1 //===-- Process.cpp ---------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // C Includes 11 // C++ Includes 12 #include <atomic> 13 #include <mutex> 14 15 // Other libraries and framework includes 16 #include "llvm/Support/ScopedPrinter.h" 17 #include "llvm/Support/Threading.h" 18 19 // Project includes 20 #include "Plugins/Process/Utility/InferiorCallPOSIX.h" 21 #include "lldb/Breakpoint/BreakpointLocation.h" 22 #include "lldb/Breakpoint/StoppointCallbackContext.h" 23 #include "lldb/Core/Debugger.h" 24 #include "lldb/Core/Event.h" 25 #include "lldb/Core/Module.h" 26 #include "lldb/Core/ModuleSpec.h" 27 #include "lldb/Core/PluginManager.h" 28 #include "lldb/Core/State.h" 29 #include "lldb/Core/StreamFile.h" 30 #include "lldb/Expression/DiagnosticManager.h" 31 #include "lldb/Expression/IRDynamicChecks.h" 32 #include "lldb/Expression/UserExpression.h" 33 #include "lldb/Expression/UtilityFunction.h" 34 #include "lldb/Host/ConnectionFileDescriptor.h" 35 #include "lldb/Host/FileSystem.h" 36 #include "lldb/Host/Host.h" 37 #include "lldb/Host/HostInfo.h" 38 #include "lldb/Host/OptionParser.h" 39 #include "lldb/Host/Pipe.h" 40 #include "lldb/Host/Terminal.h" 41 #include "lldb/Host/ThreadLauncher.h" 42 #include "lldb/Interpreter/CommandInterpreter.h" 43 #include "lldb/Interpreter/OptionArgParser.h" 44 #include "lldb/Interpreter/OptionValueProperties.h" 45 #include "lldb/Symbol/Function.h" 46 #include "lldb/Symbol/Symbol.h" 47 #include "lldb/Target/ABI.h" 48 #include "lldb/Target/CPPLanguageRuntime.h" 49 #include "lldb/Target/DynamicLoader.h" 50 #include "lldb/Target/InstrumentationRuntime.h" 51 #include "lldb/Target/JITLoader.h" 52 #include "lldb/Target/JITLoaderList.h" 53 #include "lldb/Target/LanguageRuntime.h" 54 #include "lldb/Target/MemoryHistory.h" 55 #include "lldb/Target/MemoryRegionInfo.h" 56 #include "lldb/Target/ObjCLanguageRuntime.h" 57 #include "lldb/Target/OperatingSystem.h" 58 #include "lldb/Target/Platform.h" 59 #include "lldb/Target/Process.h" 60 #include "lldb/Target/RegisterContext.h" 61 #include "lldb/Target/StopInfo.h" 62 #include "lldb/Target/StructuredDataPlugin.h" 63 #include "lldb/Target/SystemRuntime.h" 64 #include "lldb/Target/Target.h" 65 #include "lldb/Target/TargetList.h" 66 #include "lldb/Target/Thread.h" 67 #include "lldb/Target/ThreadPlan.h" 68 #include "lldb/Target/ThreadPlanBase.h" 69 #include "lldb/Target/UnixSignals.h" 70 #include "lldb/Utility/Log.h" 71 #include "lldb/Utility/NameMatches.h" 72 #include "lldb/Utility/SelectHelper.h" 73 74 using namespace lldb; 75 using namespace lldb_private; 76 using namespace std::chrono; 77 78 // Comment out line below to disable memory caching, overriding the process 79 // setting target.process.disable-memory-cache 80 #define ENABLE_MEMORY_CACHING 81 82 #ifdef ENABLE_MEMORY_CACHING 83 #define DISABLE_MEM_CACHE_DEFAULT false 84 #else 85 #define DISABLE_MEM_CACHE_DEFAULT true 86 #endif 87 88 class ProcessOptionValueProperties : public OptionValueProperties { 89 public: 90 ProcessOptionValueProperties(const ConstString &name) 91 : OptionValueProperties(name) {} 92 93 // This constructor is used when creating ProcessOptionValueProperties when 94 // it is part of a new lldb_private::Process instance. It will copy all 95 // current global property values as needed 96 ProcessOptionValueProperties(ProcessProperties *global_properties) 97 : OptionValueProperties(*global_properties->GetValueProperties()) {} 98 99 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 100 bool will_modify, 101 uint32_t idx) const override { 102 // When getting the value for a key from the process options, we will 103 // always try and grab the setting from the current process if there is 104 // one. Else we just use the one from this instance. 105 if (exe_ctx) { 106 Process *process = exe_ctx->GetProcessPtr(); 107 if (process) { 108 ProcessOptionValueProperties *instance_properties = 109 static_cast<ProcessOptionValueProperties *>( 110 process->GetValueProperties().get()); 111 if (this != instance_properties) 112 return instance_properties->ProtectedGetPropertyAtIndex(idx); 113 } 114 } 115 return ProtectedGetPropertyAtIndex(idx); 116 } 117 }; 118 119 static PropertyDefinition g_properties[] = { 120 {"disable-memory-cache", OptionValue::eTypeBoolean, false, 121 DISABLE_MEM_CACHE_DEFAULT, nullptr, nullptr, 122 "Disable reading and caching of memory in fixed-size units."}, 123 {"extra-startup-command", OptionValue::eTypeArray, false, 124 OptionValue::eTypeString, nullptr, nullptr, 125 "A list containing extra commands understood by the particular process " 126 "plugin used. " 127 "For instance, to turn on debugserver logging set this to " 128 "\"QSetLogging:bitmask=LOG_DEFAULT;\""}, 129 {"ignore-breakpoints-in-expressions", OptionValue::eTypeBoolean, true, true, 130 nullptr, nullptr, 131 "If true, breakpoints will be ignored during expression evaluation."}, 132 {"unwind-on-error-in-expressions", OptionValue::eTypeBoolean, true, true, 133 nullptr, nullptr, "If true, errors in expression evaluation will unwind " 134 "the stack back to the state before the call."}, 135 {"python-os-plugin-path", OptionValue::eTypeFileSpec, false, true, nullptr, 136 nullptr, "A path to a python OS plug-in module file that contains a " 137 "OperatingSystemPlugIn class."}, 138 {"stop-on-sharedlibrary-events", OptionValue::eTypeBoolean, true, false, 139 nullptr, nullptr, 140 "If true, stop when a shared library is loaded or unloaded."}, 141 {"detach-keeps-stopped", OptionValue::eTypeBoolean, true, false, nullptr, 142 nullptr, "If true, detach will attempt to keep the process stopped."}, 143 {"memory-cache-line-size", OptionValue::eTypeUInt64, false, 512, nullptr, 144 nullptr, "The memory cache line size"}, 145 {"optimization-warnings", OptionValue::eTypeBoolean, false, true, nullptr, 146 nullptr, "If true, warn when stopped in code that is optimized where " 147 "stepping and variable availability may not behave as expected."}, 148 {"stop-on-exec", OptionValue::eTypeBoolean, true, true, 149 nullptr, nullptr, 150 "If true, stop when a shared library is loaded or unloaded."}, 151 {nullptr, OptionValue::eTypeInvalid, false, 0, nullptr, nullptr, nullptr}}; 152 153 enum { 154 ePropertyDisableMemCache, 155 ePropertyExtraStartCommand, 156 ePropertyIgnoreBreakpointsInExpressions, 157 ePropertyUnwindOnErrorInExpressions, 158 ePropertyPythonOSPluginPath, 159 ePropertyStopOnSharedLibraryEvents, 160 ePropertyDetachKeepsStopped, 161 ePropertyMemCacheLineSize, 162 ePropertyWarningOptimization, 163 ePropertyStopOnExec 164 }; 165 166 ProcessProperties::ProcessProperties(lldb_private::Process *process) 167 : Properties(), 168 m_process(process) // Can be nullptr for global ProcessProperties 169 { 170 if (process == nullptr) { 171 // Global process properties, set them up one time 172 m_collection_sp.reset( 173 new ProcessOptionValueProperties(ConstString("process"))); 174 m_collection_sp->Initialize(g_properties); 175 m_collection_sp->AppendProperty( 176 ConstString("thread"), ConstString("Settings specific to threads."), 177 true, Thread::GetGlobalProperties()->GetValueProperties()); 178 } else { 179 m_collection_sp.reset( 180 new ProcessOptionValueProperties(Process::GetGlobalProperties().get())); 181 m_collection_sp->SetValueChangedCallback( 182 ePropertyPythonOSPluginPath, 183 ProcessProperties::OptionValueChangedCallback, this); 184 } 185 } 186 187 ProcessProperties::~ProcessProperties() = default; 188 189 void ProcessProperties::OptionValueChangedCallback(void *baton, 190 OptionValue *option_value) { 191 ProcessProperties *properties = (ProcessProperties *)baton; 192 if (properties->m_process) 193 properties->m_process->LoadOperatingSystemPlugin(true); 194 } 195 196 bool ProcessProperties::GetDisableMemoryCache() const { 197 const uint32_t idx = ePropertyDisableMemCache; 198 return m_collection_sp->GetPropertyAtIndexAsBoolean( 199 nullptr, idx, g_properties[idx].default_uint_value != 0); 200 } 201 202 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 203 const uint32_t idx = ePropertyMemCacheLineSize; 204 return m_collection_sp->GetPropertyAtIndexAsUInt64( 205 nullptr, idx, g_properties[idx].default_uint_value); 206 } 207 208 Args ProcessProperties::GetExtraStartupCommands() const { 209 Args args; 210 const uint32_t idx = ePropertyExtraStartCommand; 211 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 212 return args; 213 } 214 215 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 216 const uint32_t idx = ePropertyExtraStartCommand; 217 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 218 } 219 220 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 221 const uint32_t idx = ePropertyPythonOSPluginPath; 222 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 223 } 224 225 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 226 const uint32_t idx = ePropertyPythonOSPluginPath; 227 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 228 } 229 230 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 231 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 232 return m_collection_sp->GetPropertyAtIndexAsBoolean( 233 nullptr, idx, g_properties[idx].default_uint_value != 0); 234 } 235 236 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 237 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 238 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 239 } 240 241 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 242 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 243 return m_collection_sp->GetPropertyAtIndexAsBoolean( 244 nullptr, idx, g_properties[idx].default_uint_value != 0); 245 } 246 247 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 248 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 249 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 250 } 251 252 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 253 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 254 return m_collection_sp->GetPropertyAtIndexAsBoolean( 255 nullptr, idx, g_properties[idx].default_uint_value != 0); 256 } 257 258 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 259 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 260 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 261 } 262 263 bool ProcessProperties::GetDetachKeepsStopped() const { 264 const uint32_t idx = ePropertyDetachKeepsStopped; 265 return m_collection_sp->GetPropertyAtIndexAsBoolean( 266 nullptr, idx, g_properties[idx].default_uint_value != 0); 267 } 268 269 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 270 const uint32_t idx = ePropertyDetachKeepsStopped; 271 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 272 } 273 274 bool ProcessProperties::GetWarningsOptimization() const { 275 const uint32_t idx = ePropertyWarningOptimization; 276 return m_collection_sp->GetPropertyAtIndexAsBoolean( 277 nullptr, idx, g_properties[idx].default_uint_value != 0); 278 } 279 280 bool ProcessProperties::GetStopOnExec() const { 281 const uint32_t idx = ePropertyStopOnExec; 282 return m_collection_sp->GetPropertyAtIndexAsBoolean( 283 nullptr, idx, g_properties[idx].default_uint_value != 0); 284 } 285 286 void ProcessInstanceInfo::Dump(Stream &s, Platform *platform) const { 287 const char *cstr; 288 if (m_pid != LLDB_INVALID_PROCESS_ID) 289 s.Printf(" pid = %" PRIu64 "\n", m_pid); 290 291 if (m_parent_pid != LLDB_INVALID_PROCESS_ID) 292 s.Printf(" parent = %" PRIu64 "\n", m_parent_pid); 293 294 if (m_executable) { 295 s.Printf(" name = %s\n", m_executable.GetFilename().GetCString()); 296 s.PutCString(" file = "); 297 m_executable.Dump(&s); 298 s.EOL(); 299 } 300 const uint32_t argc = m_arguments.GetArgumentCount(); 301 if (argc > 0) { 302 for (uint32_t i = 0; i < argc; i++) { 303 const char *arg = m_arguments.GetArgumentAtIndex(i); 304 if (i < 10) 305 s.Printf(" arg[%u] = %s\n", i, arg); 306 else 307 s.Printf("arg[%u] = %s\n", i, arg); 308 } 309 } 310 311 s.Format("{0}", m_environment); 312 313 if (m_arch.IsValid()) { 314 s.Printf(" arch = "); 315 m_arch.DumpTriple(s); 316 s.EOL(); 317 } 318 319 if (m_uid != UINT32_MAX) { 320 cstr = platform->GetUserName(m_uid); 321 s.Printf(" uid = %-5u (%s)\n", m_uid, cstr ? cstr : ""); 322 } 323 if (m_gid != UINT32_MAX) { 324 cstr = platform->GetGroupName(m_gid); 325 s.Printf(" gid = %-5u (%s)\n", m_gid, cstr ? cstr : ""); 326 } 327 if (m_euid != UINT32_MAX) { 328 cstr = platform->GetUserName(m_euid); 329 s.Printf(" euid = %-5u (%s)\n", m_euid, cstr ? cstr : ""); 330 } 331 if (m_egid != UINT32_MAX) { 332 cstr = platform->GetGroupName(m_egid); 333 s.Printf(" egid = %-5u (%s)\n", m_egid, cstr ? cstr : ""); 334 } 335 } 336 337 void ProcessInstanceInfo::DumpTableHeader(Stream &s, Platform *platform, 338 bool show_args, bool verbose) { 339 const char *label; 340 if (show_args || verbose) 341 label = "ARGUMENTS"; 342 else 343 label = "NAME"; 344 345 if (verbose) { 346 s.Printf("PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE " 347 " %s\n", 348 label); 349 s.PutCString("====== ====== ========== ========== ========== ========== " 350 "======================== ============================\n"); 351 } else { 352 s.Printf("PID PARENT USER TRIPLE %s\n", label); 353 s.PutCString("====== ====== ========== ======================== " 354 "============================\n"); 355 } 356 } 357 358 void ProcessInstanceInfo::DumpAsTableRow(Stream &s, Platform *platform, 359 bool show_args, bool verbose) const { 360 if (m_pid != LLDB_INVALID_PROCESS_ID) { 361 const char *cstr; 362 s.Printf("%-6" PRIu64 " %-6" PRIu64 " ", m_pid, m_parent_pid); 363 364 StreamString arch_strm; 365 if (m_arch.IsValid()) 366 m_arch.DumpTriple(arch_strm); 367 368 if (verbose) { 369 cstr = platform->GetUserName(m_uid); 370 if (cstr && 371 cstr[0]) // Watch for empty string that indicates lookup failed 372 s.Printf("%-10s ", cstr); 373 else 374 s.Printf("%-10u ", m_uid); 375 376 cstr = platform->GetGroupName(m_gid); 377 if (cstr && 378 cstr[0]) // Watch for empty string that indicates lookup failed 379 s.Printf("%-10s ", cstr); 380 else 381 s.Printf("%-10u ", m_gid); 382 383 cstr = platform->GetUserName(m_euid); 384 if (cstr && 385 cstr[0]) // Watch for empty string that indicates lookup failed 386 s.Printf("%-10s ", cstr); 387 else 388 s.Printf("%-10u ", m_euid); 389 390 cstr = platform->GetGroupName(m_egid); 391 if (cstr && 392 cstr[0]) // Watch for empty string that indicates lookup failed 393 s.Printf("%-10s ", cstr); 394 else 395 s.Printf("%-10u ", m_egid); 396 397 s.Printf("%-24s ", arch_strm.GetData()); 398 } else { 399 s.Printf("%-10s %-24s ", platform->GetUserName(m_euid), 400 arch_strm.GetData()); 401 } 402 403 if (verbose || show_args) { 404 const uint32_t argc = m_arguments.GetArgumentCount(); 405 if (argc > 0) { 406 for (uint32_t i = 0; i < argc; i++) { 407 if (i > 0) 408 s.PutChar(' '); 409 s.PutCString(m_arguments.GetArgumentAtIndex(i)); 410 } 411 } 412 } else { 413 s.PutCString(GetName()); 414 } 415 416 s.EOL(); 417 } 418 } 419 420 Status ProcessLaunchCommandOptions::SetOptionValue( 421 uint32_t option_idx, llvm::StringRef option_arg, 422 ExecutionContext *execution_context) { 423 Status error; 424 const int short_option = m_getopt_table[option_idx].val; 425 426 switch (short_option) { 427 case 's': // Stop at program entry point 428 launch_info.GetFlags().Set(eLaunchFlagStopAtEntry); 429 break; 430 431 case 'i': // STDIN for read only 432 { 433 FileAction action; 434 if (action.Open(STDIN_FILENO, FileSpec{option_arg, false}, true, false)) 435 launch_info.AppendFileAction(action); 436 break; 437 } 438 439 case 'o': // Open STDOUT for write only 440 { 441 FileAction action; 442 if (action.Open(STDOUT_FILENO, FileSpec{option_arg, false}, false, true)) 443 launch_info.AppendFileAction(action); 444 break; 445 } 446 447 case 'e': // STDERR for write only 448 { 449 FileAction action; 450 if (action.Open(STDERR_FILENO, FileSpec{option_arg, false}, false, true)) 451 launch_info.AppendFileAction(action); 452 break; 453 } 454 455 case 'p': // Process plug-in name 456 launch_info.SetProcessPluginName(option_arg); 457 break; 458 459 case 'n': // Disable STDIO 460 { 461 FileAction action; 462 const FileSpec dev_null{FileSystem::DEV_NULL, false}; 463 if (action.Open(STDIN_FILENO, dev_null, true, false)) 464 launch_info.AppendFileAction(action); 465 if (action.Open(STDOUT_FILENO, dev_null, false, true)) 466 launch_info.AppendFileAction(action); 467 if (action.Open(STDERR_FILENO, dev_null, false, true)) 468 launch_info.AppendFileAction(action); 469 break; 470 } 471 472 case 'w': 473 launch_info.SetWorkingDirectory(FileSpec{option_arg, false}); 474 break; 475 476 case 't': // Open process in new terminal window 477 launch_info.GetFlags().Set(eLaunchFlagLaunchInTTY); 478 break; 479 480 case 'a': { 481 TargetSP target_sp = 482 execution_context ? execution_context->GetTargetSP() : TargetSP(); 483 PlatformSP platform_sp = 484 target_sp ? target_sp->GetPlatform() : PlatformSP(); 485 launch_info.GetArchitecture() = 486 Platform::GetAugmentedArchSpec(platform_sp.get(), option_arg); 487 } break; 488 489 case 'A': // Disable ASLR. 490 { 491 bool success; 492 const bool disable_aslr_arg = 493 OptionArgParser::ToBoolean(option_arg, true, &success); 494 if (success) 495 disable_aslr = disable_aslr_arg ? eLazyBoolYes : eLazyBoolNo; 496 else 497 error.SetErrorStringWithFormat( 498 "Invalid boolean value for disable-aslr option: '%s'", 499 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 500 break; 501 } 502 503 case 'X': // shell expand args. 504 { 505 bool success; 506 const bool expand_args = 507 OptionArgParser::ToBoolean(option_arg, true, &success); 508 if (success) 509 launch_info.SetShellExpandArguments(expand_args); 510 else 511 error.SetErrorStringWithFormat( 512 "Invalid boolean value for shell-expand-args option: '%s'", 513 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 514 break; 515 } 516 517 case 'c': 518 if (!option_arg.empty()) 519 launch_info.SetShell(FileSpec(option_arg, false)); 520 else 521 launch_info.SetShell(HostInfo::GetDefaultShell()); 522 break; 523 524 case 'v': 525 launch_info.GetEnvironment().insert(option_arg); 526 break; 527 528 default: 529 error.SetErrorStringWithFormat("unrecognized short option character '%c'", 530 short_option); 531 break; 532 } 533 return error; 534 } 535 536 static OptionDefinition g_process_launch_options[] = { 537 {LLDB_OPT_SET_ALL, false, "stop-at-entry", 's', OptionParser::eNoArgument, 538 nullptr, nullptr, 0, eArgTypeNone, 539 "Stop at the entry point of the program when launching a process."}, 540 {LLDB_OPT_SET_ALL, false, "disable-aslr", 'A', 541 OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeBoolean, 542 "Set whether to disable address space layout randomization when launching " 543 "a process."}, 544 {LLDB_OPT_SET_ALL, false, "plugin", 'p', OptionParser::eRequiredArgument, 545 nullptr, nullptr, 0, eArgTypePlugin, 546 "Name of the process plugin you want to use."}, 547 {LLDB_OPT_SET_ALL, false, "working-dir", 'w', 548 OptionParser::eRequiredArgument, nullptr, nullptr, 0, 549 eArgTypeDirectoryName, 550 "Set the current working directory to <path> when running the inferior."}, 551 {LLDB_OPT_SET_ALL, false, "arch", 'a', OptionParser::eRequiredArgument, 552 nullptr, nullptr, 0, eArgTypeArchitecture, 553 "Set the architecture for the process to launch when ambiguous."}, 554 {LLDB_OPT_SET_ALL, false, "environment", 'v', 555 OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeNone, 556 "Specify an environment variable name/value string (--environment " 557 "NAME=VALUE). Can be specified multiple times for subsequent environment " 558 "entries."}, 559 {LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3, false, "shell", 'c', 560 OptionParser::eOptionalArgument, nullptr, nullptr, 0, eArgTypeFilename, 561 "Run the process in a shell (not supported on all platforms)."}, 562 563 {LLDB_OPT_SET_1, false, "stdin", 'i', OptionParser::eRequiredArgument, 564 nullptr, nullptr, 0, eArgTypeFilename, 565 "Redirect stdin for the process to <filename>."}, 566 {LLDB_OPT_SET_1, false, "stdout", 'o', OptionParser::eRequiredArgument, 567 nullptr, nullptr, 0, eArgTypeFilename, 568 "Redirect stdout for the process to <filename>."}, 569 {LLDB_OPT_SET_1, false, "stderr", 'e', OptionParser::eRequiredArgument, 570 nullptr, nullptr, 0, eArgTypeFilename, 571 "Redirect stderr for the process to <filename>."}, 572 573 {LLDB_OPT_SET_2, false, "tty", 't', OptionParser::eNoArgument, nullptr, 574 nullptr, 0, eArgTypeNone, 575 "Start the process in a terminal (not supported on all platforms)."}, 576 577 {LLDB_OPT_SET_3, false, "no-stdio", 'n', OptionParser::eNoArgument, nullptr, 578 nullptr, 0, eArgTypeNone, 579 "Do not set up for terminal I/O to go to running process."}, 580 {LLDB_OPT_SET_4, false, "shell-expand-args", 'X', 581 OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeBoolean, 582 "Set whether to shell expand arguments to the process when launching."}, 583 }; 584 585 llvm::ArrayRef<OptionDefinition> ProcessLaunchCommandOptions::GetDefinitions() { 586 return llvm::makeArrayRef(g_process_launch_options); 587 } 588 589 bool ProcessInstanceInfoMatch::NameMatches(const char *process_name) const { 590 if (m_name_match_type == NameMatch::Ignore || process_name == nullptr) 591 return true; 592 const char *match_name = m_match_info.GetName(); 593 if (!match_name) 594 return true; 595 596 return lldb_private::NameMatches(process_name, m_name_match_type, match_name); 597 } 598 599 bool ProcessInstanceInfoMatch::Matches( 600 const ProcessInstanceInfo &proc_info) const { 601 if (!NameMatches(proc_info.GetName())) 602 return false; 603 604 if (m_match_info.ProcessIDIsValid() && 605 m_match_info.GetProcessID() != proc_info.GetProcessID()) 606 return false; 607 608 if (m_match_info.ParentProcessIDIsValid() && 609 m_match_info.GetParentProcessID() != proc_info.GetParentProcessID()) 610 return false; 611 612 if (m_match_info.UserIDIsValid() && 613 m_match_info.GetUserID() != proc_info.GetUserID()) 614 return false; 615 616 if (m_match_info.GroupIDIsValid() && 617 m_match_info.GetGroupID() != proc_info.GetGroupID()) 618 return false; 619 620 if (m_match_info.EffectiveUserIDIsValid() && 621 m_match_info.GetEffectiveUserID() != proc_info.GetEffectiveUserID()) 622 return false; 623 624 if (m_match_info.EffectiveGroupIDIsValid() && 625 m_match_info.GetEffectiveGroupID() != proc_info.GetEffectiveGroupID()) 626 return false; 627 628 if (m_match_info.GetArchitecture().IsValid() && 629 !m_match_info.GetArchitecture().IsCompatibleMatch( 630 proc_info.GetArchitecture())) 631 return false; 632 return true; 633 } 634 635 bool ProcessInstanceInfoMatch::MatchAllProcesses() const { 636 if (m_name_match_type != NameMatch::Ignore) 637 return false; 638 639 if (m_match_info.ProcessIDIsValid()) 640 return false; 641 642 if (m_match_info.ParentProcessIDIsValid()) 643 return false; 644 645 if (m_match_info.UserIDIsValid()) 646 return false; 647 648 if (m_match_info.GroupIDIsValid()) 649 return false; 650 651 if (m_match_info.EffectiveUserIDIsValid()) 652 return false; 653 654 if (m_match_info.EffectiveGroupIDIsValid()) 655 return false; 656 657 if (m_match_info.GetArchitecture().IsValid()) 658 return false; 659 660 if (m_match_all_users) 661 return false; 662 663 return true; 664 } 665 666 void ProcessInstanceInfoMatch::Clear() { 667 m_match_info.Clear(); 668 m_name_match_type = NameMatch::Ignore; 669 m_match_all_users = false; 670 } 671 672 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 673 llvm::StringRef plugin_name, 674 ListenerSP listener_sp, 675 const FileSpec *crash_file_path) { 676 static uint32_t g_process_unique_id = 0; 677 678 ProcessSP process_sp; 679 ProcessCreateInstance create_callback = nullptr; 680 if (!plugin_name.empty()) { 681 ConstString const_plugin_name(plugin_name); 682 create_callback = 683 PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name); 684 if (create_callback) { 685 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 686 if (process_sp) { 687 if (process_sp->CanDebug(target_sp, true)) { 688 process_sp->m_process_unique_id = ++g_process_unique_id; 689 } else 690 process_sp.reset(); 691 } 692 } 693 } else { 694 for (uint32_t idx = 0; 695 (create_callback = 696 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 697 ++idx) { 698 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 699 if (process_sp) { 700 if (process_sp->CanDebug(target_sp, false)) { 701 process_sp->m_process_unique_id = ++g_process_unique_id; 702 break; 703 } else 704 process_sp.reset(); 705 } 706 } 707 } 708 return process_sp; 709 } 710 711 ConstString &Process::GetStaticBroadcasterClass() { 712 static ConstString class_name("lldb.process"); 713 return class_name; 714 } 715 716 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 717 : Process(target_sp, listener_sp, 718 UnixSignals::Create(HostInfo::GetArchitecture())) { 719 // This constructor just delegates to the full Process constructor, 720 // defaulting to using the Host's UnixSignals. 