1 //===-- Process.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <atomic> 10 #include <memory> 11 #include <mutex> 12 13 #include "llvm/Support/ScopedPrinter.h" 14 #include "llvm/Support/Threading.h" 15 16 #include "lldb/Breakpoint/BreakpointLocation.h" 17 #include "lldb/Breakpoint/StoppointCallbackContext.h" 18 #include "lldb/Core/Debugger.h" 19 #include "lldb/Core/Module.h" 20 #include "lldb/Core/ModuleSpec.h" 21 #include "lldb/Core/PluginManager.h" 22 #include "lldb/Core/StreamFile.h" 23 #include "lldb/Expression/DiagnosticManager.h" 24 #include "lldb/Expression/DynamicCheckerFunctions.h" 25 #include "lldb/Expression/UserExpression.h" 26 #include "lldb/Expression/UtilityFunction.h" 27 #include "lldb/Host/ConnectionFileDescriptor.h" 28 #include "lldb/Host/FileSystem.h" 29 #include "lldb/Host/Host.h" 30 #include "lldb/Host/HostInfo.h" 31 #include "lldb/Host/OptionParser.h" 32 #include "lldb/Host/Pipe.h" 33 #include "lldb/Host/Terminal.h" 34 #include "lldb/Host/ThreadLauncher.h" 35 #include "lldb/Interpreter/CommandInterpreter.h" 36 #include "lldb/Interpreter/OptionArgParser.h" 37 #include "lldb/Interpreter/OptionValueProperties.h" 38 #include "lldb/Symbol/Function.h" 39 #include "lldb/Symbol/Symbol.h" 40 #include "lldb/Target/ABI.h" 41 #include "lldb/Target/AssertFrameRecognizer.h" 42 #include "lldb/Target/DynamicLoader.h" 43 #include "lldb/Target/InstrumentationRuntime.h" 44 #include "lldb/Target/JITLoader.h" 45 #include "lldb/Target/JITLoaderList.h" 46 #include "lldb/Target/Language.h" 47 #include "lldb/Target/LanguageRuntime.h" 48 #include "lldb/Target/MemoryHistory.h" 49 #include "lldb/Target/MemoryRegionInfo.h" 50 #include "lldb/Target/OperatingSystem.h" 51 #include "lldb/Target/Platform.h" 52 #include "lldb/Target/Process.h" 53 #include "lldb/Target/RegisterContext.h" 54 #include "lldb/Target/StopInfo.h" 55 #include "lldb/Target/StructuredDataPlugin.h" 56 #include "lldb/Target/SystemRuntime.h" 57 #include "lldb/Target/Target.h" 58 #include "lldb/Target/TargetList.h" 59 #include "lldb/Target/Thread.h" 60 #include "lldb/Target/ThreadPlan.h" 61 #include "lldb/Target/ThreadPlanBase.h" 62 #include "lldb/Target/ThreadPlanCallFunction.h" 63 #include "lldb/Target/ThreadPlanStack.h" 64 #include "lldb/Target/UnixSignals.h" 65 #include "lldb/Utility/Event.h" 66 #include "lldb/Utility/Log.h" 67 #include "lldb/Utility/NameMatches.h" 68 #include "lldb/Utility/ProcessInfo.h" 69 #include "lldb/Utility/SelectHelper.h" 70 #include "lldb/Utility/State.h" 71 72 using namespace lldb; 73 using namespace lldb_private; 74 using namespace std::chrono; 75 76 // Comment out line below to disable memory caching, overriding the process 77 // setting target.process.disable-memory-cache 78 #define ENABLE_MEMORY_CACHING 79 80 #ifdef ENABLE_MEMORY_CACHING 81 #define DISABLE_MEM_CACHE_DEFAULT false 82 #else 83 #define DISABLE_MEM_CACHE_DEFAULT true 84 #endif 85 86 class ProcessOptionValueProperties : public OptionValueProperties { 87 public: 88 ProcessOptionValueProperties(ConstString name) 89 : OptionValueProperties(name) {} 90 91 // This constructor is used when creating ProcessOptionValueProperties when 92 // it is part of a new lldb_private::Process instance. It will copy all 93 // current global property values as needed 94 ProcessOptionValueProperties(ProcessProperties *global_properties) 95 : OptionValueProperties(*global_properties->GetValueProperties()) {} 96 97 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 98 bool will_modify, 99 uint32_t idx) const override { 100 // When getting the value for a key from the process options, we will 101 // always try and grab the setting from the current process if there is 102 // one. Else we just use the one from this instance. 103 if (exe_ctx) { 104 Process *process = exe_ctx->GetProcessPtr(); 105 if (process) { 106 ProcessOptionValueProperties *instance_properties = 107 static_cast<ProcessOptionValueProperties *>( 108 process->GetValueProperties().get()); 109 if (this != instance_properties) 110 return instance_properties->ProtectedGetPropertyAtIndex(idx); 111 } 112 } 113 return ProtectedGetPropertyAtIndex(idx); 114 } 115 }; 116 117 #define LLDB_PROPERTIES_process 118 #include "TargetProperties.inc" 119 120 enum { 121 #define LLDB_PROPERTIES_process 122 #include "TargetPropertiesEnum.inc" 123 ePropertyExperimental, 124 }; 125 126 #define LLDB_PROPERTIES_process_experimental 127 #include "TargetProperties.inc" 128 129 enum { 130 #define LLDB_PROPERTIES_process_experimental 131 #include "TargetPropertiesEnum.inc" 132 }; 133 134 class ProcessExperimentalOptionValueProperties : public OptionValueProperties { 135 public: 136 ProcessExperimentalOptionValueProperties() 137 : OptionValueProperties( 138 ConstString(Properties::GetExperimentalSettingsName())) {} 139 }; 140 141 ProcessExperimentalProperties::ProcessExperimentalProperties() 142 : Properties(OptionValuePropertiesSP( 143 new ProcessExperimentalOptionValueProperties())) { 144 m_collection_sp->Initialize(g_process_experimental_properties); 145 } 146 147 ProcessProperties::ProcessProperties(lldb_private::Process *process) 148 : Properties(), 149 m_process(process) // Can be nullptr for global ProcessProperties 150 { 151 if (process == nullptr) { 152 // Global process properties, set them up one time 153 m_collection_sp = 154 std::make_shared<ProcessOptionValueProperties>(ConstString("process")); 155 m_collection_sp->Initialize(g_process_properties); 156 m_collection_sp->AppendProperty( 157 ConstString("thread"), ConstString("Settings specific to threads."), 158 true, Thread::GetGlobalProperties()->GetValueProperties()); 159 } else { 160 m_collection_sp = std::make_shared<ProcessOptionValueProperties>( 161 Process::GetGlobalProperties().get()); 162 m_collection_sp->SetValueChangedCallback( 163 ePropertyPythonOSPluginPath, 164 [this] { m_process->LoadOperatingSystemPlugin(true); }); 165 } 166 167 m_experimental_properties_up = 168 std::make_unique<ProcessExperimentalProperties>(); 169 m_collection_sp->AppendProperty( 170 ConstString(Properties::GetExperimentalSettingsName()), 171 ConstString("Experimental settings - setting these won't produce " 172 "errors if the setting is not present."), 173 true, m_experimental_properties_up->GetValueProperties()); 174 } 175 176 ProcessProperties::~ProcessProperties() = default; 177 178 bool ProcessProperties::GetDisableMemoryCache() const { 179 const uint32_t idx = ePropertyDisableMemCache; 180 return m_collection_sp->GetPropertyAtIndexAsBoolean( 181 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 182 } 183 184 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 185 const uint32_t idx = ePropertyMemCacheLineSize; 186 return m_collection_sp->GetPropertyAtIndexAsUInt64( 187 nullptr, idx, g_process_properties[idx].default_uint_value); 188 } 189 190 Args ProcessProperties::GetExtraStartupCommands() const { 191 Args args; 192 const uint32_t idx = ePropertyExtraStartCommand; 193 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 194 return args; 195 } 196 197 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 198 const uint32_t idx = ePropertyExtraStartCommand; 199 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 200 } 201 202 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 203 const uint32_t idx = ePropertyPythonOSPluginPath; 204 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 205 } 206 207 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 208 const uint32_t idx = ePropertyPythonOSPluginPath; 209 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 210 } 211 212 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 213 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 214 return m_collection_sp->GetPropertyAtIndexAsBoolean( 215 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 216 } 217 218 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 219 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 220 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 221 } 222 223 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 224 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 225 return m_collection_sp->GetPropertyAtIndexAsBoolean( 226 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 227 } 228 229 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 230 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 231 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 232 } 233 234 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 235 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 236 return m_collection_sp->GetPropertyAtIndexAsBoolean( 237 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 238 } 239 240 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 241 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 242 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 243 } 244 245 bool ProcessProperties::GetDetachKeepsStopped() const { 246 const uint32_t idx = ePropertyDetachKeepsStopped; 247 return m_collection_sp->GetPropertyAtIndexAsBoolean( 248 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 249 } 250 251 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 252 const uint32_t idx = ePropertyDetachKeepsStopped; 253 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 254 } 255 256 bool ProcessProperties::GetWarningsOptimization() const { 257 const uint32_t idx = ePropertyWarningOptimization; 258 return m_collection_sp->GetPropertyAtIndexAsBoolean( 259 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 260 } 261 262 bool ProcessProperties::GetWarningsUnsupportedLanguage() const { 263 const uint32_t idx = ePropertyWarningUnsupportedLanguage; 264 return m_collection_sp->GetPropertyAtIndexAsBoolean( 265 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 266 } 267 268 bool ProcessProperties::GetStopOnExec() const { 269 const uint32_t idx = ePropertyStopOnExec; 270 return m_collection_sp->GetPropertyAtIndexAsBoolean( 271 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 272 } 273 274 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { 275 const uint32_t idx = ePropertyUtilityExpressionTimeout; 276 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 277 nullptr, idx, g_process_properties[idx].default_uint_value); 278 return std::chrono::seconds(value); 279 } 280 281 bool ProcessProperties::GetSteppingRunsAllThreads() const { 282 const uint32_t idx = ePropertySteppingRunsAllThreads; 283 return m_collection_sp->GetPropertyAtIndexAsBoolean( 284 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 285 } 286 287 bool ProcessProperties::GetOSPluginReportsAllThreads() const { 288 const bool fail_value = true; 289 const Property *exp_property = 290 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 291 OptionValueProperties *exp_values = 292 exp_property->GetValue()->GetAsProperties(); 293 if (!exp_values) 294 return fail_value; 295 296 return exp_values->GetPropertyAtIndexAsBoolean( 297 nullptr, ePropertyOSPluginReportsAllThreads, fail_value); 298 } 299 300 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) { 301 const Property *exp_property = 302 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 303 OptionValueProperties *exp_values = 304 exp_property->GetValue()->GetAsProperties(); 305 if (exp_values) 306 exp_values->SetPropertyAtIndexAsBoolean( 307 nullptr, ePropertyOSPluginReportsAllThreads, does_report); 308 } 309 310 Status ProcessLaunchCommandOptions::SetOptionValue( 311 uint32_t option_idx, llvm::StringRef option_arg, 312 ExecutionContext *execution_context) { 313 Status error; 314 const int short_option = m_getopt_table[option_idx].val; 315 316 switch (short_option) { 317 case 's': // Stop at program entry point 318 launch_info.GetFlags().Set(eLaunchFlagStopAtEntry); 319 break; 320 321 case 'i': // STDIN for read only 322 { 323 FileAction action; 324 if (action.Open(STDIN_FILENO, FileSpec(option_arg), true, false)) 325 launch_info.AppendFileAction(action); 326 break; 327 } 328 329 case 'o': // Open STDOUT for write only 330 { 331 FileAction action; 332 if (action.Open(STDOUT_FILENO, FileSpec(option_arg), false, true)) 333 launch_info.AppendFileAction(action); 334 break; 335 } 336 337 case 'e': // STDERR for write only 338 { 339 FileAction action; 340 if (action.Open(STDERR_FILENO, FileSpec(option_arg), false, true)) 341 launch_info.AppendFileAction(action); 342 break; 343 } 344 345 case 'p': // Process plug-in name 346 launch_info.SetProcessPluginName(option_arg); 347 break; 348 349 case 'n': // Disable STDIO 350 { 351 FileAction action; 352 const FileSpec dev_null(FileSystem::DEV_NULL); 353 if (action.Open(STDIN_FILENO, dev_null, true, false)) 354 launch_info.AppendFileAction(action); 355 if (action.Open(STDOUT_FILENO, dev_null, false, true)) 356 launch_info.AppendFileAction(action); 357 if (action.Open(STDERR_FILENO, dev_null, false, true)) 358 launch_info.AppendFileAction(action); 359 break; 360 } 361 362 case 'w': 363 launch_info.SetWorkingDirectory(FileSpec(option_arg)); 364 break; 365 366 case 't': // Open process in new terminal window 367 launch_info.GetFlags().Set(eLaunchFlagLaunchInTTY); 368 break; 369 370 case 'a': { 371 TargetSP target_sp = 372 execution_context ? execution_context->GetTargetSP() : TargetSP(); 373 PlatformSP platform_sp = 374 target_sp ? target_sp->GetPlatform() : PlatformSP(); 375 launch_info.GetArchitecture() = 376 Platform::GetAugmentedArchSpec(platform_sp.get(), option_arg); 377 } break; 378 379 case 'A': // Disable ASLR. 380 { 381 bool success; 382 const bool disable_aslr_arg = 383 OptionArgParser::ToBoolean(option_arg, true, &success); 384 if (success) 385 disable_aslr = disable_aslr_arg ? eLazyBoolYes : eLazyBoolNo; 386 else 387 error.SetErrorStringWithFormat( 388 "Invalid boolean value for disable-aslr option: '%s'", 389 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 390 break; 391 } 392 393 case 'X': // shell expand args. 394 { 395 bool success; 396 const bool expand_args = 397 OptionArgParser::ToBoolean(option_arg, true, &success); 398 if (success) 399 launch_info.SetShellExpandArguments(expand_args); 400 else 401 error.SetErrorStringWithFormat( 402 "Invalid boolean value for shell-expand-args option: '%s'", 403 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 404 break; 405 } 406 407 case 'c': 408 if (!option_arg.empty()) 409 launch_info.SetShell(FileSpec(option_arg)); 410 else 411 launch_info.SetShell(HostInfo::GetDefaultShell()); 412 break; 413 414 case 'v': 415 launch_info.GetEnvironment().insert(option_arg); 416 break; 417 418 default: 419 error.SetErrorStringWithFormat("unrecognized short option character '%c'", 420 short_option); 421 break; 422 } 423 return error; 424 } 425 426 static constexpr OptionDefinition g_process_launch_options[] = { 427 {LLDB_OPT_SET_ALL, false, "stop-at-entry", 's', OptionParser::eNoArgument, 428 nullptr, {}, 0, eArgTypeNone, 429 "Stop at the entry point of the program when launching a process."}, 430 {LLDB_OPT_SET_ALL, false, "disable-aslr", 'A', 431 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeBoolean, 432 "Set whether to disable address space layout randomization when launching " 433 "a process."}, 434 {LLDB_OPT_SET_ALL, false, "plugin", 'p', OptionParser::eRequiredArgument, 435 nullptr, {}, 0, eArgTypePlugin, 436 "Name of the process plugin you want to use."}, 437 {LLDB_OPT_SET_ALL, false, "working-dir", 'w', 438 OptionParser::eRequiredArgument, nullptr, {}, 0, 439 eArgTypeDirectoryName, 440 "Set the current working directory to <path> when running the inferior."}, 441 {LLDB_OPT_SET_ALL, false, "arch", 'a', OptionParser::eRequiredArgument, 442 nullptr, {}, 0, eArgTypeArchitecture, 443 "Set the architecture for the process to launch when ambiguous."}, 444 {LLDB_OPT_SET_ALL, false, "environment", 'v', 445 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeNone, 446 "Specify an environment variable name/value string (--environment " 447 "NAME=VALUE). Can be specified multiple times for subsequent environment " 448 "entries."}, 449 {LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3, false, "shell", 'c', 450 OptionParser::eOptionalArgument, nullptr, {}, 0, eArgTypeFilename, 451 "Run the process in a shell (not supported on all platforms)."}, 452 453 {LLDB_OPT_SET_1, false, "stdin", 'i', OptionParser::eRequiredArgument, 454 nullptr, {}, 0, eArgTypeFilename, 455 "Redirect stdin for the process to <filename>."}, 456 {LLDB_OPT_SET_1, false, "stdout", 'o', OptionParser::eRequiredArgument, 457 nullptr, {}, 0, eArgTypeFilename, 458 "Redirect stdout for the process to <filename>."}, 459 {LLDB_OPT_SET_1, false, "stderr", 'e', OptionParser::eRequiredArgument, 460 nullptr, {}, 0, eArgTypeFilename, 461 "Redirect stderr for the process to <filename>."}, 462 463 {LLDB_OPT_SET_2, false, "tty", 't', OptionParser::eNoArgument, nullptr, 464 {}, 0, eArgTypeNone, 465 "Start the process in a terminal (not supported on all platforms)."}, 466 467 {LLDB_OPT_SET_3, false, "no-stdio", 'n', OptionParser::eNoArgument, nullptr, 468 {}, 0, eArgTypeNone, 469 "Do not set up for terminal I/O to go to running process."}, 470 {LLDB_OPT_SET_4, false, "shell-expand-args", 'X', 471 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeBoolean, 472 "Set whether to shell expand arguments to the process when launching."}, 473 }; 474 475 llvm::ArrayRef<OptionDefinition> ProcessLaunchCommandOptions::GetDefinitions() { 476 return llvm::makeArrayRef(g_process_launch_options); 477 } 478 479 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 480 llvm::StringRef plugin_name, 481 ListenerSP listener_sp, 482 const FileSpec *crash_file_path, 483 bool can_connect) { 484 static uint32_t g_process_unique_id = 0; 485 486 ProcessSP process_sp; 487 ProcessCreateInstance create_callback = nullptr; 488 if (!plugin_name.empty()) { 489 ConstString const_plugin_name(plugin_name); 490 create_callback = 491 PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name); 492 if (create_callback) { 493 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 494 can_connect); 495 if (process_sp) { 496 if (process_sp->CanDebug(target_sp, true)) { 497 process_sp->m_process_unique_id = ++g_process_unique_id; 498 } else 499 process_sp.reset(); 500 } 501 } 502 } else { 503 for (uint32_t idx = 0; 504 (create_callback = 505 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 506 ++idx) { 507 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 508 can_connect); 509 if (process_sp) { 510 if (process_sp->CanDebug(target_sp, false)) { 511 process_sp->m_process_unique_id = ++g_process_unique_id; 512 break; 513 } else 514 process_sp.reset(); 515 } 516 } 517 } 518 return process_sp; 519 } 520 521 ConstString &Process::GetStaticBroadcasterClass() { 522 static ConstString class_name("lldb.process"); 523 return class_name; 524 } 525 526 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 527 : Process(target_sp, listener_sp, 528 UnixSignals::Create(HostInfo::GetArchitecture())) { 529 // This constructor just delegates to the full Process constructor, 530 // defaulting to using the Host's UnixSignals. 531 } 532 533 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 534 const UnixSignalsSP &unix_signals_sp) 535 : ProcessProperties(this), 536 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 537 Process::GetStaticBroadcasterClass().AsCString()), 538 m_target_wp(target_sp), m_public_state(eStateUnloaded), 539 m_private_state(eStateUnloaded), 540 m_private_state_broadcaster(nullptr, 541 "lldb.process.internal_state_broadcaster"), 542 m_private_state_control_broadcaster( 543 nullptr, "lldb.process.internal_state_control_broadcaster"), 544 m_private_state_listener_sp( 545 Listener::MakeListener("lldb.process.internal_state_listener")), 546 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 547 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 548 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 549 m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this), 550 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 551 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 552 m_breakpoint_site_list(), m_dynamic_checkers_up(), 553 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 554 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 555 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 556 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 557 m_memory_cache(*this), m_allocated_memory_cache(*this), 558 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), 559 m_private_run_lock(), m_finalizing(false), 560 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 561 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 562 m_can_interpret_function_calls(false), m_warnings_issued(), 563 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 564 CheckInWithManager(); 565 566 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 567 LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this)); 568 569 if (!m_unix_signals_sp) 570 m_unix_signals_sp = std::make_shared<UnixSignals>(); 571 572 SetEventName(eBroadcastBitStateChanged, "state-changed"); 573 SetEventName(eBroadcastBitInterrupt, "interrupt"); 574 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 575 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 576 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 577 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 578 579 m_private_state_control_broadcaster.SetEventName( 580 eBroadcastInternalStateControlStop, "control-stop"); 581 m_private_state_control_broadcaster.SetEventName( 582 eBroadcastInternalStateControlPause, "control-pause"); 583 m_private_state_control_broadcaster.SetEventName( 584 eBroadcastInternalStateControlResume, "control-resume"); 585 586 m_listener_sp->StartListeningForEvents( 587 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 588 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 589 eBroadcastBitProfileData | eBroadcastBitStructuredData); 590 591 m_private_state_listener_sp->StartListeningForEvents( 592 &m_private_state_broadcaster, 593 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 594 595 m_private_state_listener_sp->StartListeningForEvents( 596 &m_private_state_control_broadcaster, 597 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 598 eBroadcastInternalStateControlResume); 599 // We need something valid here, even if just the default UnixSignalsSP. 600 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 601 602 // Allow the platform to override the default cache line size 603 OptionValueSP value_sp = 604 m_collection_sp 605 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 606 ->GetValue(); 607 uint32_t platform_cache_line_size = 608 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 609 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 610 value_sp->SetUInt64Value(platform_cache_line_size); 611 612 RegisterAssertFrameRecognizer(this); 613 } 614 615 Process::~Process() { 616 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 617 LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this)); 618 StopPrivateStateThread(); 619 620 // ThreadList::Clear() will try to acquire this process's mutex, so 621 // explicitly clear the thread list here to ensure that the mutex is not 622 // destroyed before the thread list. 623 m_thread_list.Clear(); 624 } 625 626 const ProcessPropertiesSP &Process::GetGlobalProperties() { 627 // NOTE: intentional leak so we don't crash if global destructor chain gets 628 // called as other threads still use the result of this function 629 static ProcessPropertiesSP *g_settings_sp_ptr = 630 new ProcessPropertiesSP(new ProcessProperties(nullptr)); 631 return *g_settings_sp_ptr; 632 } 633 634 void Process::Finalize() { 635 if (m_finalizing.exchange(true)) 636 return; 637 638 // Destroy this process if needed 639 switch (GetPrivateState()) { 640 case eStateConnected: 641 case eStateAttaching: 642 case eStateLaunching: 643 case eStateStopped: 644 case eStateRunning: 645 case eStateStepping: 646 case eStateCrashed: 647 case eStateSuspended: 648 DestroyImpl(false); 649 break; 650 651 case eStateInvalid: 652 case eStateUnloaded: 653 case eStateDetached: 654 case eStateExited: 655 break; 656 } 657 658 // Clear our broadcaster before we proceed with destroying 659 Broadcaster::Clear(); 660 661 // Do any cleanup needed prior to being destructed... Subclasses that 662 // override this method should call this superclass method as well. 663 664 // We need to destroy the loader before the derived Process class gets 665 // destroyed since it is very likely that undoing the loader will require 666 // access to the real process. 667 m_dynamic_checkers_up.reset(); 668 m_abi_sp.reset(); 669 m_os_up.reset(); 670 m_system_runtime_up.reset(); 671 m_dyld_up.reset(); 672 m_jit_loaders_up.reset(); 673 m_thread_plans.Clear(); 674 m_thread_list_real.Destroy(); 675 m_thread_list.Destroy(); 676 m_extended_thread_list.Destroy(); 677 m_queue_list.Clear(); 678 m_queue_list_stop_id = 0; 679 std::vector<Notifications> empty_notifications; 680 m_notifications.swap(empty_notifications); 681 m_image_tokens.clear(); 682 m_memory_cache.Clear(); 683 m_allocated_memory_cache.Clear(); 684 { 685 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 686 m_language_runtimes.clear(); 687 } 688 m_instrumentation_runtimes.clear(); 689 m_next_event_action_up.reset(); 690 // Clear the last natural stop ID since it has a strong reference to this 691 // process 692 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 693 //#ifdef LLDB_CONFIGURATION_DEBUG 694 // StreamFile s(stdout, false); 695 // EventSP event_sp; 696 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 697 // { 698 // event_sp->Dump (&s); 699 // s.EOL(); 700 // } 701 //#endif 702 // We have to be very careful here as the m_private_state_listener might 703 // contain events that have ProcessSP values in them which can keep this 704 // process around forever. These events need to be cleared out. 705 m_private_state_listener_sp->Clear(); 706 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 707 m_public_run_lock.SetStopped(); 708 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 709 m_private_run_lock.SetStopped(); 710 m_structured_data_plugin_map.clear(); 711 } 712 713 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 714 m_notifications.push_back(callbacks); 715 if (callbacks.initialize != nullptr) 716 callbacks.initialize(callbacks.baton, this); 717 } 718 719 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 720 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 721 for (pos = m_notifications.begin(); pos != end; ++pos) { 722 if (pos->baton == callbacks.baton && 723 pos->initialize == callbacks.initialize && 724 pos->process_state_changed == callbacks.process_state_changed) { 725 m_notifications.erase(pos); 726 return true; 727 } 728 } 729 return false; 730 } 731 732 void Process::SynchronouslyNotifyStateChanged(StateType state) { 733 std::vector<Notifications>::iterator notification_pos, 734 notification_end = m_notifications.end(); 735 for (notification_pos = m_notifications.begin(); 736 notification_pos != notification_end; ++notification_pos) { 737 if (notification_pos->process_state_changed) 738 notification_pos->process_state_changed(notification_pos->baton, this, 739 state); 740 } 741 } 742 743 // FIXME: We need to do some work on events before the general Listener sees 744 // them. 745 // For instance if we are continuing from a breakpoint, we need to ensure that 746 // we do the little "insert real insn, step & stop" trick. But we can't do 747 // that when the event is delivered by the broadcaster - since that is done on 748 // the thread that is waiting for new events, so if we needed more than one 749 // event for our handling, we would stall. So instead we do it when we fetch 750 // the event off of the queue. 