1 //===-- Process.cpp ---------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // C Includes 11 // C++ Includes 12 #include <atomic> 13 #include <mutex> 14 15 // Other libraries and framework includes 16 #include "llvm/Support/ScopedPrinter.h" 17 #include "llvm/Support/Threading.h" 18 19 // Project includes 20 #include "Plugins/Process/Utility/InferiorCallPOSIX.h" 21 #include "lldb/Breakpoint/BreakpointLocation.h" 22 #include "lldb/Breakpoint/StoppointCallbackContext.h" 23 #include "lldb/Core/Debugger.h" 24 #include "lldb/Core/Event.h" 25 #include "lldb/Core/Module.h" 26 #include "lldb/Core/ModuleSpec.h" 27 #include "lldb/Core/PluginManager.h" 28 #include "lldb/Core/State.h" 29 #include "lldb/Core/StreamFile.h" 30 #include "lldb/Expression/DiagnosticManager.h" 31 #include "lldb/Expression/IRDynamicChecks.h" 32 #include "lldb/Expression/UserExpression.h" 33 #include "lldb/Host/ConnectionFileDescriptor.h" 34 #include "lldb/Host/FileSystem.h" 35 #include "lldb/Host/Host.h" 36 #include "lldb/Host/HostInfo.h" 37 #include "lldb/Host/OptionParser.h" 38 #include "lldb/Host/Pipe.h" 39 #include "lldb/Host/Terminal.h" 40 #include "lldb/Host/ThreadLauncher.h" 41 #include "lldb/Interpreter/CommandInterpreter.h" 42 #include "lldb/Interpreter/OptionValueProperties.h" 43 #include "lldb/Symbol/Function.h" 44 #include "lldb/Symbol/Symbol.h" 45 #include "lldb/Target/ABI.h" 46 #include "lldb/Target/CPPLanguageRuntime.h" 47 #include "lldb/Target/DynamicLoader.h" 48 #include "lldb/Target/InstrumentationRuntime.h" 49 #include "lldb/Target/JITLoader.h" 50 #include "lldb/Target/JITLoaderList.h" 51 #include "lldb/Target/LanguageRuntime.h" 52 #include "lldb/Target/MemoryHistory.h" 53 #include "lldb/Target/MemoryRegionInfo.h" 54 #include "lldb/Target/ObjCLanguageRuntime.h" 55 #include "lldb/Target/OperatingSystem.h" 56 #include "lldb/Target/Platform.h" 57 #include "lldb/Target/Process.h" 58 #include "lldb/Target/RegisterContext.h" 59 #include "lldb/Target/StopInfo.h" 60 #include "lldb/Target/StructuredDataPlugin.h" 61 #include "lldb/Target/SystemRuntime.h" 62 #include "lldb/Target/Target.h" 63 #include "lldb/Target/TargetList.h" 64 #include "lldb/Target/Thread.h" 65 #include "lldb/Target/ThreadPlan.h" 66 #include "lldb/Target/ThreadPlanBase.h" 67 #include "lldb/Target/UnixSignals.h" 68 #include "lldb/Utility/Log.h" 69 #include "lldb/Utility/NameMatches.h" 70 #include "lldb/Utility/SelectHelper.h" 71 72 using namespace lldb; 73 using namespace lldb_private; 74 using namespace std::chrono; 75 76 // Comment out line below to disable memory caching, overriding the process 77 // setting target.process.disable-memory-cache 78 #define ENABLE_MEMORY_CACHING 79 80 #ifdef ENABLE_MEMORY_CACHING 81 #define DISABLE_MEM_CACHE_DEFAULT false 82 #else 83 #define DISABLE_MEM_CACHE_DEFAULT true 84 #endif 85 86 class ProcessOptionValueProperties : public OptionValueProperties { 87 public: 88 ProcessOptionValueProperties(const ConstString &name) 89 : OptionValueProperties(name) {} 90 91 // This constructor is used when creating ProcessOptionValueProperties when it 92 // is part of a new lldb_private::Process instance. It will copy all current 93 // global property values as needed 94 ProcessOptionValueProperties(ProcessProperties *global_properties) 95 : OptionValueProperties(*global_properties->GetValueProperties()) {} 96 97 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 98 bool will_modify, 99 uint32_t idx) const override { 100 // When getting the value for a key from the process options, we will always 101 // try and grab the setting from the current process if there is one. Else 102 // we just 103 // use the one from this instance. 104 if (exe_ctx) { 105 Process *process = exe_ctx->GetProcessPtr(); 106 if (process) { 107 ProcessOptionValueProperties *instance_properties = 108 static_cast<ProcessOptionValueProperties *>( 109 process->GetValueProperties().get()); 110 if (this != instance_properties) 111 return instance_properties->ProtectedGetPropertyAtIndex(idx); 112 } 113 } 114 return ProtectedGetPropertyAtIndex(idx); 115 } 116 }; 117 118 static PropertyDefinition g_properties[] = { 119 {"disable-memory-cache", OptionValue::eTypeBoolean, false, 120 DISABLE_MEM_CACHE_DEFAULT, nullptr, nullptr, 121 "Disable reading and caching of memory in fixed-size units."}, 122 {"extra-startup-command", OptionValue::eTypeArray, false, 123 OptionValue::eTypeString, nullptr, nullptr, 124 "A list containing extra commands understood by the particular process " 125 "plugin used. " 126 "For instance, to turn on debugserver logging set this to " 127 "\"QSetLogging:bitmask=LOG_DEFAULT;\""}, 128 {"ignore-breakpoints-in-expressions", OptionValue::eTypeBoolean, true, true, 129 nullptr, nullptr, 130 "If true, breakpoints will be ignored during expression evaluation."}, 131 {"unwind-on-error-in-expressions", OptionValue::eTypeBoolean, true, true, 132 nullptr, nullptr, "If true, errors in expression evaluation will unwind " 133 "the stack back to the state before the call."}, 134 {"python-os-plugin-path", OptionValue::eTypeFileSpec, false, true, nullptr, 135 nullptr, "A path to a python OS plug-in module file that contains a " 136 "OperatingSystemPlugIn class."}, 137 {"stop-on-sharedlibrary-events", OptionValue::eTypeBoolean, true, false, 138 nullptr, nullptr, 139 "If true, stop when a shared library is loaded or unloaded."}, 140 {"detach-keeps-stopped", OptionValue::eTypeBoolean, true, false, nullptr, 141 nullptr, "If true, detach will attempt to keep the process stopped."}, 142 {"memory-cache-line-size", OptionValue::eTypeUInt64, false, 512, nullptr, 143 nullptr, "The memory cache line size"}, 144 {"optimization-warnings", OptionValue::eTypeBoolean, false, true, nullptr, 145 nullptr, "If true, warn when stopped in code that is optimized where " 146 "stepping and variable availability may not behave as expected."}, 147 {nullptr, OptionValue::eTypeInvalid, false, 0, nullptr, nullptr, nullptr}}; 148 149 enum { 150 ePropertyDisableMemCache, 151 ePropertyExtraStartCommand, 152 ePropertyIgnoreBreakpointsInExpressions, 153 ePropertyUnwindOnErrorInExpressions, 154 ePropertyPythonOSPluginPath, 155 ePropertyStopOnSharedLibraryEvents, 156 ePropertyDetachKeepsStopped, 157 ePropertyMemCacheLineSize, 158 ePropertyWarningOptimization 159 }; 160 161 ProcessProperties::ProcessProperties(lldb_private::Process *process) 162 : Properties(), 163 m_process(process) // Can be nullptr for global ProcessProperties 164 { 165 if (process == nullptr) { 166 // Global process properties, set them up one time 167 m_collection_sp.reset( 168 new ProcessOptionValueProperties(ConstString("process"))); 169 m_collection_sp->Initialize(g_properties); 170 m_collection_sp->AppendProperty( 171 ConstString("thread"), ConstString("Settings specific to threads."), 172 true, Thread::GetGlobalProperties()->GetValueProperties()); 173 } else { 174 m_collection_sp.reset( 175 new ProcessOptionValueProperties(Process::GetGlobalProperties().get())); 176 m_collection_sp->SetValueChangedCallback( 177 ePropertyPythonOSPluginPath, 178 ProcessProperties::OptionValueChangedCallback, this); 179 } 180 } 181 182 ProcessProperties::~ProcessProperties() = default; 183 184 void ProcessProperties::OptionValueChangedCallback(void *baton, 185 OptionValue *option_value) { 186 ProcessProperties *properties = (ProcessProperties *)baton; 187 if (properties->m_process) 188 properties->m_process->LoadOperatingSystemPlugin(true); 189 } 190 191 bool ProcessProperties::GetDisableMemoryCache() const { 192 const uint32_t idx = ePropertyDisableMemCache; 193 return m_collection_sp->GetPropertyAtIndexAsBoolean( 194 nullptr, idx, g_properties[idx].default_uint_value != 0); 195 } 196 197 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 198 const uint32_t idx = ePropertyMemCacheLineSize; 199 return m_collection_sp->GetPropertyAtIndexAsUInt64( 200 nullptr, idx, g_properties[idx].default_uint_value); 201 } 202 203 Args ProcessProperties::GetExtraStartupCommands() const { 204 Args args; 205 const uint32_t idx = ePropertyExtraStartCommand; 206 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 207 return args; 208 } 209 210 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 211 const uint32_t idx = ePropertyExtraStartCommand; 212 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 213 } 214 215 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 216 const uint32_t idx = ePropertyPythonOSPluginPath; 217 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 218 } 219 220 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 221 const uint32_t idx = ePropertyPythonOSPluginPath; 222 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 223 } 224 225 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 226 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 227 return m_collection_sp->GetPropertyAtIndexAsBoolean( 228 nullptr, idx, g_properties[idx].default_uint_value != 0); 229 } 230 231 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 232 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 233 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 234 } 235 236 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 237 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 238 return m_collection_sp->GetPropertyAtIndexAsBoolean( 239 nullptr, idx, g_properties[idx].default_uint_value != 0); 240 } 241 242 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 243 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 244 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 245 } 246 247 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 248 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 249 return m_collection_sp->GetPropertyAtIndexAsBoolean( 250 nullptr, idx, g_properties[idx].default_uint_value != 0); 251 } 252 253 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 254 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 255 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 256 } 257 258 bool ProcessProperties::GetDetachKeepsStopped() const { 259 const uint32_t idx = ePropertyDetachKeepsStopped; 260 return m_collection_sp->GetPropertyAtIndexAsBoolean( 261 nullptr, idx, g_properties[idx].default_uint_value != 0); 262 } 263 264 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 265 const uint32_t idx = ePropertyDetachKeepsStopped; 266 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 267 } 268 269 bool ProcessProperties::GetWarningsOptimization() const { 270 const uint32_t idx = ePropertyWarningOptimization; 271 return m_collection_sp->GetPropertyAtIndexAsBoolean( 272 nullptr, idx, g_properties[idx].default_uint_value != 0); 273 } 274 275 void ProcessInstanceInfo::Dump(Stream &s, Platform *platform) const { 276 const char *cstr; 277 if (m_pid != LLDB_INVALID_PROCESS_ID) 278 s.Printf(" pid = %" PRIu64 "\n", m_pid); 279 280 if (m_parent_pid != LLDB_INVALID_PROCESS_ID) 281 s.Printf(" parent = %" PRIu64 "\n", m_parent_pid); 282 283 if (m_executable) { 284 s.Printf(" name = %s\n", m_executable.GetFilename().GetCString()); 285 s.PutCString(" file = "); 286 m_executable.Dump(&s); 287 s.EOL(); 288 } 289 const uint32_t argc = m_arguments.GetArgumentCount(); 290 if (argc > 0) { 291 for (uint32_t i = 0; i < argc; i++) { 292 const char *arg = m_arguments.GetArgumentAtIndex(i); 293 if (i < 10) 294 s.Printf(" arg[%u] = %s\n", i, arg); 295 else 296 s.Printf("arg[%u] = %s\n", i, arg); 297 } 298 } 299 300 const uint32_t envc = m_environment.GetArgumentCount(); 301 if (envc > 0) { 302 for (uint32_t i = 0; i < envc; i++) { 303 const char *env = m_environment.GetArgumentAtIndex(i); 304 if (i < 10) 305 s.Printf(" env[%u] = %s\n", i, env); 306 else 307 s.Printf("env[%u] = %s\n", i, env); 308 } 309 } 310 311 if (m_arch.IsValid()) { 312 s.Printf(" arch = "); 313 m_arch.DumpTriple(s); 314 s.EOL(); 315 } 316 317 if (m_uid != UINT32_MAX) { 318 cstr = platform->GetUserName(m_uid); 319 s.Printf(" uid = %-5u (%s)\n", m_uid, cstr ? cstr : ""); 320 } 321 if (m_gid != UINT32_MAX) { 322 cstr = platform->GetGroupName(m_gid); 323 s.Printf(" gid = %-5u (%s)\n", m_gid, cstr ? cstr : ""); 324 } 325 if (m_euid != UINT32_MAX) { 326 cstr = platform->GetUserName(m_euid); 327 s.Printf(" euid = %-5u (%s)\n", m_euid, cstr ? cstr : ""); 328 } 329 if (m_egid != UINT32_MAX) { 330 cstr = platform->GetGroupName(m_egid); 331 s.Printf(" egid = %-5u (%s)\n", m_egid, cstr ? cstr : ""); 332 } 333 } 334 335 void ProcessInstanceInfo::DumpTableHeader(Stream &s, Platform *platform, 336 bool show_args, bool verbose) { 337 const char *label; 338 if (show_args || verbose) 339 label = "ARGUMENTS"; 340 else 341 label = "NAME"; 342 343 if (verbose) { 344 s.Printf("PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE " 345 " %s\n", 346 label); 347 s.PutCString("====== ====== ========== ========== ========== ========== " 348 "======================== ============================\n"); 349 } else { 350 s.Printf("PID PARENT USER TRIPLE %s\n", label); 351 s.PutCString("====== ====== ========== ======================== " 352 "============================\n"); 353 } 354 } 355 356 void ProcessInstanceInfo::DumpAsTableRow(Stream &s, Platform *platform, 357 bool show_args, bool verbose) const { 358 if (m_pid != LLDB_INVALID_PROCESS_ID) { 359 const char *cstr; 360 s.Printf("%-6" PRIu64 " %-6" PRIu64 " ", m_pid, m_parent_pid); 361 362 StreamString arch_strm; 363 if (m_arch.IsValid()) 364 m_arch.DumpTriple(arch_strm); 365 366 if (verbose) { 367 cstr = platform->GetUserName(m_uid); 368 if (cstr && 369 cstr[0]) // Watch for empty string that indicates lookup failed 370 s.Printf("%-10s ", cstr); 371 else 372 s.Printf("%-10u ", m_uid); 373 374 cstr = platform->GetGroupName(m_gid); 375 if (cstr && 376 cstr[0]) // Watch for empty string that indicates lookup failed 377 s.Printf("%-10s ", cstr); 378 else 379 s.Printf("%-10u ", m_gid); 380 381 cstr = platform->GetUserName(m_euid); 382 if (cstr && 383 cstr[0]) // Watch for empty string that indicates lookup failed 384 s.Printf("%-10s ", cstr); 385 else 386 s.Printf("%-10u ", m_euid); 387 388 cstr = platform->GetGroupName(m_egid); 389 if (cstr && 390 cstr[0]) // Watch for empty string that indicates lookup failed 391 s.Printf("%-10s ", cstr); 392 else 393 s.Printf("%-10u ", m_egid); 394 395 s.Printf("%-24s ", arch_strm.GetData()); 396 } else { 397 s.Printf("%-10s %-24s ", platform->GetUserName(m_euid), 398 arch_strm.GetData()); 399 } 400 401 if (verbose || show_args) { 402 const uint32_t argc = m_arguments.GetArgumentCount(); 403 if (argc > 0) { 404 for (uint32_t i = 0; i < argc; i++) { 405 if (i > 0) 406 s.PutChar(' '); 407 s.PutCString(m_arguments.GetArgumentAtIndex(i)); 408 } 409 } 410 } else { 411 s.PutCString(GetName()); 412 } 413 414 s.EOL(); 415 } 416 } 417 418 Error ProcessLaunchCommandOptions::SetOptionValue( 419 uint32_t option_idx, llvm::StringRef option_arg, 420 ExecutionContext *execution_context) { 421 Error error; 422 const int short_option = m_getopt_table[option_idx].val; 423 424 switch (short_option) { 425 case 's': // Stop at program entry point 426 launch_info.GetFlags().Set(eLaunchFlagStopAtEntry); 427 break; 428 429 case 'i': // STDIN for read only 430 { 431 FileAction action; 432 if (action.Open(STDIN_FILENO, FileSpec{option_arg, false}, true, false)) 433 launch_info.AppendFileAction(action); 434 break; 435 } 436 437 case 'o': // Open STDOUT for write only 438 { 439 FileAction action; 440 if (action.Open(STDOUT_FILENO, FileSpec{option_arg, false}, false, true)) 441 launch_info.AppendFileAction(action); 442 break; 443 } 444 445 case 'e': // STDERR for write only 446 { 447 FileAction action; 448 if (action.Open(STDERR_FILENO, FileSpec{option_arg, false}, false, true)) 449 launch_info.AppendFileAction(action); 450 break; 451 } 452 453 case 'p': // Process plug-in name 454 launch_info.SetProcessPluginName(option_arg); 455 break; 456 457 case 'n': // Disable STDIO 458 { 459 FileAction action; 460 const FileSpec dev_null{FileSystem::DEV_NULL, false}; 461 if (action.Open(STDIN_FILENO, dev_null, true, false)) 462 launch_info.AppendFileAction(action); 463 if (action.Open(STDOUT_FILENO, dev_null, false, true)) 464 launch_info.AppendFileAction(action); 465 if (action.Open(STDERR_FILENO, dev_null, false, true)) 466 launch_info.AppendFileAction(action); 467 break; 468 } 469 470 case 'w': 471 launch_info.SetWorkingDirectory(FileSpec{option_arg, false}); 472 break; 473 474 case 't': // Open process in new terminal window 475 launch_info.GetFlags().Set(eLaunchFlagLaunchInTTY); 476 break; 477 478 case 'a': { 479 TargetSP target_sp = 480 execution_context ? execution_context->GetTargetSP() : TargetSP(); 481 PlatformSP platform_sp = 482 target_sp ? target_sp->GetPlatform() : PlatformSP(); 483 if (!launch_info.GetArchitecture().SetTriple(option_arg, platform_sp.get())) 484 launch_info.GetArchitecture().SetTriple(option_arg); 485 } break; 486 487 case 'A': // Disable ASLR. 488 { 489 bool success; 490 const bool disable_aslr_arg = 491 Args::StringToBoolean(option_arg, true, &success); 492 if (success) 493 disable_aslr = disable_aslr_arg ? eLazyBoolYes : eLazyBoolNo; 494 else 495 error.SetErrorStringWithFormat( 496 "Invalid boolean value for disable-aslr option: '%s'", 497 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 498 break; 499 } 500 501 case 'X': // shell expand args. 502 { 503 bool success; 504 const bool expand_args = Args::StringToBoolean(option_arg, true, &success); 505 if (success) 506 launch_info.SetShellExpandArguments(expand_args); 507 else 508 error.SetErrorStringWithFormat( 509 "Invalid boolean value for shell-expand-args option: '%s'", 510 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 511 break; 512 } 513 514 case 'c': 515 if (!option_arg.empty()) 516 launch_info.SetShell(FileSpec(option_arg, false)); 517 else 518 launch_info.SetShell(HostInfo::GetDefaultShell()); 519 break; 520 521 case 'v': 522 launch_info.GetEnvironmentEntries().AppendArgument(option_arg); 523 break; 524 525 default: 526 error.SetErrorStringWithFormat("unrecognized short option character '%c'", 527 short_option); 528 break; 529 } 530 return error; 531 } 532 533 static OptionDefinition g_process_launch_options[] = { 534 {LLDB_OPT_SET_ALL, false, "stop-at-entry", 's', OptionParser::eNoArgument, 535 nullptr, nullptr, 0, eArgTypeNone, 536 "Stop at the entry point of the program when launching a process."}, 537 {LLDB_OPT_SET_ALL, false, "disable-aslr", 'A', 538 OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeBoolean, 539 "Set whether to disable address space layout randomization when launching " 540 "a process."}, 541 {LLDB_OPT_SET_ALL, false, "plugin", 'p', OptionParser::eRequiredArgument, 542 nullptr, nullptr, 0, eArgTypePlugin, 543 "Name of the process plugin you want to use."}, 544 {LLDB_OPT_SET_ALL, false, "working-dir", 'w', 545 OptionParser::eRequiredArgument, nullptr, nullptr, 0, 546 eArgTypeDirectoryName, 547 "Set the current working directory to <path> when running the inferior."}, 548 {LLDB_OPT_SET_ALL, false, "arch", 'a', OptionParser::eRequiredArgument, 549 nullptr, nullptr, 0, eArgTypeArchitecture, 550 "Set the architecture for the process to launch when ambiguous."}, 551 {LLDB_OPT_SET_ALL, false, "environment", 'v', 552 OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeNone, 553 "Specify an environment variable name/value string (--environment " 554 "NAME=VALUE). Can be specified multiple times for subsequent environment " 555 "entries."}, 556 {LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3, false, "shell", 'c', 557 OptionParser::eOptionalArgument, nullptr, nullptr, 0, eArgTypeFilename, 558 "Run the process in a shell (not supported on all platforms)."}, 559 560 {LLDB_OPT_SET_1, false, "stdin", 'i', OptionParser::eRequiredArgument, 561 nullptr, nullptr, 0, eArgTypeFilename, 562 "Redirect stdin for the process to <filename>."}, 563 {LLDB_OPT_SET_1, false, "stdout", 'o', OptionParser::eRequiredArgument, 564 nullptr, nullptr, 0, eArgTypeFilename, 565 "Redirect stdout for the process to <filename>."}, 566 {LLDB_OPT_SET_1, false, "stderr", 'e', OptionParser::eRequiredArgument, 567 nullptr, nullptr, 0, eArgTypeFilename, 568 "Redirect stderr for the process to <filename>."}, 569 570 {LLDB_OPT_SET_2, false, "tty", 't', OptionParser::eNoArgument, nullptr, 571 nullptr, 0, eArgTypeNone, 572 "Start the process in a terminal (not supported on all platforms)."}, 573 574 {LLDB_OPT_SET_3, false, "no-stdio", 'n', OptionParser::eNoArgument, nullptr, 575 nullptr, 0, eArgTypeNone, 576 "Do not set up for terminal I/O to go to running process."}, 577 {LLDB_OPT_SET_4, false, "shell-expand-args", 'X', 578 OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeBoolean, 579 "Set whether to shell expand arguments to the process when launching."}, 580 }; 581 582 llvm::ArrayRef<OptionDefinition> ProcessLaunchCommandOptions::GetDefinitions() { 583 return llvm::makeArrayRef(g_process_launch_options); 584 } 585 586 bool ProcessInstanceInfoMatch::NameMatches(const char *process_name) const { 587 if (m_name_match_type == NameMatch::Ignore || process_name == nullptr) 588 return true; 589 const char *match_name = m_match_info.GetName(); 590 if (!match_name) 591 return true; 592 593 return lldb_private::NameMatches(process_name, m_name_match_type, match_name); 594 } 595 596 bool ProcessInstanceInfoMatch::Matches( 597 const ProcessInstanceInfo &proc_info) const { 598 if (!NameMatches(proc_info.GetName())) 599 return false; 600 601 if (m_match_info.ProcessIDIsValid() && 602 m_match_info.GetProcessID() != proc_info.GetProcessID()) 603 return false; 604 605 if (m_match_info.ParentProcessIDIsValid() && 606 m_match_info.GetParentProcessID() != proc_info.GetParentProcessID()) 607 return false; 608 609 if (m_match_info.UserIDIsValid() && 610 m_match_info.GetUserID() != proc_info.GetUserID()) 611 return false; 612 613 if (m_match_info.GroupIDIsValid() && 614 m_match_info.GetGroupID() != proc_info.GetGroupID()) 615 return false; 616 617 if (m_match_info.EffectiveUserIDIsValid() && 618 m_match_info.GetEffectiveUserID() != proc_info.GetEffectiveUserID()) 619 return false; 620 621 if (m_match_info.EffectiveGroupIDIsValid() && 622 m_match_info.GetEffectiveGroupID() != proc_info.GetEffectiveGroupID()) 623 return false; 624 625 if (m_match_info.GetArchitecture().IsValid() && 626 !m_match_info.GetArchitecture().IsCompatibleMatch( 627 proc_info.GetArchitecture())) 628 return false; 629 return true; 630 } 631 632 bool ProcessInstanceInfoMatch::MatchAllProcesses() const { 633 if (m_name_match_type != NameMatch::Ignore) 634 return false; 635 636 if (m_match_info.ProcessIDIsValid()) 637 return false; 638 639 if (m_match_info.ParentProcessIDIsValid()) 640 return false; 641 642 if (m_match_info.UserIDIsValid()) 643 return false; 644 645 if (m_match_info.GroupIDIsValid()) 646 return false; 647 648 if (m_match_info.EffectiveUserIDIsValid()) 649 return false; 650 651 if (m_match_info.EffectiveGroupIDIsValid()) 652 return false; 653 654 if (m_match_info.GetArchitecture().IsValid()) 655 return false; 656 657 if (m_match_all_users) 658 return false; 659 660 return true; 661 } 662 663 void ProcessInstanceInfoMatch::Clear() { 664 m_match_info.Clear(); 665 m_name_match_type = NameMatch::Ignore; 666 m_match_all_users = false; 667 } 668 669 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 670 llvm::StringRef plugin_name, 671 ListenerSP listener_sp, 672 const FileSpec *crash_file_path) { 673 static uint32_t g_process_unique_id = 0; 674 675 ProcessSP process_sp; 676 ProcessCreateInstance create_callback = nullptr; 677 if (!plugin_name.empty()) { 678 ConstString const_plugin_name(plugin_name); 679 create_callback = 680 PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name); 681 if (create_callback) { 682 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 683 if (process_sp) { 684 if (process_sp->CanDebug(target_sp, true)) { 685 process_sp->m_process_unique_id = ++g_process_unique_id; 686 } else 687 process_sp.reset(); 688 } 689 } 690 } else { 691 for (uint32_t idx = 0; 692 (create_callback = 693 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 694 ++idx) { 695 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 696 if (process_sp) { 697 if (process_sp->CanDebug(target_sp, false)) { 698 process_sp->m_process_unique_id = ++g_process_unique_id; 699 break; 700 } else 701 process_sp.reset(); 702 } 703 } 704 } 705 return process_sp; 706 } 707 708 ConstString &Process::GetStaticBroadcasterClass() { 709 static ConstString class_name("lldb.process"); 710 return class_name; 711 } 712 713 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 714 : Process(target_sp, listener_sp, 715 UnixSignals::Create(HostInfo::GetArchitecture())) { 716 // This constructor just delegates to the full Process constructor, 717 // defaulting to using the Host's UnixSignals. 718 } 719 720 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 721 const UnixSignalsSP &unix_signals_sp) 722 : ProcessProperties(this), UserID(LLDB_INVALID_PROCESS_ID), 723 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 724 Process::GetStaticBroadcasterClass().AsCString()), 725 m_target_sp(target_sp), m_public_state(eStateUnloaded), 726 m_private_state(eStateUnloaded), 727 m_private_state_broadcaster(nullptr, 728 "lldb.process.internal_state_broadcaster"), 729 m_private_state_control_broadcaster( 730 nullptr, "lldb.process.internal_state_control_broadcaster"), 731 m_private_state_listener_sp( 732 Listener::MakeListener("lldb.process.internal_state_listener")), 733 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 734 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 735 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 736 m_thread_list(this), m_extended_thread_list(this), 737 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 738 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 739 m_breakpoint_site_list(), m_dynamic_checkers_ap(), 740 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 741 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 742 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 743 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 744 m_memory_cache(*this), m_allocated_memory_cache(*this), 745 m_should_detach(false), m_next_event_action_ap(), m_public_run_lock(), 746 m_private_run_lock(), m_stop_info_override_callback(nullptr), 747 m_finalizing(false), m_finalize_called(false), 748 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 749 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 750 m_can_interpret_function_calls(false), m_warnings_issued(), 751 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 752 CheckInWithManager(); 753 754 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 755 if (log) 756 log->Printf("%p Process::Process()", static_cast<void *>(this)); 757 758 if (!m_unix_signals_sp) 759 m_unix_signals_sp = std::make_shared<UnixSignals>(); 760 761 SetEventName(eBroadcastBitStateChanged, "state-changed"); 762 SetEventName(eBroadcastBitInterrupt, "interrupt"); 763 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 764 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 765 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 766 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 767 768 m_private_state_control_broadcaster.SetEventName( 769 eBroadcastInternalStateControlStop, "control-stop"); 770 m_private_state_control_broadcaster.SetEventName( 771 eBroadcastInternalStateControlPause, "control-pause"); 772 m_private_state_control_broadcaster.SetEventName( 773 eBroadcastInternalStateControlResume, "control-resume"); 774 775 m_listener_sp->StartListeningForEvents( 776 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 777 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 778 eBroadcastBitProfileData | eBroadcastBitStructuredData); 779 780 m_private_state_listener_sp->StartListeningForEvents( 781 &m_private_state_broadcaster, 782 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 783 784 m_private_state_listener_sp->StartListeningForEvents( 785 &m_private_state_control_broadcaster, 786 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 787 eBroadcastInternalStateControlResume); 788 // We need something valid here, even if just the default UnixSignalsSP. 