721 } 722 723 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 724 const UnixSignalsSP &unix_signals_sp) 725 : ProcessProperties(this), UserID(LLDB_INVALID_PROCESS_ID), 726 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 727 Process::GetStaticBroadcasterClass().AsCString()), 728 m_target_sp(target_sp), m_public_state(eStateUnloaded), 729 m_private_state(eStateUnloaded), 730 m_private_state_broadcaster(nullptr, 731 "lldb.process.internal_state_broadcaster"), 732 m_private_state_control_broadcaster( 733 nullptr, "lldb.process.internal_state_control_broadcaster"), 734 m_private_state_listener_sp( 735 Listener::MakeListener("lldb.process.internal_state_listener")), 736 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 737 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 738 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 739 m_thread_list(this), m_extended_thread_list(this), 740 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 741 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 742 m_breakpoint_site_list(), m_dynamic_checkers_ap(), 743 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 744 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 745 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 746 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 747 m_memory_cache(*this), m_allocated_memory_cache(*this), 748 m_should_detach(false), m_next_event_action_ap(), m_public_run_lock(), 749 m_private_run_lock(), m_finalizing(false), m_finalize_called(false), 750 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 751 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 752 m_can_interpret_function_calls(false), m_warnings_issued(), 753 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 754 CheckInWithManager(); 755 756 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 757 if (log) 758 log->Printf("%p Process::Process()", static_cast<void *>(this)); 759 760 if (!m_unix_signals_sp) 761 m_unix_signals_sp = std::make_shared<UnixSignals>(); 762 763 SetEventName(eBroadcastBitStateChanged, "state-changed"); 764 SetEventName(eBroadcastBitInterrupt, "interrupt"); 765 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 766 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 767 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 768 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 769 770 m_private_state_control_broadcaster.SetEventName( 771 eBroadcastInternalStateControlStop, "control-stop"); 772 m_private_state_control_broadcaster.SetEventName( 773 eBroadcastInternalStateControlPause, "control-pause"); 774 m_private_state_control_broadcaster.SetEventName( 775 eBroadcastInternalStateControlResume, "control-resume"); 776 777 m_listener_sp->StartListeningForEvents( 778 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 779 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 780 eBroadcastBitProfileData | eBroadcastBitStructuredData); 781 782 m_private_state_listener_sp->StartListeningForEvents( 783 &m_private_state_broadcaster, 784 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 785 786 m_private_state_listener_sp->StartListeningForEvents( 787 &m_private_state_control_broadcaster, 788 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 789 eBroadcastInternalStateControlResume); 790 // We need something valid here, even if just the default UnixSignalsSP. 791 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 792 793 // Allow the platform to override the default cache line size 794 OptionValueSP value_sp = 795 m_collection_sp 796 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 797 ->GetValue(); 798 uint32_t platform_cache_line_size = 799 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 800 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 801 value_sp->SetUInt64Value(platform_cache_line_size); 802 } 803 804 Process::~Process() { 805 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 806 if (log) 807 log->Printf("%p Process::~Process()", static_cast<void *>(this)); 808 StopPrivateStateThread(); 809 810 // ThreadList::Clear() will try to acquire this process's mutex, so 811 // explicitly clear the thread list here to ensure that the mutex is not 812 // destroyed before the thread list. 813 m_thread_list.Clear(); 814 } 815 816 const ProcessPropertiesSP &Process::GetGlobalProperties() { 817 // NOTE: intentional leak so we don't crash if global destructor chain gets 818 // called as other threads still use the result of this function 819 static ProcessPropertiesSP *g_settings_sp_ptr = 820 new ProcessPropertiesSP(new ProcessProperties(nullptr)); 821 return *g_settings_sp_ptr; 822 } 823 824 void Process::Finalize() { 825 m_finalizing = true; 826 827 // Destroy this process if needed 828 switch (GetPrivateState()) { 829 case eStateConnected: 830 case eStateAttaching: 831 case eStateLaunching: 832 case eStateStopped: 833 case eStateRunning: 834 case eStateStepping: 835 case eStateCrashed: 836 case eStateSuspended: 837 Destroy(false); 838 break; 839 840 case eStateInvalid: 841 case eStateUnloaded: 842 case eStateDetached: 843 case eStateExited: 844 break; 845 } 846 847 // Clear our broadcaster before we proceed with destroying 848 Broadcaster::Clear(); 849 850 // Do any cleanup needed prior to being destructed... Subclasses that 851 // override this method should call this superclass method as well. 852 853 // We need to destroy the loader before the derived Process class gets 854 // destroyed since it is very likely that undoing the loader will require 855 // access to the real process. 856 m_dynamic_checkers_ap.reset(); 857 m_abi_sp.reset(); 858 m_os_ap.reset(); 859 m_system_runtime_ap.reset(); 860 m_dyld_ap.reset(); 861 m_jit_loaders_ap.reset(); 862 m_thread_list_real.Destroy(); 863 m_thread_list.Destroy(); 864 m_extended_thread_list.Destroy(); 865 m_queue_list.Clear(); 866 m_queue_list_stop_id = 0; 867 std::vector<Notifications> empty_notifications; 868 m_notifications.swap(empty_notifications); 869 m_image_tokens.clear(); 870 m_memory_cache.Clear(); 871 m_allocated_memory_cache.Clear(); 872 m_language_runtimes.clear(); 873 m_instrumentation_runtimes.clear(); 874 m_next_event_action_ap.reset(); 875 // Clear the last natural stop ID since it has a strong reference to this 876 // process 877 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 878 //#ifdef LLDB_CONFIGURATION_DEBUG 879 // StreamFile s(stdout, false); 880 // EventSP event_sp; 881 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 882 // { 883 // event_sp->Dump (&s); 884 // s.EOL(); 885 // } 886 //#endif 887 // We have to be very careful here as the m_private_state_listener might 888 // contain events that have ProcessSP values in them which can keep this 889 // process around forever. These events need to be cleared out. 890 m_private_state_listener_sp->Clear(); 891 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 892 m_public_run_lock.SetStopped(); 893 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 894 m_private_run_lock.SetStopped(); 895 m_structured_data_plugin_map.clear(); 896 m_finalize_called = true; 897 } 898 899 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 900 m_notifications.push_back(callbacks); 901 if (callbacks.initialize != nullptr) 902 callbacks.initialize(callbacks.baton, this); 903 } 904 905 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 906 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 907 for (pos = m_notifications.begin(); pos != end; ++pos) { 908 if (pos->baton == callbacks.baton && 909 pos->initialize == callbacks.initialize && 910 pos->process_state_changed == callbacks.process_state_changed) { 911 m_notifications.erase(pos); 912 return true; 913 } 914 } 915 return false; 916 } 917 918 void Process::SynchronouslyNotifyStateChanged(StateType state) { 919 std::vector<Notifications>::iterator notification_pos, 920 notification_end = m_notifications.end(); 921 for (notification_pos = m_notifications.begin(); 922 notification_pos != notification_end; ++notification_pos) { 923 if (notification_pos->process_state_changed) 924 notification_pos->process_state_changed(notification_pos->baton, this, 925 state); 926 } 927 } 928 929 // FIXME: We need to do some work on events before the general Listener sees 930 // them. 931 // For instance if we are continuing from a breakpoint, we need to ensure that 932 // we do the little "insert real insn, step & stop" trick. But we can't do 933 // that when the event is delivered by the broadcaster - since that is done on 934 // the thread that is waiting for new events, so if we needed more than one 935 // event for our handling, we would stall. So instead we do it when we fetch 936 // the event off of the queue. 937 // 938 939 StateType Process::GetNextEvent(EventSP &event_sp) { 940 StateType state = eStateInvalid; 941 942 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 943 std::chrono::seconds(0)) && 944 event_sp) 945 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 946 947 return state; 948 } 949 950 void Process::SyncIOHandler(uint32_t iohandler_id, 951 const Timeout<std::micro> &timeout) { 952 // don't sync (potentially context switch) in case where there is no process 953 // IO 954 if (!m_process_input_reader) 955 return; 956 957 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 958 959 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 960 if (Result) { 961 LLDB_LOG( 962 log, 963 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 964 iohandler_id, *Result); 965 } else { 966 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 967 iohandler_id); 968 } 969 } 970 971 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 972 EventSP *event_sp_ptr, bool wait_always, 973 ListenerSP hijack_listener_sp, 974 Stream *stream, bool use_run_lock) { 975 // We can't just wait for a "stopped" event, because the stopped event may 976 // have restarted the target. We have to actually check each event, and in 977 // the case of a stopped event check the restarted flag on the event. 978 if (event_sp_ptr) 979 event_sp_ptr->reset(); 980 StateType state = GetState(); 981 // If we are exited or detached, we won't ever get back to any other valid 982 // state... 983 if (state == eStateDetached || state == eStateExited) 984 return state; 985 986 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 987 LLDB_LOG(log, "timeout = {0}", timeout); 988 989 if (!wait_always && StateIsStoppedState(state, true) && 990 StateIsStoppedState(GetPrivateState(), true)) { 991 if (log) 992 log->Printf("Process::%s returning without waiting for events; process " 993 "private and public states are already 'stopped'.", 994 __FUNCTION__); 995 // We need to toggle the run lock as this won't get done in 996 // SetPublicState() if the process is hijacked. 997 if (hijack_listener_sp && use_run_lock) 998 m_public_run_lock.SetStopped(); 999 return state; 1000 } 1001 1002 while (state != eStateInvalid) { 1003 EventSP event_sp; 1004 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 1005 if (event_sp_ptr && event_sp) 1006 *event_sp_ptr = event_sp; 1007 1008 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 1009 Process::HandleProcessStateChangedEvent(event_sp, stream, 1010 pop_process_io_handler); 1011 1012 switch (state) { 1013 case eStateCrashed: 1014 case eStateDetached: 1015 case eStateExited: 1016 case eStateUnloaded: 1017 // We need to toggle the run lock as this won't get done in 1018 // SetPublicState() if the process is hijacked. 1019 if (hijack_listener_sp && use_run_lock) 1020 m_public_run_lock.SetStopped(); 1021 return state; 1022 case eStateStopped: 1023 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 1024 continue; 1025 else { 1026 // We need to toggle the run lock as this won't get done in 1027 // SetPublicState() if the process is hijacked. 1028 if (hijack_listener_sp && use_run_lock) 1029 m_public_run_lock.SetStopped(); 1030 return state; 1031 } 1032 default: 1033 continue; 1034 } 1035 } 1036 return state; 1037 } 1038 1039 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 1040 Stream *stream, 1041 bool &pop_process_io_handler) { 1042 const bool handle_pop = pop_process_io_handler; 1043 1044 pop_process_io_handler = false; 1045 ProcessSP process_sp = 1046 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 1047 1048 if (!process_sp) 1049 return false; 1050 1051 StateType event_state = 1052 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1053 if (event_state == eStateInvalid) 1054 return false; 1055 1056 switch (event_state) { 1057 case eStateInvalid: 1058 case eStateUnloaded: 1059 case eStateAttaching: 1060 case eStateLaunching: 1061 case eStateStepping: 1062 case eStateDetached: 1063 if (stream) 1064 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 1065 StateAsCString(event_state)); 1066 if (event_state == eStateDetached) 1067 pop_process_io_handler = true; 1068 break; 1069 1070 case eStateConnected: 1071 case eStateRunning: 1072 // Don't be chatty when we run... 1073 break; 1074 1075 case eStateExited: 1076 if (stream) 1077 process_sp->GetStatus(*stream); 1078 pop_process_io_handler = true; 1079 break; 1080 1081 case eStateStopped: 1082 case eStateCrashed: 1083 case eStateSuspended: 1084 // Make sure the program hasn't been auto-restarted: 1085 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 1086 if (stream) { 1087 size_t num_reasons = 1088 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 1089 if (num_reasons > 0) { 1090 // FIXME: Do we want to report this, or would that just be annoyingly 1091 // chatty? 1092 if (num_reasons == 1) { 1093 const char *reason = 1094 Process::ProcessEventData::GetRestartedReasonAtIndex( 1095 event_sp.get(), 0); 1096 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 1097 process_sp->GetID(), 1098 reason ? reason : "<UNKNOWN REASON>"); 1099 } else { 1100 stream->Printf("Process %" PRIu64 1101 " stopped and restarted, reasons:\n", 1102 process_sp->GetID()); 1103 1104 for (size_t i = 0; i < num_reasons; i++) { 1105 const char *reason = 1106 Process::ProcessEventData::GetRestartedReasonAtIndex( 1107 event_sp.get(), i); 1108 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 1109 } 1110 } 1111 } 1112 } 1113 } else { 1114 StopInfoSP curr_thread_stop_info_sp; 1115 // Lock the thread list so it doesn't change on us, this is the scope for 1116 // the locker: 1117 { 1118 ThreadList &thread_list = process_sp->GetThreadList(); 1119 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 1120 1121 ThreadSP curr_thread(thread_list.GetSelectedThread()); 1122 ThreadSP thread; 1123 StopReason curr_thread_stop_reason = eStopReasonInvalid; 1124 if (curr_thread) { 1125 curr_thread_stop_reason = curr_thread->GetStopReason(); 1126 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 1127 } 1128 if (!curr_thread || !curr_thread->IsValid() || 1129 curr_thread_stop_reason == eStopReasonInvalid || 1130 curr_thread_stop_reason == eStopReasonNone) { 1131 // Prefer a thread that has just completed its plan over another 1132 // thread as current thread. 1133 ThreadSP plan_thread; 1134 ThreadSP other_thread; 1135 1136 const size_t num_threads = thread_list.GetSize(); 1137 size_t i; 1138 for (i = 0; i < num_threads; ++i) { 1139 thread = thread_list.GetThreadAtIndex(i); 1140 StopReason thread_stop_reason = thread->GetStopReason(); 1141 switch (thread_stop_reason) { 1142 case eStopReasonInvalid: 1143 case eStopReasonNone: 1144 break; 1145 1146 case eStopReasonSignal: { 1147 // Don't select a signal thread if we weren't going to stop at 1148 // that signal. We have to have had another reason for stopping 1149 // here, and the user doesn't want to see this thread. 1150 uint64_t signo = thread->GetStopInfo()->GetValue(); 1151 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 1152 if (!other_thread) 1153 other_thread = thread; 1154 } 1155 break; 1156 } 1157 case eStopReasonTrace: 1158 case eStopReasonBreakpoint: 1159 case eStopReasonWatchpoint: 1160 case eStopReasonException: 1161 case eStopReasonExec: 1162 case eStopReasonThreadExiting: 1163 case eStopReasonInstrumentation: 1164 if (!other_thread) 1165 other_thread = thread; 1166 break; 1167 case eStopReasonPlanComplete: 1168 if (!plan_thread) 1169 plan_thread = thread; 1170 break; 1171 } 1172 } 1173 if (plan_thread) 1174 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 1175 else if (other_thread) 1176 thread_list.SetSelectedThreadByID(other_thread->GetID()); 1177 else { 1178 if (curr_thread && curr_thread->IsValid()) 1179 thread = curr_thread; 1180 else 1181 thread = thread_list.GetThreadAtIndex(0); 1182 1183 if (thread) 1184 thread_list.SetSelectedThreadByID(thread->GetID()); 1185 } 1186 } 1187 } 1188 // Drop the ThreadList mutex by here, since GetThreadStatus below might 1189 // have to run code, e.g. for Data formatters, and if we hold the 1190 // ThreadList mutex, then the process is going to have a hard time 1191 // restarting the process. 1192 if (stream) { 1193 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 1194 if (debugger.GetTargetList().GetSelectedTarget().get() == 1195 &process_sp->GetTarget()) { 1196 const bool only_threads_with_stop_reason = true; 1197 const uint32_t start_frame = 0; 1198 const uint32_t num_frames = 1; 1199 const uint32_t num_frames_with_source = 1; 1200 const bool stop_format = true; 1201 process_sp->GetStatus(*stream); 1202 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 1203 start_frame, num_frames, 1204 num_frames_with_source, 1205 stop_format); 1206 if (curr_thread_stop_info_sp) { 1207 lldb::addr_t crashing_address; 1208 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 1209 curr_thread_stop_info_sp, &crashing_address); 1210 if (valobj_sp) { 1211 const bool qualify_cxx_base_classes = false; 1212 1213 const ValueObject::GetExpressionPathFormat format = 1214 ValueObject::GetExpressionPathFormat:: 1215 eGetExpressionPathFormatHonorPointers; 1216 stream->PutCString("Likely cause: "); 1217 valobj_sp->GetExpressionPath(*stream, qualify_cxx_base_classes, 1218 format); 1219 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 1220 } 1221 } 1222 } else { 1223 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 1224 process_sp->GetTarget().shared_from_this()); 1225 if (target_idx != UINT32_MAX) 1226 stream->Printf("Target %d: (", target_idx); 1227 else 1228 stream->Printf("Target <unknown index>: ("); 1229 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 1230 stream->Printf(") stopped.\n"); 1231 } 1232 } 1233 1234 // Pop the process IO handler 1235 pop_process_io_handler = true; 1236 } 1237 break; 1238 } 1239 1240 if (handle_pop && pop_process_io_handler) 1241 process_sp->PopProcessIOHandler(); 1242 1243 return true; 1244 } 1245 1246 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 1247 if (listener_sp) { 1248 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 1249 eBroadcastBitInterrupt); 1250 } else 1251 return false; 1252 } 1253 1254 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 1255 1256 StateType Process::GetStateChangedEvents(EventSP &event_sp, 1257 const Timeout<std::micro> &timeout, 1258 ListenerSP hijack_listener_sp) { 1259 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1260 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1261 1262 ListenerSP listener_sp = hijack_listener_sp; 1263 if (!listener_sp) 1264 listener_sp = m_listener_sp; 1265 1266 StateType state = eStateInvalid; 1267 if (listener_sp->GetEventForBroadcasterWithType( 1268 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1269 timeout)) { 1270 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1271 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1272 else 1273 LLDB_LOG(log, "got no event or was interrupted."); 1274 } 1275 1276 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 1277 return state; 1278 } 1279 1280 Event *Process::PeekAtStateChangedEvents() { 1281 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1282 1283 if (log) 1284 log->Printf("Process::%s...", __FUNCTION__); 1285 1286 Event *event_ptr; 1287 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 1288 this, eBroadcastBitStateChanged); 1289 if (log) { 1290 if (event_ptr) { 1291 log->Printf( 1292 "Process::%s (event_ptr) => %s", __FUNCTION__, 1293 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 1294 } else { 1295 log->Printf("Process::%s no events found", __FUNCTION__); 1296 } 1297 } 1298 return event_ptr; 1299 } 1300 1301 StateType 1302 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 1303 const Timeout<std::micro> &timeout) { 1304 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1305 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1306 1307 StateType state = eStateInvalid; 1308 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1309 &m_private_state_broadcaster, 1310 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1311 timeout)) 1312 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1313 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1314 1315 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1316 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1317 return state; 1318 } 1319 1320 bool Process::GetEventsPrivate(EventSP &event_sp, 1321 const Timeout<std::micro> &timeout, 1322 bool control_only) { 1323 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1324 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1325 1326 if (control_only) 1327 return m_private_state_listener_sp->GetEventForBroadcaster( 1328 &m_private_state_control_broadcaster, event_sp, timeout); 1329 else 1330 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1331 } 1332 1333 bool Process::IsRunning() const { 1334 return StateIsRunningState(m_public_state.GetValue()); 1335 } 1336 1337 int Process::GetExitStatus() { 1338 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1339 1340 if (m_public_state.GetValue() == eStateExited) 1341 return m_exit_status; 1342 return -1; 1343 } 1344 1345 const char *Process::GetExitDescription() { 1346 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1347 1348 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1349 return m_exit_string.c_str(); 1350 return nullptr; 1351 } 1352 1353 bool Process::SetExitStatus(int status, const char *cstr) { 1354 // Use a mutex to protect setting the exit status. 1355 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1356 1357 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1358 LIBLLDB_LOG_PROCESS)); 1359 if (log) 1360 log->Printf( 1361 "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1362 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", 1363 cstr ? "\"" : ""); 1364 1365 // We were already in the exited state 1366 if (m_private_state.GetValue() == eStateExited) { 1367 if (log) 1368 log->Printf("Process::SetExitStatus () ignoring exit status because " 1369 "state was already set to eStateExited"); 1370 return false; 1371 } 1372 1373 m_exit_status = status; 1374 if (cstr) 1375 m_exit_string = cstr; 1376 else 1377 m_exit_string.clear(); 1378 1379 // Clear the last natural stop ID since it has a strong reference to this 1380 // process 1381 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1382 1383 SetPrivateState(eStateExited); 1384 1385 // Allow subclasses to do some cleanup 1386 DidExit(); 1387 1388 return true; 1389 } 1390 1391 bool Process::IsAlive() { 1392 switch (m_private_state.GetValue()) { 1393 case eStateConnected: 1394 case eStateAttaching: 1395 case eStateLaunching: 1396 case eStateStopped: 1397 case eStateRunning: 1398 case eStateStepping: 1399 case eStateCrashed: 1400 case eStateSuspended: 1401 return true; 1402 default: 1403 return false; 1404 } 1405 } 1406 1407 // This static callback can be used to watch for local child processes on the 1408 // current host. The child process exits, the process will be found in the 1409 // global target list (we want to be completely sure that the 1410 // lldb_private::Process doesn't go away before we can deliver the signal. 1411 bool Process::SetProcessExitStatus( 1412 lldb::pid_t pid, bool exited, 1413 int signo, // Zero for no signal 1414 int exit_status // Exit value of process if signal is zero 1415 ) { 1416 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 1417 if (log) 1418 log->Printf("Process::SetProcessExitStatus (pid=%" PRIu64 1419 ", exited=%i, signal=%i, exit_status=%i)\n", 1420 pid, exited, signo, exit_status); 1421 1422 if (exited) { 1423 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1424 if (target_sp) { 1425 ProcessSP process_sp(target_sp->GetProcessSP()); 1426 if (process_sp) { 1427 const char *signal_cstr = nullptr; 1428 if (signo) 1429 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1430 1431 process_sp->SetExitStatus(exit_status, signal_cstr); 1432 } 1433 } 1434 return true; 1435 } 1436 return false; 1437 } 1438 1439 void Process::UpdateThreadListIfNeeded() { 1440 const uint32_t stop_id = GetStopID(); 1441 if (m_thread_list.GetSize(false) == 0 || 1442 stop_id != m_thread_list.GetStopID()) { 1443 const StateType state = GetPrivateState(); 1444 if (StateIsStoppedState(state, true)) { 1445 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1446 // m_thread_list does have its own mutex, but we need to hold onto the 1447 // mutex between the call to UpdateThreadList(...) and the 1448 // os->UpdateThreadList(...) so it doesn't change on us 1449 ThreadList &old_thread_list = m_thread_list; 1450 ThreadList real_thread_list(this); 1451 ThreadList new_thread_list(this); 1452 // Always update the thread list with the protocol specific thread list, 1453 // but only update if "true" is returned 1454 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1455 // Don't call into the OperatingSystem to update the thread list if we 1456 // are shutting down, since that may call back into the SBAPI's, 1457 // requiring the API lock which is already held by whoever is shutting 1458 // us down, causing a deadlock. 1459 OperatingSystem *os = GetOperatingSystem(); 1460 if (os && !m_destroy_in_process) { 1461 // Clear any old backing threads where memory threads might have been 1462 // backed by actual threads from the lldb_private::Process subclass 1463 size_t num_old_threads = old_thread_list.GetSize(false); 1464 for (size_t i = 0; i < num_old_threads; ++i) 1465 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1466 1467 // Turn off dynamic types to ensure we don't run any expressions. 