1 //===-- Process.cpp ---------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // C Includes 11 // C++ Includes 12 #include <atomic> 13 #include <mutex> 14 15 // Other libraries and framework includes 16 #include "llvm/Support/ScopedPrinter.h" 17 #include "llvm/Support/Threading.h" 18 19 // Project includes 20 #include "Plugins/Process/Utility/InferiorCallPOSIX.h" 21 #include "lldb/Breakpoint/BreakpointLocation.h" 22 #include "lldb/Breakpoint/StoppointCallbackContext.h" 23 #include "lldb/Core/Debugger.h" 24 #include "lldb/Core/Event.h" 25 #include "lldb/Core/Module.h" 26 #include "lldb/Core/ModuleSpec.h" 27 #include "lldb/Core/PluginManager.h" 28 #include "lldb/Core/State.h" 29 #include "lldb/Core/StreamFile.h" 30 #include "lldb/Expression/DiagnosticManager.h" 31 #include "lldb/Expression/IRDynamicChecks.h" 32 #include "lldb/Expression/UserExpression.h" 33 #include "lldb/Expression/UtilityFunction.h" 34 #include "lldb/Host/ConnectionFileDescriptor.h" 35 #include "lldb/Host/FileSystem.h" 36 #include "lldb/Host/Host.h" 37 #include "lldb/Host/HostInfo.h" 38 #include "lldb/Host/OptionParser.h" 39 #include "lldb/Host/Pipe.h" 40 #include "lldb/Host/Terminal.h" 41 #include "lldb/Host/ThreadLauncher.h" 42 #include "lldb/Interpreter/CommandInterpreter.h" 43 #include "lldb/Interpreter/OptionArgParser.h" 44 #include "lldb/Interpreter/OptionValueProperties.h" 45 #include "lldb/Symbol/Function.h" 46 #include "lldb/Symbol/Symbol.h" 47 #include "lldb/Target/ABI.h" 48 #include "lldb/Target/CPPLanguageRuntime.h" 49 #include "lldb/Target/DynamicLoader.h" 50 #include "lldb/Target/InstrumentationRuntime.h" 51 #include "lldb/Target/JITLoader.h" 52 #include "lldb/Target/JITLoaderList.h" 53 #include "lldb/Target/LanguageRuntime.h" 54 #include "lldb/Target/MemoryHistory.h" 55 #include "lldb/Target/MemoryRegionInfo.h" 56 #include "lldb/Target/ObjCLanguageRuntime.h" 57 #include "lldb/Target/OperatingSystem.h" 58 #include "lldb/Target/Platform.h" 59 #include "lldb/Target/Process.h" 60 #include "lldb/Target/RegisterContext.h" 61 #include "lldb/Target/StopInfo.h" 62 #include "lldb/Target/StructuredDataPlugin.h" 63 #include "lldb/Target/SystemRuntime.h" 64 #include "lldb/Target/Target.h" 65 #include "lldb/Target/TargetList.h" 66 #include "lldb/Target/Thread.h" 67 #include "lldb/Target/ThreadPlan.h" 68 #include "lldb/Target/ThreadPlanBase.h" 69 #include "lldb/Target/UnixSignals.h" 70 #include "lldb/Utility/Log.h" 71 #include "lldb/Utility/NameMatches.h" 72 #include "lldb/Utility/SelectHelper.h" 73 74 using namespace lldb; 75 using namespace lldb_private; 76 using namespace std::chrono; 77 78 // Comment out line below to disable memory caching, overriding the process 79 // setting target.process.disable-memory-cache 80 #define ENABLE_MEMORY_CACHING 81 82 #ifdef ENABLE_MEMORY_CACHING 83 #define DISABLE_MEM_CACHE_DEFAULT false 84 #else 85 #define DISABLE_MEM_CACHE_DEFAULT true 86 #endif 87 88 class ProcessOptionValueProperties : public OptionValueProperties { 89 public: 90 ProcessOptionValueProperties(const ConstString &name) 91 : OptionValueProperties(name) {} 92 93 // This constructor is used when creating ProcessOptionValueProperties when 94 // it is part of a new lldb_private::Process instance. It will copy all 95 // current global property values as needed 96 ProcessOptionValueProperties(ProcessProperties *global_properties) 97 : OptionValueProperties(*global_properties->GetValueProperties()) {} 98 99 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 100 bool will_modify, 101 uint32_t idx) const override { 102 // When getting the value for a key from the process options, we will 103 // always try and grab the setting from the current process if there is 104 // one. Else we just use the one from this instance. 105 if (exe_ctx) { 106 Process *process = exe_ctx->GetProcessPtr(); 107 if (process) { 108 ProcessOptionValueProperties *instance_properties = 109 static_cast<ProcessOptionValueProperties *>( 110 process->GetValueProperties().get()); 111 if (this != instance_properties) 112 return instance_properties->ProtectedGetPropertyAtIndex(idx); 113 } 114 } 115 return ProtectedGetPropertyAtIndex(idx); 116 } 117 }; 118 119 static PropertyDefinition g_properties[] = { 120 {"disable-memory-cache", OptionValue::eTypeBoolean, false, 121 DISABLE_MEM_CACHE_DEFAULT, nullptr, nullptr, 122 "Disable reading and caching of memory in fixed-size units."}, 123 {"extra-startup-command", OptionValue::eTypeArray, false, 124 OptionValue::eTypeString, nullptr, nullptr, 125 "A list containing extra commands understood by the particular process " 126 "plugin used. " 127 "For instance, to turn on debugserver logging set this to " 128 "\"QSetLogging:bitmask=LOG_DEFAULT;\""}, 129 {"ignore-breakpoints-in-expressions", OptionValue::eTypeBoolean, true, true, 130 nullptr, nullptr, 131 "If true, breakpoints will be ignored during expression evaluation."}, 132 {"unwind-on-error-in-expressions", OptionValue::eTypeBoolean, true, true, 133 nullptr, nullptr, "If true, errors in expression evaluation will unwind " 134 "the stack back to the state before the call."}, 135 {"python-os-plugin-path", OptionValue::eTypeFileSpec, false, true, nullptr, 136 nullptr, "A path to a python OS plug-in module file that contains a " 137 "OperatingSystemPlugIn class."}, 138 {"stop-on-sharedlibrary-events", OptionValue::eTypeBoolean, true, false, 139 nullptr, nullptr, 140 "If true, stop when a shared library is loaded or unloaded."}, 141 {"detach-keeps-stopped", OptionValue::eTypeBoolean, true, false, nullptr, 142 nullptr, "If true, detach will attempt to keep the process stopped."}, 143 {"memory-cache-line-size", OptionValue::eTypeUInt64, false, 512, nullptr, 144 nullptr, "The memory cache line size"}, 145 {"optimization-warnings", OptionValue::eTypeBoolean, false, true, nullptr, 146 nullptr, "If true, warn when stopped in code that is optimized where " 147 "stepping and variable availability may not behave as expected."}, 148 {"stop-on-exec", OptionValue::eTypeBoolean, true, true, 149 nullptr, nullptr, 150 "If true, stop when a shared library is loaded or unloaded."}, 151 {nullptr, OptionValue::eTypeInvalid, false, 0, nullptr, nullptr, nullptr}}; 152 153 enum { 154 ePropertyDisableMemCache, 155 ePropertyExtraStartCommand, 156 ePropertyIgnoreBreakpointsInExpressions, 157 ePropertyUnwindOnErrorInExpressions, 158 ePropertyPythonOSPluginPath, 159 ePropertyStopOnSharedLibraryEvents, 160 ePropertyDetachKeepsStopped, 161 ePropertyMemCacheLineSize, 162 ePropertyWarningOptimization, 163 ePropertyStopOnExec 164 }; 165 166 ProcessProperties::ProcessProperties(lldb_private::Process *process) 167 : Properties(), 168 m_process(process) // Can be nullptr for global ProcessProperties 169 { 170 if (process == nullptr) { 171 // Global process properties, set them up one time 172 m_collection_sp.reset( 173 new ProcessOptionValueProperties(ConstString("process"))); 174 m_collection_sp->Initialize(g_properties); 175 m_collection_sp->AppendProperty( 176 ConstString("thread"), ConstString("Settings specific to threads."), 177 true, Thread::GetGlobalProperties()->GetValueProperties()); 178 } else { 179 m_collection_sp.reset( 180 new ProcessOptionValueProperties(Process::GetGlobalProperties().get())); 181 m_collection_sp->SetValueChangedCallback( 182 ePropertyPythonOSPluginPath, 183 ProcessProperties::OptionValueChangedCallback, this); 184 } 185 } 186 187 ProcessProperties::~ProcessProperties() = default; 188 189 void ProcessProperties::OptionValueChangedCallback(void *baton, 190 OptionValue *option_value) { 191 ProcessProperties *properties = (ProcessProperties *)baton; 192 if (properties->m_process) 193 properties->m_process->LoadOperatingSystemPlugin(true); 194 } 195 196 bool ProcessProperties::GetDisableMemoryCache() const { 197 const uint32_t idx = ePropertyDisableMemCache; 198 return m_collection_sp->GetPropertyAtIndexAsBoolean( 199 nullptr, idx, g_properties[idx].default_uint_value != 0); 200 } 201 202 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 203 const uint32_t idx = ePropertyMemCacheLineSize; 204 return m_collection_sp->GetPropertyAtIndexAsUInt64( 205 nullptr, idx, g_properties[idx].default_uint_value); 206 } 207 208 Args ProcessProperties::GetExtraStartupCommands() const { 209 Args args; 210 const uint32_t idx = ePropertyExtraStartCommand; 211 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 212 return args; 213 } 214 215 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 216 const uint32_t idx = ePropertyExtraStartCommand; 217 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 218 } 219 220 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 221 const uint32_t idx = ePropertyPythonOSPluginPath; 222 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 223 } 224 225 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 226 const uint32_t idx = ePropertyPythonOSPluginPath; 227 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 228 } 229 230 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 231 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 232 return m_collection_sp->GetPropertyAtIndexAsBoolean( 233 nullptr, idx, g_properties[idx].default_uint_value != 0); 234 } 235 236 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 237 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 238 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 239 } 240 241 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 242 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 243 return m_collection_sp->GetPropertyAtIndexAsBoolean( 244 nullptr, idx, g_properties[idx].default_uint_value != 0); 245 } 246 247 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 248 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 249 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 250 } 251 252 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 253 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 254 return m_collection_sp->GetPropertyAtIndexAsBoolean( 255 nullptr, idx, g_properties[idx].default_uint_value != 0); 256 } 257 258 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 259 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 260 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 261 } 262 263 bool ProcessProperties::GetDetachKeepsStopped() const { 264 const uint32_t idx = ePropertyDetachKeepsStopped; 265 return m_collection_sp->GetPropertyAtIndexAsBoolean( 266 nullptr, idx, g_properties[idx].default_uint_value != 0); 267 } 268 269 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 270 const uint32_t idx = ePropertyDetachKeepsStopped; 271 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 272 } 273 274 bool ProcessProperties::GetWarningsOptimization() const { 275 const uint32_t idx = ePropertyWarningOptimization; 276 return m_collection_sp->GetPropertyAtIndexAsBoolean( 277 nullptr, idx, g_properties[idx].default_uint_value != 0); 278 } 279 280 bool ProcessProperties::GetStopOnExec() const { 281 const uint32_t idx = ePropertyStopOnExec; 282 return m_collection_sp->GetPropertyAtIndexAsBoolean( 283 nullptr, idx, g_properties[idx].default_uint_value != 0); 284 } 285 286 void ProcessInstanceInfo::Dump(Stream &s, Platform *platform) const { 287 const char *cstr; 288 if (m_pid != LLDB_INVALID_PROCESS_ID) 289 s.Printf(" pid = %" PRIu64 "\n", m_pid); 290 291 if (m_parent_pid != LLDB_INVALID_PROCESS_ID) 292 s.Printf(" parent = %" PRIu64 "\n", m_parent_pid); 293 294 if (m_executable) { 295 s.Printf(" name = %s\n", m_executable.GetFilename().GetCString()); 296 s.PutCString(" file = "); 297 m_executable.Dump(&s); 298 s.EOL(); 299 } 300 const uint32_t argc = m_arguments.GetArgumentCount(); 301 if (argc > 0) { 302 for (uint32_t i = 0; i < argc; i++) { 303 const char *arg = m_arguments.GetArgumentAtIndex(i); 304 if (i < 10) 305 s.Printf(" arg[%u] = %s\n", i, arg); 306 else 307 s.Printf("arg[%u] = %s\n", i, arg); 308 } 309 } 310 311 s.Format("{0}", m_environment); 312 313 if (m_arch.IsValid()) { 314 s.Printf(" arch = "); 315 m_arch.DumpTriple(s); 316 s.EOL(); 317 } 318 319 if (m_uid != UINT32_MAX) { 320 cstr = platform->GetUserName(m_uid); 321 s.Printf(" uid = %-5u (%s)\n", m_uid, cstr ? cstr : ""); 322 } 323 if (m_gid != UINT32_MAX) { 324 cstr = platform->GetGroupName(m_gid); 325 s.Printf(" gid = %-5u (%s)\n", m_gid, cstr ? cstr : ""); 326 } 327 if (m_euid != UINT32_MAX) { 328 cstr = platform->GetUserName(m_euid); 329 s.Printf(" euid = %-5u (%s)\n", m_euid, cstr ? cstr : ""); 330 } 331 if (m_egid != UINT32_MAX) { 332 cstr = platform->GetGroupName(m_egid); 333 s.Printf(" egid = %-5u (%s)\n", m_egid, cstr ? cstr : ""); 334 } 335 } 336 337 void ProcessInstanceInfo::DumpTableHeader(Stream &s, Platform *platform, 338 bool show_args, bool verbose) { 339 const char *label; 340 if (show_args || verbose) 341 label = "ARGUMENTS"; 342 else 343 label = "NAME"; 344 345 if (verbose) { 346 s.Printf("PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE " 347 " %s\n", 348 label); 349 s.PutCString("====== ====== ========== ========== ========== ========== " 350 "======================== ============================\n"); 351 } else { 352 s.Printf("PID PARENT USER TRIPLE %s\n", label); 353 s.PutCString("====== ====== ========== ======================== " 354 "============================\n"); 355 } 356 } 357 358 void ProcessInstanceInfo::DumpAsTableRow(Stream &s, Platform *platform, 359 bool show_args, bool verbose) const { 360 if (m_pid != LLDB_INVALID_PROCESS_ID) { 361 const char *cstr; 362 s.Printf("%-6" PRIu64 " %-6" PRIu64 " ", m_pid, m_parent_pid); 363 364 StreamString arch_strm; 365 if (m_arch.IsValid()) 366 m_arch.DumpTriple(arch_strm); 367 368 if (verbose) { 369 cstr = platform->GetUserName(m_uid); 370 if (cstr && 371 cstr[0]) // Watch for empty string that indicates lookup failed 372 s.Printf("%-10s ", cstr); 373 else 374 s.Printf("%-10u ", m_uid); 375 376 cstr = platform->GetGroupName(m_gid); 377 if (cstr && 378 cstr[0]) // Watch for empty string that indicates lookup failed 379 s.Printf("%-10s ", cstr); 380 else 381 s.Printf("%-10u ", m_gid); 382 383 cstr = platform->GetUserName(m_euid); 384 if (cstr && 385 cstr[0]) // Watch for empty string that indicates lookup failed 386 s.Printf("%-10s ", cstr); 387 else 388 s.Printf("%-10u ", m_euid); 389 390 cstr = platform->GetGroupName(m_egid); 391 if (cstr && 392 cstr[0]) // Watch for empty string that indicates lookup failed 393 s.Printf("%-10s ", cstr); 394 else 395 s.Printf("%-10u ", m_egid); 396 397 s.Printf("%-24s ", arch_strm.GetData()); 398 } else { 399 s.Printf("%-10s %-24s ", platform->GetUserName(m_euid), 400 arch_strm.GetData()); 401 } 402 403 if (verbose || show_args) { 404 const uint32_t argc = m_arguments.GetArgumentCount(); 405 if (argc > 0) { 406 for (uint32_t i = 0; i < argc; i++) { 407 if (i > 0) 408 s.PutChar(' '); 409 s.PutCString(m_arguments.GetArgumentAtIndex(i)); 410 } 411 } 412 } else { 413 s.PutCString(GetName()); 414 } 415 416 s.EOL(); 417 } 418 } 419 420 Status ProcessLaunchCommandOptions::SetOptionValue( 421 uint32_t option_idx, llvm::StringRef option_arg, 422 ExecutionContext *execution_context) { 423 Status error; 424 const int short_option = m_getopt_table[option_idx].val; 425 426 switch (short_option) { 427 case 's': // Stop at program entry point 428 launch_info.GetFlags().Set(eLaunchFlagStopAtEntry); 429 break; 430 431 case 'i': // STDIN for read only 432 { 433 FileAction action; 434 if (action.Open(STDIN_FILENO, FileSpec{option_arg, false}, true, false)) 435 launch_info.AppendFileAction(action); 436 break; 437 } 438 439 case 'o': // Open STDOUT for write only 440 { 441 FileAction action; 442 if (action.Open(STDOUT_FILENO, FileSpec{option_arg, false}, false, true)) 443 launch_info.AppendFileAction(action); 444 break; 445 } 446 447 case 'e': // STDERR for write only 448 { 449 FileAction action; 450 if (action.Open(STDERR_FILENO, FileSpec{option_arg, false}, false, true)) 451 launch_info.AppendFileAction(action); 452 break; 453 } 454 455 case 'p': // Process plug-in name 456 launch_info.SetProcessPluginName(option_arg); 457 break; 458 459 case 'n': // Disable STDIO 460 { 461 FileAction action; 462 const FileSpec dev_null{FileSystem::DEV_NULL, false}; 463 if (action.Open(STDIN_FILENO, dev_null, true, false)) 464 launch_info.AppendFileAction(action); 465 if (action.Open(STDOUT_FILENO, dev_null, false, true)) 466 launch_info.AppendFileAction(action); 467 if (action.Open(STDERR_FILENO, dev_null, false, true)) 468 launch_info.AppendFileAction(action); 469 break; 470 } 471 472 case 'w': 473 launch_info.SetWorkingDirectory(FileSpec{option_arg, false}); 474 break; 475 476 case 't': // Open process in new terminal window 477 launch_info.GetFlags().Set(eLaunchFlagLaunchInTTY); 478 break; 479 480 case 'a': { 481 TargetSP target_sp = 482 execution_context ? execution_context->GetTargetSP() : TargetSP(); 483 PlatformSP platform_sp = 484 target_sp ? target_sp->GetPlatform() : PlatformSP(); 485 launch_info.GetArchitecture() = 486 Platform::GetAugmentedArchSpec(platform_sp.get(), option_arg); 487 } break; 488 489 case 'A': // Disable ASLR. 490 { 491 bool success; 492 const bool disable_aslr_arg = 493 OptionArgParser::ToBoolean(option_arg, true, &success); 494 if (success) 495 disable_aslr = disable_aslr_arg ? eLazyBoolYes : eLazyBoolNo; 496 else 497 error.SetErrorStringWithFormat( 498 "Invalid boolean value for disable-aslr option: '%s'", 499 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 500 break; 501 } 502 503 case 'X': // shell expand args. 504 { 505 bool success; 506 const bool expand_args = 507 OptionArgParser::ToBoolean(option_arg, true, &success); 508 if (success) 509 launch_info.SetShellExpandArguments(expand_args); 510 else 511 error.SetErrorStringWithFormat( 512 "Invalid boolean value for shell-expand-args option: '%s'", 513 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 514 break; 515 } 516 517 case 'c': 518 if (!option_arg.empty()) 519 launch_info.SetShell(FileSpec(option_arg, false)); 520 else 521 launch_info.SetShell(HostInfo::GetDefaultShell()); 522 break; 523 524 case 'v': 525 launch_info.GetEnvironment().insert(option_arg); 526 break; 527 528 default: 529 error.SetErrorStringWithFormat("unrecognized short option character '%c'", 530 short_option); 531 break; 532 } 533 return error; 534 } 535 536 static OptionDefinition g_process_launch_options[] = { 537 {LLDB_OPT_SET_ALL, false, "stop-at-entry", 's', OptionParser::eNoArgument, 538 nullptr, nullptr, 0, eArgTypeNone, 539 "Stop at the entry point of the program when launching a process."}, 540 {LLDB_OPT_SET_ALL, false, "disable-aslr", 'A', 541 OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeBoolean, 542 "Set whether to disable address space layout randomization when launching " 543 "a process."}, 544 {LLDB_OPT_SET_ALL, false, "plugin", 'p', OptionParser::eRequiredArgument, 545 nullptr, nullptr, 0, eArgTypePlugin, 546 "Name of the process plugin you want to use."}, 547 {LLDB_OPT_SET_ALL, false, "working-dir", 'w', 548 OptionParser::eRequiredArgument, nullptr, nullptr, 0, 549 eArgTypeDirectoryName, 550 "Set the current working directory to <path> when running the inferior."}, 551 {LLDB_OPT_SET_ALL, false, "arch", 'a', OptionParser::eRequiredArgument, 552 nullptr, nullptr, 0, eArgTypeArchitecture, 553 "Set the architecture for the process to launch when ambiguous."}, 554 {LLDB_OPT_SET_ALL, false, "environment", 'v', 555 OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeNone, 556 "Specify an environment variable name/value string (--environment " 557 "NAME=VALUE). Can be specified multiple times for subsequent environment " 558 "entries."}, 559 {LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3, false, "shell", 'c', 560 OptionParser::eOptionalArgument, nullptr, nullptr, 0, eArgTypeFilename, 561 "Run the process in a shell (not supported on all platforms)."}, 562 563 {LLDB_OPT_SET_1, false, "stdin", 'i', OptionParser::eRequiredArgument, 564 nullptr, nullptr, 0, eArgTypeFilename, 565 "Redirect stdin for the process to <filename>."}, 566 {LLDB_OPT_SET_1, false, "stdout", 'o', OptionParser::eRequiredArgument, 567 nullptr, nullptr, 0, eArgTypeFilename, 568 "Redirect stdout for the process to <filename>."}, 569 {LLDB_OPT_SET_1, false, "stderr", 'e', OptionParser::eRequiredArgument, 570 nullptr, nullptr, 0, eArgTypeFilename, 571 "Redirect stderr for the process to <filename>."}, 572 573 {LLDB_OPT_SET_2, false, "tty", 't', OptionParser::eNoArgument, nullptr, 574 nullptr, 0, eArgTypeNone, 575 "Start the process in a terminal (not supported on all platforms)."}, 576 577 {LLDB_OPT_SET_3, false, "no-stdio", 'n', OptionParser::eNoArgument, nullptr, 578 nullptr, 0, eArgTypeNone, 579 "Do not set up for terminal I/O to go to running process."}, 580 {LLDB_OPT_SET_4, false, "shell-expand-args", 'X', 581 OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeBoolean, 582 "Set whether to shell expand arguments to the process when launching."}, 583 }; 584 585 llvm::ArrayRef<OptionDefinition> ProcessLaunchCommandOptions::GetDefinitions() { 586 return llvm::makeArrayRef(g_process_launch_options); 587 } 588 589 bool ProcessInstanceInfoMatch::NameMatches(const char *process_name) const { 590 if (m_name_match_type == NameMatch::Ignore || process_name == nullptr) 591 return true; 592 const char *match_name = m_match_info.GetName(); 593 if (!match_name) 594 return true; 595 596 return lldb_private::NameMatches(process_name, m_name_match_type, match_name); 597 } 598 599 bool ProcessInstanceInfoMatch::Matches( 600 const ProcessInstanceInfo &proc_info) const { 601 if (!NameMatches(proc_info.GetName())) 602 return false; 603 604 if (m_match_info.ProcessIDIsValid() && 605 m_match_info.GetProcessID() != proc_info.GetProcessID()) 606 return false; 607 608 if (m_match_info.ParentProcessIDIsValid() && 609 m_match_info.GetParentProcessID() != proc_info.GetParentProcessID()) 610 return false; 611 612 if (m_match_info.UserIDIsValid() && 613 m_match_info.GetUserID() != proc_info.GetUserID()) 614 return false; 615 616 if (m_match_info.GroupIDIsValid() && 617 m_match_info.GetGroupID() != proc_info.GetGroupID()) 618 return false; 619 620 if (m_match_info.EffectiveUserIDIsValid() && 621 m_match_info.GetEffectiveUserID() != proc_info.GetEffectiveUserID()) 622 return false; 623 624 if (m_match_info.EffectiveGroupIDIsValid() && 625 m_match_info.GetEffectiveGroupID() != proc_info.GetEffectiveGroupID()) 626 return false; 627 628 if (m_match_info.GetArchitecture().IsValid() && 629 !m_match_info.GetArchitecture().IsCompatibleMatch( 630 proc_info.GetArchitecture())) 631 return false; 632 return true; 633 } 634 635 bool ProcessInstanceInfoMatch::MatchAllProcesses() const { 636 if (m_name_match_type != NameMatch::Ignore) 637 return false; 638 639 if (m_match_info.ProcessIDIsValid()) 640 return false; 641 642 if (m_match_info.ParentProcessIDIsValid()) 643 return false; 644 645 if (m_match_info.UserIDIsValid()) 646 return false; 647 648 if (m_match_info.GroupIDIsValid()) 649 return false; 650 651 if (m_match_info.EffectiveUserIDIsValid()) 652 return false; 653 654 if (m_match_info.EffectiveGroupIDIsValid()) 655 return false; 656 657 if (m_match_info.GetArchitecture().IsValid()) 658 return false; 659 660 if (m_match_all_users) 661 return false; 662 663 return true; 664 } 665 666 void ProcessInstanceInfoMatch::Clear() { 667 m_match_info.Clear(); 668 m_name_match_type = NameMatch::Ignore; 669 m_match_all_users = false; 670 } 671 672 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 673 llvm::StringRef plugin_name, 674 ListenerSP listener_sp, 675 const FileSpec *crash_file_path) { 676 static uint32_t g_process_unique_id = 0; 677 678 ProcessSP process_sp; 679 ProcessCreateInstance create_callback = nullptr; 680 if (!plugin_name.empty()) { 681 ConstString const_plugin_name(plugin_name); 682 create_callback = 683 PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name); 684 if (create_callback) { 685 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 686 if (process_sp) { 687 if (process_sp->CanDebug(target_sp, true)) { 688 process_sp->m_process_unique_id = ++g_process_unique_id; 689 } else 690 process_sp.reset(); 691 } 692 } 693 } else { 694 for (uint32_t idx = 0; 695 (create_callback = 696 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 697 ++idx) { 698 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 699 if (process_sp) { 700 if (process_sp->CanDebug(target_sp, false)) { 701 process_sp->m_process_unique_id = ++g_process_unique_id; 702 break; 703 } else 704 process_sp.reset(); 705 } 706 } 707 } 708 return process_sp; 709 } 710 711 ConstString &Process::GetStaticBroadcasterClass() { 712 static ConstString class_name("lldb.process"); 713 return class_name; 714 } 715 716 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 717 : Process(target_sp, listener_sp, 718 UnixSignals::Create(HostInfo::GetArchitecture())) { 719 // This constructor just delegates to the full Process constructor, 720 // defaulting to using the Host's UnixSignals. 