetRunSinceMe()) { 4001 SetRestarted(true); 4002 break; 4003 } 4004 4005 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4006 } 4007 4008 if (!still_should_stop) 4009 still_should_stop = this_thread_wants_to_stop; 4010 } 4011 } 4012 4013 return still_should_stop; 4014 } 4015 4016 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 4017 ProcessSP process_sp(m_process_wp.lock()); 4018 4019 if (!process_sp) 4020 return; 4021 4022 // This function gets called twice for each event, once when the event gets 4023 // pulled off of the private process event queue, and then any number of 4024 // times, first when it gets pulled off of the public event queue, then other 4025 // times when we're pretending that this is where we stopped at the end of 4026 // expression evaluation. m_update_state is used to distinguish these three 4027 // cases; it is 0 when we're just pulling it off for private handling, and > 4028 // 1 for expression evaluation, and we don't want to do the breakpoint 4029 // command handling then. 4030 if (m_update_state != 1) 4031 return; 4032 4033 process_sp->SetPublicState( 4034 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4035 4036 if (m_state == eStateStopped && !m_restarted) { 4037 // Let process subclasses know we are about to do a public stop and do 4038 // anything they might need to in order to speed up register and memory 4039 // accesses. 4040 process_sp->WillPublicStop(); 4041 } 4042 4043 // If this is a halt event, even if the halt stopped with some reason other 4044 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 4045 // the halt request came through) don't do the StopInfo actions, as they may 4046 // end up restarting the process. 4047 if (m_interrupted) 4048 return; 4049 4050 // If we're not stopped or have restarted, then skip the StopInfo actions: 4051 if (m_state != eStateStopped || m_restarted) { 4052 return; 4053 } 4054 4055 bool does_anybody_have_an_opinion = false; 4056 bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion); 4057 4058 if (GetRestarted()) { 4059 return; 4060 } 4061 4062 if (!still_should_stop && does_anybody_have_an_opinion) { 4063 // We've been asked to continue, so do that here. 4064 SetRestarted(true); 4065 // Use the public resume method here, since this is just extending a 4066 // public resume. 4067 process_sp->PrivateResume(); 4068 } else { 4069 bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) && 4070 !process_sp->StateChangedIsHijackedForSynchronousResume(); 4071 4072 if (!hijacked) { 4073 // If we didn't restart, run the Stop Hooks here. 4074 // Don't do that if state changed events aren't hooked up to the 4075 // public (or SyncResume) broadcasters. StopHooks are just for 4076 // real public stops. They might also restart the target, 4077 // so watch for that. 4078 if (process_sp->GetTarget().RunStopHooks()) 4079 SetRestarted(true); 4080 } 4081 } 4082 } 4083 4084 void Process::ProcessEventData::Dump(Stream *s) const { 4085 ProcessSP process_sp(m_process_wp.lock()); 4086 4087 if (process_sp) 4088 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4089 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4090 else 4091 s->PutCString(" process = NULL, "); 4092 4093 s->Printf("state = %s", StateAsCString(GetState())); 4094 } 4095 4096 const Process::ProcessEventData * 4097 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4098 if (event_ptr) { 4099 const EventData *event_data = event_ptr->GetData(); 4100 if (event_data && 4101 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4102 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4103 } 4104 return nullptr; 4105 } 4106 4107 ProcessSP 4108 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4109 ProcessSP process_sp; 4110 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4111 if (data) 4112 process_sp = data->GetProcessSP(); 4113 return process_sp; 4114 } 4115 4116 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4117 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4118 if (data == nullptr) 4119 return eStateInvalid; 4120 else 4121 return data->GetState(); 4122 } 4123 4124 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4125 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4126 if (data == nullptr) 4127 return false; 4128 else 4129 return data->GetRestarted(); 4130 } 4131 4132 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4133 bool new_value) { 4134 ProcessEventData *data = 4135 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4136 if (data != nullptr) 4137 data->SetRestarted(new_value); 4138 } 4139 4140 size_t 4141 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4142 ProcessEventData *data = 4143 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4144 if (data != nullptr) 4145 return data->GetNumRestartedReasons(); 4146 else 4147 return 0; 4148 } 4149 4150 const char * 4151 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4152 size_t idx) { 4153 ProcessEventData *data = 4154 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4155 if (data != nullptr) 4156 return data->GetRestartedReasonAtIndex(idx); 4157 else 4158 return nullptr; 4159 } 4160 4161 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4162 const char *reason) { 4163 ProcessEventData *data = 4164 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4165 if (data != nullptr) 4166 data->AddRestartedReason(reason); 4167 } 4168 4169 bool Process::ProcessEventData::GetInterruptedFromEvent( 4170 const Event *event_ptr) { 4171 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4172 if (data == nullptr) 4173 return false; 4174 else 4175 return data->GetInterrupted(); 4176 } 4177 4178 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4179 bool new_value) { 4180 ProcessEventData *data = 4181 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4182 if (data != nullptr) 4183 data->SetInterrupted(new_value); 4184 } 4185 4186 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4187 ProcessEventData *data = 4188 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4189 if (data) { 4190 data->SetUpdateStateOnRemoval(); 4191 return true; 4192 } 4193 return false; 4194 } 4195 4196 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4197 4198 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4199 exe_ctx.SetTargetPtr(&GetTarget()); 4200 exe_ctx.SetProcessPtr(this); 4201 exe_ctx.SetThreadPtr(nullptr); 4202 exe_ctx.SetFramePtr(nullptr); 4203 } 4204 4205 // uint32_t 4206 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4207 // std::vector<lldb::pid_t> &pids) 4208 //{ 4209 // return 0; 4210 //} 4211 // 4212 // ArchSpec 4213 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4214 //{ 4215 // return Host::GetArchSpecForExistingProcess (pid); 4216 //} 4217 // 4218 // ArchSpec 4219 // Process::GetArchSpecForExistingProcess (const char *process_name) 4220 //{ 4221 // return Host::GetArchSpecForExistingProcess (process_name); 4222 //} 4223 4224 void Process::AppendSTDOUT(const char *s, size_t len) { 4225 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4226 m_stdout_data.append(s, len); 4227 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4228 new ProcessEventData(shared_from_this(), GetState())); 4229 } 4230 4231 void Process::AppendSTDERR(const char *s, size_t len) { 4232 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4233 m_stderr_data.append(s, len); 4234 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4235 new ProcessEventData(shared_from_this(), GetState())); 4236 } 4237 4238 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4239 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4240 m_profile_data.push_back(one_profile_data); 4241 BroadcastEventIfUnique(eBroadcastBitProfileData, 4242 new ProcessEventData(shared_from_this(), GetState())); 4243 } 4244 4245 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4246 const StructuredDataPluginSP &plugin_sp) { 4247 BroadcastEvent( 4248 eBroadcastBitStructuredData, 4249 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4250 } 4251 4252 StructuredDataPluginSP 4253 Process::GetStructuredDataPlugin(ConstString type_name) const { 4254 auto find_it = m_structured_data_plugin_map.find(type_name); 4255 if (find_it != m_structured_data_plugin_map.end()) 4256 return find_it->second; 4257 else 4258 return StructuredDataPluginSP(); 4259 } 4260 4261 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4262 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4263 if (m_profile_data.empty()) 4264 return 0; 4265 4266 std::string &one_profile_data = m_profile_data.front(); 4267 size_t bytes_available = one_profile_data.size(); 4268 if (bytes_available > 0) { 4269 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4270 LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4271 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4272 if (bytes_available > buf_size) { 4273 memcpy(buf, one_profile_data.c_str(), buf_size); 4274 one_profile_data.erase(0, buf_size); 4275 bytes_available = buf_size; 4276 } else { 4277 memcpy(buf, one_profile_data.c_str(), bytes_available); 4278 m_profile_data.erase(m_profile_data.begin()); 4279 } 4280 } 4281 return bytes_available; 4282 } 4283 4284 // Process STDIO 4285 