751 // 752 753 StateType Process::GetNextEvent(EventSP &event_sp) { 754 StateType state = eStateInvalid; 755 756 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 757 std::chrono::seconds(0)) && 758 event_sp) 759 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 760 761 return state; 762 } 763 764 void Process::SyncIOHandler(uint32_t iohandler_id, 765 const Timeout<std::micro> &timeout) { 766 // don't sync (potentially context switch) in case where there is no process 767 // IO 768 if (!m_process_input_reader) 769 return; 770 771 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 772 773 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 774 if (Result) { 775 LLDB_LOG( 776 log, 777 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 778 iohandler_id, *Result); 779 } else { 780 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 781 iohandler_id); 782 } 783 } 784 785 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 786 EventSP *event_sp_ptr, bool wait_always, 787 ListenerSP hijack_listener_sp, 788 Stream *stream, bool use_run_lock) { 789 // We can't just wait for a "stopped" event, because the stopped event may 790 // have restarted the target. We have to actually check each event, and in 791 // the case of a stopped event check the restarted flag on the event. 792 if (event_sp_ptr) 793 event_sp_ptr->reset(); 794 StateType state = GetState(); 795 // If we are exited or detached, we won't ever get back to any other valid 796 // state... 797 if (state == eStateDetached || state == eStateExited) 798 return state; 799 800 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 801 LLDB_LOG(log, "timeout = {0}", timeout); 802 803 if (!wait_always && StateIsStoppedState(state, true) && 804 StateIsStoppedState(GetPrivateState(), true)) { 805 LLDB_LOGF(log, 806 "Process::%s returning without waiting for events; process " 807 "private and public states are already 'stopped'.", 808 __FUNCTION__); 809 // We need to toggle the run lock as this won't get done in 810 // SetPublicState() if the process is hijacked. 811 if (hijack_listener_sp && use_run_lock) 812 m_public_run_lock.SetStopped(); 813 return state; 814 } 815 816 while (state != eStateInvalid) { 817 EventSP event_sp; 818 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 819 if (event_sp_ptr && event_sp) 820 *event_sp_ptr = event_sp; 821 822 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 823 Process::HandleProcessStateChangedEvent(event_sp, stream, 824 pop_process_io_handler); 825 826 switch (state) { 827 case eStateCrashed: 828 case eStateDetached: 829 case eStateExited: 830 case eStateUnloaded: 831 // We need to toggle the run lock as this won't get done in 832 // SetPublicState() if the process is hijacked. 833 if (hijack_listener_sp && use_run_lock) 834 m_public_run_lock.SetStopped(); 835 return state; 836 case eStateStopped: 837 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 838 continue; 839 else { 840 // We need to toggle the run lock as this won't get done in 841 // SetPublicState() if the process is hijacked. 842 if (hijack_listener_sp && use_run_lock) 843 m_public_run_lock.SetStopped(); 844 return state; 845 } 846 default: 847 continue; 848 } 849 } 850 return state; 851 } 852 853 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 854 Stream *stream, 855 bool &pop_process_io_handler) { 856 const bool handle_pop = pop_process_io_handler; 857 858 pop_process_io_handler = false; 859 ProcessSP process_sp = 860 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 861 862 if (!process_sp) 863 return false; 864 865 StateType event_state = 866 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 867 if (event_state == eStateInvalid) 868 return false; 869 870 switch (event_state) { 871 case eStateInvalid: 872 case eStateUnloaded: 873 case eStateAttaching: 874 case eStateLaunching: 875 case eStateStepping: 876 case eStateDetached: 877 if (stream) 878 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 879 StateAsCString(event_state)); 880 if (event_state == eStateDetached) 881 pop_process_io_handler = true; 882 break; 883 884 case eStateConnected: 885 case eStateRunning: 886 // Don't be chatty when we run... 887 break; 888 889 case eStateExited: 890 if (stream) 891 process_sp->GetStatus(*stream); 892 pop_process_io_handler = true; 893 break; 894 895 case eStateStopped: 896 case eStateCrashed: 897 case eStateSuspended: 898 // Make sure the program hasn't been auto-restarted: 899 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 900 if (stream) { 901 size_t num_reasons = 902 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 903 if (num_reasons > 0) { 904 // FIXME: Do we want to report this, or would that just be annoyingly 905 // chatty? 906 if (num_reasons == 1) { 907 const char *reason = 908 Process::ProcessEventData::GetRestartedReasonAtIndex( 909 event_sp.get(), 0); 910 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 911 process_sp->GetID(), 912 reason ? reason : "<UNKNOWN REASON>"); 913 } else { 914 stream->Printf("Process %" PRIu64 915 " stopped and restarted, reasons:\n", 916 process_sp->GetID()); 917 918 for (size_t i = 0; i < num_reasons; i++) { 919 const char *reason = 920 Process::ProcessEventData::GetRestartedReasonAtIndex( 921 event_sp.get(), i); 922 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 923 } 924 } 925 } 926 } 927 } else { 928 StopInfoSP curr_thread_stop_info_sp; 929 // Lock the thread list so it doesn't change on us, this is the scope for 930 // the locker: 931 { 932 ThreadList &thread_list = process_sp->GetThreadList(); 933 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 934 935 ThreadSP curr_thread(thread_list.GetSelectedThread()); 936 ThreadSP thread; 937 StopReason curr_thread_stop_reason = eStopReasonInvalid; 938 if (curr_thread) { 939 curr_thread_stop_reason = curr_thread->GetStopReason(); 940 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 941 } 942 if (!curr_thread || !curr_thread->IsValid() || 943 curr_thread_stop_reason == eStopReasonInvalid || 944 curr_thread_stop_reason == eStopReasonNone) { 945 // Prefer a thread that has just completed its plan over another 946 // thread as current thread. 947 ThreadSP plan_thread; 948 ThreadSP other_thread; 949 950 const size_t num_threads = thread_list.GetSize(); 951 size_t i; 952 for (i = 0; i < num_threads; ++i) { 953 thread = thread_list.GetThreadAtIndex(i); 954 StopReason thread_stop_reason = thread->GetStopReason(); 955 switch (thread_stop_reason) { 956 case eStopReasonInvalid: 957 case eStopReasonNone: 958 break; 959 960 case eStopReasonSignal: { 961 // Don't select a signal thread if we weren't going to stop at 962 // that signal. We have to have had another reason for stopping 963 // here, and the user doesn't want to see this thread. 964 uint64_t signo = thread->GetStopInfo()->GetValue(); 965 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 966 if (!other_thread) 967 other_thread = thread; 968 } 969 break; 970 } 971 case eStopReasonTrace: 972 case eStopReasonBreakpoint: 973 case eStopReasonWatchpoint: 974 case eStopReasonException: 975 case eStopReasonExec: 976 case eStopReasonThreadExiting: 977 case eStopReasonInstrumentation: 978 if (!other_thread) 979 other_thread = thread; 980 break; 981 case eStopReasonPlanComplete: 982 if (!plan_thread) 983 plan_thread = thread; 984 break; 985 } 986 } 987 if (plan_thread) 988 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 989 else if (other_thread) 990 thread_list.SetSelectedThreadByID(other_thread->GetID()); 991 else { 992 if (curr_thread && curr_thread->IsValid()) 993 thread = curr_thread; 994 else 995 thread = thread_list.GetThreadAtIndex(0); 996 997 if (thread) 998 thread_list.SetSelectedThreadByID(thread->GetID()); 999 } 1000 } 1001 } 1002 // Drop the ThreadList mutex by here, since GetThreadStatus below might 1003 // have to run code, e.g. for Data formatters, and if we hold the 1004 // ThreadList mutex, then the process is going to have a hard time 1005 // restarting the process. 1006 if (stream) { 1007 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 1008 if (debugger.GetTargetList().GetSelectedTarget().get() == 1009 &process_sp->GetTarget()) { 1010 ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); 1011 1012 if (!thread_sp || !thread_sp->IsValid()) 1013 return false; 1014 1015 const bool only_threads_with_stop_reason = true; 1016 const uint32_t start_frame = thread_sp->GetSelectedFrameIndex(); 1017 const uint32_t num_frames = 1; 1018 const uint32_t num_frames_with_source = 1; 1019 const bool stop_format = true; 1020 1021 process_sp->GetStatus(*stream); 1022 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 1023 start_frame, num_frames, 1024 num_frames_with_source, 1025 stop_format); 1026 if (curr_thread_stop_info_sp) { 1027 lldb::addr_t crashing_address; 1028 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 1029 curr_thread_stop_info_sp, &crashing_address); 1030 if (valobj_sp) { 1031 const ValueObject::GetExpressionPathFormat format = 1032 ValueObject::GetExpressionPathFormat:: 1033 eGetExpressionPathFormatHonorPointers; 1034 stream->PutCString("Likely cause: "); 1035 valobj_sp->GetExpressionPath(*stream, format); 1036 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 1037 } 1038 } 1039 } else { 1040 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 1041 process_sp->GetTarget().shared_from_this()); 1042 if (target_idx != UINT32_MAX) 1043 stream->Printf("Target %d: (", target_idx); 1044 else 1045 stream->Printf("Target <unknown index>: ("); 1046 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 1047 stream->Printf(") stopped.\n"); 1048 } 1049 } 1050 1051 // Pop the process IO handler 1052 pop_process_io_handler = true; 1053 } 1054 break; 1055 } 1056 1057 if (handle_pop && pop_process_io_handler) 1058 process_sp->PopProcessIOHandler(); 1059 1060 return true; 1061 } 1062 1063 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 1064 if (listener_sp) { 1065 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 1066 eBroadcastBitInterrupt); 1067 } else 1068 return false; 1069 } 1070 1071 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 1072 1073 StateType Process::GetStateChangedEvents(EventSP &event_sp, 1074 const Timeout<std::micro> &timeout, 1075 ListenerSP hijack_listener_sp) { 1076 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1077 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1078 1079 ListenerSP listener_sp = hijack_listener_sp; 1080 if (!listener_sp) 1081 listener_sp = m_listener_sp; 1082 1083 StateType state = eStateInvalid; 1084 if (listener_sp->GetEventForBroadcasterWithType( 1085 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1086 timeout)) { 1087 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1088 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1089 else 1090 LLDB_LOG(log, "got no event or was interrupted."); 1091 } 1092 1093 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 1094 return state; 1095 } 1096 1097 Event *Process::PeekAtStateChangedEvents() { 1098 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1099 1100 LLDB_LOGF(log, "Process::%s...", __FUNCTION__); 1101 1102 Event *event_ptr; 1103 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 1104 this, eBroadcastBitStateChanged); 1105 if (log) { 1106 if (event_ptr) { 1107 LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, 1108 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 1109 } else { 1110 LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); 1111 } 1112 } 1113 return event_ptr; 1114 } 1115 1116 StateType 1117 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 1118 const Timeout<std::micro> &timeout) { 1119 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1120 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1121 1122 StateType state = eStateInvalid; 1123 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1124 &m_private_state_broadcaster, 1125 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1126 timeout)) 1127 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1128 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1129 1130 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1131 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1132 return state; 1133 } 1134 1135 bool Process::GetEventsPrivate(EventSP &event_sp, 1136 const Timeout<std::micro> &timeout, 1137 bool control_only) { 1138 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1139 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1140 1141 if (control_only) 1142 return m_private_state_listener_sp->GetEventForBroadcaster( 1143 &m_private_state_control_broadcaster, event_sp, timeout); 1144 else 1145 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1146 } 1147 1148 bool Process::IsRunning() const { 1149 return StateIsRunningState(m_public_state.GetValue()); 1150 } 1151 1152 int Process::GetExitStatus() { 1153 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1154 1155 if (m_public_state.GetValue() == eStateExited) 1156 return m_exit_status; 1157 return -1; 1158 } 1159 1160 const char *Process::GetExitDescription() { 1161 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1162 1163 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1164 return m_exit_string.c_str(); 1165 return nullptr; 1166 } 1167 1168 bool Process::SetExitStatus(int status, const char *cstr) { 1169 // Use a mutex to protect setting the exit status. 1170 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1171 1172 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1173 LIBLLDB_LOG_PROCESS)); 1174 LLDB_LOGF( 1175 log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1176 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : ""); 1177 1178 // We were already in the exited state 1179 if (m_private_state.GetValue() == eStateExited) { 1180 LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because " 1181 "state was already set to eStateExited"); 1182 return false; 1183 } 1184 1185 m_exit_status = status; 1186 if (cstr) 1187 m_exit_string = cstr; 1188 else 1189 m_exit_string.clear(); 1190 1191 // Clear the last natural stop ID since it has a strong reference to this 1192 // process 1193 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1194 1195 SetPrivateState(eStateExited); 1196 1197 // Allow subclasses to do some cleanup 1198 DidExit(); 1199 1200 return true; 1201 } 1202 1203 bool Process::IsAlive() { 1204 switch (m_private_state.GetValue()) { 1205 case eStateConnected: 1206 case eStateAttaching: 1207 case eStateLaunching: 1208 case eStateStopped: 1209 case eStateRunning: 1210 case eStateStepping: 1211 case eStateCrashed: 1212 case eStateSuspended: 1213 return true; 1214 default: 1215 return false; 1216 } 1217 } 1218 1219 // This static callback can be used to watch for local child processes on the 1220 // current host. The child process exits, the process will be found in the 1221 // global target list (we want to be completely sure that the 1222 // lldb_private::Process doesn't go away before we can deliver the signal. 1223 bool Process::SetProcessExitStatus( 1224 lldb::pid_t pid, bool exited, 1225 int signo, // Zero for no signal 1226 int exit_status // Exit value of process if signal is zero 1227 ) { 1228 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 1229 LLDB_LOGF(log, 1230 "Process::SetProcessExitStatus (pid=%" PRIu64 1231 ", exited=%i, signal=%i, exit_status=%i)\n", 1232 pid, exited, signo, exit_status); 1233 1234 if (exited) { 1235 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1236 if (target_sp) { 1237 ProcessSP process_sp(target_sp->GetProcessSP()); 1238 if (process_sp) { 1239 const char *signal_cstr = nullptr; 1240 if (signo) 1241 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1242 1243 process_sp->SetExitStatus(exit_status, signal_cstr); 1244 } 1245 } 1246 return true; 1247 } 1248 return false; 1249 } 1250 1251 void Process::UpdateThreadListIfNeeded() { 1252 const uint32_t stop_id = GetStopID(); 1253 if (m_thread_list.GetSize(false) == 0 || 1254 stop_id != m_thread_list.GetStopID()) { 1255 bool clear_unused_threads = true; 1256 const StateType state = GetPrivateState(); 1257 if (StateIsStoppedState(state, true)) { 1258 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1259 m_thread_list.SetStopID(stop_id); 1260 1261 // m_thread_list does have its own mutex, but we need to hold onto the 1262 // mutex between the call to UpdateThreadList(...) and the 1263 // os->UpdateThreadList(...) so it doesn't change on us 1264 ThreadList &old_thread_list = m_thread_list; 1265 ThreadList real_thread_list(this); 1266 ThreadList new_thread_list(this); 1267 // Always update the thread list with the protocol specific thread list, 1268 // but only update if "true" is returned 1269 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1270 // Don't call into the OperatingSystem to update the thread list if we 1271 // are shutting down, since that may call back into the SBAPI's, 1272 // requiring the API lock which is already held by whoever is shutting 1273 // us down, causing a deadlock. 1274 OperatingSystem *os = GetOperatingSystem(); 1275 if (os && !m_destroy_in_process) { 1276 // Clear any old backing threads where memory threads might have been 1277 // backed by actual threads from the lldb_private::Process subclass 1278 size_t num_old_threads = old_thread_list.GetSize(false); 1279 for (size_t i = 0; i < num_old_threads; ++i) 1280 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1281 // See if the OS plugin reports all threads. If it does, then 1282 // it is safe to clear unseen thread's plans here. Otherwise we 1283 // should preserve them in case they show up again: 1284 clear_unused_threads = GetOSPluginReportsAllThreads(); 1285 1286 // Turn off dynamic types to ensure we don't run any expressions. 1287 // Objective-C can run an expression to determine if a SBValue is a 1288 // dynamic type or not and we need to avoid this. OperatingSystem 1289 // plug-ins can't run expressions that require running code... 1290 1291 Target &target = GetTarget(); 1292 const lldb::DynamicValueType saved_prefer_dynamic = 1293 target.GetPreferDynamicValue(); 1294 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1295 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1296 1297 // Now let the OperatingSystem plug-in update the thread list 1298 1299 os->UpdateThreadList( 1300 old_thread_list, // Old list full of threads created by OS plug-in 1301 real_thread_list, // The actual thread list full of threads 1302 // created by each lldb_private::Process 1303 // subclass 1304 new_thread_list); // The new thread list that we will show to the 1305 // user that gets filled in 1306 1307 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1308 target.SetPreferDynamicValue(saved_prefer_dynamic); 1309 } else { 1310 // No OS plug-in, the new thread list is the same as the real thread 1311 // list. 1312 new_thread_list = real_thread_list; 1313 } 1314 1315 m_thread_list_real.Update(real_thread_list); 1316 m_thread_list.Update(new_thread_list); 1317 m_thread_list.SetStopID(stop_id); 1318 1319 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1320 // Clear any extended threads that we may have accumulated previously 1321 m_extended_thread_list.Clear(); 1322 m_extended_thread_stop_id = GetLastNaturalStopID(); 1323 1324 m_queue_list.Clear(); 1325 m_queue_list_stop_id = GetLastNaturalStopID(); 1326 } 1327 } 1328 // Now update the plan stack map. 1329 // If we do have an OS plugin, any absent real threads in the 1330 // m_thread_list have already been removed from the ThreadPlanStackMap. 1331 // So any remaining threads are OS Plugin threads, and those we want to 1332 // preserve in case they show up again. 1333 m_thread_plans.Update(m_thread_list, clear_unused_threads); 1334 } 1335 } 1336 } 1337 1338 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) { 1339 return m_thread_plans.Find(tid); 1340 } 1341 1342 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) { 1343 return m_thread_plans.PrunePlansForTID(tid); 1344 } 1345 1346 void Process::PruneThreadPlans() { 1347 m_thread_plans.Update(GetThreadList(), true, false); 1348 } 1349 1350 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid, 1351 lldb::DescriptionLevel desc_level, 1352 bool internal, bool condense_trivial, 1353 bool skip_unreported_plans) { 1354 return m_thread_plans.DumpPlansForTID( 1355 strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans); 1356 } 1357 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level, 1358 bool internal, bool condense_trivial, 1359 bool skip_unreported_plans) { 1360 m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial, 1361 skip_unreported_plans); 1362 } 1363 1364 void Process::UpdateQueueListIfNeeded() { 1365 if (m_system_runtime_up) { 1366 if (m_queue_list.GetSize() == 0 || 1367 m_queue_list_stop_id != GetLastNaturalStopID()) { 1368 const StateType state = GetPrivateState(); 1369 if (StateIsStoppedState(state, true)) { 1370 m_system_runtime_up->PopulateQueueList(m_queue_list); 1371 m_queue_list_stop_id = GetLastNaturalStopID(); 1372 } 1373 } 1374 } 1375 } 1376 1377 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1378 OperatingSystem *os = GetOperatingSystem(); 1379 if (os) 1380 return os->CreateThread(tid, context); 1381 return ThreadSP(); 1382 } 1383 1384 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1385 return AssignIndexIDToThread(thread_id); 1386 } 1387 1388 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1389 return (m_thread_id_to_index_id_map.find(thread_id) != 1390 m_thread_id_to_index_id_map.end()); 1391 } 1392 1393 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1394 uint32_t result = 0; 1395 std::map<uint64_t, uint32_t>::iterator iterator = 1396 m_thread_id_to_index_id_map.find(thread_id); 1397 if (iterator == m_thread_id_to_index_id_map.end()) { 1398 result = ++m_thread_index_id; 1399 m_thread_id_to_index_id_map[thread_id] = result; 1400 } else { 1401 result = iterator->second; 1402 } 1403 1404 return result; 1405 } 1406 1407 StateType Process::GetState() { 1408 return m_public_state.GetValue(); 1409 } 1410 1411 void Process::SetPublicState(StateType new_state, bool restarted) { 1412 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1413 LIBLLDB_LOG_PROCESS)); 1414 LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)", 1415 StateAsCString(new_state), restarted); 1416 const StateType old_state = m_public_state.GetValue(); 1417 m_public_state.SetValue(new_state); 1418 1419 // On the transition from Run to Stopped, we unlock the writer end of the run 1420 // lock. The lock gets locked in Resume, which is the public API to tell the 1421 // program to run. 1422 if (!StateChangedIsExternallyHijacked()) { 1423 if (new_state == eStateDetached) { 1424 LLDB_LOGF(log, 1425 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1426 StateAsCString(new_state)); 1427 m_public_run_lock.SetStopped(); 1428 } else { 1429 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1430 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1431 if ((old_state_is_stopped != new_state_is_stopped)) { 1432 if (new_state_is_stopped && !restarted) { 1433 LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock", 1434 StateAsCString(new_state)); 1435 m_public_run_lock.SetStopped(); 1436 } 1437 } 1438 } 1439 } 1440 } 1441 1442 Status Process::Resume() { 1443 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1444 LIBLLDB_LOG_PROCESS)); 1445 LLDB_LOGF(log, "Process::Resume -- locking run lock"); 1446 if (!m_public_run_lock.TrySetRunning()) { 1447 Status error("Resume request failed - process still running."); 1448 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1449 return error; 1450 } 1451 Status error = PrivateResume(); 1452 if (!error.Success()) { 1453 // Undo running state change 1454 m_public_run_lock.SetStopped(); 1455 } 1456 return error; 1457 } 1458 1459 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack"; 1460 1461 Status Process::ResumeSynchronous(Stream *stream) { 1462 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1463 LIBLLDB_LOG_PROCESS)); 1464 LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); 1465 if (!m_public_run_lock.TrySetRunning()) { 1466 Status error("Resume request failed - process still running."); 1467 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1468 return error; 1469 } 1470 1471 ListenerSP listener_sp( 1472 Listener::MakeListener(g_resume_sync_name)); 1473 HijackProcessEvents(listener_sp); 1474 1475 Status error = PrivateResume(); 1476 if (error.Success()) { 1477 StateType state = 1478 WaitForProcessToStop(llvm::None, nullptr, true, listener_sp, stream); 1479 const bool must_be_alive = 1480 false; // eStateExited is ok, so this must be false 1481 if (!StateIsStoppedState(state, must_be_alive)) 1482 error.SetErrorStringWithFormat( 1483 "process not in stopped state after synchronous resume: %s", 1484 StateAsCString(state)); 1485 } else { 1486 // Undo running state change 1487 m_public_run_lock.SetStopped(); 1488 } 1489 1490 // Undo the hijacking of process events... 