789 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 790 791 // Allow the platform to override the default cache line size 792 OptionValueSP value_sp = 793 m_collection_sp 794 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 795 ->GetValue(); 796 uint32_t platform_cache_line_size = 797 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 798 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 799 value_sp->SetUInt64Value(platform_cache_line_size); 800 } 801 802 Process::~Process() { 803 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 804 if (log) 805 log->Printf("%p Process::~Process()", static_cast<void *>(this)); 806 StopPrivateStateThread(); 807 808 // ThreadList::Clear() will try to acquire this process's mutex, so 809 // explicitly clear the thread list here to ensure that the mutex 810 // is not destroyed before the thread list. 811 m_thread_list.Clear(); 812 } 813 814 const ProcessPropertiesSP &Process::GetGlobalProperties() { 815 // NOTE: intentional leak so we don't crash if global destructor chain gets 816 // called as other threads still use the result of this function 817 static ProcessPropertiesSP *g_settings_sp_ptr = 818 new ProcessPropertiesSP(new ProcessProperties(nullptr)); 819 return *g_settings_sp_ptr; 820 } 821 822 void Process::Finalize() { 823 m_finalizing = true; 824 825 // Destroy this process if needed 826 switch (GetPrivateState()) { 827 case eStateConnected: 828 case eStateAttaching: 829 case eStateLaunching: 830 case eStateStopped: 831 case eStateRunning: 832 case eStateStepping: 833 case eStateCrashed: 834 case eStateSuspended: 835 Destroy(false); 836 break; 837 838 case eStateInvalid: 839 case eStateUnloaded: 840 case eStateDetached: 841 case eStateExited: 842 break; 843 } 844 845 // Clear our broadcaster before we proceed with destroying 846 Broadcaster::Clear(); 847 848 // Do any cleanup needed prior to being destructed... Subclasses 849 // that override this method should call this superclass method as well. 850 851 // We need to destroy the loader before the derived Process class gets 852 // destroyed 853 // since it is very likely that undoing the loader will require access to the 854 // real process. 855 m_dynamic_checkers_ap.reset(); 856 m_abi_sp.reset(); 857 m_os_ap.reset(); 858 m_system_runtime_ap.reset(); 859 m_dyld_ap.reset(); 860 m_jit_loaders_ap.reset(); 861 m_thread_list_real.Destroy(); 862 m_thread_list.Destroy(); 863 m_extended_thread_list.Destroy(); 864 m_queue_list.Clear(); 865 m_queue_list_stop_id = 0; 866 std::vector<Notifications> empty_notifications; 867 m_notifications.swap(empty_notifications); 868 m_image_tokens.clear(); 869 m_memory_cache.Clear(); 870 m_allocated_memory_cache.Clear(); 871 m_language_runtimes.clear(); 872 m_instrumentation_runtimes.clear(); 873 m_next_event_action_ap.reset(); 874 m_stop_info_override_callback = nullptr; 875 // Clear the last natural stop ID since it has a strong 876 // reference to this process 877 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 878 //#ifdef LLDB_CONFIGURATION_DEBUG 879 // StreamFile s(stdout, false); 880 // EventSP event_sp; 881 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 882 // { 883 // event_sp->Dump (&s); 884 // s.EOL(); 885 // } 886 //#endif 887 // We have to be very careful here as the m_private_state_listener might 888 // contain events that have ProcessSP values in them which can keep this 889 // process around forever. These events need to be cleared out. 890 m_private_state_listener_sp->Clear(); 891 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 892 m_public_run_lock.SetStopped(); 893 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 894 m_private_run_lock.SetStopped(); 895 m_structured_data_plugin_map.clear(); 896 m_finalize_called = true; 897 } 898 899 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 900 m_notifications.push_back(callbacks); 901 if (callbacks.initialize != nullptr) 902 callbacks.initialize(callbacks.baton, this); 903 } 904 905 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 906 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 907 for (pos = m_notifications.begin(); pos != end; ++pos) { 908 if (pos->baton == callbacks.baton && 909 pos->initialize == callbacks.initialize && 910 pos->process_state_changed == callbacks.process_state_changed) { 911 m_notifications.erase(pos); 912 return true; 913 } 914 } 915 return false; 916 } 917 918 void Process::SynchronouslyNotifyStateChanged(StateType state) { 919 std::vector<Notifications>::iterator notification_pos, 920 notification_end = m_notifications.end(); 921 for (notification_pos = m_notifications.begin(); 922 notification_pos != notification_end; ++notification_pos) { 923 if (notification_pos->process_state_changed) 924 notification_pos->process_state_changed(notification_pos->baton, this, 925 state); 926 } 927 } 928 929 // FIXME: We need to do some work on events before the general Listener sees 930 // them. 931 // For instance if we are continuing from a breakpoint, we need to ensure that 932 // we do 933 // the little "insert real insn, step & stop" trick. But we can't do that when 934 // the 935 // event is delivered by the broadcaster - since that is done on the thread that 936 // is 937 // waiting for new events, so if we needed more than one event for our handling, 938 // we would 939 // stall. So instead we do it when we fetch the event off of the queue. 940 // 941 942 StateType Process::GetNextEvent(EventSP &event_sp) { 943 StateType state = eStateInvalid; 944 945 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 946 std::chrono::seconds(0)) && 947 event_sp) 948 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 949 950 return state; 951 } 952 953 void Process::SyncIOHandler(uint32_t iohandler_id, uint64_t timeout_msec) { 954 // don't sync (potentially context switch) in case where there is no process 955 // IO 956 if (!m_process_input_reader) 957 return; 958 959 uint32_t new_iohandler_id = 0; 960 m_iohandler_sync.WaitForValueNotEqualTo( 961 iohandler_id, new_iohandler_id, std::chrono::milliseconds(timeout_msec)); 962 963 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 964 if (log) 965 log->Printf("Process::%s waited for m_iohandler_sync to change from %u, " 966 "new value is %u", 967 __FUNCTION__, iohandler_id, new_iohandler_id); 968 } 969 970 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 971 EventSP *event_sp_ptr, bool wait_always, 972 ListenerSP hijack_listener_sp, 973 Stream *stream, bool use_run_lock) { 974 // We can't just wait for a "stopped" event, because the stopped event may 975 // have restarted the target. 976 // We have to actually check each event, and in the case of a stopped event 977 // check the restarted flag 978 // on the event. 979 if (event_sp_ptr) 980 event_sp_ptr->reset(); 981 StateType state = GetState(); 982 // If we are exited or detached, we won't ever get back to any 983 // other valid state... 984 if (state == eStateDetached || state == eStateExited) 985 return state; 986 987 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 988 LLDB_LOG(log, "timeout = {0}", timeout); 989 990 if (!wait_always && StateIsStoppedState(state, true) && 991 StateIsStoppedState(GetPrivateState(), true)) { 992 if (log) 993 log->Printf("Process::%s returning without waiting for events; process " 994 "private and public states are already 'stopped'.", 995 __FUNCTION__); 996 // We need to toggle the run lock as this won't get done in 997 // SetPublicState() if the process is hijacked. 998 if (hijack_listener_sp && use_run_lock) 999 m_public_run_lock.SetStopped(); 1000 return state; 1001 } 1002 1003 while (state != eStateInvalid) { 1004 EventSP event_sp; 1005 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 1006 if (event_sp_ptr && event_sp) 1007 *event_sp_ptr = event_sp; 1008 1009 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 1010 Process::HandleProcessStateChangedEvent(event_sp, stream, 1011 pop_process_io_handler); 1012 1013 switch (state) { 1014 case eStateCrashed: 1015 case eStateDetached: 1016 case eStateExited: 1017 case eStateUnloaded: 1018 // We need to toggle the run lock as this won't get done in 1019 // SetPublicState() if the process is hijacked. 1020 if (hijack_listener_sp && use_run_lock) 1021 m_public_run_lock.SetStopped(); 1022 return state; 1023 case eStateStopped: 1024 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 1025 continue; 1026 else { 1027 // We need to toggle the run lock as this won't get done in 1028 // SetPublicState() if the process is hijacked. 1029 if (hijack_listener_sp && use_run_lock) 1030 m_public_run_lock.SetStopped(); 1031 return state; 1032 } 1033 default: 1034 continue; 1035 } 1036 } 1037 return state; 1038 } 1039 1040 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 1041 Stream *stream, 1042 bool &pop_process_io_handler) { 1043 const bool handle_pop = pop_process_io_handler; 1044 1045 pop_process_io_handler = false; 1046 ProcessSP process_sp = 1047 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 1048 1049 if (!process_sp) 1050 return false; 1051 1052 StateType event_state = 1053 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1054 if (event_state == eStateInvalid) 1055 return false; 1056 1057 switch (event_state) { 1058 case eStateInvalid: 1059 case eStateUnloaded: 1060 case eStateAttaching: 1061 case eStateLaunching: 1062 case eStateStepping: 1063 case eStateDetached: 1064 if (stream) 1065 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 1066 StateAsCString(event_state)); 1067 if (event_state == eStateDetached) 1068 pop_process_io_handler = true; 1069 break; 1070 1071 case eStateConnected: 1072 case eStateRunning: 1073 // Don't be chatty when we run... 1074 break; 1075 1076 case eStateExited: 1077 if (stream) 1078 process_sp->GetStatus(*stream); 1079 pop_process_io_handler = true; 1080 break; 1081 1082 case eStateStopped: 1083 case eStateCrashed: 1084 case eStateSuspended: 1085 // Make sure the program hasn't been auto-restarted: 1086 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 1087 if (stream) { 1088 size_t num_reasons = 1089 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 1090 if (num_reasons > 0) { 1091 // FIXME: Do we want to report this, or would that just be annoyingly 1092 // chatty? 1093 if (num_reasons == 1) { 1094 const char *reason = 1095 Process::ProcessEventData::GetRestartedReasonAtIndex( 1096 event_sp.get(), 0); 1097 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 1098 process_sp->GetID(), 1099 reason ? reason : "<UNKNOWN REASON>"); 1100 } else { 1101 stream->Printf("Process %" PRIu64 1102 " stopped and restarted, reasons:\n", 1103 process_sp->GetID()); 1104 1105 for (size_t i = 0; i < num_reasons; i++) { 1106 const char *reason = 1107 Process::ProcessEventData::GetRestartedReasonAtIndex( 1108 event_sp.get(), i); 1109 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 1110 } 1111 } 1112 } 1113 } 1114 } else { 1115 StopInfoSP curr_thread_stop_info_sp; 1116 // Lock the thread list so it doesn't change on us, this is the scope for 1117 // the locker: 1118 { 1119 ThreadList &thread_list = process_sp->GetThreadList(); 1120 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 1121 1122 ThreadSP curr_thread(thread_list.GetSelectedThread()); 1123 ThreadSP thread; 1124 StopReason curr_thread_stop_reason = eStopReasonInvalid; 1125 if (curr_thread) { 1126 curr_thread_stop_reason = curr_thread->GetStopReason(); 1127 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 1128 } 1129 if (!curr_thread || !curr_thread->IsValid() || 1130 curr_thread_stop_reason == eStopReasonInvalid || 1131 curr_thread_stop_reason == eStopReasonNone) { 1132 // Prefer a thread that has just completed its plan over another 1133 // thread as current thread. 1134 ThreadSP plan_thread; 1135 ThreadSP other_thread; 1136 1137 const size_t num_threads = thread_list.GetSize(); 1138 size_t i; 1139 for (i = 0; i < num_threads; ++i) { 1140 thread = thread_list.GetThreadAtIndex(i); 1141 StopReason thread_stop_reason = thread->GetStopReason(); 1142 switch (thread_stop_reason) { 1143 case eStopReasonInvalid: 1144 case eStopReasonNone: 1145 break; 1146 1147 case eStopReasonSignal: { 1148 // Don't select a signal thread if we weren't going to stop at 1149 // that 1150 // signal. We have to have had another reason for stopping here, 1151 // and 1152 // the user doesn't want to see this thread. 