721 } 722 723 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 724 const UnixSignalsSP &unix_signals_sp) 725 : ProcessProperties(this), UserID(LLDB_INVALID_PROCESS_ID), 726 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 727 Process::GetStaticBroadcasterClass().AsCString()), 728 m_target_sp(target_sp), m_public_state(eStateUnloaded), 729 m_private_state(eStateUnloaded), 730 m_private_state_broadcaster(nullptr, 731 "lldb.process.internal_state_broadcaster"), 732 m_private_state_control_broadcaster( 733 nullptr, "lldb.process.internal_state_control_broadcaster"), 734 m_private_state_listener_sp( 735 Listener::MakeListener("lldb.process.internal_state_listener")), 736 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 737 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 738 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 739 m_thread_list(this), m_extended_thread_list(this), 740 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 741 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 742 m_breakpoint_site_list(), m_dynamic_checkers_ap(), 743 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 744 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 745 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 746 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 747 m_memory_cache(*this), m_allocated_memory_cache(*this), 748 m_should_detach(false), m_next_event_action_ap(), m_public_run_lock(), 749 m_private_run_lock(), m_finalizing(false), m_finalize_called(false), 750 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 751 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 752 m_can_interpret_function_calls(false), m_warnings_issued(), 753 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 754 CheckInWithManager(); 755 756 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 757 if (log) 758 log->Printf("%p Process::Process()", static_cast<void *>(this)); 759 760 if (!m_unix_signals_sp) 761 m_unix_signals_sp = std::make_shared<UnixSignals>(); 762 763 SetEventName(eBroadcastBitStateChanged, "state-changed"); 764 SetEventName(eBroadcastBitInterrupt, "interrupt"); 765 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 766 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 767 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 768 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 769 770 m_private_state_control_broadcaster.SetEventName( 771 eBroadcastInternalStateControlStop, "control-stop"); 772 m_private_state_control_broadcaster.SetEventName( 773 eBroadcastInternalStateControlPause, "control-pause"); 774 m_private_state_control_broadcaster.SetEventName( 775 eBroadcastInternalStateControlResume, "control-resume"); 776 777 m_listener_sp->StartListeningForEvents( 778 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 779 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 780 eBroadcastBitProfileData | eBroadcastBitStructuredData); 781 782 m_private_state_listener_sp->StartListeningForEvents( 783 &m_private_state_broadcaster, 784 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 785 786 m_private_state_listener_sp->StartListeningForEvents( 787 &m_private_state_control_broadcaster, 788 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 789 eBroadcastInternalStateControlResume); 790 // We need something valid here, even if just the default UnixSignalsSP. 791 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 792 793 // Allow the platform to override the default cache line size 794 OptionValueSP value_sp = 795 m_collection_sp 796 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 797 ->GetValue(); 798 uint32_t platform_cache_line_size = 799 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 800 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 801 value_sp->SetUInt64Value(platform_cache_line_size); 802 } 803 804 Process::~Process() { 805 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 806 if (log) 807 log->Printf("%p Process::~Process()", static_cast<void *>(this)); 808 StopPrivateStateThread(); 809 810 // ThreadList::Clear() will try to acquire this process's mutex, so 811 // explicitly clear the thread list here to ensure that the mutex is not 812 // destroyed before the thread list. 813 m_thread_list.Clear(); 814 } 815 816 const ProcessPropertiesSP &Process::GetGlobalProperties() { 817 // NOTE: intentional leak so we don't crash if global destructor chain gets 818 // called as other threads still use the result of this function 819 static ProcessPropertiesSP *g_settings_sp_ptr = 820 new ProcessPropertiesSP(new ProcessProperties(nullptr)); 821 return *g_settings_sp_ptr; 822 } 823 824 void Process::Finalize() { 825 m_finalizing = true; 826 827 // Destroy this process if needed 828 switch (GetPrivateState()) { 829 case eStateConnected: 830 case eStateAttaching: 831 case eStateLaunching: 832 case eStateStopped: 833 case eStateRunning: 834 case eStateStepping: 835 case eStateCrashed: 836 case eStateSuspended: 837 Destroy(false); 838 break; 839 840 case eStateInvalid: 841 case eStateUnloaded: 842 case eStateDetached: 843 case eStateExited: 844 break; 845 } 846 847 // Clear our broadcaster before we proceed with destroying 848 Broadcaster::Clear(); 849 850 // Do any cleanup needed prior to being destructed... Subclasses that 851 // override this method should call this superclass method as well. 852 853 // We need to destroy the loader before the derived Process class gets 854 // destroyed since it is very likely that undoing the loader will require 855 // access to the real process. 856 m_dynamic_checkers_ap.reset(); 857 m_abi_sp.reset(); 858 m_os_ap.reset(); 859 m_system_runtime_ap.reset(); 860 m_dyld_ap.reset(); 861 m_jit_loaders_ap.reset(); 862 m_thread_list_real.Destroy(); 863 m_thread_list.Destroy(); 864 m_extended_thread_list.Destroy(); 865 m_queue_list.Clear(); 866 m_queue_list_stop_id = 0; 867 std::vector<Notifications> empty_notifications; 868 m_notifications.swap(empty_notifications); 869 m_image_tokens.clear(); 870 m_memory_cache.Clear(); 871 m_allocated_memory_cache.Clear(); 872 m_language_runtimes.clear(); 873 m_instrumentation_runtimes.clear(); 874 m_next_event_action_ap.reset(); 875 // Clear the last natural stop ID since it has a strong reference to this 876 // process 877 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 878 //#ifdef LLDB_CONFIGURATION_DEBUG 879 // StreamFile s(stdout, false); 880 // EventSP event_sp; 881 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 882 // { 883 // event_sp->Dump (&s); 884 // s.EOL(); 885 // } 886 //#endif 887 // We have to be very careful here as the m_private_state_listener might 888 // contain events that have ProcessSP values in them which can keep this 889 // process around forever. These events need to be cleared out. 890 m_private_state_listener_sp->Clear(); 891 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 892 m_public_run_lock.SetStopped(); 893 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 894 m_private_run_lock.SetStopped(); 895 m_structured_data_plugin_map.clear(); 896 m_finalize_called = true; 897 } 898 899 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 900 m_notifications.push_back(callbacks); 901 if (callbacks.initialize != nullptr) 902 callbacks.initialize(callbacks.baton, this); 903 } 904 905 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 906 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 907 for (pos = m_notifications.begin(); pos != end; ++pos) { 908 if (pos->baton == callbacks.baton && 909 pos->initialize == callbacks.initialize && 910 pos->process_state_changed == callbacks.process_state_changed) { 911 m_notifications.erase(pos); 912 return true; 913 } 914 } 915 return false; 916 } 917 918 void Process::SynchronouslyNotifyStateChanged(StateType state) { 919 std::vector<Notifications>::iterator notification_pos, 920 notification_end = m_notifications.end(); 921 for (notification_pos = m_notifications.begin(); 922 notification_pos != notification_end; ++notification_pos) { 923 if (notification_pos->process_state_changed) 924 notification_pos->process_state_changed(notification_pos->baton, this, 925 state); 926 } 927 } 928 929 // FIXME: We need to do some work on events before the general Listener sees 930 // them. 931 // For instance if we are continuing from a breakpoint, we need to ensure that 932 // we do the little "insert real insn, step & stop" trick. But we can't do 933 // that when the event is delivered by the broadcaster - since that is done on 934 // the thread that is waiting for new events, so if we needed more than one 935 // event for our handling, we would stall. So instead we do it when we fetch 936 // the event off of the queue. 937 // 938 939 StateType Process::GetNextEvent(EventSP &event_sp) { 940 StateType state = eStateInvalid; 941 942 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 943 std::chrono::seconds(0)) && 944 event_sp) 945 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 946 947 return state; 948 } 949 950 void Process::SyncIOHandler(uint32_t iohandler_id, uint64_t timeout_msec) { 951 // don't sync (potentially context switch) in case where there is no process 952 // IO 953 if (!m_process_input_reader) 954 return; 955 956 uint32_t new_iohandler_id = 0; 957 m_iohandler_sync.WaitForValueNotEqualTo( 958 iohandler_id, new_iohandler_id, std::chrono::milliseconds(timeout_msec)); 959 960 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 961 if (log) 962 log->Printf("Process::%s waited for m_iohandler_sync to change from %u, " 963 "new value is %u", 964 __FUNCTION__, iohandler_id, new_iohandler_id); 965 } 966 967 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 968 EventSP *event_sp_ptr, bool wait_always, 969 ListenerSP hijack_listener_sp, 970 Stream *stream, bool use_run_lock) { 971 // We can't just wait for a "stopped" event, because the stopped event may 972 // have restarted the target. We have to actually check each event, and in 973 // the case of a stopped event check the restarted flag on the event. 974 if (event_sp_ptr) 975 event_sp_ptr->reset(); 976 StateType state = GetState(); 977 // If we are exited or detached, we won't ever get back to any other valid 978 // state... 979 if (state == eStateDetached || state == eStateExited) 980 return state; 981 982 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 983 LLDB_LOG(log, "timeout = {0}", timeout); 984 985 if (!wait_always && StateIsStoppedState(state, true) && 986 StateIsStoppedState(GetPrivateState(), true)) { 987 if (log) 988 log->Printf("Process::%s returning without waiting for events; process " 989 "private and public states are already 'stopped'.", 990 __FUNCTION__); 991 // We need to toggle the run lock as this won't get done in 992 // SetPublicState() if the process is hijacked. 993 if (hijack_listener_sp && use_run_lock) 994 m_public_run_lock.SetStopped(); 995 return state; 996 } 997 998 while (state != eStateInvalid) { 999 EventSP event_sp; 1000 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 1001 if (event_sp_ptr && event_sp) 1002 *event_sp_ptr = event_sp; 1003 1004 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 1005 Process::HandleProcessStateChangedEvent(event_sp, stream, 1006 pop_process_io_handler); 1007 1008 switch (state) { 1009 case eStateCrashed: 1010 case eStateDetached: 1011 case eStateExited: 1012 case eStateUnloaded: 1013 // We need to toggle the run lock as this won't get done in 1014 // SetPublicState() if the process is hijacked. 1015 if (hijack_listener_sp && use_run_lock) 1016 m_public_run_lock.SetStopped(); 1017 return state; 1018 case eStateStopped: 1019 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 1020 continue; 1021 else { 1022 // We need to toggle the run lock as this won't get done in 1023 // SetPublicState() if the process is hijacked. 1024 if (hijack_listener_sp && use_run_lock) 1025 m_public_run_lock.SetStopped(); 1026 return state; 1027 } 1028 default: 1029 continue; 1030 } 1031 } 1032 return state; 1033 } 1034 1035 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 1036 Stream *stream, 1037 bool &pop_process_io_handler) { 1038 const bool handle_pop = pop_process_io_handler; 1039 1040 pop_process_io_handler = false; 1041 ProcessSP process_sp = 1042 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 1043 1044 if (!process_sp) 1045 return false; 1046 1047 StateType event_state = 1048 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1049 if (event_state == eStateInvalid) 1050 return false; 1051 1052 switch (event_state) { 1053 case eStateInvalid: 1054 case eStateUnloaded: 1055 case eStateAttaching: 1056 case eStateLaunching: 1057 case eStateStepping: 1058 case eStateDetached: 1059 if (stream) 1060 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 1061 StateAsCString(event_state)); 1062 if (event_state == eStateDetached) 1063 pop_process_io_handler = true; 1064 break; 1065 1066 case eStateConnected: 1067 case eStateRunning: 1068 // Don't be chatty when we run... 1069 break; 1070 1071 case eStateExited: 1072 if (stream) 1073 process_sp->GetStatus(*stream); 1074 pop_process_io_handler = true; 1075 break; 1076 1077 case eStateStopped: 1078 case eStateCrashed: 1079 case eStateSuspended: 1080 // Make sure the program hasn't been auto-restarted: 1081 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 1082 if (stream) { 1083 size_t num_reasons = 1084 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 1085 if (num_reasons > 0) { 1086 // FIXME: Do we want to report this, or would that just be annoyingly 1087 // chatty? 1088 if (num_reasons == 1) { 1089 const char *reason = 1090 Process::ProcessEventData::GetRestartedReasonAtIndex( 1091 event_sp.get(), 0); 1092 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 1093 process_sp->GetID(), 1094 reason ? reason : "<UNKNOWN REASON>"); 1095 } else { 1096 stream->Printf("Process %" PRIu64 1097 " stopped and restarted, reasons:\n", 1098 process_sp->GetID()); 1099 1100 for (size_t i = 0; i < num_reasons; i++) { 1101 const char *reason = 1102 Process::ProcessEventData::GetRestartedReasonAtIndex( 1103 event_sp.get(), i); 1104 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 1105 } 1106 } 1107 } 1108 } 1109 } else { 1110 StopInfoSP curr_thread_stop_info_sp; 1111 // Lock the thread list so it doesn't change on us, this is the scope for 1112 // the locker: 1113 { 1114 ThreadList &thread_list = process_sp->GetThreadList(); 1115 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 1116 1117 ThreadSP curr_thread(thread_list.GetSelectedThread()); 1118 ThreadSP thread; 1119 StopReason curr_thread_stop_reason = eStopReasonInvalid; 1120 if (curr_thread) { 1121 curr_thread_stop_reason = curr_thread->GetStopReason(); 1122 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 1123 } 1124 if (!curr_thread || !curr_thread->IsValid() || 1125 curr_thread_stop_reason == eStopReasonInvalid || 1126 curr_thread_stop_reason == eStopReasonNone) { 1127 // Prefer a thread that has just completed its plan over another 1128 // thread as current thread. 1129 ThreadSP plan_thread; 1130 ThreadSP other_thread; 1131 1132 const size_t num_threads = thread_list.GetSize(); 1133 size_t i; 1134 for (i = 0; i < num_threads; ++i) { 1135 thread = thread_list.GetThreadAtIndex(i); 1136 StopReason thread_stop_reason = thread->GetStopReason(); 1137 switch (thread_stop_reason) { 1138 case eStopReasonInvalid: 1139 case eStopReasonNone: 1140 break; 1141 1142 case eStopReasonSignal: { 1143 // Don't select a signal thread if we weren't going to stop at 1144 // that signal. We have to have had another reason for stopping 1145 // here, and the user doesn't want to see this thread. 1146 uint64_t signo = thread->GetStopInfo()->GetValue(); 1147 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 1148 if (!other_thread) 1149 other_thread = thread; 1150 } 1151 break; 1152 } 1153 case eStopReasonTrace: 1154 case eStopReasonBreakpoint: 1155 case eStopReasonWatchpoint: 1156 case eStopReasonException: 1157 case eStopReasonExec: 1158 case eStopReasonThreadExiting: 1159 case eStopReasonInstrumentation: 1160 if (!other_thread) 1161 other_thread = thread; 1162 break; 1163 case eStopReasonPlanComplete: 1164 if (!plan_thread) 1165 plan_thread = thread; 1166 break; 1167 } 1168 } 1169 if (plan_thread) 1170 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 1171 else if (other_thread) 1172 thread_list.SetSelectedThreadByID(other_thread->GetID()); 1173 else { 1174 if (curr_thread && curr_thread->IsValid()) 1175 thread = curr_thread; 1176 else 1177 thread = thread_list.GetThreadAtIndex(0); 1178 1179 if (thread) 1180 thread_list.SetSelectedThreadByID(thread->GetID()); 1181 } 1182 } 1183 } 1184 // Drop the ThreadList mutex by here, since GetThreadStatus below might 1185 // have to run code, e.g. for Data formatters, and if we hold the 1186 // ThreadList mutex, then the process is going to have a hard time 1187 // restarting the process. 1188 if (stream) { 1189 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 1190 if (debugger.GetTargetList().GetSelectedTarget().get() == 1191 &process_sp->GetTarget()) { 1192 const bool only_threads_with_stop_reason = true; 1193 const uint32_t start_frame = 0; 1194 const uint32_t num_frames = 1; 1195 const uint32_t num_frames_with_source = 1; 1196 const bool stop_format = true; 1197 process_sp->GetStatus(*stream); 1198 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 1199 start_frame, num_frames, 1200 num_frames_with_source, 1201 stop_format); 1202 if (curr_thread_stop_info_sp) { 1203 lldb::addr_t crashing_address; 1204 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 1205 curr_thread_stop_info_sp, &crashing_address); 1206 if (valobj_sp) { 1207 const bool qualify_cxx_base_classes = false; 1208 1209 const ValueObject::GetExpressionPathFormat format = 1210 ValueObject::GetExpressionPathFormat:: 1211 eGetExpressionPathFormatHonorPointers; 1212 stream->PutCString("Likely cause: "); 1213 valobj_sp->GetExpressionPath(*stream, qualify_cxx_base_classes, 1214 format); 1215 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 1216 } 1217 } 1218 } else { 1219 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 1220 process_sp->GetTarget().shared_from_this()); 1221 if (target_idx != UINT32_MAX) 1222 stream->Printf("Target %d: (", target_idx); 1223 else 1224 stream->Printf("Target <unknown index>: ("); 1225 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 1226 stream->Printf(") stopped.\n"); 1227 } 1228 } 1229 1230 // Pop the process IO handler 1231 pop_process_io_handler = true; 1232 } 1233 break; 1234 } 1235 1236 if (handle_pop && pop_process_io_handler) 1237 process_sp->PopProcessIOHandler(); 1238 1239 return true; 1240 } 1241 1242 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 1243 if (listener_sp) { 1244 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 1245 eBroadcastBitInterrupt); 1246 } else 1247 return false; 1248 } 1249 1250 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 1251 1252 StateType Process::GetStateChangedEvents(EventSP &event_sp, 1253 const Timeout<std::micro> &timeout, 1254 ListenerSP hijack_listener_sp) { 1255 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1256 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1257 1258 ListenerSP listener_sp = hijack_listener_sp; 1259 if (!listener_sp) 1260 listener_sp = m_listener_sp; 1261 1262 StateType state = eStateInvalid; 1263 if (listener_sp->GetEventForBroadcasterWithType( 1264 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1265 timeout)) { 1266 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1267 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1268 else 1269 LLDB_LOG(log, "got no event or was interrupted."); 1270 } 1271 1272 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 1273 return state; 1274 } 1275 1276 Event *Process::PeekAtStateChangedEvents() { 1277 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1278 1279 if (log) 1280 log->Printf("Process::%s...", __FUNCTION__); 1281 1282 Event *event_ptr; 1283 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 1284 this, eBroadcastBitStateChanged); 1285 if (log) { 1286 if (event_ptr) { 1287 log->Printf( 1288 "Process::%s (event_ptr) => %s", __FUNCTION__, 1289 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 1290 } else { 1291 log->Printf("Process::%s no events found", __FUNCTION__); 1292 } 1293 } 1294 return event_ptr; 1295 } 1296 1297 StateType 1298 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 1299 const Timeout<std::micro> &timeout) { 1300 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1301 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1302 1303 StateType state = eStateInvalid; 1304 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1305 &m_private_state_broadcaster, 1306 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1307 timeout)) 1308 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1309 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1310 1311 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1312 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1313 return state; 1314 } 1315 1316 bool Process::GetEventsPrivate(EventSP &event_sp, 1317 const Timeout<std::micro> &timeout, 1318 bool control_only) { 1319 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1320 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1321 1322 if (control_only) 1323 return m_private_state_listener_sp->GetEventForBroadcaster( 1324 &m_private_state_control_broadcaster, event_sp, timeout); 1325 else 1326 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1327 } 1328 1329 bool Process::IsRunning() const { 1330 return StateIsRunningState(m_public_state.GetValue()); 1331 } 1332 1333 int Process::GetExitStatus() { 1334 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1335 1336 if (m_public_state.GetValue() == eStateExited) 1337 return m_exit_status; 1338 return -1; 1339 } 1340 1341 const char *Process::GetExitDescription() { 1342 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1343 1344 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1345 return m_exit_string.c_str(); 1346 return nullptr; 1347 } 1348 1349 bool Process::SetExitStatus(int status, const char *cstr) { 1350 // Use a mutex to protect setting the exit status. 1351 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1352 1353 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1354 LIBLLDB_LOG_PROCESS)); 1355 if (log) 1356 log->Printf( 1357 "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1358 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", 1359 cstr ? "\"" : ""); 1360 1361 // We were already in the exited state 1362 if (m_private_state.GetValue() == eStateExited) { 1363 if (log) 1364 log->Printf("Process::SetExitStatus () ignoring exit status because " 1365 "state was already set to eStateExited"); 1366 return false; 1367 } 1368 1369 m_exit_status = status; 1370 if (cstr) 1371 m_exit_string = cstr; 1372 else 1373 m_exit_string.clear(); 1374 1375 // Clear the last natural stop ID since it has a strong reference to this 1376 // process 1377 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1378 1379 SetPrivateState(eStateExited); 1380 1381 // Allow subclasses to do some cleanup 1382 DidExit(); 1383 1384 return true; 1385 } 1386 1387 bool Process::IsAlive() { 1388 switch (m_private_state.GetValue()) { 1389 case eStateConnected: 1390 case eStateAttaching: 1391 case eStateLaunching: 1392 case eStateStopped: 1393 case eStateRunning: 1394 case eStateStepping: 1395 case eStateCrashed: 1396 case eStateSuspended: 1397 return true; 1398 default: 1399 return false; 1400 } 1401 } 1402 1403 // This static callback can be used to watch for local child processes on the 1404 // current host. The child process exits, the process will be found in the 1405 // global target list (we want to be completely sure that the 1406 // lldb_private::Process doesn't go away before we can deliver the signal. 1407 bool Process::SetProcessExitStatus( 1408 lldb::pid_t pid, bool exited, 1409 int signo, // Zero for no signal 1410 int exit_status // Exit value of process if signal is zero 1411 ) { 1412 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 1413 if (log) 1414 log->Printf("Process::SetProcessExitStatus (pid=%" PRIu64 1415 ", exited=%i, signal=%i, exit_status=%i)\n", 1416 pid, exited, signo, exit_status); 1417 1418 if (exited) { 1419 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1420 if (target_sp) { 1421 ProcessSP process_sp(target_sp->GetProcessSP()); 1422 if (process_sp) { 1423 const char *signal_cstr = nullptr; 1424 if (signo) 1425 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1426 1427 process_sp->SetExitStatus(exit_status, signal_cstr); 1428 } 1429 } 1430 return true; 1431 } 1432 return false; 1433 } 1434 1435 void Process::UpdateThreadListIfNeeded() { 1436 const uint32_t stop_id = GetStopID(); 1437 if (m_thread_list.GetSize(false) == 0 || 1438 stop_id != m_thread_list.GetStopID()) { 1439 const StateType state = GetPrivateState(); 1440 if (StateIsStoppedState(state, true)) { 1441 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1442 // m_thread_list does have its own mutex, but we need to hold onto the 1443 // mutex between the call to UpdateThreadList(...) and the 1444 // os->UpdateThreadList(...) so it doesn't change on us 1445 ThreadList &old_thread_list = m_thread_list; 1446 ThreadList real_thread_list(this); 1447 ThreadList new_thread_list(this); 1448 // Always update the thread list with the protocol specific thread list, 1449 // but only update if "true" is returned 1450 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1451 // Don't call into the OperatingSystem to update the thread list if we 1452 // are shutting down, since that may call back into the SBAPI's, 1453 // requiring the API lock which is already held by whoever is shutting 1454 // us down, causing a deadlock. 1455 OperatingSystem *os = GetOperatingSystem(); 1456 if (os && !m_destroy_in_process) { 1457 // Clear any old backing threads where memory threads might have been 1458 // backed by actual threads from the lldb_private::Process subclass 1459 size_t num_old_threads = old_thread_list.GetSize(false); 1460 for (size_t i = 0; i < num_old_threads; ++i) 1461 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1462 1463 // Turn off dynamic types to ensure we don't run any expressions. 