1491 RestoreProcessEvents(); 1492 1493 return error; 1494 } 1495 1496 bool Process::StateChangedIsExternallyHijacked() { 1497 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1498 const char *hijacking_name = GetHijackingListenerName(); 1499 if (hijacking_name && 1500 strcmp(hijacking_name, g_resume_sync_name)) 1501 return true; 1502 } 1503 return false; 1504 } 1505 1506 bool Process::StateChangedIsHijackedForSynchronousResume() { 1507 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1508 const char *hijacking_name = GetHijackingListenerName(); 1509 if (hijacking_name && 1510 strcmp(hijacking_name, g_resume_sync_name) == 0) 1511 return true; 1512 } 1513 return false; 1514 } 1515 1516 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1517 1518 void Process::SetPrivateState(StateType new_state) { 1519 if (m_finalizing) 1520 return; 1521 1522 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1523 LIBLLDB_LOG_PROCESS)); 1524 bool state_changed = false; 1525 1526 LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state)); 1527 1528 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1529 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1530 1531 const StateType old_state = m_private_state.GetValueNoLock(); 1532 state_changed = old_state != new_state; 1533 1534 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1535 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1536 if (old_state_is_stopped != new_state_is_stopped) { 1537 if (new_state_is_stopped) 1538 m_private_run_lock.SetStopped(); 1539 else 1540 m_private_run_lock.SetRunning(); 1541 } 1542 1543 if (state_changed) { 1544 m_private_state.SetValueNoLock(new_state); 1545 EventSP event_sp( 1546 new Event(eBroadcastBitStateChanged, 1547 new ProcessEventData(shared_from_this(), new_state))); 1548 if (StateIsStoppedState(new_state, false)) { 1549 // Note, this currently assumes that all threads in the list stop when 1550 // the process stops. In the future we will want to support a debugging 1551 // model where some threads continue to run while others are stopped. 1552 // When that happens we will either need a way for the thread list to 1553 // identify which threads are stopping or create a special thread list 1554 // containing only threads which actually stopped. 1555 // 1556 // The process plugin is responsible for managing the actual behavior of 1557 // the threads and should have stopped any threads that are going to stop 1558 // before we get here. 1559 m_thread_list.DidStop(); 1560 1561 m_mod_id.BumpStopID(); 1562 if (!m_mod_id.IsLastResumeForUserExpression()) 1563 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1564 m_memory_cache.Clear(); 1565 LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u", 1566 StateAsCString(new_state), m_mod_id.GetStopID()); 1567 } 1568 1569 m_private_state_broadcaster.BroadcastEvent(event_sp); 1570 } else { 1571 LLDB_LOGF(log, 1572 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1573 StateAsCString(new_state)); 1574 } 1575 } 1576 1577 void Process::SetRunningUserExpression(bool on) { 1578 m_mod_id.SetRunningUserExpression(on); 1579 } 1580 1581 void Process::SetRunningUtilityFunction(bool on) { 1582 m_mod_id.SetRunningUtilityFunction(on); 1583 } 1584 1585 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1586 1587 const lldb::ABISP &Process::GetABI() { 1588 if (!m_abi_sp) 1589 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1590 return m_abi_sp; 1591 } 1592 1593 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { 1594 std::vector<LanguageRuntime *> language_runtimes; 1595 1596 if (m_finalizing) 1597 return language_runtimes; 1598 1599 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1600 // Before we pass off a copy of the language runtimes, we must make sure that 1601 // our collection is properly populated. It's possible that some of the 1602 // language runtimes were not loaded yet, either because nobody requested it 1603 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so 1604 // hadn't been loaded). 1605 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 1606 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 1607 language_runtimes.emplace_back(runtime); 1608 } 1609 1610 return language_runtimes; 1611 } 1612 1613 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { 1614 if (m_finalizing) 1615 return nullptr; 1616 1617 LanguageRuntime *runtime = nullptr; 1618 1619 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1620 LanguageRuntimeCollection::iterator pos; 1621 pos = m_language_runtimes.find(language); 1622 if (pos == m_language_runtimes.end() || !pos->second) { 1623 lldb::LanguageRuntimeSP runtime_sp( 1624 LanguageRuntime::FindPlugin(this, language)); 1625 1626 m_language_runtimes[language] = runtime_sp; 1627 runtime = runtime_sp.get(); 1628 } else 1629 runtime = pos->second.get(); 1630 1631 if (runtime) 1632 // It's possible that a language runtime can support multiple LanguageTypes, 1633 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, 1634 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the 1635 // primary language type and make sure that our runtime supports it. 1636 assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); 1637 1638 return runtime; 1639 } 1640 1641 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1642 if (m_finalizing) 1643 return false; 1644 1645 if (in_value.IsDynamic()) 1646 return false; 1647 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1648 1649 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1650 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1651 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1652 } 1653 1654 for (LanguageRuntime *runtime : GetLanguageRuntimes()) { 1655 if (runtime->CouldHaveDynamicValue(in_value)) 1656 return true; 1657 } 1658 1659 return false; 1660 } 1661 1662 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1663 m_dynamic_checkers_up.reset(dynamic_checkers); 1664 } 1665 1666 BreakpointSiteList &Process::GetBreakpointSiteList() { 1667 return m_breakpoint_site_list; 1668 } 1669 1670 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1671 return m_breakpoint_site_list; 1672 } 1673 1674 void Process::DisableAllBreakpointSites() { 1675 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1676 // bp_site->SetEnabled(true); 1677 DisableBreakpointSite(bp_site); 1678 }); 1679 } 1680 1681 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1682 Status error(DisableBreakpointSiteByID(break_id)); 1683 1684 if (error.Success()) 1685 m_breakpoint_site_list.Remove(break_id); 1686 1687 return error; 1688 } 1689 1690 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1691 Status error; 1692 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1693 if (bp_site_sp) { 1694 if (bp_site_sp->IsEnabled()) 1695 error = DisableBreakpointSite(bp_site_sp.get()); 1696 } else { 1697 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1698 break_id); 1699 } 1700 1701 return error; 1702 } 1703 1704 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1705 Status error; 1706 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1707 if (bp_site_sp) { 1708 if (!bp_site_sp->IsEnabled()) 1709 error = EnableBreakpointSite(bp_site_sp.get()); 1710 } else { 1711 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1712 break_id); 1713 } 1714 return error; 1715 } 1716 1717 lldb::break_id_t 1718 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1719 bool use_hardware) { 1720 addr_t load_addr = LLDB_INVALID_ADDRESS; 1721 1722 bool show_error = true; 1723 switch (GetState()) { 1724 case eStateInvalid: 1725 case eStateUnloaded: 1726 case eStateConnected: 1727 case eStateAttaching: 1728 case eStateLaunching: 1729 case eStateDetached: 1730 case eStateExited: 1731 show_error = false; 1732 break; 1733 1734 case eStateStopped: 1735 case eStateRunning: 1736 case eStateStepping: 1737 case eStateCrashed: 1738 case eStateSuspended: 1739 show_error = IsAlive(); 1740 break; 1741 } 1742 1743 // Reset the IsIndirect flag here, in case the location changes from pointing 1744 // to a indirect symbol to a regular symbol. 1745 owner->SetIsIndirect(false); 1746 1747 if (owner->ShouldResolveIndirectFunctions()) { 1748 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1749 if (symbol && symbol->IsIndirect()) { 1750 Status error; 1751 Address symbol_address = symbol->GetAddress(); 1752 load_addr = ResolveIndirectFunction(&symbol_address, error); 1753 if (!error.Success() && show_error) { 1754 GetTarget().GetDebugger().GetErrorStream().Printf( 1755 "warning: failed to resolve indirect function at 0x%" PRIx64 1756 " for breakpoint %i.%i: %s\n", 1757 symbol->GetLoadAddress(&GetTarget()), 1758 owner->GetBreakpoint().GetID(), owner->GetID(), 1759 error.AsCString() ? error.AsCString() : "unknown error"); 1760 return LLDB_INVALID_BREAK_ID; 1761 } 1762 Address resolved_address(load_addr); 1763 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1764 owner->SetIsIndirect(true); 1765 } else 1766 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1767 } else 1768 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1769 1770 if (load_addr != LLDB_INVALID_ADDRESS) { 1771 BreakpointSiteSP bp_site_sp; 1772 1773 // Look up this breakpoint site. If it exists, then add this new owner, 1774 // otherwise create a new breakpoint site and add it. 1775 1776 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1777 1778 if (bp_site_sp) { 1779 bp_site_sp->AddOwner(owner); 1780 owner->SetBreakpointSite(bp_site_sp); 1781 return bp_site_sp->GetID(); 1782 } else { 1783 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1784 load_addr, use_hardware)); 1785 if (bp_site_sp) { 1786 Status error = EnableBreakpointSite(bp_site_sp.get()); 1787 if (error.Success()) { 1788 owner->SetBreakpointSite(bp_site_sp); 1789 return m_breakpoint_site_list.Add(bp_site_sp); 1790 } else { 1791 if (show_error || use_hardware) { 1792 // Report error for setting breakpoint... 1793 GetTarget().GetDebugger().GetErrorStream().Printf( 1794 "warning: failed to set breakpoint site at 0x%" PRIx64 1795 " for breakpoint %i.%i: %s\n", 1796 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1797 error.AsCString() ? error.AsCString() : "unknown error"); 1798 } 1799 } 1800 } 1801 } 1802 } 1803 // We failed to enable the breakpoint 1804 return LLDB_INVALID_BREAK_ID; 1805 } 1806 1807 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1808 lldb::user_id_t owner_loc_id, 1809 BreakpointSiteSP &bp_site_sp) { 1810 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1811 if (num_owners == 0) { 1812 // Don't try to disable the site if we don't have a live process anymore. 1813 if (IsAlive()) 1814 DisableBreakpointSite(bp_site_sp.get()); 1815 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1816 } 1817 } 1818 1819 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1820 uint8_t *buf) const { 1821 size_t bytes_removed = 0; 1822 BreakpointSiteList bp_sites_in_range; 1823 1824 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1825 bp_sites_in_range)) { 1826 bp_sites_in_range.ForEach([bp_addr, size, 1827 buf](BreakpointSite *bp_site) -> void { 1828 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1829 addr_t intersect_addr; 1830 size_t intersect_size; 1831 size_t opcode_offset; 1832 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1833 &intersect_size, &opcode_offset)) { 1834 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1835 assert(bp_addr < intersect_addr + intersect_size && 1836 intersect_addr + intersect_size <= bp_addr + size); 1837 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1838 size_t buf_offset = intersect_addr - bp_addr; 1839 ::memcpy(buf + buf_offset, 1840 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1841 intersect_size); 1842 } 1843 } 1844 }); 1845 } 1846 return bytes_removed; 1847 } 1848 1849 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1850 PlatformSP platform_sp(GetTarget().GetPlatform()); 1851 if (platform_sp) 1852 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1853 return 0; 1854 } 1855 1856 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1857 Status error; 1858 assert(bp_site != nullptr); 1859 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1860 const addr_t bp_addr = bp_site->GetLoadAddress(); 1861 LLDB_LOGF( 1862 log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1863 bp_site->GetID(), (uint64_t)bp_addr); 1864 if (bp_site->IsEnabled()) { 1865 LLDB_LOGF( 1866 log, 1867 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1868 " -- already enabled", 1869 bp_site->GetID(), (uint64_t)bp_addr); 1870 return error; 1871 } 1872 1873 if (bp_addr == LLDB_INVALID_ADDRESS) { 1874 error.SetErrorString("BreakpointSite contains an invalid load address."); 1875 return error; 1876 } 1877 // Ask the lldb::Process subclass to fill in the correct software breakpoint 1878 // trap for the breakpoint site 1879 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 1880 1881 if (bp_opcode_size == 0) { 1882 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 1883 "returned zero, unable to get breakpoint " 1884 "trap for address 0x%" PRIx64, 1885 bp_addr); 1886 } else { 1887 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 1888 1889 if (bp_opcode_bytes == nullptr) { 1890 error.SetErrorString( 1891 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 1892 return error; 1893 } 1894 1895 // Save the original opcode by reading it 1896 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 1897 error) == bp_opcode_size) { 1898 // Write a software breakpoint in place of the original opcode 1899 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 1900 bp_opcode_size) { 1901 uint8_t verify_bp_opcode_bytes[64]; 1902 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 1903 error) == bp_opcode_size) { 1904 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 1905 bp_opcode_size) == 0) { 1906 bp_site->SetEnabled(true); 1907 bp_site->SetType(BreakpointSite::eSoftware); 1908 LLDB_LOGF(log, 1909 "Process::EnableSoftwareBreakpoint (site_id = %d) " 1910 "addr = 0x%" PRIx64 " -- SUCCESS", 1911 bp_site->GetID(), (uint64_t)bp_addr); 1912 } else 1913 error.SetErrorString( 1914 "failed to verify the breakpoint trap in memory."); 1915 } else 1916 error.SetErrorString( 1917 "Unable to read memory to verify breakpoint trap."); 1918 } else 1919 error.SetErrorString("Unable to write breakpoint trap to memory."); 1920 } else 1921 error.SetErrorString("Unable to read memory at breakpoint address."); 1922 } 1923 if (log && error.Fail()) 1924 LLDB_LOGF( 1925 log, 1926 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1927 " -- FAILED: %s", 1928 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1929 return error; 1930 } 1931 1932 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 1933 Status error; 1934 assert(bp_site != nullptr); 1935 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1936 addr_t bp_addr = bp_site->GetLoadAddress(); 1937 lldb::user_id_t breakID = bp_site->GetID(); 1938 LLDB_LOGF(log, 1939 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 1940 ") addr = 0x%" PRIx64, 1941 breakID, (uint64_t)bp_addr); 1942 1943 if (bp_site->IsHardware()) { 1944 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 1945 } else if (bp_site->IsEnabled()) { 1946 const size_t break_op_size = bp_site->GetByteSize(); 1947 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 1948 if (break_op_size > 0) { 1949 // Clear a software breakpoint instruction 1950 uint8_t curr_break_op[8]; 1951 assert(break_op_size <= sizeof(curr_break_op)); 1952 bool break_op_found = false; 1953 1954 // Read the breakpoint opcode 1955 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 1956 break_op_size) { 1957 bool verify = false; 1958 // Make sure the breakpoint opcode exists at this address 1959 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 1960 break_op_found = true; 1961 // We found a valid breakpoint opcode at this address, now restore 1962 // the saved opcode. 1963 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 1964 break_op_size, error) == break_op_size) { 1965 verify = true; 1966 } else 1967 error.SetErrorString( 1968 "Memory write failed when restoring original opcode."); 1969 } else { 1970 error.SetErrorString( 1971 "Original breakpoint trap is no longer in memory."); 1972 // Set verify to true and so we can check if the original opcode has 1973 // already been restored 1974 verify = true; 1975 } 1976 1977 if (verify) { 1978 uint8_t verify_opcode[8]; 1979 assert(break_op_size < sizeof(verify_opcode)); 1980 // Verify that our original opcode made it back to the inferior 1981 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 1982 break_op_size) { 1983 // compare the memory we just read with the original opcode 1984 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 1985 break_op_size) == 0) { 1986 // SUCCESS 1987 bp_site->SetEnabled(false); 1988 LLDB_LOGF(log, 1989 "Process::DisableSoftwareBreakpoint (site_id = %d) " 1990 "addr = 0x%" PRIx64 " -- SUCCESS", 1991 bp_site->GetID(), (uint64_t)bp_addr); 1992 return error; 1993 } else { 1994 if (break_op_found) 1995 error.SetErrorString("Failed to restore original opcode."); 1996 } 1997 } else 1998 error.SetErrorString("Failed to read memory to verify that " 1999 "breakpoint trap was restored."); 2000 } 2001 } else 2002 error.SetErrorString( 2003 "Unable to read memory that should contain the breakpoint trap."); 2004 } 2005 } else { 2006 LLDB_LOGF( 2007 log, 2008 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2009 " -- already disabled", 2010 bp_site->GetID(), (uint64_t)bp_addr); 2011 return error; 2012 } 2013 2014 LLDB_LOGF( 2015 log, 2016 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2017 " -- FAILED: %s", 2018 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 2019 return error; 2020 } 2021 2022 // Uncomment to verify memory caching works after making changes to caching 2023 // code 2024 //#define VERIFY_MEMORY_READS 2025 2026 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 2027 error.Clear(); 2028 if (!GetDisableMemoryCache()) { 2029 #if defined(VERIFY_MEMORY_READS) 2030 // Memory caching is enabled, with debug verification 2031 2032 if (buf && size) { 2033 // Uncomment the line below to make sure memory caching is working. 2034 // I ran this through the test suite and got no assertions, so I am 2035 // pretty confident this is working well. If any changes are made to 2036 // memory caching, uncomment the line below and test your changes! 2037 2038 // Verify all memory reads by using the cache first, then redundantly 2039 // reading the same memory from the inferior and comparing to make sure 2040 // everything is exactly the same. 2041 std::string verify_buf(size, '\0'); 2042 assert(verify_buf.size() == size); 2043 const size_t cache_bytes_read = 2044 m_memory_cache.Read(this, addr, buf, size, error); 2045 Status verify_error; 2046 const size_t verify_bytes_read = 2047 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 2048 verify_buf.size(), verify_error); 2049 assert(cache_bytes_read == verify_bytes_read); 2050 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 2051 assert(verify_error.Success() == error.Success()); 2052 return cache_bytes_read; 2053 } 2054 return 0; 2055 #else // !defined(VERIFY_MEMORY_READS) 2056 // Memory caching is enabled, without debug verification 2057 2058 return m_memory_cache.Read(addr, buf, size, error); 2059 #endif // defined (VERIFY_MEMORY_READS) 2060 } else { 2061 // Memory caching is disabled 2062 2063 return ReadMemoryFromInferior(addr, buf, size, error); 2064 } 2065 } 2066 2067 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 2068 Status &error) { 2069 char buf[256]; 2070 out_str.clear(); 2071 addr_t curr_addr = addr; 2072 while (true) { 2073 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 2074 if (length == 0) 2075 break; 2076 out_str.append(buf, length); 2077 // If we got "length - 1" bytes, we didn't get the whole C string, we need 2078 // to read some more characters 2079 if (length == sizeof(buf) - 1) 2080 curr_addr += length; 2081 else 2082 break; 2083 } 2084 return out_str.size(); 2085 } 2086 2087 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes, 2088 Status &error, size_t type_width) { 2089 size_t total_bytes_read = 0; 2090 if (dst && max_bytes && type_width && max_bytes >= type_width) { 2091 // Ensure a null terminator independent of the number of bytes that is 2092 // read. 2093 memset(dst, 0, max_bytes); 2094 size_t bytes_left = max_bytes - type_width; 2095 2096 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 2097 assert(sizeof(terminator) >= type_width && "Attempting to validate a " 2098 "string with more than 4 bytes " 2099 "per character!"); 2100 2101 addr_t curr_addr = addr; 2102 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2103 char *curr_dst = dst; 2104 2105 error.Clear(); 2106 while (bytes_left > 0 && error.Success()) { 2107 addr_t cache_line_bytes_left = 2108 cache_line_size - (curr_addr % cache_line_size); 2109 addr_t bytes_to_read = 2110 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2111 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2112 2113 if (bytes_read == 0) 2114 break; 2115 2116 // Search for a null terminator of correct size and alignment in 2117 // bytes_read 2118 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 2119 for (size_t i = aligned_start; 2120 i + type_width <= total_bytes_read + bytes_read; i += type_width) 2121 if (::memcmp(&dst[i], terminator, type_width) == 0) { 2122 error.Clear(); 2123 return i; 2124 } 2125 2126 total_bytes_read += bytes_read; 2127 curr_dst += bytes_read; 2128 curr_addr += bytes_read; 2129 bytes_left -= bytes_read; 2130 } 2131 } else { 2132 if (max_bytes) 2133 error.SetErrorString("invalid arguments"); 2134 } 2135 return total_bytes_read; 2136 } 2137 2138 // Deprecated in favor of ReadStringFromMemory which has wchar support and 2139 // correct code to find null terminators. 2140 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 2141 size_t dst_max_len, 2142 Status &result_error) { 2143 size_t total_cstr_len = 0; 2144 if (dst && dst_max_len) { 2145 result_error.Clear(); 2146 // NULL out everything just to be safe 2147 memset(dst, 0, dst_max_len); 2148 Status error; 2149 addr_t curr_addr = addr; 2150 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2151 size_t bytes_left = dst_max_len - 1; 2152 char *curr_dst = dst; 2153 2154 while (bytes_left > 0) { 2155 addr_t cache_line_bytes_left = 2156 cache_line_size - (curr_addr % cache_line_size); 2157 addr_t bytes_to_read = 2158 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2159 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2160 2161 if (bytes_read == 0) { 2162 result_error = error; 2163 dst[total_cstr_len] = '\0'; 2164 break; 2165 } 2166 const size_t len = strlen(curr_dst); 2167 2168 total_cstr_len += len; 2169 2170 if (len < bytes_to_read) 2171 break; 2172 2173 curr_dst += bytes_read; 2174 curr_addr += bytes_read; 2175 bytes_left -= bytes_read; 2176 } 2177 } else { 2178 if (dst == nullptr) 2179 result_error.SetErrorString("invalid arguments"); 2180 else 2181 result_error.Clear(); 2182 } 2183 return total_cstr_len; 2184 } 2185 2186 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2187 Status &error) { 2188 if (buf == nullptr || size == 0) 2189 return 0; 2190 2191 size_t bytes_read = 0; 2192 uint8_t *bytes = (uint8_t *)buf; 2193 2194 while (bytes_read < size) { 2195 const size_t curr_size = size - bytes_read; 2196 const size_t curr_bytes_read = 2197 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2198 bytes_read += curr_bytes_read; 2199 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2200 break; 2201 } 2202 2203 // Replace any software breakpoint opcodes that fall into this range back 2204 // into "buf" before we return 2205 if (bytes_read > 0) 2206 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2207 return bytes_read; 2208 } 2209 2210 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2211 size_t integer_byte_size, 2212 uint64_t fail_value, 2213 Status &error) { 2214 Scalar scalar; 2215 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2216 error)) 2217 return scalar.ULongLong(fail_value); 2218 return fail_value; 2219 } 2220 2221 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2222 size_t integer_byte_size, 2223 int64_t fail_value, 2224 Status &error) { 2225 Scalar scalar; 2226 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2227 error)) 2228 return scalar.SLongLong(fail_value); 2229 return fail_value; 2230 } 2231 2232 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2233 Scalar scalar; 2234 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2235 error)) 2236 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2237 return LLDB_INVALID_ADDRESS; 2238 } 2239 2240 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2241 Status &error) { 2242 Scalar scalar; 2243 const uint32_t addr_byte_size = GetAddressByteSize(); 2244 if (addr_byte_size <= 4) 2245 scalar = (uint32_t)ptr_value; 2246 else 2247 scalar = ptr_value; 2248 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2249 addr_byte_size; 2250 } 2251 2252 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2253 Status &error) { 2254 size_t bytes_written = 0; 2255 const uint8_t *bytes = (const uint8_t *)buf; 2256 2257 while (bytes_written < size) { 2258 const size_t curr_size = size - bytes_written; 2259 const size_t curr_bytes_written = DoWriteMemory( 2260 addr + bytes_written, bytes + bytes_written, curr_size, error); 2261 bytes_written += curr_bytes_written; 2262 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2263 break; 2264 } 2265 return bytes_written; 2266 } 2267 2268 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2269 Status &error) { 2270 #if defined(ENABLE_MEMORY_CACHING) 2271 m_memory_cache.Flush(addr, size); 2272 #endif 2273 2274 if (buf == nullptr || size == 0) 2275 return 0; 2276 2277 m_mod_id.BumpMemoryID(); 2278 2279 // We need to write any data that would go where any current software traps 2280 // (enabled software breakpoints) any software traps (breakpoints) that we 2281 // may have placed in our tasks memory. 