4286 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4287 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4288 size_t bytes_available = m_stdout_data.size(); 4289 if (bytes_available > 0) { 4290 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4291 LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4292 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4293 if (bytes_available > buf_size) { 4294 memcpy(buf, m_stdout_data.c_str(), buf_size); 4295 m_stdout_data.erase(0, buf_size); 4296 bytes_available = buf_size; 4297 } else { 4298 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4299 m_stdout_data.clear(); 4300 } 4301 } 4302 return bytes_available; 4303 } 4304 4305 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4306 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4307 size_t bytes_available = m_stderr_data.size(); 4308 if (bytes_available > 0) { 4309 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4310 LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4311 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4312 if (bytes_available > buf_size) { 4313 memcpy(buf, m_stderr_data.c_str(), buf_size); 4314 m_stderr_data.erase(0, buf_size); 4315 bytes_available = buf_size; 4316 } else { 4317 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4318 m_stderr_data.clear(); 4319 } 4320 } 4321 return bytes_available; 4322 } 4323 4324 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4325 size_t src_len) { 4326 Process *process = (Process *)baton; 4327 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4328 } 4329 4330 class IOHandlerProcessSTDIO : public IOHandler { 4331 public: 4332 IOHandlerProcessSTDIO(Process *process, int write_fd) 4333 : IOHandler(process->GetTarget().GetDebugger(), 4334 IOHandler::Type::ProcessIO), 4335 m_process(process), 4336 m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false), 4337 m_write_file(write_fd, File::eOpenOptionWriteOnly, false) { 4338 m_pipe.CreateNew(false); 4339 } 4340 4341 ~IOHandlerProcessSTDIO() override = default; 4342 4343 // Each IOHandler gets to run until it is done. It should read data from the 4344 // "in" and place output into "out" and "err and return when done. 4345 void Run() override { 4346 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4347 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4348 SetIsDone(true); 4349 return; 4350 } 4351 4352 SetIsDone(false); 4353 const int read_fd = m_read_file.GetDescriptor(); 4354 TerminalState terminal_state; 4355 terminal_state.Save(read_fd, false); 4356 Terminal terminal(read_fd); 4357 terminal.SetCanonical(false); 4358 terminal.SetEcho(false); 4359 // FD_ZERO, FD_SET are not supported on windows 4360 #ifndef _WIN32 4361 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4362 m_is_running = true; 4363 while (!GetIsDone()) { 4364 SelectHelper select_helper; 4365 select_helper.FDSetRead(read_fd); 4366 select_helper.FDSetRead(pipe_read_fd); 4367 Status error = select_helper.Select(); 4368 4369 if (error.Fail()) { 4370 SetIsDone(true); 4371 } else { 4372 char ch = 0; 4373 size_t n; 4374 if (select_helper.FDIsSetRead(read_fd)) { 4375 n = 1; 4376 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4377 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4378 SetIsDone(true); 4379 } else 4380 SetIsDone(true); 4381 } 4382 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4383 size_t bytes_read; 4384 // Consume the interrupt byte 4385 Status error = m_pipe.Read(&ch, 1, bytes_read); 4386 if (error.Success()) { 4387 switch (ch) { 4388 case 'q': 4389 SetIsDone(true); 4390 break; 4391 case 'i': 4392 if (StateIsRunningState(m_process->GetState())) 4393 m_process->SendAsyncInterrupt(); 4394 break; 4395 } 4396 } 4397 } 4398 } 4399 } 4400 m_is_running = false; 4401 #endif 4402 terminal_state.Restore(); 4403 } 4404 4405 void Cancel() override { 4406 SetIsDone(true); 4407 // Only write to our pipe to cancel if we are in 4408 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4409 // is being run from the command interpreter: 4410 // 4411 // (lldb) step_process_thousands_of_times 4412 // 4413 // In this case the command interpreter will be in the middle of handling 4414 // the command and if the process pushes and pops the IOHandler thousands 4415 // of times, we can end up writing to m_pipe without ever consuming the 4416 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4417 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4418 if (m_is_running) { 4419 char ch = 'q'; // Send 'q' for quit 4420 size_t bytes_written = 0; 4421 m_pipe.Write(&ch, 1, bytes_written); 4422 } 4423 } 4424 4425 bool Interrupt() override { 4426 // Do only things that are safe to do in an interrupt context (like in a 4427 // SIGINT handler), like write 1 byte to a file descriptor. This will 4428 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4429 // that was written to the pipe and then call 4430 // m_process->SendAsyncInterrupt() from a much safer location in code. 4431 if (m_active) { 4432 char ch = 'i'; // Send 'i' for interrupt 4433 size_t bytes_written = 0; 4434 Status result = m_pipe.Write(&ch, 1, bytes_written); 4435 return result.Success(); 4436 } else { 4437 // This IOHandler might be pushed on the stack, but not being run 4438 // currently so do the right thing if we aren't actively watching for 4439 // STDIN by sending the interrupt to the process. Otherwise the write to 4440 // the pipe above would do nothing. This can happen when the command 4441 // interpreter is running and gets a "expression ...". It will be on the 4442 // IOHandler thread and sending the input is complete to the delegate 4443 // which will cause the expression to run, which will push the process IO 4444 // handler, but not run it. 4445 4446 if (StateIsRunningState(m_process->GetState())) { 4447 m_process->SendAsyncInterrupt(); 4448 return true; 4449 } 4450 } 4451 return false; 4452 } 4453 4454 void GotEOF() override {} 4455 4456 protected: 4457 Process *m_process; 4458 NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB 4459 NativeFile m_write_file; // Write to this file (usually the master pty for 4460 // getting io to debuggee) 4461 Pipe m_pipe; 4462 std::atomic<bool> m_is_running{false}; 4463 }; 4464 4465 void Process::SetSTDIOFileDescriptor(int fd) { 4466 // First set up the Read Thread for reading/handling process I/O 4467 m_stdio_communication.SetConnection( 4468 std::make_unique<ConnectionFileDescriptor>(fd, true)); 4469 if (m_stdio_communication.IsConnected()) { 4470 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4471 STDIOReadThreadBytesReceived, this); 4472 m_stdio_communication.StartReadThread(); 4473 4474 // Now read thread is set up, set up input reader. 4475 4476 if (!m_process_input_reader) 4477 m_process_input_reader = 4478 std::make_shared<IOHandlerProcessSTDIO>(this, fd); 4479 } 4480 } 4481 4482 bool Process::ProcessIOHandlerIsActive() { 4483 IOHandlerSP io_handler_sp(m_process_input_reader); 4484 if (io_handler_sp) 4485 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4486 return false; 4487 } 4488 bool Process::PushProcessIOHandler() { 4489 IOHandlerSP io_handler_sp(m_process_input_reader); 4490 if (io_handler_sp) { 4491 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4492 LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); 4493 4494 io_handler_sp->SetIsDone(false); 4495 // If we evaluate an utility function, then we don't cancel the current 4496 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the 4497 // existing IOHandler that potentially provides the user interface (e.g. 4498 // the IOHandler for Editline). 4499 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); 4500 GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp, 4501 cancel_top_handler); 4502 return true; 4503 } 4504 return false; 4505 } 4506 4507 bool Process::PopProcessIOHandler() { 4508 IOHandlerSP io_handler_sp(m_process_input_reader); 4509 if (io_handler_sp) 4510 return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp); 4511 return false; 4512 } 4513 4514 // The process needs to know about installed plug-ins 4515 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4516 4517 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4518 4519 namespace { 4520 // RestorePlanState is used to record the "is private", "is master" and "okay 4521 // to discard" fields of the plan we are running, and reset it on Clean or on 4522 // destruction. It will only reset the state once, so you can call Clean and 4523 // then monkey with the state and it won't get reset on you again. 