1468 // Objective C can run an expression to determine if a SBValue is a 1469 // dynamic type or not and we need to avoid this. OperatingSystem 1470 // plug-ins can't run expressions that require running code... 1471 1472 Target &target = GetTarget(); 1473 const lldb::DynamicValueType saved_prefer_dynamic = 1474 target.GetPreferDynamicValue(); 1475 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1476 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1477 1478 // Now let the OperatingSystem plug-in update the thread list 1479 1480 os->UpdateThreadList( 1481 old_thread_list, // Old list full of threads created by OS plug-in 1482 real_thread_list, // The actual thread list full of threads 1483 // created by each lldb_private::Process 1484 // subclass 1485 new_thread_list); // The new thread list that we will show to the 1486 // user that gets filled in 1487 1488 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1489 target.SetPreferDynamicValue(saved_prefer_dynamic); 1490 } else { 1491 // No OS plug-in, the new thread list is the same as the real thread 1492 // list 1493 new_thread_list = real_thread_list; 1494 } 1495 1496 m_thread_list_real.Update(real_thread_list); 1497 m_thread_list.Update(new_thread_list); 1498 m_thread_list.SetStopID(stop_id); 1499 1500 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1501 // Clear any extended threads that we may have accumulated previously 1502 m_extended_thread_list.Clear(); 1503 m_extended_thread_stop_id = GetLastNaturalStopID(); 1504 1505 m_queue_list.Clear(); 1506 m_queue_list_stop_id = GetLastNaturalStopID(); 1507 } 1508 } 1509 } 1510 } 1511 } 1512 1513 void Process::UpdateQueueListIfNeeded() { 1514 if (m_system_runtime_ap) { 1515 if (m_queue_list.GetSize() == 0 || 1516 m_queue_list_stop_id != GetLastNaturalStopID()) { 1517 const StateType state = GetPrivateState(); 1518 if (StateIsStoppedState(state, true)) { 1519 m_system_runtime_ap->PopulateQueueList(m_queue_list); 1520 m_queue_list_stop_id = GetLastNaturalStopID(); 1521 } 1522 } 1523 } 1524 } 1525 1526 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1527 OperatingSystem *os = GetOperatingSystem(); 1528 if (os) 1529 return os->CreateThread(tid, context); 1530 return ThreadSP(); 1531 } 1532 1533 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1534 return AssignIndexIDToThread(thread_id); 1535 } 1536 1537 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1538 return (m_thread_id_to_index_id_map.find(thread_id) != 1539 m_thread_id_to_index_id_map.end()); 1540 } 1541 1542 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1543 uint32_t result = 0; 1544 std::map<uint64_t, uint32_t>::iterator iterator = 1545 m_thread_id_to_index_id_map.find(thread_id); 1546 if (iterator == m_thread_id_to_index_id_map.end()) { 1547 result = ++m_thread_index_id; 1548 m_thread_id_to_index_id_map[thread_id] = result; 1549 } else { 1550 result = iterator->second; 1551 } 1552 1553 return result; 1554 } 1555 1556 StateType Process::GetState() { 1557 return m_public_state.GetValue(); 1558 } 1559 1560 bool Process::StateChangedIsExternallyHijacked() { 1561 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1562 const char *hijacking_name = GetHijackingListenerName(); 1563 if (hijacking_name && 1564 strcmp(hijacking_name, "lldb.Process.ResumeSynchronous.hijack")) 1565 return true; 1566 } 1567 return false; 1568 } 1569 1570 void Process::SetPublicState(StateType new_state, bool restarted) { 1571 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1572 LIBLLDB_LOG_PROCESS)); 1573 if (log) 1574 log->Printf("Process::SetPublicState (state = %s, restarted = %i)", 1575 StateAsCString(new_state), restarted); 1576 const StateType old_state = m_public_state.GetValue(); 1577 m_public_state.SetValue(new_state); 1578 1579 // On the transition from Run to Stopped, we unlock the writer end of the run 1580 // lock. The lock gets locked in Resume, which is the public API to tell the 1581 // program to run. 1582 if (!StateChangedIsExternallyHijacked()) { 1583 if (new_state == eStateDetached) { 1584 if (log) 1585 log->Printf( 1586 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1587 StateAsCString(new_state)); 1588 m_public_run_lock.SetStopped(); 1589 } else { 1590 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1591 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1592 if ((old_state_is_stopped != new_state_is_stopped)) { 1593 if (new_state_is_stopped && !restarted) { 1594 if (log) 1595 log->Printf("Process::SetPublicState (%s) -- unlocking run lock", 1596 StateAsCString(new_state)); 1597 m_public_run_lock.SetStopped(); 1598 } 1599 } 1600 } 1601 } 1602 } 1603 1604 Status Process::Resume() { 1605 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1606 LIBLLDB_LOG_PROCESS)); 1607 if (log) 1608 log->Printf("Process::Resume -- locking run lock"); 1609 if (!m_public_run_lock.TrySetRunning()) { 1610 Status error("Resume request failed - process still running."); 1611 if (log) 1612 log->Printf("Process::Resume: -- TrySetRunning failed, not resuming."); 1613 return error; 1614 } 1615 Status error = PrivateResume(); 1616 if (!error.Success()) { 1617 // Undo running state change 1618 m_public_run_lock.SetStopped(); 1619 } 1620 return error; 1621 } 1622 1623 Status Process::ResumeSynchronous(Stream *stream) { 1624 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1625 LIBLLDB_LOG_PROCESS)); 1626 if (log) 1627 log->Printf("Process::ResumeSynchronous -- locking run lock"); 1628 if (!m_public_run_lock.TrySetRunning()) { 1629 Status error("Resume request failed - process still running."); 1630 if (log) 1631 log->Printf("Process::Resume: -- TrySetRunning failed, not resuming."); 1632 return error; 1633 } 1634 1635 ListenerSP listener_sp( 1636 Listener::MakeListener("lldb.Process.ResumeSynchronous.hijack")); 1637 HijackProcessEvents(listener_sp); 1638 1639 Status error = PrivateResume(); 1640 if (error.Success()) { 1641 StateType state = 1642 WaitForProcessToStop(llvm::None, NULL, true, listener_sp, stream); 1643 const bool must_be_alive = 1644 false; // eStateExited is ok, so this must be false 1645 if (!StateIsStoppedState(state, must_be_alive)) 1646 error.SetErrorStringWithFormat( 1647 "process not in stopped state after synchronous resume: %s", 1648 StateAsCString(state)); 1649 } else { 1650 // Undo running state change 1651 m_public_run_lock.SetStopped(); 1652 } 1653 1654 // Undo the hijacking of process events... 1655 RestoreProcessEvents(); 1656 1657 return error; 1658 } 1659 1660 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1661 1662 void Process::SetPrivateState(StateType new_state) { 1663 if (m_finalize_called) 1664 return; 1665 1666 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1667 LIBLLDB_LOG_PROCESS)); 1668 bool state_changed = false; 1669 1670 if (log) 1671 log->Printf("Process::SetPrivateState (%s)", StateAsCString(new_state)); 1672 1673 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1674 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1675 1676 const StateType old_state = m_private_state.GetValueNoLock(); 1677 state_changed = old_state != new_state; 1678 1679 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1680 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1681 if (old_state_is_stopped != new_state_is_stopped) { 1682 if (new_state_is_stopped) 1683 m_private_run_lock.SetStopped(); 1684 else 1685 m_private_run_lock.SetRunning(); 1686 } 1687 1688 if (state_changed) { 1689 m_private_state.SetValueNoLock(new_state); 1690 EventSP event_sp( 1691 new Event(eBroadcastBitStateChanged, 1692 new ProcessEventData(shared_from_this(), new_state))); 1693 if (StateIsStoppedState(new_state, false)) { 1694 // Note, this currently assumes that all threads in the list stop when 1695 // the process stops. In the future we will want to support a debugging 1696 // model where some threads continue to run while others are stopped. 1697 // When that happens we will either need a way for the thread list to 1698 // identify which threads are stopping or create a special thread list 1699 // containing only threads which actually stopped. 1700 // 1701 // The process plugin is responsible for managing the actual behavior of 1702 // the threads and should have stopped any threads that are going to stop 1703 // before we get here. 1704 m_thread_list.DidStop(); 1705 1706 m_mod_id.BumpStopID(); 1707 if (!m_mod_id.IsLastResumeForUserExpression()) 1708 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1709 m_memory_cache.Clear(); 1710 if (log) 1711 log->Printf("Process::SetPrivateState (%s) stop_id = %u", 1712 StateAsCString(new_state), m_mod_id.GetStopID()); 1713 } 1714 1715 // Use our target to get a shared pointer to ourselves... 1716 if (m_finalize_called && !PrivateStateThreadIsValid()) 1717 BroadcastEvent(event_sp); 1718 else 1719 m_private_state_broadcaster.BroadcastEvent(event_sp); 1720 } else { 1721 if (log) 1722 log->Printf( 1723 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1724 StateAsCString(new_state)); 1725 } 1726 } 1727 1728 void Process::SetRunningUserExpression(bool on) { 1729 m_mod_id.SetRunningUserExpression(on); 1730 } 1731 1732 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1733 1734 const lldb::ABISP &Process::GetABI() { 1735 if (!m_abi_sp) 1736 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1737 return m_abi_sp; 1738 } 1739 1740 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language, 1741 bool retry_if_null) { 1742 if (m_finalizing) 1743 return nullptr; 1744 1745 LanguageRuntimeCollection::iterator pos; 1746 pos = m_language_runtimes.find(language); 1747 if (pos == m_language_runtimes.end() || (retry_if_null && !(*pos).second)) { 1748 lldb::LanguageRuntimeSP runtime_sp( 1749 LanguageRuntime::FindPlugin(this, language)); 1750 1751 m_language_runtimes[language] = runtime_sp; 1752 return runtime_sp.get(); 1753 } else 1754 return (*pos).second.get(); 1755 } 1756 1757 CPPLanguageRuntime *Process::GetCPPLanguageRuntime(bool retry_if_null) { 1758 LanguageRuntime *runtime = 1759 GetLanguageRuntime(eLanguageTypeC_plus_plus, retry_if_null); 1760 if (runtime != nullptr && 1761 runtime->GetLanguageType() == eLanguageTypeC_plus_plus) 1762 return static_cast<CPPLanguageRuntime *>(runtime); 1763 return nullptr; 1764 } 1765 1766 ObjCLanguageRuntime *Process::GetObjCLanguageRuntime(bool retry_if_null) { 1767 LanguageRuntime *runtime = 1768 GetLanguageRuntime(eLanguageTypeObjC, retry_if_null); 1769 if (runtime != nullptr && runtime->GetLanguageType() == eLanguageTypeObjC) 1770 return static_cast<ObjCLanguageRuntime *>(runtime); 1771 return nullptr; 1772 } 1773 1774 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1775 if (m_finalizing) 1776 return false; 1777 1778 if (in_value.IsDynamic()) 1779 return false; 1780 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1781 1782 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1783 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1784 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1785 } 1786 1787 LanguageRuntime *cpp_runtime = GetLanguageRuntime(eLanguageTypeC_plus_plus); 1788 if (cpp_runtime && cpp_runtime->CouldHaveDynamicValue(in_value)) 1789 return true; 1790 1791 LanguageRuntime *objc_runtime = GetLanguageRuntime(eLanguageTypeObjC); 1792 return objc_runtime ? objc_runtime->CouldHaveDynamicValue(in_value) : false; 1793 } 1794 1795 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1796 m_dynamic_checkers_ap.reset(dynamic_checkers); 1797 } 1798 1799 BreakpointSiteList &Process::GetBreakpointSiteList() { 1800 return m_breakpoint_site_list; 1801 } 1802 1803 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1804 return m_breakpoint_site_list; 1805 } 1806 1807 void Process::DisableAllBreakpointSites() { 1808 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1809 // bp_site->SetEnabled(true); 1810 DisableBreakpointSite(bp_site); 1811 }); 1812 } 1813 1814 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1815 Status error(DisableBreakpointSiteByID(break_id)); 1816 1817 if (error.Success()) 1818 m_breakpoint_site_list.Remove(break_id); 1819 1820 return error; 1821 } 1822 1823 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1824 Status error; 1825 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1826 if (bp_site_sp) { 1827 if (bp_site_sp->IsEnabled()) 1828 error = DisableBreakpointSite(bp_site_sp.get()); 1829 } else { 1830 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1831 break_id); 1832 } 1833 1834 return error; 1835 } 1836 1837 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1838 Status error; 1839 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1840 if (bp_site_sp) { 1841 if (!bp_site_sp->IsEnabled()) 1842 error = EnableBreakpointSite(bp_site_sp.get()); 1843 } else { 1844 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1845 break_id); 1846 } 1847 return error; 1848 } 1849 1850 lldb::break_id_t 1851 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1852 bool use_hardware) { 1853 addr_t load_addr = LLDB_INVALID_ADDRESS; 1854 1855 bool show_error = true; 1856 switch (GetState()) { 1857 case eStateInvalid: 1858 case eStateUnloaded: 1859 case eStateConnected: 1860 case eStateAttaching: 1861 case eStateLaunching: 1862 case eStateDetached: 1863 case eStateExited: 1864 show_error = false; 1865 break; 1866 1867 case eStateStopped: 1868 case eStateRunning: 1869 case eStateStepping: 1870 case eStateCrashed: 1871 case eStateSuspended: 1872 show_error = IsAlive(); 1873 break; 1874 } 1875 1876 // Reset the IsIndirect flag here, in case the location changes from pointing 1877 // to a indirect symbol to a regular symbol. 1878 owner->SetIsIndirect(false); 1879 1880 if (owner->ShouldResolveIndirectFunctions()) { 1881 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1882 if (symbol && symbol->IsIndirect()) { 1883 Status error; 1884 Address symbol_address = symbol->GetAddress(); 1885 load_addr = ResolveIndirectFunction(&symbol_address, error); 1886 if (!error.Success() && show_error) { 1887 GetTarget().GetDebugger().GetErrorFile()->Printf( 1888 "warning: failed to resolve indirect function at 0x%" PRIx64 1889 " for breakpoint %i.%i: %s\n", 1890 symbol->GetLoadAddress(&GetTarget()), 1891 owner->GetBreakpoint().GetID(), owner->GetID(), 1892 error.AsCString() ? error.AsCString() : "unknown error"); 1893 return LLDB_INVALID_BREAK_ID; 1894 } 1895 Address resolved_address(load_addr); 1896 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1897 owner->SetIsIndirect(true); 1898 } else 1899 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1900 } else 1901 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1902 1903 if (load_addr != LLDB_INVALID_ADDRESS) { 1904 BreakpointSiteSP bp_site_sp; 1905 1906 // Look up this breakpoint site. If it exists, then add this new owner, 1907 // otherwise create a new breakpoint site and add it. 1908 1909 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1910 1911 if (bp_site_sp) { 1912 bp_site_sp->AddOwner(owner); 1913 owner->SetBreakpointSite(bp_site_sp); 1914 return bp_site_sp->GetID(); 1915 } else { 1916 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1917 load_addr, use_hardware)); 1918 if (bp_site_sp) { 1919 Status error = EnableBreakpointSite(bp_site_sp.get()); 1920 if (error.Success()) { 1921 owner->SetBreakpointSite(bp_site_sp); 1922 return m_breakpoint_site_list.Add(bp_site_sp); 1923 } else { 1924 if (show_error) { 1925 // Report error for setting breakpoint... 1926 GetTarget().GetDebugger().GetErrorFile()->Printf( 1927 "warning: failed to set breakpoint site at 0x%" PRIx64 1928 " for breakpoint %i.%i: %s\n", 1929 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1930 error.AsCString() ? error.AsCString() : "unknown error"); 1931 } 1932 } 1933 } 1934 } 1935 } 1936 // We failed to enable the breakpoint 1937 return LLDB_INVALID_BREAK_ID; 1938 } 1939 1940 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1941 lldb::user_id_t owner_loc_id, 1942 BreakpointSiteSP &bp_site_sp) { 1943 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1944 if (num_owners == 0) { 1945 // Don't try to disable the site if we don't have a live process anymore. 1946 if (IsAlive()) 1947 DisableBreakpointSite(bp_site_sp.get()); 1948 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1949 } 1950 } 1951 1952 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1953 uint8_t *buf) const { 1954 size_t bytes_removed = 0; 1955 BreakpointSiteList bp_sites_in_range; 1956 1957 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1958 bp_sites_in_range)) { 1959 bp_sites_in_range.ForEach([bp_addr, size, 1960 buf](BreakpointSite *bp_site) -> void { 1961 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1962 addr_t intersect_addr; 1963 size_t intersect_size; 1964 size_t opcode_offset; 1965 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1966 &intersect_size, &opcode_offset)) { 1967 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1968 assert(bp_addr < intersect_addr + intersect_size && 1969 intersect_addr + intersect_size <= bp_addr + size); 1970 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1971 size_t buf_offset = intersect_addr - bp_addr; 1972 ::memcpy(buf + buf_offset, 1973 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1974 intersect_size); 1975 } 1976 } 1977 }); 1978 } 1979 return bytes_removed; 1980 } 1981 1982 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1983 PlatformSP platform_sp(GetTarget().GetPlatform()); 1984 if (platform_sp) 1985 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1986 return 0; 1987 } 1988 1989 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1990 Status error; 1991 assert(bp_site != nullptr); 1992 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1993 const addr_t bp_addr = bp_site->GetLoadAddress(); 1994 if (log) 1995 log->Printf( 1996 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1997 bp_site->GetID(), (uint64_t)bp_addr); 1998 if (bp_site->IsEnabled()) { 1999 if (log) 2000 log->Printf( 2001 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2002 " -- already enabled", 2003 bp_site->GetID(), (uint64_t)bp_addr); 2004 return error; 2005 } 2006 2007 if (bp_addr == LLDB_INVALID_ADDRESS) { 2008 error.SetErrorString("BreakpointSite contains an invalid load address."); 2009 return error; 2010 } 2011 // Ask the lldb::Process subclass to fill in the correct software breakpoint 2012 // trap for the breakpoint site 2013 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 2014 2015 if (bp_opcode_size == 0) { 2016 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 2017 "returned zero, unable to get breakpoint " 2018 "trap for address 0x%" PRIx64, 2019 bp_addr); 2020 } else { 2021 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 2022 2023 if (bp_opcode_bytes == nullptr) { 2024 error.SetErrorString( 2025 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 2026 return error; 2027 } 2028 2029 // Save the original opcode by reading it 2030 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 2031 error) == bp_opcode_size) { 2032 // Write a software breakpoint in place of the original opcode 2033 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 2034 bp_opcode_size) { 2035 uint8_t verify_bp_opcode_bytes[64]; 2036 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 2037 error) == bp_opcode_size) { 2038 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 2039 bp_opcode_size) == 0) { 2040 bp_site->SetEnabled(true); 2041 bp_site->SetType(BreakpointSite::eSoftware); 2042 if (log) 2043 log->Printf("Process::EnableSoftwareBreakpoint (site_id = %d) " 2044 "addr = 0x%" PRIx64 " -- SUCCESS", 2045 bp_site->GetID(), (uint64_t)bp_addr); 2046 } else 2047 error.SetErrorString( 2048 "failed to verify the breakpoint trap in memory."); 2049 } else 2050 error.SetErrorString( 2051 "Unable to read memory to verify breakpoint trap."); 2052 } else 2053 error.SetErrorString("Unable to write breakpoint trap to memory."); 2054 } else 2055 error.SetErrorString("Unable to read memory at breakpoint address."); 2056 } 2057 if (log && error.Fail()) 2058 log->Printf( 2059 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2060 " -- FAILED: %s", 2061 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 2062 return error; 2063 } 2064 2065 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 2066 Status error; 2067 assert(bp_site != nullptr); 2068 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 2069 addr_t bp_addr = bp_site->GetLoadAddress(); 2070 lldb::user_id_t breakID = bp_site->GetID(); 2071 if (log) 2072 log->Printf("Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 2073 ") addr = 0x%" PRIx64, 2074 breakID, (uint64_t)bp_addr); 2075 2076 if (bp_site->IsHardware()) { 2077 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 2078 } else if (bp_site->IsEnabled()) { 2079 const size_t break_op_size = bp_site->GetByteSize(); 2080 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 2081 if (break_op_size > 0) { 2082 // Clear a software breakpoint instruction 2083 uint8_t curr_break_op[8]; 2084 assert(break_op_size <= sizeof(curr_break_op)); 2085 bool break_op_found = false; 2086 2087 // Read the breakpoint opcode 2088 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 2089 break_op_size) { 2090 bool verify = false; 2091 // Make sure the breakpoint opcode exists at this address 2092 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 2093 break_op_found = true; 2094 // We found a valid breakpoint opcode at this address, now restore 2095 // the saved opcode. 2096 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 2097 break_op_size, error) == break_op_size) { 2098 verify = true; 2099 } else 2100 error.SetErrorString( 2101 "Memory write failed when restoring original opcode."); 2102 } else { 2103 error.SetErrorString( 2104 "Original breakpoint trap is no longer in memory."); 2105 // Set verify to true and so we can check if the original opcode has 2106 // already been restored 2107 verify = true; 2108 } 2109 2110 if (verify) { 2111 uint8_t verify_opcode[8]; 2112 assert(break_op_size < sizeof(verify_opcode)); 2113 // Verify that our original opcode made it back to the inferior 2114 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 2115 break_op_size) { 2116 // compare the memory we just read with the original opcode 2117 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 2118 break_op_size) == 0) { 2119 // SUCCESS 2120 bp_site->SetEnabled(false); 2121 if (log) 2122 log->Printf("Process::DisableSoftwareBreakpoint (site_id = %d) " 2123 "addr = 0x%" PRIx64 " -- SUCCESS", 2124 bp_site->GetID(), (uint64_t)bp_addr); 2125 return error; 2126 } else { 2127 if (break_op_found) 2128 error.SetErrorString("Failed to restore original opcode."); 2129 } 2130 } else 2131 error.SetErrorString("Failed to read memory to verify that " 2132 "breakpoint trap was restored."); 2133 } 2134 } else 2135 error.SetErrorString( 2136 "Unable to read memory that should contain the breakpoint trap."); 2137 } 2138 } else { 2139 if (log) 2140 log->Printf( 2141 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2142 " -- already disabled", 2143 bp_site->GetID(), (uint64_t)bp_addr); 2144 return error; 2145 } 2146 2147 if (log) 2148 log->Printf( 2149 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2150 " -- FAILED: %s", 2151 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 2152 return error; 2153 } 2154 2155 // Uncomment to verify memory caching works after making changes to caching 2156 // code 2157 //#define VERIFY_MEMORY_READS 2158 2159 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 2160 error.Clear(); 2161 if (!GetDisableMemoryCache()) { 2162 #if defined(VERIFY_MEMORY_READS) 2163 // Memory caching is enabled, with debug verification 2164 2165 if (buf && size) { 2166 // Uncomment the line below to make sure memory caching is working. 2167 // I ran this through the test suite and got no assertions, so I am 2168 // pretty confident this is working well. If any changes are made to 2169 // memory caching, uncomment the line below and test your changes! 2170 2171 // Verify all memory reads by using the cache first, then redundantly 2172 // reading the same memory from the inferior and comparing to make sure 2173 // everything is exactly the same. 2174 std::string verify_buf(size, '\0'); 2175 assert(verify_buf.size() == size); 2176 const size_t cache_bytes_read = 2177 m_memory_cache.Read(this, addr, buf, size, error); 2178 Status verify_error; 2179 const size_t verify_bytes_read = 2180 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 2181 verify_buf.size(), verify_error); 2182 assert(cache_bytes_read == verify_bytes_read); 2183 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 2184 assert(verify_error.Success() == error.Success()); 2185 return cache_bytes_read; 2186 } 2187 return 0; 2188 #else // !defined(VERIFY_MEMORY_READS) 2189 // Memory caching is enabled, without debug verification 2190 2191 return m_memory_cache.Read(addr, buf, size, error); 2192 #endif // defined (VERIFY_MEMORY_READS) 2193 } else { 2194 // Memory caching is disabled 2195 2196 return ReadMemoryFromInferior(addr, buf, size, error); 2197 } 2198 } 2199 2200 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 2201 Status &error) { 2202 char buf[256]; 2203 out_str.clear(); 2204 addr_t curr_addr = addr; 2205 while (true) { 2206 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 2207 if (length == 0) 2208 break; 2209 out_str.append(buf, length); 2210 // If we got "length - 1" bytes, we didn't get the whole C string, we need 2211 // to read some more characters 2212 if (length == sizeof(buf) - 1) 2213 curr_addr += length; 2214 else 2215 break; 2216 } 2217 return out_str.size(); 2218 } 2219 2220 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes, 2221 Status &error, size_t type_width) { 2222 size_t total_bytes_read = 0; 2223 if (dst && max_bytes && type_width && max_bytes >= type_width) { 2224 // Ensure a null terminator independent of the number of bytes that is 2225 // read. 2226 memset(dst, 0, max_bytes); 2227 size_t bytes_left = max_bytes - type_width; 2228 2229 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 2230 assert(sizeof(terminator) >= type_width && "Attempting to validate a " 2231 "string with more than 4 bytes " 2232 "per character!"); 2233 2234 addr_t curr_addr = addr; 2235 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2236 char *curr_dst = dst; 2237 2238 error.Clear(); 2239 while (bytes_left > 0 && error.Success()) { 2240 addr_t cache_line_bytes_left = 2241 cache_line_size - (curr_addr % cache_line_size); 2242 addr_t bytes_to_read = 2243 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2244 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2245 2246 if (bytes_read == 0) 2247 break; 2248 2249 // Search for a null terminator of correct size and alignment in 2250 // bytes_read 2251 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 2252 for (size_t i = aligned_start; 2253 i + type_width <= total_bytes_read + bytes_read; i += type_width) 2254 if (::memcmp(&dst[i], terminator, type_width) == 0) { 2255 error.Clear(); 2256 return i; 2257 } 2258 2259 total_bytes_read += bytes_read; 2260 curr_dst += bytes_read; 2261 curr_addr += bytes_read; 2262 bytes_left -= bytes_read; 2263 } 2264 } else { 2265 if (max_bytes) 2266 error.SetErrorString("invalid arguments"); 2267 } 2268 return total_bytes_read; 2269 } 2270 2271 // Deprecated in favor of ReadStringFromMemory which has wchar support and 2272 // correct code to find null terminators. 