2282 2283 BreakpointSiteList bp_sites_in_range; 2284 if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range)) 2285 return WriteMemoryPrivate(addr, buf, size, error); 2286 2287 // No breakpoint sites overlap 2288 if (bp_sites_in_range.IsEmpty()) 2289 return WriteMemoryPrivate(addr, buf, size, error); 2290 2291 const uint8_t *ubuf = (const uint8_t *)buf; 2292 uint64_t bytes_written = 0; 2293 2294 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2295 &error](BreakpointSite *bp) -> void { 2296 if (error.Fail()) 2297 return; 2298 2299 if (bp->GetType() != BreakpointSite::eSoftware) 2300 return; 2301 2302 addr_t intersect_addr; 2303 size_t intersect_size; 2304 size_t opcode_offset; 2305 const bool intersects = bp->IntersectsRange( 2306 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2307 UNUSED_IF_ASSERT_DISABLED(intersects); 2308 assert(intersects); 2309 assert(addr <= intersect_addr && intersect_addr < addr + size); 2310 assert(addr < intersect_addr + intersect_size && 2311 intersect_addr + intersect_size <= addr + size); 2312 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2313 2314 // Check for bytes before this breakpoint 2315 const addr_t curr_addr = addr + bytes_written; 2316 if (intersect_addr > curr_addr) { 2317 // There are some bytes before this breakpoint that we need to just 2318 // write to memory 2319 size_t curr_size = intersect_addr - curr_addr; 2320 size_t curr_bytes_written = 2321 WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error); 2322 bytes_written += curr_bytes_written; 2323 if (curr_bytes_written != curr_size) { 2324 // We weren't able to write all of the requested bytes, we are 2325 // done looping and will return the number of bytes that we have 2326 // written so far. 2327 if (error.Success()) 2328 error.SetErrorToGenericError(); 2329 } 2330 } 2331 // Now write any bytes that would cover up any software breakpoints 2332 // directly into the breakpoint opcode buffer 2333 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, 2334 intersect_size); 2335 bytes_written += intersect_size; 2336 }); 2337 2338 // Write any remaining bytes after the last breakpoint if we have any left 2339 if (bytes_written < size) 2340 bytes_written += 2341 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2342 size - bytes_written, error); 2343 2344 return bytes_written; 2345 } 2346 2347 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2348 size_t byte_size, Status &error) { 2349 if (byte_size == UINT32_MAX) 2350 byte_size = scalar.GetByteSize(); 2351 if (byte_size > 0) { 2352 uint8_t buf[32]; 2353 const size_t mem_size = 2354 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2355 if (mem_size > 0) 2356 return WriteMemory(addr, buf, mem_size, error); 2357 else 2358 error.SetErrorString("failed to get scalar as memory data"); 2359 } else { 2360 error.SetErrorString("invalid scalar value"); 2361 } 2362 return 0; 2363 } 2364 2365 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2366 bool is_signed, Scalar &scalar, 2367 Status &error) { 2368 uint64_t uval = 0; 2369 if (byte_size == 0) { 2370 error.SetErrorString("byte size is zero"); 2371 } else if (byte_size & (byte_size - 1)) { 2372 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2373 byte_size); 2374 } else if (byte_size <= sizeof(uval)) { 2375 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2376 if (bytes_read == byte_size) { 2377 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2378 GetAddressByteSize()); 2379 lldb::offset_t offset = 0; 2380 if (byte_size <= 4) 2381 scalar = data.GetMaxU32(&offset, byte_size); 2382 else 2383 scalar = data.GetMaxU64(&offset, byte_size); 2384 if (is_signed) 2385 scalar.SignExtend(byte_size * 8); 2386 return bytes_read; 2387 } 2388 } else { 2389 error.SetErrorStringWithFormat( 2390 "byte size of %u is too large for integer scalar type", byte_size); 2391 } 2392 return 0; 2393 } 2394 2395 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2396 Status error; 2397 for (const auto &Entry : entries) { 2398 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2399 error); 2400 if (!error.Success()) 2401 break; 2402 } 2403 return error; 2404 } 2405 2406 #define USE_ALLOCATE_MEMORY_CACHE 1 2407 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2408 Status &error) { 2409 if (GetPrivateState() != eStateStopped) { 2410 error.SetErrorToGenericError(); 2411 return LLDB_INVALID_ADDRESS; 2412 } 2413 2414 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2415 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2416 #else 2417 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2418 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2419 LLDB_LOGF(log, 2420 "Process::AllocateMemory(size=%" PRIu64 2421 ", permissions=%s) => 0x%16.16" PRIx64 2422 " (m_stop_id = %u m_memory_id = %u)", 2423 (uint64_t)size, GetPermissionsAsCString(permissions), 2424 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2425 m_mod_id.GetMemoryID()); 2426 return allocated_addr; 2427 #endif 2428 } 2429 2430 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2431 Status &error) { 2432 addr_t return_addr = AllocateMemory(size, permissions, error); 2433 if (error.Success()) { 2434 std::string buffer(size, 0); 2435 WriteMemory(return_addr, buffer.c_str(), size, error); 2436 } 2437 return return_addr; 2438 } 2439 2440 bool Process::CanJIT() { 2441 if (m_can_jit == eCanJITDontKnow) { 2442 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2443 Status err; 2444 2445 uint64_t allocated_memory = AllocateMemory( 2446 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2447 err); 2448 2449 if (err.Success()) { 2450 m_can_jit = eCanJITYes; 2451 LLDB_LOGF(log, 2452 "Process::%s pid %" PRIu64 2453 " allocation test passed, CanJIT () is true", 2454 __FUNCTION__, GetID()); 2455 } else { 2456 m_can_jit = eCanJITNo; 2457 LLDB_LOGF(log, 2458 "Process::%s pid %" PRIu64 2459 " allocation test failed, CanJIT () is false: %s", 2460 __FUNCTION__, GetID(), err.AsCString()); 2461 } 2462 2463 DeallocateMemory(allocated_memory); 2464 } 2465 2466 return m_can_jit == eCanJITYes; 2467 } 2468 2469 void Process::SetCanJIT(bool can_jit) { 2470 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2471 } 2472 2473 void Process::SetCanRunCode(bool can_run_code) { 2474 SetCanJIT(can_run_code); 2475 m_can_interpret_function_calls = can_run_code; 2476 } 2477 2478 Status Process::DeallocateMemory(addr_t ptr) { 2479 Status error; 2480 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2481 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2482 error.SetErrorStringWithFormat( 2483 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2484 } 2485 #else 2486 error = DoDeallocateMemory(ptr); 2487 2488 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2489 LLDB_LOGF(log, 2490 "Process::DeallocateMemory(addr=0x%16.16" PRIx64 2491 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2492 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2493 m_mod_id.GetMemoryID()); 2494 #endif 2495 return error; 2496 } 2497 2498 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2499 lldb::addr_t header_addr, 2500 size_t size_to_read) { 2501 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2502 if (log) { 2503 LLDB_LOGF(log, 2504 "Process::ReadModuleFromMemory reading %s binary from memory", 2505 file_spec.GetPath().c_str()); 2506 } 2507 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2508 if (module_sp) { 2509 Status error; 2510 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2511 shared_from_this(), header_addr, error, size_to_read); 2512 if (objfile) 2513 return module_sp; 2514 } 2515 return ModuleSP(); 2516 } 2517 2518 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2519 uint32_t &permissions) { 2520 MemoryRegionInfo range_info; 2521 permissions = 0; 2522 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2523 if (!error.Success()) 2524 return false; 2525 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2526 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2527 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2528 return false; 2529 } 2530 2531 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2532 permissions |= lldb::ePermissionsReadable; 2533 2534 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2535 permissions |= lldb::ePermissionsWritable; 2536 2537 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2538 permissions |= lldb::ePermissionsExecutable; 2539 2540 return true; 2541 } 2542 2543 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2544 Status error; 2545 error.SetErrorString("watchpoints are not supported"); 2546 return error; 2547 } 2548 2549 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2550 Status error; 2551 error.SetErrorString("watchpoints are not supported"); 2552 return error; 2553 } 2554 2555 StateType 2556 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2557 const Timeout<std::micro> &timeout) { 2558 StateType state; 2559 2560 while (true) { 2561 event_sp.reset(); 2562 state = GetStateChangedEventsPrivate(event_sp, timeout); 2563 2564 if (StateIsStoppedState(state, false)) 2565 break; 2566 2567 // If state is invalid, then we timed out 2568 if (state == eStateInvalid) 2569 break; 2570 2571 if (event_sp) 2572 HandlePrivateEvent(event_sp); 2573 } 2574 return state; 2575 } 2576 2577 void Process::LoadOperatingSystemPlugin(bool flush) { 2578 if (flush) 2579 m_thread_list.Clear(); 2580 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); 2581 if (flush) 2582 Flush(); 2583 } 2584 2585 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2586 Status error; 2587 m_abi_sp.reset(); 2588 m_dyld_up.reset(); 2589 m_jit_loaders_up.reset(); 2590 m_system_runtime_up.reset(); 2591 m_os_up.reset(); 2592 m_process_input_reader.reset(); 2593 2594 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2595 if (!exe_module) { 2596 error.SetErrorString("executable module does not exist"); 2597 return error; 2598 } 2599 2600 char local_exec_file_path[PATH_MAX]; 2601 char platform_exec_file_path[PATH_MAX]; 2602 exe_module->GetFileSpec().GetPath(local_exec_file_path, 2603 sizeof(local_exec_file_path)); 2604 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, 2605 sizeof(platform_exec_file_path)); 2606 if (FileSystem::Instance().Exists(exe_module->GetFileSpec())) { 2607 // Install anything that might need to be installed prior to launching. 2608 // For host systems, this will do nothing, but if we are connected to a 2609 // remote platform it will install any needed binaries 2610 error = GetTarget().Install(&launch_info); 2611 if (error.Fail()) 2612 return error; 2613 2614 if (PrivateStateThreadIsValid()) 2615 PausePrivateStateThread(); 2616 2617 error = WillLaunch(exe_module); 2618 if (error.Success()) { 2619 const bool restarted = false; 2620 SetPublicState(eStateLaunching, restarted); 2621 m_should_detach = false; 2622 2623 if (m_public_run_lock.TrySetRunning()) { 2624 // Now launch using these arguments. 2625 error = DoLaunch(exe_module, launch_info); 2626 } else { 2627 // This shouldn't happen 2628 error.SetErrorString("failed to acquire process run lock"); 2629 } 2630 2631 if (error.Fail()) { 2632 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2633 SetID(LLDB_INVALID_PROCESS_ID); 2634 const char *error_string = error.AsCString(); 2635 if (error_string == nullptr) 2636 error_string = "launch failed"; 2637 SetExitStatus(-1, error_string); 2638 } 2639 } else { 2640 EventSP event_sp; 2641 2642 // Now wait for the process to launch and return control to us, and then 2643 // call DidLaunch: 2644 StateType state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2645 2646 if (state == eStateInvalid || !event_sp) { 2647 // We were able to launch the process, but we failed to catch the 2648 // initial stop. 2649 error.SetErrorString("failed to catch stop after launch"); 2650 SetExitStatus(0, "failed to catch stop after launch"); 2651 Destroy(false); 2652 } else if (state == eStateStopped || state == eStateCrashed) { 2653 DidLaunch(); 2654 2655 DynamicLoader *dyld = GetDynamicLoader(); 2656 if (dyld) 2657 dyld->DidLaunch(); 2658 2659 GetJITLoaders().DidLaunch(); 2660 2661 SystemRuntime *system_runtime = GetSystemRuntime(); 2662 if (system_runtime) 2663 system_runtime->DidLaunch(); 2664 2665 if (!m_os_up) 2666 LoadOperatingSystemPlugin(false); 2667 2668 // We successfully launched the process and stopped, now it the 2669 // right time to set up signal filters before resuming. 2670 UpdateAutomaticSignalFiltering(); 2671 2672 // Note, the stop event was consumed above, but not handled. This 2673 // was done to give DidLaunch a chance to run. The target is either 2674 // stopped or crashed. Directly set the state. This is done to 2675 // prevent a stop message with a bunch of spurious output on thread 2676 // status, as well as not pop a ProcessIOHandler. 2677 SetPublicState(state, false); 2678 2679 if (PrivateStateThreadIsValid()) 2680 ResumePrivateStateThread(); 2681 else 2682 StartPrivateStateThread(); 2683 2684 // Target was stopped at entry as was intended. Need to notify the 2685 // listeners about it. 2686 if (state == eStateStopped && 2687 launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2688 HandlePrivateEvent(event_sp); 2689 } else if (state == eStateExited) { 2690 // We exited while trying to launch somehow. Don't call DidLaunch 2691 // as that's not likely to work, and return an invalid pid. 2692 HandlePrivateEvent(event_sp); 2693 } 2694 } 2695 } 2696 } else { 2697 error.SetErrorStringWithFormat("file doesn't exist: '%s'", 2698 local_exec_file_path); 2699 } 2700 2701 return error; 2702 } 2703 2704 Status Process::LoadCore() { 2705 Status error = DoLoadCore(); 2706 if (error.Success()) { 2707 ListenerSP listener_sp( 2708 Listener::MakeListener("lldb.process.load_core_listener")); 2709 HijackProcessEvents(listener_sp); 2710 2711 if (PrivateStateThreadIsValid()) 2712 ResumePrivateStateThread(); 2713 else 2714 StartPrivateStateThread(); 2715 2716 DynamicLoader *dyld = GetDynamicLoader(); 2717 if (dyld) 2718 dyld->DidAttach(); 2719 2720 GetJITLoaders().DidAttach(); 2721 2722 SystemRuntime *system_runtime = GetSystemRuntime(); 2723 if (system_runtime) 2724 system_runtime->DidAttach(); 2725 2726 if (!m_os_up) 2727 LoadOperatingSystemPlugin(false); 2728 2729 // We successfully loaded a core file, now pretend we stopped so we can 2730 // show all of the threads in the core file and explore the crashed state. 2731 SetPrivateState(eStateStopped); 2732 2733 // Wait for a stopped event since we just posted one above... 2734 lldb::EventSP event_sp; 2735 StateType state = 2736 WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp); 2737 2738 if (!StateIsStoppedState(state, false)) { 2739 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2740 LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", 2741 StateAsCString(state)); 2742 error.SetErrorString( 2743 "Did not get stopped event after loading the core file."); 2744 } 2745 RestoreProcessEvents(); 2746 } 2747 return error; 2748 } 2749 2750 DynamicLoader *Process::GetDynamicLoader() { 2751 if (!m_dyld_up) 2752 m_dyld_up.reset(DynamicLoader::FindPlugin(this, nullptr)); 2753 return m_dyld_up.get(); 2754 } 2755 2756 DataExtractor Process::GetAuxvData() { return DataExtractor(); } 2757 2758 JITLoaderList &Process::GetJITLoaders() { 2759 if (!m_jit_loaders_up) { 2760 m_jit_loaders_up = std::make_unique<JITLoaderList>(); 2761 JITLoader::LoadPlugins(this, *m_jit_loaders_up); 2762 } 2763 return *m_jit_loaders_up; 2764 } 2765 2766 SystemRuntime *Process::GetSystemRuntime() { 2767 if (!m_system_runtime_up) 2768 m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); 2769 return m_system_runtime_up.get(); 2770 } 2771 2772 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2773 uint32_t exec_count) 2774 : NextEventAction(process), m_exec_count(exec_count) { 2775 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2776 LLDB_LOGF( 2777 log, 2778 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2779 __FUNCTION__, static_cast<void *>(process), exec_count); 2780 } 2781 2782 Process::NextEventAction::EventActionResult 2783 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2784 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2785 2786 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2787 LLDB_LOGF(log, 2788 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2789 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2790 2791 switch (state) { 2792 case eStateAttaching: 2793 return eEventActionSuccess; 2794 2795 case eStateRunning: 2796 case eStateConnected: 2797 return eEventActionRetry; 2798 2799 case eStateStopped: 2800 case eStateCrashed: 2801 // During attach, prior to sending the eStateStopped event, 2802 // lldb_private::Process subclasses must set the new process ID. 2803 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2804 // We don't want these events to be reported, so go set the 2805 // ShouldReportStop here: 2806 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2807 2808 if (m_exec_count > 0) { 2809 --m_exec_count; 2810 2811 LLDB_LOGF(log, 2812 "Process::AttachCompletionHandler::%s state %s: reduced " 2813 "remaining exec count to %" PRIu32 ", requesting resume", 2814 __FUNCTION__, StateAsCString(state), m_exec_count); 2815 2816 RequestResume(); 2817 return eEventActionRetry; 2818 } else { 2819 LLDB_LOGF(log, 2820 "Process::AttachCompletionHandler::%s state %s: no more " 2821 "execs expected to start, continuing with attach", 2822 __FUNCTION__, StateAsCString(state)); 2823 2824 m_process->CompleteAttach(); 2825 return eEventActionSuccess; 2826 } 2827 break; 2828 2829 default: 2830 case eStateExited: 2831 case eStateInvalid: 2832 break; 2833 } 2834 2835 m_exit_string.assign("No valid Process"); 2836 return eEventActionExit; 2837 } 2838 2839 Process::NextEventAction::EventActionResult 2840 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2841 return eEventActionSuccess; 2842 } 2843 2844 const char *Process::AttachCompletionHandler::GetExitString() { 2845 return m_exit_string.c_str(); 2846 } 2847 2848 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2849 if (m_listener_sp) 2850 return m_listener_sp; 2851 else 2852 return debugger.GetListener(); 2853 } 2854 2855 Status Process::Attach(ProcessAttachInfo &attach_info) { 2856 m_abi_sp.reset(); 2857 m_process_input_reader.reset(); 2858 m_dyld_up.reset(); 2859 m_jit_loaders_up.reset(); 2860 m_system_runtime_up.reset(); 2861 m_os_up.reset(); 2862 2863 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2864 Status error; 2865 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2866 char process_name[PATH_MAX]; 2867 2868 if (attach_info.GetExecutableFile().GetPath(process_name, 2869 sizeof(process_name))) { 2870 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2871 2872 if (wait_for_launch) { 2873 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2874 if (error.Success()) { 2875 if (m_public_run_lock.TrySetRunning()) { 2876 m_should_detach = true; 2877 const bool restarted = false; 2878 SetPublicState(eStateAttaching, restarted); 2879 // Now attach using these arguments. 2880 error = DoAttachToProcessWithName(process_name, attach_info); 2881 } else { 2882 // This shouldn't happen 2883 error.SetErrorString("failed to acquire process run lock"); 2884 } 2885 2886 if (error.Fail()) { 2887 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2888 SetID(LLDB_INVALID_PROCESS_ID); 2889 if (error.AsCString() == nullptr) 2890 error.SetErrorString("attach failed"); 2891 2892 SetExitStatus(-1, error.AsCString()); 2893 } 2894 } else { 2895 SetNextEventAction(new Process::AttachCompletionHandler( 2896 this, attach_info.GetResumeCount())); 2897 StartPrivateStateThread(); 2898 } 2899 return error; 2900 } 2901 } else { 2902 ProcessInstanceInfoList process_infos; 2903 PlatformSP platform_sp(GetTarget().GetPlatform()); 2904 2905 if (platform_sp) { 2906 ProcessInstanceInfoMatch match_info; 2907 match_info.GetProcessInfo() = attach_info; 2908 match_info.SetNameMatchType(NameMatch::Equals); 2909 platform_sp->FindProcesses(match_info, process_infos); 2910 const uint32_t num_matches = process_infos.size(); 2911 if (num_matches == 1) { 2912 attach_pid = process_infos[0].GetProcessID(); 2913 // Fall through and attach using the above process ID 2914 } else { 2915 match_info.GetProcessInfo().GetExecutableFile().GetPath( 2916 process_name, sizeof(process_name)); 2917 if (num_matches > 1) { 2918 StreamString s; 2919 ProcessInstanceInfo::DumpTableHeader(s, true, false); 2920 for (size_t i = 0; i < num_matches; i++) { 2921 process_infos[i].DumpAsTableRow( 2922 s, platform_sp->GetUserIDResolver(), true, false); 2923 } 2924 error.SetErrorStringWithFormat( 2925 "more than one process named %s:\n%s", process_name, 2926 s.GetData()); 2927 } else 2928 error.SetErrorStringWithFormat( 2929 "could not find a process named %s", process_name); 2930 } 2931 } else { 2932 error.SetErrorString( 2933 "invalid platform, can't find processes by name"); 2934 return error; 2935 } 2936 } 2937 } else { 2938 error.SetErrorString("invalid process name"); 2939 } 2940 } 2941 2942 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 2943 error = WillAttachToProcessWithID(attach_pid); 2944 if (error.Success()) { 2945 2946 if (m_public_run_lock.TrySetRunning()) { 2947 // Now attach using these arguments. 2948 m_should_detach = true; 2949 const bool restarted = false; 2950 SetPublicState(eStateAttaching, restarted); 2951 error = DoAttachToProcessWithID(attach_pid, attach_info); 2952 } else { 2953 // This shouldn't happen 2954 error.SetErrorString("failed to acquire process run lock"); 2955 } 2956 2957 if (error.Success()) { 2958 SetNextEventAction(new Process::AttachCompletionHandler( 2959 this, attach_info.GetResumeCount())); 2960 StartPrivateStateThread(); 2961 } else { 2962 if (GetID() != LLDB_INVALID_PROCESS_ID) 2963 SetID(LLDB_INVALID_PROCESS_ID); 2964 2965 const char *error_string = error.AsCString(); 2966 if (error_string == nullptr) 2967 error_string = "attach failed"; 2968 2969 SetExitStatus(-1, error_string); 2970 } 2971 } 2972 } 2973 return error; 2974 } 2975 2976 void Process::CompleteAttach() { 2977 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 2978 LIBLLDB_LOG_TARGET)); 2979 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 2980 2981 // Let the process subclass figure out at much as it can about the process 2982 // before we go looking for a dynamic loader plug-in. 2983 ArchSpec process_arch; 2984 DidAttach(process_arch); 2985 2986 if (process_arch.IsValid()) { 2987 GetTarget().SetArchitecture(process_arch); 2988 if (log) { 2989 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 2990 LLDB_LOGF(log, 2991 "Process::%s replacing process architecture with DidAttach() " 2992 "architecture: %s", 2993 __FUNCTION__, triple_str ? triple_str : "<null>"); 2994 } 2995 } 2996 2997 // We just attached. If we have a platform, ask it for the process 2998 // architecture, and if it isn't the same as the one we've already set, 2999 // switch architectures. 3000 PlatformSP platform_sp(GetTarget().GetPlatform()); 3001 assert(platform_sp); 3002 if (platform_sp) { 3003 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 3004 if (target_arch.IsValid() && 3005 !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) { 3006 ArchSpec platform_arch; 3007 platform_sp = 3008 platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch); 3009 if (platform_sp) { 3010 GetTarget().SetPlatform(platform_sp); 3011 GetTarget().SetArchitecture(platform_arch); 3012 LLDB_LOGF(log, 3013 "Process::%s switching platform to %s and architecture " 3014 "to %s based on info from attach", 3015 __FUNCTION__, platform_sp->GetName().AsCString(""), 3016 platform_arch.GetTriple().getTriple().c_str()); 3017 } 3018 } else if (!process_arch.IsValid()) { 3019 ProcessInstanceInfo process_info; 3020 GetProcessInfo(process_info); 3021 const ArchSpec &process_arch = process_info.GetArchitecture(); 3022 if (process_arch.IsValid() && 3023 !GetTarget().GetArchitecture().IsExactMatch(process_arch)) { 3024 GetTarget().SetArchitecture(process_arch); 3025 LLDB_LOGF(log, 3026 "Process::%s switching architecture to %s based on info " 3027 "the platform retrieved for pid %" PRIu64, 3028 __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), 3029 GetID()); 3030 } 3031 } 3032 } 3033 3034 // We have completed the attach, now it is time to find the dynamic loader 3035 // plug-in 3036 DynamicLoader *dyld = GetDynamicLoader(); 3037 if (dyld) { 3038 dyld->DidAttach(); 3039 if (log) { 3040 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3041 LLDB_LOGF(log, 3042 "Process::%s after DynamicLoader::DidAttach(), target " 3043 "executable is %s (using %s plugin)", 3044 __FUNCTION__, 3045 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3046 : "<none>", 3047 dyld->GetPluginName().AsCString("<unnamed>")); 3048 } 3049 } 3050 3051 GetJITLoaders().DidAttach(); 3052 3053 SystemRuntime *system_runtime = GetSystemRuntime(); 3054 if (system_runtime) { 3055 system_runtime->DidAttach(); 3056 if (log) { 3057 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3058 LLDB_LOGF(log, 3059 "Process::%s after SystemRuntime::DidAttach(), target " 3060 "executable is %s (using %s plugin)", 3061 __FUNCTION__, 3062 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3063 : "<none>", 3064 system_runtime->GetPluginName().AsCString("<unnamed>")); 3065 } 3066 } 3067 3068 if (!m_os_up) { 3069 LoadOperatingSystemPlugin(false); 3070 if (m_os_up) { 3071 // Somebody might have gotten threads before now, but we need to force the 3072 // update after we've loaded the OperatingSystem plugin or it won't get a 3073 // chance to process the threads. 3074 m_thread_list.Clear(); 3075 UpdateThreadListIfNeeded(); 3076 } 3077 } 3078 // Figure out which one is the executable, and set that in our target: 3079 ModuleSP new_executable_module_sp; 3080 for (ModuleSP module_sp : GetTarget().GetImages().Modules()) { 3081 if (module_sp && module_sp->IsExecutable()) { 3082 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 3083 new_executable_module_sp = module_sp; 3084 break; 3085 } 3086 } 3087 if (new_executable_module_sp) { 3088 GetTarget().SetExecutableModule(new_executable_module_sp, 3089 eLoadDependentsNo); 3090 if (log) { 3091 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3092 LLDB_LOGF( 3093 log, 3094 "Process::%s after looping through modules, target executable is %s", 3095 __FUNCTION__, 3096 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3097 : "<none>"); 3098 } 3099 } 3100 } 3101 3102 Status Process::ConnectRemote(llvm::StringRef remote_url) { 3103 m_abi_sp.reset(); 3104 m_process_input_reader.reset(); 3105 3106 // Find the process and its architecture. Make sure it matches the 3107 // architecture of the current Target, and if not adjust it. 3108 3109 Status error(DoConnectRemote(remote_url)); 3110 if (error.Success()) { 3111 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3112 EventSP event_sp; 3113 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 3114 3115 if (state == eStateStopped || state == eStateCrashed) { 3116 // If we attached and actually have a process on the other end, then 3117 // this ended up being the equivalent of an attach. 3118 CompleteAttach(); 3119 3120 // This delays passing the stopped event to listeners till 3121 // CompleteAttach gets a chance to complete... 