1153 uint64_t signo = thread->GetStopInfo()->GetValue(); 1154 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 1155 if (!other_thread) 1156 other_thread = thread; 1157 } 1158 break; 1159 } 1160 case eStopReasonTrace: 1161 case eStopReasonBreakpoint: 1162 case eStopReasonWatchpoint: 1163 case eStopReasonException: 1164 case eStopReasonExec: 1165 case eStopReasonThreadExiting: 1166 case eStopReasonInstrumentation: 1167 if (!other_thread) 1168 other_thread = thread; 1169 break; 1170 case eStopReasonPlanComplete: 1171 if (!plan_thread) 1172 plan_thread = thread; 1173 break; 1174 } 1175 } 1176 if (plan_thread) 1177 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 1178 else if (other_thread) 1179 thread_list.SetSelectedThreadByID(other_thread->GetID()); 1180 else { 1181 if (curr_thread && curr_thread->IsValid()) 1182 thread = curr_thread; 1183 else 1184 thread = thread_list.GetThreadAtIndex(0); 1185 1186 if (thread) 1187 thread_list.SetSelectedThreadByID(thread->GetID()); 1188 } 1189 } 1190 } 1191 // Drop the ThreadList mutex by here, since GetThreadStatus below might 1192 // have to run code, 1193 // e.g. for Data formatters, and if we hold the ThreadList mutex, then the 1194 // process is going to 1195 // have a hard time restarting the process. 1196 if (stream) { 1197 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 1198 if (debugger.GetTargetList().GetSelectedTarget().get() == 1199 &process_sp->GetTarget()) { 1200 const bool only_threads_with_stop_reason = true; 1201 const uint32_t start_frame = 0; 1202 const uint32_t num_frames = 1; 1203 const uint32_t num_frames_with_source = 1; 1204 const bool stop_format = true; 1205 process_sp->GetStatus(*stream); 1206 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 1207 start_frame, num_frames, 1208 num_frames_with_source, 1209 stop_format); 1210 if (curr_thread_stop_info_sp) { 1211 lldb::addr_t crashing_address; 1212 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 1213 curr_thread_stop_info_sp, &crashing_address); 1214 if (valobj_sp) { 1215 const bool qualify_cxx_base_classes = false; 1216 1217 const ValueObject::GetExpressionPathFormat format = 1218 ValueObject::GetExpressionPathFormat:: 1219 eGetExpressionPathFormatHonorPointers; 1220 stream->PutCString("Likely cause: "); 1221 valobj_sp->GetExpressionPath(*stream, qualify_cxx_base_classes, 1222 format); 1223 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 1224 } 1225 } 1226 } else { 1227 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 1228 process_sp->GetTarget().shared_from_this()); 1229 if (target_idx != UINT32_MAX) 1230 stream->Printf("Target %d: (", target_idx); 1231 else 1232 stream->Printf("Target <unknown index>: ("); 1233 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 1234 stream->Printf(") stopped.\n"); 1235 } 1236 } 1237 1238 // Pop the process IO handler 1239 pop_process_io_handler = true; 1240 } 1241 break; 1242 } 1243 1244 if (handle_pop && pop_process_io_handler) 1245 process_sp->PopProcessIOHandler(); 1246 1247 return true; 1248 } 1249 1250 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 1251 if (listener_sp) { 1252 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 1253 eBroadcastBitInterrupt); 1254 } else 1255 return false; 1256 } 1257 1258 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 1259 1260 StateType Process::GetStateChangedEvents(EventSP &event_sp, 1261 const Timeout<std::micro> &timeout, 1262 ListenerSP hijack_listener_sp) { 1263 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1264 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1265 1266 ListenerSP listener_sp = hijack_listener_sp; 1267 if (!listener_sp) 1268 listener_sp = m_listener_sp; 1269 1270 StateType state = eStateInvalid; 1271 if (listener_sp->GetEventForBroadcasterWithType( 1272 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1273 timeout)) { 1274 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1275 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1276 else 1277 LLDB_LOG(log, "got no event or was interrupted."); 1278 } 1279 1280 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 1281 return state; 1282 } 1283 1284 Event *Process::PeekAtStateChangedEvents() { 1285 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1286 1287 if (log) 1288 log->Printf("Process::%s...", __FUNCTION__); 1289 1290 Event *event_ptr; 1291 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 1292 this, eBroadcastBitStateChanged); 1293 if (log) { 1294 if (event_ptr) { 1295 log->Printf( 1296 "Process::%s (event_ptr) => %s", __FUNCTION__, 1297 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 1298 } else { 1299 log->Printf("Process::%s no events found", __FUNCTION__); 1300 } 1301 } 1302 return event_ptr; 1303 } 1304 1305 StateType 1306 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 1307 const Timeout<std::micro> &timeout) { 1308 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1309 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1310 1311 StateType state = eStateInvalid; 1312 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1313 &m_private_state_broadcaster, 1314 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1315 timeout)) 1316 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1317 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1318 1319 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1320 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1321 return state; 1322 } 1323 1324 bool Process::GetEventsPrivate(EventSP &event_sp, 1325 const Timeout<std::micro> &timeout, 1326 bool control_only) { 1327 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1328 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1329 1330 if (control_only) 1331 return m_private_state_listener_sp->GetEventForBroadcaster( 1332 &m_private_state_control_broadcaster, event_sp, timeout); 1333 else 1334 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1335 } 1336 1337 bool Process::IsRunning() const { 1338 return StateIsRunningState(m_public_state.GetValue()); 1339 } 1340 1341 int Process::GetExitStatus() { 1342 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1343 1344 if (m_public_state.GetValue() == eStateExited) 1345 return m_exit_status; 1346 return -1; 1347 } 1348 1349 const char *Process::GetExitDescription() { 1350 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1351 1352 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1353 return m_exit_string.c_str(); 1354 return nullptr; 1355 } 1356 1357 bool Process::SetExitStatus(int status, const char *cstr) { 1358 // Use a mutex to protect setting the exit status. 1359 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1360 1361 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1362 LIBLLDB_LOG_PROCESS)); 1363 if (log) 1364 log->Printf( 1365 "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1366 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", 1367 cstr ? "\"" : ""); 1368 1369 // We were already in the exited state 1370 if (m_private_state.GetValue() == eStateExited) { 1371 if (log) 1372 log->Printf("Process::SetExitStatus () ignoring exit status because " 1373 "state was already set to eStateExited"); 1374 return false; 1375 } 1376 1377 m_exit_status = status; 1378 if (cstr) 1379 m_exit_string = cstr; 1380 else 1381 m_exit_string.clear(); 1382 1383 // Clear the last natural stop ID since it has a strong 1384 // reference to this process 1385 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1386 1387 SetPrivateState(eStateExited); 1388 1389 // Allow subclasses to do some cleanup 1390 DidExit(); 1391 1392 return true; 1393 } 1394 1395 bool Process::IsAlive() { 1396 switch (m_private_state.GetValue()) { 1397 case eStateConnected: 1398 case eStateAttaching: 1399 case eStateLaunching: 1400 case eStateStopped: 1401 case eStateRunning: 1402 case eStateStepping: 1403 case eStateCrashed: 1404 case eStateSuspended: 1405 return true; 1406 default: 1407 return false; 1408 } 1409 } 1410 1411 // This static callback can be used to watch for local child processes on 1412 // the current host. The child process exits, the process will be 1413 // found in the global target list (we want to be completely sure that the 1414 // lldb_private::Process doesn't go away before we can deliver the signal. 1415 bool Process::SetProcessExitStatus( 1416 lldb::pid_t pid, bool exited, 1417 int signo, // Zero for no signal 1418 int exit_status // Exit value of process if signal is zero 1419 ) { 1420 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 1421 if (log) 1422 log->Printf("Process::SetProcessExitStatus (pid=%" PRIu64 1423 ", exited=%i, signal=%i, exit_status=%i)\n", 1424 pid, exited, signo, exit_status); 1425 1426 if (exited) { 1427 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1428 if (target_sp) { 1429 ProcessSP process_sp(target_sp->GetProcessSP()); 1430 if (process_sp) { 1431 const char *signal_cstr = nullptr; 1432 if (signo) 1433 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1434 1435 process_sp->SetExitStatus(exit_status, signal_cstr); 1436 } 1437 } 1438 return true; 1439 } 1440 return false; 1441 } 1442 1443 void Process::UpdateThreadListIfNeeded() { 1444 const uint32_t stop_id = GetStopID(); 1445 if (m_thread_list.GetSize(false) == 0 || 1446 stop_id != m_thread_list.GetStopID()) { 1447 const StateType state = GetPrivateState(); 1448 if (StateIsStoppedState(state, true)) { 1449 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1450 // m_thread_list does have its own mutex, but we need to 1451 // hold onto the mutex between the call to UpdateThreadList(...) 1452 // and the os->UpdateThreadList(...) so it doesn't change on us 1453 ThreadList &old_thread_list = m_thread_list; 1454 ThreadList real_thread_list(this); 1455 ThreadList new_thread_list(this); 1456 // Always update the thread list with the protocol specific 1457 // thread list, but only update if "true" is returned 1458 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1459 // Don't call into the OperatingSystem to update the thread list if we 1460 // are shutting down, since 1461 // that may call back into the SBAPI's, requiring the API lock which is 1462 // already held by whoever is 1463 // shutting us down, causing a deadlock. 1464 OperatingSystem *os = GetOperatingSystem(); 1465 if (os && !m_destroy_in_process) { 1466 // Clear any old backing threads where memory threads might have been 1467 // backed by actual threads from the lldb_private::Process subclass 1468 size_t num_old_threads = old_thread_list.GetSize(false); 1469 for (size_t i = 0; i < num_old_threads; ++i) 1470 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1471 1472 // Turn off dynamic types to ensure we don't run any expressions. 1473 // Objective C 1474 // can run an expression to determine if a SBValue is a dynamic type 1475 // or not 1476 // and we need to avoid this. OperatingSystem plug-ins can't run 1477 // expressions 1478 // that require running code... 1479 1480 Target &target = GetTarget(); 1481 const lldb::DynamicValueType saved_prefer_dynamic = 1482 target.GetPreferDynamicValue(); 1483 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1484 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1485 1486 // Now let the OperatingSystem plug-in update the thread list 1487 1488 os->UpdateThreadList( 1489 old_thread_list, // Old list full of threads created by OS plug-in 1490 real_thread_list, // The actual thread list full of threads 1491 // created by each lldb_private::Process 1492 // subclass 1493 new_thread_list); // The new thread list that we will show to the 1494 // user that gets filled in 1495 1496 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1497 target.SetPreferDynamicValue(saved_prefer_dynamic); 1498 } else { 1499 // No OS plug-in, the new thread list is the same as the real thread 1500 // list 1501 new_thread_list = real_thread_list; 1502 } 1503 1504 m_thread_list_real.Update(real_thread_list); 1505 m_thread_list.Update(new_thread_list); 1506 m_thread_list.SetStopID(stop_id); 1507 1508 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1509 // Clear any extended threads that we may have accumulated previously 1510 m_extended_thread_list.Clear(); 1511 m_extended_thread_stop_id = GetLastNaturalStopID(); 1512 1513 m_queue_list.Clear(); 1514 m_queue_list_stop_id = GetLastNaturalStopID(); 1515 } 1516 } 1517 } 1518 } 1519 } 1520 1521 void Process::UpdateQueueListIfNeeded() { 1522 if (m_system_runtime_ap) { 1523 if (m_queue_list.GetSize() == 0 || 1524 m_queue_list_stop_id != GetLastNaturalStopID()) { 1525 const StateType state = GetPrivateState(); 1526 if (StateIsStoppedState(state, true)) { 1527 m_system_runtime_ap->PopulateQueueList(m_queue_list); 1528 m_queue_list_stop_id = GetLastNaturalStopID(); 1529 } 1530 } 1531 } 1532 } 1533 1534 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1535 OperatingSystem *os = GetOperatingSystem(); 1536 if (os) 1537 return os->CreateThread(tid, context); 1538 return ThreadSP(); 1539 } 1540 1541 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1542 return AssignIndexIDToThread(thread_id); 1543 } 1544 1545 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1546 return (m_thread_id_to_index_id_map.find(thread_id) != 1547 m_thread_id_to_index_id_map.end()); 1548 } 1549 1550 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1551 uint32_t result = 0; 1552 std::map<uint64_t, uint32_t>::iterator iterator = 1553 m_thread_id_to_index_id_map.find(thread_id); 1554 if (iterator == m_thread_id_to_index_id_map.end()) { 1555 result = ++m_thread_index_id; 1556 m_thread_id_to_index_id_map[thread_id] = result; 1557 } else { 1558 result = iterator->second; 1559 } 1560 1561 return result; 1562 } 1563 1564 StateType Process::GetState() { 1565 // If any other threads access this we will need a mutex for it 1566 return m_public_state.GetValue(); 1567 } 1568 1569 bool Process::StateChangedIsExternallyHijacked() { 1570 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1571 const char *hijacking_name = GetHijackingListenerName(); 1572 if (hijacking_name && 1573 strcmp(hijacking_name, "lldb.Process.ResumeSynchronous.hijack")) 1574 return true; 1575 } 1576 return false; 1577 } 1578 1579 void Process::SetPublicState(StateType new_state, bool restarted) { 1580 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1581 LIBLLDB_LOG_PROCESS)); 1582 if (log) 1583 log->Printf("Process::SetPublicState (state = %s, restarted = %i)", 1584 StateAsCString(new_state), restarted); 1585 const StateType old_state = m_public_state.GetValue(); 1586 m_public_state.SetValue(new_state); 1587 1588 // On the transition from Run to Stopped, we unlock the writer end of the 1589 // run lock. The lock gets locked in Resume, which is the public API 1590 // to tell the program to run. 1591 if (!StateChangedIsExternallyHijacked()) { 1592 if (new_state == eStateDetached) { 1593 if (log) 1594 log->Printf( 1595 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1596 StateAsCString(new_state)); 1597 m_public_run_lock.SetStopped(); 1598 } else { 1599 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1600 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1601 if ((old_state_is_stopped != new_state_is_stopped)) { 1602 if (new_state_is_stopped && !restarted) { 1603 if (log) 1604 log->Printf("Process::SetPublicState (%s) -- unlocking run lock", 1605 StateAsCString(new_state)); 1606 m_public_run_lock.SetStopped(); 1607 } 1608 } 1609 } 1610 } 1611 } 1612 1613 Error Process::Resume() { 1614 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1615 LIBLLDB_LOG_PROCESS)); 1616 if (log) 1617 log->Printf("Process::Resume -- locking run lock"); 1618 if (!m_public_run_lock.TrySetRunning()) { 1619 Error error("Resume request failed - process still running."); 1620 if (log) 1621 log->Printf("Process::Resume: -- TrySetRunning failed, not resuming."); 1622 return error; 1623 } 1624 return PrivateResume(); 1625 } 1626 1627 Error Process::ResumeSynchronous(Stream *stream) { 1628 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1629 LIBLLDB_LOG_PROCESS)); 1630 if (log) 1631 log->Printf("Process::ResumeSynchronous -- locking run lock"); 1632 if (!m_public_run_lock.TrySetRunning()) { 1633 Error error("Resume request failed - process still running."); 1634 if (log) 1635 log->Printf("Process::Resume: -- TrySetRunning failed, not resuming."); 1636 return error; 1637 } 1638 1639 ListenerSP listener_sp( 1640 Listener::MakeListener("lldb.Process.ResumeSynchronous.hijack")); 1641 HijackProcessEvents(listener_sp); 1642 1643 Error error = PrivateResume(); 1644 if (error.Success()) { 1645 StateType state = 1646 WaitForProcessToStop(llvm::None, NULL, true, listener_sp, stream); 1647 const bool must_be_alive = 1648 false; // eStateExited is ok, so this must be false 1649 if (!StateIsStoppedState(state, must_be_alive)) 1650 error.SetErrorStringWithFormat( 1651 "process not in stopped state after synchronous resume: %s", 1652 StateAsCString(state)); 1653 } 1654 1655 // Undo the hijacking of process events... 1656 RestoreProcessEvents(); 1657 1658 return error; 1659 } 1660 1661 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1662 1663 void Process::SetPrivateState(StateType new_state) { 1664 if (m_finalize_called) 1665 return; 1666 1667 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1668 LIBLLDB_LOG_PROCESS)); 1669 bool state_changed = false; 1670 1671 if (log) 1672 log->Printf("Process::SetPrivateState (%s)", StateAsCString(new_state)); 1673 1674 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1675 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1676 1677 const StateType old_state = m_private_state.GetValueNoLock(); 1678 state_changed = old_state != new_state; 1679 1680 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1681 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1682 if (old_state_is_stopped != new_state_is_stopped) { 1683 if (new_state_is_stopped) 1684 m_private_run_lock.SetStopped(); 1685 else 1686 m_private_run_lock.SetRunning(); 1687 } 1688 1689 if (state_changed) { 1690 m_private_state.SetValueNoLock(new_state); 1691 EventSP event_sp( 1692 new Event(eBroadcastBitStateChanged, 1693 new ProcessEventData(shared_from_this(), new_state))); 1694 if (StateIsStoppedState(new_state, false)) { 1695 // Note, this currently assumes that all threads in the list 1696 // stop when the process stops. In the future we will want to 1697 // support a debugging model where some threads continue to run 1698 // while others are stopped. When that happens we will either need 1699 // a way for the thread list to identify which threads are stopping 1700 // or create a special thread list containing only threads which 1701 // actually stopped. 1702 // 1703 // The process plugin is responsible for managing the actual 1704 // behavior of the threads and should have stopped any threads 1705 // that are going to stop before we get here. 1706 m_thread_list.DidStop(); 1707 1708 m_mod_id.BumpStopID(); 1709 if (!m_mod_id.IsLastResumeForUserExpression()) 1710 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1711 m_memory_cache.Clear(); 1712 if (log) 1713 log->Printf("Process::SetPrivateState (%s) stop_id = %u", 1714 StateAsCString(new_state), m_mod_id.GetStopID()); 1715 } 1716 1717 // Use our target to get a shared pointer to ourselves... 1718 if (m_finalize_called && !PrivateStateThreadIsValid()) 1719 BroadcastEvent(event_sp); 1720 else 1721 m_private_state_broadcaster.BroadcastEvent(event_sp); 1722 } else { 1723 if (log) 1724 log->Printf( 1725 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1726 StateAsCString(new_state)); 1727 } 1728 } 1729 1730 void Process::SetRunningUserExpression(bool on) { 1731 m_mod_id.SetRunningUserExpression(on); 1732 } 1733 1734 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1735 1736 const lldb::ABISP &Process::GetABI() { 1737 if (!m_abi_sp) 1738 m_abi_sp = ABI::FindPlugin(GetTarget().GetArchitecture()); 1739 return m_abi_sp; 1740 } 1741 1742 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language, 1743 bool retry_if_null) { 1744 if (m_finalizing) 1745 return nullptr; 1746 1747 LanguageRuntimeCollection::iterator pos; 1748 pos = m_language_runtimes.find(language); 1749 if (pos == m_language_runtimes.end() || (retry_if_null && !(*pos).second)) { 1750 lldb::LanguageRuntimeSP runtime_sp( 1751 LanguageRuntime::FindPlugin(this, language)); 1752 1753 m_language_runtimes[language] = runtime_sp; 1754 return runtime_sp.get(); 1755 } else 1756 return (*pos).second.get(); 1757 } 1758 1759 CPPLanguageRuntime *Process::GetCPPLanguageRuntime(bool retry_if_null) { 1760 LanguageRuntime *runtime = 1761 GetLanguageRuntime(eLanguageTypeC_plus_plus, retry_if_null); 1762 if (runtime != nullptr && 1763 runtime->GetLanguageType() == eLanguageTypeC_plus_plus) 1764 return static_cast<CPPLanguageRuntime *>(runtime); 1765 return nullptr; 1766 } 1767 1768 ObjCLanguageRuntime *Process::GetObjCLanguageRuntime(bool retry_if_null) { 1769 LanguageRuntime *runtime = 1770 GetLanguageRuntime(eLanguageTypeObjC, retry_if_null); 1771 if (runtime != nullptr && runtime->GetLanguageType() == eLanguageTypeObjC) 1772 return static_cast<ObjCLanguageRuntime *>(runtime); 1773 return nullptr; 1774 } 1775 1776 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1777 if (m_finalizing) 1778 return false; 1779 1780 if (in_value.IsDynamic()) 1781 return false; 1782 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1783 1784 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1785 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1786 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1787 } 1788 1789 LanguageRuntime *cpp_runtime = GetLanguageRuntime(eLanguageTypeC_plus_plus); 1790 if (cpp_runtime && cpp_runtime->CouldHaveDynamicValue(in_value)) 1791 return true; 1792 1793 LanguageRuntime *objc_runtime = GetLanguageRuntime(eLanguageTypeObjC); 1794 return objc_runtime ? objc_runtime->CouldHaveDynamicValue(in_value) : false; 1795 } 1796 1797 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1798 m_dynamic_checkers_ap.reset(dynamic_checkers); 1799 } 1800 1801 BreakpointSiteList &Process::GetBreakpointSiteList() { 1802 return m_breakpoint_site_list; 1803 } 1804 1805 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1806 return m_breakpoint_site_list; 1807 } 1808 1809 void Process::DisableAllBreakpointSites() { 1810 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1811 // bp_site->SetEnabled(true); 1812 DisableBreakpointSite(bp_site); 1813 }); 1814 } 1815 1816 Error Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1817 Error error(DisableBreakpointSiteByID(break_id)); 1818 1819 if (error.Success()) 1820 m_breakpoint_site_list.Remove(break_id); 1821 1822 return error; 1823 } 1824 1825 Error Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1826 Error error; 1827 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1828 if (bp_site_sp) { 1829 if (bp_site_sp->IsEnabled()) 1830 error = DisableBreakpointSite(bp_site_sp.get()); 1831 } else { 1832 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1833 break_id); 1834 } 1835 1836 return error; 1837 } 1838 1839 Error Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1840 Error error; 1841 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1842 if (bp_site_sp) { 1843 if (!bp_site_sp->IsEnabled()) 1844 error = EnableBreakpointSite(bp_site_sp.get()); 1845 } else { 1846 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1847 break_id); 1848 } 1849 return error; 1850 } 1851 1852 lldb::break_id_t 1853 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1854 bool use_hardware) { 1855 addr_t load_addr = LLDB_INVALID_ADDRESS; 1856 1857 bool show_error = true; 1858 switch (GetState()) { 1859 case eStateInvalid: 1860 case eStateUnloaded: 1861 case eStateConnected: 1862 case eStateAttaching: 1863 case eStateLaunching: 1864 case eStateDetached: 1865 case eStateExited: 1866 show_error = false; 1867 break; 1868 1869 case eStateStopped: 1870 case eStateRunning: 1871 case eStateStepping: 1872 case eStateCrashed: 1873 case eStateSuspended: 1874 show_error = IsAlive(); 1875 break; 1876 } 1877 1878 // Reset the IsIndirect flag here, in case the location changes from 1879 // pointing to a indirect symbol to a regular symbol. 1880 owner->SetIsIndirect(false); 1881 1882 if (owner->ShouldResolveIndirectFunctions()) { 1883 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1884 if (symbol && symbol->IsIndirect()) { 1885 Error error; 1886 Address symbol_address = symbol->GetAddress(); 1887 load_addr = ResolveIndirectFunction(&symbol_address, error); 1888 if (!error.Success() && show_error) { 1889 GetTarget().GetDebugger().GetErrorFile()->Printf( 1890 "warning: failed to resolve indirect function at 0x%" PRIx64 1891 " for breakpoint %i.%i: %s\n", 1892 symbol->GetLoadAddress(&GetTarget()), 1893 owner->GetBreakpoint().GetID(), owner->GetID(), 1894 error.AsCString() ? error.AsCString() : "unknown error"); 1895 return LLDB_INVALID_BREAK_ID; 1896 } 1897 Address resolved_address(load_addr); 1898 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1899 owner->SetIsIndirect(true); 1900 } else 1901 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1902 } else 1903 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1904 1905 if (load_addr != LLDB_INVALID_ADDRESS) { 1906 BreakpointSiteSP bp_site_sp; 1907 1908 // Look up this breakpoint site. If it exists, then add this new owner, 1909 // otherwise 1910 // create a new breakpoint site and add it. 1911 1912 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1913 1914 if (bp_site_sp) { 1915 bp_site_sp->AddOwner(owner); 1916 owner->SetBreakpointSite(bp_site_sp); 1917 return bp_site_sp->GetID(); 1918 } else { 1919 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1920 load_addr, use_hardware)); 1921 if (bp_site_sp) { 1922 Error error = EnableBreakpointSite(bp_site_sp.get()); 1923 if (error.Success()) { 1924 owner->SetBreakpointSite(bp_site_sp); 1925 return m_breakpoint_site_list.Add(bp_site_sp); 1926 } else { 1927 if (show_error) { 1928 // Report error for setting breakpoint... 1929 GetTarget().GetDebugger().GetErrorFile()->Printf( 1930 "warning: failed to set breakpoint site at 0x%" PRIx64 1931 " for breakpoint %i.%i: %s\n", 1932 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1933 error.AsCString() ? error.AsCString() : "unknown error"); 1934 } 1935 } 1936 } 1937 } 1938 } 1939 // We failed to enable the breakpoint 1940 return LLDB_INVALID_BREAK_ID; 1941 } 1942 1943 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1944 lldb::user_id_t owner_loc_id, 1945 BreakpointSiteSP &bp_site_sp) { 1946 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1947 if (num_owners == 0) { 1948 // Don't try to disable the site if we don't have a live process anymore. 