1464 // Objective C can run an expression to determine if a SBValue is a 1465 // dynamic type or not and we need to avoid this. OperatingSystem 1466 // plug-ins can't run expressions that require running code... 1467 1468 Target &target = GetTarget(); 1469 const lldb::DynamicValueType saved_prefer_dynamic = 1470 target.GetPreferDynamicValue(); 1471 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1472 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1473 1474 // Now let the OperatingSystem plug-in update the thread list 1475 1476 os->UpdateThreadList( 1477 old_thread_list, // Old list full of threads created by OS plug-in 1478 real_thread_list, // The actual thread list full of threads 1479 // created by each lldb_private::Process 1480 // subclass 1481 new_thread_list); // The new thread list that we will show to the 1482 // user that gets filled in 1483 1484 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1485 target.SetPreferDynamicValue(saved_prefer_dynamic); 1486 } else { 1487 // No OS plug-in, the new thread list is the same as the real thread 1488 // list 1489 new_thread_list = real_thread_list; 1490 } 1491 1492 m_thread_list_real.Update(real_thread_list); 1493 m_thread_list.Update(new_thread_list); 1494 m_thread_list.SetStopID(stop_id); 1495 1496 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1497 // Clear any extended threads that we may have accumulated previously 1498 m_extended_thread_list.Clear(); 1499 m_extended_thread_stop_id = GetLastNaturalStopID(); 1500 1501 m_queue_list.Clear(); 1502 m_queue_list_stop_id = GetLastNaturalStopID(); 1503 } 1504 } 1505 } 1506 } 1507 } 1508 1509 void Process::UpdateQueueListIfNeeded() { 1510 if (m_system_runtime_ap) { 1511 if (m_queue_list.GetSize() == 0 || 1512 m_queue_list_stop_id != GetLastNaturalStopID()) { 1513 const StateType state = GetPrivateState(); 1514 if (StateIsStoppedState(state, true)) { 1515 m_system_runtime_ap->PopulateQueueList(m_queue_list); 1516 m_queue_list_stop_id = GetLastNaturalStopID(); 1517 } 1518 } 1519 } 1520 } 1521 1522 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1523 OperatingSystem *os = GetOperatingSystem(); 1524 if (os) 1525 return os->CreateThread(tid, context); 1526 return ThreadSP(); 1527 } 1528 1529 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1530 return AssignIndexIDToThread(thread_id); 1531 } 1532 1533 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1534 return (m_thread_id_to_index_id_map.find(thread_id) != 1535 m_thread_id_to_index_id_map.end()); 1536 } 1537 1538 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1539 uint32_t result = 0; 1540 std::map<uint64_t, uint32_t>::iterator iterator = 1541 m_thread_id_to_index_id_map.find(thread_id); 1542 if (iterator == m_thread_id_to_index_id_map.end()) { 1543 result = ++m_thread_index_id; 1544 m_thread_id_to_index_id_map[thread_id] = result; 1545 } else { 1546 result = iterator->second; 1547 } 1548 1549 return result; 1550 } 1551 1552 StateType Process::GetState() { 1553 return m_public_state.GetValue(); 1554 } 1555 1556 bool Process::StateChangedIsExternallyHijacked() { 1557 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1558 const char *hijacking_name = GetHijackingListenerName(); 1559 if (hijacking_name && 1560 strcmp(hijacking_name, "lldb.Process.ResumeSynchronous.hijack")) 1561 return true; 1562 } 1563 return false; 1564 } 1565 1566 void Process::SetPublicState(StateType new_state, bool restarted) { 1567 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1568 LIBLLDB_LOG_PROCESS)); 1569 if (log) 1570 log->Printf("Process::SetPublicState (state = %s, restarted = %i)", 1571 StateAsCString(new_state), restarted); 1572 const StateType old_state = m_public_state.GetValue(); 1573 m_public_state.SetValue(new_state); 1574 1575 // On the transition from Run to Stopped, we unlock the writer end of the run 1576 // lock. The lock gets locked in Resume, which is the public API to tell the 1577 // program to run. 1578 if (!StateChangedIsExternallyHijacked()) { 1579 if (new_state == eStateDetached) { 1580 if (log) 1581 log->Printf( 1582 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1583 StateAsCString(new_state)); 1584 m_public_run_lock.SetStopped(); 1585 } else { 1586 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1587 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1588 if ((old_state_is_stopped != new_state_is_stopped)) { 1589 if (new_state_is_stopped && !restarted) { 1590 if (log) 1591 log->Printf("Process::SetPublicState (%s) -- unlocking run lock", 1592 StateAsCString(new_state)); 1593 m_public_run_lock.SetStopped(); 1594 } 1595 } 1596 } 1597 } 1598 } 1599 1600 Status Process::Resume() { 1601 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1602 LIBLLDB_LOG_PROCESS)); 1603 if (log) 1604 log->Printf("Process::Resume -- locking run lock"); 1605 if (!m_public_run_lock.TrySetRunning()) { 1606 Status error("Resume request failed - process still running."); 1607 if (log) 1608 log->Printf("Process::Resume: -- TrySetRunning failed, not resuming."); 1609 return error; 1610 } 1611 Status error = PrivateResume(); 1612 if (!error.Success()) { 1613 // Undo running state change 1614 m_public_run_lock.SetStopped(); 1615 } 1616 return error; 1617 } 1618 1619 Status Process::ResumeSynchronous(Stream *stream) { 1620 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1621 LIBLLDB_LOG_PROCESS)); 1622 if (log) 1623 log->Printf("Process::ResumeSynchronous -- locking run lock"); 1624 if (!m_public_run_lock.TrySetRunning()) { 1625 Status error("Resume request failed - process still running."); 1626 if (log) 1627 log->Printf("Process::Resume: -- TrySetRunning failed, not resuming."); 1628 return error; 1629 } 1630 1631 ListenerSP listener_sp( 1632 Listener::MakeListener("lldb.Process.ResumeSynchronous.hijack")); 1633 HijackProcessEvents(listener_sp); 1634 1635 Status error = PrivateResume(); 1636 if (error.Success()) { 1637 StateType state = 1638 WaitForProcessToStop(llvm::None, NULL, true, listener_sp, stream); 1639 const bool must_be_alive = 1640 false; // eStateExited is ok, so this must be false 1641 if (!StateIsStoppedState(state, must_be_alive)) 1642 error.SetErrorStringWithFormat( 1643 "process not in stopped state after synchronous resume: %s", 1644 StateAsCString(state)); 1645 } else { 1646 // Undo running state change 1647 m_public_run_lock.SetStopped(); 1648 } 1649 1650 // Undo the hijacking of process events... 1651 RestoreProcessEvents(); 1652 1653 return error; 1654 } 1655 1656 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1657 1658 void Process::SetPrivateState(StateType new_state) { 1659 if (m_finalize_called) 1660 return; 1661 1662 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1663 LIBLLDB_LOG_PROCESS)); 1664 bool state_changed = false; 1665 1666 if (log) 1667 log->Printf("Process::SetPrivateState (%s)", StateAsCString(new_state)); 1668 1669 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1670 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1671 1672 const StateType old_state = m_private_state.GetValueNoLock(); 1673 state_changed = old_state != new_state; 1674 1675 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1676 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1677 if (old_state_is_stopped != new_state_is_stopped) { 1678 if (new_state_is_stopped) 1679 m_private_run_lock.SetStopped(); 1680 else 1681 m_private_run_lock.SetRunning(); 1682 } 1683 1684 if (state_changed) { 1685 m_private_state.SetValueNoLock(new_state); 1686 EventSP event_sp( 1687 new Event(eBroadcastBitStateChanged, 1688 new ProcessEventData(shared_from_this(), new_state))); 1689 if (StateIsStoppedState(new_state, false)) { 1690 // Note, this currently assumes that all threads in the list stop when 1691 // the process stops. In the future we will want to support a debugging 1692 // model where some threads continue to run while others are stopped. 1693 // When that happens we will either need a way for the thread list to 1694 // identify which threads are stopping or create a special thread list 1695 // containing only threads which actually stopped. 1696 // 1697 // The process plugin is responsible for managing the actual behavior of 1698 // the threads and should have stopped any threads that are going to stop 1699 // before we get here. 1700 m_thread_list.DidStop(); 1701 1702 m_mod_id.BumpStopID(); 1703 if (!m_mod_id.IsLastResumeForUserExpression()) 1704 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1705 m_memory_cache.Clear(); 1706 if (log) 1707 log->Printf("Process::SetPrivateState (%s) stop_id = %u", 1708 StateAsCString(new_state), m_mod_id.GetStopID()); 1709 } 1710 1711 // Use our target to get a shared pointer to ourselves... 1712 if (m_finalize_called && !PrivateStateThreadIsValid()) 1713 BroadcastEvent(event_sp); 1714 else 1715 m_private_state_broadcaster.BroadcastEvent(event_sp); 1716 } else { 1717 if (log) 1718 log->Printf( 1719 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1720 StateAsCString(new_state)); 1721 } 1722 } 1723 1724 void Process::SetRunningUserExpression(bool on) { 1725 m_mod_id.SetRunningUserExpression(on); 1726 } 1727 1728 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1729 1730 const lldb::ABISP &Process::GetABI() { 1731 if (!m_abi_sp) 1732 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1733 return m_abi_sp; 1734 } 1735 1736 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language, 1737 bool retry_if_null) { 1738 if (m_finalizing) 1739 return nullptr; 1740 1741 LanguageRuntimeCollection::iterator pos; 1742 pos = m_language_runtimes.find(language); 1743 if (pos == m_language_runtimes.end() || (retry_if_null && !(*pos).second)) { 1744 lldb::LanguageRuntimeSP runtime_sp( 1745 LanguageRuntime::FindPlugin(this, language)); 1746 1747 m_language_runtimes[language] = runtime_sp; 1748 return runtime_sp.get(); 1749 } else 1750 return (*pos).second.get(); 1751 } 1752 1753 CPPLanguageRuntime *Process::GetCPPLanguageRuntime(bool retry_if_null) { 1754 LanguageRuntime *runtime = 1755 GetLanguageRuntime(eLanguageTypeC_plus_plus, retry_if_null); 1756 if (runtime != nullptr && 1757 runtime->GetLanguageType() == eLanguageTypeC_plus_plus) 1758 return static_cast<CPPLanguageRuntime *>(runtime); 1759 return nullptr; 1760 } 1761 1762 ObjCLanguageRuntime *Process::GetObjCLanguageRuntime(bool retry_if_null) { 1763 LanguageRuntime *runtime = 1764 GetLanguageRuntime(eLanguageTypeObjC, retry_if_null); 1765 if (runtime != nullptr && runtime->GetLanguageType() == eLanguageTypeObjC) 1766 return static_cast<ObjCLanguageRuntime *>(runtime); 1767 return nullptr; 1768 } 1769 1770 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1771 if (m_finalizing) 1772 return false; 1773 1774 if (in_value.IsDynamic()) 1775 return false; 1776 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1777 1778 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1779 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1780 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1781 } 1782 1783 LanguageRuntime *cpp_runtime = GetLanguageRuntime(eLanguageTypeC_plus_plus); 1784 if (cpp_runtime && cpp_runtime->CouldHaveDynamicValue(in_value)) 1785 return true; 1786 1787 LanguageRuntime *objc_runtime = GetLanguageRuntime(eLanguageTypeObjC); 1788 return objc_runtime ? objc_runtime->CouldHaveDynamicValue(in_value) : false; 1789 } 1790 1791 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1792 m_dynamic_checkers_ap.reset(dynamic_checkers); 1793 } 1794 1795 BreakpointSiteList &Process::GetBreakpointSiteList() { 1796 return m_breakpoint_site_list; 1797 } 1798 1799 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1800 return m_breakpoint_site_list; 1801 } 1802 1803 void Process::DisableAllBreakpointSites() { 1804 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1805 // bp_site->SetEnabled(true); 1806 DisableBreakpointSite(bp_site); 1807 }); 1808 } 1809 1810 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1811 Status error(DisableBreakpointSiteByID(break_id)); 1812 1813 if (error.Success()) 1814 m_breakpoint_site_list.Remove(break_id); 1815 1816 return error; 1817 } 1818 1819 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1820 Status error; 1821 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1822 if (bp_site_sp) { 1823 if (bp_site_sp->IsEnabled()) 1824 error = DisableBreakpointSite(bp_site_sp.get()); 1825 } else { 1826 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1827 break_id); 1828 } 1829 1830 return error; 1831 } 1832 1833 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1834 Status error; 1835 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1836 if (bp_site_sp) { 1837 if (!bp_site_sp->IsEnabled()) 1838 error = EnableBreakpointSite(bp_site_sp.get()); 1839 } else { 1840 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1841 break_id); 1842 } 1843 return error; 1844 } 1845 1846 lldb::break_id_t 1847 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1848 bool use_hardware) { 1849 addr_t load_addr = LLDB_INVALID_ADDRESS; 1850 1851 bool show_error = true; 1852 switch (GetState()) { 1853 case eStateInvalid: 1854 case eStateUnloaded: 1855 case eStateConnected: 1856 case eStateAttaching: 1857 case eStateLaunching: 1858 case eStateDetached: 1859 case eStateExited: 1860 show_error = false; 1861 break; 1862 1863 case eStateStopped: 1864 case eStateRunning: 1865 case eStateStepping: 1866 case eStateCrashed: 1867 case eStateSuspended: 1868 show_error = IsAlive(); 1869 break; 1870 } 1871 1872 // Reset the IsIndirect flag here, in case the location changes from pointing 1873 // to a indirect symbol to a regular symbol. 1874 owner->SetIsIndirect(false); 1875 1876 if (owner->ShouldResolveIndirectFunctions()) { 1877 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1878 if (symbol && symbol->IsIndirect()) { 1879 Status error; 1880 Address symbol_address = symbol->GetAddress(); 1881 load_addr = ResolveIndirectFunction(&symbol_address, error); 1882 if (!error.Success() && show_error) { 1883 GetTarget().GetDebugger().GetErrorFile()->Printf( 1884 "warning: failed to resolve indirect function at 0x%" PRIx64 1885 " for breakpoint %i.%i: %s\n", 1886 symbol->GetLoadAddress(&GetTarget()), 1887 owner->GetBreakpoint().GetID(), owner->GetID(), 1888 error.AsCString() ? error.AsCString() : "unknown error"); 1889 return LLDB_INVALID_BREAK_ID; 1890 } 1891 Address resolved_address(load_addr); 1892 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1893 owner->SetIsIndirect(true); 1894 } else 1895 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1896 } else 1897 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1898 1899 if (load_addr != LLDB_INVALID_ADDRESS) { 1900 BreakpointSiteSP bp_site_sp; 1901 1902 // Look up this breakpoint site. If it exists, then add this new owner, 1903 // otherwise create a new breakpoint site and add it. 1904 1905 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1906 1907 if (bp_site_sp) { 1908 bp_site_sp->AddOwner(owner); 1909 owner->SetBreakpointSite(bp_site_sp); 1910 return bp_site_sp->GetID(); 1911 } else { 1912 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1913 load_addr, use_hardware)); 1914 if (bp_site_sp) { 1915 Status error = EnableBreakpointSite(bp_site_sp.get()); 1916 if (error.Success()) { 1917 owner->SetBreakpointSite(bp_site_sp); 1918 return m_breakpoint_site_list.Add(bp_site_sp); 1919 } else { 1920 if (show_error) { 1921 // Report error for setting breakpoint... 1922 GetTarget().GetDebugger().GetErrorFile()->Printf( 1923 "warning: failed to set breakpoint site at 0x%" PRIx64 1924 " for breakpoint %i.%i: %s\n", 1925 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1926 error.AsCString() ? error.AsCString() : "unknown error"); 1927 } 1928 } 1929 } 1930 } 1931 } 1932 // We failed to enable the breakpoint 1933 return LLDB_INVALID_BREAK_ID; 1934 } 1935 1936 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1937 lldb::user_id_t owner_loc_id, 1938 BreakpointSiteSP &bp_site_sp) { 1939 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1940 if (num_owners == 0) { 1941 // Don't try to disable the site if we don't have a live process anymore. 1942 if (IsAlive()) 1943 DisableBreakpointSite(bp_site_sp.get()); 1944 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1945 } 1946 } 1947 1948 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1949 uint8_t *buf) const { 1950 size_t bytes_removed = 0; 1951 BreakpointSiteList bp_sites_in_range; 1952 1953 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1954 bp_sites_in_range)) { 1955 bp_sites_in_range.ForEach([bp_addr, size, 1956 buf](BreakpointSite *bp_site) -> void { 1957 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1958 addr_t intersect_addr; 1959 size_t intersect_size; 1960 size_t opcode_offset; 1961 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1962 &intersect_size, &opcode_offset)) { 1963 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1964 assert(bp_addr < intersect_addr + intersect_size && 1965 intersect_addr + intersect_size <= bp_addr + size); 1966 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1967 size_t buf_offset = intersect_addr - bp_addr; 1968 ::memcpy(buf + buf_offset, 1969 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1970 intersect_size); 1971 } 1972 } 1973 }); 1974 } 1975 return bytes_removed; 1976 } 1977 1978 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1979 PlatformSP platform_sp(GetTarget().GetPlatform()); 1980 if (platform_sp) 1981 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1982 return 0; 1983 } 1984 1985 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1986 Status error; 1987 assert(bp_site != nullptr); 1988 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1989 const addr_t bp_addr = bp_site->GetLoadAddress(); 1990 if (log) 1991 log->Printf( 1992 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1993 bp_site->GetID(), (uint64_t)bp_addr); 1994 if (bp_site->IsEnabled()) { 1995 if (log) 1996 log->Printf( 1997 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1998 " -- already enabled", 1999 bp_site->GetID(), (uint64_t)bp_addr); 2000 return error; 2001 } 2002 2003 if (bp_addr == LLDB_INVALID_ADDRESS) { 2004 error.SetErrorString("BreakpointSite contains an invalid load address."); 2005 return error; 2006 } 2007 // Ask the lldb::Process subclass to fill in the correct software breakpoint 2008 // trap for the breakpoint site 2009 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 2010 2011 if (bp_opcode_size == 0) { 2012 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 2013 "returned zero, unable to get breakpoint " 2014 "trap for address 0x%" PRIx64, 2015 bp_addr); 2016 } else { 2017 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 2018 2019 if (bp_opcode_bytes == nullptr) { 2020 error.SetErrorString( 2021 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 2022 return error; 2023 } 2024 2025 // Save the original opcode by reading it 2026 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 2027 error) == bp_opcode_size) { 2028 // Write a software breakpoint in place of the original opcode 2029 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 2030 bp_opcode_size) { 2031 uint8_t verify_bp_opcode_bytes[64]; 2032 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 2033 error) == bp_opcode_size) { 2034 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 2035 bp_opcode_size) == 0) { 2036 bp_site->SetEnabled(true); 2037 bp_site->SetType(BreakpointSite::eSoftware); 2038 if (log) 2039 log->Printf("Process::EnableSoftwareBreakpoint (site_id = %d) " 2040 "addr = 0x%" PRIx64 " -- SUCCESS", 2041 bp_site->GetID(), (uint64_t)bp_addr); 2042 } else 2043 error.SetErrorString( 2044 "failed to verify the breakpoint trap in memory."); 2045 } else 2046 error.SetErrorString( 2047 "Unable to read memory to verify breakpoint trap."); 2048 } else 2049 error.SetErrorString("Unable to write breakpoint trap to memory."); 2050 } else 2051 error.SetErrorString("Unable to read memory at breakpoint address."); 2052 } 2053 if (log && error.Fail()) 2054 log->Printf( 2055 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2056 " -- FAILED: %s", 2057 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 2058 return error; 2059 } 2060 2061 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 2062 Status error; 2063 assert(bp_site != nullptr); 2064 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 2065 addr_t bp_addr = bp_site->GetLoadAddress(); 2066 lldb::user_id_t breakID = bp_site->GetID(); 2067 if (log) 2068 log->Printf("Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 2069 ") addr = 0x%" PRIx64, 2070 breakID, (uint64_t)bp_addr); 2071 2072 if (bp_site->IsHardware()) { 2073 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 2074 } else if (bp_site->IsEnabled()) { 2075 const size_t break_op_size = bp_site->GetByteSize(); 2076 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 2077 if (break_op_size > 0) { 2078 // Clear a software breakpoint instruction 2079 uint8_t curr_break_op[8]; 2080 assert(break_op_size <= sizeof(curr_break_op)); 2081 bool break_op_found = false; 2082 2083 // Read the breakpoint opcode 2084 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 2085 break_op_size) { 2086 bool verify = false; 2087 // Make sure the breakpoint opcode exists at this address 2088 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 2089 break_op_found = true; 2090 // We found a valid breakpoint opcode at this address, now restore 2091 // the saved opcode. 2092 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 2093 break_op_size, error) == break_op_size) { 2094 verify = true; 2095 } else 2096 error.SetErrorString( 2097 "Memory write failed when restoring original opcode."); 2098 } else { 2099 error.SetErrorString( 2100 "Original breakpoint trap is no longer in memory."); 2101 // Set verify to true and so we can check if the original opcode has 2102 // already been restored 2103 verify = true; 2104 } 2105 2106 if (verify) { 2107 uint8_t verify_opcode[8]; 2108 assert(break_op_size < sizeof(verify_opcode)); 2109 // Verify that our original opcode made it back to the inferior 2110 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 2111 break_op_size) { 2112 // compare the memory we just read with the original opcode 2113 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 2114 break_op_size) == 0) { 2115 // SUCCESS 2116 bp_site->SetEnabled(false); 2117 if (log) 2118 log->Printf("Process::DisableSoftwareBreakpoint (site_id = %d) " 2119 "addr = 0x%" PRIx64 " -- SUCCESS", 2120 bp_site->GetID(), (uint64_t)bp_addr); 2121 return error; 2122 } else { 2123 if (break_op_found) 2124 error.SetErrorString("Failed to restore original opcode."); 2125 } 2126 } else 2127 error.SetErrorString("Failed to read memory to verify that " 2128 "breakpoint trap was restored."); 2129 } 2130 } else 2131 error.SetErrorString( 2132 "Unable to read memory that should contain the breakpoint trap."); 2133 } 2134 } else { 2135 if (log) 2136 log->Printf( 2137 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2138 " -- already disabled", 2139 bp_site->GetID(), (uint64_t)bp_addr); 2140 return error; 2141 } 2142 2143 if (log) 2144 log->Printf( 2145 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2146 " -- FAILED: %s", 2147 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 2148 return error; 2149 } 2150 2151 // Uncomment to verify memory caching works after making changes to caching 2152 // code 2153 //#define VERIFY_MEMORY_READS 2154 2155 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 2156 error.Clear(); 2157 if (!GetDisableMemoryCache()) { 2158 #if defined(VERIFY_MEMORY_READS) 2159 // Memory caching is enabled, with debug verification 2160 2161 if (buf && size) { 2162 // Uncomment the line below to make sure memory caching is working. 2163 // I ran this through the test suite and got no assertions, so I am 2164 // pretty confident this is working well. If any changes are made to 2165 // memory caching, uncomment the line below and test your changes! 2166 2167 // Verify all memory reads by using the cache first, then redundantly 2168 // reading the same memory from the inferior and comparing to make sure 2169 // everything is exactly the same. 2170 std::string verify_buf(size, '\0'); 2171 assert(verify_buf.size() == size); 2172 const size_t cache_bytes_read = 2173 m_memory_cache.Read(this, addr, buf, size, error); 2174 Status verify_error; 2175 const size_t verify_bytes_read = 2176 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 2177 verify_buf.size(), verify_error); 2178 assert(cache_bytes_read == verify_bytes_read); 2179 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 2180 assert(verify_error.Success() == error.Success()); 2181 return cache_bytes_read; 2182 } 2183 return 0; 2184 #else // !defined(VERIFY_MEMORY_READS) 2185 // Memory caching is enabled, without debug verification 2186 2187 return m_memory_cache.Read(addr, buf, size, error); 2188 #endif // defined (VERIFY_MEMORY_READS) 2189 } else { 2190 // Memory caching is disabled 2191 2192 return ReadMemoryFromInferior(addr, buf, size, error); 2193 } 2194 } 2195 2196 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 2197 Status &error) { 2198 char buf[256]; 2199 out_str.clear(); 2200 addr_t curr_addr = addr; 2201 while (true) { 2202 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 2203 if (length == 0) 2204 break; 2205 out_str.append(buf, length); 2206 // If we got "length - 1" bytes, we didn't get the whole C string, we need 2207 // to read some more characters 2208 if (length == sizeof(buf) - 1) 2209 curr_addr += length; 2210 else 2211 break; 2212 } 2213 return out_str.size(); 2214 } 2215 2216 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes, 2217 Status &error, size_t type_width) { 2218 size_t total_bytes_read = 0; 2219 if (dst && max_bytes && type_width && max_bytes >= type_width) { 2220 // Ensure a null terminator independent of the number of bytes that is 2221 // read. 2222 memset(dst, 0, max_bytes); 2223 size_t bytes_left = max_bytes - type_width; 2224 2225 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 2226 assert(sizeof(terminator) >= type_width && "Attempting to validate a " 2227 "string with more than 4 bytes " 2228 "per character!"); 2229 2230 addr_t curr_addr = addr; 2231 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2232 char *curr_dst = dst; 2233 2234 error.Clear(); 2235 while (bytes_left > 0 && error.Success()) { 2236 addr_t cache_line_bytes_left = 2237 cache_line_size - (curr_addr % cache_line_size); 2238 addr_t bytes_to_read = 2239 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2240 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2241 2242 if (bytes_read == 0) 2243 break; 2244 2245 // Search for a null terminator of correct size and alignment in 2246 // bytes_read 2247 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 2248 for (size_t i = aligned_start; 2249 i + type_width <= total_bytes_read + bytes_read; i += type_width) 2250 if (::memcmp(&dst[i], terminator, type_width) == 0) { 2251 error.Clear(); 2252 return i; 2253 } 2254 2255 total_bytes_read += bytes_read; 2256 curr_dst += bytes_read; 2257 curr_addr += bytes_read; 2258 bytes_left -= bytes_read; 2259 } 2260 } else { 2261 if (max_bytes) 2262 error.SetErrorString("invalid arguments"); 2263 } 2264 return total_bytes_read; 2265 } 2266 2267 // Deprecated in favor of ReadStringFromMemory which has wchar support and 2268 // correct code to find null terminators. 