2273 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 2274 size_t dst_max_len, 2275 Status &result_error) { 2276 size_t total_cstr_len = 0; 2277 if (dst && dst_max_len) { 2278 result_error.Clear(); 2279 // NULL out everything just to be safe 2280 memset(dst, 0, dst_max_len); 2281 Status error; 2282 addr_t curr_addr = addr; 2283 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2284 size_t bytes_left = dst_max_len - 1; 2285 char *curr_dst = dst; 2286 2287 while (bytes_left > 0) { 2288 addr_t cache_line_bytes_left = 2289 cache_line_size - (curr_addr % cache_line_size); 2290 addr_t bytes_to_read = 2291 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2292 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2293 2294 if (bytes_read == 0) { 2295 result_error = error; 2296 dst[total_cstr_len] = '\0'; 2297 break; 2298 } 2299 const size_t len = strlen(curr_dst); 2300 2301 total_cstr_len += len; 2302 2303 if (len < bytes_to_read) 2304 break; 2305 2306 curr_dst += bytes_read; 2307 curr_addr += bytes_read; 2308 bytes_left -= bytes_read; 2309 } 2310 } else { 2311 if (dst == nullptr) 2312 result_error.SetErrorString("invalid arguments"); 2313 else 2314 result_error.Clear(); 2315 } 2316 return total_cstr_len; 2317 } 2318 2319 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2320 Status &error) { 2321 if (buf == nullptr || size == 0) 2322 return 0; 2323 2324 size_t bytes_read = 0; 2325 uint8_t *bytes = (uint8_t *)buf; 2326 2327 while (bytes_read < size) { 2328 const size_t curr_size = size - bytes_read; 2329 const size_t curr_bytes_read = 2330 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2331 bytes_read += curr_bytes_read; 2332 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2333 break; 2334 } 2335 2336 // Replace any software breakpoint opcodes that fall into this range back 2337 // into "buf" before we return 2338 if (bytes_read > 0) 2339 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2340 return bytes_read; 2341 } 2342 2343 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2344 size_t integer_byte_size, 2345 uint64_t fail_value, 2346 Status &error) { 2347 Scalar scalar; 2348 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2349 error)) 2350 return scalar.ULongLong(fail_value); 2351 return fail_value; 2352 } 2353 2354 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2355 size_t integer_byte_size, 2356 int64_t fail_value, 2357 Status &error) { 2358 Scalar scalar; 2359 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2360 error)) 2361 return scalar.SLongLong(fail_value); 2362 return fail_value; 2363 } 2364 2365 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2366 Scalar scalar; 2367 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2368 error)) 2369 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2370 return LLDB_INVALID_ADDRESS; 2371 } 2372 2373 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2374 Status &error) { 2375 Scalar scalar; 2376 const uint32_t addr_byte_size = GetAddressByteSize(); 2377 if (addr_byte_size <= 4) 2378 scalar = (uint32_t)ptr_value; 2379 else 2380 scalar = ptr_value; 2381 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2382 addr_byte_size; 2383 } 2384 2385 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2386 Status &error) { 2387 size_t bytes_written = 0; 2388 const uint8_t *bytes = (const uint8_t *)buf; 2389 2390 while (bytes_written < size) { 2391 const size_t curr_size = size - bytes_written; 2392 const size_t curr_bytes_written = DoWriteMemory( 2393 addr + bytes_written, bytes + bytes_written, curr_size, error); 2394 bytes_written += curr_bytes_written; 2395 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2396 break; 2397 } 2398 return bytes_written; 2399 } 2400 2401 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2402 Status &error) { 2403 #if defined(ENABLE_MEMORY_CACHING) 2404 m_memory_cache.Flush(addr, size); 2405 #endif 2406 2407 if (buf == nullptr || size == 0) 2408 return 0; 2409 2410 m_mod_id.BumpMemoryID(); 2411 2412 // We need to write any data that would go where any current software traps 2413 // (enabled software breakpoints) any software traps (breakpoints) that we 2414 // may have placed in our tasks memory. 2415 2416 BreakpointSiteList bp_sites_in_range; 2417 2418 if (m_breakpoint_site_list.FindInRange(addr, addr + size, 2419 bp_sites_in_range)) { 2420 // No breakpoint sites overlap 2421 if (bp_sites_in_range.IsEmpty()) 2422 return WriteMemoryPrivate(addr, buf, size, error); 2423 else { 2424 const uint8_t *ubuf = (const uint8_t *)buf; 2425 uint64_t bytes_written = 0; 2426 2427 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2428 &error](BreakpointSite *bp) -> void { 2429 2430 if (error.Success()) { 2431 addr_t intersect_addr; 2432 size_t intersect_size; 2433 size_t opcode_offset; 2434 const bool intersects = bp->IntersectsRange( 2435 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2436 UNUSED_IF_ASSERT_DISABLED(intersects); 2437 assert(intersects); 2438 assert(addr <= intersect_addr && intersect_addr < addr + size); 2439 assert(addr < intersect_addr + intersect_size && 2440 intersect_addr + intersect_size <= addr + size); 2441 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2442 2443 // Check for bytes before this breakpoint 2444 const addr_t curr_addr = addr + bytes_written; 2445 if (intersect_addr > curr_addr) { 2446 // There are some bytes before this breakpoint that we need to just 2447 // write to memory 2448 size_t curr_size = intersect_addr - curr_addr; 2449 size_t curr_bytes_written = WriteMemoryPrivate( 2450 curr_addr, ubuf + bytes_written, curr_size, error); 2451 bytes_written += curr_bytes_written; 2452 if (curr_bytes_written != curr_size) { 2453 // We weren't able to write all of the requested bytes, we are 2454 // done looping and will return the number of bytes that we have 2455 // written so far. 2456 if (error.Success()) 2457 error.SetErrorToGenericError(); 2458 } 2459 } 2460 // Now write any bytes that would cover up any software breakpoints 2461 // directly into the breakpoint opcode buffer 2462 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, 2463 ubuf + bytes_written, intersect_size); 2464 bytes_written += intersect_size; 2465 } 2466 }); 2467 2468 if (bytes_written < size) 2469 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2470 size - bytes_written, error); 2471 } 2472 } else { 2473 return WriteMemoryPrivate(addr, buf, size, error); 2474 } 2475 2476 // Write any remaining bytes after the last breakpoint if we have any left 2477 return 0; // bytes_written; 2478 } 2479 2480 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2481 size_t byte_size, Status &error) { 2482 if (byte_size == UINT32_MAX) 2483 byte_size = scalar.GetByteSize(); 2484 if (byte_size > 0) { 2485 uint8_t buf[32]; 2486 const size_t mem_size = 2487 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2488 if (mem_size > 0) 2489 return WriteMemory(addr, buf, mem_size, error); 2490 else 2491 error.SetErrorString("failed to get scalar as memory data"); 2492 } else { 2493 error.SetErrorString("invalid scalar value"); 2494 } 2495 return 0; 2496 } 2497 2498 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2499 bool is_signed, Scalar &scalar, 2500 Status &error) { 2501 uint64_t uval = 0; 2502 if (byte_size == 0) { 2503 error.SetErrorString("byte size is zero"); 2504 } else if (byte_size & (byte_size - 1)) { 2505 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2506 byte_size); 2507 } else if (byte_size <= sizeof(uval)) { 2508 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2509 if (bytes_read == byte_size) { 2510 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2511 GetAddressByteSize()); 2512 lldb::offset_t offset = 0; 2513 if (byte_size <= 4) 2514 scalar = data.GetMaxU32(&offset, byte_size); 2515 else 2516 scalar = data.GetMaxU64(&offset, byte_size); 2517 if (is_signed) 2518 scalar.SignExtend(byte_size * 8); 2519 return bytes_read; 2520 } 2521 } else { 2522 error.SetErrorStringWithFormat( 2523 "byte size of %u is too large for integer scalar type", byte_size); 2524 } 2525 return 0; 2526 } 2527 2528 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2529 Status error; 2530 for (const auto &Entry : entries) { 2531 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2532 error); 2533 if (!error.Success()) 2534 break; 2535 } 2536 return error; 2537 } 2538 2539 #define USE_ALLOCATE_MEMORY_CACHE 1 2540 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2541 Status &error) { 2542 if (GetPrivateState() != eStateStopped) 2543 return LLDB_INVALID_ADDRESS; 2544 2545 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2546 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2547 #else 2548 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2549 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2550 if (log) 2551 log->Printf("Process::AllocateMemory(size=%" PRIu64 2552 ", permissions=%s) => 0x%16.16" PRIx64 2553 " (m_stop_id = %u m_memory_id = %u)", 2554 (uint64_t)size, GetPermissionsAsCString(permissions), 2555 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2556 m_mod_id.GetMemoryID()); 2557 return allocated_addr; 2558 #endif 2559 } 2560 2561 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2562 Status &error) { 2563 addr_t return_addr = AllocateMemory(size, permissions, error); 2564 if (error.Success()) { 2565 std::string buffer(size, 0); 2566 WriteMemory(return_addr, buffer.c_str(), size, error); 2567 } 2568 return return_addr; 2569 } 2570 2571 bool Process::CanJIT() { 2572 if (m_can_jit == eCanJITDontKnow) { 2573 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2574 Status err; 2575 2576 uint64_t allocated_memory = AllocateMemory( 2577 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2578 err); 2579 2580 if (err.Success()) { 2581 m_can_jit = eCanJITYes; 2582 if (log) 2583 log->Printf("Process::%s pid %" PRIu64 2584 " allocation test passed, CanJIT () is true", 2585 __FUNCTION__, GetID()); 2586 } else { 2587 m_can_jit = eCanJITNo; 2588 if (log) 2589 log->Printf("Process::%s pid %" PRIu64 2590 " allocation test failed, CanJIT () is false: %s", 2591 __FUNCTION__, GetID(), err.AsCString()); 2592 } 2593 2594 DeallocateMemory(allocated_memory); 2595 } 2596 2597 return m_can_jit == eCanJITYes; 2598 } 2599 2600 void Process::SetCanJIT(bool can_jit) { 2601 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2602 } 2603 2604 void Process::SetCanRunCode(bool can_run_code) { 2605 SetCanJIT(can_run_code); 2606 m_can_interpret_function_calls = can_run_code; 2607 } 2608 2609 Status Process::DeallocateMemory(addr_t ptr) { 2610 Status error; 2611 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2612 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2613 error.SetErrorStringWithFormat( 2614 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2615 } 2616 #else 2617 error = DoDeallocateMemory(ptr); 2618 2619 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2620 if (log) 2621 log->Printf("Process::DeallocateMemory(addr=0x%16.16" PRIx64 2622 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2623 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2624 m_mod_id.GetMemoryID()); 2625 #endif 2626 return error; 2627 } 2628 2629 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2630 lldb::addr_t header_addr, 2631 size_t size_to_read) { 2632 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2633 if (log) { 2634 log->Printf("Process::ReadModuleFromMemory reading %s binary from memory", 2635 file_spec.GetPath().c_str()); 2636 } 2637 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2638 if (module_sp) { 2639 Status error; 2640 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2641 shared_from_this(), header_addr, error, size_to_read); 2642 if (objfile) 2643 return module_sp; 2644 } 2645 return ModuleSP(); 2646 } 2647 2648 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2649 uint32_t &permissions) { 2650 MemoryRegionInfo range_info; 2651 permissions = 0; 2652 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2653 if (!error.Success()) 2654 return false; 2655 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2656 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2657 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2658 return false; 2659 } 2660 2661 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2662 permissions |= lldb::ePermissionsReadable; 2663 2664 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2665 permissions |= lldb::ePermissionsWritable; 2666 2667 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2668 permissions |= lldb::ePermissionsExecutable; 2669 2670 return true; 2671 } 2672 2673 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2674 Status error; 2675 error.SetErrorString("watchpoints are not supported"); 2676 return error; 2677 } 2678 2679 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2680 Status error; 2681 error.SetErrorString("watchpoints are not supported"); 2682 return error; 2683 } 2684 2685 StateType 2686 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2687 const Timeout<std::micro> &timeout) { 2688 StateType state; 2689 // Now wait for the process to launch and return control to us, and then call 2690 // DidLaunch: 2691 while (true) { 2692 event_sp.reset(); 2693 state = GetStateChangedEventsPrivate(event_sp, timeout); 2694 2695 if (StateIsStoppedState(state, false)) 2696 break; 2697 2698 // If state is invalid, then we timed out 2699 if (state == eStateInvalid) 2700 break; 2701 2702 if (event_sp) 2703 HandlePrivateEvent(event_sp); 2704 } 2705 return state; 2706 } 2707 2708 void Process::LoadOperatingSystemPlugin(bool flush) { 2709 if (flush) 2710 m_thread_list.Clear(); 2711 m_os_ap.reset(OperatingSystem::FindPlugin(this, nullptr)); 2712 if (flush) 2713 Flush(); 2714 } 2715 2716 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2717 Status error; 2718 m_abi_sp.reset(); 2719 m_dyld_ap.reset(); 2720 m_jit_loaders_ap.reset(); 2721 m_system_runtime_ap.reset(); 2722 m_os_ap.reset(); 2723 m_process_input_reader.reset(); 2724 2725 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2726 if (exe_module) { 2727 char local_exec_file_path[PATH_MAX]; 2728 char platform_exec_file_path[PATH_MAX]; 2729 exe_module->GetFileSpec().GetPath(local_exec_file_path, 2730 sizeof(local_exec_file_path)); 2731 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, 2732 sizeof(platform_exec_file_path)); 2733 if (exe_module->GetFileSpec().Exists()) { 2734 // Install anything that might need to be installed prior to launching. 2735 // For host systems, this will do nothing, but if we are connected to a 2736 // remote platform it will install any needed binaries 2737 error = GetTarget().Install(&launch_info); 2738 if (error.Fail()) 2739 return error; 2740 2741 if (PrivateStateThreadIsValid()) 2742 PausePrivateStateThread(); 2743 2744 error = WillLaunch(exe_module); 2745 if (error.Success()) { 2746 const bool restarted = false; 2747 SetPublicState(eStateLaunching, restarted); 2748 m_should_detach = false; 2749 2750 if (m_public_run_lock.TrySetRunning()) { 2751 // Now launch using these arguments. 2752 error = DoLaunch(exe_module, launch_info); 2753 } else { 2754 // This shouldn't happen 2755 error.SetErrorString("failed to acquire process run lock"); 2756 } 2757 2758 if (error.Fail()) { 2759 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2760 SetID(LLDB_INVALID_PROCESS_ID); 2761 const char *error_string = error.AsCString(); 2762 if (error_string == nullptr) 2763 error_string = "launch failed"; 2764 SetExitStatus(-1, error_string); 2765 } 2766 } else { 2767 EventSP event_sp; 2768 StateType state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2769 2770 if (state == eStateInvalid || !event_sp) { 2771 // We were able to launch the process, but we failed to catch the 2772 // initial stop. 2773 error.SetErrorString("failed to catch stop after launch"); 2774 SetExitStatus(0, "failed to catch stop after launch"); 2775 Destroy(false); 2776 } else if (state == eStateStopped || state == eStateCrashed) { 2777 DidLaunch(); 2778 2779 DynamicLoader *dyld = GetDynamicLoader(); 2780 if (dyld) 2781 dyld->DidLaunch(); 2782 2783 GetJITLoaders().DidLaunch(); 2784 2785 SystemRuntime *system_runtime = GetSystemRuntime(); 2786 if (system_runtime) 2787 system_runtime->DidLaunch(); 2788 2789 if (!m_os_ap) 2790 LoadOperatingSystemPlugin(false); 2791 2792 // We successfully launched the process and stopped, now it the 2793 // right time to set up signal filters before resuming. 2794 UpdateAutomaticSignalFiltering(); 2795 2796 // Note, the stop event was consumed above, but not handled. This 2797 // was done to give DidLaunch a chance to run. The target is either 2798 // stopped or crashed. Directly set the state. This is done to 2799 // prevent a stop message with a bunch of spurious output on thread 2800 // status, as well as not pop a ProcessIOHandler. 2801 SetPublicState(state, false); 2802 2803 if (PrivateStateThreadIsValid()) 2804 ResumePrivateStateThread(); 2805 else 2806 StartPrivateStateThread(); 2807 2808 // Target was stopped at entry as was intended. Need to notify the 2809 // listeners about it. 2810 if (state == eStateStopped && 2811 launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2812 HandlePrivateEvent(event_sp); 2813 } else if (state == eStateExited) { 2814 // We exited while trying to launch somehow. Don't call DidLaunch 2815 // as that's not likely to work, and return an invalid pid. 2816 HandlePrivateEvent(event_sp); 2817 } 2818 } 2819 } 2820 } else { 2821 error.SetErrorStringWithFormat("file doesn't exist: '%s'", 2822 local_exec_file_path); 2823 } 2824 } 2825 return error; 2826 } 2827 2828 Status Process::LoadCore() { 2829 Status error = DoLoadCore(); 2830 if (error.Success()) { 2831 ListenerSP listener_sp( 2832 Listener::MakeListener("lldb.process.load_core_listener")); 2833 HijackProcessEvents(listener_sp); 2834 2835 if (PrivateStateThreadIsValid()) 2836 ResumePrivateStateThread(); 2837 else 2838 StartPrivateStateThread(); 2839 2840 DynamicLoader *dyld = GetDynamicLoader(); 2841 if (dyld) 2842 dyld->DidAttach(); 2843 2844 GetJITLoaders().DidAttach(); 2845 2846 SystemRuntime *system_runtime = GetSystemRuntime(); 2847 if (system_runtime) 2848 system_runtime->DidAttach(); 2849 2850 if (!m_os_ap) 2851 LoadOperatingSystemPlugin(false); 2852 2853 // We successfully loaded a core file, now pretend we stopped so we can 2854 // show all of the threads in the core file and explore the crashed state. 2855 SetPrivateState(eStateStopped); 2856 2857 // Wait for a stopped event since we just posted one above... 2858 lldb::EventSP event_sp; 2859 StateType state = 2860 WaitForProcessToStop(seconds(10), &event_sp, true, listener_sp); 2861 2862 if (!StateIsStoppedState(state, false)) { 2863 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2864 if (log) 2865 log->Printf("Process::Halt() failed to stop, state is: %s", 2866 StateAsCString(state)); 2867 error.SetErrorString( 2868 "Did not get stopped event after loading the core file."); 2869 } 2870 RestoreProcessEvents(); 2871 } 2872 return error; 2873 } 2874 2875 DynamicLoader *Process::GetDynamicLoader() { 2876 if (!m_dyld_ap) 2877 m_dyld_ap.reset(DynamicLoader::FindPlugin(this, nullptr)); 2878 return m_dyld_ap.get(); 2879 } 2880 2881 const lldb::DataBufferSP Process::GetAuxvData() { return DataBufferSP(); } 2882 2883 JITLoaderList &Process::GetJITLoaders() { 2884 if (!m_jit_loaders_ap) { 2885 m_jit_loaders_ap.reset(new JITLoaderList()); 2886 JITLoader::LoadPlugins(this, *m_jit_loaders_ap); 2887 } 2888 return *m_jit_loaders_ap; 2889 } 2890 2891 SystemRuntime *Process::GetSystemRuntime() { 2892 if (!m_system_runtime_ap) 2893 m_system_runtime_ap.reset(SystemRuntime::FindPlugin(this)); 2894 return m_system_runtime_ap.get(); 2895 } 2896 2897 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2898 uint32_t exec_count) 2899 : NextEventAction(process), m_exec_count(exec_count) { 2900 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2901 if (log) 2902 log->Printf( 2903 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2904 __FUNCTION__, static_cast<void *>(process), exec_count); 2905 } 2906 2907 Process::NextEventAction::EventActionResult 2908 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2909 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2910 2911 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2912 if (log) 2913 log->Printf( 2914 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2915 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2916 2917 switch (state) { 2918 case eStateAttaching: 2919 return eEventActionSuccess; 2920 2921 case eStateRunning: 2922 case eStateConnected: 2923 return eEventActionRetry; 2924 2925 case eStateStopped: 2926 case eStateCrashed: 2927 // During attach, prior to sending the eStateStopped event, 2928 // lldb_private::Process subclasses must set the new process ID. 2929 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2930 // We don't want these events to be reported, so go set the 2931 // ShouldReportStop here: 2932 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2933 2934 if (m_exec_count > 0) { 2935 --m_exec_count; 2936 2937 if (log) 2938 log->Printf("Process::AttachCompletionHandler::%s state %s: reduced " 2939 "remaining exec count to %" PRIu32 ", requesting resume", 2940 __FUNCTION__, StateAsCString(state), m_exec_count); 2941 2942 RequestResume(); 2943 return eEventActionRetry; 2944 } else { 2945 if (log) 2946 log->Printf("Process::AttachCompletionHandler::%s state %s: no more " 2947 "execs expected to start, continuing with attach", 2948 __FUNCTION__, StateAsCString(state)); 2949 2950 m_process->CompleteAttach(); 2951 return eEventActionSuccess; 2952 } 2953 break; 2954 2955 default: 2956 case eStateExited: 2957 case eStateInvalid: 2958 break; 2959 } 2960 2961 m_exit_string.assign("No valid Process"); 2962 return eEventActionExit; 2963 } 2964 2965 Process::NextEventAction::EventActionResult 2966 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2967 return eEventActionSuccess; 2968 } 2969 2970 const char *Process::AttachCompletionHandler::GetExitString() { 2971 return m_exit_string.c_str(); 2972 } 2973 2974 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2975 if (m_listener_sp) 2976 return m_listener_sp; 2977 else 2978 return debugger.GetListener(); 2979 } 2980 2981 Status Process::Attach(ProcessAttachInfo &attach_info) { 2982 m_abi_sp.reset(); 2983 m_process_input_reader.reset(); 2984 m_dyld_ap.reset(); 2985 m_jit_loaders_ap.reset(); 2986 m_system_runtime_ap.reset(); 2987 m_os_ap.reset(); 2988 2989 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2990 Status error; 2991 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2992 char process_name[PATH_MAX]; 2993 2994 if (attach_info.GetExecutableFile().GetPath(process_name, 2995 sizeof(process_name))) { 2996 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2997 2998 if (wait_for_launch) { 2999 error = WillAttachToProcessWithName(process_name, wait_for_launch); 3000 if (error.Success()) { 3001 if (m_public_run_lock.TrySetRunning()) { 3002 m_should_detach = true; 3003 const bool restarted = false; 3004 SetPublicState(eStateAttaching, restarted); 3005 // Now attach using these arguments. 3006 error = DoAttachToProcessWithName(process_name, attach_info); 3007 } else { 3008 // This shouldn't happen 3009 error.SetErrorString("failed to acquire process run lock"); 3010 } 3011 3012 if (error.Fail()) { 3013 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3014 SetID(LLDB_INVALID_PROCESS_ID); 3015 if (error.AsCString() == nullptr) 3016 error.SetErrorString("attach failed"); 3017 3018 SetExitStatus(-1, error.AsCString()); 3019 } 3020 } else { 3021 SetNextEventAction(new Process::AttachCompletionHandler( 3022 this, attach_info.GetResumeCount())); 3023 StartPrivateStateThread(); 3024 } 3025 return error; 3026 } 3027 } else { 3028 ProcessInstanceInfoList process_infos; 3029 PlatformSP platform_sp(GetTarget().GetPlatform()); 3030 3031 if (platform_sp) { 3032 ProcessInstanceInfoMatch match_info; 3033 match_info.GetProcessInfo() = attach_info; 3034 match_info.SetNameMatchType(NameMatch::Equals); 3035 platform_sp->FindProcesses(match_info, process_infos); 3036 const uint32_t num_matches = process_infos.GetSize(); 3037 if (num_matches == 1) { 3038 attach_pid = process_infos.GetProcessIDAtIndex(0); 3039 // Fall through and attach using the above process ID 3040 } else { 3041 match_info.GetProcessInfo().GetExecutableFile().GetPath( 3042 process_name, sizeof(process_name)); 3043 if (num_matches > 1) { 3044 StreamString s; 3045 ProcessInstanceInfo::DumpTableHeader(s, platform_sp.get(), true, 3046 false); 3047 for (size_t i = 0; i < num_matches; i++) { 3048 process_infos.GetProcessInfoAtIndex(i).DumpAsTableRow( 3049 s, platform_sp.get(), true, false); 3050 } 3051 error.SetErrorStringWithFormat( 3052 "more than one process named %s:\n%s", process_name, 3053 s.GetData()); 3054 } else 3055 error.SetErrorStringWithFormat( 3056 "could not find a process named %s", process_name); 3057 } 3058 } else { 3059 error.SetErrorString( 3060 "invalid platform, can't find processes by name"); 3061 return error; 3062 } 3063 } 3064 } else { 3065 error.SetErrorString("invalid process name"); 3066 } 3067 } 3068 3069 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 3070 error = WillAttachToProcessWithID(attach_pid); 3071 if (error.Success()) { 3072 3073 if (m_public_run_lock.TrySetRunning()) { 3074 // Now attach using these arguments. 3075 m_should_detach = true; 3076 const bool restarted = false; 3077 SetPublicState(eStateAttaching, restarted); 3078 error = DoAttachToProcessWithID(attach_pid, attach_info); 3079 } else { 3080 // This shouldn't happen 3081 error.SetErrorString("failed to acquire process run lock"); 3082 } 3083 3084 if (error.Success()) { 3085 SetNextEventAction(new Process::AttachCompletionHandler( 3086 this, attach_info.GetResumeCount())); 3087 StartPrivateStateThread(); 3088 } else { 3089 if (GetID() != LLDB_INVALID_PROCESS_ID) 3090 SetID(LLDB_INVALID_PROCESS_ID); 3091 3092 const char *error_string = error.AsCString(); 3093 if (error_string == nullptr) 3094 error_string = "attach failed"; 3095 3096 SetExitStatus(-1, error_string); 3097 } 3098 } 3099 } 3100 return error; 3101 } 3102 3103 void Process::CompleteAttach() { 3104 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3105 LIBLLDB_LOG_TARGET)); 3106 if (log) 3107 log->Printf("Process::%s()", __FUNCTION__); 3108 3109 // Let the process subclass figure out at much as it can about the process 3110 // before we go looking for a dynamic loader plug-in. 3111 ArchSpec process_arch; 3112 DidAttach(process_arch); 3113 3114 if (process_arch.IsValid()) { 3115 GetTarget().SetArchitecture(process_arch); 3116 if (log) { 3117 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 3118 log->Printf("Process::%s replacing process architecture with DidAttach() " 3119 "architecture: %s", 3120 __FUNCTION__, triple_str ? triple_str : "<null>"); 3121 } 3122 } 3123 3124 // We just attached. If we have a platform, ask it for the process 3125 // architecture, and if it isn't the same as the one we've already set, 3126 // switch architectures. 3127 PlatformSP platform_sp(GetTarget().GetPlatform()); 3128 assert(platform_sp); 3129 if (platform_sp) { 3130 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 3131 if (target_arch.IsValid() && 3132 !