3122 HandlePrivateEvent(event_sp); 3123 } 3124 } 3125 3126 if (PrivateStateThreadIsValid()) 3127 ResumePrivateStateThread(); 3128 else 3129 StartPrivateStateThread(); 3130 } 3131 return error; 3132 } 3133 3134 Status Process::PrivateResume() { 3135 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3136 LIBLLDB_LOG_STEP)); 3137 LLDB_LOGF(log, 3138 "Process::PrivateResume() m_stop_id = %u, public state: %s " 3139 "private state: %s", 3140 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3141 StateAsCString(m_private_state.GetValue())); 3142 3143 // If signals handing status changed we might want to update our signal 3144 // filters before resuming. 3145 UpdateAutomaticSignalFiltering(); 3146 3147 Status error(WillResume()); 3148 // Tell the process it is about to resume before the thread list 3149 if (error.Success()) { 3150 // Now let the thread list know we are about to resume so it can let all of 3151 // our threads know that they are about to be resumed. Threads will each be 3152 // called with Thread::WillResume(StateType) where StateType contains the 3153 // state that they are supposed to have when the process is resumed 3154 // (suspended/running/stepping). Threads should also check their resume 3155 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3156 // start back up with a signal. 3157 if (m_thread_list.WillResume()) { 3158 // Last thing, do the PreResumeActions. 3159 if (!RunPreResumeActions()) { 3160 error.SetErrorString( 3161 "Process::PrivateResume PreResumeActions failed, not resuming."); 3162 } else { 3163 m_mod_id.BumpResumeID(); 3164 error = DoResume(); 3165 if (error.Success()) { 3166 DidResume(); 3167 m_thread_list.DidResume(); 3168 LLDB_LOGF(log, "Process thinks the process has resumed."); 3169 } else { 3170 LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); 3171 return error; 3172 } 3173 } 3174 } else { 3175 // Somebody wanted to run without running (e.g. we were faking a step 3176 // from one frame of a set of inlined frames that share the same PC to 3177 // another.) So generate a continue & a stopped event, and let the world 3178 // handle them. 3179 LLDB_LOGF(log, 3180 "Process::PrivateResume() asked to simulate a start & stop."); 3181 3182 SetPrivateState(eStateRunning); 3183 SetPrivateState(eStateStopped); 3184 } 3185 } else 3186 LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", 3187 error.AsCString("<unknown error>")); 3188 return error; 3189 } 3190 3191 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3192 if (!StateIsRunningState(m_public_state.GetValue())) 3193 return Status("Process is not running."); 3194 3195 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3196 // case it was already set and some thread plan logic calls halt on its own. 3197 m_clear_thread_plans_on_stop |= clear_thread_plans; 3198 3199 ListenerSP halt_listener_sp( 3200 Listener::MakeListener("lldb.process.halt_listener")); 3201 HijackProcessEvents(halt_listener_sp); 3202 3203 EventSP event_sp; 3204 3205 SendAsyncInterrupt(); 3206 3207 if (m_public_state.GetValue() == eStateAttaching) { 3208 // Don't hijack and eat the eStateExited as the code that was doing the 3209 // attach will be waiting for this event... 3210 RestoreProcessEvents(); 3211 SetExitStatus(SIGKILL, "Cancelled async attach."); 3212 Destroy(false); 3213 return Status(); 3214 } 3215 3216 // Wait for 10 second for the process to stop. 3217 StateType state = WaitForProcessToStop( 3218 seconds(10), &event_sp, true, halt_listener_sp, nullptr, use_run_lock); 3219 RestoreProcessEvents(); 3220 3221 if (state == eStateInvalid || !event_sp) { 3222 // We timed out and didn't get a stop event... 3223 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3224 } 3225 3226 BroadcastEvent(event_sp); 3227 3228 return Status(); 3229 } 3230 3231 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3232 Status error; 3233 3234 // Check both the public & private states here. If we're hung evaluating an 3235 // expression, for instance, then the public state will be stopped, but we 3236 // still need to interrupt. 3237 if (m_public_state.GetValue() == eStateRunning || 3238 m_private_state.GetValue() == eStateRunning) { 3239 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3240 LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); 3241 3242 ListenerSP listener_sp( 3243 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3244 HijackProcessEvents(listener_sp); 3245 3246 SendAsyncInterrupt(); 3247 3248 // Consume the interrupt event. 3249 StateType state = 3250 WaitForProcessToStop(seconds(10), &exit_event_sp, true, listener_sp); 3251 3252 RestoreProcessEvents(); 3253 3254 // If the process exited while we were waiting for it to stop, put the 3255 // exited event into the shared pointer passed in and return. Our caller 3256 // doesn't need to do anything else, since they don't have a process 3257 // anymore... 3258 3259 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3260 LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", 3261 __FUNCTION__); 3262 return error; 3263 } else 3264 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3265 3266 if (state != eStateStopped) { 3267 LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, 3268 StateAsCString(state)); 3269 // If we really couldn't stop the process then we should just error out 3270 // here, but if the lower levels just bobbled sending the event and we 3271 // really are stopped, then continue on. 3272 StateType private_state = m_private_state.GetValue(); 3273 if (private_state != eStateStopped) { 3274 return Status( 3275 "Attempt to stop the target in order to detach timed out. " 3276 "State = %s", 3277 StateAsCString(GetState())); 3278 } 3279 } 3280 } 3281 return error; 3282 } 3283 3284 Status Process::Detach(bool keep_stopped) { 3285 EventSP exit_event_sp; 3286 Status error; 3287 m_destroy_in_process = true; 3288 3289 error = WillDetach(); 3290 3291 if (error.Success()) { 3292 if (DetachRequiresHalt()) { 3293 error = StopForDestroyOrDetach(exit_event_sp); 3294 if (!error.Success()) { 3295 m_destroy_in_process = false; 3296 return error; 3297 } else if (exit_event_sp) { 3298 // We shouldn't need to do anything else here. There's no process left 3299 // to detach from... 3300 StopPrivateStateThread(); 3301 m_destroy_in_process = false; 3302 return error; 3303 } 3304 } 3305 3306 m_thread_list.DiscardThreadPlans(); 3307 DisableAllBreakpointSites(); 3308 3309 error = DoDetach(keep_stopped); 3310 if (error.Success()) { 3311 DidDetach(); 3312 StopPrivateStateThread(); 3313 } else { 3314 return error; 3315 } 3316 } 3317 m_destroy_in_process = false; 3318 3319 // If we exited when we were waiting for a process to stop, then forward the 3320 // event here so we don't lose the event 3321 if (exit_event_sp) { 3322 // Directly broadcast our exited event because we shut down our private 3323 // state thread above 3324 BroadcastEvent(exit_event_sp); 3325 } 3326 3327 // If we have been interrupted (to kill us) in the middle of running, we may 3328 // not end up propagating the last events through the event system, in which 3329 // case we might strand the write lock. Unlock it here so when we do to tear 3330 // down the process we don't get an error destroying the lock. 3331 3332 m_public_run_lock.SetStopped(); 3333 return error; 3334 } 3335 3336 Status Process::Destroy(bool force_kill) { 3337 // If we've already called Process::Finalize then there's nothing useful to 3338 // be done here. Finalize has actually called Destroy already. 3339 if (m_finalizing) 3340 return {}; 3341 return DestroyImpl(force_kill); 3342 } 3343 3344 Status Process::DestroyImpl(bool force_kill) { 3345 // Tell ourselves we are in the process of destroying the process, so that we 3346 // don't do any unnecessary work that might hinder the destruction. Remember 3347 // to set this back to false when we are done. That way if the attempt 3348 // failed and the process stays around for some reason it won't be in a 3349 // confused state. 3350 3351 if (force_kill) 3352 m_should_detach = false; 3353 3354 if (GetShouldDetach()) { 3355 // FIXME: This will have to be a process setting: 3356 bool keep_stopped = false; 3357 Detach(keep_stopped); 3358 } 3359 3360 m_destroy_in_process = true; 3361 3362 Status error(WillDestroy()); 3363 if (error.Success()) { 3364 EventSP exit_event_sp; 3365 if (DestroyRequiresHalt()) { 3366 error = StopForDestroyOrDetach(exit_event_sp); 3367 } 3368 3369 if (m_public_state.GetValue() != eStateRunning) { 3370 // Ditch all thread plans, and remove all our breakpoints: in case we 3371 // have to restart the target to kill it, we don't want it hitting a 3372 // breakpoint... Only do this if we've stopped, however, since if we 3373 // didn't manage to halt it above, then we're not going to have much luck 3374 // doing this now. 3375 m_thread_list.DiscardThreadPlans(); 3376 DisableAllBreakpointSites(); 3377 } 3378 3379 error = DoDestroy(); 3380 if (error.Success()) { 3381 DidDestroy(); 3382 StopPrivateStateThread(); 3383 } 3384 m_stdio_communication.StopReadThread(); 3385 m_stdio_communication.Disconnect(); 3386 m_stdin_forward = false; 3387 3388 if (m_process_input_reader) { 3389 m_process_input_reader->SetIsDone(true); 3390 m_process_input_reader->Cancel(); 3391 m_process_input_reader.reset(); 3392 } 3393 3394 // If we exited when we were waiting for a process to stop, then forward 3395 // the event here so we don't lose the event 3396 if (exit_event_sp) { 3397 // Directly broadcast our exited event because we shut down our private 3398 // state thread above 3399 BroadcastEvent(exit_event_sp); 3400 } 3401 3402 // If we have been interrupted (to kill us) in the middle of running, we 3403 // may not end up propagating the last events through the event system, in 3404 // which case we might strand the write lock. Unlock it here so when we do 3405 // to tear down the process we don't get an error destroying the lock. 3406 m_public_run_lock.SetStopped(); 3407 } 3408 3409 m_destroy_in_process = false; 3410 3411 return error; 3412 } 3413 3414 Status Process::Signal(int signal) { 3415 Status error(WillSignal()); 3416 if (error.Success()) { 3417 error = DoSignal(signal); 3418 if (error.Success()) 3419 DidSignal(); 3420 } 3421 return error; 3422 } 3423 3424 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3425 assert(signals_sp && "null signals_sp"); 3426 m_unix_signals_sp = signals_sp; 3427 } 3428 3429 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3430 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3431 return m_unix_signals_sp; 3432 } 3433 3434 lldb::ByteOrder Process::GetByteOrder() const { 3435 return GetTarget().GetArchitecture().GetByteOrder(); 3436 } 3437 3438 uint32_t Process::GetAddressByteSize() const { 3439 return GetTarget().GetArchitecture().GetAddressByteSize(); 3440 } 3441 3442 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3443 const StateType state = 3444 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3445 bool return_value = true; 3446 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | 3447 LIBLLDB_LOG_PROCESS)); 3448 3449 switch (state) { 3450 case eStateDetached: 3451 case eStateExited: 3452 case eStateUnloaded: 3453 m_stdio_communication.SynchronizeWithReadThread(); 3454 m_stdio_communication.StopReadThread(); 3455 m_stdio_communication.Disconnect(); 3456 m_stdin_forward = false; 3457 3458 LLVM_FALLTHROUGH; 3459 case eStateConnected: 3460 case eStateAttaching: 3461 case eStateLaunching: 3462 // These events indicate changes in the state of the debugging session, 3463 // always report them. 3464 return_value = true; 3465 break; 3466 case eStateInvalid: 3467 // We stopped for no apparent reason, don't report it. 3468 return_value = false; 3469 break; 3470 case eStateRunning: 3471 case eStateStepping: 3472 // If we've started the target running, we handle the cases where we are 3473 // already running and where there is a transition from stopped to running 3474 // differently. running -> running: Automatically suppress extra running 3475 // events stopped -> running: Report except when there is one or more no 3476 // votes 3477 // and no yes votes. 3478 SynchronouslyNotifyStateChanged(state); 3479 if (m_force_next_event_delivery) 3480 return_value = true; 3481 else { 3482 switch (m_last_broadcast_state) { 3483 case eStateRunning: 3484 case eStateStepping: 3485 // We always suppress multiple runnings with no PUBLIC stop in between. 3486 return_value = false; 3487 break; 3488 default: 3489 // TODO: make this work correctly. For now always report 3490 // run if we aren't running so we don't miss any running events. If I 3491 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3492 // and hit the breakpoints on multiple threads, then somehow during the 3493 // stepping over of all breakpoints no run gets reported. 3494 3495 // This is a transition from stop to run. 3496 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3497 case eVoteYes: 3498 case eVoteNoOpinion: 3499 return_value = true; 3500 break; 3501 case eVoteNo: 3502 return_value = false; 3503 break; 3504 } 3505 break; 3506 } 3507 } 3508 break; 3509 case eStateStopped: 3510 case eStateCrashed: 3511 case eStateSuspended: 3512 // We've stopped. First see if we're going to restart the target. If we 3513 // are going to stop, then we always broadcast the event. If we aren't 3514 // going to stop, let the thread plans decide if we're going to report this 3515 // event. If no thread has an opinion, we don't report it. 3516 3517 m_stdio_communication.SynchronizeWithReadThread(); 3518 RefreshStateAfterStop(); 3519 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3520 LLDB_LOGF(log, 3521 "Process::ShouldBroadcastEvent (%p) stopped due to an " 3522 "interrupt, state: %s", 3523 static_cast<void *>(event_ptr), StateAsCString(state)); 3524 // Even though we know we are going to stop, we should let the threads 3525 // have a look at the stop, so they can properly set their state. 3526 m_thread_list.ShouldStop(event_ptr); 3527 return_value = true; 3528 } else { 3529 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3530 bool should_resume = false; 3531 3532 // It makes no sense to ask "ShouldStop" if we've already been 3533 // restarted... Asking the thread list is also not likely to go well, 3534 // since we are running again. So in that case just report the event. 3535 3536 if (!was_restarted) 3537 should_resume = !m_thread_list.ShouldStop(event_ptr); 3538 3539 if (was_restarted || should_resume || m_resume_requested) { 3540 Vote stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3541 LLDB_LOGF(log, 3542 "Process::ShouldBroadcastEvent: should_resume: %i state: " 3543 "%s was_restarted: %i stop_vote: %d.", 3544 should_resume, StateAsCString(state), was_restarted, 3545 stop_vote); 3546 3547 switch (stop_vote) { 3548 case eVoteYes: 3549 return_value = true; 3550 break; 3551 case eVoteNoOpinion: 3552 case eVoteNo: 3553 return_value = false; 3554 break; 3555 } 3556 3557 if (!was_restarted) { 3558 LLDB_LOGF(log, 3559 "Process::ShouldBroadcastEvent (%p) Restarting process " 3560 "from state: %s", 3561 static_cast<void *>(event_ptr), StateAsCString(state)); 3562 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3563 PrivateResume(); 3564 } 3565 } else { 3566 return_value = true; 3567 SynchronouslyNotifyStateChanged(state); 3568 } 3569 } 3570 break; 3571 } 3572 3573 // Forcing the next event delivery is a one shot deal. So reset it here. 3574 m_force_next_event_delivery = false; 3575 3576 // We do some coalescing of events (for instance two consecutive running 3577 // events get coalesced.) But we only coalesce against events we actually 3578 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3579 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3580 // done, because the PublicState reflects the last event pulled off the 3581 // queue, and there may be several events stacked up on the queue unserviced. 3582 // So the PublicState may not reflect the last broadcasted event yet. 3583 // m_last_broadcast_state gets updated here. 3584 3585 if (return_value) 3586 m_last_broadcast_state = state; 3587 3588 LLDB_LOGF(log, 3589 "Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3590 "broadcast state: %s - %s", 3591 static_cast<void *>(event_ptr), StateAsCString(state), 3592 StateAsCString(m_last_broadcast_state), 3593 return_value ? "YES" : "NO"); 3594 return return_value; 3595 } 3596 3597 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3598 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 3599 3600 bool already_running = PrivateStateThreadIsValid(); 3601 LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, 3602 already_running ? " already running" 3603 : " starting private state thread"); 3604 3605 if (!is_secondary_thread && already_running) 3606 return true; 3607 3608 // Create a thread that watches our internal state and controls which events 3609 // make it to clients (into the DCProcess event queue). 3610 char thread_name[1024]; 3611 uint32_t max_len = llvm::get_max_thread_name_length(); 3612 if (max_len > 0 && max_len <= 30) { 3613 // On platforms with abbreviated thread name lengths, choose thread names 3614 // that fit within the limit. 3615 if (already_running) 3616 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3617 else 3618 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3619 } else { 3620 if (already_running) 3621 snprintf(thread_name, sizeof(thread_name), 3622 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3623 GetID()); 3624 else 3625 snprintf(thread_name, sizeof(thread_name), 3626 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3627 } 3628 3629 // Create the private state thread, and start it running. 3630 PrivateStateThreadArgs *args_ptr = 3631 new PrivateStateThreadArgs(this, is_secondary_thread); 3632 llvm::Expected<HostThread> private_state_thread = 3633 ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, 3634 (void *)args_ptr, 8 * 1024 * 1024); 3635 if (!private_state_thread) { 3636 LLDB_LOG(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST), 3637 "failed to launch host thread: {}", 3638 llvm::toString(private_state_thread.takeError())); 3639 return false; 3640 } 3641 3642 assert(private_state_thread->IsJoinable()); 3643 m_private_state_thread = *private_state_thread; 3644 ResumePrivateStateThread(); 3645 return true; 3646 } 3647 3648 void Process::PausePrivateStateThread() { 3649 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3650 } 3651 3652 void Process::ResumePrivateStateThread() { 3653 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3654 } 3655 3656 void Process::StopPrivateStateThread() { 3657 if (m_private_state_thread.IsJoinable()) 3658 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3659 else { 3660 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3661 LLDB_LOGF( 3662 log, 3663 "Went to stop the private state thread, but it was already invalid."); 3664 } 3665 } 3666 3667 void Process::ControlPrivateStateThread(uint32_t signal) { 3668 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3669 3670 assert(signal == eBroadcastInternalStateControlStop || 3671 signal == eBroadcastInternalStateControlPause || 3672 signal == eBroadcastInternalStateControlResume); 3673 3674 LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); 3675 3676 // Signal the private state thread 3677 if (m_private_state_thread.IsJoinable()) { 3678 // Broadcast the event. 3679 // It is important to do this outside of the if below, because it's 3680 // possible that the thread state is invalid but that the thread is waiting 3681 // on a control event instead of simply being on its way out (this should 3682 // not happen, but it apparently can). 3683 LLDB_LOGF(log, "Sending control event of type: %d.", signal); 3684 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3685 m_private_state_control_broadcaster.BroadcastEvent(signal, 3686 event_receipt_sp); 3687 3688 // Wait for the event receipt or for the private state thread to exit 3689 bool receipt_received = false; 3690 if (PrivateStateThreadIsValid()) { 3691 while (!receipt_received) { 3692 // Check for a receipt for n seconds and then check if the private 3693 // state thread is still around. 3694 receipt_received = 3695 event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout()); 3696 if (!receipt_received) { 3697 // Check if the private state thread is still around. If it isn't 3698 // then we are done waiting 3699 if (!PrivateStateThreadIsValid()) 3700 break; // Private state thread exited or is exiting, we are done 3701 } 3702 } 3703 } 3704 3705 if (signal == eBroadcastInternalStateControlStop) { 3706 thread_result_t result = {}; 3707 m_private_state_thread.Join(&result); 3708 m_private_state_thread.Reset(); 3709 } 3710 } else { 3711 LLDB_LOGF( 3712 log, 3713 "Private state thread already dead, no need to signal it to stop."); 3714 } 3715 } 3716 3717 void Process::SendAsyncInterrupt() { 3718 if (PrivateStateThreadIsValid()) 3719 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3720 nullptr); 3721 else 3722 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3723 } 3724 3725 void Process::HandlePrivateEvent(EventSP &event_sp) { 3726 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3727 m_resume_requested = false; 3728 3729 const StateType new_state = 3730 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3731 3732 // First check to see if anybody wants a shot at this event: 3733 if (m_next_event_action_up) { 3734 NextEventAction::EventActionResult action_result = 3735 m_next_event_action_up->PerformAction(event_sp); 3736 LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); 3737 3738 switch (action_result) { 3739 case NextEventAction::eEventActionSuccess: 3740 SetNextEventAction(nullptr); 3741 break; 3742 3743 case NextEventAction::eEventActionRetry: 3744 break; 3745 3746 case NextEventAction::eEventActionExit: 3747 // Handle Exiting Here. If we already got an exited event, we should 3748 // just propagate it. Otherwise, swallow this event, and set our state 3749 // to exit so the next event will kill us. 3750 if (new_state != eStateExited) { 3751 // FIXME: should cons up an exited event, and discard this one. 3752 SetExitStatus(0, m_next_event_action_up->GetExitString()); 3753 SetNextEventAction(nullptr); 3754 return; 3755 } 3756 SetNextEventAction(nullptr); 3757 break; 3758 } 3759 } 3760 3761 // See if we should broadcast this state to external clients? 3762 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3763 3764 if (should_broadcast) { 3765 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3766 if (log) { 3767 LLDB_LOGF(log, 3768 "Process::%s (pid = %" PRIu64 3769 ") broadcasting new state %s (old state %s) to %s", 3770 __FUNCTION__, GetID(), StateAsCString(new_state), 3771 StateAsCString(GetState()), 3772 is_hijacked ? "hijacked" : "public"); 3773 } 3774 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3775 if (StateIsRunningState(new_state)) { 3776 // Only push the input handler if we aren't fowarding events, as this 3777 // means the curses GUI is in use... Or don't push it if we are launching 3778 // since it will come up stopped. 3779 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3780 new_state != eStateLaunching && new_state != eStateAttaching) { 3781 PushProcessIOHandler(); 3782 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3783 eBroadcastAlways); 3784 LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", 3785 __FUNCTION__, m_iohandler_sync.GetValue()); 3786 } 3787 } else if (StateIsStoppedState(new_state, false)) { 3788 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3789 // If the lldb_private::Debugger is handling the events, we don't want 3790 // to pop the process IOHandler here, we want to do it when we receive 3791 // the stopped event so we can carefully control when the process 3792 // IOHandler is popped because when we stop we want to display some 3793 // text stating how and why we stopped, then maybe some 3794 // process/thread/frame info, and then we want the "(lldb) " prompt to 3795 // show up. If we pop the process IOHandler here, then we will cause 3796 // the command interpreter to become the top IOHandler after the 3797 // process pops off and it will update its prompt right away... See the 3798 // Debugger.cpp file where it calls the function as 3799 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3800 // Otherwise we end up getting overlapping "(lldb) " prompts and 3801 // garbled output. 3802 // 3803 // If we aren't handling the events in the debugger (which is indicated 3804 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3805 // we are hijacked, then we always pop the process IO handler manually. 3806 // Hijacking happens when the internal process state thread is running 3807 // thread plans, or when commands want to run in synchronous mode and 3808 // they call "process->WaitForProcessToStop()". An example of something 3809 // that will hijack the events is a simple expression: 3810 // 3811 // (lldb) expr (int)puts("hello") 3812 // 3813 // This will cause the internal process state thread to resume and halt 3814 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3815 // events) and we do need the IO handler to be pushed and popped 3816 // correctly. 