2269 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 2270 size_t dst_max_len, 2271 Status &result_error) { 2272 size_t total_cstr_len = 0; 2273 if (dst && dst_max_len) { 2274 result_error.Clear(); 2275 // NULL out everything just to be safe 2276 memset(dst, 0, dst_max_len); 2277 Status error; 2278 addr_t curr_addr = addr; 2279 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2280 size_t bytes_left = dst_max_len - 1; 2281 char *curr_dst = dst; 2282 2283 while (bytes_left > 0) { 2284 addr_t cache_line_bytes_left = 2285 cache_line_size - (curr_addr % cache_line_size); 2286 addr_t bytes_to_read = 2287 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2288 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2289 2290 if (bytes_read == 0) { 2291 result_error = error; 2292 dst[total_cstr_len] = '\0'; 2293 break; 2294 } 2295 const size_t len = strlen(curr_dst); 2296 2297 total_cstr_len += len; 2298 2299 if (len < bytes_to_read) 2300 break; 2301 2302 curr_dst += bytes_read; 2303 curr_addr += bytes_read; 2304 bytes_left -= bytes_read; 2305 } 2306 } else { 2307 if (dst == nullptr) 2308 result_error.SetErrorString("invalid arguments"); 2309 else 2310 result_error.Clear(); 2311 } 2312 return total_cstr_len; 2313 } 2314 2315 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2316 Status &error) { 2317 if (buf == nullptr || size == 0) 2318 return 0; 2319 2320 size_t bytes_read = 0; 2321 uint8_t *bytes = (uint8_t *)buf; 2322 2323 while (bytes_read < size) { 2324 const size_t curr_size = size - bytes_read; 2325 const size_t curr_bytes_read = 2326 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2327 bytes_read += curr_bytes_read; 2328 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2329 break; 2330 } 2331 2332 // Replace any software breakpoint opcodes that fall into this range back 2333 // into "buf" before we return 2334 if (bytes_read > 0) 2335 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2336 return bytes_read; 2337 } 2338 2339 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2340 size_t integer_byte_size, 2341 uint64_t fail_value, 2342 Status &error) { 2343 Scalar scalar; 2344 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2345 error)) 2346 return scalar.ULongLong(fail_value); 2347 return fail_value; 2348 } 2349 2350 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2351 size_t integer_byte_size, 2352 int64_t fail_value, 2353 Status &error) { 2354 Scalar scalar; 2355 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2356 error)) 2357 return scalar.SLongLong(fail_value); 2358 return fail_value; 2359 } 2360 2361 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2362 Scalar scalar; 2363 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2364 error)) 2365 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2366 return LLDB_INVALID_ADDRESS; 2367 } 2368 2369 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2370 Status &error) { 2371 Scalar scalar; 2372 const uint32_t addr_byte_size = GetAddressByteSize(); 2373 if (addr_byte_size <= 4) 2374 scalar = (uint32_t)ptr_value; 2375 else 2376 scalar = ptr_value; 2377 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2378 addr_byte_size; 2379 } 2380 2381 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2382 Status &error) { 2383 size_t bytes_written = 0; 2384 const uint8_t *bytes = (const uint8_t *)buf; 2385 2386 while (bytes_written < size) { 2387 const size_t curr_size = size - bytes_written; 2388 const size_t curr_bytes_written = DoWriteMemory( 2389 addr + bytes_written, bytes + bytes_written, curr_size, error); 2390 bytes_written += curr_bytes_written; 2391 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2392 break; 2393 } 2394 return bytes_written; 2395 } 2396 2397 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2398 Status &error) { 2399 #if defined(ENABLE_MEMORY_CACHING) 2400 m_memory_cache.Flush(addr, size); 2401 #endif 2402 2403 if (buf == nullptr || size == 0) 2404 return 0; 2405 2406 m_mod_id.BumpMemoryID(); 2407 2408 // We need to write any data that would go where any current software traps 2409 // (enabled software breakpoints) any software traps (breakpoints) that we 2410 // may have placed in our tasks memory. 2411 2412 BreakpointSiteList bp_sites_in_range; 2413 2414 if (m_breakpoint_site_list.FindInRange(addr, addr + size, 2415 bp_sites_in_range)) { 2416 // No breakpoint sites overlap 2417 if (bp_sites_in_range.IsEmpty()) 2418 return WriteMemoryPrivate(addr, buf, size, error); 2419 else { 2420 const uint8_t *ubuf = (const uint8_t *)buf; 2421 uint64_t bytes_written = 0; 2422 2423 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2424 &error](BreakpointSite *bp) -> void { 2425 2426 if (error.Success()) { 2427 addr_t intersect_addr; 2428 size_t intersect_size; 2429 size_t opcode_offset; 2430 const bool intersects = bp->IntersectsRange( 2431 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2432 UNUSED_IF_ASSERT_DISABLED(intersects); 2433 assert(intersects); 2434 assert(addr <= intersect_addr && intersect_addr < addr + size); 2435 assert(addr < intersect_addr + intersect_size && 2436 intersect_addr + intersect_size <= addr + size); 2437 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2438 2439 // Check for bytes before this breakpoint 2440 const addr_t curr_addr = addr + bytes_written; 2441 if (intersect_addr > curr_addr) { 2442 // There are some bytes before this breakpoint that we need to just 2443 // write to memory 2444 size_t curr_size = intersect_addr - curr_addr; 2445 size_t curr_bytes_written = WriteMemoryPrivate( 2446 curr_addr, ubuf + bytes_written, curr_size, error); 2447 bytes_written += curr_bytes_written; 2448 if (curr_bytes_written != curr_size) { 2449 // We weren't able to write all of the requested bytes, we are 2450 // done looping and will return the number of bytes that we have 2451 // written so far. 2452 if (error.Success()) 2453 error.SetErrorToGenericError(); 2454 } 2455 } 2456 // Now write any bytes that would cover up any software breakpoints 2457 // directly into the breakpoint opcode buffer 2458 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, 2459 ubuf + bytes_written, intersect_size); 2460 bytes_written += intersect_size; 2461 } 2462 }); 2463 2464 if (bytes_written < size) 2465 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2466 size - bytes_written, error); 2467 } 2468 } else { 2469 return WriteMemoryPrivate(addr, buf, size, error); 2470 } 2471 2472 // Write any remaining bytes after the last breakpoint if we have any left 2473 return 0; // bytes_written; 2474 } 2475 2476 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2477 size_t byte_size, Status &error) { 2478 if (byte_size == UINT32_MAX) 2479 byte_size = scalar.GetByteSize(); 2480 if (byte_size > 0) { 2481 uint8_t buf[32]; 2482 const size_t mem_size = 2483 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2484 if (mem_size > 0) 2485 return WriteMemory(addr, buf, mem_size, error); 2486 else 2487 error.SetErrorString("failed to get scalar as memory data"); 2488 } else { 2489 error.SetErrorString("invalid scalar value"); 2490 } 2491 return 0; 2492 } 2493 2494 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2495 bool is_signed, Scalar &scalar, 2496 Status &error) { 2497 uint64_t uval = 0; 2498 if (byte_size == 0) { 2499 error.SetErrorString("byte size is zero"); 2500 } else if (byte_size & (byte_size - 1)) { 2501 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2502 byte_size); 2503 } else if (byte_size <= sizeof(uval)) { 2504 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2505 if (bytes_read == byte_size) { 2506 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2507 GetAddressByteSize()); 2508 lldb::offset_t offset = 0; 2509 if (byte_size <= 4) 2510 scalar = data.GetMaxU32(&offset, byte_size); 2511 else 2512 scalar = data.GetMaxU64(&offset, byte_size); 2513 if (is_signed) 2514 scalar.SignExtend(byte_size * 8); 2515 return bytes_read; 2516 } 2517 } else { 2518 error.SetErrorStringWithFormat( 2519 "byte size of %u is too large for integer scalar type", byte_size); 2520 } 2521 return 0; 2522 } 2523 2524 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2525 Status error; 2526 for (const auto &Entry : entries) { 2527 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2528 error); 2529 if (!error.Success()) 2530 break; 2531 } 2532 return error; 2533 } 2534 2535 #define USE_ALLOCATE_MEMORY_CACHE 1 2536 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2537 Status &error) { 2538 if (GetPrivateState() != eStateStopped) 2539 return LLDB_INVALID_ADDRESS; 2540 2541 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2542 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2543 #else 2544 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2545 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2546 if (log) 2547 log->Printf("Process::AllocateMemory(size=%" PRIu64 2548 ", permissions=%s) => 0x%16.16" PRIx64 2549 " (m_stop_id = %u m_memory_id = %u)", 2550 (uint64_t)size, GetPermissionsAsCString(permissions), 2551 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2552 m_mod_id.GetMemoryID()); 2553 return allocated_addr; 2554 #endif 2555 } 2556 2557 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2558 Status &error) { 2559 addr_t return_addr = AllocateMemory(size, permissions, error); 2560 if (error.Success()) { 2561 std::string buffer(size, 0); 2562 WriteMemory(return_addr, buffer.c_str(), size, error); 2563 } 2564 return return_addr; 2565 } 2566 2567 bool Process::CanJIT() { 2568 if (m_can_jit == eCanJITDontKnow) { 2569 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2570 Status err; 2571 2572 uint64_t allocated_memory = AllocateMemory( 2573 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2574 err); 2575 2576 if (err.Success()) { 2577 m_can_jit = eCanJITYes; 2578 if (log) 2579 log->Printf("Process::%s pid %" PRIu64 2580 " allocation test passed, CanJIT () is true", 2581 __FUNCTION__, GetID()); 2582 } else { 2583 m_can_jit = eCanJITNo; 2584 if (log) 2585 log->Printf("Process::%s pid %" PRIu64 2586 " allocation test failed, CanJIT () is false: %s", 2587 __FUNCTION__, GetID(), err.AsCString()); 2588 } 2589 2590 DeallocateMemory(allocated_memory); 2591 } 2592 2593 return m_can_jit == eCanJITYes; 2594 } 2595 2596 void Process::SetCanJIT(bool can_jit) { 2597 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2598 } 2599 2600 void Process::SetCanRunCode(bool can_run_code) { 2601 SetCanJIT(can_run_code); 2602 m_can_interpret_function_calls = can_run_code; 2603 } 2604 2605 Status Process::DeallocateMemory(addr_t ptr) { 2606 Status error; 2607 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2608 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2609 error.SetErrorStringWithFormat( 2610 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2611 } 2612 #else 2613 error = DoDeallocateMemory(ptr); 2614 2615 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2616 if (log) 2617 log->Printf("Process::DeallocateMemory(addr=0x%16.16" PRIx64 2618 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2619 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2620 m_mod_id.GetMemoryID()); 2621 #endif 2622 return error; 2623 } 2624 2625 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2626 lldb::addr_t header_addr, 2627 size_t size_to_read) { 2628 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2629 if (log) { 2630 log->Printf("Process::ReadModuleFromMemory reading %s binary from memory", 2631 file_spec.GetPath().c_str()); 2632 } 2633 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2634 if (module_sp) { 2635 Status error; 2636 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2637 shared_from_this(), header_addr, error, size_to_read); 2638 if (objfile) 2639 return module_sp; 2640 } 2641 return ModuleSP(); 2642 } 2643 2644 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2645 uint32_t &permissions) { 2646 MemoryRegionInfo range_info; 2647 permissions = 0; 2648 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2649 if (!error.Success()) 2650 return false; 2651 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2652 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2653 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2654 return false; 2655 } 2656 2657 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2658 permissions |= lldb::ePermissionsReadable; 2659 2660 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2661 permissions |= lldb::ePermissionsWritable; 2662 2663 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2664 permissions |= lldb::ePermissionsExecutable; 2665 2666 return true; 2667 } 2668 2669 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2670 Status error; 2671 error.SetErrorString("watchpoints are not supported"); 2672 return error; 2673 } 2674 2675 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2676 Status error; 2677 error.SetErrorString("watchpoints are not supported"); 2678 return error; 2679 } 2680 2681 StateType 2682 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2683 const Timeout<std::micro> &timeout) { 2684 StateType state; 2685 // Now wait for the process to launch and return control to us, and then call 2686 // DidLaunch: 2687 while (true) { 2688 event_sp.reset(); 2689 state = GetStateChangedEventsPrivate(event_sp, timeout); 2690 2691 if (StateIsStoppedState(state, false)) 2692 break; 2693 2694 // If state is invalid, then we timed out 2695 if (state == eStateInvalid) 2696 break; 2697 2698 if (event_sp) 2699 HandlePrivateEvent(event_sp); 2700 } 2701 return state; 2702 } 2703 2704 void Process::LoadOperatingSystemPlugin(bool flush) { 2705 if (flush) 2706 m_thread_list.Clear(); 2707 m_os_ap.reset(OperatingSystem::FindPlugin(this, nullptr)); 2708 if (flush) 2709 Flush(); 2710 } 2711 2712 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2713 Status error; 2714 m_abi_sp.reset(); 2715 m_dyld_ap.reset(); 2716 m_jit_loaders_ap.reset(); 2717 m_system_runtime_ap.reset(); 2718 m_os_ap.reset(); 2719 m_process_input_reader.reset(); 2720 2721 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2722 if (exe_module) { 2723 char local_exec_file_path[PATH_MAX]; 2724 char platform_exec_file_path[PATH_MAX]; 2725 exe_module->GetFileSpec().GetPath(local_exec_file_path, 2726 sizeof(local_exec_file_path)); 2727 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, 2728 sizeof(platform_exec_file_path)); 2729 if (exe_module->GetFileSpec().Exists()) { 2730 // Install anything that might need to be installed prior to launching. 2731 // For host systems, this will do nothing, but if we are connected to a 2732 // remote platform it will install any needed binaries 2733 error = GetTarget().Install(&launch_info); 2734 if (error.Fail()) 2735 return error; 2736 2737 if (PrivateStateThreadIsValid()) 2738 PausePrivateStateThread(); 2739 2740 error = WillLaunch(exe_module); 2741 if (error.Success()) { 2742 const bool restarted = false; 2743 SetPublicState(eStateLaunching, restarted); 2744 m_should_detach = false; 2745 2746 if (m_public_run_lock.TrySetRunning()) { 2747 // Now launch using these arguments. 2748 error = DoLaunch(exe_module, launch_info); 2749 } else { 2750 // This shouldn't happen 2751 error.SetErrorString("failed to acquire process run lock"); 2752 } 2753 2754 if (error.Fail()) { 2755 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2756 SetID(LLDB_INVALID_PROCESS_ID); 2757 const char *error_string = error.AsCString(); 2758 if (error_string == nullptr) 2759 error_string = "launch failed"; 2760 SetExitStatus(-1, error_string); 2761 } 2762 } else { 2763 EventSP event_sp; 2764 StateType state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2765 2766 if (state == eStateInvalid || !event_sp) { 2767 // We were able to launch the process, but we failed to catch the 2768 // initial stop. 2769 error.SetErrorString("failed to catch stop after launch"); 2770 SetExitStatus(0, "failed to catch stop after launch"); 2771 Destroy(false); 2772 } else if (state == eStateStopped || state == eStateCrashed) { 2773 DidLaunch(); 2774 2775 DynamicLoader *dyld = GetDynamicLoader(); 2776 if (dyld) 2777 dyld->DidLaunch(); 2778 2779 GetJITLoaders().DidLaunch(); 2780 2781 SystemRuntime *system_runtime = GetSystemRuntime(); 2782 if (system_runtime) 2783 system_runtime->DidLaunch(); 2784 2785 if (!m_os_ap) 2786 LoadOperatingSystemPlugin(false); 2787 2788 // We successfully launched the process and stopped, now it the 2789 // right time to set up signal filters before resuming. 2790 UpdateAutomaticSignalFiltering(); 2791 2792 // Note, the stop event was consumed above, but not handled. This 2793 // was done to give DidLaunch a chance to run. The target is either 2794 // stopped or crashed. Directly set the state. This is done to 2795 // prevent a stop message with a bunch of spurious output on thread 2796 // status, as well as not pop a ProcessIOHandler. 2797 SetPublicState(state, false); 2798 2799 if (PrivateStateThreadIsValid()) 2800 ResumePrivateStateThread(); 2801 else 2802 StartPrivateStateThread(); 2803 2804 // Target was stopped at entry as was intended. Need to notify the 2805 // listeners about it. 2806 if (state == eStateStopped && 2807 launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2808 HandlePrivateEvent(event_sp); 2809 } else if (state == eStateExited) { 2810 // We exited while trying to launch somehow. Don't call DidLaunch 2811 // as that's not likely to work, and return an invalid pid. 2812 HandlePrivateEvent(event_sp); 2813 } 2814 } 2815 } 2816 } else { 2817 error.SetErrorStringWithFormat("file doesn't exist: '%s'", 2818 local_exec_file_path); 2819 } 2820 } 2821 return error; 2822 } 2823 2824 Status Process::LoadCore() { 2825 Status error = DoLoadCore(); 2826 if (error.Success()) { 2827 ListenerSP listener_sp( 2828 Listener::MakeListener("lldb.process.load_core_listener")); 2829 HijackProcessEvents(listener_sp); 2830 2831 if (PrivateStateThreadIsValid()) 2832 ResumePrivateStateThread(); 2833 else 2834 StartPrivateStateThread(); 2835 2836 DynamicLoader *dyld = GetDynamicLoader(); 2837 if (dyld) 2838 dyld->DidAttach(); 2839 2840 GetJITLoaders().DidAttach(); 2841 2842 SystemRuntime *system_runtime = GetSystemRuntime(); 2843 if (system_runtime) 2844 system_runtime->DidAttach(); 2845 2846 if (!m_os_ap) 2847 LoadOperatingSystemPlugin(false); 2848 2849 // We successfully loaded a core file, now pretend we stopped so we can 2850 // show all of the threads in the core file and explore the crashed state. 2851 SetPrivateState(eStateStopped); 2852 2853 // Wait for a stopped event since we just posted one above... 2854 lldb::EventSP event_sp; 2855 StateType state = 2856 WaitForProcessToStop(seconds(10), &event_sp, true, listener_sp); 2857 2858 if (!StateIsStoppedState(state, false)) { 2859 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2860 if (log) 2861 log->Printf("Process::Halt() failed to stop, state is: %s", 2862 StateAsCString(state)); 2863 error.SetErrorString( 2864 "Did not get stopped event after loading the core file."); 2865 } 2866 RestoreProcessEvents(); 2867 } 2868 return error; 2869 } 2870 2871 DynamicLoader *Process::GetDynamicLoader() { 2872 if (!m_dyld_ap) 2873 m_dyld_ap.reset(DynamicLoader::FindPlugin(this, nullptr)); 2874 return m_dyld_ap.get(); 2875 } 2876 2877 const lldb::DataBufferSP Process::GetAuxvData() { return DataBufferSP(); } 2878 2879 JITLoaderList &Process::GetJITLoaders() { 2880 if (!m_jit_loaders_ap) { 2881 m_jit_loaders_ap.reset(new JITLoaderList()); 2882 JITLoader::LoadPlugins(this, *m_jit_loaders_ap); 2883 } 2884 return *m_jit_loaders_ap; 2885 } 2886 2887 SystemRuntime *Process::GetSystemRuntime() { 2888 if (!m_system_runtime_ap) 2889 m_system_runtime_ap.reset(SystemRuntime::FindPlugin(this)); 2890 return m_system_runtime_ap.get(); 2891 } 2892 2893 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2894 uint32_t exec_count) 2895 : NextEventAction(process), m_exec_count(exec_count) { 2896 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2897 if (log) 2898 log->Printf( 2899 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2900 __FUNCTION__, static_cast<void *>(process), exec_count); 2901 } 2902 2903 Process::NextEventAction::EventActionResult 2904 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2905 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2906 2907 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2908 if (log) 2909 log->Printf( 2910 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2911 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2912 2913 switch (state) { 2914 case eStateAttaching: 2915 return eEventActionSuccess; 2916 2917 case eStateRunning: 2918 case eStateConnected: 2919 return eEventActionRetry; 2920 2921 case eStateStopped: 2922 case eStateCrashed: 2923 // During attach, prior to sending the eStateStopped event, 2924 // lldb_private::Process subclasses must set the new process ID. 2925 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2926 // We don't want these events to be reported, so go set the 2927 // ShouldReportStop here: 2928 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2929 2930 if (m_exec_count > 0) { 2931 --m_exec_count; 2932 2933 if (log) 2934 log->Printf("Process::AttachCompletionHandler::%s state %s: reduced " 2935 "remaining exec count to %" PRIu32 ", requesting resume", 2936 __FUNCTION__, StateAsCString(state), m_exec_count); 2937 2938 RequestResume(); 2939 return eEventActionRetry; 2940 } else { 2941 if (log) 2942 log->Printf("Process::AttachCompletionHandler::%s state %s: no more " 2943 "execs expected to start, continuing with attach", 2944 __FUNCTION__, StateAsCString(state)); 2945 2946 m_process->CompleteAttach(); 2947 return eEventActionSuccess; 2948 } 2949 break; 2950 2951 default: 2952 case eStateExited: 2953 case eStateInvalid: 2954 break; 2955 } 2956 2957 m_exit_string.assign("No valid Process"); 2958 return eEventActionExit; 2959 } 2960 2961 Process::NextEventAction::EventActionResult 2962 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2963 return eEventActionSuccess; 2964 } 2965 2966 const char *Process::AttachCompletionHandler::GetExitString() { 2967 return m_exit_string.c_str(); 2968 } 2969 2970 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2971 if (m_listener_sp) 2972 return m_listener_sp; 2973 else 2974 return debugger.GetListener(); 2975 } 2976 2977 Status Process::Attach(ProcessAttachInfo &attach_info) { 2978 m_abi_sp.reset(); 2979 m_process_input_reader.reset(); 2980 m_dyld_ap.reset(); 2981 m_jit_loaders_ap.reset(); 2982 m_system_runtime_ap.reset(); 2983 m_os_ap.reset(); 2984 2985 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2986 Status error; 2987 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2988 char process_name[PATH_MAX]; 2989 2990 if (attach_info.GetExecutableFile().GetPath(process_name, 2991 sizeof(process_name))) { 2992 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2993 2994 if (wait_for_launch) { 2995 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2996 if (error.Success()) { 2997 if (m_public_run_lock.TrySetRunning()) { 2998 m_should_detach = true; 2999 const bool restarted = false; 3000 SetPublicState(eStateAttaching, restarted); 3001 // Now attach using these arguments. 3002 error = DoAttachToProcessWithName(process_name, attach_info); 3003 } else { 3004 // This shouldn't happen 3005 error.SetErrorString("failed to acquire process run lock"); 3006 } 3007 3008 if (error.Fail()) { 3009 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3010 SetID(LLDB_INVALID_PROCESS_ID); 3011 if (error.AsCString() == nullptr) 3012 error.SetErrorString("attach failed"); 3013 3014 SetExitStatus(-1, error.AsCString()); 3015 } 3016 } else { 3017 SetNextEventAction(new Process::AttachCompletionHandler( 3018 this, attach_info.GetResumeCount())); 3019 StartPrivateStateThread(); 3020 } 3021 return error; 3022 } 3023 } else { 3024 ProcessInstanceInfoList process_infos; 3025 PlatformSP platform_sp(GetTarget().GetPlatform()); 3026 3027 if (platform_sp) { 3028 ProcessInstanceInfoMatch match_info; 3029 match_info.GetProcessInfo() = attach_info; 3030 match_info.SetNameMatchType(NameMatch::Equals); 3031 platform_sp->FindProcesses(match_info, process_infos); 3032 const uint32_t num_matches = process_infos.GetSize(); 3033 if (num_matches == 1) { 3034 attach_pid = process_infos.GetProcessIDAtIndex(0); 3035 // Fall through and attach using the above process ID 3036 } else { 3037 match_info.GetProcessInfo().GetExecutableFile().GetPath( 3038 process_name, sizeof(process_name)); 3039 if (num_matches > 1) { 3040 StreamString s; 3041 ProcessInstanceInfo::DumpTableHeader(s, platform_sp.get(), true, 3042 false); 3043 for (size_t i = 0; i < num_matches; i++) { 3044 process_infos.GetProcessInfoAtIndex(i).DumpAsTableRow( 3045 s, platform_sp.get(), true, false); 3046 } 3047 error.SetErrorStringWithFormat( 3048 "more than one process named %s:\n%s", process_name, 3049 s.GetData()); 3050 } else 3051 error.SetErrorStringWithFormat( 3052 "could not find a process named %s", process_name); 3053 } 3054 } else { 3055 error.SetErrorString( 3056 "invalid platform, can't find processes by name"); 3057 return error; 3058 } 3059 } 3060 } else { 3061 error.SetErrorString("invalid process name"); 3062 } 3063 } 3064 3065 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 3066 error = WillAttachToProcessWithID(attach_pid); 3067 if (error.Success()) { 3068 3069 if (m_public_run_lock.TrySetRunning()) { 3070 // Now attach using these arguments. 3071 m_should_detach = true; 3072 const bool restarted = false; 3073 SetPublicState(eStateAttaching, restarted); 3074 error = DoAttachToProcessWithID(attach_pid, attach_info); 3075 } else { 3076 // This shouldn't happen 3077 error.SetErrorString("failed to acquire process run lock"); 3078 } 3079 3080 if (error.Success()) { 3081 SetNextEventAction(new Process::AttachCompletionHandler( 3082 this, attach_info.GetResumeCount())); 3083 StartPrivateStateThread(); 3084 } else { 3085 if (GetID() != LLDB_INVALID_PROCESS_ID) 3086 SetID(LLDB_INVALID_PROCESS_ID); 3087 3088 const char *error_string = error.AsCString(); 3089 if (error_string == nullptr) 3090 error_string = "attach failed"; 3091 3092 SetExitStatus(-1, error_string); 3093 } 3094 } 3095 } 3096 return error; 3097 } 3098 3099 void Process::CompleteAttach() { 3100 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3101 LIBLLDB_LOG_TARGET)); 3102 if (log) 3103 log->Printf("Process::%s()", __FUNCTION__); 3104 3105 // Let the process subclass figure out at much as it can about the process 3106 // before we go looking for a dynamic loader plug-in. 3107 ArchSpec process_arch; 3108 DidAttach(process_arch); 3109 3110 if (process_arch.IsValid()) { 3111 GetTarget().SetArchitecture(process_arch); 3112 if (log) { 3113 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 3114 log->Printf("Process::%s replacing process architecture with DidAttach() " 3115 "architecture: %s", 3116 __FUNCTION__, triple_str ? triple_str : "<null>"); 3117 } 3118 } 3119 3120 // We just attached. If we have a platform, ask it for the process 3121 // architecture, and if it isn't the same as the one we've already set, 3122 // switch architectures. 3123 PlatformSP platform_sp(GetTarget().GetPlatform()); 3124 assert(platform_sp); 3125 if (platform_sp) { 3126 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 3127 if (target_arch.IsValid() && 3128 !