4524 4525 class RestorePlanState { 4526 public: 4527 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4528 : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) { 4529 if (m_thread_plan_sp) { 4530 m_private = m_thread_plan_sp->GetPrivate(); 4531 m_is_master = m_thread_plan_sp->IsMasterPlan(); 4532 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4533 } 4534 } 4535 4536 ~RestorePlanState() { Clean(); } 4537 4538 void Clean() { 4539 if (!m_already_reset && m_thread_plan_sp) { 4540 m_already_reset = true; 4541 m_thread_plan_sp->SetPrivate(m_private); 4542 m_thread_plan_sp->SetIsMasterPlan(m_is_master); 4543 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4544 } 4545 } 4546 4547 private: 4548 lldb::ThreadPlanSP m_thread_plan_sp; 4549 bool m_already_reset; 4550 bool m_private; 4551 bool m_is_master; 4552 bool m_okay_to_discard; 4553 }; 4554 } // anonymous namespace 4555 4556 static microseconds 4557 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4558 const milliseconds default_one_thread_timeout(250); 4559 4560 // If the overall wait is forever, then we don't need to worry about it. 4561 if (!options.GetTimeout()) { 4562 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4563 : default_one_thread_timeout; 4564 } 4565 4566 // If the one thread timeout is set, use it. 4567 if (options.GetOneThreadTimeout()) 4568 return *options.GetOneThreadTimeout(); 4569 4570 // Otherwise use half the total timeout, bounded by the 4571 // default_one_thread_timeout. 4572 return std::min<microseconds>(default_one_thread_timeout, 4573 *options.GetTimeout() / 2); 4574 } 4575 4576 static Timeout<std::micro> 4577 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4578 bool before_first_timeout) { 4579 // If we are going to run all threads the whole time, or if we are only going 4580 // to run one thread, we can just return the overall timeout. 4581 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4582 return options.GetTimeout(); 4583 4584 if (before_first_timeout) 4585 return GetOneThreadExpressionTimeout(options); 4586 4587 if (!options.GetTimeout()) 4588 return llvm::None; 4589 else 4590 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4591 } 4592 4593 static llvm::Optional<ExpressionResults> 4594 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp, 4595 RestorePlanState &restorer, const EventSP &event_sp, 4596 EventSP &event_to_broadcast_sp, 4597 const EvaluateExpressionOptions &options, 4598 bool handle_interrupts) { 4599 Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS); 4600 4601 ThreadSP thread_sp = thread_plan_sp->GetTarget() 4602 .GetProcessSP() 4603 ->GetThreadList() 4604 .FindThreadByID(thread_id); 4605 if (!thread_sp) { 4606 LLDB_LOG(log, 4607 "The thread on which we were running the " 4608 "expression: tid = {0}, exited while " 4609 "the expression was running.", 4610 thread_id); 4611 return eExpressionThreadVanished; 4612 } 4613 4614 ThreadPlanSP plan = thread_sp->GetCompletedPlan(); 4615 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4616 LLDB_LOG(log, "execution completed successfully"); 4617 4618 // Restore the plan state so it will get reported as intended when we are 4619 // done. 4620 restorer.Clean(); 4621 return eExpressionCompleted; 4622 } 4623 4624 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4625 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4626 stop_info_sp->ShouldNotify(event_sp.get())) { 4627 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4628 if (!options.DoesIgnoreBreakpoints()) { 4629 // Restore the plan state and then force Private to false. We are going 4630 // to stop because of this plan so we need it to become a public plan or 4631 // it won't report correctly when we continue to its termination later 4632 // on. 4633 restorer.Clean(); 4634 thread_plan_sp->SetPrivate(false); 4635 event_to_broadcast_sp = event_sp; 4636 } 4637 return eExpressionHitBreakpoint; 4638 } 4639 4640 if (!handle_interrupts && 4641 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4642 return llvm::None; 4643 4644 LLDB_LOG(log, "thread plan did not successfully complete"); 4645 if (!options.DoesUnwindOnError()) 4646 event_to_broadcast_sp = event_sp; 4647 return eExpressionInterrupted; 4648 } 4649 4650 ExpressionResults 4651 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4652 lldb::ThreadPlanSP &thread_plan_sp, 4653 const EvaluateExpressionOptions &options, 4654 DiagnosticManager &diagnostic_manager) { 4655 ExpressionResults return_value = eExpressionSetupError; 4656 4657 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4658 4659 if (!thread_plan_sp) { 4660 diagnostic_manager.PutString( 4661 eDiagnosticSeverityError, 4662 "RunThreadPlan called with empty thread plan."); 4663 return eExpressionSetupError; 4664 } 4665 4666 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4667 diagnostic_manager.PutString( 4668 eDiagnosticSeverityError, 4669 "RunThreadPlan called with an invalid thread plan."); 4670 return eExpressionSetupError; 4671 } 4672 4673 if (exe_ctx.GetProcessPtr() != this) { 4674 diagnostic_manager.PutString(eDiagnosticSeverityError, 4675 "RunThreadPlan called on wrong process."); 4676 return eExpressionSetupError; 4677 } 4678 4679 Thread *thread = exe_ctx.GetThreadPtr(); 4680 if (thread == nullptr) { 4681 diagnostic_manager.PutString(eDiagnosticSeverityError, 4682 "RunThreadPlan called with invalid thread."); 4683 return eExpressionSetupError; 4684 } 4685 4686 // Record the thread's id so we can tell when a thread we were using 4687 // to run the expression exits during the expression evaluation. 4688 lldb::tid_t expr_thread_id = thread->GetID(); 4689 4690 // We need to change some of the thread plan attributes for the thread plan 4691 // runner. This will restore them when we are done: 4692 4693 RestorePlanState thread_plan_restorer(thread_plan_sp); 4694 4695 // We rely on the thread plan we are running returning "PlanCompleted" if 4696 // when it successfully completes. For that to be true the plan can't be 4697 // private - since private plans suppress themselves in the GetCompletedPlan 4698 // call. 4699 4700 thread_plan_sp->SetPrivate(false); 4701 4702 // The plans run with RunThreadPlan also need to be terminal master plans or 4703 // when they are done we will end up asking the plan above us whether we 4704 // should stop, which may give the wrong answer. 4705 4706 thread_plan_sp->SetIsMasterPlan(true); 4707 thread_plan_sp->SetOkayToDiscard(false); 4708 4709 // If we are running some utility expression for LLDB, we now have to mark 4710 // this in the ProcesModID of this process. This RAII takes care of marking 4711 // and reverting the mark it once we are done running the expression. 4712 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); 4713 4714 if (m_private_state.GetValue() != eStateStopped) { 4715 diagnostic_manager.PutString( 4716 eDiagnosticSeverityError, 4717 "RunThreadPlan called while the private state was not stopped."); 4718 return eExpressionSetupError; 4719 } 4720 4721 // Save the thread & frame from the exe_ctx for restoration after we run 4722 const uint32_t thread_idx_id = thread->GetIndexID(); 4723 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4724 if (!selected_frame_sp) { 4725 thread->SetSelectedFrame(nullptr); 4726 selected_frame_sp = thread->GetSelectedFrame(); 4727 if (!selected_frame_sp) { 4728 diagnostic_manager.Printf( 4729 eDiagnosticSeverityError, 4730 "RunThreadPlan called without a selected frame on thread %d", 4731 thread_idx_id); 4732 return eExpressionSetupError; 4733 } 4734 } 4735 4736 // Make sure the timeout values make sense. The one thread timeout needs to 4737 // be smaller than the overall timeout. 4738 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4739 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4740 diagnostic_manager.PutString(eDiagnosticSeverityError, 4741 "RunThreadPlan called with one thread " 4742 "timeout greater than total timeout"); 4743 return eExpressionSetupError; 4744 } 4745 4746 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4747 4748 // N.B. Running the target may unset the currently selected thread and frame. 4749 // We don't want to do that either, so we should arrange to reset them as 4750 // well. 4751 4752 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4753 4754 uint32_t selected_tid; 4755 StackID selected_stack_id; 4756 if (selected_thread_sp) { 4757 selected_tid = selected_thread_sp->GetIndexID(); 4758 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4759 } else { 4760 selected_tid = LLDB_INVALID_THREAD_ID; 4761 } 4762 4763 HostThread backup_private_state_thread; 4764 lldb::StateType old_state = eStateInvalid; 4765 lldb::ThreadPlanSP stopper_base_plan_sp; 4766 4767 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4768 LIBLLDB_LOG_PROCESS)); 4769 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4770 // Yikes, we are running on the private state thread! So we can't wait for 4771 // public events on this thread, since we are the thread that is generating 4772 // public events. The simplest thing to do is to spin up a temporary thread 4773 // to handle private state thread events while we are fielding public 4774 // events here. 4775 LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " 4776 "another state thread to handle the events."); 4777 4778 backup_private_state_thread = m_private_state_thread; 4779 4780 // One other bit of business: we want to run just this thread plan and 4781 // anything it pushes, and then stop, returning control here. But in the 4782 // normal course of things, the plan above us on the stack would be given a 4783 // shot at the stop event before deciding to stop, and we don't want that. 4784 // So we insert a "stopper" base plan on the stack before the plan we want 4785 // to run. Since base plans always stop and return control to the user, 4786 // that will do just what we want. 4787 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4788 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4789 // Have to make sure our public state is stopped, since otherwise the 4790 // reporting logic below doesn't work correctly. 