1949 if (IsAlive()) 1950 DisableBreakpointSite(bp_site_sp.get()); 1951 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1952 } 1953 } 1954 1955 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1956 uint8_t *buf) const { 1957 size_t bytes_removed = 0; 1958 BreakpointSiteList bp_sites_in_range; 1959 1960 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1961 bp_sites_in_range)) { 1962 bp_sites_in_range.ForEach([bp_addr, size, 1963 buf](BreakpointSite *bp_site) -> void { 1964 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1965 addr_t intersect_addr; 1966 size_t intersect_size; 1967 size_t opcode_offset; 1968 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1969 &intersect_size, &opcode_offset)) { 1970 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1971 assert(bp_addr < intersect_addr + intersect_size && 1972 intersect_addr + intersect_size <= bp_addr + size); 1973 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1974 size_t buf_offset = intersect_addr - bp_addr; 1975 ::memcpy(buf + buf_offset, 1976 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1977 intersect_size); 1978 } 1979 } 1980 }); 1981 } 1982 return bytes_removed; 1983 } 1984 1985 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1986 PlatformSP platform_sp(GetTarget().GetPlatform()); 1987 if (platform_sp) 1988 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1989 return 0; 1990 } 1991 1992 Error Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1993 Error error; 1994 assert(bp_site != nullptr); 1995 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1996 const addr_t bp_addr = bp_site->GetLoadAddress(); 1997 if (log) 1998 log->Printf( 1999 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 2000 bp_site->GetID(), (uint64_t)bp_addr); 2001 if (bp_site->IsEnabled()) { 2002 if (log) 2003 log->Printf( 2004 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2005 " -- already enabled", 2006 bp_site->GetID(), (uint64_t)bp_addr); 2007 return error; 2008 } 2009 2010 if (bp_addr == LLDB_INVALID_ADDRESS) { 2011 error.SetErrorString("BreakpointSite contains an invalid load address."); 2012 return error; 2013 } 2014 // Ask the lldb::Process subclass to fill in the correct software breakpoint 2015 // trap for the breakpoint site 2016 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 2017 2018 if (bp_opcode_size == 0) { 2019 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 2020 "returned zero, unable to get breakpoint " 2021 "trap for address 0x%" PRIx64, 2022 bp_addr); 2023 } else { 2024 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 2025 2026 if (bp_opcode_bytes == nullptr) { 2027 error.SetErrorString( 2028 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 2029 return error; 2030 } 2031 2032 // Save the original opcode by reading it 2033 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 2034 error) == bp_opcode_size) { 2035 // Write a software breakpoint in place of the original opcode 2036 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 2037 bp_opcode_size) { 2038 uint8_t verify_bp_opcode_bytes[64]; 2039 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 2040 error) == bp_opcode_size) { 2041 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 2042 bp_opcode_size) == 0) { 2043 bp_site->SetEnabled(true); 2044 bp_site->SetType(BreakpointSite::eSoftware); 2045 if (log) 2046 log->Printf("Process::EnableSoftwareBreakpoint (site_id = %d) " 2047 "addr = 0x%" PRIx64 " -- SUCCESS", 2048 bp_site->GetID(), (uint64_t)bp_addr); 2049 } else 2050 error.SetErrorString( 2051 "failed to verify the breakpoint trap in memory."); 2052 } else 2053 error.SetErrorString( 2054 "Unable to read memory to verify breakpoint trap."); 2055 } else 2056 error.SetErrorString("Unable to write breakpoint trap to memory."); 2057 } else 2058 error.SetErrorString("Unable to read memory at breakpoint address."); 2059 } 2060 if (log && error.Fail()) 2061 log->Printf( 2062 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2063 " -- FAILED: %s", 2064 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 2065 return error; 2066 } 2067 2068 Error Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 2069 Error error; 2070 assert(bp_site != nullptr); 2071 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 2072 addr_t bp_addr = bp_site->GetLoadAddress(); 2073 lldb::user_id_t breakID = bp_site->GetID(); 2074 if (log) 2075 log->Printf("Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 2076 ") addr = 0x%" PRIx64, 2077 breakID, (uint64_t)bp_addr); 2078 2079 if (bp_site->IsHardware()) { 2080 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 2081 } else if (bp_site->IsEnabled()) { 2082 const size_t break_op_size = bp_site->GetByteSize(); 2083 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 2084 if (break_op_size > 0) { 2085 // Clear a software breakpoint instruction 2086 uint8_t curr_break_op[8]; 2087 assert(break_op_size <= sizeof(curr_break_op)); 2088 bool break_op_found = false; 2089 2090 // Read the breakpoint opcode 2091 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 2092 break_op_size) { 2093 bool verify = false; 2094 // Make sure the breakpoint opcode exists at this address 2095 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 2096 break_op_found = true; 2097 // We found a valid breakpoint opcode at this address, now restore 2098 // the saved opcode. 2099 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 2100 break_op_size, error) == break_op_size) { 2101 verify = true; 2102 } else 2103 error.SetErrorString( 2104 "Memory write failed when restoring original opcode."); 2105 } else { 2106 error.SetErrorString( 2107 "Original breakpoint trap is no longer in memory."); 2108 // Set verify to true and so we can check if the original opcode has 2109 // already been restored 2110 verify = true; 2111 } 2112 2113 if (verify) { 2114 uint8_t verify_opcode[8]; 2115 assert(break_op_size < sizeof(verify_opcode)); 2116 // Verify that our original opcode made it back to the inferior 2117 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 2118 break_op_size) { 2119 // compare the memory we just read with the original opcode 2120 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 2121 break_op_size) == 0) { 2122 // SUCCESS 2123 bp_site->SetEnabled(false); 2124 if (log) 2125 log->Printf("Process::DisableSoftwareBreakpoint (site_id = %d) " 2126 "addr = 0x%" PRIx64 " -- SUCCESS", 2127 bp_site->GetID(), (uint64_t)bp_addr); 2128 return error; 2129 } else { 2130 if (break_op_found) 2131 error.SetErrorString("Failed to restore original opcode."); 2132 } 2133 } else 2134 error.SetErrorString("Failed to read memory to verify that " 2135 "breakpoint trap was restored."); 2136 } 2137 } else 2138 error.SetErrorString( 2139 "Unable to read memory that should contain the breakpoint trap."); 2140 } 2141 } else { 2142 if (log) 2143 log->Printf( 2144 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2145 " -- already disabled", 2146 bp_site->GetID(), (uint64_t)bp_addr); 2147 return error; 2148 } 2149 2150 if (log) 2151 log->Printf( 2152 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2153 " -- FAILED: %s", 2154 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 2155 return error; 2156 } 2157 2158 // Uncomment to verify memory caching works after making changes to caching code 2159 //#define VERIFY_MEMORY_READS 2160 2161 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Error &error) { 2162 error.Clear(); 2163 if (!GetDisableMemoryCache()) { 2164 #if defined(VERIFY_MEMORY_READS) 2165 // Memory caching is enabled, with debug verification 2166 2167 if (buf && size) { 2168 // Uncomment the line below to make sure memory caching is working. 2169 // I ran this through the test suite and got no assertions, so I am 2170 // pretty confident this is working well. If any changes are made to 2171 // memory caching, uncomment the line below and test your changes! 2172 2173 // Verify all memory reads by using the cache first, then redundantly 2174 // reading the same memory from the inferior and comparing to make sure 2175 // everything is exactly the same. 2176 std::string verify_buf(size, '\0'); 2177 assert(verify_buf.size() == size); 2178 const size_t cache_bytes_read = 2179 m_memory_cache.Read(this, addr, buf, size, error); 2180 Error verify_error; 2181 const size_t verify_bytes_read = 2182 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 2183 verify_buf.size(), verify_error); 2184 assert(cache_bytes_read == verify_bytes_read); 2185 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 2186 assert(verify_error.Success() == error.Success()); 2187 return cache_bytes_read; 2188 } 2189 return 0; 2190 #else // !defined(VERIFY_MEMORY_READS) 2191 // Memory caching is enabled, without debug verification 2192 2193 return m_memory_cache.Read(addr, buf, size, error); 2194 #endif // defined (VERIFY_MEMORY_READS) 2195 } else { 2196 // Memory caching is disabled 2197 2198 return ReadMemoryFromInferior(addr, buf, size, error); 2199 } 2200 } 2201 2202 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 2203 Error &error) { 2204 char buf[256]; 2205 out_str.clear(); 2206 addr_t curr_addr = addr; 2207 while (true) { 2208 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 2209 if (length == 0) 2210 break; 2211 out_str.append(buf, length); 2212 // If we got "length - 1" bytes, we didn't get the whole C string, we 2213 // need to read some more characters 2214 if (length == sizeof(buf) - 1) 2215 curr_addr += length; 2216 else 2217 break; 2218 } 2219 return out_str.size(); 2220 } 2221 2222 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes, 2223 Error &error, size_t type_width) { 2224 size_t total_bytes_read = 0; 2225 if (dst && max_bytes && type_width && max_bytes >= type_width) { 2226 // Ensure a null terminator independent of the number of bytes that is read. 2227 memset(dst, 0, max_bytes); 2228 size_t bytes_left = max_bytes - type_width; 2229 2230 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 2231 assert(sizeof(terminator) >= type_width && "Attempting to validate a " 2232 "string with more than 4 bytes " 2233 "per character!"); 2234 2235 addr_t curr_addr = addr; 2236 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2237 char *curr_dst = dst; 2238 2239 error.Clear(); 2240 while (bytes_left > 0 && error.Success()) { 2241 addr_t cache_line_bytes_left = 2242 cache_line_size - (curr_addr % cache_line_size); 2243 addr_t bytes_to_read = 2244 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2245 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2246 2247 if (bytes_read == 0) 2248 break; 2249 2250 // Search for a null terminator of correct size and alignment in 2251 // bytes_read 2252 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 2253 for (size_t i = aligned_start; 2254 i + type_width <= total_bytes_read + bytes_read; i += type_width) 2255 if (::memcmp(&dst[i], terminator, type_width) == 0) { 2256 error.Clear(); 2257 return i; 2258 } 2259 2260 total_bytes_read += bytes_read; 2261 curr_dst += bytes_read; 2262 curr_addr += bytes_read; 2263 bytes_left -= bytes_read; 2264 } 2265 } else { 2266 if (max_bytes) 2267 error.SetErrorString("invalid arguments"); 2268 } 2269 return total_bytes_read; 2270 } 2271 2272 // Deprecated in favor of ReadStringFromMemory which has wchar support and 2273 // correct code to find 2274 // null terminators. 