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) { 3129 ArchSpec platform_arch; 3130 platform_sp = 3131 platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch); 3132 if (platform_sp) { 3133 GetTarget().SetPlatform(platform_sp); 3134 GetTarget().SetArchitecture(platform_arch); 3135 if (log) 3136 log->Printf("Process::%s switching platform to %s and architecture " 3137 "to %s based on info from attach", 3138 __FUNCTION__, platform_sp->GetName().AsCString(""), 3139 platform_arch.GetTriple().getTriple().c_str()); 3140 } 3141 } else if (!process_arch.IsValid()) { 3142 ProcessInstanceInfo process_info; 3143 GetProcessInfo(process_info); 3144 const ArchSpec &process_arch = process_info.GetArchitecture(); 3145 if (process_arch.IsValid() && 3146 !GetTarget().GetArchitecture().IsExactMatch(process_arch)) { 3147 GetTarget().SetArchitecture(process_arch); 3148 if (log) 3149 log->Printf("Process::%s switching architecture to %s based on info " 3150 "the platform retrieved for pid %" PRIu64, 3151 __FUNCTION__, 3152 process_arch.GetTriple().getTriple().c_str(), GetID()); 3153 } 3154 } 3155 } 3156 3157 // We have completed the attach, now it is time to find the dynamic loader 3158 // plug-in 3159 DynamicLoader *dyld = GetDynamicLoader(); 3160 if (dyld) { 3161 dyld->DidAttach(); 3162 if (log) { 3163 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3164 log->Printf("Process::%s after DynamicLoader::DidAttach(), target " 3165 "executable is %s (using %s plugin)", 3166 __FUNCTION__, 3167 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3168 : "<none>", 3169 dyld->GetPluginName().AsCString("<unnamed>")); 3170 } 3171 } 3172 3173 GetJITLoaders().DidAttach(); 3174 3175 SystemRuntime *system_runtime = GetSystemRuntime(); 3176 if (system_runtime) { 3177 system_runtime->DidAttach(); 3178 if (log) { 3179 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3180 log->Printf("Process::%s after SystemRuntime::DidAttach(), target " 3181 "executable is %s (using %s plugin)", 3182 __FUNCTION__, 3183 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3184 : "<none>", 3185 system_runtime->GetPluginName().AsCString("<unnamed>")); 3186 } 3187 } 3188 3189 if (!m_os_ap) 3190 LoadOperatingSystemPlugin(false); 3191 // Figure out which one is the executable, and set that in our target: 3192 const ModuleList &target_modules = GetTarget().GetImages(); 3193 std::lock_guard<std::recursive_mutex> guard(target_modules.GetMutex()); 3194 size_t num_modules = target_modules.GetSize(); 3195 ModuleSP new_executable_module_sp; 3196 3197 for (size_t i = 0; i < num_modules; i++) { 3198 ModuleSP module_sp(target_modules.GetModuleAtIndexUnlocked(i)); 3199 if (module_sp && module_sp->IsExecutable()) { 3200 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 3201 new_executable_module_sp = module_sp; 3202 break; 3203 } 3204 } 3205 if (new_executable_module_sp) { 3206 GetTarget().SetExecutableModule(new_executable_module_sp, false); 3207 if (log) { 3208 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3209 log->Printf( 3210 "Process::%s after looping through modules, target executable is %s", 3211 __FUNCTION__, 3212 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3213 : "<none>"); 3214 } 3215 } 3216 } 3217 3218 Status Process::ConnectRemote(Stream *strm, llvm::StringRef remote_url) { 3219 m_abi_sp.reset(); 3220 m_process_input_reader.reset(); 3221 3222 // Find the process and its architecture. Make sure it matches the 3223 // architecture of the current Target, and if not adjust it. 3224 3225 Status error(DoConnectRemote(strm, remote_url)); 3226 if (error.Success()) { 3227 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3228 EventSP event_sp; 3229 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 3230 3231 if (state == eStateStopped || state == eStateCrashed) { 3232 // If we attached and actually have a process on the other end, then 3233 // this ended up being the equivalent of an attach. 3234 CompleteAttach(); 3235 3236 // This delays passing the stopped event to listeners till 3237 // CompleteAttach gets a chance to complete... 3238 HandlePrivateEvent(event_sp); 3239 } 3240 } 3241 3242 if (PrivateStateThreadIsValid()) 3243 ResumePrivateStateThread(); 3244 else 3245 StartPrivateStateThread(); 3246 } 3247 return error; 3248 } 3249 3250 Status Process::PrivateResume() { 3251 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3252 LIBLLDB_LOG_STEP)); 3253 if (log) 3254 log->Printf("Process::PrivateResume() m_stop_id = %u, public state: %s " 3255 "private state: %s", 3256 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3257 StateAsCString(m_private_state.GetValue())); 3258 3259 // If signals handing status changed we might want to update our signal 3260 // filters before resuming. 3261 UpdateAutomaticSignalFiltering(); 3262 3263 Status error(WillResume()); 3264 // Tell the process it is about to resume before the thread list 3265 if (error.Success()) { 3266 // Now let the thread list know we are about to resume so it can let all of 3267 // our threads know that they are about to be resumed. Threads will each be 3268 // called with Thread::WillResume(StateType) where StateType contains the 3269 // state that they are supposed to have when the process is resumed 3270 // (suspended/running/stepping). Threads should also check their resume 3271 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3272 // start back up with a signal. 3273 if (m_thread_list.WillResume()) { 3274 // Last thing, do the PreResumeActions. 3275 if (!RunPreResumeActions()) { 3276 error.SetErrorStringWithFormat( 3277 "Process::PrivateResume PreResumeActions failed, not resuming."); 3278 } else { 3279 m_mod_id.BumpResumeID(); 3280 error = DoResume(); 3281 if (error.Success()) { 3282 DidResume(); 3283 m_thread_list.DidResume(); 3284 if (log) 3285 log->Printf("Process thinks the process has resumed."); 3286 } 3287 } 3288 } else { 3289 // Somebody wanted to run without running (e.g. we were faking a step 3290 // from one frame of a set of inlined frames that share the same PC to 3291 // another.) So generate a continue & a stopped event, and let the world 3292 // handle them. 3293 if (log) 3294 log->Printf( 3295 "Process::PrivateResume() asked to simulate a start & stop."); 3296 3297 SetPrivateState(eStateRunning); 3298 SetPrivateState(eStateStopped); 3299 } 3300 } else if (log) 3301 log->Printf("Process::PrivateResume() got an error \"%s\".", 3302 error.AsCString("<unknown error>")); 3303 return error; 3304 } 3305 3306 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3307 if (!StateIsRunningState(m_public_state.GetValue())) 3308 return Status("Process is not running."); 3309 3310 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3311 // case it was already set and some thread plan logic calls halt on its own. 3312 m_clear_thread_plans_on_stop |= clear_thread_plans; 3313 3314 ListenerSP halt_listener_sp( 3315 Listener::MakeListener("lldb.process.halt_listener")); 3316 HijackProcessEvents(halt_listener_sp); 3317 3318 EventSP event_sp; 3319 3320 SendAsyncInterrupt(); 3321 3322 if (m_public_state.GetValue() == eStateAttaching) { 3323 // Don't hijack and eat the eStateExited as the code that was doing the 3324 // attach will be waiting for this event... 3325 RestoreProcessEvents(); 3326 SetExitStatus(SIGKILL, "Cancelled async attach."); 3327 Destroy(false); 3328 return Status(); 3329 } 3330 3331 // Wait for 10 second for the process to stop. 3332 StateType state = WaitForProcessToStop( 3333 seconds(10), &event_sp, true, halt_listener_sp, nullptr, use_run_lock); 3334 RestoreProcessEvents(); 3335 3336 if (state == eStateInvalid || !event_sp) { 3337 // We timed out and didn't get a stop event... 3338 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3339 } 3340 3341 BroadcastEvent(event_sp); 3342 3343 return Status(); 3344 } 3345 3346 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3347 Status error; 3348 3349 // Check both the public & private states here. If we're hung evaluating an 3350 // expression, for instance, then the public state will be stopped, but we 3351 // still need to interrupt. 3352 if (m_public_state.GetValue() == eStateRunning || 3353 m_private_state.GetValue() == eStateRunning) { 3354 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3355 if (log) 3356 log->Printf("Process::%s() About to stop.", __FUNCTION__); 3357 3358 ListenerSP listener_sp( 3359 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3360 HijackProcessEvents(listener_sp); 3361 3362 SendAsyncInterrupt(); 3363 3364 // Consume the interrupt event. 3365 StateType state = 3366 WaitForProcessToStop(seconds(10), &exit_event_sp, true, listener_sp); 3367 3368 RestoreProcessEvents(); 3369 3370 // If the process exited while we were waiting for it to stop, put the 3371 // exited event into the shared pointer passed in and return. Our caller 3372 // doesn't need to do anything else, since they don't have a process 3373 // anymore... 3374 3375 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3376 if (log) 3377 log->Printf("Process::%s() Process exited while waiting to stop.", 3378 __FUNCTION__); 3379 return error; 3380 } else 3381 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3382 3383 if (state != eStateStopped) { 3384 if (log) 3385 log->Printf("Process::%s() failed to stop, state is: %s", __FUNCTION__, 3386 StateAsCString(state)); 3387 // If we really couldn't stop the process then we should just error out 3388 // here, but if the lower levels just bobbled sending the event and we 3389 // really are stopped, then continue on. 3390 StateType private_state = m_private_state.GetValue(); 3391 if (private_state != eStateStopped) { 3392 return Status( 3393 "Attempt to stop the target in order to detach timed out. " 3394 "State = %s", 3395 StateAsCString(GetState())); 3396 } 3397 } 3398 } 3399 return error; 3400 } 3401 3402 Status Process::Detach(bool keep_stopped) { 3403 EventSP exit_event_sp; 3404 Status error; 3405 m_destroy_in_process = true; 3406 3407 error = WillDetach(); 3408 3409 if (error.Success()) { 3410 if (DetachRequiresHalt()) { 3411 error = StopForDestroyOrDetach(exit_event_sp); 3412 if (!error.Success()) { 3413 m_destroy_in_process = false; 3414 return error; 3415 } else if (exit_event_sp) { 3416 // We shouldn't need to do anything else here. There's no process left 3417 // to detach from... 3418 StopPrivateStateThread(); 3419 m_destroy_in_process = false; 3420 return error; 3421 } 3422 } 3423 3424 m_thread_list.DiscardThreadPlans(); 3425 DisableAllBreakpointSites(); 3426 3427 error = DoDetach(keep_stopped); 3428 if (error.Success()) { 3429 DidDetach(); 3430 StopPrivateStateThread(); 3431 } else { 3432 return error; 3433 } 3434 } 3435 m_destroy_in_process = false; 3436 3437 // If we exited when we were waiting for a process to stop, then forward the 3438 // event here so we don't lose the event 3439 if (exit_event_sp) { 3440 // Directly broadcast our exited event because we shut down our private 3441 // state thread above 3442 BroadcastEvent(exit_event_sp); 3443 } 3444 3445 // If we have been interrupted (to kill us) in the middle of running, we may 3446 // not end up propagating the last events through the event system, in which 3447 // case we might strand the write lock. Unlock it here so when we do to tear 3448 // down the process we don't get an error destroying the lock. 3449 3450 m_public_run_lock.SetStopped(); 3451 return error; 3452 } 3453 3454 Status Process::Destroy(bool force_kill) { 3455 3456 // Tell ourselves we are in the process of destroying the process, so that we 3457 // don't do any unnecessary work that might hinder the destruction. Remember 3458 // to set this back to false when we are done. That way if the attempt 3459 // failed and the process stays around for some reason it won't be in a 3460 // confused state. 3461 3462 if (force_kill) 3463 m_should_detach = false; 3464 3465 if (GetShouldDetach()) { 3466 // FIXME: This will have to be a process setting: 3467 bool keep_stopped = false; 3468 Detach(keep_stopped); 3469 } 3470 3471 m_destroy_in_process = true; 3472 3473 Status error(WillDestroy()); 3474 if (error.Success()) { 3475 EventSP exit_event_sp; 3476 if (DestroyRequiresHalt()) { 3477 error = StopForDestroyOrDetach(exit_event_sp); 3478 } 3479 3480 if (m_public_state.GetValue() != eStateRunning) { 3481 // Ditch all thread plans, and remove all our breakpoints: in case we 3482 // have to restart the target to kill it, we don't want it hitting a 3483 // breakpoint... Only do this if we've stopped, however, since if we 3484 // didn't manage to halt it above, then we're not going to have much luck 3485 // doing this now. 3486 m_thread_list.DiscardThreadPlans(); 3487 DisableAllBreakpointSites(); 3488 } 3489 3490 error = DoDestroy(); 3491 if (error.Success()) { 3492 DidDestroy(); 3493 StopPrivateStateThread(); 3494 } 3495 m_stdio_communication.Disconnect(); 3496 m_stdio_communication.StopReadThread(); 3497 m_stdin_forward = false; 3498 3499 if (m_process_input_reader) { 3500 m_process_input_reader->SetIsDone(true); 3501 m_process_input_reader->Cancel(); 3502 m_process_input_reader.reset(); 3503 } 3504 3505 // If we exited when we were waiting for a process to stop, then forward 3506 // the event here so we don't lose the event 3507 if (exit_event_sp) { 3508 // Directly broadcast our exited event because we shut down our private 3509 // state thread above 3510 BroadcastEvent(exit_event_sp); 3511 } 3512 3513 // If we have been interrupted (to kill us) in the middle of running, we 3514 // may not end up propagating the last events through the event system, in 3515 // which case we might strand the write lock. Unlock it here so when we do 3516 // to tear down the process we don't get an error destroying the lock. 3517 m_public_run_lock.SetStopped(); 3518 } 3519 3520 m_destroy_in_process = false; 3521 3522 return error; 3523 } 3524 3525 Status Process::Signal(int signal) { 3526 Status error(WillSignal()); 3527 if (error.Success()) { 3528 error = DoSignal(signal); 3529 if (error.Success()) 3530 DidSignal(); 3531 } 3532 return error; 3533 } 3534 3535 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3536 assert(signals_sp && "null signals_sp"); 3537 m_unix_signals_sp = signals_sp; 3538 } 3539 3540 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3541 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3542 return m_unix_signals_sp; 3543 } 3544 3545 lldb::ByteOrder Process::GetByteOrder() const { 3546 return GetTarget().GetArchitecture().GetByteOrder(); 3547 } 3548 3549 uint32_t Process::GetAddressByteSize() const { 3550 return GetTarget().GetArchitecture().GetAddressByteSize(); 3551 } 3552 3553 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3554 const StateType state = 3555 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3556 bool return_value = true; 3557 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | 3558 LIBLLDB_LOG_PROCESS)); 3559 3560 switch (state) { 3561 case eStateDetached: 3562 case eStateExited: 3563 case eStateUnloaded: 3564 m_stdio_communication.SynchronizeWithReadThread(); 3565 m_stdio_communication.Disconnect(); 3566 m_stdio_communication.StopReadThread(); 3567 m_stdin_forward = false; 3568 3569 LLVM_FALLTHROUGH; 3570 case eStateConnected: 3571 case eStateAttaching: 3572 case eStateLaunching: 3573 // These events indicate changes in the state of the debugging session, 3574 // always report them. 3575 return_value = true; 3576 break; 3577 case eStateInvalid: 3578 // We stopped for no apparent reason, don't report it. 3579 return_value = false; 3580 break; 3581 case eStateRunning: 3582 case eStateStepping: 3583 // If we've started the target running, we handle the cases where we are 3584 // already running and where there is a transition from stopped to running 3585 // differently. running -> running: Automatically suppress extra running 3586 // events stopped -> running: Report except when there is one or more no 3587 // votes 3588 // and no yes votes. 3589 SynchronouslyNotifyStateChanged(state); 3590 if (m_force_next_event_delivery) 3591 return_value = true; 3592 else { 3593 switch (m_last_broadcast_state) { 3594 case eStateRunning: 3595 case eStateStepping: 3596 // We always suppress multiple runnings with no PUBLIC stop in between. 3597 return_value = false; 3598 break; 3599 default: 3600 // TODO: make this work correctly. For now always report 3601 // run if we aren't running so we don't miss any running events. If I 3602 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3603 // and hit the breakpoints on multiple threads, then somehow during the 3604 // stepping over of all breakpoints no run gets reported. 3605 3606 // This is a transition from stop to run. 3607 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3608 case eVoteYes: 3609 case eVoteNoOpinion: 3610 return_value = true; 3611 break; 3612 case eVoteNo: 3613 return_value = false; 3614 break; 3615 } 3616 break; 3617 } 3618 } 3619 break; 3620 case eStateStopped: 3621 case eStateCrashed: 3622 case eStateSuspended: 3623 // We've stopped. First see if we're going to restart the target. If we 3624 // are going to stop, then we always broadcast the event. If we aren't 3625 // going to stop, let the thread plans decide if we're going to report this 3626 // event. If no thread has an opinion, we don't report it. 3627 3628 m_stdio_communication.SynchronizeWithReadThread(); 3629 RefreshStateAfterStop(); 3630 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3631 if (log) 3632 log->Printf("Process::ShouldBroadcastEvent (%p) stopped due to an " 3633 "interrupt, state: %s", 3634 static_cast<void *>(event_ptr), StateAsCString(state)); 3635 // Even though we know we are going to stop, we should let the threads 3636 // have a look at the stop, so they can properly set their state. 3637 m_thread_list.ShouldStop(event_ptr); 3638 return_value = true; 3639 } else { 3640 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3641 bool should_resume = false; 3642 3643 // It makes no sense to ask "ShouldStop" if we've already been 3644 // restarted... Asking the thread list is also not likely to go well, 3645 // since we are running again. So in that case just report the event. 3646 3647 if (!was_restarted) 3648 should_resume = !m_thread_list.ShouldStop(event_ptr); 3649 3650 if (was_restarted || should_resume || m_resume_requested) { 3651 Vote stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3652 if (log) 3653 log->Printf("Process::ShouldBroadcastEvent: should_resume: %i state: " 3654 "%s was_restarted: %i stop_vote: %d.", 3655 should_resume, StateAsCString(state), was_restarted, 3656 stop_vote); 3657 3658 switch (stop_vote) { 3659 case eVoteYes: 3660 return_value = true; 3661 break; 3662 case eVoteNoOpinion: 3663 case eVoteNo: 3664 return_value = false; 3665 break; 3666 } 3667 3668 if (!was_restarted) { 3669 if (log) 3670 log->Printf("Process::ShouldBroadcastEvent (%p) Restarting process " 3671 "from state: %s", 3672 static_cast<void *>(event_ptr), StateAsCString(state)); 3673 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3674 PrivateResume(); 3675 } 3676 } else { 3677 return_value = true; 3678 SynchronouslyNotifyStateChanged(state); 3679 } 3680 } 3681 break; 3682 } 3683 3684 // Forcing the next event delivery is a one shot deal. So reset it here. 3685 m_force_next_event_delivery = false; 3686 3687 // We do some coalescing of events (for instance two consecutive running 3688 // events get coalesced.) But we only coalesce against events we actually 3689 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3690 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3691 // done, because the PublicState reflects the last event pulled off the 3692 // queue, and there may be several events stacked up on the queue unserviced. 3693 // So the PublicState may not reflect the last broadcasted event yet. 3694 // m_last_broadcast_state gets updated here. 3695 3696 if (return_value) 3697 m_last_broadcast_state = state; 3698 3699 if (log) 3700 log->Printf("Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3701 "broadcast state: %s - %s", 3702 static_cast<void *>(event_ptr), StateAsCString(state), 3703 StateAsCString(m_last_broadcast_state), 3704 return_value ? "YES" : "NO"); 3705 return return_value; 3706 } 3707 3708 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3709 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 3710 3711 bool already_running = PrivateStateThreadIsValid(); 3712 if (log) 3713 log->Printf("Process::%s()%s ", __FUNCTION__, 3714 already_running ? " already running" 3715 : " starting private state thread"); 3716 3717 if (!is_secondary_thread && already_running) 3718 return true; 3719 3720 // Create a thread that watches our internal state and controls which events 3721 // make it to clients (into the DCProcess event queue). 3722 char thread_name[1024]; 3723 uint32_t max_len = llvm::get_max_thread_name_length(); 3724 if (max_len > 0 && max_len <= 30) { 3725 // On platforms with abbreviated thread name lengths, choose thread names 3726 // that fit within the limit. 3727 if (already_running) 3728 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3729 else 3730 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3731 } else { 3732 if (already_running) 3733 snprintf(thread_name, sizeof(thread_name), 3734 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3735 GetID()); 3736 else 3737 snprintf(thread_name, sizeof(thread_name), 3738 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3739 } 3740 3741 // Create the private state thread, and start it running. 3742 PrivateStateThreadArgs *args_ptr = 3743 new PrivateStateThreadArgs(this, is_secondary_thread); 3744 m_private_state_thread = 3745 ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, 3746 (void *)args_ptr, nullptr, 8 * 1024 * 1024); 3747 if (m_private_state_thread.IsJoinable()) { 3748 ResumePrivateStateThread(); 3749 return true; 3750 } else 3751 return false; 3752 } 3753 3754 void Process::PausePrivateStateThread() { 3755 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3756 } 3757 3758 void Process::ResumePrivateStateThread() { 3759 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3760 } 3761 3762 void Process::StopPrivateStateThread() { 3763 if (m_private_state_thread.IsJoinable()) 3764 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3765 else { 3766 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3767 if (log) 3768 log->Printf( 3769 "Went to stop the private state thread, but it was already invalid."); 3770 } 3771 } 3772 3773 void Process::ControlPrivateStateThread(uint32_t signal) { 3774 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3775 3776 assert(signal == eBroadcastInternalStateControlStop || 3777 signal == eBroadcastInternalStateControlPause || 3778 signal == eBroadcastInternalStateControlResume); 3779 3780 if (log) 3781 log->Printf("Process::%s (signal = %d)", __FUNCTION__, signal); 3782 3783 // Signal the private state thread 3784 if (m_private_state_thread.IsJoinable()) { 3785 // Broadcast the event. 3786 // It is important to do this outside of the if below, because it's 3787 // possible that the thread state is invalid but that the thread is waiting 3788 // on a control event instead of simply being on its way out (this should 3789 // not happen, but it apparently can). 3790 if (log) 3791 log->Printf("Sending control event of type: %d.", signal); 3792 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3793 m_private_state_control_broadcaster.BroadcastEvent(signal, 3794 event_receipt_sp); 3795 3796 // Wait for the event receipt or for the private state thread to exit 3797 bool receipt_received = false; 3798 if (PrivateStateThreadIsValid()) { 3799 while (!receipt_received) { 3800 bool timed_out = false; 3801 // Check for a receipt for 2 seconds and then check if the private 3802 // state thread is still around. 3803 receipt_received = event_receipt_sp->WaitForEventReceived( 3804 std::chrono::seconds(2), &timed_out); 3805 if (!receipt_received) { 3806 // Check if the private state thread is still around. If it isn't 3807 // then we are done waiting 3808 if (!PrivateStateThreadIsValid()) 3809 break; // Private state thread exited or is exiting, we are done 3810 } 3811 } 3812 } 3813 3814 if (signal == eBroadcastInternalStateControlStop) { 3815 thread_result_t result = NULL; 3816 m_private_state_thread.Join(&result); 3817 m_private_state_thread.Reset(); 3818 } 3819 } else { 3820 if (log) 3821 log->Printf( 3822 "Private state thread already dead, no need to signal it to stop."); 3823 } 3824 } 3825 3826 void Process::SendAsyncInterrupt() { 3827 if (PrivateStateThreadIsValid()) 3828 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3829 nullptr); 3830 else 3831 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3832 } 3833 3834 void Process::HandlePrivateEvent(EventSP &event_sp) { 3835 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3836 m_resume_requested = false; 3837 3838 const StateType new_state = 3839 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3840 3841 // First check to see if anybody wants a shot at this event: 3842 if (m_next_event_action_ap) { 3843 NextEventAction::EventActionResult action_result = 3844 m_next_event_action_ap->PerformAction(event_sp); 3845 if (log) 3846 log->Printf("Ran next event action, result was %d.", action_result); 3847 3848 switch (action_result) { 3849 case NextEventAction::eEventActionSuccess: 3850 SetNextEventAction(nullptr); 3851 break; 3852 3853 case NextEventAction::eEventActionRetry: 3854 break; 3855 3856 case NextEventAction::eEventActionExit: 3857 // Handle Exiting Here. If we already got an exited event, we should 3858 // just propagate it. Otherwise, swallow this event, and set our state 3859 // to exit so the next event will kill us. 3860 if (new_state != eStateExited) { 3861 // FIXME: should cons up an exited event, and discard this one. 3862 SetExitStatus(0, m_next_event_action_ap->GetExitString()); 3863 SetNextEventAction(nullptr); 3864 return; 3865 } 3866 SetNextEventAction(nullptr); 3867 break; 3868 } 3869 } 3870 3871 // See if we should broadcast this state to external clients? 3872 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3873 3874 if (should_broadcast) { 3875 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3876 if (log) { 3877 log->Printf("Process::%s (pid = %" PRIu64 3878 ") broadcasting new state %s (old state %s) to %s", 3879 __FUNCTION__, GetID(), StateAsCString(new_state), 3880 StateAsCString(GetState()), 3881 is_hijacked ? "hijacked" : "public"); 3882 } 3883 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3884 if (StateIsRunningState(new_state)) { 3885 // Only push the input handler if we aren't fowarding events, as this 3886 // means the curses GUI is in use... Or don't push it if we are launching 3887 // since it will come up stopped. 