3817 3818 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3819 PopProcessIOHandler(); 3820 } 3821 } 3822 3823 BroadcastEvent(event_sp); 3824 } else { 3825 if (log) { 3826 LLDB_LOGF( 3827 log, 3828 "Process::%s (pid = %" PRIu64 3829 ") suppressing state %s (old state %s): should_broadcast == false", 3830 __FUNCTION__, GetID(), StateAsCString(new_state), 3831 StateAsCString(GetState())); 3832 } 3833 } 3834 } 3835 3836 Status Process::HaltPrivate() { 3837 EventSP event_sp; 3838 Status error(WillHalt()); 3839 if (error.Fail()) 3840 return error; 3841 3842 // Ask the process subclass to actually halt our process 3843 bool caused_stop; 3844 error = DoHalt(caused_stop); 3845 3846 DidHalt(); 3847 return error; 3848 } 3849 3850 thread_result_t Process::PrivateStateThread(void *arg) { 3851 std::unique_ptr<PrivateStateThreadArgs> args_up( 3852 static_cast<PrivateStateThreadArgs *>(arg)); 3853 thread_result_t result = 3854 args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 3855 return result; 3856 } 3857 3858 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3859 bool control_only = true; 3860 3861 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3862 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3863 __FUNCTION__, static_cast<void *>(this), GetID()); 3864 3865 bool exit_now = false; 3866 bool interrupt_requested = false; 3867 while (!exit_now) { 3868 EventSP event_sp; 3869 GetEventsPrivate(event_sp, llvm::None, control_only); 3870 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3871 LLDB_LOGF(log, 3872 "Process::%s (arg = %p, pid = %" PRIu64 3873 ") got a control event: %d", 3874 __FUNCTION__, static_cast<void *>(this), GetID(), 3875 event_sp->GetType()); 3876 3877 switch (event_sp->GetType()) { 3878 case eBroadcastInternalStateControlStop: 3879 exit_now = true; 3880 break; // doing any internal state management below 3881 3882 case eBroadcastInternalStateControlPause: 3883 control_only = true; 3884 break; 3885 3886 case eBroadcastInternalStateControlResume: 3887 control_only = false; 3888 break; 3889 } 3890 3891 continue; 3892 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 3893 if (m_public_state.GetValue() == eStateAttaching) { 3894 LLDB_LOGF(log, 3895 "Process::%s (arg = %p, pid = %" PRIu64 3896 ") woke up with an interrupt while attaching - " 3897 "forwarding interrupt.", 3898 __FUNCTION__, static_cast<void *>(this), GetID()); 3899 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 3900 } else if (StateIsRunningState(m_last_broadcast_state)) { 3901 LLDB_LOGF(log, 3902 "Process::%s (arg = %p, pid = %" PRIu64 3903 ") woke up with an interrupt - Halting.", 3904 __FUNCTION__, static_cast<void *>(this), GetID()); 3905 Status error = HaltPrivate(); 3906 if (error.Fail() && log) 3907 LLDB_LOGF(log, 3908 "Process::%s (arg = %p, pid = %" PRIu64 3909 ") failed to halt the process: %s", 3910 __FUNCTION__, static_cast<void *>(this), GetID(), 3911 error.AsCString()); 3912 // Halt should generate a stopped event. Make a note of the fact that 3913 // we were doing the interrupt, so we can set the interrupted flag 3914 // after we receive the event. We deliberately set this to true even if 3915 // HaltPrivate failed, so that we can interrupt on the next natural 3916 // stop. 3917 interrupt_requested = true; 3918 } else { 3919 // This can happen when someone (e.g. Process::Halt) sees that we are 3920 // running and sends an interrupt request, but the process actually 3921 // stops before we receive it. In that case, we can just ignore the 3922 // request. We use m_last_broadcast_state, because the Stopped event 3923 // may not have been popped of the event queue yet, which is when the 3924 // public state gets updated. 3925 LLDB_LOGF(log, 3926 "Process::%s ignoring interrupt as we have already stopped.", 3927 __FUNCTION__); 3928 } 3929 continue; 3930 } 3931 3932 const StateType internal_state = 3933 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3934 3935 if (internal_state != eStateInvalid) { 3936 if (m_clear_thread_plans_on_stop && 3937 StateIsStoppedState(internal_state, true)) { 3938 m_clear_thread_plans_on_stop = false; 3939 m_thread_list.DiscardThreadPlans(); 3940 } 3941 3942 if (interrupt_requested) { 3943 if (StateIsStoppedState(internal_state, true)) { 3944 // We requested the interrupt, so mark this as such in the stop event 3945 // so clients can tell an interrupted process from a natural stop 3946 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 3947 interrupt_requested = false; 3948 } else if (log) { 3949 LLDB_LOGF(log, 3950 "Process::%s interrupt_requested, but a non-stopped " 3951 "state '%s' received.", 3952 __FUNCTION__, StateAsCString(internal_state)); 3953 } 3954 } 3955 3956 HandlePrivateEvent(event_sp); 3957 } 3958 3959 if (internal_state == eStateInvalid || internal_state == eStateExited || 3960 internal_state == eStateDetached) { 3961 LLDB_LOGF(log, 3962 "Process::%s (arg = %p, pid = %" PRIu64 3963 ") about to exit with internal state %s...", 3964 __FUNCTION__, static_cast<void *>(this), GetID(), 3965 StateAsCString(internal_state)); 3966 3967 break; 3968 } 3969 } 3970 3971 // Verify log is still enabled before attempting to write to it... 3972 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 3973 __FUNCTION__, static_cast<void *>(this), GetID()); 3974 3975 // If we are a secondary thread, then the primary thread we are working for 3976 // will have already acquired the public_run_lock, and isn't done with what 3977 // it was doing yet, so don't try to change it on the way out. 3978 if (!is_secondary_thread) 3979 m_public_run_lock.SetStopped(); 3980 return {}; 3981 } 3982 3983 // Process Event Data 3984 3985 Process::ProcessEventData::ProcessEventData() 3986 : EventData(), m_process_wp(), m_state(eStateInvalid), m_restarted(false), 3987 m_update_state(0), m_interrupted(false) {} 3988 3989 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 3990 StateType state) 3991 : EventData(), m_process_wp(), m_state(state), m_restarted(false), 3992 m_update_state(0), m_interrupted(false) { 3993 if (process_sp) 3994 m_process_wp = process_sp; 3995 } 3996 3997 Process::ProcessEventData::~ProcessEventData() = default; 3998 3999 ConstString Process::ProcessEventData::GetFlavorString() { 4000 static ConstString g_flavor("Process::ProcessEventData"); 4001 return g_flavor; 4002 } 4003 4004 ConstString Process::ProcessEventData::GetFlavor() const { 4005 return ProcessEventData::GetFlavorString(); 4006 } 4007 4008 bool Process::ProcessEventData::ShouldStop(Event *event_ptr, 4009 bool &found_valid_stopinfo) { 4010 found_valid_stopinfo = false; 4011 4012 ProcessSP process_sp(m_process_wp.lock()); 4013 if (!process_sp) 4014 return false; 4015 4016 ThreadList &curr_thread_list = process_sp->GetThreadList(); 4017 uint32_t num_threads = curr_thread_list.GetSize(); 4018 uint32_t idx; 4019 4020 // The actions might change one of the thread's stop_info's opinions about 4021 // whether we should stop the process, so we need to query that as we go. 4022 4023 // One other complication here, is that we try to catch any case where the 4024 // target has run (except for expressions) and immediately exit, but if we 4025 // get that wrong (which is possible) then the thread list might have 4026 // changed, and that would cause our iteration here to crash. We could 4027 // make a copy of the thread list, but we'd really like to also know if it 4028 // has changed at all, so we make up a vector of the thread ID's and check 4029 // what we get back against this list & bag out if anything differs. 4030 ThreadList not_suspended_thread_list(process_sp.get()); 4031 std::vector<uint32_t> thread_index_array(num_threads); 4032 uint32_t not_suspended_idx = 0; 4033 for (idx = 0; idx < num_threads; ++idx) { 4034 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 4035 4036 /* 4037 Filter out all suspended threads, they could not be the reason 4038 of stop and no need to perform any actions on them. 4039 */ 4040 if (thread_sp->GetResumeState() != eStateSuspended) { 4041 not_suspended_thread_list.AddThread(thread_sp); 4042 thread_index_array[not_suspended_idx] = thread_sp->GetIndexID(); 4043 not_suspended_idx++; 4044 } 4045 } 4046 4047 // Use this to track whether we should continue from here. We will only 4048 // continue the target running if no thread says we should stop. Of course 4049 // if some thread's PerformAction actually sets the target running, then it 4050 // doesn't matter what the other threads say... 4051 4052 bool still_should_stop = false; 4053 4054 // Sometimes - for instance if we have a bug in the stub we are talking to, 4055 // we stop but no thread has a valid stop reason. In that case we should 4056 // just stop, because we have no way of telling what the right thing to do 4057 // is, and it's better to let the user decide than continue behind their 4058 // backs. 4059 4060 for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) { 4061 curr_thread_list = process_sp->GetThreadList(); 4062 if (curr_thread_list.GetSize() != num_threads) { 4063 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4064 LIBLLDB_LOG_PROCESS)); 4065 LLDB_LOGF( 4066 log, 4067 "Number of threads changed from %u to %u while processing event.", 4068 num_threads, curr_thread_list.GetSize()); 4069 break; 4070 } 4071 4072 lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx); 4073 4074 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 4075 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4076 LIBLLDB_LOG_PROCESS)); 4077 LLDB_LOGF(log, 4078 "The thread at position %u changed from %u to %u while " 4079 "processing event.", 4080 idx, thread_index_array[idx], thread_sp->GetIndexID()); 4081 break; 4082 } 4083 4084 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4085 if (stop_info_sp && stop_info_sp->IsValid()) { 4086 found_valid_stopinfo = true; 4087 bool this_thread_wants_to_stop; 4088 if (stop_info_sp->GetOverrideShouldStop()) { 4089 this_thread_wants_to_stop = 4090 stop_info_sp->GetOverriddenShouldStopValue(); 4091 } else { 4092 stop_info_sp->PerformAction(event_ptr); 4093 // The stop action might restart the target. If it does, then we 4094 // want to mark that in the event so that whoever is receiving it 4095 // will know to wait for the running event and reflect that state 4096 // appropriately. We also need to stop processing actions, since they 4097 // aren't expecting the target to be running. 4098 4099 // FIXME: we might have run. 4100 if (stop_info_sp->HasTargetRunSinceMe()) { 4101 SetRestarted(true); 4102 break; 4103 } 4104 4105 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4106 } 4107 4108 if (!still_should_stop) 4109 still_should_stop = this_thread_wants_to_stop; 4110 } 4111 } 4112 4113 return still_should_stop; 4114 } 4115 4116 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 4117 ProcessSP process_sp(m_process_wp.lock()); 4118 4119 if (!process_sp) 4120 return; 4121 4122 // This function gets called twice for each event, once when the event gets 4123 // pulled off of the private process event queue, and then any number of 4124 // times, first when it gets pulled off of the public event queue, then other 4125 // times when we're pretending that this is where we stopped at the end of 4126 // expression evaluation. m_update_state is used to distinguish these three 4127 // cases; it is 0 when we're just pulling it off for private handling, and > 4128 // 1 for expression evaluation, and we don't want to do the breakpoint 4129 // command handling then. 4130 if (m_update_state != 1) 4131 return; 4132 4133 process_sp->SetPublicState( 4134 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4135 4136 if (m_state == eStateStopped && !m_restarted) { 4137 // Let process subclasses know we are about to do a public stop and do 4138 // anything they might need to in order to speed up register and memory 4139 // accesses. 4140 process_sp->WillPublicStop(); 4141 } 4142 4143 // If this is a halt event, even if the halt stopped with some reason other 4144 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 4145 // the halt request came through) don't do the StopInfo actions, as they may 4146 // end up restarting the process. 4147 if (m_interrupted) 4148 return; 4149 4150 // If we're not stopped or have restarted, then skip the StopInfo actions: 4151 if (m_state != eStateStopped || m_restarted) { 4152 return; 4153 } 4154 4155 bool does_anybody_have_an_opinion = false; 4156 bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion); 4157 4158 if (GetRestarted()) { 4159 return; 4160 } 4161 4162 if (!still_should_stop && does_anybody_have_an_opinion) { 4163 // We've been asked to continue, so do that here. 4164 SetRestarted(true); 4165 // Use the public resume method here, since this is just extending a 4166 // public resume. 4167 process_sp->PrivateResume(); 4168 } else { 4169 bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) && 4170 !process_sp->StateChangedIsHijackedForSynchronousResume(); 4171 4172 if (!hijacked) { 4173 // If we didn't restart, run the Stop Hooks here. 4174 // Don't do that if state changed events aren't hooked up to the 4175 // public (or SyncResume) broadcasters. StopHooks are just for 4176 // real public stops. They might also restart the target, 4177 // so watch for that. 4178 if (process_sp->GetTarget().RunStopHooks()) 4179 SetRestarted(true); 4180 } 4181 } 4182 } 4183 4184 void Process::ProcessEventData::Dump(Stream *s) const { 4185 ProcessSP process_sp(m_process_wp.lock()); 4186 4187 if (process_sp) 4188 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4189 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4190 else 4191 s->PutCString(" process = NULL, "); 4192 4193 s->Printf("state = %s", StateAsCString(GetState())); 4194 } 4195 4196 const Process::ProcessEventData * 4197 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4198 if (event_ptr) { 4199 const EventData *event_data = event_ptr->GetData(); 4200 if (event_data && 4201 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4202 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4203 } 4204 return nullptr; 4205 } 4206 4207 ProcessSP 4208 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4209 ProcessSP process_sp; 4210 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4211 if (data) 4212 process_sp = data->GetProcessSP(); 4213 return process_sp; 4214 } 4215 4216 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4217 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4218 if (data == nullptr) 4219 return eStateInvalid; 4220 else 4221 return data->GetState(); 4222 } 4223 4224 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4225 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4226 if (data == nullptr) 4227 return false; 4228 else 4229 return data->GetRestarted(); 4230 } 4231 4232 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4233 bool new_value) { 4234 ProcessEventData *data = 4235 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4236 if (data != nullptr) 4237 data->SetRestarted(new_value); 4238 } 4239 4240 size_t 4241 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4242 ProcessEventData *data = 4243 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4244 if (data != nullptr) 4245 return data->GetNumRestartedReasons(); 4246 else 4247 return 0; 4248 } 4249 4250 const char * 4251 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4252 size_t idx) { 4253 ProcessEventData *data = 4254 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4255 if (data != nullptr) 4256 return data->GetRestartedReasonAtIndex(idx); 4257 else 4258 return nullptr; 4259 } 4260 4261 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4262 const char *reason) { 4263 ProcessEventData *data = 4264 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4265 if (data != nullptr) 4266 data->AddRestartedReason(reason); 4267 } 4268 4269 bool Process::ProcessEventData::GetInterruptedFromEvent( 4270 const Event *event_ptr) { 4271 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4272 if (data == nullptr) 4273 return false; 4274 else 4275 return data->GetInterrupted(); 4276 } 4277 4278 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4279 bool new_value) { 4280 ProcessEventData *data = 4281 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4282 if (data != nullptr) 4283 data->SetInterrupted(new_value); 4284 } 4285 4286 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4287 ProcessEventData *data = 4288 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4289 if (data) { 4290 data->SetUpdateStateOnRemoval(); 4291 return true; 4292 } 4293 return false; 4294 } 4295 4296 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4297 4298 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4299 exe_ctx.SetTargetPtr(&GetTarget()); 4300 exe_ctx.SetProcessPtr(this); 4301 exe_ctx.SetThreadPtr(nullptr); 4302 exe_ctx.SetFramePtr(nullptr); 4303 } 4304 4305 // uint32_t 4306 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4307 // std::vector<lldb::pid_t> &pids) 4308 //{ 4309 // return 0; 4310 //} 4311 // 4312 // ArchSpec 4313 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4314 //{ 4315 // return Host::GetArchSpecForExistingProcess (pid); 4316 //} 4317 // 4318 // ArchSpec 4319 // Process::GetArchSpecForExistingProcess (const char *process_name) 4320 //{ 4321 // return Host::GetArchSpecForExistingProcess (process_name); 4322 //} 4323 4324 void Process::AppendSTDOUT(const char *s, size_t len) { 4325 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4326 m_stdout_data.append(s, len); 4327 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4328 new ProcessEventData(shared_from_this(), GetState())); 4329 } 4330 4331 void Process::AppendSTDERR(const char *s, size_t len) { 4332 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4333 m_stderr_data.append(s, len); 4334 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4335 new ProcessEventData(shared_from_this(), GetState())); 4336 } 4337 4338 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4339 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4340 m_profile_data.push_back(one_profile_data); 4341 BroadcastEventIfUnique(eBroadcastBitProfileData, 4342 new ProcessEventData(shared_from_this(), GetState())); 4343 } 4344 4345 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4346 const StructuredDataPluginSP &plugin_sp) { 4347 BroadcastEvent( 4348 eBroadcastBitStructuredData, 4349 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4350 } 4351 4352 StructuredDataPluginSP 4353 Process::GetStructuredDataPlugin(ConstString type_name) const { 4354 auto find_it = m_structured_data_plugin_map.find(type_name); 4355 if (find_it != m_structured_data_plugin_map.end()) 4356 return find_it->second; 4357 else 4358 return StructuredDataPluginSP(); 4359 } 4360 4361 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4362 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4363 if (m_profile_data.empty()) 4364 return 0; 4365 4366 std::string &one_profile_data = m_profile_data.front(); 4367 size_t bytes_available = one_profile_data.size(); 4368 if (bytes_available > 0) { 4369 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4370 LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4371 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4372 if (bytes_available > buf_size) { 4373 memcpy(buf, one_profile_data.c_str(), buf_size); 4374 one_profile_data.erase(0, buf_size); 4375 bytes_available = buf_size; 4376 } else { 4377 memcpy(buf, one_profile_data.c_str(), bytes_available); 4378 m_profile_data.erase(m_profile_data.begin()); 4379 } 4380 } 4381 return bytes_available; 4382 } 4383 4384 // Process STDIO 4385 4386 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4387 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4388 size_t bytes_available = m_stdout_data.size(); 4389 if (bytes_available > 0) { 4390 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4391 LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4392 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4393 if (bytes_available > buf_size) { 4394 memcpy(buf, m_stdout_data.c_str(), buf_size); 4395 m_stdout_data.erase(0, buf_size); 4396 bytes_available = buf_size; 4397 } else { 4398 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4399 m_stdout_data.clear(); 4400 } 4401 } 4402 return bytes_available; 4403 } 4404 4405 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4406 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4407 size_t bytes_available = m_stderr_data.size(); 4408 if (bytes_available > 0) { 4409 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4410 LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4411 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4412 if (bytes_available > buf_size) { 4413 memcpy(buf, m_stderr_data.c_str(), buf_size); 4414 m_stderr_data.erase(0, buf_size); 4415 bytes_available = buf_size; 4416 } else { 4417 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4418 m_stderr_data.clear(); 4419 } 4420 } 4421 return bytes_available; 4422 } 4423 4424 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4425 size_t src_len) { 4426 Process *process = (Process *)baton; 4427 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4428 } 4429 4430 class IOHandlerProcessSTDIO : public IOHandler { 4431 public: 4432 IOHandlerProcessSTDIO(Process *process, int write_fd) 4433 : IOHandler(process->GetTarget().GetDebugger(), 4434 IOHandler::Type::ProcessIO), 4435 m_process(process), 4436 m_read_file(GetInputFD(), File::eOpenOptionRead, false), 4437 m_write_file(write_fd, File::eOpenOptionWrite, false) { 4438 m_pipe.CreateNew(false); 4439 } 4440 4441 ~IOHandlerProcessSTDIO() override = default; 4442 4443 // Each IOHandler gets to run until it is done. It should read data from the 4444 // "in" and place output into "out" and "err and return when done. 4445 void Run() override { 4446 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4447 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4448 SetIsDone(true); 4449 return; 4450 } 4451 4452 SetIsDone(false); 4453 const int read_fd = m_read_file.GetDescriptor(); 4454 TerminalState terminal_state; 4455 terminal_state.Save(read_fd, false); 4456 Terminal terminal(read_fd); 4457 terminal.SetCanonical(false); 4458 terminal.SetEcho(false); 4459 // FD_ZERO, FD_SET are not supported on windows 4460 #ifndef _WIN32 4461 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4462 m_is_running = true; 4463 while (!GetIsDone()) { 4464 SelectHelper select_helper; 4465 select_helper.FDSetRead(read_fd); 4466 select_helper.FDSetRead(pipe_read_fd); 4467 Status error = select_helper.Select(); 4468 4469 if (error.Fail()) { 4470 SetIsDone(true); 4471 } else { 4472 char ch = 0; 4473 size_t n; 4474 if (select_helper.FDIsSetRead(read_fd)) { 4475 n = 1; 4476 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4477 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4478 SetIsDone(true); 4479 } else 4480 SetIsDone(true); 4481 } 4482 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4483 size_t bytes_read; 4484 // Consume the interrupt byte 4485 Status error = m_pipe.Read(&ch, 1, bytes_read); 4486 if (error.Success()) { 4487 switch (ch) { 4488 case 'q': 4489 SetIsDone(true); 4490 break; 4491 case 'i': 4492 if (StateIsRunningState(m_process->GetState())) 4493 m_process->SendAsyncInterrupt(); 4494 break; 4495 } 4496 } 4497 } 4498 } 4499 } 4500 m_is_running = false; 4501 #endif 4502 terminal_state.Restore(); 4503 } 4504 4505 void Cancel() override { 4506 SetIsDone(true); 4507 // Only write to our pipe to cancel if we are in 4508 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4509 // is being run from the command interpreter: 4510 // 4511 // (lldb) step_process_thousands_of_times 4512 // 4513 // In this case the command interpreter will be in the middle of handling 4514 // the command and if the process pushes and pops the IOHandler thousands 4515 // of times, we can end up writing to m_pipe without ever consuming the 4516 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4517 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4518 if (m_is_running) { 4519 char ch = 'q'; // Send 'q' for quit 4520 size_t bytes_written = 0; 4521 m_pipe.Write(&ch, 1, bytes_written); 4522 } 4523 } 4524 4525 bool Interrupt() override { 4526 // Do only things that are safe to do in an interrupt context (like in a 4527 // SIGINT handler), like write 1 byte to a file descriptor. This will 4528 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4529 // that was written to the pipe and then call 4530 // m_process->SendAsyncInterrupt() from a much safer location in code. 4531 if (m_active) { 4532 char ch = 'i'; // Send 'i' for interrupt 4533 size_t bytes_written = 0; 4534 Status result = m_pipe.Write(&ch, 1, bytes_written); 4535 return result.Success(); 4536 } else { 4537 // This IOHandler might be pushed on the stack, but not being run 4538 // currently so do the right thing if we aren't actively watching for 4539 // STDIN by sending the interrupt to the process. Otherwise the write to 4540 // the pipe above would do nothing. This can happen when the command 4541 // interpreter is running and gets a "expression ...". It will be on the 4542 // IOHandler thread and sending the input is complete to the delegate 4543 // which will cause the expression to run, which will push the process IO 4544 // handler, but not run it. 4545 4546 if (StateIsRunningState(m_process->GetState())) { 4547 m_process->SendAsyncInterrupt(); 4548 return true; 4549 } 4550 } 4551 return false; 4552 } 4553 4554 void GotEOF() override {} 4555 4556 protected: 4557 Process *m_process; 4558 NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB 4559 NativeFile m_write_file; // Write to this file (usually the master pty for 4560 // getting io to debuggee) 4561 Pipe m_pipe; 4562 std::atomic<bool> m_is_running{false}; 4563 }; 4564 4565 void Process::SetSTDIOFileDescriptor(int fd) { 4566 // First set up the Read Thread for reading/handling process I/O 4567 m_stdio_communication.SetConnection( 4568 std::make_unique<ConnectionFileDescriptor>(fd, true)); 4569 if (m_stdio_communication.IsConnected()) { 4570 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4571 STDIOReadThreadBytesReceived, this); 4572 m_stdio_communication.StartReadThread(); 4573 4574 // Now read thread is set up, set up input reader. 4575 4576 if (!m_process_input_reader) 4577 m_process_input_reader = 4578 std::make_shared<IOHandlerProcessSTDIO>(this, fd); 4579 } 4580 } 4581 4582 bool Process::ProcessIOHandlerIsActive() { 4583 IOHandlerSP io_handler_sp(m_process_input_reader); 4584 if (io_handler_sp) 4585 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4586 return false; 4587 } 4588 bool Process::PushProcessIOHandler() { 4589 IOHandlerSP io_handler_sp(m_process_input_reader); 4590 if (io_handler_sp) { 4591 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4592 LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); 4593 4594 io_handler_sp->SetIsDone(false); 4595 // If we evaluate an utility function, then we don't cancel the current 4596 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the 4597 // existing IOHandler that potentially provides the user interface (e.g. 4598 // the IOHandler for Editline). 4599 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); 4600 GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp, 4601 cancel_top_handler); 4602 return true; 4603 } 4604 return false; 4605 } 4606 4607 bool Process::PopProcessIOHandler() { 4608 IOHandlerSP io_handler_sp(m_process_input_reader); 4609 if (io_handler_sp) 4610 return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp); 4611 return false; 4612 } 4613 4614 // The process needs to know about installed plug-ins 4615 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4616 4617 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4618 4619 namespace { 4620 // RestorePlanState is used to record the "is private", "is master" and "okay 4621 // to discard" fields of the plan we are running, and reset it on Clean or on 4622 // destruction. It will only reset the state once, so you can call Clean and 4623 // then monkey with the state and it won't get reset on you again. 