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) { 3133 ArchSpec platform_arch; 3134 platform_sp = 3135 platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch); 3136 if (platform_sp) { 3137 GetTarget().SetPlatform(platform_sp); 3138 GetTarget().SetArchitecture(platform_arch); 3139 if (log) 3140 log->Printf("Process::%s switching platform to %s and architecture " 3141 "to %s based on info from attach", 3142 __FUNCTION__, platform_sp->GetName().AsCString(""), 3143 platform_arch.GetTriple().getTriple().c_str()); 3144 } 3145 } else if (!process_arch.IsValid()) { 3146 ProcessInstanceInfo process_info; 3147 GetProcessInfo(process_info); 3148 const ArchSpec &process_arch = process_info.GetArchitecture(); 3149 if (process_arch.IsValid() && 3150 !GetTarget().GetArchitecture().IsExactMatch(process_arch)) { 3151 GetTarget().SetArchitecture(process_arch); 3152 if (log) 3153 log->Printf("Process::%s switching architecture to %s based on info " 3154 "the platform retrieved for pid %" PRIu64, 3155 __FUNCTION__, 3156 process_arch.GetTriple().getTriple().c_str(), GetID()); 3157 } 3158 } 3159 } 3160 3161 // We have completed the attach, now it is time to find the dynamic loader 3162 // plug-in 3163 DynamicLoader *dyld = GetDynamicLoader(); 3164 if (dyld) { 3165 dyld->DidAttach(); 3166 if (log) { 3167 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3168 log->Printf("Process::%s after DynamicLoader::DidAttach(), target " 3169 "executable is %s (using %s plugin)", 3170 __FUNCTION__, 3171 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3172 : "<none>", 3173 dyld->GetPluginName().AsCString("<unnamed>")); 3174 } 3175 } 3176 3177 GetJITLoaders().DidAttach(); 3178 3179 SystemRuntime *system_runtime = GetSystemRuntime(); 3180 if (system_runtime) { 3181 system_runtime->DidAttach(); 3182 if (log) { 3183 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3184 log->Printf("Process::%s after SystemRuntime::DidAttach(), target " 3185 "executable is %s (using %s plugin)", 3186 __FUNCTION__, 3187 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3188 : "<none>", 3189 system_runtime->GetPluginName().AsCString("<unnamed>")); 3190 } 3191 } 3192 3193 if (!m_os_ap) 3194 LoadOperatingSystemPlugin(false); 3195 // Figure out which one is the executable, and set that in our target: 3196 const ModuleList &target_modules = GetTarget().GetImages(); 3197 std::lock_guard<std::recursive_mutex> guard(target_modules.GetMutex()); 3198 size_t num_modules = target_modules.GetSize(); 3199 ModuleSP new_executable_module_sp; 3200 3201 for (size_t i = 0; i < num_modules; i++) { 3202 ModuleSP module_sp(target_modules.GetModuleAtIndexUnlocked(i)); 3203 if (module_sp && module_sp->IsExecutable()) { 3204 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 3205 new_executable_module_sp = module_sp; 3206 break; 3207 } 3208 } 3209 if (new_executable_module_sp) { 3210 GetTarget().SetExecutableModule(new_executable_module_sp, false); 3211 if (log) { 3212 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3213 log->Printf( 3214 "Process::%s after looping through modules, target executable is %s", 3215 __FUNCTION__, 3216 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3217 : "<none>"); 3218 } 3219 } 3220 } 3221 3222 Status Process::ConnectRemote(Stream *strm, llvm::StringRef remote_url) { 3223 m_abi_sp.reset(); 3224 m_process_input_reader.reset(); 3225 3226 // Find the process and its architecture. Make sure it matches the 3227 // architecture of the current Target, and if not adjust it. 3228 3229 Status error(DoConnectRemote(strm, remote_url)); 3230 if (error.Success()) { 3231 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3232 EventSP event_sp; 3233 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 3234 3235 if (state == eStateStopped || state == eStateCrashed) { 3236 // If we attached and actually have a process on the other end, then 3237 // this ended up being the equivalent of an attach. 3238 CompleteAttach(); 3239 3240 // This delays passing the stopped event to listeners till 3241 // CompleteAttach gets a chance to complete... 3242 HandlePrivateEvent(event_sp); 3243 } 3244 } 3245 3246 if (PrivateStateThreadIsValid()) 3247 ResumePrivateStateThread(); 3248 else 3249 StartPrivateStateThread(); 3250 } 3251 return error; 3252 } 3253 3254 Status Process::PrivateResume() { 3255 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3256 LIBLLDB_LOG_STEP)); 3257 if (log) 3258 log->Printf("Process::PrivateResume() m_stop_id = %u, public state: %s " 3259 "private state: %s", 3260 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3261 StateAsCString(m_private_state.GetValue())); 3262 3263 // If signals handing status changed we might want to update our signal 3264 // filters before resuming. 3265 UpdateAutomaticSignalFiltering(); 3266 3267 Status error(WillResume()); 3268 // Tell the process it is about to resume before the thread list 3269 if (error.Success()) { 3270 // Now let the thread list know we are about to resume so it can let all of 3271 // our threads know that they are about to be resumed. Threads will each be 3272 // called with Thread::WillResume(StateType) where StateType contains the 3273 // state that they are supposed to have when the process is resumed 3274 // (suspended/running/stepping). Threads should also check their resume 3275 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3276 // start back up with a signal. 3277 if (m_thread_list.WillResume()) { 3278 // Last thing, do the PreResumeActions. 3279 if (!RunPreResumeActions()) { 3280 error.SetErrorStringWithFormat( 3281 "Process::PrivateResume PreResumeActions failed, not resuming."); 3282 } else { 3283 m_mod_id.BumpResumeID(); 3284 error = DoResume(); 3285 if (error.Success()) { 3286 DidResume(); 3287 m_thread_list.DidResume(); 3288 if (log) 3289 log->Printf("Process thinks the process has resumed."); 3290 } 3291 } 3292 } else { 3293 // Somebody wanted to run without running (e.g. we were faking a step 3294 // from one frame of a set of inlined frames that share the same PC to 3295 // another.) So generate a continue & a stopped event, and let the world 3296 // handle them. 3297 if (log) 3298 log->Printf( 3299 "Process::PrivateResume() asked to simulate a start & stop."); 3300 3301 SetPrivateState(eStateRunning); 3302 SetPrivateState(eStateStopped); 3303 } 3304 } else if (log) 3305 log->Printf("Process::PrivateResume() got an error \"%s\".", 3306 error.AsCString("<unknown error>")); 3307 return error; 3308 } 3309 3310 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3311 if (!StateIsRunningState(m_public_state.GetValue())) 3312 return Status("Process is not running."); 3313 3314 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3315 // case it was already set and some thread plan logic calls halt on its own. 3316 m_clear_thread_plans_on_stop |= clear_thread_plans; 3317 3318 ListenerSP halt_listener_sp( 3319 Listener::MakeListener("lldb.process.halt_listener")); 3320 HijackProcessEvents(halt_listener_sp); 3321 3322 EventSP event_sp; 3323 3324 SendAsyncInterrupt(); 3325 3326 if (m_public_state.GetValue() == eStateAttaching) { 3327 // Don't hijack and eat the eStateExited as the code that was doing the 3328 // attach will be waiting for this event... 3329 RestoreProcessEvents(); 3330 SetExitStatus(SIGKILL, "Cancelled async attach."); 3331 Destroy(false); 3332 return Status(); 3333 } 3334 3335 // Wait for 10 second for the process to stop. 3336 StateType state = WaitForProcessToStop( 3337 seconds(10), &event_sp, true, halt_listener_sp, nullptr, use_run_lock); 3338 RestoreProcessEvents(); 3339 3340 if (state == eStateInvalid || !event_sp) { 3341 // We timed out and didn't get a stop event... 3342 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3343 } 3344 3345 BroadcastEvent(event_sp); 3346 3347 return Status(); 3348 } 3349 3350 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3351 Status error; 3352 3353 // Check both the public & private states here. If we're hung evaluating an 3354 // expression, for instance, then the public state will be stopped, but we 3355 // still need to interrupt. 3356 if (m_public_state.GetValue() == eStateRunning || 3357 m_private_state.GetValue() == eStateRunning) { 3358 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3359 if (log) 3360 log->Printf("Process::%s() About to stop.", __FUNCTION__); 3361 3362 ListenerSP listener_sp( 3363 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3364 HijackProcessEvents(listener_sp); 3365 3366 SendAsyncInterrupt(); 3367 3368 // Consume the interrupt event. 3369 StateType state = 3370 WaitForProcessToStop(seconds(10), &exit_event_sp, true, listener_sp); 3371 3372 RestoreProcessEvents(); 3373 3374 // If the process exited while we were waiting for it to stop, put the 3375 // exited event into the shared pointer passed in and return. Our caller 3376 // doesn't need to do anything else, since they don't have a process 3377 // anymore... 3378 3379 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3380 if (log) 3381 log->Printf("Process::%s() Process exited while waiting to stop.", 3382 __FUNCTION__); 3383 return error; 3384 } else 3385 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3386 3387 if (state != eStateStopped) { 3388 if (log) 3389 log->Printf("Process::%s() failed to stop, state is: %s", __FUNCTION__, 3390 StateAsCString(state)); 3391 // If we really couldn't stop the process then we should just error out 3392 // here, but if the lower levels just bobbled sending the event and we 3393 // really are stopped, then continue on. 3394 StateType private_state = m_private_state.GetValue(); 3395 if (private_state != eStateStopped) { 3396 return Status( 3397 "Attempt to stop the target in order to detach timed out. " 3398 "State = %s", 3399 StateAsCString(GetState())); 3400 } 3401 } 3402 } 3403 return error; 3404 } 3405 3406 Status Process::Detach(bool keep_stopped) { 3407 EventSP exit_event_sp; 3408 Status error; 3409 m_destroy_in_process = true; 3410 3411 error = WillDetach(); 3412 3413 if (error.Success()) { 3414 if (DetachRequiresHalt()) { 3415 error = StopForDestroyOrDetach(exit_event_sp); 3416 if (!error.Success()) { 3417 m_destroy_in_process = false; 3418 return error; 3419 } else if (exit_event_sp) { 3420 // We shouldn't need to do anything else here. There's no process left 3421 // to detach from... 3422 StopPrivateStateThread(); 3423 m_destroy_in_process = false; 3424 return error; 3425 } 3426 } 3427 3428 m_thread_list.DiscardThreadPlans(); 3429 DisableAllBreakpointSites(); 3430 3431 error = DoDetach(keep_stopped); 3432 if (error.Success()) { 3433 DidDetach(); 3434 StopPrivateStateThread(); 3435 } else { 3436 return error; 3437 } 3438 } 3439 m_destroy_in_process = false; 3440 3441 // If we exited when we were waiting for a process to stop, then forward the 3442 // event here so we don't lose the event 3443 if (exit_event_sp) { 3444 // Directly broadcast our exited event because we shut down our private 3445 // state thread above 3446 BroadcastEvent(exit_event_sp); 3447 } 3448 3449 // If we have been interrupted (to kill us) in the middle of running, we may 3450 // not end up propagating the last events through the event system, in which 3451 // case we might strand the write lock. Unlock it here so when we do to tear 3452 // down the process we don't get an error destroying the lock. 3453 3454 m_public_run_lock.SetStopped(); 3455 return error; 3456 } 3457 3458 Status Process::Destroy(bool force_kill) { 3459 3460 // Tell ourselves we are in the process of destroying the process, so that we 3461 // don't do any unnecessary work that might hinder the destruction. Remember 3462 // to set this back to false when we are done. That way if the attempt 3463 // failed and the process stays around for some reason it won't be in a 3464 // confused state. 3465 3466 if (force_kill) 3467 m_should_detach = false; 3468 3469 if (GetShouldDetach()) { 3470 // FIXME: This will have to be a process setting: 3471 bool keep_stopped = false; 3472 Detach(keep_stopped); 3473 } 3474 3475 m_destroy_in_process = true; 3476 3477 Status error(WillDestroy()); 3478 if (error.Success()) { 3479 EventSP exit_event_sp; 3480 if (DestroyRequiresHalt()) { 3481 error = StopForDestroyOrDetach(exit_event_sp); 3482 } 3483 3484 if (m_public_state.GetValue() != eStateRunning) { 3485 // Ditch all thread plans, and remove all our breakpoints: in case we 3486 // have to restart the target to kill it, we don't want it hitting a 3487 // breakpoint... Only do this if we've stopped, however, since if we 3488 // didn't manage to halt it above, then we're not going to have much luck 3489 // doing this now. 3490 m_thread_list.DiscardThreadPlans(); 3491 DisableAllBreakpointSites(); 3492 } 3493 3494 error = DoDestroy(); 3495 if (error.Success()) { 3496 DidDestroy(); 3497 StopPrivateStateThread(); 3498 } 3499 m_stdio_communication.Disconnect(); 3500 m_stdio_communication.StopReadThread(); 3501 m_stdin_forward = false; 3502 3503 if (m_process_input_reader) { 3504 m_process_input_reader->SetIsDone(true); 3505 m_process_input_reader->Cancel(); 3506 m_process_input_reader.reset(); 3507 } 3508 3509 // If we exited when we were waiting for a process to stop, then forward 3510 // the event here so we don't lose the event 3511 if (exit_event_sp) { 3512 // Directly broadcast our exited event because we shut down our private 3513 // state thread above 3514 BroadcastEvent(exit_event_sp); 3515 } 3516 3517 // If we have been interrupted (to kill us) in the middle of running, we 3518 // may not end up propagating the last events through the event system, in 3519 // which case we might strand the write lock. Unlock it here so when we do 3520 // to tear down the process we don't get an error destroying the lock. 3521 m_public_run_lock.SetStopped(); 3522 } 3523 3524 m_destroy_in_process = false; 3525 3526 return error; 3527 } 3528 3529 Status Process::Signal(int signal) { 3530 Status error(WillSignal()); 3531 if (error.Success()) { 3532 error = DoSignal(signal); 3533 if (error.Success()) 3534 DidSignal(); 3535 } 3536 return error; 3537 } 3538 3539 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3540 assert(signals_sp && "null signals_sp"); 3541 m_unix_signals_sp = signals_sp; 3542 } 3543 3544 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3545 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3546 return m_unix_signals_sp; 3547 } 3548 3549 lldb::ByteOrder Process::GetByteOrder() const { 3550 return GetTarget().GetArchitecture().GetByteOrder(); 3551 } 3552 3553 uint32_t Process::GetAddressByteSize() const { 3554 return GetTarget().GetArchitecture().GetAddressByteSize(); 3555 } 3556 3557 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3558 const StateType state = 3559 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3560 bool return_value = true; 3561 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | 3562 LIBLLDB_LOG_PROCESS)); 3563 3564 switch (state) { 3565 case eStateDetached: 3566 case eStateExited: 3567 case eStateUnloaded: 3568 m_stdio_communication.SynchronizeWithReadThread(); 3569 m_stdio_communication.Disconnect(); 3570 m_stdio_communication.StopReadThread(); 3571 m_stdin_forward = false; 3572 3573 LLVM_FALLTHROUGH; 3574 case eStateConnected: 3575 case eStateAttaching: 3576 case eStateLaunching: 3577 // These events indicate changes in the state of the debugging session, 3578 // always report them. 3579 return_value = true; 3580 break; 3581 case eStateInvalid: 3582 // We stopped for no apparent reason, don't report it. 3583 return_value = false; 3584 break; 3585 case eStateRunning: 3586 case eStateStepping: 3587 // If we've started the target running, we handle the cases where we are 3588 // already running and where there is a transition from stopped to running 3589 // differently. running -> running: Automatically suppress extra running 3590 // events stopped -> running: Report except when there is one or more no 3591 // votes 3592 // and no yes votes. 3593 SynchronouslyNotifyStateChanged(state); 3594 if (m_force_next_event_delivery) 3595 return_value = true; 3596 else { 3597 switch (m_last_broadcast_state) { 3598 case eStateRunning: 3599 case eStateStepping: 3600 // We always suppress multiple runnings with no PUBLIC stop in between. 3601 return_value = false; 3602 break; 3603 default: 3604 // TODO: make this work correctly. For now always report 3605 // run if we aren't running so we don't miss any running events. If I 3606 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3607 // and hit the breakpoints on multiple threads, then somehow during the 3608 // stepping over of all breakpoints no run gets reported. 3609 3610 // This is a transition from stop to run. 3611 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3612 case eVoteYes: 3613 case eVoteNoOpinion: 3614 return_value = true; 3615 break; 3616 case eVoteNo: 3617 return_value = false; 3618 break; 3619 } 3620 break; 3621 } 3622 } 3623 break; 3624 case eStateStopped: 3625 case eStateCrashed: 3626 case eStateSuspended: 3627 // We've stopped. First see if we're going to restart the target. If we 3628 // are going to stop, then we always broadcast the event. If we aren't 3629 // going to stop, let the thread plans decide if we're going to report this 3630 // event. If no thread has an opinion, we don't report it. 3631 3632 m_stdio_communication.SynchronizeWithReadThread(); 3633 RefreshStateAfterStop(); 3634 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3635 if (log) 3636 log->Printf("Process::ShouldBroadcastEvent (%p) stopped due to an " 3637 "interrupt, state: %s", 3638 static_cast<void *>(event_ptr), StateAsCString(state)); 3639 // Even though we know we are going to stop, we should let the threads 3640 // have a look at the stop, so they can properly set their state. 3641 m_thread_list.ShouldStop(event_ptr); 3642 return_value = true; 3643 } else { 3644 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3645 bool should_resume = false; 3646 3647 // It makes no sense to ask "ShouldStop" if we've already been 3648 // restarted... Asking the thread list is also not likely to go well, 3649 // since we are running again. So in that case just report the event. 3650 3651 if (!was_restarted) 3652 should_resume = !m_thread_list.ShouldStop(event_ptr); 3653 3654 if (was_restarted || should_resume || m_resume_requested) { 3655 Vote stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3656 if (log) 3657 log->Printf("Process::ShouldBroadcastEvent: should_resume: %i state: " 3658 "%s was_restarted: %i stop_vote: %d.", 3659 should_resume, StateAsCString(state), was_restarted, 3660 stop_vote); 3661 3662 switch (stop_vote) { 3663 case eVoteYes: 3664 return_value = true; 3665 break; 3666 case eVoteNoOpinion: 3667 case eVoteNo: 3668 return_value = false; 3669 break; 3670 } 3671 3672 if (!was_restarted) { 3673 if (log) 3674 log->Printf("Process::ShouldBroadcastEvent (%p) Restarting process " 3675 "from state: %s", 3676 static_cast<void *>(event_ptr), StateAsCString(state)); 3677 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3678 PrivateResume(); 3679 } 3680 } else { 3681 return_value = true; 3682 SynchronouslyNotifyStateChanged(state); 3683 } 3684 } 3685 break; 3686 } 3687 3688 // Forcing the next event delivery is a one shot deal. So reset it here. 3689 m_force_next_event_delivery = false; 3690 3691 // We do some coalescing of events (for instance two consecutive running 3692 // events get coalesced.) But we only coalesce against events we actually 3693 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3694 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3695 // done, because the PublicState reflects the last event pulled off the 3696 // queue, and there may be several events stacked up on the queue unserviced. 3697 // So the PublicState may not reflect the last broadcasted event yet. 3698 // m_last_broadcast_state gets updated here. 3699 3700 if (return_value) 3701 m_last_broadcast_state = state; 3702 3703 if (log) 3704 log->Printf("Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3705 "broadcast state: %s - %s", 3706 static_cast<void *>(event_ptr), StateAsCString(state), 3707 StateAsCString(m_last_broadcast_state), 3708 return_value ? "YES" : "NO"); 3709 return return_value; 3710 } 3711 3712 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3713 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 3714 3715 bool already_running = PrivateStateThreadIsValid(); 3716 if (log) 3717 log->Printf("Process::%s()%s ", __FUNCTION__, 3718 already_running ? " already running" 3719 : " starting private state thread"); 3720 3721 if (!is_secondary_thread && already_running) 3722 return true; 3723 3724 // Create a thread that watches our internal state and controls which events 3725 // make it to clients (into the DCProcess event queue). 3726 char thread_name[1024]; 3727 uint32_t max_len = llvm::get_max_thread_name_length(); 3728 if (max_len > 0 && max_len <= 30) { 3729 // On platforms with abbreviated thread name lengths, choose thread names 3730 // that fit within the limit. 3731 if (already_running) 3732 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3733 else 3734 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3735 } else { 3736 if (already_running) 3737 snprintf(thread_name, sizeof(thread_name), 3738 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3739 GetID()); 3740 else 3741 snprintf(thread_name, sizeof(thread_name), 3742 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3743 } 3744 3745 // Create the private state thread, and start it running. 3746 PrivateStateThreadArgs *args_ptr = 3747 new PrivateStateThreadArgs(this, is_secondary_thread); 3748 m_private_state_thread = 3749 ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, 3750 (void *)args_ptr, nullptr, 8 * 1024 * 1024); 3751 if (m_private_state_thread.IsJoinable()) { 3752 ResumePrivateStateThread(); 3753 return true; 3754 } else 3755 return false; 3756 } 3757 3758 void Process::PausePrivateStateThread() { 3759 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3760 } 3761 3762 void Process::ResumePrivateStateThread() { 3763 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3764 } 3765 3766 void Process::StopPrivateStateThread() { 3767 if (m_private_state_thread.IsJoinable()) 3768 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3769 else { 3770 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3771 if (log) 3772 log->Printf( 3773 "Went to stop the private state thread, but it was already invalid."); 3774 } 3775 } 3776 3777 void Process::ControlPrivateStateThread(uint32_t signal) { 3778 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3779 3780 assert(signal == eBroadcastInternalStateControlStop || 3781 signal == eBroadcastInternalStateControlPause || 3782 signal == eBroadcastInternalStateControlResume); 3783 3784 if (log) 3785 log->Printf("Process::%s (signal = %d)", __FUNCTION__, signal); 3786 3787 // Signal the private state thread 3788 if (m_private_state_thread.IsJoinable()) { 3789 // Broadcast the event. 3790 // It is important to do this outside of the if below, because it's 3791 // possible that the thread state is invalid but that the thread is waiting 3792 // on a control event instead of simply being on its way out (this should 3793 // not happen, but it apparently can). 3794 if (log) 3795 log->Printf("Sending control event of type: %d.", signal); 3796 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3797 m_private_state_control_broadcaster.BroadcastEvent(signal, 3798 event_receipt_sp); 3799 3800 // Wait for the event receipt or for the private state thread to exit 3801 bool receipt_received = false; 3802 if (PrivateStateThreadIsValid()) { 3803 while (!receipt_received) { 3804 // Check for a receipt for 2 seconds and then check if the private 3805 // state thread is still around. 3806 receipt_received = 3807 event_receipt_sp->WaitForEventReceived(std::chrono::seconds(2)); 3808 if (!receipt_received) { 3809 // Check if the private state thread is still around. If it isn't 3810 // then we are done waiting 3811 if (!PrivateStateThreadIsValid()) 3812 break; // Private state thread exited or is exiting, we are done 3813 } 3814 } 3815 } 3816 3817 if (signal == eBroadcastInternalStateControlStop) { 3818 thread_result_t result = NULL; 3819 m_private_state_thread.Join(&result); 3820 m_private_state_thread.Reset(); 3821 } 3822 } else { 3823 if (log) 3824 log->Printf( 3825 "Private state thread already dead, no need to signal it to stop."); 3826 } 3827 } 3828 3829 void Process::SendAsyncInterrupt() { 3830 if (PrivateStateThreadIsValid()) 3831 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3832 nullptr); 3833 else 3834 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3835 } 3836 3837 void Process::HandlePrivateEvent(EventSP &event_sp) { 3838 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3839 m_resume_requested = false; 3840 3841 const StateType new_state = 3842 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3843 3844 // First check to see if anybody wants a shot at this event: 3845 if (m_next_event_action_ap) { 3846 NextEventAction::EventActionResult action_result = 3847 m_next_event_action_ap->PerformAction(event_sp); 3848 if (log) 3849 log->Printf("Ran next event action, result was %d.", action_result); 3850 3851 switch (action_result) { 3852 case NextEventAction::eEventActionSuccess: 3853 SetNextEventAction(nullptr); 3854 break; 3855 3856 case NextEventAction::eEventActionRetry: 3857 break; 3858 3859 case NextEventAction::eEventActionExit: 3860 // Handle Exiting Here. If we already got an exited event, we should 3861 // just propagate it. Otherwise, swallow this event, and set our state 3862 // to exit so the next event will kill us. 3863 if (new_state != eStateExited) { 3864 // FIXME: should cons up an exited event, and discard this one. 3865 SetExitStatus(0, m_next_event_action_ap->GetExitString()); 3866 SetNextEventAction(nullptr); 3867 return; 3868 } 3869 SetNextEventAction(nullptr); 3870 break; 3871 } 3872 } 3873 3874 // See if we should broadcast this state to external clients? 3875 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3876 3877 if (should_broadcast) { 3878 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3879 if (log) { 3880 log->Printf("Process::%s (pid = %" PRIu64 3881 ") broadcasting new state %s (old state %s) to %s", 3882 __FUNCTION__, GetID(), StateAsCString(new_state), 3883 StateAsCString(GetState()), 3884 is_hijacked ? "hijacked" : "public"); 3885 } 3886 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3887 if (StateIsRunningState(new_state)) { 3888 // Only push the input handler if we aren't fowarding events, as this 3889 // means the curses GUI is in use... Or don't push it if we are launching 3890 // since it will come up stopped. 