2275 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 2276 size_t dst_max_len, Error &result_error) { 2277 size_t total_cstr_len = 0; 2278 if (dst && dst_max_len) { 2279 result_error.Clear(); 2280 // NULL out everything just to be safe 2281 memset(dst, 0, dst_max_len); 2282 Error error; 2283 addr_t curr_addr = addr; 2284 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2285 size_t bytes_left = dst_max_len - 1; 2286 char *curr_dst = dst; 2287 2288 while (bytes_left > 0) { 2289 addr_t cache_line_bytes_left = 2290 cache_line_size - (curr_addr % cache_line_size); 2291 addr_t bytes_to_read = 2292 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2293 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2294 2295 if (bytes_read == 0) { 2296 result_error = error; 2297 dst[total_cstr_len] = '\0'; 2298 break; 2299 } 2300 const size_t len = strlen(curr_dst); 2301 2302 total_cstr_len += len; 2303 2304 if (len < bytes_to_read) 2305 break; 2306 2307 curr_dst += bytes_read; 2308 curr_addr += bytes_read; 2309 bytes_left -= bytes_read; 2310 } 2311 } else { 2312 if (dst == nullptr) 2313 result_error.SetErrorString("invalid arguments"); 2314 else 2315 result_error.Clear(); 2316 } 2317 return total_cstr_len; 2318 } 2319 2320 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2321 Error &error) { 2322 if (buf == nullptr || size == 0) 2323 return 0; 2324 2325 size_t bytes_read = 0; 2326 uint8_t *bytes = (uint8_t *)buf; 2327 2328 while (bytes_read < size) { 2329 const size_t curr_size = size - bytes_read; 2330 const size_t curr_bytes_read = 2331 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2332 bytes_read += curr_bytes_read; 2333 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2334 break; 2335 } 2336 2337 // Replace any software breakpoint opcodes that fall into this range back 2338 // into "buf" before we return 2339 if (bytes_read > 0) 2340 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2341 return bytes_read; 2342 } 2343 2344 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2345 size_t integer_byte_size, 2346 uint64_t fail_value, 2347 Error &error) { 2348 Scalar scalar; 2349 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2350 error)) 2351 return scalar.ULongLong(fail_value); 2352 return fail_value; 2353 } 2354 2355 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2356 size_t integer_byte_size, 2357 int64_t fail_value, Error &error) { 2358 Scalar scalar; 2359 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2360 error)) 2361 return scalar.SLongLong(fail_value); 2362 return fail_value; 2363 } 2364 2365 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Error &error) { 2366 Scalar scalar; 2367 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2368 error)) 2369 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2370 return LLDB_INVALID_ADDRESS; 2371 } 2372 2373 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2374 Error &error) { 2375 Scalar scalar; 2376 const uint32_t addr_byte_size = GetAddressByteSize(); 2377 if (addr_byte_size <= 4) 2378 scalar = (uint32_t)ptr_value; 2379 else 2380 scalar = ptr_value; 2381 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2382 addr_byte_size; 2383 } 2384 2385 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2386 Error &error) { 2387 size_t bytes_written = 0; 2388 const uint8_t *bytes = (const uint8_t *)buf; 2389 2390 while (bytes_written < size) { 2391 const size_t curr_size = size - bytes_written; 2392 const size_t curr_bytes_written = DoWriteMemory( 2393 addr + bytes_written, bytes + bytes_written, curr_size, error); 2394 bytes_written += curr_bytes_written; 2395 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2396 break; 2397 } 2398 return bytes_written; 2399 } 2400 2401 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2402 Error &error) { 2403 #if defined(ENABLE_MEMORY_CACHING) 2404 m_memory_cache.Flush(addr, size); 2405 #endif 2406 2407 if (buf == nullptr || size == 0) 2408 return 0; 2409 2410 m_mod_id.BumpMemoryID(); 2411 2412 // We need to write any data that would go where any current software traps 2413 // (enabled software breakpoints) any software traps (breakpoints) that we 2414 // may have placed in our tasks memory. 2415 2416 BreakpointSiteList bp_sites_in_range; 2417 2418 if (m_breakpoint_site_list.FindInRange(addr, addr + size, 2419 bp_sites_in_range)) { 2420 // No breakpoint sites overlap 2421 if (bp_sites_in_range.IsEmpty()) 2422 return WriteMemoryPrivate(addr, buf, size, error); 2423 else { 2424 const uint8_t *ubuf = (const uint8_t *)buf; 2425 uint64_t bytes_written = 0; 2426 2427 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2428 &error](BreakpointSite *bp) -> void { 2429 2430 if (error.Success()) { 2431 addr_t intersect_addr; 2432 size_t intersect_size; 2433 size_t opcode_offset; 2434 const bool intersects = bp->IntersectsRange( 2435 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2436 UNUSED_IF_ASSERT_DISABLED(intersects); 2437 assert(intersects); 2438 assert(addr <= intersect_addr && intersect_addr < addr + size); 2439 assert(addr < intersect_addr + intersect_size && 2440 intersect_addr + intersect_size <= addr + size); 2441 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2442 2443 // Check for bytes before this breakpoint 2444 const addr_t curr_addr = addr + bytes_written; 2445 if (intersect_addr > curr_addr) { 2446 // There are some bytes before this breakpoint that we need to 2447 // just write to memory 2448 size_t curr_size = intersect_addr - curr_addr; 2449 size_t curr_bytes_written = WriteMemoryPrivate( 2450 curr_addr, ubuf + bytes_written, curr_size, error); 2451 bytes_written += curr_bytes_written; 2452 if (curr_bytes_written != curr_size) { 2453 // We weren't able to write all of the requested bytes, we 2454 // are done looping and will return the number of bytes that 2455 // we have written so far. 2456 if (error.Success()) 2457 error.SetErrorToGenericError(); 2458 } 2459 } 2460 // Now write any bytes that would cover up any software breakpoints 2461 // directly into the breakpoint opcode buffer 2462 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, 2463 ubuf + bytes_written, intersect_size); 2464 bytes_written += intersect_size; 2465 } 2466 }); 2467 2468 if (bytes_written < size) 2469 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2470 size - bytes_written, error); 2471 } 2472 } else { 2473 return WriteMemoryPrivate(addr, buf, size, error); 2474 } 2475 2476 // Write any remaining bytes after the last breakpoint if we have any left 2477 return 0; // bytes_written; 2478 } 2479 2480 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2481 size_t byte_size, Error &error) { 2482 if (byte_size == UINT32_MAX) 2483 byte_size = scalar.GetByteSize(); 2484 if (byte_size > 0) { 2485 uint8_t buf[32]; 2486 const size_t mem_size = 2487 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2488 if (mem_size > 0) 2489 return WriteMemory(addr, buf, mem_size, error); 2490 else 2491 error.SetErrorString("failed to get scalar as memory data"); 2492 } else { 2493 error.SetErrorString("invalid scalar value"); 2494 } 2495 return 0; 2496 } 2497 2498 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2499 bool is_signed, Scalar &scalar, 2500 Error &error) { 2501 uint64_t uval = 0; 2502 if (byte_size == 0) { 2503 error.SetErrorString("byte size is zero"); 2504 } else if (byte_size & (byte_size - 1)) { 2505 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2506 byte_size); 2507 } else if (byte_size <= sizeof(uval)) { 2508 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2509 if (bytes_read == byte_size) { 2510 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2511 GetAddressByteSize()); 2512 lldb::offset_t offset = 0; 2513 if (byte_size <= 4) 2514 scalar = data.GetMaxU32(&offset, byte_size); 2515 else 2516 scalar = data.GetMaxU64(&offset, byte_size); 2517 if (is_signed) 2518 scalar.SignExtend(byte_size * 8); 2519 return bytes_read; 2520 } 2521 } else { 2522 error.SetErrorStringWithFormat( 2523 "byte size of %u is too large for integer scalar type", byte_size); 2524 } 2525 return 0; 2526 } 2527 2528 #define USE_ALLOCATE_MEMORY_CACHE 1 2529 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2530 Error &error) { 2531 if (GetPrivateState() != eStateStopped) 2532 return LLDB_INVALID_ADDRESS; 2533 2534 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2535 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2536 #else 2537 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2538 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2539 if (log) 2540 log->Printf("Process::AllocateMemory(size=%" PRIu64 2541 ", permissions=%s) => 0x%16.16" PRIx64 2542 " (m_stop_id = %u m_memory_id = %u)", 2543 (uint64_t)size, GetPermissionsAsCString(permissions), 2544 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2545 m_mod_id.GetMemoryID()); 2546 return allocated_addr; 2547 #endif 2548 } 2549 2550 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2551 Error &error) { 2552 addr_t return_addr = AllocateMemory(size, permissions, error); 2553 if (error.Success()) { 2554 std::string buffer(size, 0); 2555 WriteMemory(return_addr, buffer.c_str(), size, error); 2556 } 2557 return return_addr; 2558 } 2559 2560 bool Process::CanJIT() { 2561 if (m_can_jit == eCanJITDontKnow) { 2562 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2563 Error err; 2564 2565 uint64_t allocated_memory = AllocateMemory( 2566 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2567 err); 2568 2569 if (err.Success()) { 2570 m_can_jit = eCanJITYes; 2571 if (log) 2572 log->Printf("Process::%s pid %" PRIu64 2573 " allocation test passed, CanJIT () is true", 2574 __FUNCTION__, GetID()); 2575 } else { 2576 m_can_jit = eCanJITNo; 2577 if (log) 2578 log->Printf("Process::%s pid %" PRIu64 2579 " allocation test failed, CanJIT () is false: %s", 2580 __FUNCTION__, GetID(), err.AsCString()); 2581 } 2582 2583 DeallocateMemory(allocated_memory); 2584 } 2585 2586 return m_can_jit == eCanJITYes; 2587 } 2588 2589 void Process::SetCanJIT(bool can_jit) { 2590 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2591 } 2592 2593 void Process::SetCanRunCode(bool can_run_code) { 2594 SetCanJIT(can_run_code); 2595 m_can_interpret_function_calls = can_run_code; 2596 } 2597 2598 Error Process::DeallocateMemory(addr_t ptr) { 2599 Error error; 2600 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2601 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2602 error.SetErrorStringWithFormat( 2603 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2604 } 2605 #else 2606 error = DoDeallocateMemory(ptr); 2607 2608 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2609 if (log) 2610 log->Printf("Process::DeallocateMemory(addr=0x%16.16" PRIx64 2611 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2612 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2613 m_mod_id.GetMemoryID()); 2614 #endif 2615 return error; 2616 } 2617 2618 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2619 lldb::addr_t header_addr, 2620 size_t size_to_read) { 2621 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2622 if (log) { 2623 log->Printf("Process::ReadModuleFromMemory reading %s binary from memory", 2624 file_spec.GetPath().c_str()); 2625 } 2626 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2627 if (module_sp) { 2628 Error error; 2629 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2630 shared_from_this(), header_addr, error, size_to_read); 2631 if (objfile) 2632 return module_sp; 2633 } 2634 return ModuleSP(); 2635 } 2636 2637 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2638 uint32_t &permissions) { 2639 MemoryRegionInfo range_info; 2640 permissions = 0; 2641 Error error(GetMemoryRegionInfo(load_addr, range_info)); 2642 if (!error.Success()) 2643 return false; 2644 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2645 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2646 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2647 return false; 2648 } 2649 2650 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2651 permissions |= lldb::ePermissionsReadable; 2652 2653 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2654 permissions |= lldb::ePermissionsWritable; 2655 2656 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2657 permissions |= lldb::ePermissionsExecutable; 2658 2659 return true; 2660 } 2661 2662 Error Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2663 Error error; 2664 error.SetErrorString("watchpoints are not supported"); 2665 return error; 2666 } 2667 2668 Error Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2669 Error error; 2670 error.SetErrorString("watchpoints are not supported"); 2671 return error; 2672 } 2673 2674 StateType 2675 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2676 const Timeout<std::micro> &timeout) { 2677 StateType state; 2678 // Now wait for the process to launch and return control to us, and then 2679 // call DidLaunch: 2680 while (true) { 2681 event_sp.reset(); 2682 state = GetStateChangedEventsPrivate(event_sp, timeout); 2683 2684 if (StateIsStoppedState(state, false)) 2685 break; 2686 2687 // If state is invalid, then we timed out 2688 if (state == eStateInvalid) 2689 break; 2690 2691 if (event_sp) 2692 HandlePrivateEvent(event_sp); 2693 } 2694 return state; 2695 } 2696 2697 void Process::LoadOperatingSystemPlugin(bool flush) { 2698 if (flush) 2699 m_thread_list.Clear(); 2700 m_os_ap.reset(OperatingSystem::FindPlugin(this, nullptr)); 2701 if (flush) 2702 Flush(); 2703 } 2704 2705 Error Process::Launch(ProcessLaunchInfo &launch_info) { 2706 Error error; 2707 m_abi_sp.reset(); 2708 m_dyld_ap.reset(); 2709 m_jit_loaders_ap.reset(); 2710 m_system_runtime_ap.reset(); 2711 m_os_ap.reset(); 2712 m_process_input_reader.reset(); 2713 m_stop_info_override_callback = nullptr; 2714 2715 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2716 if (exe_module) { 2717 char local_exec_file_path[PATH_MAX]; 2718 char platform_exec_file_path[PATH_MAX]; 2719 exe_module->GetFileSpec().GetPath(local_exec_file_path, 2720 sizeof(local_exec_file_path)); 2721 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, 2722 sizeof(platform_exec_file_path)); 2723 if (exe_module->GetFileSpec().Exists()) { 2724 // Install anything that might need to be installed prior to launching. 2725 // For host systems, this will do nothing, but if we are connected to a 2726 // remote platform it will install any needed binaries 2727 error = GetTarget().Install(&launch_info); 2728 if (error.Fail()) 2729 return error; 2730 2731 if (PrivateStateThreadIsValid()) 2732 PausePrivateStateThread(); 2733 2734 error = WillLaunch(exe_module); 2735 if (error.Success()) { 2736 const bool restarted = false; 2737 SetPublicState(eStateLaunching, restarted); 2738 m_should_detach = false; 2739 2740 if (m_public_run_lock.TrySetRunning()) { 2741 // Now launch using these arguments. 