3888 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3889 new_state != eStateLaunching && new_state != eStateAttaching) { 3890 PushProcessIOHandler(); 3891 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3892 eBroadcastAlways); 3893 if (log) 3894 log->Printf("Process::%s updated m_iohandler_sync to %d", 3895 __FUNCTION__, m_iohandler_sync.GetValue()); 3896 } 3897 } else if (StateIsStoppedState(new_state, false)) { 3898 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3899 // If the lldb_private::Debugger is handling the events, we don't want 3900 // to pop the process IOHandler here, we want to do it when we receive 3901 // the stopped event so we can carefully control when the process 3902 // IOHandler is popped because when we stop we want to display some 3903 // text stating how and why we stopped, then maybe some 3904 // process/thread/frame info, and then we want the "(lldb) " prompt to 3905 // show up. If we pop the process IOHandler here, then we will cause 3906 // the command interpreter to become the top IOHandler after the 3907 // process pops off and it will update its prompt right away... See the 3908 // Debugger.cpp file where it calls the function as 3909 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3910 // Otherwise we end up getting overlapping "(lldb) " prompts and 3911 // garbled output. 3912 // 3913 // If we aren't handling the events in the debugger (which is indicated 3914 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3915 // we are hijacked, then we always pop the process IO handler manually. 3916 // Hijacking happens when the internal process state thread is running 3917 // thread plans, or when commands want to run in synchronous mode and 3918 // they call "process->WaitForProcessToStop()". An example of something 3919 // that will hijack the events is a simple expression: 3920 // 3921 // (lldb) expr (int)puts("hello") 3922 // 3923 // This will cause the internal process state thread to resume and halt 3924 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3925 // events) and we do need the IO handler to be pushed and popped 3926 // correctly. 3927 3928 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3929 PopProcessIOHandler(); 3930 } 3931 } 3932 3933 BroadcastEvent(event_sp); 3934 } else { 3935 if (log) { 3936 log->Printf( 3937 "Process::%s (pid = %" PRIu64 3938 ") suppressing state %s (old state %s): should_broadcast == false", 3939 __FUNCTION__, GetID(), StateAsCString(new_state), 3940 StateAsCString(GetState())); 3941 } 3942 } 3943 } 3944 3945 Status Process::HaltPrivate() { 3946 EventSP event_sp; 3947 Status error(WillHalt()); 3948 if (error.Fail()) 3949 return error; 3950 3951 // Ask the process subclass to actually halt our process 3952 bool caused_stop; 3953 error = DoHalt(caused_stop); 3954 3955 DidHalt(); 3956 return error; 3957 } 3958 3959 thread_result_t Process::PrivateStateThread(void *arg) { 3960 std::unique_ptr<PrivateStateThreadArgs> args_up( 3961 static_cast<PrivateStateThreadArgs *>(arg)); 3962 thread_result_t result = 3963 args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 3964 return result; 3965 } 3966 3967 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3968 bool control_only = true; 3969 3970 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3971 if (log) 3972 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3973 __FUNCTION__, static_cast<void *>(this), GetID()); 3974 3975 bool exit_now = false; 3976 bool interrupt_requested = false; 3977 while (!exit_now) { 3978 EventSP event_sp; 3979 GetEventsPrivate(event_sp, llvm::None, control_only); 3980 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3981 if (log) 3982 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 3983 ") got a control event: %d", 3984 __FUNCTION__, static_cast<void *>(this), GetID(), 3985 event_sp->GetType()); 3986 3987 switch (event_sp->GetType()) { 3988 case eBroadcastInternalStateControlStop: 3989 exit_now = true; 3990 break; // doing any internal state management below 3991 3992 case eBroadcastInternalStateControlPause: 3993 control_only = true; 3994 break; 3995 3996 case eBroadcastInternalStateControlResume: 3997 control_only = false; 3998 break; 3999 } 4000 4001 continue; 4002 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 4003 if (m_public_state.GetValue() == eStateAttaching) { 4004 if (log) 4005 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4006 ") woke up with an interrupt while attaching - " 4007 "forwarding interrupt.", 4008 __FUNCTION__, static_cast<void *>(this), GetID()); 4009 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 4010 } else if (StateIsRunningState(m_last_broadcast_state)) { 4011 if (log) 4012 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4013 ") woke up with an interrupt - Halting.", 4014 __FUNCTION__, static_cast<void *>(this), GetID()); 4015 Status error = HaltPrivate(); 4016 if (error.Fail() && log) 4017 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4018 ") failed to halt the process: %s", 4019 __FUNCTION__, static_cast<void *>(this), GetID(), 4020 error.AsCString()); 4021 // Halt should generate a stopped event. Make a note of the fact that 4022 // we were doing the interrupt, so we can set the interrupted flag 4023 // after we receive the event. We deliberately set this to true even if 4024 // HaltPrivate failed, so that we can interrupt on the next natural 4025 // stop. 4026 interrupt_requested = true; 4027 } else { 4028 // This can happen when someone (e.g. Process::Halt) sees that we are 4029 // running and sends an interrupt request, but the process actually 4030 // stops before we receive it. In that case, we can just ignore the 4031 // request. We use m_last_broadcast_state, because the Stopped event 4032 // may not have been popped of the event queue yet, which is when the 4033 // public state gets updated. 4034 if (log) 4035 log->Printf( 4036 "Process::%s ignoring interrupt as we have already stopped.", 4037 __FUNCTION__); 4038 } 4039 continue; 4040 } 4041 4042 const StateType internal_state = 4043 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4044 4045 if (internal_state != eStateInvalid) { 4046 if (m_clear_thread_plans_on_stop && 4047 StateIsStoppedState(internal_state, true)) { 4048 m_clear_thread_plans_on_stop = false; 4049 m_thread_list.DiscardThreadPlans(); 4050 } 4051 4052 if (interrupt_requested) { 4053 if (StateIsStoppedState(internal_state, true)) { 4054 // We requested the interrupt, so mark this as such in the stop event 4055 // so clients can tell an interrupted process from a natural stop 4056 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 4057 interrupt_requested = false; 4058 } else if (log) { 4059 log->Printf("Process::%s interrupt_requested, but a non-stopped " 4060 "state '%s' received.", 4061 __FUNCTION__, StateAsCString(internal_state)); 4062 } 4063 } 4064 4065 HandlePrivateEvent(event_sp); 4066 } 4067 4068 if (internal_state == eStateInvalid || internal_state == eStateExited || 4069 internal_state == eStateDetached) { 4070 if (log) 4071 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4072 ") about to exit with internal state %s...", 4073 __FUNCTION__, static_cast<void *>(this), GetID(), 4074 StateAsCString(internal_state)); 4075 4076 break; 4077 } 4078 } 4079 4080 // Verify log is still enabled before attempting to write to it... 4081 if (log) 4082 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 4083 __FUNCTION__, static_cast<void *>(this), GetID()); 4084 4085 // If we are a secondary thread, then the primary thread we are working for 4086 // will have already acquired the public_run_lock, and isn't done with what 4087 // it was doing yet, so don't try to change it on the way out. 4088 if (!is_secondary_thread) 4089 m_public_run_lock.SetStopped(); 4090 return NULL; 4091 } 4092 4093 //------------------------------------------------------------------ 4094 // Process Event Data 4095 //------------------------------------------------------------------ 4096 4097 Process::ProcessEventData::ProcessEventData() 4098 : EventData(), m_process_wp(), m_state(eStateInvalid), m_restarted(false), 4099 m_update_state(0), m_interrupted(false) {} 4100 4101 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 4102 StateType state) 4103 : EventData(), m_process_wp(), m_state(state), m_restarted(false), 4104 m_update_state(0), m_interrupted(false) { 4105 if (process_sp) 4106 m_process_wp = process_sp; 4107 } 4108 4109 Process::ProcessEventData::~ProcessEventData() = default; 4110 4111 const ConstString &Process::ProcessEventData::GetFlavorString() { 4112 static ConstString g_flavor("Process::ProcessEventData"); 4113 return g_flavor; 4114 } 4115 4116 const ConstString &Process::ProcessEventData::GetFlavor() const { 4117 return ProcessEventData::GetFlavorString(); 4118 } 4119 4120 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 4121 ProcessSP process_sp(m_process_wp.lock()); 4122 4123 if (!process_sp) 4124 return; 4125 4126 // This function gets called twice for each event, once when the event gets 4127 // pulled off of the private process event queue, and then any number of 4128 // times, first when it gets pulled off of the public event queue, then other 4129 // times when we're pretending that this is where we stopped at the end of 4130 // expression evaluation. m_update_state is used to distinguish these three 4131 // cases; it is 0 when we're just pulling it off for private handling, and > 4132 // 1 for expression evaluation, and we don't want to do the breakpoint 4133 // command handling then. 4134 if (m_update_state != 1) 4135 return; 4136 4137 process_sp->SetPublicState( 4138 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4139 4140 if (m_state == eStateStopped && !m_restarted) { 4141 // Let process subclasses know we are about to do a public stop and do 4142 // anything they might need to in order to speed up register and memory 4143 // accesses. 4144 process_sp->WillPublicStop(); 4145 } 4146 4147 // If this is a halt event, even if the halt stopped with some reason other 4148 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 4149 // the halt request came through) don't do the StopInfo actions, as they may 4150 // end up restarting the process. 4151 if (m_interrupted) 4152 return; 4153 4154 // If we're stopped and haven't restarted, then do the StopInfo actions here: 4155 if (m_state == eStateStopped && !m_restarted) { 4156 ThreadList &curr_thread_list = process_sp->GetThreadList(); 4157 uint32_t num_threads = curr_thread_list.GetSize(); 4158 uint32_t idx; 4159 4160 // The actions might change one of the thread's stop_info's opinions about 4161 // whether we should stop the process, so we need to query that as we go. 4162 4163 // One other complication here, is that we try to catch any case where the 4164 // target has run (except for expressions) and immediately exit, but if we 4165 // get that wrong (which is possible) then the thread list might have 4166 // changed, and that would cause our iteration here to crash. We could 4167 // make a copy of the thread list, but we'd really like to also know if it 4168 // has changed at all, so we make up a vector of the thread ID's and check 4169 // what we get back against this list & bag out if anything differs. 4170 std::vector<uint32_t> thread_index_array(num_threads); 4171 for (idx = 0; idx < num_threads; ++idx) 4172 thread_index_array[idx] = 4173 curr_thread_list.GetThreadAtIndex(idx)->GetIndexID(); 4174 4175 // Use this to track whether we should continue from here. We will only 4176 // continue the target running if no thread says we should stop. Of course 4177 // if some thread's PerformAction actually sets the target running, then it 4178 // doesn't matter what the other threads say... 4179 4180 bool still_should_stop = false; 4181 4182 // Sometimes - for instance if we have a bug in the stub we are talking to, 4183 // we stop but no thread has a valid stop reason. In that case we should 4184 // just stop, because we have no way of telling what the right thing to do 4185 // is, and it's better to let the user decide than continue behind their 4186 // backs. 4187 4188 bool does_anybody_have_an_opinion = false; 4189 4190 for (idx = 0; idx < num_threads; ++idx) { 4191 curr_thread_list = process_sp->GetThreadList(); 4192 if (curr_thread_list.GetSize() != num_threads) { 4193 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4194 LIBLLDB_LOG_PROCESS)); 4195 if (log) 4196 log->Printf( 4197 "Number of threads changed from %u to %u while processing event.", 4198 num_threads, curr_thread_list.GetSize()); 4199 break; 4200 } 4201 4202 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 4203 4204 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 4205 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4206 LIBLLDB_LOG_PROCESS)); 4207 if (log) 4208 log->Printf("The thread at position %u changed from %u to %u while " 4209 "processing event.", 4210 idx, thread_index_array[idx], thread_sp->GetIndexID()); 4211 break; 4212 } 4213 4214 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4215 if (stop_info_sp && stop_info_sp->IsValid()) { 4216 does_anybody_have_an_opinion = true; 4217 bool this_thread_wants_to_stop; 4218 if (stop_info_sp->GetOverrideShouldStop()) { 4219 this_thread_wants_to_stop = 4220 stop_info_sp->GetOverriddenShouldStopValue(); 4221 } else { 4222 stop_info_sp->PerformAction(event_ptr); 4223 // The stop action might restart the target. If it does, then we 4224 // want to mark that in the event so that whoever is receiving it 4225 // will know to wait for the running event and reflect that state 4226 // appropriately. We also need to stop processing actions, since they 4227 // aren't expecting the target to be running. 4228 4229 // FIXME: we might have run. 4230 if (stop_info_sp->HasTargetRunSinceMe()) { 4231 SetRestarted(true); 4232 break; 4233 } 4234 4235 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4236 } 4237 4238 if (!still_should_stop) 4239 still_should_stop = this_thread_wants_to_stop; 4240 } 4241 } 4242 4243 if (!GetRestarted()) { 4244 if (!still_should_stop && does_anybody_have_an_opinion) { 4245 // We've been asked to continue, so do that here. 4246 SetRestarted(true); 4247 // Use the public resume method here, since this is just extending a 4248 // public resume. 4249 process_sp->PrivateResume(); 4250 } else { 4251 // If we didn't restart, run the Stop Hooks here: They might also 4252 // restart the target, so watch for that. 4253 process_sp->GetTarget().RunStopHooks(); 4254 if (process_sp->GetPrivateState() == eStateRunning) 4255 SetRestarted(true); 4256 } 4257 } 4258 } 4259 } 4260 4261 void Process::ProcessEventData::Dump(Stream *s) const { 4262 ProcessSP process_sp(m_process_wp.lock()); 4263 4264 if (process_sp) 4265 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4266 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4267 else 4268 s->PutCString(" process = NULL, "); 4269 4270 s->Printf("state = %s", StateAsCString(GetState())); 4271 } 4272 4273 const Process::ProcessEventData * 4274 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4275 if (event_ptr) { 4276 const EventData *event_data = event_ptr->GetData(); 4277 if (event_data && 4278 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4279 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4280 } 4281 return nullptr; 4282 } 4283 4284 ProcessSP 4285 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4286 ProcessSP process_sp; 4287 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4288 if (data) 4289 process_sp = data->GetProcessSP(); 4290 return process_sp; 4291 } 4292 4293 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4294 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4295 if (data == nullptr) 4296 return eStateInvalid; 4297 else 4298 return data->GetState(); 4299 } 4300 4301 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4302 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4303 if (data == nullptr) 4304 return false; 4305 else 4306 return data->GetRestarted(); 4307 } 4308 4309 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4310 bool new_value) { 4311 ProcessEventData *data = 4312 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4313 if (data != nullptr) 4314 data->SetRestarted(new_value); 4315 } 4316 4317 size_t 4318 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4319 ProcessEventData *data = 4320 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4321 if (data != nullptr) 4322 return data->GetNumRestartedReasons(); 4323 else 4324 return 0; 4325 } 4326 4327 const char * 4328 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4329 size_t idx) { 4330 ProcessEventData *data = 4331 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4332 if (data != nullptr) 4333 return data->GetRestartedReasonAtIndex(idx); 4334 else 4335 return nullptr; 4336 } 4337 4338 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4339 const char *reason) { 4340 ProcessEventData *data = 4341 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4342 if (data != nullptr) 4343 data->AddRestartedReason(reason); 4344 } 4345 4346 bool Process::ProcessEventData::GetInterruptedFromEvent( 4347 const Event *event_ptr) { 4348 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4349 if (data == nullptr) 4350 return false; 4351 else 4352 return data->GetInterrupted(); 4353 } 4354 4355 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4356 bool new_value) { 4357 ProcessEventData *data = 4358 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4359 if (data != nullptr) 4360 data->SetInterrupted(new_value); 4361 } 4362 4363 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4364 ProcessEventData *data = 4365 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4366 if (data) { 4367 data->SetUpdateStateOnRemoval(); 4368 return true; 4369 } 4370 return false; 4371 } 4372 4373 lldb::TargetSP Process::CalculateTarget() { return m_target_sp.lock(); } 4374 4375 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4376 exe_ctx.SetTargetPtr(&GetTarget()); 4377 exe_ctx.SetProcessPtr(this); 4378 exe_ctx.SetThreadPtr(nullptr); 4379 exe_ctx.SetFramePtr(nullptr); 4380 } 4381 4382 // uint32_t 4383 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4384 // std::vector<lldb::pid_t> &pids) 4385 //{ 4386 // return 0; 4387 //} 4388 // 4389 // ArchSpec 4390 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4391 //{ 4392 // return Host::GetArchSpecForExistingProcess (pid); 4393 //} 4394 // 4395 // ArchSpec 4396 // Process::GetArchSpecForExistingProcess (const char *process_name) 4397 //{ 4398 // return Host::GetArchSpecForExistingProcess (process_name); 4399 //} 4400 4401 void Process::AppendSTDOUT(const char *s, size_t len) { 4402 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4403 m_stdout_data.append(s, len); 4404 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4405 new ProcessEventData(shared_from_this(), GetState())); 4406 } 4407 4408 void Process::AppendSTDERR(const char *s, size_t len) { 4409 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4410 m_stderr_data.append(s, len); 4411 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4412 new ProcessEventData(shared_from_this(), GetState())); 4413 } 4414 4415 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4416 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4417 m_profile_data.push_back(one_profile_data); 4418 BroadcastEventIfUnique(eBroadcastBitProfileData, 4419 new ProcessEventData(shared_from_this(), GetState())); 4420 } 4421 4422 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4423 const StructuredDataPluginSP &plugin_sp) { 4424 BroadcastEvent( 4425 eBroadcastBitStructuredData, 4426 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4427 } 4428 4429 StructuredDataPluginSP 4430 Process::GetStructuredDataPlugin(const ConstString &type_name) const { 4431 auto find_it = m_structured_data_plugin_map.find(type_name); 4432 if (find_it != m_structured_data_plugin_map.end()) 4433 return find_it->second; 4434 else 4435 return StructuredDataPluginSP(); 4436 } 4437 4438 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4439 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4440 if (m_profile_data.empty()) 4441 return 0; 4442 4443 std::string &one_profile_data = m_profile_data.front(); 4444 size_t bytes_available = one_profile_data.size(); 4445 if (bytes_available > 0) { 4446 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4447 if (log) 4448 log->Printf("Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4449 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4450 if (bytes_available > buf_size) { 4451 memcpy(buf, one_profile_data.c_str(), buf_size); 4452 one_profile_data.erase(0, buf_size); 4453 bytes_available = buf_size; 4454 } else { 4455 memcpy(buf, one_profile_data.c_str(), bytes_available); 4456 m_profile_data.erase(m_profile_data.begin()); 4457 } 4458 } 4459 return bytes_available; 4460 } 4461 4462 //------------------------------------------------------------------ 4463 // Process STDIO 4464 //------------------------------------------------------------------ 4465 4466 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4467 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4468 size_t bytes_available = m_stdout_data.size(); 4469 if (bytes_available > 0) { 4470 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4471 if (log) 4472 log->Printf("Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4473 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4474 if (bytes_available > buf_size) { 4475 memcpy(buf, m_stdout_data.c_str(), buf_size); 4476 m_stdout_data.erase(0, buf_size); 4477 bytes_available = buf_size; 4478 } else { 4479 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4480 m_stdout_data.clear(); 4481 } 4482 } 4483 return bytes_available; 4484 } 4485 4486 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4487 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4488 size_t bytes_available = m_stderr_data.size(); 4489 if (bytes_available > 0) { 4490 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4491 if (log) 4492 log->Printf("Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4493 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4494 if (bytes_available > buf_size) { 4495 memcpy(buf, m_stderr_data.c_str(), buf_size); 4496 m_stderr_data.erase(0, buf_size); 4497 bytes_available = buf_size; 4498 } else { 4499 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4500 m_stderr_data.clear(); 4501 } 4502 } 4503 return bytes_available; 4504 } 4505 4506 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4507 size_t src_len) { 4508 Process *process = (Process *)baton; 4509 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4510 } 4511 4512 class IOHandlerProcessSTDIO : public IOHandler { 4513 public: 4514 IOHandlerProcessSTDIO(Process *process, int write_fd) 4515 : IOHandler(process->GetTarget().GetDebugger(), 4516 IOHandler::Type::ProcessIO), 4517 m_process(process), m_write_file(write_fd, false) { 4518 m_pipe.CreateNew(false); 4519 m_read_file.SetDescriptor(GetInputFD(), false); 4520 } 4521 4522 ~IOHandlerProcessSTDIO() override = default; 4523 4524 // Each IOHandler gets to run until it is done. It should read data from the 4525 // "in" and place output into "out" and "err and return when done. 4526 void Run() override { 4527 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4528 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4529 SetIsDone(true); 4530 return; 4531 } 4532 4533 SetIsDone(false); 4534 const int read_fd = m_read_file.GetDescriptor(); 4535 TerminalState terminal_state; 4536 terminal_state.Save(read_fd, false); 4537 Terminal terminal(read_fd); 4538 terminal.SetCanonical(false); 4539 terminal.SetEcho(false); 4540 // FD_ZERO, FD_SET are not supported on windows 4541 #ifndef _WIN32 4542 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4543 m_is_running = true; 4544 while (!GetIsDone()) { 4545 SelectHelper select_helper; 4546 select_helper.FDSetRead(read_fd); 4547 select_helper.FDSetRead(pipe_read_fd); 4548 Status error = select_helper.Select(); 4549 4550 if (error.Fail()) { 4551 SetIsDone(true); 4552 } else { 4553 char ch = 0; 4554 size_t n; 4555 if (select_helper.FDIsSetRead(read_fd)) { 4556 n = 1; 4557 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4558 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4559 SetIsDone(true); 4560 } else 4561 SetIsDone(true); 4562 } 4563 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4564 size_t bytes_read; 4565 // Consume the interrupt byte 4566 Status error = m_pipe.Read(&ch, 1, bytes_read); 4567 if (error.Success()) { 4568 switch (ch) { 4569 case 'q': 4570 SetIsDone(true); 4571 break; 4572 case 'i': 4573 if (StateIsRunningState(m_process->GetState())) 4574 m_process->SendAsyncInterrupt(); 4575 break; 4576 } 4577 } 4578 } 4579 } 4580 } 4581 m_is_running = false; 4582 #endif 4583 terminal_state.Restore(); 4584 } 4585 4586 void Cancel() override { 4587 SetIsDone(true); 4588 // Only write to our pipe to cancel if we are in 4589 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4590 // is being run from the command interpreter: 4591 // 4592 // (lldb) step_process_thousands_of_times 4593 // 4594 // In this case the command interpreter will be in the middle of handling 4595 // the command and if the process pushes and pops the IOHandler thousands 4596 // of times, we can end up writing to m_pipe without ever consuming the 4597 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4598 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4599 if (m_is_running) { 4600 char ch = 'q'; // Send 'q' for quit 4601 size_t bytes_written = 0; 4602 m_pipe.Write(&ch, 1, bytes_written); 4603 } 4604 } 4605 4606 bool Interrupt() override { 4607 // Do only things that are safe to do in an interrupt context (like in a 4608 // SIGINT handler), like write 1 byte to a file descriptor. This will 4609 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4610 // that was written to the pipe and then call 4611 // m_process->SendAsyncInterrupt() from a much safer location in code. 4612 if (m_active) { 4613 char ch = 'i'; // Send 'i' for interrupt 4614 size_t bytes_written = 0; 4615 Status result = m_pipe.Write(&ch, 1, bytes_written); 4616 return result.Success(); 4617 } else { 4618 // This IOHandler might be pushed on the stack, but not being run 4619 // currently so do the right thing if we aren't actively watching for 4620 // STDIN by sending the interrupt to the process. Otherwise the write to 4621 // the pipe above would do nothing. This can happen when the command 4622 // interpreter is running and gets a "expression ...". It will be on the 4623 // IOHandler thread and sending the input is complete to the delegate 4624 // which will cause the expression to run, which will push the process IO 4625 // handler, but not run it. 4626 4627 if (StateIsRunningState(m_process->GetState())) { 4628 m_process->SendAsyncInterrupt(); 4629 return true; 4630 } 4631 } 4632 return false; 4633 } 4634 4635 void GotEOF() override {} 4636 4637 protected: 4638 Process *m_process; 4639 File m_read_file; // Read from this file (usually actual STDIN for LLDB 4640 File m_write_file; // Write to this file (usually the master pty for getting 4641 // io to debuggee) 4642 Pipe m_pipe; 4643 std::atomic<bool> m_is_running{false}; 4644 }; 4645 4646 void Process::SetSTDIOFileDescriptor(int fd) { 4647 // First set up the Read Thread for reading/handling process I/O 4648 4649 std::unique_ptr<ConnectionFileDescriptor> conn_ap( 4650 new ConnectionFileDescriptor(fd, true)); 4651 4652 if (conn_ap) { 4653 m_stdio_communication.SetConnection(conn_ap.release()); 4654 if (m_stdio_communication.IsConnected()) { 4655 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4656 STDIOReadThreadBytesReceived, this); 4657 m_stdio_communication.StartReadThread(); 4658 4659 // Now read thread is set up, set up input reader. 