4791 old_state = m_public_state.GetValue(); 4792 m_public_state.SetValueNoLock(eStateStopped); 4793 4794 // Now spin up the private state thread: 4795 StartPrivateStateThread(true); 4796 } 4797 4798 thread->QueueThreadPlan( 4799 thread_plan_sp, false); // This used to pass "true" does that make sense? 4800 4801 if (options.GetDebug()) { 4802 // In this case, we aren't actually going to run, we just want to stop 4803 // right away. Flush this thread so we will refetch the stacks and show the 4804 // correct backtrace. 4805 // FIXME: To make this prettier we should invent some stop reason for this, 4806 // but that 4807 // is only cosmetic, and this functionality is only of use to lldb 4808 // developers who can live with not pretty... 4809 thread->Flush(); 4810 return eExpressionStoppedForDebug; 4811 } 4812 4813 ListenerSP listener_sp( 4814 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4815 4816 lldb::EventSP event_to_broadcast_sp; 4817 4818 { 4819 // This process event hijacker Hijacks the Public events and its destructor 4820 // makes sure that the process events get restored on exit to the function. 4821 // 4822 // If the event needs to propagate beyond the hijacker (e.g., the process 4823 // exits during execution), then the event is put into 4824 // event_to_broadcast_sp for rebroadcasting. 4825 4826 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 4827 4828 if (log) { 4829 StreamString s; 4830 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 4831 LLDB_LOGF(log, 4832 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 4833 " to run thread plan \"%s\".", 4834 thread_idx_id, expr_thread_id, s.GetData()); 4835 } 4836 4837 bool got_event; 4838 lldb::EventSP event_sp; 4839 lldb::StateType stop_state = lldb::eStateInvalid; 4840 4841 bool before_first_timeout = true; // This is set to false the first time 4842 // that we have to halt the target. 4843 bool do_resume = true; 4844 bool handle_running_event = true; 4845 4846 // This is just for accounting: 4847 uint32_t num_resumes = 0; 4848 4849 // If we are going to run all threads the whole time, or if we are only 4850 // going to run one thread, then we don't need the first timeout. So we 4851 // pretend we are after the first timeout already. 4852 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4853 before_first_timeout = false; 4854 4855 LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", 4856 options.GetStopOthers(), options.GetTryAllThreads(), 4857 before_first_timeout); 4858 4859 // This isn't going to work if there are unfetched events on the queue. Are 4860 // there cases where we might want to run the remaining events here, and 4861 // then try to call the function? That's probably being too tricky for our 4862 // own good. 4863 4864 Event *other_events = listener_sp->PeekAtNextEvent(); 4865 if (other_events != nullptr) { 4866 diagnostic_manager.PutString( 4867 eDiagnosticSeverityError, 4868 "RunThreadPlan called with pending events on the queue."); 4869 return eExpressionSetupError; 4870 } 4871 4872 // We also need to make sure that the next event is delivered. We might be 4873 // calling a function as part of a thread plan, in which case the last 4874 // delivered event could be the running event, and we don't want event 4875 // coalescing to cause us to lose OUR running event... 4876 ForceNextEventDelivery(); 4877 4878 // This while loop must exit out the bottom, there's cleanup that we need to do 4879 // when we are done. So don't call return anywhere within it. 4880 4881 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4882 // It's pretty much impossible to write test cases for things like: One 4883 // thread timeout expires, I go to halt, but the process already stopped on 4884 // the function call stop breakpoint. Turning on this define will make us 4885 // not fetch the first event till after the halt. So if you run a quick 4886 // function, it will have completed, and the completion event will be 4887 // waiting, when you interrupt for halt. The expression evaluation should 4888 // still succeed. 4889 bool miss_first_event = true; 4890 #endif 4891 while (true) { 4892 // We usually want to resume the process if we get to the top of the 4893 // loop. The only exception is if we get two running events with no 4894 // intervening stop, which can happen, we will just wait for then next 4895 // stop event. 4896 LLDB_LOGF(log, 4897 "Top of while loop: do_resume: %i handle_running_event: %i " 4898 "before_first_timeout: %i.", 4899 do_resume, handle_running_event, before_first_timeout); 4900 4901 if (do_resume || handle_running_event) { 4902 // Do the initial resume and wait for the running event before going 4903 // further. 4904 4905 if (do_resume) { 4906 num_resumes++; 4907 Status resume_error = PrivateResume(); 4908 if (!resume_error.Success()) { 4909 diagnostic_manager.Printf( 4910 eDiagnosticSeverityError, 4911 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 4912 resume_error.AsCString()); 4913 return_value = eExpressionSetupError; 4914 break; 4915 } 4916 } 4917 4918 got_event = 4919 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 4920 if (!got_event) { 4921 LLDB_LOGF(log, 4922 "Process::RunThreadPlan(): didn't get any event after " 4923 "resume %" PRIu32 ", exiting.", 4924 num_resumes); 4925 4926 diagnostic_manager.Printf(eDiagnosticSeverityError, 4927 "didn't get any event after resume %" PRIu32 4928 ", exiting.", 4929 num_resumes); 4930 return_value = eExpressionSetupError; 4931 break; 4932 } 4933 4934 stop_state = 4935 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4936 4937 if (stop_state != eStateRunning) { 4938 bool restarted = false; 4939 4940 if (stop_state == eStateStopped) { 4941 restarted = Process::ProcessEventData::GetRestartedFromEvent( 4942 event_sp.get()); 4943 LLDB_LOGF( 4944 log, 4945 "Process::RunThreadPlan(): didn't get running event after " 4946 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 4947 "handle_running_event: %i).", 4948 num_resumes, StateAsCString(stop_state), restarted, do_resume, 4949 handle_running_event); 4950 } 4951 4952 if (restarted) { 4953 // This is probably an overabundance of caution, I don't think I 4954 // should ever get a stopped & restarted event here. But if I do, 4955 // the best thing is to Halt and then get out of here. 4956 const bool clear_thread_plans = false; 4957 const bool use_run_lock = false; 4958 Halt(clear_thread_plans, use_run_lock); 4959 } 4960 4961 diagnostic_manager.Printf( 4962 eDiagnosticSeverityError, 4963 "didn't get running event after initial resume, got %s instead.", 4964 StateAsCString(stop_state)); 4965 return_value = eExpressionSetupError; 4966 break; 4967 } 4968 4969 if (log) 4970 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 4971 // We need to call the function synchronously, so spin waiting for it 4972 // to return. If we get interrupted while executing, we're going to 4973 // lose our context, and won't be able to gather the result at this 4974 // point. We set the timeout AFTER the resume, since the resume takes 4975 // some time and we don't want to charge that to the timeout. 4976 } else { 4977 if (log) 4978 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 4979 } 4980 4981 do_resume = true; 4982 handle_running_event = true; 4983 4984 // Now wait for the process to stop again: 4985 event_sp.reset(); 4986 4987 Timeout<std::micro> timeout = 4988 GetExpressionTimeout(options, before_first_timeout); 4989 if (log) { 4990 if (timeout) { 4991 auto now = system_clock::now(); 4992 LLDB_LOGF(log, 4993 "Process::RunThreadPlan(): about to wait - now is %s - " 4994 "endpoint is %s", 4995 llvm::to_string(now).c_str(), 4996 llvm::to_string(now + *timeout).c_str()); 4997 } else { 4998 LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); 4999 } 5000 } 5001 5002 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5003 // See comment above... 5004 if (miss_first_event) { 5005 std::this_thread::sleep_for(std::chrono::milliseconds(1)); 5006 miss_first_event = false; 5007 got_event = false; 5008 } else 5009 #endif 5010 got_event = listener_sp->GetEvent(event_sp, timeout); 5011 5012 if (got_event) { 5013 if (event_sp) { 5014 bool keep_going = false; 5015 if (event_sp->GetType() == eBroadcastBitInterrupt) { 5016 const bool clear_thread_plans = false; 5017 const bool use_run_lock = false; 5018 Halt(clear_thread_plans, use_run_lock); 5019 return_value = eExpressionInterrupted; 5020 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 5021 "execution halted by user interrupt."); 5022 LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " 5023 "eBroadcastBitInterrupted, exiting."); 5024 break; 5025 } else { 5026 stop_state = 5027 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5028 LLDB_LOGF(log, 5029 "Process::RunThreadPlan(): in while loop, got event: %s.", 5030 StateAsCString(stop_state)); 5031 5032 switch (stop_state) { 5033 case lldb::eStateStopped: { 5034 if (Process::ProcessEventData::GetRestartedFromEvent( 5035 event_sp.get())) { 5036 // If we were restarted, we just need to go back up to fetch 5037 // another event. 