3891 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3892 new_state != eStateLaunching && new_state != eStateAttaching) { 3893 PushProcessIOHandler(); 3894 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3895 eBroadcastAlways); 3896 if (log) 3897 log->Printf("Process::%s updated m_iohandler_sync to %d", 3898 __FUNCTION__, m_iohandler_sync.GetValue()); 3899 } 3900 } else if (StateIsStoppedState(new_state, false)) { 3901 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3902 // If the lldb_private::Debugger is handling the events, we don't want 3903 // to pop the process IOHandler here, we want to do it when we receive 3904 // the stopped event so we can carefully control when the process 3905 // IOHandler is popped because when we stop we want to display some 3906 // text stating how and why we stopped, then maybe some 3907 // process/thread/frame info, and then we want the "(lldb) " prompt to 3908 // show up. If we pop the process IOHandler here, then we will cause 3909 // the command interpreter to become the top IOHandler after the 3910 // process pops off and it will update its prompt right away... See the 3911 // Debugger.cpp file where it calls the function as 3912 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3913 // Otherwise we end up getting overlapping "(lldb) " prompts and 3914 // garbled output. 3915 // 3916 // If we aren't handling the events in the debugger (which is indicated 3917 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3918 // we are hijacked, then we always pop the process IO handler manually. 3919 // Hijacking happens when the internal process state thread is running 3920 // thread plans, or when commands want to run in synchronous mode and 3921 // they call "process->WaitForProcessToStop()". An example of something 3922 // that will hijack the events is a simple expression: 3923 // 3924 // (lldb) expr (int)puts("hello") 3925 // 3926 // This will cause the internal process state thread to resume and halt 3927 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3928 // events) and we do need the IO handler to be pushed and popped 3929 // correctly. 3930 3931 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3932 PopProcessIOHandler(); 3933 } 3934 } 3935 3936 BroadcastEvent(event_sp); 3937 } else { 3938 if (log) { 3939 log->Printf( 3940 "Process::%s (pid = %" PRIu64 3941 ") suppressing state %s (old state %s): should_broadcast == false", 3942 __FUNCTION__, GetID(), StateAsCString(new_state), 3943 StateAsCString(GetState())); 3944 } 3945 } 3946 } 3947 3948 Status Process::HaltPrivate() { 3949 EventSP event_sp; 3950 Status error(WillHalt()); 3951 if (error.Fail()) 3952 return error; 3953 3954 // Ask the process subclass to actually halt our process 3955 bool caused_stop; 3956 error = DoHalt(caused_stop); 3957 3958 DidHalt(); 3959 return error; 3960 } 3961 3962 thread_result_t Process::PrivateStateThread(void *arg) { 3963 std::unique_ptr<PrivateStateThreadArgs> args_up( 3964 static_cast<PrivateStateThreadArgs *>(arg)); 3965 thread_result_t result = 3966 args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 3967 return result; 3968 } 3969 3970 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3971 bool control_only = true; 3972 3973 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3974 if (log) 3975 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3976 __FUNCTION__, static_cast<void *>(this), GetID()); 3977 3978 bool exit_now = false; 3979 bool interrupt_requested = false; 3980 while (!exit_now) { 3981 EventSP event_sp; 3982 GetEventsPrivate(event_sp, llvm::None, control_only); 3983 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3984 if (log) 3985 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 3986 ") got a control event: %d", 3987 __FUNCTION__, static_cast<void *>(this), GetID(), 3988 event_sp->GetType()); 3989 3990 switch (event_sp->GetType()) { 3991 case eBroadcastInternalStateControlStop: 3992 exit_now = true; 3993 break; // doing any internal state management below 3994 3995 case eBroadcastInternalStateControlPause: 3996 control_only = true; 3997 break; 3998 3999 case eBroadcastInternalStateControlResume: 4000 control_only = false; 4001 break; 4002 } 4003 4004 continue; 4005 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 4006 if (m_public_state.GetValue() == eStateAttaching) { 4007 if (log) 4008 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4009 ") woke up with an interrupt while attaching - " 4010 "forwarding interrupt.", 4011 __FUNCTION__, static_cast<void *>(this), GetID()); 4012 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 4013 } else if (StateIsRunningState(m_last_broadcast_state)) { 4014 if (log) 4015 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4016 ") woke up with an interrupt - Halting.", 4017 __FUNCTION__, static_cast<void *>(this), GetID()); 4018 Status error = HaltPrivate(); 4019 if (error.Fail() && log) 4020 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4021 ") failed to halt the process: %s", 4022 __FUNCTION__, static_cast<void *>(this), GetID(), 4023 error.AsCString()); 4024 // Halt should generate a stopped event. Make a note of the fact that 4025 // we were doing the interrupt, so we can set the interrupted flag 4026 // after we receive the event. We deliberately set this to true even if 4027 // HaltPrivate failed, so that we can interrupt on the next natural 4028 // stop. 4029 interrupt_requested = true; 4030 } else { 4031 // This can happen when someone (e.g. Process::Halt) sees that we are 4032 // running and sends an interrupt request, but the process actually 4033 // stops before we receive it. In that case, we can just ignore the 4034 // request. We use m_last_broadcast_state, because the Stopped event 4035 // may not have been popped of the event queue yet, which is when the 4036 // public state gets updated. 4037 if (log) 4038 log->Printf( 4039 "Process::%s ignoring interrupt as we have already stopped.", 4040 __FUNCTION__); 4041 } 4042 continue; 4043 } 4044 4045 const StateType internal_state = 4046 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4047 4048 if (internal_state != eStateInvalid) { 4049 if (m_clear_thread_plans_on_stop && 4050 StateIsStoppedState(internal_state, true)) { 4051 m_clear_thread_plans_on_stop = false; 4052 m_thread_list.DiscardThreadPlans(); 4053 } 4054 4055 if (interrupt_requested) { 4056 if (StateIsStoppedState(internal_state, true)) { 4057 // We requested the interrupt, so mark this as such in the stop event 4058 // so clients can tell an interrupted process from a natural stop 4059 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 4060 interrupt_requested = false; 4061 } else if (log) { 4062 log->Printf("Process::%s interrupt_requested, but a non-stopped " 4063 "state '%s' received.", 4064 __FUNCTION__, StateAsCString(internal_state)); 4065 } 4066 } 4067 4068 HandlePrivateEvent(event_sp); 4069 } 4070 4071 if (internal_state == eStateInvalid || internal_state == eStateExited || 4072 internal_state == eStateDetached) { 4073 if (log) 4074 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4075 ") about to exit with internal state %s...", 4076 __FUNCTION__, static_cast<void *>(this), GetID(), 4077 StateAsCString(internal_state)); 4078 4079 break; 4080 } 4081 } 4082 4083 // Verify log is still enabled before attempting to write to it... 4084 if (log) 4085 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 4086 __FUNCTION__, static_cast<void *>(this), GetID()); 4087 4088 // If we are a secondary thread, then the primary thread we are working for 4089 // will have already acquired the public_run_lock, and isn't done with what 4090 // it was doing yet, so don't try to change it on the way out. 4091 if (!is_secondary_thread) 4092 m_public_run_lock.SetStopped(); 4093 return NULL; 4094 } 4095 4096 //------------------------------------------------------------------ 4097 // Process Event Data 4098 //------------------------------------------------------------------ 4099 4100 Process::ProcessEventData::ProcessEventData() 4101 : EventData(), m_process_wp(), m_state(eStateInvalid), m_restarted(false), 4102 m_update_state(0), m_interrupted(false) {} 4103 4104 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 4105 StateType state) 4106 : EventData(), m_process_wp(), m_state(state), m_restarted(false), 4107 m_update_state(0), m_interrupted(false) { 4108 if (process_sp) 4109 m_process_wp = process_sp; 4110 } 4111 4112 Process::ProcessEventData::~ProcessEventData() = default; 4113 4114 const ConstString &Process::ProcessEventData::GetFlavorString() { 4115 static ConstString g_flavor("Process::ProcessEventData"); 4116 return g_flavor; 4117 } 4118 4119 const ConstString &Process::ProcessEventData::GetFlavor() const { 4120 return ProcessEventData::GetFlavorString(); 4121 } 4122 4123 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 4124 ProcessSP process_sp(m_process_wp.lock()); 4125 4126 if (!process_sp) 4127 return; 4128 4129 // This function gets called twice for each event, once when the event gets 4130 // pulled off of the private process event queue, and then any number of 4131 // times, first when it gets pulled off of the public event queue, then other 4132 // times when we're pretending that this is where we stopped at the end of 4133 // expression evaluation. m_update_state is used to distinguish these three 4134 // cases; it is 0 when we're just pulling it off for private handling, and > 4135 // 1 for expression evaluation, and we don't want to do the breakpoint 4136 // command handling then. 4137 if (m_update_state != 1) 4138 return; 4139 4140 process_sp->SetPublicState( 4141 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4142 4143 if (m_state == eStateStopped && !m_restarted) { 4144 // Let process subclasses know we are about to do a public stop and do 4145 // anything they might need to in order to speed up register and memory 4146 // accesses. 4147 process_sp->WillPublicStop(); 4148 } 4149 4150 // If this is a halt event, even if the halt stopped with some reason other 4151 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 4152 // the halt request came through) don't do the StopInfo actions, as they may 4153 // end up restarting the process. 4154 if (m_interrupted) 4155 return; 4156 4157 // If we're stopped and haven't restarted, then do the StopInfo actions here: 4158 if (m_state == eStateStopped && !m_restarted) { 4159 ThreadList &curr_thread_list = process_sp->GetThreadList(); 4160 uint32_t num_threads = curr_thread_list.GetSize(); 4161 uint32_t idx; 4162 4163 // The actions might change one of the thread's stop_info's opinions about 4164 // whether we should stop the process, so we need to query that as we go. 4165 4166 // One other complication here, is that we try to catch any case where the 4167 // target has run (except for expressions) and immediately exit, but if we 4168 // get that wrong (which is possible) then the thread list might have 4169 // changed, and that would cause our iteration here to crash. We could 4170 // make a copy of the thread list, but we'd really like to also know if it 4171 // has changed at all, so we make up a vector of the thread ID's and check 4172 // what we get back against this list & bag out if anything differs. 4173 std::vector<uint32_t> thread_index_array(num_threads); 4174 for (idx = 0; idx < num_threads; ++idx) 4175 thread_index_array[idx] = 4176 curr_thread_list.GetThreadAtIndex(idx)->GetIndexID(); 4177 4178 // Use this to track whether we should continue from here. We will only 4179 // continue the target running if no thread says we should stop. Of course 4180 // if some thread's PerformAction actually sets the target running, then it 4181 // doesn't matter what the other threads say... 4182 4183 bool still_should_stop = false; 4184 4185 // Sometimes - for instance if we have a bug in the stub we are talking to, 4186 // we stop but no thread has a valid stop reason. In that case we should 4187 // just stop, because we have no way of telling what the right thing to do 4188 // is, and it's better to let the user decide than continue behind their 4189 // backs. 4190 4191 bool does_anybody_have_an_opinion = false; 4192 4193 for (idx = 0; idx < num_threads; ++idx) { 4194 curr_thread_list = process_sp->GetThreadList(); 4195 if (curr_thread_list.GetSize() != num_threads) { 4196 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4197 LIBLLDB_LOG_PROCESS)); 4198 if (log) 4199 log->Printf( 4200 "Number of threads changed from %u to %u while processing event.", 4201 num_threads, curr_thread_list.GetSize()); 4202 break; 4203 } 4204 4205 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 4206 4207 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 4208 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4209 LIBLLDB_LOG_PROCESS)); 4210 if (log) 4211 log->Printf("The thread at position %u changed from %u to %u while " 4212 "processing event.", 4213 idx, thread_index_array[idx], thread_sp->GetIndexID()); 4214 break; 4215 } 4216 4217 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4218 if (stop_info_sp && stop_info_sp->IsValid()) { 4219 does_anybody_have_an_opinion = true; 4220 bool this_thread_wants_to_stop; 4221 if (stop_info_sp->GetOverrideShouldStop()) { 4222 this_thread_wants_to_stop = 4223 stop_info_sp->GetOverriddenShouldStopValue(); 4224 } else { 4225 stop_info_sp->PerformAction(event_ptr); 4226 // The stop action might restart the target. If it does, then we 4227 // want to mark that in the event so that whoever is receiving it 4228 // will know to wait for the running event and reflect that state 4229 // appropriately. We also need to stop processing actions, since they 4230 // aren't expecting the target to be running. 4231 4232 // FIXME: we might have run. 4233 if (stop_info_sp->HasTargetRunSinceMe()) { 4234 SetRestarted(true); 4235 break; 4236 } 4237 4238 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4239 } 4240 4241 if (!still_should_stop) 4242 still_should_stop = this_thread_wants_to_stop; 4243 } 4244 } 4245 4246 if (!GetRestarted()) { 4247 if (!still_should_stop && does_anybody_have_an_opinion) { 4248 // We've been asked to continue, so do that here. 4249 SetRestarted(true); 4250 // Use the public resume method here, since this is just extending a 4251 // public resume. 4252 process_sp->PrivateResume(); 4253 } else { 4254 // If we didn't restart, run the Stop Hooks here: They might also 4255 // restart the target, so watch for that. 4256 process_sp->GetTarget().RunStopHooks(); 4257 if (process_sp->GetPrivateState() == eStateRunning) 4258 SetRestarted(true); 4259 } 4260 } 4261 } 4262 } 4263 4264 void Process::ProcessEventData::Dump(Stream *s) const { 4265 ProcessSP process_sp(m_process_wp.lock()); 4266 4267 if (process_sp) 4268 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4269 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4270 else 4271 s->PutCString(" process = NULL, "); 4272 4273 s->Printf("state = %s", StateAsCString(GetState())); 4274 } 4275 4276 const Process::ProcessEventData * 4277 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4278 if (event_ptr) { 4279 const EventData *event_data = event_ptr->GetData(); 4280 if (event_data && 4281 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4282 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4283 } 4284 return nullptr; 4285 } 4286 4287 ProcessSP 4288 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4289 ProcessSP process_sp; 4290 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4291 if (data) 4292 process_sp = data->GetProcessSP(); 4293 return process_sp; 4294 } 4295 4296 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4297 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4298 if (data == nullptr) 4299 return eStateInvalid; 4300 else 4301 return data->GetState(); 4302 } 4303 4304 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4305 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4306 if (data == nullptr) 4307 return false; 4308 else 4309 return data->GetRestarted(); 4310 } 4311 4312 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4313 bool new_value) { 4314 ProcessEventData *data = 4315 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4316 if (data != nullptr) 4317 data->SetRestarted(new_value); 4318 } 4319 4320 size_t 4321 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4322 ProcessEventData *data = 4323 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4324 if (data != nullptr) 4325 return data->GetNumRestartedReasons(); 4326 else 4327 return 0; 4328 } 4329 4330 const char * 4331 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4332 size_t idx) { 4333 ProcessEventData *data = 4334 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4335 if (data != nullptr) 4336 return data->GetRestartedReasonAtIndex(idx); 4337 else 4338 return nullptr; 4339 } 4340 4341 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4342 const char *reason) { 4343 ProcessEventData *data = 4344 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4345 if (data != nullptr) 4346 data->AddRestartedReason(reason); 4347 } 4348 4349 bool Process::ProcessEventData::GetInterruptedFromEvent( 4350 const Event *event_ptr) { 4351 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4352 if (data == nullptr) 4353 return false; 4354 else 4355 return data->GetInterrupted(); 4356 } 4357 4358 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4359 bool new_value) { 4360 ProcessEventData *data = 4361 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4362 if (data != nullptr) 4363 data->SetInterrupted(new_value); 4364 } 4365 4366 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4367 ProcessEventData *data = 4368 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4369 if (data) { 4370 data->SetUpdateStateOnRemoval(); 4371 return true; 4372 } 4373 return false; 4374 } 4375 4376 lldb::TargetSP Process::CalculateTarget() { return m_target_sp.lock(); } 4377 4378 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4379 exe_ctx.SetTargetPtr(&GetTarget()); 4380 exe_ctx.SetProcessPtr(this); 4381 exe_ctx.SetThreadPtr(nullptr); 4382 exe_ctx.SetFramePtr(nullptr); 4383 } 4384 4385 // uint32_t 4386 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4387 // std::vector<lldb::pid_t> &pids) 4388 //{ 4389 // return 0; 4390 //} 4391 // 4392 // ArchSpec 4393 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4394 //{ 4395 // return Host::GetArchSpecForExistingProcess (pid); 4396 //} 4397 // 4398 // ArchSpec 4399 // Process::GetArchSpecForExistingProcess (const char *process_name) 4400 //{ 4401 // return Host::GetArchSpecForExistingProcess (process_name); 4402 //} 4403 4404 void Process::AppendSTDOUT(const char *s, size_t len) { 4405 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4406 m_stdout_data.append(s, len); 4407 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4408 new ProcessEventData(shared_from_this(), GetState())); 4409 } 4410 4411 void Process::AppendSTDERR(const char *s, size_t len) { 4412 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4413 m_stderr_data.append(s, len); 4414 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4415 new ProcessEventData(shared_from_this(), GetState())); 4416 } 4417 4418 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4419 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4420 m_profile_data.push_back(one_profile_data); 4421 BroadcastEventIfUnique(eBroadcastBitProfileData, 4422 new ProcessEventData(shared_from_this(), GetState())); 4423 } 4424 4425 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4426 const StructuredDataPluginSP &plugin_sp) { 4427 BroadcastEvent( 4428 eBroadcastBitStructuredData, 4429 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4430 } 4431 4432 StructuredDataPluginSP 4433 Process::GetStructuredDataPlugin(const ConstString &type_name) const { 4434 auto find_it = m_structured_data_plugin_map.find(type_name); 4435 if (find_it != m_structured_data_plugin_map.end()) 4436 return find_it->second; 4437 else 4438 return StructuredDataPluginSP(); 4439 } 4440 4441 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4442 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4443 if (m_profile_data.empty()) 4444 return 0; 4445 4446 std::string &one_profile_data = m_profile_data.front(); 4447 size_t bytes_available = one_profile_data.size(); 4448 if (bytes_available > 0) { 4449 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4450 if (log) 4451 log->Printf("Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4452 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4453 if (bytes_available > buf_size) { 4454 memcpy(buf, one_profile_data.c_str(), buf_size); 4455 one_profile_data.erase(0, buf_size); 4456 bytes_available = buf_size; 4457 } else { 4458 memcpy(buf, one_profile_data.c_str(), bytes_available); 4459 m_profile_data.erase(m_profile_data.begin()); 4460 } 4461 } 4462 return bytes_available; 4463 } 4464 4465 //------------------------------------------------------------------ 4466 // Process STDIO 4467 //------------------------------------------------------------------ 4468 4469 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4470 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4471 size_t bytes_available = m_stdout_data.size(); 4472 if (bytes_available > 0) { 4473 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4474 if (log) 4475 log->Printf("Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4476 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4477 if (bytes_available > buf_size) { 4478 memcpy(buf, m_stdout_data.c_str(), buf_size); 4479 m_stdout_data.erase(0, buf_size); 4480 bytes_available = buf_size; 4481 } else { 4482 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4483 m_stdout_data.clear(); 4484 } 4485 } 4486 return bytes_available; 4487 } 4488 4489 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4490 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4491 size_t bytes_available = m_stderr_data.size(); 4492 if (bytes_available > 0) { 4493 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4494 if (log) 4495 log->Printf("Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4496 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4497 if (bytes_available > buf_size) { 4498 memcpy(buf, m_stderr_data.c_str(), buf_size); 4499 m_stderr_data.erase(0, buf_size); 4500 bytes_available = buf_size; 4501 } else { 4502 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4503 m_stderr_data.clear(); 4504 } 4505 } 4506 return bytes_available; 4507 } 4508 4509 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4510 size_t src_len) { 4511 Process *process = (Process *)baton; 4512 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4513 } 4514 4515 class IOHandlerProcessSTDIO : public IOHandler { 4516 public: 4517 IOHandlerProcessSTDIO(Process *process, int write_fd) 4518 : IOHandler(process->GetTarget().GetDebugger(), 4519 IOHandler::Type::ProcessIO), 4520 m_process(process), m_write_file(write_fd, false) { 4521 m_pipe.CreateNew(false); 4522 m_read_file.SetDescriptor(GetInputFD(), false); 4523 } 4524 4525 ~IOHandlerProcessSTDIO() override = default; 4526 4527 // Each IOHandler gets to run until it is done. It should read data from the 4528 // "in" and place output into "out" and "err and return when done. 4529 void Run() override { 4530 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4531 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4532 SetIsDone(true); 4533 return; 4534 } 4535 4536 SetIsDone(false); 4537 const int read_fd = m_read_file.GetDescriptor(); 4538 TerminalState terminal_state; 4539 terminal_state.Save(read_fd, false); 4540 Terminal terminal(read_fd); 4541 terminal.SetCanonical(false); 4542 terminal.SetEcho(false); 4543 // FD_ZERO, FD_SET are not supported on windows 4544 #ifndef _WIN32 4545 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4546 m_is_running = true; 4547 while (!GetIsDone()) { 4548 SelectHelper select_helper; 4549 select_helper.FDSetRead(read_fd); 4550 select_helper.FDSetRead(pipe_read_fd); 4551 Status error = select_helper.Select(); 4552 4553 if (error.Fail()) { 4554 SetIsDone(true); 4555 } else { 4556 char ch = 0; 4557 size_t n; 4558 if (select_helper.FDIsSetRead(read_fd)) { 4559 n = 1; 4560 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4561 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4562 SetIsDone(true); 4563 } else 4564 SetIsDone(true); 4565 } 4566 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4567 size_t bytes_read; 4568 // Consume the interrupt byte 4569 Status error = m_pipe.Read(&ch, 1, bytes_read); 4570 if (error.Success()) { 4571 switch (ch) { 4572 case 'q': 4573 SetIsDone(true); 4574 break; 4575 case 'i': 4576 if (StateIsRunningState(m_process->GetState())) 4577 m_process->SendAsyncInterrupt(); 4578 break; 4579 } 4580 } 4581 } 4582 } 4583 } 4584 m_is_running = false; 4585 #endif 4586 terminal_state.Restore(); 4587 } 4588 4589 void Cancel() override { 4590 SetIsDone(true); 4591 // Only write to our pipe to cancel if we are in 4592 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4593 // is being run from the command interpreter: 4594 // 4595 // (lldb) step_process_thousands_of_times 4596 // 4597 // In this case the command interpreter will be in the middle of handling 4598 // the command and if the process pushes and pops the IOHandler thousands 4599 // of times, we can end up writing to m_pipe without ever consuming the 4600 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4601 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4602 if (m_is_running) { 4603 char ch = 'q'; // Send 'q' for quit 4604 size_t bytes_written = 0; 4605 m_pipe.Write(&ch, 1, bytes_written); 4606 } 4607 } 4608 4609 bool Interrupt() override { 4610 // Do only things that are safe to do in an interrupt context (like in a 4611 // SIGINT handler), like write 1 byte to a file descriptor. This will 4612 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4613 // that was written to the pipe and then call 4614 // m_process->SendAsyncInterrupt() from a much safer location in code. 4615 if (m_active) { 4616 char ch = 'i'; // Send 'i' for interrupt 4617 size_t bytes_written = 0; 4618 Status result = m_pipe.Write(&ch, 1, bytes_written); 4619 return result.Success(); 4620 } else { 4621 // This IOHandler might be pushed on the stack, but not being run 4622 // currently so do the right thing if we aren't actively watching for 4623 // STDIN by sending the interrupt to the process. Otherwise the write to 4624 // the pipe above would do nothing. This can happen when the command 4625 // interpreter is running and gets a "expression ...". It will be on the 4626 // IOHandler thread and sending the input is complete to the delegate 4627 // which will cause the expression to run, which will push the process IO 4628 // handler, but not run it. 4629 4630 if (StateIsRunningState(m_process->GetState())) { 4631 m_process->SendAsyncInterrupt(); 4632 return true; 4633 } 4634 } 4635 return false; 4636 } 4637 4638 void GotEOF() override {} 4639 4640 protected: 4641 Process *m_process; 4642 File m_read_file; // Read from this file (usually actual STDIN for LLDB 4643 File m_write_file; // Write to this file (usually the master pty for getting 4644 // io to debuggee) 4645 Pipe m_pipe; 4646 std::atomic<bool> m_is_running{false}; 4647 }; 4648 4649 void Process::SetSTDIOFileDescriptor(int fd) { 4650 // First set up the Read Thread for reading/handling process I/O 4651 4652 std::unique_ptr<ConnectionFileDescriptor> conn_ap( 4653 new ConnectionFileDescriptor(fd, true)); 4654 4655 if (conn_ap) { 4656 m_stdio_communication.SetConnection(conn_ap.release()); 4657 if (m_stdio_communication.IsConnected()) { 4658 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4659 STDIOReadThreadBytesReceived, this); 4660 m_stdio_communication.StartReadThread(); 4661 4662 // Now read thread is set up, set up input reader. 