4660 4661 if (!m_process_input_reader) 4662 m_process_input_reader.reset(new IOHandlerProcessSTDIO(this, fd)); 4663 } 4664 } 4665 } 4666 4667 bool Process::ProcessIOHandlerIsActive() { 4668 IOHandlerSP io_handler_sp(m_process_input_reader); 4669 if (io_handler_sp) 4670 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4671 return false; 4672 } 4673 bool Process::PushProcessIOHandler() { 4674 IOHandlerSP io_handler_sp(m_process_input_reader); 4675 if (io_handler_sp) { 4676 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4677 if (log) 4678 log->Printf("Process::%s pushing IO handler", __FUNCTION__); 4679 4680 io_handler_sp->SetIsDone(false); 4681 GetTarget().GetDebugger().PushIOHandler(io_handler_sp); 4682 return true; 4683 } 4684 return false; 4685 } 4686 4687 bool Process::PopProcessIOHandler() { 4688 IOHandlerSP io_handler_sp(m_process_input_reader); 4689 if (io_handler_sp) 4690 return GetTarget().GetDebugger().PopIOHandler(io_handler_sp); 4691 return false; 4692 } 4693 4694 // The process needs to know about installed plug-ins 4695 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4696 4697 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4698 4699 namespace { 4700 // RestorePlanState is used to record the "is private", "is master" and "okay 4701 // to discard" fields of the plan we are running, and reset it on Clean or on 4702 // destruction. It will only reset the state once, so you can call Clean and 4703 // then monkey with the state and it won't get reset on you again. 4704 4705 class RestorePlanState { 4706 public: 4707 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4708 : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) { 4709 if (m_thread_plan_sp) { 4710 m_private = m_thread_plan_sp->GetPrivate(); 4711 m_is_master = m_thread_plan_sp->IsMasterPlan(); 4712 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4713 } 4714 } 4715 4716 ~RestorePlanState() { Clean(); } 4717 4718 void Clean() { 4719 if (!m_already_reset && m_thread_plan_sp) { 4720 m_already_reset = true; 4721 m_thread_plan_sp->SetPrivate(m_private); 4722 m_thread_plan_sp->SetIsMasterPlan(m_is_master); 4723 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4724 } 4725 } 4726 4727 private: 4728 lldb::ThreadPlanSP m_thread_plan_sp; 4729 bool m_already_reset; 4730 bool m_private; 4731 bool m_is_master; 4732 bool m_okay_to_discard; 4733 }; 4734 } // anonymous namespace 4735 4736 static microseconds 4737 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4738 const milliseconds default_one_thread_timeout(250); 4739 4740 // If the overall wait is forever, then we don't need to worry about it. 4741 if (!options.GetTimeout()) { 4742 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4743 : default_one_thread_timeout; 4744 } 4745 4746 // If the one thread timeout is set, use it. 4747 if (options.GetOneThreadTimeout()) 4748 return *options.GetOneThreadTimeout(); 4749 4750 // Otherwise use half the total timeout, bounded by the 4751 // default_one_thread_timeout. 4752 return std::min<microseconds>(default_one_thread_timeout, 4753 *options.GetTimeout() / 2); 4754 } 4755 4756 static Timeout<std::micro> 4757 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4758 bool before_first_timeout) { 4759 // If we are going to run all threads the whole time, or if we are only going 4760 // to run one thread, we can just return the overall timeout. 4761 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4762 return options.GetTimeout(); 4763 4764 if (before_first_timeout) 4765 return GetOneThreadExpressionTimeout(options); 4766 4767 if (!options.GetTimeout()) 4768 return llvm::None; 4769 else 4770 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4771 } 4772 4773 static llvm::Optional<ExpressionResults> 4774 HandleStoppedEvent(Thread &thread, const ThreadPlanSP &thread_plan_sp, 4775 RestorePlanState &restorer, const EventSP &event_sp, 4776 EventSP &event_to_broadcast_sp, 4777 const EvaluateExpressionOptions &options, bool handle_interrupts) { 4778 Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS); 4779 4780 ThreadPlanSP plan = thread.GetCompletedPlan(); 4781 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4782 LLDB_LOG(log, "execution completed successfully"); 4783 4784 // Restore the plan state so it will get reported as intended when we are 4785 // done. 4786 restorer.Clean(); 4787 return eExpressionCompleted; 4788 } 4789 4790 StopInfoSP stop_info_sp = thread.GetStopInfo(); 4791 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4792 stop_info_sp->ShouldNotify(event_sp.get())) { 4793 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4794 if (!options.DoesIgnoreBreakpoints()) { 4795 // Restore the plan state and then force Private to false. We are going 4796 // to stop because of this plan so we need it to become a public plan or 4797 // it won't report correctly when we continue to its termination later 4798 // on. 4799 restorer.Clean(); 4800 thread_plan_sp->SetPrivate(false); 4801 event_to_broadcast_sp = event_sp; 4802 } 4803 return eExpressionHitBreakpoint; 4804 } 4805 4806 if (!handle_interrupts && 4807 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4808 return llvm::None; 4809 4810 LLDB_LOG(log, "thread plan did not successfully complete"); 4811 if (!options.DoesUnwindOnError()) 4812 event_to_broadcast_sp = event_sp; 4813 return eExpressionInterrupted; 4814 } 4815 4816 ExpressionResults 4817 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4818 lldb::ThreadPlanSP &thread_plan_sp, 4819 const EvaluateExpressionOptions &options, 4820 DiagnosticManager &diagnostic_manager) { 4821 ExpressionResults return_value = eExpressionSetupError; 4822 4823 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4824 4825 if (!thread_plan_sp) { 4826 diagnostic_manager.PutString( 4827 eDiagnosticSeverityError, 4828 "RunThreadPlan called with empty thread plan."); 4829 return eExpressionSetupError; 4830 } 4831 4832 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4833 diagnostic_manager.PutString( 4834 eDiagnosticSeverityError, 4835 "RunThreadPlan called with an invalid thread plan."); 4836 return eExpressionSetupError; 4837 } 4838 4839 if (exe_ctx.GetProcessPtr() != this) { 4840 diagnostic_manager.PutString(eDiagnosticSeverityError, 4841 "RunThreadPlan called on wrong process."); 4842 return eExpressionSetupError; 4843 } 4844 4845 Thread *thread = exe_ctx.GetThreadPtr(); 4846 if (thread == nullptr) { 4847 diagnostic_manager.PutString(eDiagnosticSeverityError, 4848 "RunThreadPlan called with invalid thread."); 4849 return eExpressionSetupError; 4850 } 4851 4852 // We need to change some of the thread plan attributes for the thread plan 4853 // runner. This will restore them when we are done: 4854 4855 RestorePlanState thread_plan_restorer(thread_plan_sp); 4856 4857 // We rely on the thread plan we are running returning "PlanCompleted" if 4858 // when it successfully completes. For that to be true the plan can't be 4859 // private - since private plans suppress themselves in the GetCompletedPlan 4860 // call. 4861 4862 thread_plan_sp->SetPrivate(false); 4863 4864 // The plans run with RunThreadPlan also need to be terminal master plans or 4865 // when they are done we will end up asking the plan above us whether we 4866 // should stop, which may give the wrong answer. 4867 4868 thread_plan_sp->SetIsMasterPlan(true); 4869 thread_plan_sp->SetOkayToDiscard(false); 4870 4871 if (m_private_state.GetValue() != eStateStopped) { 4872 diagnostic_manager.PutString( 4873 eDiagnosticSeverityError, 4874 "RunThreadPlan called while the private state was not stopped."); 4875 return eExpressionSetupError; 4876 } 4877 4878 // Save the thread & frame from the exe_ctx for restoration after we run 4879 const uint32_t thread_idx_id = thread->GetIndexID(); 4880 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4881 if (!selected_frame_sp) { 4882 thread->SetSelectedFrame(nullptr); 4883 selected_frame_sp = thread->GetSelectedFrame(); 4884 if (!selected_frame_sp) { 4885 diagnostic_manager.Printf( 4886 eDiagnosticSeverityError, 4887 "RunThreadPlan called without a selected frame on thread %d", 4888 thread_idx_id); 4889 return eExpressionSetupError; 4890 } 4891 } 4892 4893 // Make sure the timeout values make sense. The one thread timeout needs to 4894 // be smaller than the overall timeout. 4895 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4896 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4897 diagnostic_manager.PutString(eDiagnosticSeverityError, 4898 "RunThreadPlan called with one thread " 4899 "timeout greater than total timeout"); 4900 return eExpressionSetupError; 4901 } 4902 4903 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4904 4905 // N.B. Running the target may unset the currently selected thread and frame. 4906 // We don't want to do that either, so we should arrange to reset them as 4907 // well. 4908 4909 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4910 4911 uint32_t selected_tid; 4912 StackID selected_stack_id; 4913 if (selected_thread_sp) { 4914 selected_tid = selected_thread_sp->GetIndexID(); 4915 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4916 } else { 4917 selected_tid = LLDB_INVALID_THREAD_ID; 4918 } 4919 4920 HostThread backup_private_state_thread; 4921 lldb::StateType old_state = eStateInvalid; 4922 lldb::ThreadPlanSP stopper_base_plan_sp; 4923 4924 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4925 LIBLLDB_LOG_PROCESS)); 4926 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4927 // Yikes, we are running on the private state thread! So we can't wait for 4928 // public events on this thread, since we are the thread that is generating 4929 // public events. The simplest thing to do is to spin up a temporary thread 4930 // to handle private state thread events while we are fielding public 4931 // events here. 4932 if (log) 4933 log->Printf("Running thread plan on private state thread, spinning up " 4934 "another state thread to handle the events."); 4935 4936 backup_private_state_thread = m_private_state_thread; 4937 4938 // One other bit of business: we want to run just this thread plan and 4939 // anything it pushes, and then stop, returning control here. But in the 4940 // normal course of things, the plan above us on the stack would be given a 4941 // shot at the stop event before deciding to stop, and we don't want that. 4942 // So we insert a "stopper" base plan on the stack before the plan we want 4943 // to run. Since base plans always stop and return control to the user, 4944 // that will do just what we want. 4945 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4946 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4947 // Have to make sure our public state is stopped, since otherwise the 4948 // reporting logic below doesn't work correctly. 4949 old_state = m_public_state.GetValue(); 4950 m_public_state.SetValueNoLock(eStateStopped); 4951 4952 // Now spin up the private state thread: 4953 StartPrivateStateThread(true); 4954 } 4955 4956 thread->QueueThreadPlan( 4957 thread_plan_sp, false); // This used to pass "true" does that make sense? 4958 4959 if (options.GetDebug()) { 4960 // In this case, we aren't actually going to run, we just want to stop 4961 // right away. Flush this thread so we will refetch the stacks and show the 4962 // correct backtrace. 4963 // FIXME: To make this prettier we should invent some stop reason for this, 4964 // but that 4965 // is only cosmetic, and this functionality is only of use to lldb 4966 // developers who can live with not pretty... 4967 thread->Flush(); 4968 return eExpressionStoppedForDebug; 4969 } 4970 4971 ListenerSP listener_sp( 4972 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4973 4974 lldb::EventSP event_to_broadcast_sp; 4975 4976 { 4977 // This process event hijacker Hijacks the Public events and its destructor 4978 // makes sure that the process events get restored on exit to the function. 4979 // 4980 // If the event needs to propagate beyond the hijacker (e.g., the process 4981 // exits during execution), then the event is put into 4982 // event_to_broadcast_sp for rebroadcasting. 4983 4984 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 4985 4986 if (log) { 4987 StreamString s; 4988 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 4989 log->Printf("Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 4990 " to run thread plan \"%s\".", 4991 thread->GetIndexID(), thread->GetID(), s.GetData()); 4992 } 4993 4994 bool got_event; 4995 lldb::EventSP event_sp; 4996 lldb::StateType stop_state = lldb::eStateInvalid; 4997 4998 bool before_first_timeout = true; // This is set to false the first time 4999 // that we have to halt the target. 5000 bool do_resume = true; 5001 bool handle_running_event = true; 5002 5003 // This is just for accounting: 5004 uint32_t num_resumes = 0; 5005 5006 // If we are going to run all threads the whole time, or if we are only 5007 // going to run one thread, then we don't need the first timeout. So we 5008 // pretend we are after the first timeout already. 5009 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 5010 before_first_timeout = false; 5011 5012 if (log) 5013 log->Printf("Stop others: %u, try all: %u, before_first: %u.\n", 5014 options.GetStopOthers(), options.GetTryAllThreads(), 5015 before_first_timeout); 5016 5017 // This isn't going to work if there are unfetched events on the queue. Are 5018 // there cases where we might want to run the remaining events here, and 5019 // then try to call the function? That's probably being too tricky for our 5020 // own good. 5021 5022 Event *other_events = listener_sp->PeekAtNextEvent(); 5023 if (other_events != nullptr) { 5024 diagnostic_manager.PutString( 5025 eDiagnosticSeverityError, 5026 "RunThreadPlan called with pending events on the queue."); 5027 return eExpressionSetupError; 5028 } 5029 5030 // We also need to make sure that the next event is delivered. We might be 5031 // calling a function as part of a thread plan, in which case the last 5032 // delivered event could be the running event, and we don't want event 5033 // coalescing to cause us to lose OUR running event... 5034 ForceNextEventDelivery(); 5035 5036 // This while loop must exit out the bottom, there's cleanup that we need to do 5037 // when we are done. So don't call return anywhere within it. 5038 5039 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5040 // It's pretty much impossible to write test cases for things like: One 5041 // thread timeout expires, I go to halt, but the process already stopped on 5042 // the function call stop breakpoint. Turning on this define will make us 5043 // not fetch the first event till after the halt. So if you run a quick 5044 // function, it will have completed, and the completion event will be 5045 // waiting, when you interrupt for halt. The expression evaluation should 5046 // still succeed. 5047 bool miss_first_event = true; 5048 #endif 5049 while (true) { 5050 // We usually want to resume the process if we get to the top of the 5051 // loop. The only exception is if we get two running events with no 5052 // intervening stop, which can happen, we will just wait for then next 5053 // stop event. 5054 if (log) 5055 log->Printf("Top of while loop: do_resume: %i handle_running_event: %i " 5056 "before_first_timeout: %i.", 5057 do_resume, handle_running_event, before_first_timeout); 5058 5059 if (do_resume || handle_running_event) { 5060 // Do the initial resume and wait for the running event before going 5061 // further. 5062 5063 if (do_resume) { 5064 num_resumes++; 5065 Status resume_error = PrivateResume(); 5066 if (!resume_error.Success()) { 5067 diagnostic_manager.Printf( 5068 eDiagnosticSeverityError, 5069 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 5070 resume_error.AsCString()); 5071 return_value = eExpressionSetupError; 5072 break; 5073 } 5074 } 5075 5076 got_event = 5077 listener_sp->GetEvent(event_sp, std::chrono::milliseconds(500)); 5078 if (!got_event) { 5079 if (log) 5080 log->Printf("Process::RunThreadPlan(): didn't get any event after " 5081 "resume %" PRIu32 ", exiting.", 5082 num_resumes); 5083 5084 diagnostic_manager.Printf(eDiagnosticSeverityError, 5085 "didn't get any event after resume %" PRIu32 5086 ", exiting.", 5087 num_resumes); 5088 return_value = eExpressionSetupError; 5089 break; 5090 } 5091 5092 stop_state = 5093 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5094 5095 if (stop_state != eStateRunning) { 5096 bool restarted = false; 5097 5098 if (stop_state == eStateStopped) { 5099 restarted = Process::ProcessEventData::GetRestartedFromEvent( 5100 event_sp.get()); 5101 if (log) 5102 log->Printf( 5103 "Process::RunThreadPlan(): didn't get running event after " 5104 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 5105 "handle_running_event: %i).", 5106 num_resumes, StateAsCString(stop_state), restarted, do_resume, 5107 handle_running_event); 5108 } 5109 5110 if (restarted) { 5111 // This is probably an overabundance of caution, I don't think I 5112 // should ever get a stopped & restarted event here. But if I do, 5113 // the best thing is to Halt and then get out of here. 5114 const bool clear_thread_plans = false; 5115 const bool use_run_lock = false; 5116 Halt(clear_thread_plans, use_run_lock); 5117 } 5118 5119 diagnostic_manager.Printf( 5120 eDiagnosticSeverityError, 5121 "didn't get running event after initial resume, got %s instead.", 5122 StateAsCString(stop_state)); 5123 return_value = eExpressionSetupError; 5124 break; 5125 } 5126 5127 if (log) 5128 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 5129 // We need to call the function synchronously, so spin waiting for it 5130 // to return. If we get interrupted while executing, we're going to 5131 // lose our context, and won't be able to gather the result at this 5132 // point. We set the timeout AFTER the resume, since the resume takes 5133 // some time and we don't want to charge that to the timeout. 5134 } else { 5135 if (log) 5136 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 5137 } 5138 5139 do_resume = true; 5140 handle_running_event = true; 5141 5142 // Now wait for the process to stop again: 5143 event_sp.reset(); 5144 5145 Timeout<std::micro> timeout = 5146 GetExpressionTimeout(options, before_first_timeout); 5147 if (log) { 5148 if (timeout) { 5149 auto now = system_clock::now(); 5150 log->Printf("Process::RunThreadPlan(): about to wait - now is %s - " 5151 "endpoint is %s", 5152 llvm::to_string(now).c_str(), 5153 llvm::to_string(now + *timeout).c_str()); 5154 } else { 5155 log->Printf("Process::RunThreadPlan(): about to wait forever."); 5156 } 5157 } 5158 5159 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5160 // See comment above... 5161 if (miss_first_event) { 5162 usleep(1000); 5163 miss_first_event = false; 5164 got_event = false; 5165 } else 5166 #endif 5167 got_event = listener_sp->GetEvent(event_sp, timeout); 5168 5169 if (got_event) { 5170 if (event_sp) { 5171 bool keep_going = false; 5172 if (event_sp->GetType() == eBroadcastBitInterrupt) { 5173 const bool clear_thread_plans = false; 5174 const bool use_run_lock = false; 5175 Halt(clear_thread_plans, use_run_lock); 5176 return_value = eExpressionInterrupted; 5177 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 5178 "execution halted by user interrupt."); 5179 if (log) 5180 log->Printf("Process::RunThreadPlan(): Got interrupted by " 5181 "eBroadcastBitInterrupted, exiting."); 5182 break; 5183 } else { 5184 stop_state = 5185 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5186 if (log) 5187 log->Printf( 5188 "Process::RunThreadPlan(): in while loop, got event: %s.", 5189 StateAsCString(stop_state)); 5190 5191 switch (stop_state) { 5192 case lldb::eStateStopped: { 5193 // We stopped, figure out what we are going to do now. 5194 ThreadSP thread_sp = 5195 GetThreadList().FindThreadByIndexID(thread_idx_id); 5196 if (!thread_sp) { 5197 // Ooh, our thread has vanished. Unlikely that this was 5198 // successful execution... 5199 if (log) 5200 log->Printf("Process::RunThreadPlan(): execution completed " 5201 "but our thread (index-id=%u) has vanished.", 5202 thread_idx_id); 5203 return_value = eExpressionInterrupted; 5204 } else if (Process::ProcessEventData::GetRestartedFromEvent( 5205 event_sp.get())) { 5206 // If we were restarted, we just need to go back up to fetch 5207 // another event. 5208 if (log) { 5209 log->Printf("Process::RunThreadPlan(): Got a stop and " 5210 "restart, so we'll continue waiting."); 5211 } 5212 keep_going = true; 5213 do_resume = false; 5214 handle_running_event = true; 5215 } else { 5216 const bool handle_interrupts = true; 5217 return_value = *HandleStoppedEvent( 5218 *thread, thread_plan_sp, thread_plan_restorer, event_sp, 5219 event_to_broadcast_sp, options, handle_interrupts); 5220 } 5221 } break; 5222 5223 case lldb::eStateRunning: 5224 // This shouldn't really happen, but sometimes we do get two 5225 // running events without an intervening stop, and in that case 5226 // we should just go back to waiting for the stop. 5227 do_resume = false; 5228 keep_going = true; 5229 handle_running_event = false; 5230 break; 5231 5232 default: 5233 if (log) 5234 log->Printf("Process::RunThreadPlan(): execution stopped with " 5235 "unexpected state: %s.", 5236 StateAsCString(stop_state)); 5237 5238 if (stop_state == eStateExited) 5239 event_to_broadcast_sp = event_sp; 5240 5241 diagnostic_manager.PutString( 5242 eDiagnosticSeverityError, 5243 "execution stopped with unexpected state."); 5244 return_value = eExpressionInterrupted; 5245 break; 5246 } 5247 } 5248 5249 if (keep_going) 5250 continue; 5251 else 5252 break; 5253 } else { 5254 if (log) 5255 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5256 "the event pointer was null. How odd..."); 5257 return_value = eExpressionInterrupted; 5258 break; 5259 } 5260 } else { 5261 // If we didn't get an event that means we've timed out... We will 5262 // interrupt the process here. Depending on what we were asked to do 5263 // we will either exit, or try with all threads running for the same 5264 // timeout. 5265 5266 if (log) { 5267 if (options.GetTryAllThreads()) { 5268 if (before_first_timeout) { 5269 LLDB_LOG(log, 5270 "Running function with one thread timeout timed out."); 5271 } else 5272 LLDB_LOG(log, "Restarting function with all threads enabled and " 5273 "timeout: {0} timed out, abandoning execution.", 5274 timeout); 5275 } else 5276 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5277 "abandoning execution.", 5278 timeout); 5279 } 5280 5281 // It is possible that between the time we issued the Halt, and we get 5282 // around to calling Halt the target could have stopped. That's fine, 5283 // Halt will figure that out and send the appropriate Stopped event. 5284 // BUT it is also possible that we stopped & restarted (e.g. hit a 5285 // signal with "stop" set to false.) In 5286 // that case, we'll get the stopped & restarted event, and we should go 5287 // back to waiting for the Halt's stopped event. That's what this 5288 // while loop does. 5289 5290 bool back_to_top = true; 5291 uint32_t try_halt_again = 0; 5292 bool do_halt = true; 5293 const uint32_t num_retries = 5; 5294 while (try_halt_again < num_retries) { 5295 Status halt_error; 5296 if (do_halt) { 5297 if (log) 5298 log->Printf("Process::RunThreadPlan(): Running Halt."); 5299 const bool clear_thread_plans = false; 5300 const bool use_run_lock = false; 5301 Halt(clear_thread_plans, use_run_lock); 5302 } 5303 if (halt_error.Success()) { 5304 if (log) 5305 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5306 5307 got_event = 5308 listener_sp->GetEvent(event_sp, std::chrono::milliseconds(500)); 5309 5310 if (got_event) { 5311 stop_state = 5312 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5313 if (log) { 5314 log->Printf("Process::RunThreadPlan(): Stopped with event: %s", 5315 StateAsCString(stop_state)); 5316 if (stop_state == lldb::eStateStopped && 5317 Process::ProcessEventData::GetInterruptedFromEvent( 5318 event_sp.get())) 5319 log->PutCString(" Event was the Halt interruption event."); 5320 } 5321 5322 if (stop_state == lldb::eStateStopped) { 5323 if (Process::ProcessEventData::GetRestartedFromEvent( 5324 event_sp.get())) { 5325 if (log) 5326 log->PutCString("Process::RunThreadPlan(): Went to halt " 5327 "but got a restarted event, there must be " 5328 "an un-restarted stopped event so try " 5329 "again... " 5330 "Exiting wait loop."); 5331 try_halt_again++; 5332 do_halt = false; 5333 continue; 5334 } 5335 5336 // Between the time we initiated the Halt and the time we 5337 // delivered it, the process could have already finished its 5338 // job. Check that here: 5339 const bool handle_interrupts = false; 5340 if (auto result = HandleStoppedEvent( 5341 *thread, thread_plan_sp, thread_plan_restorer, event_sp, 5342 event_to_broadcast_sp, options, handle_interrupts)) { 5343 return_value = *result; 5344 back_to_top = false; 5345 break; 5346 } 5347 5348 if (!options.GetTryAllThreads()) { 5349 if (log) 5350 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5351 "was false, we stopped so now we're " 5352 "quitting."); 5353 return_value = eExpressionInterrupted; 5354 back_to_top = false; 5355 break; 5356 } 5357 5358 if (before_first_timeout) { 5359 // Set all the other threads to run, and return to the top of 5360 // the loop, which will continue; 5361 before_first_timeout = false; 5362 thread_plan_sp->SetStopOthers(false); 5363 if (log) 5364 log->PutCString( 5365 "Process::RunThreadPlan(): about to resume."); 5366 5367 back_to_top = true; 5368 break; 5369 } else { 5370 // Running all threads failed, so return Interrupted. 