5038 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " 5039 "restart, so we'll continue waiting."); 5040 keep_going = true; 5041 do_resume = false; 5042 handle_running_event = true; 5043 } else { 5044 const bool handle_interrupts = true; 5045 return_value = *HandleStoppedEvent( 5046 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5047 event_sp, event_to_broadcast_sp, options, 5048 handle_interrupts); 5049 if (return_value == eExpressionThreadVanished) 5050 keep_going = false; 5051 } 5052 } break; 5053 5054 case lldb::eStateRunning: 5055 // This shouldn't really happen, but sometimes we do get two 5056 // running events without an intervening stop, and in that case 5057 // we should just go back to waiting for the stop. 5058 do_resume = false; 5059 keep_going = true; 5060 handle_running_event = false; 5061 break; 5062 5063 default: 5064 LLDB_LOGF(log, 5065 "Process::RunThreadPlan(): execution stopped with " 5066 "unexpected state: %s.", 5067 StateAsCString(stop_state)); 5068 5069 if (stop_state == eStateExited) 5070 event_to_broadcast_sp = event_sp; 5071 5072 diagnostic_manager.PutString( 5073 eDiagnosticSeverityError, 5074 "execution stopped with unexpected state."); 5075 return_value = eExpressionInterrupted; 5076 break; 5077 } 5078 } 5079 5080 if (keep_going) 5081 continue; 5082 else 5083 break; 5084 } else { 5085 if (log) 5086 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5087 "the event pointer was null. How odd..."); 5088 return_value = eExpressionInterrupted; 5089 break; 5090 } 5091 } else { 5092 // If we didn't get an event that means we've timed out... We will 5093 // interrupt the process here. Depending on what we were asked to do 5094 // we will either exit, or try with all threads running for the same 5095 // timeout. 5096 5097 if (log) { 5098 if (options.GetTryAllThreads()) { 5099 if (before_first_timeout) { 5100 LLDB_LOG(log, 5101 "Running function with one thread timeout timed out."); 5102 } else 5103 LLDB_LOG(log, "Restarting function with all threads enabled and " 5104 "timeout: {0} timed out, abandoning execution.", 5105 timeout); 5106 } else 5107 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5108 "abandoning execution.", 5109 timeout); 5110 } 5111 5112 // It is possible that between the time we issued the Halt, and we get 5113 // around to calling Halt the target could have stopped. That's fine, 5114 // Halt will figure that out and send the appropriate Stopped event. 5115 // BUT it is also possible that we stopped & restarted (e.g. hit a 5116 // signal with "stop" set to false.) In 5117 // that case, we'll get the stopped & restarted event, and we should go 5118 // back to waiting for the Halt's stopped event. That's what this 5119 // while loop does. 5120 5121 bool back_to_top = true; 5122 uint32_t try_halt_again = 0; 5123 bool do_halt = true; 5124 const uint32_t num_retries = 5; 5125 while (try_halt_again < num_retries) { 5126 Status halt_error; 5127 if (do_halt) { 5128 LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); 5129 const bool clear_thread_plans = false; 5130 const bool use_run_lock = false; 5131 Halt(clear_thread_plans, use_run_lock); 5132 } 5133 if (halt_error.Success()) { 5134 if (log) 5135 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5136 5137 got_event = 5138 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5139 5140 if (got_event) { 5141 stop_state = 5142 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5143 if (log) { 5144 LLDB_LOGF(log, 5145 "Process::RunThreadPlan(): Stopped with event: %s", 5146 StateAsCString(stop_state)); 5147 if (stop_state == lldb::eStateStopped && 5148 Process::ProcessEventData::GetInterruptedFromEvent( 5149 event_sp.get())) 5150 log->PutCString(" Event was the Halt interruption event."); 5151 } 5152 5153 if (stop_state == lldb::eStateStopped) { 5154 if (Process::ProcessEventData::GetRestartedFromEvent( 5155 event_sp.get())) { 5156 if (log) 5157 log->PutCString("Process::RunThreadPlan(): Went to halt " 5158 "but got a restarted event, there must be " 5159 "an un-restarted stopped event so try " 5160 "again... " 5161 "Exiting wait loop."); 5162 try_halt_again++; 5163 do_halt = false; 5164 continue; 5165 } 5166 5167 // Between the time we initiated the Halt and the time we 5168 // delivered it, the process could have already finished its 5169 // job. Check that here: 5170 const bool handle_interrupts = false; 5171 if (auto result = HandleStoppedEvent( 5172 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5173 event_sp, event_to_broadcast_sp, options, 5174 handle_interrupts)) { 5175 return_value = *result; 5176 back_to_top = false; 5177 break; 5178 } 5179 5180 if (!options.GetTryAllThreads()) { 5181 if (log) 5182 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5183 "was false, we stopped so now we're " 5184 "quitting."); 5185 return_value = eExpressionInterrupted; 5186 back_to_top = false; 5187 break; 5188 } 5189 5190 if (before_first_timeout) { 5191 // Set all the other threads to run, and return to the top of 5192 // the loop, which will continue; 5193 before_first_timeout = false; 5194 thread_plan_sp->SetStopOthers(false); 5195 if (log) 5196 log->PutCString( 5197 "Process::RunThreadPlan(): about to resume."); 5198 5199 back_to_top = true; 5200 break; 5201 } else { 5202 // Running all threads failed, so return Interrupted. 5203 if (log) 5204 log->PutCString("Process::RunThreadPlan(): running all " 5205 "threads timed out."); 5206 return_value = eExpressionInterrupted; 5207 back_to_top = false; 5208 break; 5209 } 5210 } 5211 } else { 5212 if (log) 5213 log->PutCString("Process::RunThreadPlan(): halt said it " 5214 "succeeded, but I got no event. " 5215 "I'm getting out of here passing Interrupted."); 5216 return_value = eExpressionInterrupted; 5217 back_to_top = false; 5218 break; 5219 } 5220 } else { 5221 try_halt_again++; 5222 continue; 5223 } 5224 } 5225 5226 if (!back_to_top || try_halt_again > num_retries) 5227 break; 5228 else 5229 continue; 5230 } 5231 } // END WAIT LOOP 5232 5233 // If we had to start up a temporary private state thread to run this 5234 // thread plan, shut it down now. 5235 if (backup_private_state_thread.IsJoinable()) { 5236 StopPrivateStateThread(); 5237 Status error; 5238 m_private_state_thread = backup_private_state_thread; 5239 if (stopper_base_plan_sp) { 5240 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5241 } 5242 if (old_state != eStateInvalid) 5243 m_public_state.SetValueNoLock(old_state); 5244 } 5245 5246 // If our thread went away on us, we need to get out of here without 5247 // doing any more work. We don't have to clean up the thread plan, that 5248 // will have happened when the Thread was destroyed. 5249 if (return_value == eExpressionThreadVanished) { 5250 return return_value; 5251 } 5252 5253 if (return_value != eExpressionCompleted && log) { 5254 // Print a backtrace into the log so we can figure out where we are: 5255 StreamString s; 5256 s.PutCString("Thread state after unsuccessful completion: \n"); 5257 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5258 log->PutString(s.GetString()); 5259 } 5260 // Restore the thread state if we are going to discard the plan execution. 5261 // There are three cases where this could happen: 1) The execution 5262 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5263 // was true 3) We got some other error, and discard_on_error was true 5264 bool should_unwind = (return_value == eExpressionInterrupted && 5265 options.DoesUnwindOnError()) || 5266 (return_value == eExpressionHitBreakpoint && 5267 options.DoesIgnoreBreakpoints()); 5268 5269 if (return_value == eExpressionCompleted || should_unwind) { 5270 thread_plan_sp->RestoreThreadState(); 5271 } 5272 5273 // Now do some processing on the results of the run: 5274 if (return_value == eExpressionInterrupted || 5275 return_value == eExpressionHitBreakpoint) { 5276 if (log) { 5277 StreamString s; 5278 if (event_sp) 5279 event_sp->Dump(&s); 5280 else { 5281 log->PutCString("Process::RunThreadPlan(): Stop event that " 5282 "interrupted us is NULL."); 5283 } 5284 5285 StreamString ts; 5286 5287 const char *event_explanation = nullptr; 5288 5289 do { 5290 if (!event_sp) { 5291 event_explanation = "<no event>"; 5292 break; 5293 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5294 event_explanation = "<user interrupt>"; 5295 break; 5296 } else { 5297 const Process::ProcessEventData *event_data = 5298 Process::ProcessEventData::GetEventDataFromEvent( 5299 event_sp.get()); 5300 5301 if (!event_data) { 5302 event_explanation = "<no event data>"; 5303 break; 5304 } 5305 5306 Process *process = event_data->GetProcessSP().get(); 5307 5308 if (!process) { 5309 event_explanation = "<no process>"; 5310 break; 5311 } 5312 5313 ThreadList &thread_list = process->GetThreadList(); 5314 5315 uint32_t num_threads = thread_list.GetSize(); 5316 uint32_t thread_index; 5317 5318 ts.Printf("<%u threads> ", num_threads); 5319 5320 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5321 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5322 5323 if (!thread) { 5324 ts.Printf("<?