4624 4625 class RestorePlanState { 4626 public: 4627 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4628 : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) { 4629 if (m_thread_plan_sp) { 4630 m_private = m_thread_plan_sp->GetPrivate(); 4631 m_is_master = m_thread_plan_sp->IsMasterPlan(); 4632 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4633 } 4634 } 4635 4636 ~RestorePlanState() { Clean(); } 4637 4638 void Clean() { 4639 if (!m_already_reset && m_thread_plan_sp) { 4640 m_already_reset = true; 4641 m_thread_plan_sp->SetPrivate(m_private); 4642 m_thread_plan_sp->SetIsMasterPlan(m_is_master); 4643 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4644 } 4645 } 4646 4647 private: 4648 lldb::ThreadPlanSP m_thread_plan_sp; 4649 bool m_already_reset; 4650 bool m_private; 4651 bool m_is_master; 4652 bool m_okay_to_discard; 4653 }; 4654 } // anonymous namespace 4655 4656 static microseconds 4657 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4658 const milliseconds default_one_thread_timeout(250); 4659 4660 // If the overall wait is forever, then we don't need to worry about it. 4661 if (!options.GetTimeout()) { 4662 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4663 : default_one_thread_timeout; 4664 } 4665 4666 // If the one thread timeout is set, use it. 4667 if (options.GetOneThreadTimeout()) 4668 return *options.GetOneThreadTimeout(); 4669 4670 // Otherwise use half the total timeout, bounded by the 4671 // default_one_thread_timeout. 4672 return std::min<microseconds>(default_one_thread_timeout, 4673 *options.GetTimeout() / 2); 4674 } 4675 4676 static Timeout<std::micro> 4677 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4678 bool before_first_timeout) { 4679 // If we are going to run all threads the whole time, or if we are only going 4680 // to run one thread, we can just return the overall timeout. 4681 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4682 return options.GetTimeout(); 4683 4684 if (before_first_timeout) 4685 return GetOneThreadExpressionTimeout(options); 4686 4687 if (!options.GetTimeout()) 4688 return llvm::None; 4689 else 4690 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4691 } 4692 4693 static llvm::Optional<ExpressionResults> 4694 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp, 4695 RestorePlanState &restorer, const EventSP &event_sp, 4696 EventSP &event_to_broadcast_sp, 4697 const EvaluateExpressionOptions &options, 4698 bool handle_interrupts) { 4699 Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS); 4700 4701 ThreadSP thread_sp = thread_plan_sp->GetTarget() 4702 .GetProcessSP() 4703 ->GetThreadList() 4704 .FindThreadByID(thread_id); 4705 if (!thread_sp) { 4706 LLDB_LOG(log, 4707 "The thread on which we were running the " 4708 "expression: tid = {0}, exited while " 4709 "the expression was running.", 4710 thread_id); 4711 return eExpressionThreadVanished; 4712 } 4713 4714 ThreadPlanSP plan = thread_sp->GetCompletedPlan(); 4715 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4716 LLDB_LOG(log, "execution completed successfully"); 4717 4718 // Restore the plan state so it will get reported as intended when we are 4719 // done. 4720 restorer.Clean(); 4721 return eExpressionCompleted; 4722 } 4723 4724 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4725 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4726 stop_info_sp->ShouldNotify(event_sp.get())) { 4727 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4728 if (!options.DoesIgnoreBreakpoints()) { 4729 // Restore the plan state and then force Private to false. We are going 4730 // to stop because of this plan so we need it to become a public plan or 4731 // it won't report correctly when we continue to its termination later 4732 // on. 4733 restorer.Clean(); 4734 thread_plan_sp->SetPrivate(false); 4735 event_to_broadcast_sp = event_sp; 4736 } 4737 return eExpressionHitBreakpoint; 4738 } 4739 4740 if (!handle_interrupts && 4741 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4742 return llvm::None; 4743 4744 LLDB_LOG(log, "thread plan did not successfully complete"); 4745 if (!options.DoesUnwindOnError()) 4746 event_to_broadcast_sp = event_sp; 4747 return eExpressionInterrupted; 4748 } 4749 4750 ExpressionResults 4751 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4752 lldb::ThreadPlanSP &thread_plan_sp, 4753 const EvaluateExpressionOptions &options, 4754 DiagnosticManager &diagnostic_manager) { 4755 ExpressionResults return_value = eExpressionSetupError; 4756 4757 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4758 4759 if (!thread_plan_sp) { 4760 diagnostic_manager.PutString( 4761 eDiagnosticSeverityError, 4762 "RunThreadPlan called with empty thread plan."); 4763 return eExpressionSetupError; 4764 } 4765 4766 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4767 diagnostic_manager.PutString( 4768 eDiagnosticSeverityError, 4769 "RunThreadPlan called with an invalid thread plan."); 4770 return eExpressionSetupError; 4771 } 4772 4773 if (exe_ctx.GetProcessPtr() != this) { 4774 diagnostic_manager.PutString(eDiagnosticSeverityError, 4775 "RunThreadPlan called on wrong process."); 4776 return eExpressionSetupError; 4777 } 4778 4779 Thread *thread = exe_ctx.GetThreadPtr(); 4780 if (thread == nullptr) { 4781 diagnostic_manager.PutString(eDiagnosticSeverityError, 4782 "RunThreadPlan called with invalid thread."); 4783 return eExpressionSetupError; 4784 } 4785 4786 // Record the thread's id so we can tell when a thread we were using 4787 // to run the expression exits during the expression evaluation. 4788 lldb::tid_t expr_thread_id = thread->GetID(); 4789 4790 // We need to change some of the thread plan attributes for the thread plan 4791 // runner. This will restore them when we are done: 4792 4793 RestorePlanState thread_plan_restorer(thread_plan_sp); 4794 4795 // We rely on the thread plan we are running returning "PlanCompleted" if 4796 // when it successfully completes. For that to be true the plan can't be 4797 // private - since private plans suppress themselves in the GetCompletedPlan 4798 // call. 4799 4800 thread_plan_sp->SetPrivate(false); 4801 4802 // The plans run with RunThreadPlan also need to be terminal master plans or 4803 // when they are done we will end up asking the plan above us whether we 4804 // should stop, which may give the wrong answer. 4805 4806 thread_plan_sp->SetIsMasterPlan(true); 4807 thread_plan_sp->SetOkayToDiscard(false); 4808 4809 // If we are running some utility expression for LLDB, we now have to mark 4810 // this in the ProcesModID of this process. This RAII takes care of marking 4811 // and reverting the mark it once we are done running the expression. 4812 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); 4813 4814 if (m_private_state.GetValue() != eStateStopped) { 4815 diagnostic_manager.PutString( 4816 eDiagnosticSeverityError, 4817 "RunThreadPlan called while the private state was not stopped."); 4818 return eExpressionSetupError; 4819 } 4820 4821 // Save the thread & frame from the exe_ctx for restoration after we run 4822 const uint32_t thread_idx_id = thread->GetIndexID(); 4823 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4824 if (!selected_frame_sp) { 4825 thread->SetSelectedFrame(nullptr); 4826 selected_frame_sp = thread->GetSelectedFrame(); 4827 if (!selected_frame_sp) { 4828 diagnostic_manager.Printf( 4829 eDiagnosticSeverityError, 4830 "RunThreadPlan called without a selected frame on thread %d", 4831 thread_idx_id); 4832 return eExpressionSetupError; 4833 } 4834 } 4835 4836 // Make sure the timeout values make sense. The one thread timeout needs to 4837 // be smaller than the overall timeout. 4838 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4839 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4840 diagnostic_manager.PutString(eDiagnosticSeverityError, 4841 "RunThreadPlan called with one thread " 4842 "timeout greater than total timeout"); 4843 return eExpressionSetupError; 4844 } 4845 4846 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4847 4848 // N.B. Running the target may unset the currently selected thread and frame. 4849 // We don't want to do that either, so we should arrange to reset them as 4850 // well. 4851 4852 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4853 4854 uint32_t selected_tid; 4855 StackID selected_stack_id; 4856 if (selected_thread_sp) { 4857 selected_tid = selected_thread_sp->GetIndexID(); 4858 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4859 } else { 4860 selected_tid = LLDB_INVALID_THREAD_ID; 4861 } 4862 4863 HostThread backup_private_state_thread; 4864 lldb::StateType old_state = eStateInvalid; 4865 lldb::ThreadPlanSP stopper_base_plan_sp; 4866 4867 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4868 LIBLLDB_LOG_PROCESS)); 4869 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4870 // Yikes, we are running on the private state thread! So we can't wait for 4871 // public events on this thread, since we are the thread that is generating 4872 // public events. The simplest thing to do is to spin up a temporary thread 4873 // to handle private state thread events while we are fielding public 4874 // events here. 4875 LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " 4876 "another state thread to handle the events."); 4877 4878 backup_private_state_thread = m_private_state_thread; 4879 4880 // One other bit of business: we want to run just this thread plan and 4881 // anything it pushes, and then stop, returning control here. But in the 4882 // normal course of things, the plan above us on the stack would be given a 4883 // shot at the stop event before deciding to stop, and we don't want that. 4884 // So we insert a "stopper" base plan on the stack before the plan we want 4885 // to run. Since base plans always stop and return control to the user, 4886 // that will do just what we want. 4887 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4888 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4889 // Have to make sure our public state is stopped, since otherwise the 4890 // reporting logic below doesn't work correctly. 4891 old_state = m_public_state.GetValue(); 4892 m_public_state.SetValueNoLock(eStateStopped); 4893 4894 // Now spin up the private state thread: 4895 StartPrivateStateThread(true); 4896 } 4897 4898 thread->QueueThreadPlan( 4899 thread_plan_sp, false); // This used to pass "true" does that make sense? 4900 4901 if (options.GetDebug()) { 4902 // In this case, we aren't actually going to run, we just want to stop 4903 // right away. Flush this thread so we will refetch the stacks and show the 4904 // correct backtrace. 4905 // FIXME: To make this prettier we should invent some stop reason for this, 4906 // but that 4907 // is only cosmetic, and this functionality is only of use to lldb 4908 // developers who can live with not pretty... 4909 thread->Flush(); 4910 return eExpressionStoppedForDebug; 4911 } 4912 4913 ListenerSP listener_sp( 4914 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4915 4916 lldb::EventSP event_to_broadcast_sp; 4917 4918 { 4919 // This process event hijacker Hijacks the Public events and its destructor 4920 // makes sure that the process events get restored on exit to the function. 4921 // 4922 // If the event needs to propagate beyond the hijacker (e.g., the process 4923 // exits during execution), then the event is put into 4924 // event_to_broadcast_sp for rebroadcasting. 4925 4926 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 4927 4928 if (log) { 4929 StreamString s; 4930 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 4931 LLDB_LOGF(log, 4932 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 4933 " to run thread plan \"%s\".", 4934 thread_idx_id, expr_thread_id, s.GetData()); 4935 } 4936 4937 bool got_event; 4938 lldb::EventSP event_sp; 4939 lldb::StateType stop_state = lldb::eStateInvalid; 4940 4941 bool before_first_timeout = true; // This is set to false the first time 4942 // that we have to halt the target. 4943 bool do_resume = true; 4944 bool handle_running_event = true; 4945 4946 // This is just for accounting: 4947 uint32_t num_resumes = 0; 4948 4949 // If we are going to run all threads the whole time, or if we are only 4950 // going to run one thread, then we don't need the first timeout. So we 4951 // pretend we are after the first timeout already. 4952 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4953 before_first_timeout = false; 4954 4955 LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", 4956 options.GetStopOthers(), options.GetTryAllThreads(), 4957 before_first_timeout); 4958 4959 // This isn't going to work if there are unfetched events on the queue. Are 4960 // there cases where we might want to run the remaining events here, and 4961 // then try to call the function? That's probably being too tricky for our 4962 // own good. 4963 4964 Event *other_events = listener_sp->PeekAtNextEvent(); 4965 if (other_events != nullptr) { 4966 diagnostic_manager.PutString( 4967 eDiagnosticSeverityError, 4968 "RunThreadPlan called with pending events on the queue."); 4969 return eExpressionSetupError; 4970 } 4971 4972 // We also need to make sure that the next event is delivered. We might be 4973 // calling a function as part of a thread plan, in which case the last 4974 // delivered event could be the running event, and we don't want event 4975 // coalescing to cause us to lose OUR running event... 4976 ForceNextEventDelivery(); 4977 4978 // This while loop must exit out the bottom, there's cleanup that we need to do 4979 // when we are done. So don't call return anywhere within it. 4980 4981 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4982 // It's pretty much impossible to write test cases for things like: One 4983 // thread timeout expires, I go to halt, but the process already stopped on 4984 // the function call stop breakpoint. Turning on this define will make us 4985 // not fetch the first event till after the halt. So if you run a quick 4986 // function, it will have completed, and the completion event will be 4987 // waiting, when you interrupt for halt. The expression evaluation should 4988 // still succeed. 4989 bool miss_first_event = true; 4990 #endif 4991 while (true) { 4992 // We usually want to resume the process if we get to the top of the 4993 // loop. The only exception is if we get two running events with no 4994 // intervening stop, which can happen, we will just wait for then next 4995 // stop event. 4996 LLDB_LOGF(log, 4997 "Top of while loop: do_resume: %i handle_running_event: %i " 4998 "before_first_timeout: %i.", 4999 do_resume, handle_running_event, before_first_timeout); 5000 5001 if (do_resume || handle_running_event) { 5002 // Do the initial resume and wait for the running event before going 5003 // further. 5004 5005 if (do_resume) { 5006 num_resumes++; 5007 Status resume_error = PrivateResume(); 5008 if (!resume_error.Success()) { 5009 diagnostic_manager.Printf( 5010 eDiagnosticSeverityError, 5011 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 5012 resume_error.AsCString()); 5013 return_value = eExpressionSetupError; 5014 break; 5015 } 5016 } 5017 5018 got_event = 5019 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5020 if (!got_event) { 5021 LLDB_LOGF(log, 5022 "Process::RunThreadPlan(): didn't get any event after " 5023 "resume %" PRIu32 ", exiting.", 5024 num_resumes); 5025 5026 diagnostic_manager.Printf(eDiagnosticSeverityError, 5027 "didn't get any event after resume %" PRIu32 5028 ", exiting.", 5029 num_resumes); 5030 return_value = eExpressionSetupError; 5031 break; 5032 } 5033 5034 stop_state = 5035 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5036 5037 if (stop_state != eStateRunning) { 5038 bool restarted = false; 5039 5040 if (stop_state == eStateStopped) { 5041 restarted = Process::ProcessEventData::GetRestartedFromEvent( 5042 event_sp.get()); 5043 LLDB_LOGF( 5044 log, 5045 "Process::RunThreadPlan(): didn't get running event after " 5046 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 5047 "handle_running_event: %i).", 5048 num_resumes, StateAsCString(stop_state), restarted, do_resume, 5049 handle_running_event); 5050 } 5051 5052 if (restarted) { 5053 // This is probably an overabundance of caution, I don't think I 5054 // should ever get a stopped & restarted event here. But if I do, 5055 // the best thing is to Halt and then get out of here. 5056 const bool clear_thread_plans = false; 5057 const bool use_run_lock = false; 5058 Halt(clear_thread_plans, use_run_lock); 5059 } 5060 5061 diagnostic_manager.Printf( 5062 eDiagnosticSeverityError, 5063 "didn't get running event after initial resume, got %s instead.", 5064 StateAsCString(stop_state)); 5065 return_value = eExpressionSetupError; 5066 break; 5067 } 5068 5069 if (log) 5070 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 5071 // We need to call the function synchronously, so spin waiting for it 5072 // to return. If we get interrupted while executing, we're going to 5073 // lose our context, and won't be able to gather the result at this 5074 // point. We set the timeout AFTER the resume, since the resume takes 5075 // some time and we don't want to charge that to the timeout. 5076 } else { 5077 if (log) 5078 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 5079 } 5080 5081 do_resume = true; 5082 handle_running_event = true; 5083 5084 // Now wait for the process to stop again: 5085 event_sp.reset(); 5086 5087 Timeout<std::micro> timeout = 5088 GetExpressionTimeout(options, before_first_timeout); 5089 if (log) { 5090 if (timeout) { 5091 auto now = system_clock::now(); 5092 LLDB_LOGF(log, 5093 "Process::RunThreadPlan(): about to wait - now is %s - " 5094 "endpoint is %s", 5095 llvm::to_string(now).c_str(), 5096 llvm::to_string(now + *timeout).c_str()); 5097 } else { 5098 LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); 5099 } 5100 } 5101 5102 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5103 // See comment above... 5104 if (miss_first_event) { 5105 std::this_thread::sleep_for(std::chrono::milliseconds(1)); 5106 miss_first_event = false; 5107 got_event = false; 5108 } else 5109 #endif 5110 got_event = listener_sp->GetEvent(event_sp, timeout); 5111 5112 if (got_event) { 5113 if (event_sp) { 5114 bool keep_going = false; 5115 if (event_sp->GetType() == eBroadcastBitInterrupt) { 5116 const bool clear_thread_plans = false; 5117 const bool use_run_lock = false; 5118 Halt(clear_thread_plans, use_run_lock); 5119 return_value = eExpressionInterrupted; 5120 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 5121 "execution halted by user interrupt."); 5122 LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " 5123 "eBroadcastBitInterrupted, exiting."); 5124 break; 5125 } else { 5126 stop_state = 5127 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5128 LLDB_LOGF(log, 5129 "Process::RunThreadPlan(): in while loop, got event: %s.", 5130 StateAsCString(stop_state)); 5131 5132 switch (stop_state) { 5133 case lldb::eStateStopped: { 5134 if (Process::ProcessEventData::GetRestartedFromEvent( 5135 event_sp.get())) { 5136 // If we were restarted, we just need to go back up to fetch 5137 // another event. 5138 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " 5139 "restart, so we'll continue waiting."); 5140 keep_going = true; 5141 do_resume = false; 5142 handle_running_event = true; 5143 } else { 5144 const bool handle_interrupts = true; 5145 return_value = *HandleStoppedEvent( 5146 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5147 event_sp, event_to_broadcast_sp, options, 5148 handle_interrupts); 5149 if (return_value == eExpressionThreadVanished) 5150 keep_going = false; 5151 } 5152 } break; 5153 5154 case lldb::eStateRunning: 5155 // This shouldn't really happen, but sometimes we do get two 5156 // running events without an intervening stop, and in that case 5157 // we should just go back to waiting for the stop. 5158 do_resume = false; 5159 keep_going = true; 5160 handle_running_event = false; 5161 break; 5162 5163 default: 5164 LLDB_LOGF(log, 5165 "Process::RunThreadPlan(): execution stopped with " 5166 "unexpected state: %s.", 5167 StateAsCString(stop_state)); 5168 5169 if (stop_state == eStateExited) 5170 event_to_broadcast_sp = event_sp; 5171 5172 diagnostic_manager.PutString( 5173 eDiagnosticSeverityError, 5174 "execution stopped with unexpected state."); 5175 return_value = eExpressionInterrupted; 5176 break; 5177 } 5178 } 5179 5180 if (keep_going) 5181 continue; 5182 else 5183 break; 5184 } else { 5185 if (log) 5186 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5187 "the event pointer was null. How odd..."); 5188 return_value = eExpressionInterrupted; 5189 break; 5190 } 5191 } else { 5192 // If we didn't get an event that means we've timed out... We will 5193 // interrupt the process here. Depending on what we were asked to do 5194 // we will either exit, or try with all threads running for the same 5195 // timeout. 5196 5197 if (log) { 5198 if (options.GetTryAllThreads()) { 5199 if (before_first_timeout) { 5200 LLDB_LOG(log, 5201 "Running function with one thread timeout timed out."); 5202 } else 5203 LLDB_LOG(log, "Restarting function with all threads enabled and " 5204 "timeout: {0} timed out, abandoning execution.", 5205 timeout); 5206 } else 5207 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5208 "abandoning execution.", 5209 timeout); 5210 } 5211 5212 // It is possible that between the time we issued the Halt, and we get 5213 // around to calling Halt the target could have stopped. That's fine, 5214 // Halt will figure that out and send the appropriate Stopped event. 5215 // BUT it is also possible that we stopped & restarted (e.g. hit a 5216 // signal with "stop" set to false.) In 5217 // that case, we'll get the stopped & restarted event, and we should go 5218 // back to waiting for the Halt's stopped event. That's what this 5219 // while loop does. 5220 5221 bool back_to_top = true; 5222 uint32_t try_halt_again = 0; 5223 bool do_halt = true; 5224 const uint32_t num_retries = 5; 5225 while (try_halt_again < num_retries) { 5226 Status halt_error; 5227 if (do_halt) { 5228 LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); 5229 const bool clear_thread_plans = false; 5230 const bool use_run_lock = false; 5231 Halt(clear_thread_plans, use_run_lock); 5232 } 5233 if (halt_error.Success()) { 5234 if (log) 5235 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5236 5237 got_event = 5238 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5239 5240 if (got_event) { 5241 stop_state = 5242 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5243 if (log) { 5244 LLDB_LOGF(log, 5245 "Process::RunThreadPlan(): Stopped with event: %s", 5246 StateAsCString(stop_state)); 5247 if (stop_state == lldb::eStateStopped && 5248 Process::ProcessEventData::GetInterruptedFromEvent( 5249 event_sp.get())) 5250 log->PutCString(" Event was the Halt interruption event."); 5251 } 5252 5253 if (stop_state == lldb::eStateStopped) { 5254 if (Process::ProcessEventData::GetRestartedFromEvent( 5255 event_sp.get())) { 5256 if (log) 5257 log->PutCString("Process::RunThreadPlan(): Went to halt " 5258 "but got a restarted event, there must be " 5259 "an un-restarted stopped event so try " 5260 "again... " 5261 "Exiting wait loop."); 5262 try_halt_again++; 5263 do_halt = false; 5264 continue; 5265 } 5266 5267 // Between the time we initiated the Halt and the time we 5268 // delivered it, the process could have already finished its 5269 // job. Check that here: 5270 const bool handle_interrupts = false; 5271 if (auto result = HandleStoppedEvent( 5272 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5273 event_sp, event_to_broadcast_sp, options, 5274 handle_interrupts)) { 5275 return_value = *result; 5276 back_to_top = false; 5277 break; 5278 } 5279 5280 if (!options.GetTryAllThreads()) { 5281 if (log) 5282 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5283 "was false, we stopped so now we're " 5284 "quitting."); 5285 return_value = eExpressionInterrupted; 5286 back_to_top = false; 5287 break; 5288 } 5289 5290 if (before_first_timeout) { 5291 // Set all the other threads to run, and return to the top of 5292 // the loop, which will continue; 5293 before_first_timeout = false; 5294 thread_plan_sp->SetStopOthers(false); 5295 if (log) 5296 log->PutCString( 5297 "Process::RunThreadPlan(): about to resume."); 5298 5299 back_to_top = true; 5300 break; 5301 } else { 5302 // Running all threads failed, so return Interrupted. 5303 if (log) 5304 log->PutCString("Process::RunThreadPlan(): running all " 5305 "threads timed out."); 5306 return_value = eExpressionInterrupted; 5307 back_to_top = false; 5308 break; 5309 } 5310 } 5311 } else { 5312 if (log) 5313 log->PutCString("Process::RunThreadPlan(): halt said it " 5314 "succeeded, but I got no event. " 5315 "I'm getting out of here passing Interrupted."); 5316 return_value = eExpressionInterrupted; 5317 back_to_top = false; 5318 break; 5319 } 5320 } else { 5321 try_halt_again++; 5322 continue; 5323 } 5324 } 5325 5326 if (!back_to_top || try_halt_again > num_retries) 5327 break; 5328 else 5329 continue; 5330 } 5331 } // END WAIT LOOP 5332 5333 // If we had to start up a temporary private state thread to run this 5334 // thread plan, shut it down now. 5335 if (backup_private_state_thread.IsJoinable()) { 5336 StopPrivateStateThread(); 5337 Status error; 5338 m_private_state_thread = backup_private_state_thread; 5339 if (stopper_base_plan_sp) { 5340 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5341 } 5342 if (old_state != eStateInvalid) 5343 m_public_state.SetValueNoLock(old_state); 5344 } 5345 5346 // If our thread went away on us, we need to get out of here without 5347 // doing any more work. We don't have to clean up the thread plan, that 5348 // will have happened when the Thread was destroyed. 5349 if (return_value == eExpressionThreadVanished) { 5350 return return_value; 5351 } 5352 5353 if (return_value != eExpressionCompleted && log) { 5354 // Print a backtrace into the log so we can figure out where we are: 5355 StreamString s; 5356 s.PutCString("Thread state after unsuccessful completion: \n"); 5357 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5358 log->PutString(s.GetString()); 5359 } 5360 // Restore the thread state if we are going to discard the plan execution. 