5371 if (log) 5372 log->PutCString("Process::RunThreadPlan(): running all " 5373 "threads timed out."); 5374 return_value = eExpressionInterrupted; 5375 back_to_top = false; 5376 break; 5377 } 5378 } 5379 } else { 5380 if (log) 5381 log->PutCString("Process::RunThreadPlan(): halt said it " 5382 "succeeded, but I got no event. " 5383 "I'm getting out of here passing Interrupted."); 5384 return_value = eExpressionInterrupted; 5385 back_to_top = false; 5386 break; 5387 } 5388 } else { 5389 try_halt_again++; 5390 continue; 5391 } 5392 } 5393 5394 if (!back_to_top || try_halt_again > num_retries) 5395 break; 5396 else 5397 continue; 5398 } 5399 } // END WAIT LOOP 5400 5401 // If we had to start up a temporary private state thread to run this 5402 // thread plan, shut it down now. 5403 if (backup_private_state_thread.IsJoinable()) { 5404 StopPrivateStateThread(); 5405 Status error; 5406 m_private_state_thread = backup_private_state_thread; 5407 if (stopper_base_plan_sp) { 5408 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5409 } 5410 if (old_state != eStateInvalid) 5411 m_public_state.SetValueNoLock(old_state); 5412 } 5413 5414 if (return_value != eExpressionCompleted && log) { 5415 // Print a backtrace into the log so we can figure out where we are: 5416 StreamString s; 5417 s.PutCString("Thread state after unsuccessful completion: \n"); 5418 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5419 log->PutString(s.GetString()); 5420 } 5421 // Restore the thread state if we are going to discard the plan execution. 5422 // There are three cases where this could happen: 1) The execution 5423 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5424 // was true 3) We got some other error, and discard_on_error was true 5425 bool should_unwind = (return_value == eExpressionInterrupted && 5426 options.DoesUnwindOnError()) || 5427 (return_value == eExpressionHitBreakpoint && 5428 options.DoesIgnoreBreakpoints()); 5429 5430 if (return_value == eExpressionCompleted || should_unwind) { 5431 thread_plan_sp->RestoreThreadState(); 5432 } 5433 5434 // Now do some processing on the results of the run: 5435 if (return_value == eExpressionInterrupted || 5436 return_value == eExpressionHitBreakpoint) { 5437 if (log) { 5438 StreamString s; 5439 if (event_sp) 5440 event_sp->Dump(&s); 5441 else { 5442 log->PutCString("Process::RunThreadPlan(): Stop event that " 5443 "interrupted us is NULL."); 5444 } 5445 5446 StreamString ts; 5447 5448 const char *event_explanation = nullptr; 5449 5450 do { 5451 if (!event_sp) { 5452 event_explanation = "<no event>"; 5453 break; 5454 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5455 event_explanation = "<user interrupt>"; 5456 break; 5457 } else { 5458 const Process::ProcessEventData *event_data = 5459 Process::ProcessEventData::GetEventDataFromEvent( 5460 event_sp.get()); 5461 5462 if (!event_data) { 5463 event_explanation = "<no event data>"; 5464 break; 5465 } 5466 5467 Process *process = event_data->GetProcessSP().get(); 5468 5469 if (!process) { 5470 event_explanation = "<no process>"; 5471 break; 5472 } 5473 5474 ThreadList &thread_list = process->GetThreadList(); 5475 5476 uint32_t num_threads = thread_list.GetSize(); 5477 uint32_t thread_index; 5478 5479 ts.Printf("<%u threads> ", num_threads); 5480 5481 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5482 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5483 5484 if (!thread) { 5485 ts.Printf("<?> "); 5486 continue; 5487 } 5488 5489 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5490 RegisterContext *register_context = 5491 thread->GetRegisterContext().get(); 5492 5493 if (register_context) 5494 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5495 else 5496 ts.Printf("[ip unknown] "); 5497 5498 // Show the private stop info here, the public stop info will be 5499 // from the last natural stop. 5500 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5501 if (stop_info_sp) { 5502 const char *stop_desc = stop_info_sp->GetDescription(); 5503 if (stop_desc) 5504 ts.PutCString(stop_desc); 5505 } 5506 ts.Printf(">"); 5507 } 5508 5509 event_explanation = ts.GetData(); 5510 } 5511 } while (0); 5512 5513 if (event_explanation) 5514 log->Printf("Process::RunThreadPlan(): execution interrupted: %s %s", 5515 s.GetData(), event_explanation); 5516 else 5517 log->Printf("Process::RunThreadPlan(): execution interrupted: %s", 5518 s.GetData()); 5519 } 5520 5521 if (should_unwind) { 5522 if (log) 5523 log->Printf("Process::RunThreadPlan: ExecutionInterrupted - " 5524 "discarding thread plans up to %p.", 5525 static_cast<void *>(thread_plan_sp.get())); 5526 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5527 } else { 5528 if (log) 5529 log->Printf("Process::RunThreadPlan: ExecutionInterrupted - for " 5530 "plan: %p not discarding.", 5531 static_cast<void *>(thread_plan_sp.get())); 5532 } 5533 } else if (return_value == eExpressionSetupError) { 5534 if (log) 5535 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5536 5537 if (options.DoesUnwindOnError()) { 5538 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5539 } 5540 } else { 5541 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5542 if (log) 5543 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5544 return_value = eExpressionCompleted; 5545 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5546 if (log) 5547 log->PutCString( 5548 "Process::RunThreadPlan(): thread plan was discarded"); 5549 return_value = eExpressionDiscarded; 5550 } else { 5551 if (log) 5552 log->PutCString( 5553 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5554 if (options.DoesUnwindOnError() && thread_plan_sp) { 5555 if (log) 5556 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5557 "'cause unwind_on_error is set."); 5558 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5559 } 5560 } 5561 } 5562 5563 // Thread we ran the function in may have gone away because we ran the 5564 // target Check that it's still there, and if it is put it back in the 5565 // context. Also restore the frame in the context if it is still present. 5566 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5567 if (thread) { 5568 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5569 } 5570 5571 // Also restore the current process'es selected frame & thread, since this 5572 // function calling may be done behind the user's back. 5573 5574 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5575 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5576 selected_stack_id.IsValid()) { 5577 // We were able to restore the selected thread, now restore the frame: 5578 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5579 StackFrameSP old_frame_sp = 5580 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5581 selected_stack_id); 5582 if (old_frame_sp) 5583 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5584 old_frame_sp.get()); 5585 } 5586 } 5587 } 5588 5589 // If the process exited during the run of the thread plan, notify everyone. 5590 5591 if (event_to_broadcast_sp) { 5592 if (log) 5593 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5594 BroadcastEvent(event_to_broadcast_sp); 5595 } 5596 5597 return return_value; 5598 } 5599 5600 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5601 const char *result_name; 5602 5603 switch (result) { 5604 case eExpressionCompleted: 5605 result_name = "eExpressionCompleted"; 5606 break; 5607 case eExpressionDiscarded: 5608 result_name = "eExpressionDiscarded"; 5609 break; 5610 case eExpressionInterrupted: 5611 result_name = "eExpressionInterrupted"; 5612 break; 5613 case eExpressionHitBreakpoint: 5614 result_name = "eExpressionHitBreakpoint"; 5615 break; 5616 case eExpressionSetupError: 5617 result_name = "eExpressionSetupError"; 5618 break; 5619 case eExpressionParseError: 5620 result_name = "eExpressionParseError"; 5621 break; 5622 case eExpressionResultUnavailable: 5623 result_name = "eExpressionResultUnavailable"; 5624 break; 5625 case eExpressionTimedOut: 5626 result_name = "eExpressionTimedOut"; 5627 break; 5628 case eExpressionStoppedForDebug: 5629 result_name = "eExpressionStoppedForDebug"; 5630 break; 5631 } 5632 return result_name; 5633 } 5634 5635 void Process::GetStatus(Stream &strm) { 5636 const StateType state = GetState(); 5637 if (StateIsStoppedState(state, false)) { 5638 if (state == eStateExited) { 5639 int exit_status = GetExitStatus(); 5640 const char *exit_description = GetExitDescription(); 5641 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5642 GetID(), exit_status, exit_status, 5643 exit_description ? exit_description : ""); 5644 } else { 5645 if (state == eStateConnected) 5646 strm.Printf("Connected to remote target.\n"); 5647 else 5648 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5649 } 5650 } else { 5651 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5652 } 5653 } 5654 5655 size_t Process::GetThreadStatus(Stream &strm, 5656 bool only_threads_with_stop_reason, 5657 uint32_t start_frame, uint32_t num_frames, 5658 uint32_t num_frames_with_source, 5659 bool stop_format) { 5660 size_t num_thread_infos_dumped = 0; 5661 5662 // You can't hold the thread list lock while calling Thread::GetStatus. That 5663 // very well might run code (e.g. if we need it to get return values or 5664 // arguments.) For that to work the process has to be able to acquire it. 5665 // So instead copy the thread ID's, and look them up one by one: 5666 5667 uint32_t num_threads; 5668 std::vector<lldb::tid_t> thread_id_array; 5669 // Scope for thread list locker; 5670 { 5671 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5672 ThreadList &curr_thread_list = GetThreadList(); 5673 num_threads = curr_thread_list.GetSize(); 5674 uint32_t idx; 5675 thread_id_array.resize(num_threads); 5676 for (idx = 0; idx < num_threads; ++idx) 5677 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5678 } 5679 5680 for (uint32_t i = 0; i < num_threads; i++) { 5681 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5682 if (thread_sp) { 5683 if (only_threads_with_stop_reason) { 5684 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5685 if (!stop_info_sp || !stop_info_sp->IsValid()) 5686 continue; 5687 } 5688 thread_sp->GetStatus(strm, start_frame, num_frames, 5689 num_frames_with_source, 5690 stop_format); 5691 ++num_thread_infos_dumped; 5692 } else { 5693 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5694 if (log) 5695 log->Printf("Process::GetThreadStatus - thread 0x" PRIu64 5696 " vanished while running Thread::GetStatus."); 5697 } 5698 } 5699 return num_thread_infos_dumped; 5700 } 5701 5702 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5703 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5704 } 5705 5706 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5707 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5708 region.GetByteSize()); 5709 } 5710 5711 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5712 void *baton) { 5713 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5714 } 5715 5716 bool Process::RunPreResumeActions() { 5717 bool result = true; 5718 while (!m_pre_resume_actions.empty()) { 5719 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5720 m_pre_resume_actions.pop_back(); 5721 bool this_result = action.callback(action.baton); 5722 if (result) 5723 result = this_result; 5724 } 5725 return result; 5726 } 5727 5728 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5729 5730 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5731 { 5732 PreResumeCallbackAndBaton element(callback, baton); 5733 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5734 if (found_iter != m_pre_resume_actions.end()) 5735 { 5736 m_pre_resume_actions.erase(found_iter); 5737 } 5738 } 5739 5740 ProcessRunLock &Process::GetRunLock() { 5741 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5742 return m_private_run_lock; 5743 else 5744 return m_public_run_lock; 5745 } 5746 5747 void Process::Flush() { 5748 m_thread_list.Flush(); 5749 m_extended_thread_list.Flush(); 5750 m_extended_thread_stop_id = 0; 5751 m_queue_list.Clear(); 5752 m_queue_list_stop_id = 0; 5753 } 5754 5755 void Process::DidExec() { 5756 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 5757 if (log) 5758 log->Printf("Process::%s()", __FUNCTION__); 5759 5760 Target &target = GetTarget(); 5761 target.CleanupProcess(); 5762 target.ClearModules(false); 5763 m_dynamic_checkers_ap.reset(); 5764 m_abi_sp.reset(); 5765 m_system_runtime_ap.reset(); 5766 m_os_ap.reset(); 5767 m_dyld_ap.reset(); 5768 m_jit_loaders_ap.reset(); 5769 m_image_tokens.clear(); 5770 m_allocated_memory_cache.Clear(); 5771 m_language_runtimes.clear(); 5772 m_instrumentation_runtimes.clear(); 5773 m_thread_list.DiscardThreadPlans(); 5774 m_memory_cache.Clear(true); 5775 DoDidExec(); 5776 CompleteAttach(); 5777 // Flush the process (threads and all stack frames) after running 5778 // CompleteAttach() in case the dynamic loader loaded things in new 5779 // locations. 5780 Flush(); 5781 5782 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5783 // let the target know so it can do any cleanup it needs to. 5784 target.DidExec(); 5785 } 5786 5787 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5788 if (address == nullptr) { 5789 error.SetErrorString("Invalid address argument"); 5790 return LLDB_INVALID_ADDRESS; 5791 } 5792 5793 addr_t function_addr = LLDB_INVALID_ADDRESS; 5794 5795 addr_t addr = address->GetLoadAddress(&GetTarget()); 5796 std::map<addr_t, addr_t>::const_iterator iter = 5797 m_resolved_indirect_addresses.find(addr); 5798 if (iter != m_resolved_indirect_addresses.end()) { 5799 function_addr = (*iter).second; 5800 } else { 5801 if (!InferiorCall(this, address, function_addr)) { 5802 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5803 error.SetErrorStringWithFormat( 5804 "Unable to call resolver for indirect function %s", 5805 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5806 function_addr = LLDB_INVALID_ADDRESS; 5807 } else { 5808 m_resolved_indirect_addresses.insert( 5809 std::pair<addr_t, addr_t>(addr, function_addr)); 5810 } 5811 } 5812 return function_addr; 5813 } 5814 5815 void Process::ModulesDidLoad(ModuleList &module_list) { 5816 SystemRuntime *sys_runtime = GetSystemRuntime(); 5817 if (sys_runtime) { 5818 sys_runtime->ModulesDidLoad(module_list); 5819 } 5820 5821 GetJITLoaders().ModulesDidLoad(module_list); 5822 5823 // Give runtimes a chance to be created. 5824 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5825 m_instrumentation_runtimes); 5826 5827 // Tell runtimes about new modules. 5828 for (auto pos = m_instrumentation_runtimes.begin(); 5829 pos != m_instrumentation_runtimes.end(); ++pos) { 5830 InstrumentationRuntimeSP runtime = pos->second; 5831 runtime->ModulesDidLoad(module_list); 5832 } 5833 5834 // Let any language runtimes we have already created know about the modules 5835 // that loaded. 5836 5837 // Iterate over a copy of this language runtime list in case the language 5838 // runtime ModulesDidLoad somehow causes the language riuntime to be 5839 // unloaded. 5840 LanguageRuntimeCollection language_runtimes(m_language_runtimes); 5841 for (const auto &pair : language_runtimes) { 5842 // We must check language_runtime_sp to make sure it is not nullptr as we 5843 // might cache the fact that we didn't have a language runtime for a 5844 // language. 5845 LanguageRuntimeSP language_runtime_sp = pair.second; 5846 if (language_runtime_sp) 5847 language_runtime_sp->ModulesDidLoad(module_list); 5848 } 5849 5850 // If we don't have an operating system plug-in, try to load one since 5851 // loading shared libraries might cause a new one to try and load 5852 if (!m_os_ap) 5853 LoadOperatingSystemPlugin(false); 5854 5855 // Give structured-data plugins a chance to see the modified modules. 5856 for (auto pair : m_structured_data_plugin_map) { 5857 if (pair.second) 5858 pair.second->ModulesDidLoad(*this, module_list); 5859 } 5860 } 5861 5862 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5863 const char *fmt, ...) { 5864 bool print_warning = true; 5865 5866 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5867 if (!stream_sp) 5868 return; 5869 if (warning_type == eWarningsOptimization && !GetWarningsOptimization()) { 5870 return; 5871 } 5872 5873 if (repeat_key != nullptr) { 5874 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5875 if (it == m_warnings_issued.end()) { 5876 m_warnings_issued[warning_type] = WarningsPointerSet(); 5877 m_warnings_issued[warning_type].insert(repeat_key); 5878 } else { 5879 if (it->second.find(repeat_key) != it->second.end()) { 5880 print_warning = false; 5881 } else { 5882 it->second.insert(repeat_key); 5883 } 5884 } 5885 } 5886 5887 if (print_warning) { 5888 va_list args; 5889 va_start(args, fmt); 5890 stream_sp->PrintfVarArg(fmt, args); 5891 va_end(args); 5892 } 5893 } 5894 5895 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5896 if (GetWarningsOptimization() && sc.module_sp && 5897 !sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5898 sc.function->GetIsOptimized()) { 5899 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5900 "%s was compiled with optimization - stepping may behave " 5901 "oddly; variables may not be available.\n", 5902 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5903 } 5904 } 5905 5906 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5907 info.Clear(); 5908 5909 PlatformSP platform_sp = GetTarget().GetPlatform(); 5910 if (!platform_sp) 5911 return false; 5912 5913 return platform_sp->GetProcessInfo(GetID(), info); 5914 } 5915 5916 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5917 ThreadCollectionSP threads; 5918 5919 const MemoryHistorySP &memory_history = 5920 MemoryHistory::FindPlugin(shared_from_this()); 5921 5922 if (!memory_history) { 5923 return threads; 5924 } 5925 5926 threads.reset(new ThreadCollection(memory_history->GetHistoryThreads(addr))); 5927 5928 return threads; 5929 } 5930 5931 InstrumentationRuntimeSP 5932 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5933 InstrumentationRuntimeCollection::iterator pos; 5934 pos = m_instrumentation_runtimes.find(type); 5935 if (pos == m_instrumentation_runtimes.end()) { 5936 return InstrumentationRuntimeSP(); 5937 } else 5938 return (*pos).second; 5939 } 5940 5941 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5942 const ArchSpec &arch, ModuleSpec &module_spec) { 5943 module_spec.Clear(); 5944 return false; 5945 } 5946 5947 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5948 m_image_tokens.push_back(image_ptr); 5949 return m_image_tokens.size() - 1; 5950 } 5951 5952 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5953 if (token < m_image_tokens.size()) 5954 return m_image_tokens[token]; 5955 return LLDB_INVALID_IMAGE_TOKEN; 5956 } 5957 5958 void Process::ResetImageToken(size_t token) { 5959 if (token < m_image_tokens.size()) 5960 m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN; 5961 } 5962 5963 Address 5964 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5965 AddressRange range_bounds) { 5966 Target &target = GetTarget(); 5967 DisassemblerSP disassembler_sp; 5968 InstructionList *insn_list = nullptr; 5969 5970 Address retval = default_stop_addr; 5971 5972 if (!target.GetUseFastStepping()) 5973 return retval; 5974 if (!default_stop_addr.IsValid()) 5975 return retval; 5976 5977 ExecutionContext exe_ctx(this); 5978 const char *plugin_name = nullptr; 5979 const char *flavor = nullptr; 5980 const bool prefer_file_cache = true; 5981 disassembler_sp = Disassembler::DisassembleRange( 5982 target.GetArchitecture(), plugin_name, flavor, exe_ctx, range_bounds, 5983 prefer_file_cache); 5984 if (disassembler_sp) 5985 insn_list = &disassembler_sp->GetInstructionList(); 5986 5987 if (insn_list == nullptr) { 5988 return retval; 5989 } 5990 5991 size_t insn_offset = 5992 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 5993 if (insn_offset == UINT32_MAX) { 5994 return retval; 5995 } 5996 5997 uint32_t branch_index = 5998 insn_list->GetIndexOfNextBranchInstruction(insn_offset, target); 5999 if (branch_index == UINT32_MAX) { 6000 return retval; 6001 } 6002 6003 if (branch_index > insn_offset) { 6004 Address next_branch_insn_address = 6005 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 6006 if (next_branch_insn_address.IsValid() && 6007 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 6008 retval = next_branch_insn_address; 6009 } 6010 } 6011 6012 return retval; 6013 } 6014 6015 Status 6016 Process::GetMemoryRegions(std::vector<lldb::MemoryRegionInfoSP> ®ion_list) { 6017 6018 Status error; 6019 6020 lldb::addr_t range_end = 0; 6021 6022 region_list.clear(); 6023 do { 6024 lldb::MemoryRegionInfoSP region_info(new lldb_private::MemoryRegionInfo()); 6025 error = GetMemoryRegionInfo(range_end, *region_info); 6026 // GetMemoryRegionInfo should only return an error if it is unimplemented. 6027 if (error.Fail()) { 6028 region_list.clear(); 6029 break; 6030 } 6031 6032 range_end = region_info->GetRange().GetRangeEnd(); 6033 if (region_info->GetMapped() == MemoryRegionInfo::eYes) { 6034 region_list.push_back(region_info); 6035 } 6036 } while (range_end != LLDB_INVALID_ADDRESS); 6037 6038 return error; 6039 } 6040 6041 Status 6042 Process::ConfigureStructuredData(const ConstString &type_name, 6043 const StructuredData::ObjectSP &config_sp) { 6044 // If you get this, the Process-derived class needs to implement a method to 6045 // enable an already-reported asynchronous structured data feature. See 6046 // ProcessGDBRemote for an example implementation over gdb-remote. 6047 return Status("unimplemented"); 6048 } 6049 6050 void Process::MapSupportedStructuredDataPlugins( 6051 const StructuredData::Array &supported_type_names) { 6052 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 6053 6054 // Bail out early if there are no type names to map. 6055 if (supported_type_names.GetSize() == 0) { 6056 if (log) 6057 log->Printf("Process::%s(): no structured data types supported", 6058 __FUNCTION__); 6059 return; 6060 } 6061 6062 // Convert StructuredData type names to ConstString instances. 6063 std::set<ConstString> const_type_names; 6064 6065 if (log) 6066 log->Printf("Process::%s(): the process supports the following async " 6067 "structured data types:", 6068 __FUNCTION__); 6069 6070 supported_type_names.ForEach( 6071 [&const_type_names, &log](StructuredData::Object *object) { 6072 if (!object) { 6073 // Invalid - shouldn't be null objects in the array. 6074 return false; 6075 } 6076 6077 auto type_name = object->GetAsString(); 6078 if (!type_name) { 6079 // Invalid format - all type names should be strings. 6080 return false; 6081 } 6082 6083 const_type_names.insert(ConstString(type_name->GetValue())); 6084 LLDB_LOG(log, "- {0}", type_name->GetValue()); 6085 return true; 6086 }); 6087 6088 // For each StructuredDataPlugin, if the plugin handles any of the types in 6089 // the supported_type_names, map that type name to that plugin. Stop when 6090 // we've consumed all the type names. 6091 // FIXME: should we return an error if there are type names nobody 6092 // supports? 6093 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 6094 auto create_instance = 6095 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 6096 plugin_index); 6097 if (!create_instance) 6098 break; 6099 6100 // Create the plugin. 6101 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 6102 if (!plugin_sp) { 6103 // This plugin doesn't think it can work with the process. Move on to the 6104 // next. 6105 continue; 6106 } 6107 6108 // For any of the remaining type names, map any that this plugin supports. 6109 std::vector<ConstString> names_to_remove; 6110 for (auto &type_name : const_type_names) { 6111 if (plugin_sp->SupportsStructuredDataType(type_name)) { 6112 m_structured_data_plugin_map.insert( 6113 std::make_pair(type_name, plugin_sp)); 6114 names_to_remove.push_back(type_name); 6115 if (log) 6116 log->Printf("Process::%s(): using plugin %s for type name " 6117 "%s", 6118 __FUNCTION__, plugin_sp->GetPluginName().GetCString(), 6119 type_name.GetCString()); 6120 } 6121 } 6122 6123 // Remove the type names that were consumed by this plugin. 6124 for (auto &type_name : names_to_remove) 6125 const_type_names.erase(type_name); 6126 } 6127 } 6128 6129 bool Process::RouteAsyncStructuredData( 6130 const StructuredData::ObjectSP object_sp) { 6131 // Nothing to do if there's no data. 6132 if (!object_sp) 6133 return false; 6134 6135 // The contract is this must be a dictionary, so we can look up the routing 6136 // key via the top-level 'type' string value within the dictionary. 6137 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 6138 if (!dictionary) 6139 return false; 6140 6141 // Grab the async structured type name (i.e. the feature/plugin name). 6142 ConstString type_name; 6143 if (!dictionary->GetValueForKeyAsString("type", type_name)) 6144 return false; 6145 6146 // Check if there's a plugin registered for this type name. 6147 auto find_it = m_structured_data_plugin_map.find(type_name); 6148 if (find_it == m_structured_data_plugin_map.end()) { 6149 // We don't have a mapping for this structured data type. 6150 return false; 6151 } 6152 6153 // Route the structured data to the plugin. 6154 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 6155 return true; 6156 } 6157 6158 Status Process::UpdateAutomaticSignalFiltering() { 6159 // Default implementation does nothign. 6160 // No automatic signal filtering to speak of. 6161 return Status(); 6162 } 6163 6164 UtilityFunction *Process::GetLoadImageUtilityFunction(Platform *platform) { 6165 if (platform != GetTarget().GetPlatform().get()) 6166 return nullptr; 6167 return m_dlopen_utility_func_up.get(); 6168 } 6169 6170 void Process::SetLoadImageUtilityFunction(std::unique_ptr<UtilityFunction> 6171 utility_func_up) { 6172 m_dlopen_utility_func_up.swap(utility_func_up); 6173 } 6174 6175