> "); 5325 continue; 5326 } 5327 5328 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5329 RegisterContext *register_context = 5330 thread->GetRegisterContext().get(); 5331 5332 if (register_context) 5333 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5334 else 5335 ts.Printf("[ip unknown] "); 5336 5337 // Show the private stop info here, the public stop info will be 5338 // from the last natural stop. 5339 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5340 if (stop_info_sp) { 5341 const char *stop_desc = stop_info_sp->GetDescription(); 5342 if (stop_desc) 5343 ts.PutCString(stop_desc); 5344 } 5345 ts.Printf(">"); 5346 } 5347 5348 event_explanation = ts.GetData(); 5349 } 5350 } while (false); 5351 5352 if (event_explanation) 5353 LLDB_LOGF(log, 5354 "Process::RunThreadPlan(): execution interrupted: %s %s", 5355 s.GetData(), event_explanation); 5356 else 5357 LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", 5358 s.GetData()); 5359 } 5360 5361 if (should_unwind) { 5362 LLDB_LOGF(log, 5363 "Process::RunThreadPlan: ExecutionInterrupted - " 5364 "discarding thread plans up to %p.", 5365 static_cast<void *>(thread_plan_sp.get())); 5366 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5367 } else { 5368 LLDB_LOGF(log, 5369 "Process::RunThreadPlan: ExecutionInterrupted - for " 5370 "plan: %p not discarding.", 5371 static_cast<void *>(thread_plan_sp.get())); 5372 } 5373 } else if (return_value == eExpressionSetupError) { 5374 if (log) 5375 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5376 5377 if (options.DoesUnwindOnError()) { 5378 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5379 } 5380 } else { 5381 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5382 if (log) 5383 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5384 return_value = eExpressionCompleted; 5385 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5386 if (log) 5387 log->PutCString( 5388 "Process::RunThreadPlan(): thread plan was discarded"); 5389 return_value = eExpressionDiscarded; 5390 } else { 5391 if (log) 5392 log->PutCString( 5393 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5394 if (options.DoesUnwindOnError() && thread_plan_sp) { 5395 if (log) 5396 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5397 "'cause unwind_on_error is set."); 5398 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5399 } 5400 } 5401 } 5402 5403 // Thread we ran the function in may have gone away because we ran the 5404 // target Check that it's still there, and if it is put it back in the 5405 // context. Also restore the frame in the context if it is still present. 5406 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5407 if (thread) { 5408 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5409 } 5410 5411 // Also restore the current process'es selected frame & thread, since this 5412 // function calling may be done behind the user's back. 5413 5414 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5415 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5416 selected_stack_id.IsValid()) { 5417 // We were able to restore the selected thread, now restore the frame: 5418 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5419 StackFrameSP old_frame_sp = 5420 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5421 selected_stack_id); 5422 if (old_frame_sp) 5423 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5424 old_frame_sp.get()); 5425 } 5426 } 5427 } 5428 5429 // If the process exited during the run of the thread plan, notify everyone. 5430 5431 if (event_to_broadcast_sp) { 5432 if (log) 5433 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5434 BroadcastEvent(event_to_broadcast_sp); 5435 } 5436 5437 return return_value; 5438 } 5439 5440 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5441 const char *result_name = "<unknown>"; 5442 5443 switch (result) { 5444 case eExpressionCompleted: 5445 result_name = "eExpressionCompleted"; 5446 break; 5447 case eExpressionDiscarded: 5448 result_name = "eExpressionDiscarded"; 5449 break; 5450 case eExpressionInterrupted: 5451 result_name = "eExpressionInterrupted"; 5452 break; 5453 case eExpressionHitBreakpoint: 5454 result_name = "eExpressionHitBreakpoint"; 5455 break; 5456 case eExpressionSetupError: 5457 result_name = "eExpressionSetupError"; 5458 break; 5459 case eExpressionParseError: 5460 result_name = "eExpressionParseError"; 5461 break; 5462 case eExpressionResultUnavailable: 5463 result_name = "eExpressionResultUnavailable"; 5464 break; 5465 case eExpressionTimedOut: 5466 result_name = "eExpressionTimedOut"; 5467 break; 5468 case eExpressionStoppedForDebug: 5469 result_name = "eExpressionStoppedForDebug"; 5470 break; 5471 case eExpressionThreadVanished: 5472 result_name = "eExpressionThreadVanished"; 5473 } 5474 return result_name; 5475 } 5476 5477 void Process::GetStatus(Stream &strm) { 5478 const StateType state = GetState(); 5479 if (StateIsStoppedState(state, false)) { 5480 if (state == eStateExited) { 5481 int exit_status = GetExitStatus(); 5482 const char *exit_description = GetExitDescription(); 5483 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5484 GetID(), exit_status, exit_status, 5485 exit_description ? exit_description : ""); 5486 } else { 5487 if (state == eStateConnected) 5488 strm.Printf("Connected to remote target.\n"); 5489 else 5490 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5491 } 5492 } else { 5493 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5494 } 5495 } 5496 5497 size_t Process::GetThreadStatus(Stream &strm, 5498 bool only_threads_with_stop_reason, 5499 uint32_t start_frame, uint32_t num_frames, 5500 uint32_t num_frames_with_source, 5501 bool stop_format) { 5502 size_t num_thread_infos_dumped = 0; 5503 5504 // You can't hold the thread list lock while calling Thread::GetStatus. That 5505 // very well might run code (e.g. if we need it to get return values or 5506 // arguments.) For that to work the process has to be able to acquire it. 5507 // So instead copy the thread ID's, and look them up one by one: 5508 5509 uint32_t num_threads; 5510 std::vector<lldb::tid_t> thread_id_array; 5511 // Scope for thread list locker; 5512 { 5513 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5514 ThreadList &curr_thread_list = GetThreadList(); 5515 num_threads = curr_thread_list.GetSize(); 5516 uint32_t idx; 5517 thread_id_array.resize(num_threads); 5518 for (idx = 0; idx < num_threads; ++idx) 5519 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5520 } 5521 5522 for (uint32_t i = 0; i < num_threads; i++) { 5523 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5524 if (thread_sp) { 5525 if (only_threads_with_stop_reason) { 5526 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5527 if (!stop_info_sp || !stop_info_sp->IsValid()) 5528 continue; 5529 } 5530 thread_sp->GetStatus(strm, start_frame, num_frames, 5531 num_frames_with_source, 5532 stop_format); 5533 ++num_thread_infos_dumped; 5534 } else { 5535 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5536 LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 5537 " vanished while running Thread::GetStatus."); 5538 } 5539 } 5540 return num_thread_infos_dumped; 5541 } 5542 5543 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5544 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5545 } 5546 5547 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5548 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5549 region.GetByteSize()); 5550 } 5551 5552 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5553 void *baton) { 5554 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5555 } 5556 5557 bool Process::RunPreResumeActions() { 5558 bool result = true; 5559 while (!m_pre_resume_actions.empty()) { 5560 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5561 m_pre_resume_actions.pop_back(); 5562 bool this_result = action.callback(action.baton); 5563 if (result) 5564 result = this_result; 5565 } 5566 return result; 5567 } 5568 5569 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5570 5571 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5572 { 5573 PreResumeCallbackAndBaton element(callback, baton); 5574 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5575 if (found_iter != m_pre_resume_actions.end()) 5576 { 5577 m_pre_resume_actions.erase(found_iter); 5578 } 5579 } 5580 5581 ProcessRunLock &Process::GetRunLock() { 5582 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5583 return m_private_run_lock; 5584 else 5585 return m_public_run_lock; 5586 } 5587 5588 bool Process::CurrentThreadIsPrivateStateThread() 5589 { 5590 return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); 5591 } 5592 5593 5594 void Process::Flush() { 5595 m_thread_list.Flush(); 5596 m_extended_thread_list.Flush(); 5597 m_extended_thread_stop_id = 0; 5598 m_queue_list.Clear(); 5599 m_queue_list_stop_id = 0; 5600 } 5601 5602 lldb::addr_t Process::GetCodeAddressMask() { 5603 if (m_code_address_mask == 0) { 5604 