5361 // There are three cases where this could happen: 1) The execution 5362 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5363 // was true 3) We got some other error, and discard_on_error was true 5364 bool should_unwind = (return_value == eExpressionInterrupted && 5365 options.DoesUnwindOnError()) || 5366 (return_value == eExpressionHitBreakpoint && 5367 options.DoesIgnoreBreakpoints()); 5368 5369 if (return_value == eExpressionCompleted || should_unwind) { 5370 thread_plan_sp->RestoreThreadState(); 5371 } 5372 5373 // Now do some processing on the results of the run: 5374 if (return_value == eExpressionInterrupted || 5375 return_value == eExpressionHitBreakpoint) { 5376 if (log) { 5377 StreamString s; 5378 if (event_sp) 5379 event_sp->Dump(&s); 5380 else { 5381 log->PutCString("Process::RunThreadPlan(): Stop event that " 5382 "interrupted us is NULL."); 5383 } 5384 5385 StreamString ts; 5386 5387 const char *event_explanation = nullptr; 5388 5389 do { 5390 if (!event_sp) { 5391 event_explanation = "<no event>"; 5392 break; 5393 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5394 event_explanation = "<user interrupt>"; 5395 break; 5396 } else { 5397 const Process::ProcessEventData *event_data = 5398 Process::ProcessEventData::GetEventDataFromEvent( 5399 event_sp.get()); 5400 5401 if (!event_data) { 5402 event_explanation = "<no event data>"; 5403 break; 5404 } 5405 5406 Process *process = event_data->GetProcessSP().get(); 5407 5408 if (!process) { 5409 event_explanation = "<no process>"; 5410 break; 5411 } 5412 5413 ThreadList &thread_list = process->GetThreadList(); 5414 5415 uint32_t num_threads = thread_list.GetSize(); 5416 uint32_t thread_index; 5417 5418 ts.Printf("<%u threads> ", num_threads); 5419 5420 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5421 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5422 5423 if (!thread) { 5424 ts.Printf("<?> "); 5425 continue; 5426 } 5427 5428 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5429 RegisterContext *register_context = 5430 thread->GetRegisterContext().get(); 5431 5432 if (register_context) 5433 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5434 else 5435 ts.Printf("[ip unknown] "); 5436 5437 // Show the private stop info here, the public stop info will be 5438 // from the last natural stop. 5439 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5440 if (stop_info_sp) { 5441 const char *stop_desc = stop_info_sp->GetDescription(); 5442 if (stop_desc) 5443 ts.PutCString(stop_desc); 5444 } 5445 ts.Printf(">"); 5446 } 5447 5448 event_explanation = ts.GetData(); 5449 } 5450 } while (false); 5451 5452 if (event_explanation) 5453 LLDB_LOGF(log, 5454 "Process::RunThreadPlan(): execution interrupted: %s %s", 5455 s.GetData(), event_explanation); 5456 else 5457 LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", 5458 s.GetData()); 5459 } 5460 5461 if (should_unwind) { 5462 LLDB_LOGF(log, 5463 "Process::RunThreadPlan: ExecutionInterrupted - " 5464 "discarding thread plans up to %p.", 5465 static_cast<void *>(thread_plan_sp.get())); 5466 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5467 } else { 5468 LLDB_LOGF(log, 5469 "Process::RunThreadPlan: ExecutionInterrupted - for " 5470 "plan: %p not discarding.", 5471 static_cast<void *>(thread_plan_sp.get())); 5472 } 5473 } else if (return_value == eExpressionSetupError) { 5474 if (log) 5475 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5476 5477 if (options.DoesUnwindOnError()) { 5478 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5479 } 5480 } else { 5481 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5482 if (log) 5483 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5484 return_value = eExpressionCompleted; 5485 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5486 if (log) 5487 log->PutCString( 5488 "Process::RunThreadPlan(): thread plan was discarded"); 5489 return_value = eExpressionDiscarded; 5490 } else { 5491 if (log) 5492 log->PutCString( 5493 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5494 if (options.DoesUnwindOnError() && thread_plan_sp) { 5495 if (log) 5496 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5497 "'cause unwind_on_error is set."); 5498 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5499 } 5500 } 5501 } 5502 5503 // Thread we ran the function in may have gone away because we ran the 5504 // target Check that it's still there, and if it is put it back in the 5505 // context. Also restore the frame in the context if it is still present. 5506 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5507 if (thread) { 5508 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5509 } 5510 5511 // Also restore the current process'es selected frame & thread, since this 5512 // function calling may be done behind the user's back. 5513 5514 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5515 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5516 selected_stack_id.IsValid()) { 5517 // We were able to restore the selected thread, now restore the frame: 5518 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5519 StackFrameSP old_frame_sp = 5520 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5521 selected_stack_id); 5522 if (old_frame_sp) 5523 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5524 old_frame_sp.get()); 5525 } 5526 } 5527 } 5528 5529 // If the process exited during the run of the thread plan, notify everyone. 5530 5531 if (event_to_broadcast_sp) { 5532 if (log) 5533 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5534 BroadcastEvent(event_to_broadcast_sp); 5535 } 5536 5537 return return_value; 5538 } 5539 5540 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5541 const char *result_name = "<unknown>"; 5542 5543 switch (result) { 5544 case eExpressionCompleted: 5545 result_name = "eExpressionCompleted"; 5546 break; 5547 case eExpressionDiscarded: 5548 result_name = "eExpressionDiscarded"; 5549 break; 5550 case eExpressionInterrupted: 5551 result_name = "eExpressionInterrupted"; 5552 break; 5553 case eExpressionHitBreakpoint: 5554 result_name = "eExpressionHitBreakpoint"; 5555 break; 5556 case eExpressionSetupError: 5557 result_name = "eExpressionSetupError"; 5558 break; 5559 case eExpressionParseError: 5560 result_name = "eExpressionParseError"; 5561 break; 5562 case eExpressionResultUnavailable: 5563 result_name = "eExpressionResultUnavailable"; 5564 break; 5565 case eExpressionTimedOut: 5566 result_name = "eExpressionTimedOut"; 5567 break; 5568 case eExpressionStoppedForDebug: 5569 result_name = "eExpressionStoppedForDebug"; 5570 break; 5571 case eExpressionThreadVanished: 5572 result_name = "eExpressionThreadVanished"; 5573 } 5574 return result_name; 5575 } 5576 5577 void Process::GetStatus(Stream &strm) { 5578 const StateType state = GetState(); 5579 if (StateIsStoppedState(state, false)) { 5580 if (state == eStateExited) { 5581 int exit_status = GetExitStatus(); 5582 const char *exit_description = GetExitDescription(); 5583 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5584 GetID(), exit_status, exit_status, 5585 exit_description ? exit_description : ""); 5586 } else { 5587 if (state == eStateConnected) 5588 strm.Printf("Connected to remote target.\n"); 5589 else 5590 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5591 } 5592 } else { 5593 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5594 } 5595 } 5596 5597 size_t Process::GetThreadStatus(Stream &strm, 5598 bool only_threads_with_stop_reason, 5599 uint32_t start_frame, uint32_t num_frames, 5600 uint32_t num_frames_with_source, 5601 bool stop_format) { 5602 size_t num_thread_infos_dumped = 0; 5603 5604 // You can't hold the thread list lock while calling Thread::GetStatus. That 5605 // very well might run code (e.g. if we need it to get return values or 5606 // arguments.) For that to work the process has to be able to acquire it. 5607 // So instead copy the thread ID's, and look them up one by one: 5608 5609 uint32_t num_threads; 5610 std::vector<lldb::tid_t> thread_id_array; 5611 // Scope for thread list locker; 5612 { 5613 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5614 ThreadList &curr_thread_list = GetThreadList(); 5615 num_threads = curr_thread_list.GetSize(); 5616 uint32_t idx; 5617 thread_id_array.resize(num_threads); 5618 for (idx = 0; idx < num_threads; ++idx) 5619 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5620 } 5621 5622 for (uint32_t i = 0; i < num_threads; i++) { 5623 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5624 if (thread_sp) { 5625 if (only_threads_with_stop_reason) { 5626 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5627 if (!stop_info_sp || !stop_info_sp->IsValid()) 5628 continue; 5629 } 5630 thread_sp->GetStatus(strm, start_frame, num_frames, 5631 num_frames_with_source, 5632 stop_format); 5633 ++num_thread_infos_dumped; 5634 } else { 5635 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5636 LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 5637 " vanished while running Thread::GetStatus."); 5638 } 5639 } 5640 return num_thread_infos_dumped; 5641 } 5642 5643 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5644 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5645 } 5646 5647 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5648 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5649 region.GetByteSize()); 5650 } 5651 5652 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5653 void *baton) { 5654 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5655 } 5656 5657 bool Process::RunPreResumeActions() { 5658 bool result = true; 5659 while (!m_pre_resume_actions.empty()) { 5660 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5661 m_pre_resume_actions.pop_back(); 5662 bool this_result = action.callback(action.baton); 5663 if (result) 5664 result = this_result; 5665 } 5666 return result; 5667 } 5668 5669 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5670 5671 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5672 { 5673 PreResumeCallbackAndBaton element(callback, baton); 5674 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5675 if (found_iter != m_pre_resume_actions.end()) 5676 { 5677 m_pre_resume_actions.erase(found_iter); 5678 } 5679 } 5680 5681 ProcessRunLock &Process::GetRunLock() { 5682 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5683 return m_private_run_lock; 5684 else 5685 return m_public_run_lock; 5686 } 5687 5688 bool Process::CurrentThreadIsPrivateStateThread() 5689 { 5690 return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); 5691 } 5692 5693 5694 void Process::Flush() { 5695 m_thread_list.Flush(); 5696 m_extended_thread_list.Flush(); 5697 m_extended_thread_stop_id = 0; 5698 m_queue_list.Clear(); 5699 m_queue_list_stop_id = 0; 5700 } 5701 5702 void Process::DidExec() { 5703 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 5704 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 5705 5706 Target &target = GetTarget(); 5707 target.CleanupProcess(); 5708 target.ClearModules(false); 5709 m_dynamic_checkers_up.reset(); 5710 m_abi_sp.reset(); 5711 m_system_runtime_up.reset(); 5712 m_os_up.reset(); 5713 m_dyld_up.reset(); 5714 m_jit_loaders_up.reset(); 5715 m_image_tokens.clear(); 5716 m_allocated_memory_cache.Clear(); 5717 { 5718 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5719 m_language_runtimes.clear(); 5720 } 5721 m_instrumentation_runtimes.clear(); 5722 m_thread_list.DiscardThreadPlans(); 5723 m_memory_cache.Clear(true); 5724 DoDidExec(); 5725 CompleteAttach(); 5726 // Flush the process (threads and all stack frames) after running 5727 // CompleteAttach() in case the dynamic loader loaded things in new 5728 // locations. 5729 Flush(); 5730 5731 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5732 // let the target know so it can do any cleanup it needs to. 5733 target.DidExec(); 5734 } 5735 5736 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5737 if (address == nullptr) { 5738 error.SetErrorString("Invalid address argument"); 5739 return LLDB_INVALID_ADDRESS; 5740 } 5741 5742 addr_t function_addr = LLDB_INVALID_ADDRESS; 5743 5744 addr_t addr = address->GetLoadAddress(&GetTarget()); 5745 std::map<addr_t, addr_t>::const_iterator iter = 5746 m_resolved_indirect_addresses.find(addr); 5747 if (iter != m_resolved_indirect_addresses.end()) { 5748 function_addr = (*iter).second; 5749 } else { 5750 if (!CallVoidArgVoidPtrReturn(address, function_addr)) { 5751 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5752 error.SetErrorStringWithFormat( 5753 "Unable to call resolver for indirect function %s", 5754 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5755 function_addr = LLDB_INVALID_ADDRESS; 5756 } else { 5757 m_resolved_indirect_addresses.insert( 5758 std::pair<addr_t, addr_t>(addr, function_addr)); 5759 } 5760 } 5761 return function_addr; 5762 } 5763 5764 void Process::ModulesDidLoad(ModuleList &module_list) { 5765 // Inform the system runtime of the modified modules. 5766 SystemRuntime *sys_runtime = GetSystemRuntime(); 5767 if (sys_runtime) 5768 sys_runtime->ModulesDidLoad(module_list); 5769 5770 GetJITLoaders().ModulesDidLoad(module_list); 5771 5772 // Give the instrumentation runtimes a chance to be created before informing 5773 // them of the modified modules. 5774 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5775 m_instrumentation_runtimes); 5776 for (auto &runtime : m_instrumentation_runtimes) 5777 runtime.second->ModulesDidLoad(module_list); 5778 5779 // Give the language runtimes a chance to be created before informing them of 5780 // the modified modules. 5781 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 5782 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 5783 runtime->ModulesDidLoad(module_list); 5784 } 5785 5786 // If we don't have an operating system plug-in, try to load one since 5787 // loading shared libraries might cause a new one to try and load 5788 if (!m_os_up) 5789 LoadOperatingSystemPlugin(false); 5790 5791 // Inform the structured-data plugins of the modified modules. 5792 for (auto pair : m_structured_data_plugin_map) { 5793 if (pair.second) 5794 pair.second->ModulesDidLoad(*this, module_list); 5795 } 5796 } 5797 5798 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5799 const char *fmt, ...) { 5800 bool print_warning = true; 5801 5802 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5803 if (!stream_sp) 5804 return; 5805 5806 if (repeat_key != nullptr) { 5807 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5808 if (it == m_warnings_issued.end()) { 5809 m_warnings_issued[warning_type] = WarningsPointerSet(); 5810 m_warnings_issued[warning_type].insert(repeat_key); 5811 } else { 5812 if (it->second.find(repeat_key) != it->second.end()) { 5813 print_warning = false; 5814 } else { 5815 it->second.insert(repeat_key); 5816 } 5817 } 5818 } 5819 5820 if (print_warning) { 5821 va_list args; 5822 va_start(args, fmt); 5823 stream_sp->PrintfVarArg(fmt, args); 5824 va_end(args); 5825 } 5826 } 5827 5828 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5829 if (!GetWarningsOptimization()) 5830 return; 5831 if (!sc.module_sp) 5832 return; 5833 if (!sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5834 sc.function->GetIsOptimized()) { 5835 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5836 "%s was compiled with optimization - stepping may behave " 5837 "oddly; variables may not be available.\n", 5838 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5839 } 5840 } 5841 5842 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) { 5843 if (!GetWarningsUnsupportedLanguage()) 5844 return; 5845 if (!sc.module_sp) 5846 return; 5847 LanguageType language = sc.GetLanguage(); 5848 if (language == eLanguageTypeUnknown) 5849 return; 5850 auto type_system_or_err = sc.module_sp->GetTypeSystemForLanguage(language); 5851 if (auto err = type_system_or_err.takeError()) { 5852 llvm::consumeError(std::move(err)); 5853 PrintWarning(Process::Warnings::eWarningsUnsupportedLanguage, 5854 sc.module_sp.get(), 5855 "This version of LLDB has no plugin for the %s language. " 5856 "Inspection of frame variables will be limited.\n", 5857 Language::GetNameForLanguageType(language)); 5858 } 5859 } 5860 5861 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5862 info.Clear(); 5863 5864 PlatformSP platform_sp = GetTarget().GetPlatform(); 5865 if (!platform_sp) 5866 return false; 5867 5868 return platform_sp->GetProcessInfo(GetID(), info); 5869 } 5870 5871 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5872 ThreadCollectionSP threads; 5873 5874 const MemoryHistorySP &memory_history = 5875 MemoryHistory::FindPlugin(shared_from_this()); 5876 5877 if (!memory_history) { 5878 return threads; 5879 } 5880 5881 threads = std::make_shared<ThreadCollection>( 5882 memory_history->GetHistoryThreads(addr)); 5883 5884 return threads; 5885 } 5886 5887 InstrumentationRuntimeSP 5888 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5889 InstrumentationRuntimeCollection::iterator pos; 5890 pos = m_instrumentation_runtimes.find(type); 5891 if (pos == m_instrumentation_runtimes.end()) { 5892 return InstrumentationRuntimeSP(); 5893 } else 5894 return (*pos).second; 5895 } 5896 5897 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5898 const ArchSpec &arch, ModuleSpec &module_spec) { 5899 module_spec.Clear(); 5900 return false; 5901 } 5902 5903 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5904 m_image_tokens.push_back(image_ptr); 5905 return m_image_tokens.size() - 1; 5906 } 5907 5908 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5909 if (token < m_image_tokens.size()) 5910 return m_image_tokens[token]; 5911 return LLDB_INVALID_ADDRESS; 5912 } 5913 5914 void Process::ResetImageToken(size_t token) { 5915 if (token < m_image_tokens.size()) 5916 m_image_tokens[token] = LLDB_INVALID_ADDRESS; 5917 } 5918 5919 Address 5920 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5921 AddressRange range_bounds) { 5922 Target &target = GetTarget(); 5923 DisassemblerSP disassembler_sp; 5924 InstructionList *insn_list = nullptr; 5925 5926 Address retval = default_stop_addr; 5927 5928 if (!target.GetUseFastStepping()) 5929 return retval; 5930 if (!default_stop_addr.IsValid()) 5931 return retval; 5932 5933 const char *plugin_name = nullptr; 5934 const char *flavor = nullptr; 5935 const bool prefer_file_cache = true; 5936 disassembler_sp = Disassembler::DisassembleRange( 5937 target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds, 5938 prefer_file_cache); 5939 if (disassembler_sp) 5940 insn_list = &disassembler_sp->GetInstructionList(); 5941 5942 if (insn_list == nullptr) { 5943 return retval; 5944 } 5945 5946 size_t insn_offset = 5947 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 5948 if (insn_offset == UINT32_MAX) { 5949 return retval; 5950 } 5951 5952 uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction( 5953 insn_offset, false /* ignore_calls*/, nullptr); 5954 if (branch_index == UINT32_MAX) { 5955 return retval; 5956 } 5957 5958 if (branch_index > insn_offset) { 5959 Address next_branch_insn_address = 5960 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 5961 if (next_branch_insn_address.IsValid() && 5962 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 5963 retval = next_branch_insn_address; 5964 } 5965 } 5966 5967 return retval; 5968 } 5969 5970 Status 5971 Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { 5972 5973 Status error; 5974 5975 lldb::addr_t range_end = 0; 5976 5977 region_list.clear(); 5978 do { 5979 lldb_private::MemoryRegionInfo region_info; 5980 error = GetMemoryRegionInfo(range_end, region_info); 5981 // GetMemoryRegionInfo should only return an error if it is unimplemented. 5982 if (error.Fail()) { 5983 region_list.clear(); 5984 break; 5985 } 5986 5987 range_end = region_info.GetRange().GetRangeEnd(); 5988 if (region_info.GetMapped() == MemoryRegionInfo::eYes) { 5989 region_list.push_back(std::move(region_info)); 5990 } 5991 } while (range_end != LLDB_INVALID_ADDRESS); 5992 5993 return error; 5994 } 5995 5996 Status 5997 Process::ConfigureStructuredData(ConstString type_name, 5998 const StructuredData::ObjectSP &config_sp) { 5999 // If you get this, the Process-derived class needs to implement a method to 6000 // enable an already-reported asynchronous structured data feature. See 6001 // ProcessGDBRemote for an example implementation over gdb-remote. 6002 return Status("unimplemented"); 6003 } 6004 6005 void Process::MapSupportedStructuredDataPlugins( 6006 const StructuredData::Array &supported_type_names) { 6007 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 6008 6009 // Bail out early if there are no type names to map. 6010 if (supported_type_names.GetSize() == 0) { 6011 LLDB_LOGF(log, "Process::%s(): no structured data types supported", 6012 __FUNCTION__); 6013 return; 6014 } 6015 6016 // Convert StructuredData type names to ConstString instances. 6017 std::set<ConstString> const_type_names; 6018 6019 LLDB_LOGF(log, 6020 "Process::%s(): the process supports the following async " 6021 "structured data types:", 6022 __FUNCTION__); 6023 6024 supported_type_names.ForEach( 6025 [&const_type_names, &log](StructuredData::Object *object) { 6026 if (!object) { 6027 // Invalid - shouldn't be null objects in the array. 6028 return false; 6029 } 6030 6031 auto type_name = object->GetAsString(); 6032 if (!type_name) { 6033 // Invalid format - all type names should be strings. 6034 return false; 6035 } 6036 6037 const_type_names.insert(ConstString(type_name->GetValue())); 6038 LLDB_LOG(log, "- {0}", type_name->GetValue()); 6039 return true; 6040 }); 6041 6042 // For each StructuredDataPlugin, if the plugin handles any of the types in 6043 // the supported_type_names, map that type name to that plugin. Stop when 6044 // we've consumed all the type names. 6045 // FIXME: should we return an error if there are type names nobody 6046 // supports? 6047 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 6048 auto create_instance = 6049 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 6050 plugin_index); 6051 if (!create_instance) 6052 break; 6053 6054 // Create the plugin. 6055 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 6056 if (!plugin_sp) { 6057 // This plugin doesn't think it can work with the process. Move on to the 6058 // next. 6059 continue; 6060 } 6061 6062 // For any of the remaining type names, map any that this plugin supports. 6063 std::vector<ConstString> names_to_remove; 6064 for (auto &type_name : const_type_names) { 6065 if (plugin_sp->SupportsStructuredDataType(type_name)) { 6066 m_structured_data_plugin_map.insert( 6067 std::make_pair(type_name, plugin_sp)); 6068 names_to_remove.push_back(type_name); 6069 LLDB_LOGF(log, 6070 "Process::%s(): using plugin %s for type name " 6071 "%s", 6072 __FUNCTION__, plugin_sp->GetPluginName().GetCString(), 6073 type_name.GetCString()); 6074 } 6075 } 6076 6077 // Remove the type names that were consumed by this plugin. 6078 for (auto &type_name : names_to_remove) 6079 const_type_names.erase(type_name); 6080 } 6081 } 6082 6083 bool Process::RouteAsyncStructuredData( 6084 const StructuredData::ObjectSP object_sp) { 6085 // Nothing to do if there's no data. 6086 if (!object_sp) 6087 return false; 6088 6089 // The contract is this must be a dictionary, so we can look up the routing 6090 // key via the top-level 'type' string value within the dictionary. 6091 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 6092 if (!dictionary) 6093 return false; 6094 6095 // Grab the async structured type name (i.e. the feature/plugin name). 6096 ConstString type_name; 6097 if (!dictionary->GetValueForKeyAsString("type", type_name)) 6098 return false; 6099 6100 // Check if there's a plugin registered for this type name. 6101 auto find_it = m_structured_data_plugin_map.find(type_name); 6102 if (find_it == m_structured_data_plugin_map.end()) { 6103 // We don't have a mapping for this structured data type. 6104 return false; 6105 } 6106 6107 // Route the structured data to the plugin. 6108 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 6109 return true; 6110 } 6111 6112 Status Process::UpdateAutomaticSignalFiltering() { 6113 // Default implementation does nothign. 6114 // No automatic signal filtering to speak of. 6115 return Status(); 6116 } 6117 6118 UtilityFunction *Process::GetLoadImageUtilityFunction( 6119 Platform *platform, 6120 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 6121 if (platform != GetTarget().GetPlatform().get()) 6122 return nullptr; 6123 llvm::call_once(m_dlopen_utility_func_flag_once, 6124 [&] { m_dlopen_utility_func_up = factory(); }); 6125 return m_dlopen_utility_func_up.get(); 6126 } 6127 6128 llvm::Expected<TraceTypeInfo> Process::GetSupportedTraceType() { 6129 if (!IsLiveDebugSession()) 6130 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6131 "Can't trace a non-live process."); 6132 return llvm::make_error<UnimplementedError>(); 6133 } 6134 6135 bool Process::CallVoidArgVoidPtrReturn(const Address *address, 6136 addr_t &returned_func, 6137 bool trap_exceptions) { 6138 Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); 6139 if (thread == nullptr || address == nullptr) 6140 return false; 6141 6142 EvaluateExpressionOptions options; 6143 options.SetStopOthers(true); 6144 options.SetUnwindOnError(true); 6145 options.SetIgnoreBreakpoints(true); 6146 options.SetTryAllThreads(true); 6147 options.SetDebug(false); 6148 options.SetTimeout(GetUtilityExpressionTimeout()); 6149 options.SetTrapExceptions(trap_exceptions); 6150 6151 auto type_system_or_err = 6152 GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC); 6153 if (!type_system_or_err) { 6154 llvm::consumeError(type_system_or_err.takeError()); 6155 return false; 6156 } 6157 CompilerType void_ptr_type = 6158 type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType(); 6159 lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( 6160 *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); 6161 if (call_plan_sp) { 6162 DiagnosticManager diagnostics; 6163 6164 StackFrame *frame = thread->GetStackFrameAtIndex(0).get(); 6165 if (frame) { 6166 ExecutionContext exe_ctx; 6167 frame->CalculateExecutionContext(exe_ctx); 6168 ExpressionResults result = 6169 RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics); 6170 if (result == eExpressionCompleted) { 6171 returned_func = 6172 call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( 6173 LLDB_INVALID_ADDRESS); 6174 6175 if (GetAddressByteSize() == 4) { 6176 if (returned_func == UINT32_MAX) 6177 return false; 6178 } else if (GetAddressByteSize() == 8) { 6179 if (returned_func == UINT64_MAX) 6180 return false; 6181 } 6182 return true; 6183 } 6184 } 6185 } 6186 6187 return false; 6188 } 6189