4663 4664 if (!m_process_input_reader) 4665 m_process_input_reader.reset(new IOHandlerProcessSTDIO(this, fd)); 4666 } 4667 } 4668 } 4669 4670 bool Process::ProcessIOHandlerIsActive() { 4671 IOHandlerSP io_handler_sp(m_process_input_reader); 4672 if (io_handler_sp) 4673 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4674 return false; 4675 } 4676 bool Process::PushProcessIOHandler() { 4677 IOHandlerSP io_handler_sp(m_process_input_reader); 4678 if (io_handler_sp) { 4679 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4680 if (log) 4681 log->Printf("Process::%s pushing IO handler", __FUNCTION__); 4682 4683 io_handler_sp->SetIsDone(false); 4684 GetTarget().GetDebugger().PushIOHandler(io_handler_sp); 4685 return true; 4686 } 4687 return false; 4688 } 4689 4690 bool Process::PopProcessIOHandler() { 4691 IOHandlerSP io_handler_sp(m_process_input_reader); 4692 if (io_handler_sp) 4693 return GetTarget().GetDebugger().PopIOHandler(io_handler_sp); 4694 return false; 4695 } 4696 4697 // The process needs to know about installed plug-ins 4698 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4699 4700 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4701 4702 namespace { 4703 // RestorePlanState is used to record the "is private", "is master" and "okay 4704 // to discard" fields of the plan we are running, and reset it on Clean or on 4705 // destruction. It will only reset the state once, so you can call Clean and 4706 // then monkey with the state and it won't get reset on you again. 4707 4708 class RestorePlanState { 4709 public: 4710 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4711 : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) { 4712 if (m_thread_plan_sp) { 4713 m_private = m_thread_plan_sp->GetPrivate(); 4714 m_is_master = m_thread_plan_sp->IsMasterPlan(); 4715 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4716 } 4717 } 4718 4719 ~RestorePlanState() { Clean(); } 4720 4721 void Clean() { 4722 if (!m_already_reset && m_thread_plan_sp) { 4723 m_already_reset = true; 4724 m_thread_plan_sp->SetPrivate(m_private); 4725 m_thread_plan_sp->SetIsMasterPlan(m_is_master); 4726 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4727 } 4728 } 4729 4730 private: 4731 lldb::ThreadPlanSP m_thread_plan_sp; 4732 bool m_already_reset; 4733 bool m_private; 4734 bool m_is_master; 4735 bool m_okay_to_discard; 4736 }; 4737 } // anonymous namespace 4738 4739 static microseconds 4740 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4741 const milliseconds default_one_thread_timeout(250); 4742 4743 // If the overall wait is forever, then we don't need to worry about it. 4744 if (!options.GetTimeout()) { 4745 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4746 : default_one_thread_timeout; 4747 } 4748 4749 // If the one thread timeout is set, use it. 4750 if (options.GetOneThreadTimeout()) 4751 return *options.GetOneThreadTimeout(); 4752 4753 // Otherwise use half the total timeout, bounded by the 4754 // default_one_thread_timeout. 4755 return std::min<microseconds>(default_one_thread_timeout, 4756 *options.GetTimeout() / 2); 4757 } 4758 4759 static Timeout<std::micro> 4760 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4761 bool before_first_timeout) { 4762 // If we are going to run all threads the whole time, or if we are only going 4763 // to run one thread, we can just return the overall timeout. 4764 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4765 return options.GetTimeout(); 4766 4767 if (before_first_timeout) 4768 return GetOneThreadExpressionTimeout(options); 4769 4770 if (!options.GetTimeout()) 4771 return llvm::None; 4772 else 4773 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4774 } 4775 4776 static llvm::Optional<ExpressionResults> 4777 HandleStoppedEvent(Thread &thread, const ThreadPlanSP &thread_plan_sp, 4778 RestorePlanState &restorer, const EventSP &event_sp, 4779 EventSP &event_to_broadcast_sp, 4780 const EvaluateExpressionOptions &options, bool handle_interrupts) { 4781 Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS); 4782 4783 ThreadPlanSP plan = thread.GetCompletedPlan(); 4784 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4785 LLDB_LOG(log, "execution completed successfully"); 4786 4787 // Restore the plan state so it will get reported as intended when we are 4788 // done. 4789 restorer.Clean(); 4790 return eExpressionCompleted; 4791 } 4792 4793 StopInfoSP stop_info_sp = thread.GetStopInfo(); 4794 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4795 stop_info_sp->ShouldNotify(event_sp.get())) { 4796 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4797 if (!options.DoesIgnoreBreakpoints()) { 4798 // Restore the plan state and then force Private to false. We are going 4799 // to stop because of this plan so we need it to become a public plan or 4800 // it won't report correctly when we continue to its termination later 4801 // on. 4802 restorer.Clean(); 4803 thread_plan_sp->SetPrivate(false); 4804 event_to_broadcast_sp = event_sp; 4805 } 4806 return eExpressionHitBreakpoint; 4807 } 4808 4809 if (!handle_interrupts && 4810 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4811 return llvm::None; 4812 4813 LLDB_LOG(log, "thread plan did not successfully complete"); 4814 if (!options.DoesUnwindOnError()) 4815 event_to_broadcast_sp = event_sp; 4816 return eExpressionInterrupted; 4817 } 4818 4819 ExpressionResults 4820 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4821 lldb::ThreadPlanSP &thread_plan_sp, 4822 const EvaluateExpressionOptions &options, 4823 DiagnosticManager &diagnostic_manager) { 4824 ExpressionResults return_value = eExpressionSetupError; 4825 4826 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4827 4828 if (!thread_plan_sp) { 4829 diagnostic_manager.PutString( 4830 eDiagnosticSeverityError, 4831 "RunThreadPlan called with empty thread plan."); 4832 return eExpressionSetupError; 4833 } 4834 4835 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4836 diagnostic_manager.PutString( 4837 eDiagnosticSeverityError, 4838 "RunThreadPlan called with an invalid thread plan."); 4839 return eExpressionSetupError; 4840 } 4841 4842 if (exe_ctx.GetProcessPtr() != this) { 4843 diagnostic_manager.PutString(eDiagnosticSeverityError, 4844 "RunThreadPlan called on wrong process."); 4845 return eExpressionSetupError; 4846 } 4847 4848 Thread *thread = exe_ctx.GetThreadPtr(); 4849 if (thread == nullptr) { 4850 diagnostic_manager.PutString(eDiagnosticSeverityError, 4851 "RunThreadPlan called with invalid thread."); 4852 return eExpressionSetupError; 4853 } 4854 4855 // We need to change some of the thread plan attributes for the thread plan 4856 // runner. This will restore them when we are done: 4857 4858 RestorePlanState thread_plan_restorer(thread_plan_sp); 4859 4860 // We rely on the thread plan we are running returning "PlanCompleted" if 4861 // when it successfully completes. For that to be true the plan can't be 4862 // private - since private plans suppress themselves in the GetCompletedPlan 4863 // call. 4864 4865 thread_plan_sp->SetPrivate(false); 4866 4867 // The plans run with RunThreadPlan also need to be terminal master plans or 4868 // when they are done we will end up asking the plan above us whether we 4869 // should stop, which may give the wrong answer. 4870 4871 thread_plan_sp->SetIsMasterPlan(true); 4872 thread_plan_sp->SetOkayToDiscard(false); 4873 4874 if (m_private_state.GetValue() != eStateStopped) { 4875 diagnostic_manager.PutString( 4876 eDiagnosticSeverityError, 4877 "RunThreadPlan called while the private state was not stopped."); 4878 return eExpressionSetupError; 4879 } 4880 4881 // Save the thread & frame from the exe_ctx for restoration after we run 4882 const uint32_t thread_idx_id = thread->GetIndexID(); 4883 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4884 if (!selected_frame_sp) { 4885 thread->SetSelectedFrame(nullptr); 4886 selected_frame_sp = thread->GetSelectedFrame(); 4887 if (!selected_frame_sp) { 4888 diagnostic_manager.Printf( 4889 eDiagnosticSeverityError, 4890 "RunThreadPlan called without a selected frame on thread %d", 4891 thread_idx_id); 4892 return eExpressionSetupError; 4893 } 4894 } 4895 4896 // Make sure the timeout values make sense. The one thread timeout needs to 4897 // be smaller than the overall timeout. 4898 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4899 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4900 diagnostic_manager.PutString(eDiagnosticSeverityError, 4901 "RunThreadPlan called with one thread " 4902 "timeout greater than total timeout"); 4903 return eExpressionSetupError; 4904 } 4905 4906 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4907 4908 // N.B. Running the target may unset the currently selected thread and frame. 4909 // We don't want to do that either, so we should arrange to reset them as 4910 // well. 4911 4912 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4913 4914 uint32_t selected_tid; 4915 StackID selected_stack_id; 4916 if (selected_thread_sp) { 4917 selected_tid = selected_thread_sp->GetIndexID(); 4918 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4919 } else { 4920 selected_tid = LLDB_INVALID_THREAD_ID; 4921 } 4922 4923 HostThread backup_private_state_thread; 4924 lldb::StateType old_state = eStateInvalid; 4925 lldb::ThreadPlanSP stopper_base_plan_sp; 4926 4927 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4928 LIBLLDB_LOG_PROCESS)); 4929 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4930 // Yikes, we are running on the private state thread! So we can't wait for 4931 // public events on this thread, since we are the thread that is generating 4932 // public events. The simplest thing to do is to spin up a temporary thread 4933 // to handle private state thread events while we are fielding public 4934 // events here. 4935 if (log) 4936 log->Printf("Running thread plan on private state thread, spinning up " 4937 "another state thread to handle the events."); 4938 4939 backup_private_state_thread = m_private_state_thread; 4940 4941 // One other bit of business: we want to run just this thread plan and 4942 // anything it pushes, and then stop, returning control here. But in the 4943 // normal course of things, the plan above us on the stack would be given a 4944 // shot at the stop event before deciding to stop, and we don't want that. 4945 // So we insert a "stopper" base plan on the stack before the plan we want 4946 // to run. Since base plans always stop and return control to the user, 4947 // that will do just what we want. 4948 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4949 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4950 // Have to make sure our public state is stopped, since otherwise the 4951 // reporting logic below doesn't work correctly. 4952 old_state = m_public_state.GetValue(); 4953 m_public_state.SetValueNoLock(eStateStopped); 4954 4955 // Now spin up the private state thread: 4956 StartPrivateStateThread(true); 4957 } 4958 4959 thread->QueueThreadPlan( 4960 thread_plan_sp, false); // This used to pass "true" does that make sense? 4961 4962 if (options.GetDebug()) { 4963 // In this case, we aren't actually going to run, we just want to stop 4964 // right away. Flush this thread so we will refetch the stacks and show the 4965 // correct backtrace. 4966 // FIXME: To make this prettier we should invent some stop reason for this, 4967 // but that 4968 // is only cosmetic, and this functionality is only of use to lldb 4969 // developers who can live with not pretty... 4970 thread->Flush(); 4971 return eExpressionStoppedForDebug; 4972 } 4973 4974 ListenerSP listener_sp( 4975 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4976 4977 lldb::EventSP event_to_broadcast_sp; 4978 4979 { 4980 // This process event hijacker Hijacks the Public events and its destructor 4981 // makes sure that the process events get restored on exit to the function. 4982 // 4983 // If the event needs to propagate beyond the hijacker (e.g., the process 4984 // exits during execution), then the event is put into 4985 // event_to_broadcast_sp for rebroadcasting. 4986 4987 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 4988 4989 if (log) { 4990 StreamString s; 4991 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 4992 log->Printf("Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 4993 " to run thread plan \"%s\".", 4994 thread->GetIndexID(), thread->GetID(), s.GetData()); 4995 } 4996 4997 bool got_event; 4998 lldb::EventSP event_sp; 4999 lldb::StateType stop_state = lldb::eStateInvalid; 5000 5001 bool before_first_timeout = true; // This is set to false the first time 5002 // that we have to halt the target. 5003 bool do_resume = true; 5004 bool handle_running_event = true; 5005 5006 // This is just for accounting: 5007 uint32_t num_resumes = 0; 5008 5009 // If we are going to run all threads the whole time, or if we are only 5010 // going to run one thread, then we don't need the first timeout. So we 5011 // pretend we are after the first timeout already. 5012 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 5013 before_first_timeout = false; 5014 5015 if (log) 5016 log->Printf("Stop others: %u, try all: %u, before_first: %u.\n", 5017 options.GetStopOthers(), options.GetTryAllThreads(), 5018 before_first_timeout); 5019 5020 // This isn't going to work if there are unfetched events on the queue. Are 5021 // there cases where we might want to run the remaining events here, and 5022 // then try to call the function? That's probably being too tricky for our 5023 // own good. 5024 5025 Event *other_events = listener_sp->PeekAtNextEvent(); 5026 if (other_events != nullptr) { 5027 diagnostic_manager.PutString( 5028 eDiagnosticSeverityError, 5029 "RunThreadPlan called with pending events on the queue."); 5030 return eExpressionSetupError; 5031 } 5032 5033 // We also need to make sure that the next event is delivered. We might be 5034 // calling a function as part of a thread plan, in which case the last 5035 // delivered event could be the running event, and we don't want event 5036 // coalescing to cause us to lose OUR running event... 5037 ForceNextEventDelivery(); 5038 5039 // This while loop must exit out the bottom, there's cleanup that we need to do 5040 // when we are done. So don't call return anywhere within it. 5041 5042 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5043 // It's pretty much impossible to write test cases for things like: One 5044 // thread timeout expires, I go to halt, but the process already stopped on 5045 // the function call stop breakpoint. Turning on this define will make us 5046 // not fetch the first event till after the halt. So if you run a quick 5047 // function, it will have completed, and the completion event will be 5048 // waiting, when you interrupt for halt. The expression evaluation should 5049 // still succeed. 5050 bool miss_first_event = true; 5051 #endif 5052 while (true) { 5053 // We usually want to resume the process if we get to the top of the 5054 // loop. The only exception is if we get two running events with no 5055 // intervening stop, which can happen, we will just wait for then next 5056 // stop event. 5057 if (log) 5058 log->Printf("Top of while loop: do_resume: %i handle_running_event: %i " 5059 "before_first_timeout: %i.", 5060 do_resume, handle_running_event, before_first_timeout); 5061 5062 if (do_resume || handle_running_event) { 5063 // Do the initial resume and wait for the running event before going 5064 // further. 5065 5066 if (do_resume) { 5067 num_resumes++; 5068 Status resume_error = PrivateResume(); 5069 if (!resume_error.Success()) { 5070 diagnostic_manager.Printf( 5071 eDiagnosticSeverityError, 5072 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 5073 resume_error.AsCString()); 5074 return_value = eExpressionSetupError; 5075 break; 5076 } 5077 } 5078 5079 got_event = 5080 listener_sp->GetEvent(event_sp, std::chrono::milliseconds(500)); 5081 if (!got_event) { 5082 if (log) 5083 log->Printf("Process::RunThreadPlan(): didn't get any event after " 5084 "resume %" PRIu32 ", exiting.", 5085 num_resumes); 5086 5087 diagnostic_manager.Printf(eDiagnosticSeverityError, 5088 "didn't get any event after resume %" PRIu32 5089 ", exiting.", 5090 num_resumes); 5091 return_value = eExpressionSetupError; 5092 break; 5093 } 5094 5095 stop_state = 5096 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5097 5098 if (stop_state != eStateRunning) { 5099 bool restarted = false; 5100 5101 if (stop_state == eStateStopped) { 5102 restarted = Process::ProcessEventData::GetRestartedFromEvent( 5103 event_sp.get()); 5104 if (log) 5105 log->Printf( 5106 "Process::RunThreadPlan(): didn't get running event after " 5107 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 5108 "handle_running_event: %i).", 5109 num_resumes, StateAsCString(stop_state), restarted, do_resume, 5110 handle_running_event); 5111 } 5112 5113 if (restarted) { 5114 // This is probably an overabundance of caution, I don't think I 5115 // should ever get a stopped & restarted event here. But if I do, 5116 // the best thing is to Halt and then get out of here. 5117 const bool clear_thread_plans = false; 5118 const bool use_run_lock = false; 5119 Halt(clear_thread_plans, use_run_lock); 5120 } 5121 5122 diagnostic_manager.Printf( 5123 eDiagnosticSeverityError, 5124 "didn't get running event after initial resume, got %s instead.", 5125 StateAsCString(stop_state)); 5126 return_value = eExpressionSetupError; 5127 break; 5128 } 5129 5130 if (log) 5131 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 5132 // We need to call the function synchronously, so spin waiting for it 5133 // to return. If we get interrupted while executing, we're going to 5134 // lose our context, and won't be able to gather the result at this 5135 // point. We set the timeout AFTER the resume, since the resume takes 5136 // some time and we don't want to charge that to the timeout. 5137 } else { 5138 if (log) 5139 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 5140 } 5141 5142 do_resume = true; 5143 handle_running_event = true; 5144 5145 // Now wait for the process to stop again: 5146 event_sp.reset(); 5147 5148 Timeout<std::micro> timeout = 5149 GetExpressionTimeout(options, before_first_timeout); 5150 if (log) { 5151 if (timeout) { 5152 auto now = system_clock::now(); 5153 log->Printf("Process::RunThreadPlan(): about to wait - now is %s - " 5154 "endpoint is %s", 5155 llvm::to_string(now).c_str(), 5156 llvm::to_string(now + *timeout).c_str()); 5157 } else { 5158 log->Printf("Process::RunThreadPlan(): about to wait forever."); 5159 } 5160 } 5161 5162 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5163 // See comment above... 5164 if (miss_first_event) { 5165 usleep(1000); 5166 miss_first_event = false; 5167 got_event = false; 5168 } else 5169 #endif 5170 got_event = listener_sp->GetEvent(event_sp, timeout); 5171 5172 if (got_event) { 5173 if (event_sp) { 5174 bool keep_going = false; 5175 if (event_sp->GetType() == eBroadcastBitInterrupt) { 5176 const bool clear_thread_plans = false; 5177 const bool use_run_lock = false; 5178 Halt(clear_thread_plans, use_run_lock); 5179 return_value = eExpressionInterrupted; 5180 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 5181 "execution halted by user interrupt."); 5182 if (log) 5183 log->Printf("Process::RunThreadPlan(): Got interrupted by " 5184 "eBroadcastBitInterrupted, exiting."); 5185 break; 5186 } else { 5187 stop_state = 5188 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5189 if (log) 5190 log->Printf( 5191 "Process::RunThreadPlan(): in while loop, got event: %s.", 5192 StateAsCString(stop_state)); 5193 5194 switch (stop_state) { 5195 case lldb::eStateStopped: { 5196 // We stopped, figure out what we are going to do now. 5197 ThreadSP thread_sp = 5198 GetThreadList().FindThreadByIndexID(thread_idx_id); 5199 if (!thread_sp) { 5200 // Ooh, our thread has vanished. Unlikely that this was 5201 // successful execution... 5202 if (log) 5203 log->Printf("Process::RunThreadPlan(): execution completed " 5204 "but our thread (index-id=%u) has vanished.", 5205 thread_idx_id); 5206 return_value = eExpressionInterrupted; 5207 } else if (Process::ProcessEventData::GetRestartedFromEvent( 5208 event_sp.get())) { 5209 // If we were restarted, we just need to go back up to fetch 5210 // another event. 5211 if (log) { 5212 log->Printf("Process::RunThreadPlan(): Got a stop and " 5213 "restart, so we'll continue waiting."); 5214 } 5215 keep_going = true; 5216 do_resume = false; 5217 handle_running_event = true; 5218 } else { 5219 const bool handle_interrupts = true; 5220 return_value = *HandleStoppedEvent( 5221 *thread, thread_plan_sp, thread_plan_restorer, event_sp, 5222 event_to_broadcast_sp, options, handle_interrupts); 5223 } 5224 } break; 5225 5226 case lldb::eStateRunning: 5227 // This shouldn't really happen, but sometimes we do get two 5228 // running events without an intervening stop, and in that case 5229 // we should just go back to waiting for the stop. 5230 do_resume = false; 5231 keep_going = true; 5232 handle_running_event = false; 5233 break; 5234 5235 default: 5236 if (log) 5237 log->Printf("Process::RunThreadPlan(): execution stopped with " 5238 "unexpected state: %s.", 5239 StateAsCString(stop_state)); 5240 5241 if (stop_state == eStateExited) 5242 event_to_broadcast_sp = event_sp; 5243 5244 diagnostic_manager.PutString( 5245 eDiagnosticSeverityError, 5246 "execution stopped with unexpected state."); 5247 return_value = eExpressionInterrupted; 5248 break; 5249 } 5250 } 5251 5252 if (keep_going) 5253 continue; 5254 else 5255 break; 5256 } else { 5257 if (log) 5258 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5259 "the event pointer was null. How odd..."); 5260 return_value = eExpressionInterrupted; 5261 break; 5262 } 5263 } else { 5264 // If we didn't get an event that means we've timed out... We will 5265 // interrupt the process here. Depending on what we were asked to do 5266 // we will either exit, or try with all threads running for the same 5267 // timeout. 5268 5269 if (log) { 5270 if (options.GetTryAllThreads()) { 5271 if (before_first_timeout) { 5272 LLDB_LOG(log, 5273 "Running function with one thread timeout timed out."); 5274 } else 5275 LLDB_LOG(log, "Restarting function with all threads enabled and " 5276 "timeout: {0} timed out, abandoning execution.", 5277 timeout); 5278 } else 5279 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5280 "abandoning execution.", 5281 timeout); 5282 } 5283 5284 // It is possible that between the time we issued the Halt, and we get 5285 // around to calling Halt the target could have stopped. That's fine, 5286 // Halt will figure that out and send the appropriate Stopped event. 5287 // BUT it is also possible that we stopped & restarted (e.g. hit a 5288 // signal with "stop" set to false.) In 5289 // that case, we'll get the stopped & restarted event, and we should go 5290 // back to waiting for the Halt's stopped event. That's what this 5291 // while loop does. 5292 5293 bool back_to_top = true; 5294 uint32_t try_halt_again = 0; 5295 bool do_halt = true; 5296 const uint32_t num_retries = 5; 5297 while (try_halt_again < num_retries) { 5298 Status halt_error; 5299 if (do_halt) { 5300 if (log) 5301 log->Printf("Process::RunThreadPlan(): Running Halt."); 5302 const bool clear_thread_plans = false; 5303 const bool use_run_lock = false; 5304 Halt(clear_thread_plans, use_run_lock); 5305 } 5306 if (halt_error.Success()) { 5307 if (log) 5308 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5309 5310 got_event = 5311 listener_sp->GetEvent(event_sp, std::chrono::milliseconds(500)); 5312 5313 if (got_event) { 5314 stop_state = 5315 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5316 if (log) { 5317 log->Printf("Process::RunThreadPlan(): Stopped with event: %s", 5318 StateAsCString(stop_state)); 5319 if (stop_state == lldb::eStateStopped && 5320 Process::ProcessEventData::GetInterruptedFromEvent( 5321 event_sp.get())) 5322 log->PutCString(" Event was the Halt interruption event."); 5323 } 5324 5325 if (stop_state == lldb::eStateStopped) { 5326 if (Process::ProcessEventData::GetRestartedFromEvent( 5327 event_sp.get())) { 5328 if (log) 5329 log->PutCString("Process::RunThreadPlan(): Went to halt " 5330 "but got a restarted event, there must be " 5331 "an un-restarted stopped event so try " 5332 "again... " 5333 "Exiting wait loop."); 5334 try_halt_again++; 5335 do_halt = false; 5336 continue; 5337 } 5338 5339 // Between the time we initiated the Halt and the time we 5340 // delivered it, the process could have already finished its 5341 // job. Check that here: 5342 const bool handle_interrupts = false; 5343 if (auto result = HandleStoppedEvent( 5344 *thread, thread_plan_sp, thread_plan_restorer, event_sp, 5345 event_to_broadcast_sp, options, handle_interrupts)) { 5346 return_value = *result; 5347 back_to_top = false; 5348 break; 5349 } 5350 5351 if (!options.GetTryAllThreads()) { 5352 if (log) 5353 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5354 "was false, we stopped so now we're " 5355 "quitting."); 5356 return_value = eExpressionInterrupted; 5357 back_to_top = false; 5358 break; 5359 } 5360 5361 if (before_first_timeout) { 5362 // Set all the other threads to run, and return to the top of 5363 // the loop, which will continue; 5364 before_first_timeout = false; 5365 thread_plan_sp->SetStopOthers(false); 5366 if (log) 5367 log->PutCString( 5368 "Process::RunThreadPlan(): about to resume."); 5369 5370 back_to_top = true; 5371 break; 5372 } else { 5373 // Running all threads failed, so return Interrupted. 