if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) { 5605 lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1); 5606 SetCodeAddressMask(address_mask); 5607 } 5608 } 5609 return m_code_address_mask; 5610 } 5611 5612 lldb::addr_t Process::GetDataAddressMask() { 5613 if (m_data_address_mask == 0) { 5614 if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) { 5615 lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1); 5616 SetDataAddressMask(address_mask); 5617 } 5618 } 5619 return m_data_address_mask; 5620 } 5621 5622 void Process::DidExec() { 5623 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 5624 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 5625 5626 Target &target = GetTarget(); 5627 target.CleanupProcess(); 5628 target.ClearModules(false); 5629 m_dynamic_checkers_up.reset(); 5630 m_abi_sp.reset(); 5631 m_system_runtime_up.reset(); 5632 m_os_up.reset(); 5633 m_dyld_up.reset(); 5634 m_jit_loaders_up.reset(); 5635 m_image_tokens.clear(); 5636 m_allocated_memory_cache.Clear(); 5637 { 5638 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5639 m_language_runtimes.clear(); 5640 } 5641 m_instrumentation_runtimes.clear(); 5642 m_thread_list.DiscardThreadPlans(); 5643 m_memory_cache.Clear(true); 5644 DoDidExec(); 5645 CompleteAttach(); 5646 // Flush the process (threads and all stack frames) after running 5647 // CompleteAttach() in case the dynamic loader loaded things in new 5648 // locations. 5649 Flush(); 5650 5651 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5652 // let the target know so it can do any cleanup it needs to. 5653 target.DidExec(); 5654 } 5655 5656 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5657 if (address == nullptr) { 5658 error.SetErrorString("Invalid address argument"); 5659 return LLDB_INVALID_ADDRESS; 5660 } 5661 5662 addr_t function_addr = LLDB_INVALID_ADDRESS; 5663 5664 addr_t addr = address->GetLoadAddress(&GetTarget()); 5665 std::map<addr_t, addr_t>::const_iterator iter = 5666 m_resolved_indirect_addresses.find(addr); 5667 if (iter != m_resolved_indirect_addresses.end()) { 5668 function_addr = (*iter).second; 5669 } else { 5670 if (!CallVoidArgVoidPtrReturn(address, function_addr)) { 5671 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5672 error.SetErrorStringWithFormat( 5673 "Unable to call resolver for indirect function %s", 5674 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5675 function_addr = LLDB_INVALID_ADDRESS; 5676 } else { 5677 if (ABISP abi_sp = GetABI()) 5678 function_addr = abi_sp->FixCodeAddress(function_addr); 5679 m_resolved_indirect_addresses.insert( 5680 std::pair<addr_t, addr_t>(addr, function_addr)); 5681 } 5682 } 5683 return function_addr; 5684 } 5685 5686 void Process::ModulesDidLoad(ModuleList &module_list) { 5687 // Inform the system runtime of the modified modules. 5688 SystemRuntime *sys_runtime = GetSystemRuntime(); 5689 if (sys_runtime) 5690 sys_runtime->ModulesDidLoad(module_list); 5691 5692 GetJITLoaders().ModulesDidLoad(module_list); 5693 5694 // Give the instrumentation runtimes a chance to be created before informing 5695 // them of the modified modules. 5696 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5697 m_instrumentation_runtimes); 5698 for (auto &runtime : m_instrumentation_runtimes) 5699 runtime.second->ModulesDidLoad(module_list); 5700 5701 // Give the language runtimes a chance to be created before informing them of 5702 // the modified modules. 5703 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 5704 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 5705 runtime->ModulesDidLoad(module_list); 5706 } 5707 5708 // If we don't have an operating system plug-in, try to load one since 5709 // loading shared libraries might cause a new one to try and load 5710 if (!m_os_up) 5711 LoadOperatingSystemPlugin(false); 5712 5713 // Inform the structured-data plugins of the modified modules. 5714 for (auto pair : m_structured_data_plugin_map) { 5715 if (pair.second) 5716 pair.second->ModulesDidLoad(*this, module_list); 5717 } 5718 } 5719 5720 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5721 const char *fmt, ...) { 5722 bool print_warning = true; 5723 5724 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5725 if (!stream_sp) 5726 return; 5727 5728 if (repeat_key != nullptr) { 5729 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5730 if (it == m_warnings_issued.end()) { 5731 m_warnings_issued[warning_type] = WarningsPointerSet(); 5732 m_warnings_issued[warning_type].insert(repeat_key); 5733 } else { 5734 if (it->second.find(repeat_key) != it->second.end()) { 5735 print_warning = false; 5736 } else { 5737 it->second.insert(repeat_key); 5738 } 5739 } 5740 } 5741 5742 if (print_warning) { 5743 va_list args; 5744 va_start(args, fmt); 5745 stream_sp->PrintfVarArg(fmt, args); 5746 va_end(args); 5747 } 5748 } 5749 5750 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5751 if (!GetWarningsOptimization()) 5752 return; 5753 if (!sc.module_sp) 5754 return; 5755 if (!sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5756 sc.function->GetIsOptimized()) { 5757 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5758 "%s was compiled with optimization - stepping may behave " 5759 "oddly; variables may not be available.\n", 5760 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5761 } 5762 } 5763 5764 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) { 5765 if (!GetWarningsUnsupportedLanguage()) 5766 return; 5767 if (!sc.module_sp) 5768 return; 5769 LanguageType language = sc.GetLanguage(); 5770 if (language == eLanguageTypeUnknown) 5771 return; 5772 LanguageSet plugins = 5773 PluginManager::GetAllTypeSystemSupportedLanguagesForTypes(); 5774 if (!plugins[language]) { 5775 PrintWarning(Process::Warnings::eWarningsUnsupportedLanguage, 5776 sc.module_sp.get(), 5777 "This version of LLDB has no plugin for the language \"%s\". " 5778 "Inspection of frame variables will be limited.\n", 5779 Language::GetNameForLanguageType(language)); 5780 } 5781 } 5782 5783 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5784 info.Clear(); 5785 5786 PlatformSP platform_sp = GetTarget().GetPlatform(); 5787 if (!platform_sp) 5788 return false; 5789 5790 return platform_sp->GetProcessInfo(GetID(), info); 5791 } 5792 5793 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5794 ThreadCollectionSP threads; 5795 5796 const MemoryHistorySP &memory_history = 5797 MemoryHistory::FindPlugin(shared_from_this()); 5798 5799 if (!memory_history) { 5800 return threads; 5801 } 5802 5803 threads = std::make_shared<ThreadCollection>( 5804 memory_history->GetHistoryThreads(addr)); 5805 5806 return threads; 5807 } 5808 5809 InstrumentationRuntimeSP 5810 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5811 InstrumentationRuntimeCollection::iterator pos; 5812 pos = m_instrumentation_runtimes.find(type); 5813 if (pos == m_instrumentation_runtimes.end()) { 5814 return InstrumentationRuntimeSP(); 5815 } else 5816 return (*pos).second; 5817 } 5818 5819 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5820 const ArchSpec &arch, ModuleSpec &module_spec) { 5821 module_spec.Clear(); 5822 return false; 5823 } 5824 5825 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5826 m_image_tokens.push_back(image_ptr); 5827 return m_image_tokens.size() - 1; 5828 } 5829 5830 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5831 if (token < m_image_tokens.size()) 5832 return m_image_tokens[token]; 5833 return LLDB_INVALID_ADDRESS; 5834 } 5835 5836 void Process::ResetImageToken(size_t token) { 5837 if (token < m_image_tokens.size()) 5838 m_image_tokens[token] = LLDB_INVALID_ADDRESS; 5839 } 5840 5841 Address 5842 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5843 AddressRange range_bounds) { 5844 Target &target = GetTarget(); 5845 DisassemblerSP disassembler_sp; 5846 InstructionList *insn_list = nullptr; 5847 5848 Address retval = default_stop_addr; 5849 5850 if (!target.GetUseFastStepping()) 5851 return retval; 5852 if (!default_stop_addr.IsValid()) 5853 return retval; 5854 5855 const char *plugin_name = nullptr; 5856 const char *flavor = nullptr; 5857 disassembler_sp = Disassembler::DisassembleRange( 5858 target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds); 5859 if (disassembler_sp) 5860 insn_list = &disassembler_sp->GetInstructionList(); 5861 5862 if (insn_list == nullptr) { 5863 return retval; 5864 } 5865 5866 size_t insn_offset = 5867 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 5868 if (insn_offset == UINT32_MAX) { 5869 return retval; 5870 } 5871 5872 uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction( 5873 insn_offset, false /* ignore_calls*/, nullptr); 5874 if (branch_index == UINT32_MAX) { 5875 return retval; 5876 } 5877 5878 if (branch_index > insn_offset) { 5879 Address next_branch_insn_address = 5880 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 5881 if (next_branch_insn_address.IsValid() && 5882 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 5883 retval = next_branch_insn_address; 5884 } 5885 } 5886 5887 return retval; 5888 } 5889 5890 Status 5891 Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { 5892 5893 Status error; 5894 5895 lldb::addr_t range_end = 0; 5896 5897 region_list.clear(); 5898 do { 5899 lldb_private::MemoryRegionInfo region_info; 5900 error = GetMemoryRegionInfo(range_end, region_info); 5901 // GetMemoryRegionInfo should only return an error if it is unimplemented. 5902 if (error.Fail()) { 5903 region_list.clear(); 5904 break; 5905 } 5906 5907 range_end = region_info.GetRange().GetRangeEnd(); 5908 if (region_info.GetMapped() == MemoryRegionInfo::eYes) { 5909 region_list.push_back(std::move(region_info)); 5910 } 5911 } while (range_end != LLDB_INVALID_ADDRESS); 5912 5913 return error; 5914 } 5915 5916 Status 5917 Process::ConfigureStructuredData(ConstString type_name, 5918 const StructuredData::ObjectSP &config_sp) { 5919 // If you get this, the Process-derived class needs to implement a method to 5920 // enable an already-reported asynchronous structured data feature. See 5921 // ProcessGDBRemote for an example implementation over gdb-remote. 5922 return Status("unimplemented"); 5923 } 5924 5925 void Process::MapSupportedStructuredDataPlugins( 5926 const StructuredData::Array &supported_type_names) { 5927 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5928 5929 // Bail out early if there are no type names to map. 5930 if (supported_type_names.GetSize() == 0) { 5931 LLDB_LOGF(log, "Process::%s(): no structured data types supported", 5932 __FUNCTION__); 5933 return; 5934 } 5935 5936 // Convert StructuredData type names to ConstString instances. 5937 std::set<ConstString> const_type_names; 5938 5939 LLDB_LOGF(log, 5940 "Process::%s(): the process supports the following async " 5941 "structured data types:", 5942 __FUNCTION__); 5943 5944 supported_type_names.ForEach( 5945 [&const_type_names, &log](StructuredData::Object *object) { 5946 if (!object) { 5947 // Invalid - shouldn't be null objects in the array. 5948 return false; 5949 } 5950 5951 auto type_name = object->GetAsString(); 5952 if (!type_name) { 5953 // Invalid format - all type names should be strings. 5954 return false; 5955 } 5956 5957 const_type_names.insert(ConstString(type_name->GetValue())); 5958 LLDB_LOG(log, "- {0}", type_name->GetValue()); 5959 return true; 5960 }); 5961 5962 // For each StructuredDataPlugin, if the plugin handles any of the types in 5963 // the supported_type_names, map that type name to that plugin. Stop when 5964 // we've consumed all the type names. 5965 // FIXME: should we return an error if there are type names nobody 5966 // supports? 5967 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 5968 auto create_instance = 5969 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 5970 plugin_index); 5971 if (!create_instance) 5972 break; 5973 5974 // Create the plugin. 5975 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 5976 if (!plugin_sp) { 5977 // This plugin doesn't think it can work with the process. Move on to the 5978 // next. 5979 continue; 5980 } 5981 5982 // For any of the remaining type names, map any that this plugin supports. 5983 std::vector<ConstString> names_to_remove; 5984 for (auto &type_name : const_type_names) { 5985 if (plugin_sp->SupportsStructuredDataType(type_name)) { 5986 m_structured_data_plugin_map.insert( 5987 std::make_pair(type_name, plugin_sp)); 5988 names_to_remove.push_back(type_name); 5989 LLDB_LOGF(log, 5990 "Process::%s(): using plugin %s for type name " 5991 "%s", 5992 __FUNCTION__, plugin_sp->GetPluginName().GetCString(), 5993 type_name.GetCString()); 5994 } 5995 } 5996 5997 // Remove the type names that were consumed by this plugin. 5998 for (auto &type_name : names_to_remove) 5999 const_type_names.erase(type_name); 6000 } 6001 } 6002 6003 bool Process::RouteAsyncStructuredData( 6004 const StructuredData::ObjectSP object_sp) { 6005 // Nothing to do if there's no data. 6006 if (!object_sp) 6007 return false; 6008 6009 // The contract is this must be a dictionary, so we can look up the routing 6010 // key via the top-level 'type' string value within the dictionary. 6011 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 6012 if (!dictionary) 6013 return false; 6014 6015 // Grab the async structured type name (i.e. the feature/plugin name). 6016 ConstString type_name; 6017 if (!dictionary->GetValueForKeyAsString("type", type_name)) 6018 return false; 6019 6020 // Check if there's a plugin registered for this type name. 6021 auto find_it = m_structured_data_plugin_map.find(type_name); 6022 if (find_it == m_structured_data_plugin_map.end()) { 6023 // We don't have a mapping for this structured data type. 6024 return false; 6025 } 6026 6027 // Route the structured data to the plugin. 6028 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 6029 return true; 6030 } 6031 6032 Status Process::UpdateAutomaticSignalFiltering() { 6033 // Default implementation does nothign. 6034 // No automatic signal filtering to speak of. 6035 return Status(); 6036 } 6037 6038 UtilityFunction *Process::GetLoadImageUtilityFunction( 6039 Platform *platform, 6040 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 6041 if (platform != GetTarget().GetPlatform().get()) 6042 return nullptr; 6043 llvm::call_once(m_dlopen_utility_func_flag_once, 6044 [&] { m_dlopen_utility_func_up = factory(); }); 6045 return m_dlopen_utility_func_up.get(); 6046 } 6047 6048 llvm::Expected<TraceSupportedResponse> Process::TraceSupported() { 6049 if (!IsLiveDebugSession()) 6050 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6051 "Can't trace a non-live process."); 6052 return llvm::make_error<UnimplementedError>(); 6053 } 6054 6055 bool Process::CallVoidArgVoidPtrReturn(const Address *address, 6056 addr_t &returned_func, 6057 bool trap_exceptions) { 6058 Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); 6059 if (thread == nullptr || address == nullptr) 6060 return false; 6061 6062 EvaluateExpressionOptions options; 6063 options.SetStopOthers(true); 6064 options.SetUnwindOnError(true); 6065 options.SetIgnoreBreakpoints(true); 6066 options.SetTryAllThreads(true); 6067 options.SetDebug(false); 6068 options.SetTimeout(GetUtilityExpressionTimeout()); 6069 options.SetTrapExceptions(trap_exceptions); 6070 6071 auto type_system_or_err = 6072 GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC); 6073 if (!type_system_or_err) { 6074 llvm::consumeError(type_system_or_err.takeError()); 6075 return false; 6076 } 6077 CompilerType void_ptr_type = 6078 type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType(); 6079 lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( 6080 *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); 6081 if (call_plan_sp) { 6082 DiagnosticManager diagnostics; 6083 6084 StackFrame *frame = thread->GetStackFrameAtIndex(0).get(); 6085 if (frame) { 6086 ExecutionContext exe_ctx; 6087 frame->CalculateExecutionContext(exe_ctx); 6088 ExpressionResults result = 6089 RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics); 6090 if (result == eExpressionCompleted) { 6091 returned_func = 6092 call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( 6093 LLDB_INVALID_ADDRESS); 6094 6095 if (GetAddressByteSize() == 4) { 6096 if (returned_func == UINT32_MAX) 6097 return false; 6098 } else if (GetAddressByteSize() == 8) { 6099 if (returned_func == UINT64_MAX) 6100 return false; 6101 } 6102 return true; 6103 } 6104 } 6105 } 6106 6107 return false; 6108 } 6109 6110 llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() { 6111 Architecture *arch = GetTarget().GetArchitecturePlugin(); 6112 const MemoryTagManager *tag_manager = 6113 arch ? arch->GetMemoryTagManager() : nullptr; 6114 if (!arch || !tag_manager) { 6115 return llvm::createStringError( 6116 llvm::inconvertibleErrorCode(), 6117 "This architecture does not support memory tagging", 6118 GetPluginName().GetCString()); 6119 } 6120 6121 if (!SupportsMemoryTagging()) { 6122 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6123 "Process does not support memory tagging"); 6124 } 6125 6126 return tag_manager; 6127 } 6128 6129 llvm::Expected<std::vector<lldb::addr_t>> 6130 Process::ReadMemoryTags(lldb::addr_t addr, size_t len) { 6131 llvm::Expected<const MemoryTagManager *> tag_manager_or_err = 6132 GetMemoryTagManager(); 6133 if (!tag_manager_or_err) 6134 return tag_manager_or_err.takeError(); 6135 6136 const MemoryTagManager *tag_manager = *tag_manager_or_err; 6137 llvm::Expected<std::vector<uint8_t>> tag_data = 6138 DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType()); 6139 if (!tag_data) 6140 return tag_data.takeError(); 6141 6142 return tag_manager->UnpackTagsData(*tag_data, 6143 len / tag_manager->GetGranuleSize()); 6144 } 6145 6146 Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len, 6147 const std::vector<lldb::addr_t> &tags) { 6148 llvm::Expected<const MemoryTagManager *> tag_manager_or_err = 6149 GetMemoryTagManager(); 6150 if (!tag_manager_or_err) 6151 return Status(tag_manager_or_err.takeError()); 6152 6153 const MemoryTagManager *tag_manager = *tag_manager_or_err; 6154 llvm::Expected<std::vector<uint8_t>> packed_tags = 6155 tag_manager->PackTags(tags); 6156 if (!packed_tags) { 6157 return Status(packed_tags.takeError()); 6158 } 6159 6160 return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(), 6161 *packed_tags); 6162 } 6163