5374 if (log) 5375 log->PutCString("Process::RunThreadPlan(): running all " 5376 "threads timed out."); 5377 return_value = eExpressionInterrupted; 5378 back_to_top = false; 5379 break; 5380 } 5381 } 5382 } else { 5383 if (log) 5384 log->PutCString("Process::RunThreadPlan(): halt said it " 5385 "succeeded, but I got no event. " 5386 "I'm getting out of here passing Interrupted."); 5387 return_value = eExpressionInterrupted; 5388 back_to_top = false; 5389 break; 5390 } 5391 } else { 5392 try_halt_again++; 5393 continue; 5394 } 5395 } 5396 5397 if (!back_to_top || try_halt_again > num_retries) 5398 break; 5399 else 5400 continue; 5401 } 5402 } // END WAIT LOOP 5403 5404 // If we had to start up a temporary private state thread to run this 5405 // thread plan, shut it down now. 5406 if (backup_private_state_thread.IsJoinable()) { 5407 StopPrivateStateThread(); 5408 Status error; 5409 m_private_state_thread = backup_private_state_thread; 5410 if (stopper_base_plan_sp) { 5411 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5412 } 5413 if (old_state != eStateInvalid) 5414 m_public_state.SetValueNoLock(old_state); 5415 } 5416 5417 if (return_value != eExpressionCompleted && log) { 5418 // Print a backtrace into the log so we can figure out where we are: 5419 StreamString s; 5420 s.PutCString("Thread state after unsuccessful completion: \n"); 5421 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5422 log->PutString(s.GetString()); 5423 } 5424 // Restore the thread state if we are going to discard the plan execution. 5425 // There are three cases where this could happen: 1) The execution 5426 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5427 // was true 3) We got some other error, and discard_on_error was true 5428 bool should_unwind = (return_value == eExpressionInterrupted && 5429 options.DoesUnwindOnError()) || 5430 (return_value == eExpressionHitBreakpoint && 5431 options.DoesIgnoreBreakpoints()); 5432 5433 if (return_value == eExpressionCompleted || should_unwind) { 5434 thread_plan_sp->RestoreThreadState(); 5435 } 5436 5437 // Now do some processing on the results of the run: 5438 if (return_value == eExpressionInterrupted || 5439 return_value == eExpressionHitBreakpoint) { 5440 if (log) { 5441 StreamString s; 5442 if (event_sp) 5443 event_sp->Dump(&s); 5444 else { 5445 log->PutCString("Process::RunThreadPlan(): Stop event that " 5446 "interrupted us is NULL."); 5447 } 5448 5449 StreamString ts; 5450 5451 const char *event_explanation = nullptr; 5452 5453 do { 5454 if (!event_sp) { 5455 event_explanation = "<no event>"; 5456 break; 5457 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5458 event_explanation = "<user interrupt>"; 5459 break; 5460 } else { 5461 const Process::ProcessEventData *event_data = 5462 Process::ProcessEventData::GetEventDataFromEvent( 5463 event_sp.get()); 5464 5465 if (!event_data) { 5466 event_explanation = "<no event data>"; 5467 break; 5468 } 5469 5470 Process *process = event_data->GetProcessSP().get(); 5471 5472 if (!process) { 5473 event_explanation = "<no process>"; 5474 break; 5475 } 5476 5477 ThreadList &thread_list = process->GetThreadList(); 5478 5479 uint32_t num_threads = thread_list.GetSize(); 5480 uint32_t thread_index; 5481 5482 ts.Printf("<%u threads> ", num_threads); 5483 5484 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5485 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5486 5487 if (!thread) { 5488 ts.Printf("<?> "); 5489 continue; 5490 } 5491 5492 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5493 RegisterContext *register_context = 5494 thread->GetRegisterContext().get(); 5495 5496 if (register_context) 5497 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5498 else 5499 ts.Printf("[ip unknown] "); 5500 5501 // Show the private stop info here, the public stop info will be 5502 // from the last natural stop. 5503 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5504 if (stop_info_sp) { 5505 const char *stop_desc = stop_info_sp->GetDescription(); 5506 if (stop_desc) 5507 ts.PutCString(stop_desc); 5508 } 5509 ts.Printf(">"); 5510 } 5511 5512 event_explanation = ts.GetData(); 5513 } 5514 } while (0); 5515 5516 if (event_explanation) 5517 log->Printf("Process::RunThreadPlan(): execution interrupted: %s %s", 5518 s.GetData(), event_explanation); 5519 else 5520 log->Printf("Process::RunThreadPlan(): execution interrupted: %s", 5521 s.GetData()); 5522 } 5523 5524 if (should_unwind) { 5525 if (log) 5526 log->Printf("Process::RunThreadPlan: ExecutionInterrupted - " 5527 "discarding thread plans up to %p.", 5528 static_cast<void *>(thread_plan_sp.get())); 5529 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5530 } else { 5531 if (log) 5532 log->Printf("Process::RunThreadPlan: ExecutionInterrupted - for " 5533 "plan: %p not discarding.", 5534 static_cast<void *>(thread_plan_sp.get())); 5535 } 5536 } else if (return_value == eExpressionSetupError) { 5537 if (log) 5538 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5539 5540 if (options.DoesUnwindOnError()) { 5541 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5542 } 5543 } else { 5544 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5545 if (log) 5546 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5547 return_value = eExpressionCompleted; 5548 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5549 if (log) 5550 log->PutCString( 5551 "Process::RunThreadPlan(): thread plan was discarded"); 5552 return_value = eExpressionDiscarded; 5553 } else { 5554 if (log) 5555 log->PutCString( 5556 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5557 if (options.DoesUnwindOnError() && thread_plan_sp) { 5558 if (log) 5559 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5560 "'cause unwind_on_error is set."); 5561 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5562 } 5563 } 5564 } 5565 5566 // Thread we ran the function in may have gone away because we ran the 5567 // target Check that it's still there, and if it is put it back in the 5568 // context. Also restore the frame in the context if it is still present. 5569 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5570 if (thread) { 5571 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5572 } 5573 5574 // Also restore the current process'es selected frame & thread, since this 5575 // function calling may be done behind the user's back. 5576 5577 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5578 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5579 selected_stack_id.IsValid()) { 5580 // We were able to restore the selected thread, now restore the frame: 5581 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5582 StackFrameSP old_frame_sp = 5583 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5584 selected_stack_id); 5585 if (old_frame_sp) 5586 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5587 old_frame_sp.get()); 5588 } 5589 } 5590 } 5591 5592 // If the process exited during the run of the thread plan, notify everyone. 5593 5594 if (event_to_broadcast_sp) { 5595 if (log) 5596 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5597 BroadcastEvent(event_to_broadcast_sp); 5598 } 5599 5600 return return_value; 5601 } 5602 5603 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5604 const char *result_name; 5605 5606 switch (result) { 5607 case eExpressionCompleted: 5608 result_name = "eExpressionCompleted"; 5609 break; 5610 case eExpressionDiscarded: 5611 result_name = "eExpressionDiscarded"; 5612 break; 5613 case eExpressionInterrupted: 5614 result_name = "eExpressionInterrupted"; 5615 break; 5616 case eExpressionHitBreakpoint: 5617 result_name = "eExpressionHitBreakpoint"; 5618 break; 5619 case eExpressionSetupError: 5620 result_name = "eExpressionSetupError"; 5621 break; 5622 case eExpressionParseError: 5623 result_name = "eExpressionParseError"; 5624 break; 5625 case eExpressionResultUnavailable: 5626 result_name = "eExpressionResultUnavailable"; 5627 break; 5628 case eExpressionTimedOut: 5629 result_name = "eExpressionTimedOut"; 5630 break; 5631 case eExpressionStoppedForDebug: 5632 result_name = "eExpressionStoppedForDebug"; 5633 break; 5634 } 5635 return result_name; 5636 } 5637 5638 void Process::GetStatus(Stream &strm) { 5639 const StateType state = GetState(); 5640 if (StateIsStoppedState(state, false)) { 5641 if (state == eStateExited) { 5642 int exit_status = GetExitStatus(); 5643 const char *exit_description = GetExitDescription(); 5644 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5645 GetID(), exit_status, exit_status, 5646 exit_description ? exit_description : ""); 5647 } else { 5648 if (state == eStateConnected) 5649 strm.Printf("Connected to remote target.\n"); 5650 else 5651 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5652 } 5653 } else { 5654 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5655 } 5656 } 5657 5658 size_t Process::GetThreadStatus(Stream &strm, 5659 bool only_threads_with_stop_reason, 5660 uint32_t start_frame, uint32_t num_frames, 5661 uint32_t num_frames_with_source, 5662 bool stop_format) { 5663 size_t num_thread_infos_dumped = 0; 5664 5665 // You can't hold the thread list lock while calling Thread::GetStatus. That 5666 // very well might run code (e.g. if we need it to get return values or 5667 // arguments.) For that to work the process has to be able to acquire it. 5668 // So instead copy the thread ID's, and look them up one by one: 5669 5670 uint32_t num_threads; 5671 std::vector<lldb::tid_t> thread_id_array; 5672 // Scope for thread list locker; 5673 { 5674 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5675 ThreadList &curr_thread_list = GetThreadList(); 5676 num_threads = curr_thread_list.GetSize(); 5677 uint32_t idx; 5678 thread_id_array.resize(num_threads); 5679 for (idx = 0; idx < num_threads; ++idx) 5680 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5681 } 5682 5683 for (uint32_t i = 0; i < num_threads; i++) { 5684 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5685 if (thread_sp) { 5686 if (only_threads_with_stop_reason) { 5687 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5688 if (!stop_info_sp || !stop_info_sp->IsValid()) 5689 continue; 5690 } 5691 thread_sp->GetStatus(strm, start_frame, num_frames, 5692 num_frames_with_source, 5693 stop_format); 5694 ++num_thread_infos_dumped; 5695 } else { 5696 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5697 if (log) 5698 log->Printf("Process::GetThreadStatus - thread 0x" PRIu64 5699 " vanished while running Thread::GetStatus."); 5700 } 5701 } 5702 return num_thread_infos_dumped; 5703 } 5704 5705 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5706 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5707 } 5708 5709 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5710 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5711 region.GetByteSize()); 5712 } 5713 5714 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5715 void *baton) { 5716 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5717 } 5718 5719 bool Process::RunPreResumeActions() { 5720 bool result = true; 5721 while (!m_pre_resume_actions.empty()) { 5722 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5723 m_pre_resume_actions.pop_back(); 5724 bool this_result = action.callback(action.baton); 5725 if (result) 5726 result = this_result; 5727 } 5728 return result; 5729 } 5730 5731 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5732 5733 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5734 { 5735 PreResumeCallbackAndBaton element(callback, baton); 5736 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5737 if (found_iter != m_pre_resume_actions.end()) 5738 { 5739 m_pre_resume_actions.erase(found_iter); 5740 } 5741 } 5742 5743 ProcessRunLock &Process::GetRunLock() { 5744 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5745 return m_private_run_lock; 5746 else 5747 return m_public_run_lock; 5748 } 5749 5750 void Process::Flush() { 5751 m_thread_list.Flush(); 5752 m_extended_thread_list.Flush(); 5753 m_extended_thread_stop_id = 0; 5754 m_queue_list.Clear(); 5755 m_queue_list_stop_id = 0; 5756 } 5757 5758 void Process::DidExec() { 5759 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 5760 if (log) 5761 log->Printf("Process::%s()", __FUNCTION__); 5762 5763 Target &target = GetTarget(); 5764 target.CleanupProcess(); 5765 target.ClearModules(false); 5766 m_dynamic_checkers_ap.reset(); 5767 m_abi_sp.reset(); 5768 m_system_runtime_ap.reset(); 5769 m_os_ap.reset(); 5770 m_dyld_ap.reset(); 5771 m_jit_loaders_ap.reset(); 5772 m_image_tokens.clear(); 5773 m_allocated_memory_cache.Clear(); 5774 m_language_runtimes.clear(); 5775 m_instrumentation_runtimes.clear(); 5776 m_thread_list.DiscardThreadPlans(); 5777 m_memory_cache.Clear(true); 5778 DoDidExec(); 5779 CompleteAttach(); 5780 // Flush the process (threads and all stack frames) after running 5781 // CompleteAttach() in case the dynamic loader loaded things in new 5782 // locations. 5783 Flush(); 5784 5785 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5786 // let the target know so it can do any cleanup it needs to. 5787 target.DidExec(); 5788 } 5789 5790 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5791 if (address == nullptr) { 5792 error.SetErrorString("Invalid address argument"); 5793 return LLDB_INVALID_ADDRESS; 5794 } 5795 5796 addr_t function_addr = LLDB_INVALID_ADDRESS; 5797 5798 addr_t addr = address->GetLoadAddress(&GetTarget()); 5799 std::map<addr_t, addr_t>::const_iterator iter = 5800 m_resolved_indirect_addresses.find(addr); 5801 if (iter != m_resolved_indirect_addresses.end()) { 5802 function_addr = (*iter).second; 5803 } else { 5804 if (!InferiorCall(this, address, function_addr)) { 5805 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5806 error.SetErrorStringWithFormat( 5807 "Unable to call resolver for indirect function %s", 5808 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5809 function_addr = LLDB_INVALID_ADDRESS; 5810 } else { 5811 m_resolved_indirect_addresses.insert( 5812 std::pair<addr_t, addr_t>(addr, function_addr)); 5813 } 5814 } 5815 return function_addr; 5816 } 5817 5818 void Process::ModulesDidLoad(ModuleList &module_list) { 5819 SystemRuntime *sys_runtime = GetSystemRuntime(); 5820 if (sys_runtime) { 5821 sys_runtime->ModulesDidLoad(module_list); 5822 } 5823 5824 GetJITLoaders().ModulesDidLoad(module_list); 5825 5826 // Give runtimes a chance to be created. 5827 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5828 m_instrumentation_runtimes); 5829 5830 // Tell runtimes about new modules. 5831 for (auto pos = m_instrumentation_runtimes.begin(); 5832 pos != m_instrumentation_runtimes.end(); ++pos) { 5833 InstrumentationRuntimeSP runtime = pos->second; 5834 runtime->ModulesDidLoad(module_list); 5835 } 5836 5837 // Let any language runtimes we have already created know about the modules 5838 // that loaded. 5839 5840 // Iterate over a copy of this language runtime list in case the language 5841 // runtime ModulesDidLoad somehow causes the language riuntime to be 5842 // unloaded. 5843 LanguageRuntimeCollection language_runtimes(m_language_runtimes); 5844 for (const auto &pair : language_runtimes) { 5845 // We must check language_runtime_sp to make sure it is not nullptr as we 5846 // might cache the fact that we didn't have a language runtime for a 5847 // language. 5848 LanguageRuntimeSP language_runtime_sp = pair.second; 5849 if (language_runtime_sp) 5850 language_runtime_sp->ModulesDidLoad(module_list); 5851 } 5852 5853 // If we don't have an operating system plug-in, try to load one since 5854 // loading shared libraries might cause a new one to try and load 5855 if (!m_os_ap) 5856 LoadOperatingSystemPlugin(false); 5857 5858 // Give structured-data plugins a chance to see the modified modules. 5859 for (auto pair : m_structured_data_plugin_map) { 5860 if (pair.second) 5861 pair.second->ModulesDidLoad(*this, module_list); 5862 } 5863 } 5864 5865 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5866 const char *fmt, ...) { 5867 bool print_warning = true; 5868 5869 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5870 if (!stream_sp) 5871 return; 5872 if (warning_type == eWarningsOptimization && !GetWarningsOptimization()) { 5873 return; 5874 } 5875 5876 if (repeat_key != nullptr) { 5877 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5878 if (it == m_warnings_issued.end()) { 5879 m_warnings_issued[warning_type] = WarningsPointerSet(); 5880 m_warnings_issued[warning_type].insert(repeat_key); 5881 } else { 5882 if (it->second.find(repeat_key) != it->second.end()) { 5883 print_warning = false; 5884 } else { 5885 it->second.insert(repeat_key); 5886 } 5887 } 5888 } 5889 5890 if (print_warning) { 5891 va_list args; 5892 va_start(args, fmt); 5893 stream_sp->PrintfVarArg(fmt, args); 5894 va_end(args); 5895 } 5896 } 5897 5898 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5899 if (GetWarningsOptimization() && sc.module_sp && 5900 !sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5901 sc.function->GetIsOptimized()) { 5902 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5903 "%s was compiled with optimization - stepping may behave " 5904 "oddly; variables may not be available.\n", 5905 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5906 } 5907 } 5908 5909 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5910 info.Clear(); 5911 5912 PlatformSP platform_sp = GetTarget().GetPlatform(); 5913 if (!platform_sp) 5914 return false; 5915 5916 return platform_sp->GetProcessInfo(GetID(), info); 5917 } 5918 5919 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5920 ThreadCollectionSP threads; 5921 5922 const MemoryHistorySP &memory_history = 5923 MemoryHistory::FindPlugin(shared_from_this()); 5924 5925 if (!memory_history) { 5926 return threads; 5927 } 5928 5929 threads.reset(new ThreadCollection(memory_history->GetHistoryThreads(addr))); 5930 5931 return threads; 5932 } 5933 5934 InstrumentationRuntimeSP 5935 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5936 InstrumentationRuntimeCollection::iterator pos; 5937 pos = m_instrumentation_runtimes.find(type); 5938 if (pos == m_instrumentation_runtimes.end()) { 5939 return InstrumentationRuntimeSP(); 5940 } else 5941 return (*pos).second; 5942 } 5943 5944 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5945 const ArchSpec &arch, ModuleSpec &module_spec) { 5946 module_spec.Clear(); 5947 return false; 5948 } 5949 5950 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5951 m_image_tokens.push_back(image_ptr); 5952 return m_image_tokens.size() - 1; 5953 } 5954 5955 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5956 if (token < m_image_tokens.size()) 5957 return m_image_tokens[token]; 5958 return LLDB_INVALID_IMAGE_TOKEN; 5959 } 5960 5961 void Process::ResetImageToken(size_t token) { 5962 if (token < m_image_tokens.size()) 5963 m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN; 5964 } 5965 5966 Address 5967 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5968 AddressRange range_bounds) { 5969 Target &target = GetTarget(); 5970 DisassemblerSP disassembler_sp; 5971 InstructionList *insn_list = nullptr; 5972 5973 Address retval = default_stop_addr; 5974 5975 if (!target.GetUseFastStepping()) 5976 return retval; 5977 if (!default_stop_addr.IsValid()) 5978 return retval; 5979 5980 ExecutionContext exe_ctx(this); 5981 const char *plugin_name = nullptr; 5982 const char *flavor = nullptr; 5983 const bool prefer_file_cache = true; 5984 disassembler_sp = Disassembler::DisassembleRange( 5985 target.GetArchitecture(), plugin_name, flavor, exe_ctx, range_bounds, 5986 prefer_file_cache); 5987 if (disassembler_sp) 5988 insn_list = &disassembler_sp->GetInstructionList(); 5989 5990 if (insn_list == nullptr) { 5991 return retval; 5992 } 5993 5994 size_t insn_offset = 5995 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 5996 if (insn_offset == UINT32_MAX) { 5997 return retval; 5998 } 5999 6000 uint32_t branch_index = 6001 insn_list->GetIndexOfNextBranchInstruction(insn_offset, target); 6002 if (branch_index == UINT32_MAX) { 6003 return retval; 6004 } 6005 6006 if (branch_index > insn_offset) { 6007 Address next_branch_insn_address = 6008 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 6009 if (next_branch_insn_address.IsValid() && 6010 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 6011 retval = next_branch_insn_address; 6012 } 6013 } 6014 6015 return retval; 6016 } 6017 6018 Status 6019 Process::GetMemoryRegions(std::vector<lldb::MemoryRegionInfoSP> ®ion_list) { 6020 6021 Status error; 6022 6023 lldb::addr_t range_end = 0; 6024 6025 region_list.clear(); 6026 do { 6027 lldb::MemoryRegionInfoSP region_info(new lldb_private::MemoryRegionInfo()); 6028 error = GetMemoryRegionInfo(range_end, *region_info); 6029 // GetMemoryRegionInfo should only return an error if it is unimplemented. 6030 if (error.Fail()) { 6031 region_list.clear(); 6032 break; 6033 } 6034 6035 range_end = region_info->GetRange().GetRangeEnd(); 6036 if (region_info->GetMapped() == MemoryRegionInfo::eYes) { 6037 region_list.push_back(region_info); 6038 } 6039 } while (range_end != LLDB_INVALID_ADDRESS); 6040 6041 return error; 6042 } 6043 6044 Status 6045 Process::ConfigureStructuredData(const ConstString &type_name, 6046 const StructuredData::ObjectSP &config_sp) { 6047 // If you get this, the Process-derived class needs to implement a method to 6048 // enable an already-reported asynchronous structured data feature. See 6049 // ProcessGDBRemote for an example implementation over gdb-remote. 6050 return Status("unimplemented"); 6051 } 6052 6053 void Process::MapSupportedStructuredDataPlugins( 6054 const StructuredData::Array &supported_type_names) { 6055 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 6056 6057 // Bail out early if there are no type names to map. 6058 if (supported_type_names.GetSize() == 0) { 6059 if (log) 6060 log->Printf("Process::%s(): no structured data types supported", 6061 __FUNCTION__); 6062 return; 6063 } 6064 6065 // Convert StructuredData type names to ConstString instances. 6066 std::set<ConstString> const_type_names; 6067 6068 if (log) 6069 log->Printf("Process::%s(): the process supports the following async " 6070 "structured data types:", 6071 __FUNCTION__); 6072 6073 supported_type_names.ForEach( 6074 [&const_type_names, &log](StructuredData::Object *object) { 6075 if (!object) { 6076 // Invalid - shouldn't be null objects in the array. 6077 return false; 6078 } 6079 6080 auto type_name = object->GetAsString(); 6081 if (!type_name) { 6082 // Invalid format - all type names should be strings. 6083 return false; 6084 } 6085 6086 const_type_names.insert(ConstString(type_name->GetValue())); 6087 LLDB_LOG(log, "- {0}", type_name->GetValue()); 6088 return true; 6089 }); 6090 6091 // For each StructuredDataPlugin, if the plugin handles any of the types in 6092 // the supported_type_names, map that type name to that plugin. Stop when 6093 // we've consumed all the type names. 6094 // FIXME: should we return an error if there are type names nobody 6095 // supports? 6096 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 6097 auto create_instance = 6098 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 6099 plugin_index); 6100 if (!create_instance) 6101 break; 6102 6103 // Create the plugin. 6104 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 6105 if (!plugin_sp) { 6106 // This plugin doesn't think it can work with the process. Move on to the 6107 // next. 6108 continue; 6109 } 6110 6111 // For any of the remaining type names, map any that this plugin supports. 6112 std::vector<ConstString> names_to_remove; 6113 for (auto &type_name : const_type_names) { 6114 if (plugin_sp->SupportsStructuredDataType(type_name)) { 6115 m_structured_data_plugin_map.insert( 6116 std::make_pair(type_name, plugin_sp)); 6117 names_to_remove.push_back(type_name); 6118 if (log) 6119 log->Printf("Process::%s(): using plugin %s for type name " 6120 "%s", 6121 __FUNCTION__, plugin_sp->GetPluginName().GetCString(), 6122 type_name.GetCString()); 6123 } 6124 } 6125 6126 // Remove the type names that were consumed by this plugin. 6127 for (auto &type_name : names_to_remove) 6128 const_type_names.erase(type_name); 6129 } 6130 } 6131 6132 bool Process::RouteAsyncStructuredData( 6133 const StructuredData::ObjectSP object_sp) { 6134 // Nothing to do if there's no data. 6135 if (!object_sp) 6136 return false; 6137 6138 // The contract is this must be a dictionary, so we can look up the routing 6139 // key via the top-level 'type' string value within the dictionary. 6140 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 6141 if (!dictionary) 6142 return false; 6143 6144 // Grab the async structured type name (i.e. the feature/plugin name). 6145 ConstString type_name; 6146 if (!dictionary->GetValueForKeyAsString("type", type_name)) 6147 return false; 6148 6149 // Check if there's a plugin registered for this type name. 6150 auto find_it = m_structured_data_plugin_map.find(type_name); 6151 if (find_it == m_structured_data_plugin_map.end()) { 6152 // We don't have a mapping for this structured data type. 6153 return false; 6154 } 6155 6156 // Route the structured data to the plugin. 6157 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 6158 return true; 6159 } 6160 6161 Status Process::UpdateAutomaticSignalFiltering() { 6162 // Default implementation does nothign. 6163 // No automatic signal filtering to speak of. 6164 return Status(); 6165 } 6166 6167 UtilityFunction *Process::GetLoadImageUtilityFunction( 6168 Platform *platform, 6169 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 6170 if (platform != GetTarget().GetPlatform().get()) 6171 return nullptr; 6172 std::call_once(m_dlopen_utility_func_flag_once, 6173 [&] { m_dlopen_utility_func_up = factory(); }); 6174 return m_dlopen_utility_func_up.get(); 6175 } 6176