2742 error = DoLaunch(exe_module, launch_info); 2743 } else { 2744 // This shouldn't happen 2745 error.SetErrorString("failed to acquire process run lock"); 2746 } 2747 2748 if (error.Fail()) { 2749 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2750 SetID(LLDB_INVALID_PROCESS_ID); 2751 const char *error_string = error.AsCString(); 2752 if (error_string == nullptr) 2753 error_string = "launch failed"; 2754 SetExitStatus(-1, error_string); 2755 } 2756 } else { 2757 EventSP event_sp; 2758 StateType state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2759 2760 if (state == eStateInvalid || !event_sp) { 2761 // We were able to launch the process, but we failed to 2762 // catch the initial stop. 2763 error.SetErrorString("failed to catch stop after launch"); 2764 SetExitStatus(0, "failed to catch stop after launch"); 2765 Destroy(false); 2766 } else if (state == eStateStopped || state == eStateCrashed) { 2767 DidLaunch(); 2768 2769 DynamicLoader *dyld = GetDynamicLoader(); 2770 if (dyld) 2771 dyld->DidLaunch(); 2772 2773 GetJITLoaders().DidLaunch(); 2774 2775 SystemRuntime *system_runtime = GetSystemRuntime(); 2776 if (system_runtime) 2777 system_runtime->DidLaunch(); 2778 2779 if (!m_os_ap) 2780 LoadOperatingSystemPlugin(false); 2781 2782 // We successfully launched the process and stopped, 2783 // now it the right time to set up signal filters before resuming. 2784 UpdateAutomaticSignalFiltering(); 2785 2786 // Note, the stop event was consumed above, but not handled. This 2787 // was done 2788 // to give DidLaunch a chance to run. The target is either stopped 2789 // or crashed. 2790 // Directly set the state. This is done to prevent a stop message 2791 // with a bunch 2792 // of spurious output on thread status, as well as not pop a 2793 // ProcessIOHandler. 2794 SetPublicState(state, false); 2795 2796 if (PrivateStateThreadIsValid()) 2797 ResumePrivateStateThread(); 2798 else 2799 StartPrivateStateThread(); 2800 2801 m_stop_info_override_callback = 2802 GetTarget().GetArchitecture().GetStopInfoOverrideCallback(); 2803 2804 // Target was stopped at entry as was intended. Need to notify the 2805 // listeners 2806 // about it. 2807 if (state == eStateStopped && 2808 launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2809 HandlePrivateEvent(event_sp); 2810 } else if (state == eStateExited) { 2811 // We exited while trying to launch somehow. Don't call DidLaunch 2812 // as that's 2813 // not likely to work, and return an invalid pid. 2814 HandlePrivateEvent(event_sp); 2815 } 2816 } 2817 } 2818 } else { 2819 error.SetErrorStringWithFormat("file doesn't exist: '%s'", 2820 local_exec_file_path); 2821 } 2822 } 2823 return error; 2824 } 2825 2826 Error Process::LoadCore() { 2827 Error error = DoLoadCore(); 2828 if (error.Success()) { 2829 ListenerSP listener_sp( 2830 Listener::MakeListener("lldb.process.load_core_listener")); 2831 HijackProcessEvents(listener_sp); 2832 2833 if (PrivateStateThreadIsValid()) 2834 ResumePrivateStateThread(); 2835 else 2836 StartPrivateStateThread(); 2837 2838 DynamicLoader *dyld = GetDynamicLoader(); 2839 if (dyld) 2840 dyld->DidAttach(); 2841 2842 GetJITLoaders().DidAttach(); 2843 2844 SystemRuntime *system_runtime = GetSystemRuntime(); 2845 if (system_runtime) 2846 system_runtime->DidAttach(); 2847 2848 if (!m_os_ap) 2849 LoadOperatingSystemPlugin(false); 2850 2851 // We successfully loaded a core file, now pretend we stopped so we can 2852 // show all of the threads in the core file and explore the crashed 2853 // state. 2854 SetPrivateState(eStateStopped); 2855 2856 // Wait indefinitely for a stopped event since we just posted one above... 2857 lldb::EventSP event_sp; 2858 listener_sp->GetEvent(event_sp, llvm::None); 2859 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2860 2861 if (!StateIsStoppedState(state, false)) { 2862 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2863 if (log) 2864 log->Printf("Process::Halt() failed to stop, state is: %s", 2865 StateAsCString(state)); 2866 error.SetErrorString( 2867 "Did not get stopped event after loading the core file."); 2868 } 2869 RestoreProcessEvents(); 2870 } 2871 return error; 2872 } 2873 2874 DynamicLoader *Process::GetDynamicLoader() { 2875 if (!m_dyld_ap) 2876 m_dyld_ap.reset(DynamicLoader::FindPlugin(this, nullptr)); 2877 return m_dyld_ap.get(); 2878 } 2879 2880 const lldb::DataBufferSP Process::GetAuxvData() { return DataBufferSP(); } 2881 2882 JITLoaderList &Process::GetJITLoaders() { 2883 if (!m_jit_loaders_ap) { 2884 m_jit_loaders_ap.reset(new JITLoaderList()); 2885 JITLoader::LoadPlugins(this, *m_jit_loaders_ap); 2886 } 2887 return *m_jit_loaders_ap; 2888 } 2889 2890 SystemRuntime *Process::GetSystemRuntime() { 2891 if (!m_system_runtime_ap) 2892 m_system_runtime_ap.reset(SystemRuntime::FindPlugin(this)); 2893 return m_system_runtime_ap.get(); 2894 } 2895 2896 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2897 uint32_t exec_count) 2898 : NextEventAction(process), m_exec_count(exec_count) { 2899 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2900 if (log) 2901 log->Printf( 2902 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2903 __FUNCTION__, static_cast<void *>(process), exec_count); 2904 } 2905 2906 Process::NextEventAction::EventActionResult 2907 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2908 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2909 2910 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2911 if (log) 2912 log->Printf( 2913 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2914 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2915 2916 switch (state) { 2917 case eStateAttaching: 2918 return eEventActionSuccess; 2919 2920 case eStateRunning: 2921 case eStateConnected: 2922 return eEventActionRetry; 2923 2924 case eStateStopped: 2925 case eStateCrashed: 2926 // During attach, prior to sending the eStateStopped event, 2927 // lldb_private::Process subclasses must set the new process ID. 2928 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2929 // We don't want these events to be reported, so go set the ShouldReportStop 2930 // here: 2931 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2932 2933 if (m_exec_count > 0) { 2934 --m_exec_count; 2935 2936 if (log) 2937 log->Printf("Process::AttachCompletionHandler::%s state %s: reduced " 2938 "remaining exec count to %" PRIu32 ", requesting resume", 2939 __FUNCTION__, StateAsCString(state), m_exec_count); 2940 2941 RequestResume(); 2942 return eEventActionRetry; 2943 } else { 2944 if (log) 2945 log->Printf("Process::AttachCompletionHandler::%s state %s: no more " 2946 "execs expected to start, continuing with attach", 2947 __FUNCTION__, StateAsCString(state)); 2948 2949 m_process->CompleteAttach(); 2950 return eEventActionSuccess; 2951 } 2952 break; 2953 2954 default: 2955 case eStateExited: 2956 case eStateInvalid: 2957 break; 2958 } 2959 2960 m_exit_string.assign("No valid Process"); 2961 return eEventActionExit; 2962 } 2963 2964 Process::NextEventAction::EventActionResult 2965 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2966 return eEventActionSuccess; 2967 } 2968 2969 const char *Process::AttachCompletionHandler::GetExitString() { 2970 return m_exit_string.c_str(); 2971 } 2972 2973 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2974 if (m_listener_sp) 2975 return m_listener_sp; 2976 else 2977 return debugger.GetListener(); 2978 } 2979 2980 Error Process::Attach(ProcessAttachInfo &attach_info) { 2981 m_abi_sp.reset(); 2982 m_process_input_reader.reset(); 2983 m_dyld_ap.reset(); 2984 m_jit_loaders_ap.reset(); 2985 m_system_runtime_ap.reset(); 2986 m_os_ap.reset(); 2987 m_stop_info_override_callback = nullptr; 2988 2989 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2990 Error error; 2991 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2992 char process_name[PATH_MAX]; 2993 2994 if (attach_info.GetExecutableFile().GetPath(process_name, 2995 sizeof(process_name))) { 2996 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2997 2998 if (wait_for_launch) { 2999 error = WillAttachToProcessWithName(process_name, wait_for_launch); 3000 if (error.Success()) { 3001 if (m_public_run_lock.TrySetRunning()) { 3002 m_should_detach = true; 3003 const bool restarted = false; 3004 SetPublicState(eStateAttaching, restarted); 3005 // Now attach using these arguments. 3006 error = DoAttachToProcessWithName(process_name, attach_info); 3007 } else { 3008 // This shouldn't happen 3009 error.SetErrorString("failed to acquire process run lock"); 3010 } 3011 3012 if (error.Fail()) { 3013 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3014 SetID(LLDB_INVALID_PROCESS_ID); 3015 if (error.AsCString() == nullptr) 3016 error.SetErrorString("attach failed"); 3017 3018 SetExitStatus(-1, error.AsCString()); 3019 } 3020 } else { 3021 SetNextEventAction(new Process::AttachCompletionHandler( 3022 this, attach_info.GetResumeCount())); 3023 StartPrivateStateThread(); 3024 } 3025 return error; 3026 } 3027 } else { 3028 ProcessInstanceInfoList process_infos; 3029 PlatformSP platform_sp(GetTarget().GetPlatform()); 3030 3031 if (platform_sp) { 3032 ProcessInstanceInfoMatch match_info; 3033 match_info.GetProcessInfo() = attach_info; 3034 match_info.SetNameMatchType(NameMatch::Equals); 3035 platform_sp->FindProcesses(match_info, process_infos); 3036 const uint32_t num_matches = process_infos.GetSize(); 3037 if (num_matches == 1) { 3038 attach_pid = process_infos.GetProcessIDAtIndex(0); 3039 // Fall through and attach using the above process ID 3040 } else { 3041 match_info.GetProcessInfo().GetExecutableFile().GetPath( 3042 process_name, sizeof(process_name)); 3043 if (num_matches > 1) { 3044 StreamString s; 3045 ProcessInstanceInfo::DumpTableHeader(s, platform_sp.get(), true, 3046 false); 3047 for (size_t i = 0; i < num_matches; i++) { 3048 process_infos.GetProcessInfoAtIndex(i).DumpAsTableRow( 3049 s, platform_sp.get(), true, false); 3050 } 3051 error.SetErrorStringWithFormat( 3052 "more than one process named %s:\n%s", process_name, 3053 s.GetData()); 3054 } else 3055 error.SetErrorStringWithFormat( 3056 "could not find a process named %s", process_name); 3057 } 3058 } else { 3059 error.SetErrorString( 3060 "invalid platform, can't find processes by name"); 3061 return error; 3062 } 3063 } 3064 } else { 3065 error.SetErrorString("invalid process name"); 3066 } 3067 } 3068 3069 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 3070 error = WillAttachToProcessWithID(attach_pid); 3071 if (error.Success()) { 3072 3073 if (m_public_run_lock.TrySetRunning()) { 3074 // Now attach using these arguments. 3075 m_should_detach = true; 3076 const bool restarted = false; 3077 SetPublicState(eStateAttaching, restarted); 3078 error = DoAttachToProcessWithID(attach_pid, attach_info); 3079 } else { 3080 // This shouldn't happen 3081 error.SetErrorString("failed to acquire process run lock"); 3082 } 3083 3084 if (error.Success()) { 3085 SetNextEventAction(new Process::AttachCompletionHandler( 3086 this, attach_info.GetResumeCount())); 3087 StartPrivateStateThread(); 3088 } else { 3089 if (GetID() != LLDB_INVALID_PROCESS_ID) 3090 SetID(LLDB_INVALID_PROCESS_ID); 3091 3092 const char *error_string = error.AsCString(); 3093 if (error_string == nullptr) 3094 error_string = "attach failed"; 3095 3096 SetExitStatus(-1, error_string); 3097 } 3098 } 3099 } 3100 return error; 3101 } 3102 3103 void Process::CompleteAttach() { 3104 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3105 LIBLLDB_LOG_TARGET)); 3106 if (log) 3107 log->Printf("Process::%s()", __FUNCTION__); 3108 3109 // Let the process subclass figure out at much as it can about the process 3110 // before we go looking for a dynamic loader plug-in. 3111 ArchSpec process_arch; 3112 DidAttach(process_arch); 3113 3114 if (process_arch.IsValid()) { 3115 GetTarget().SetArchitecture(process_arch); 3116 if (log) { 3117 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 3118 log->Printf("Process::%s replacing process architecture with DidAttach() " 3119 "architecture: %s", 3120 __FUNCTION__, triple_str ? triple_str : "<null>"); 3121 } 3122 } 3123 3124 // We just attached. If we have a platform, ask it for the process 3125 // architecture, and if it isn't 3126 // the same as the one we've already set, switch architectures. 3127 PlatformSP platform_sp(GetTarget().GetPlatform()); 3128 assert(platform_sp); 3129 if (platform_sp) { 3130 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 3131 if (target_arch.IsValid() && 3132 !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) { 3133 ArchSpec platform_arch; 3134 platform_sp = 3135 platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch); 3136 if (platform_sp) { 3137 GetTarget().SetPlatform(platform_sp); 3138 GetTarget().SetArchitecture(platform_arch); 3139 if (log) 3140 log->Printf("Process::%s switching platform to %s and architecture " 3141 "to %s based on info from attach", 3142 __FUNCTION__, platform_sp->GetName().AsCString(""), 3143 platform_arch.GetTriple().getTriple().c_str()); 3144 } 3145 } else if (!process_arch.IsValid()) { 3146 ProcessInstanceInfo process_info; 3147 GetProcessInfo(process_info); 3148 const ArchSpec &process_arch = process_info.GetArchitecture(); 3149 if (process_arch.IsValid() && 3150 !GetTarget().GetArchitecture().IsExactMatch(process_arch)) { 3151 GetTarget().SetArchitecture(process_arch); 3152 if (log) 3153 log->Printf("Process::%s switching architecture to %s based on info " 3154 "the platform retrieved for pid %" PRIu64, 3155 __FUNCTION__, 3156 process_arch.GetTriple().getTriple().c_str(), GetID()); 3157 } 3158 } 3159 } 3160 3161 // We have completed the attach, now it is time to find the dynamic loader 3162 // plug-in 3163 DynamicLoader *dyld = GetDynamicLoader(); 3164 if (dyld) { 3165 dyld->DidAttach(); 3166 if (log) { 3167 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3168 log->Printf("Process::%s after DynamicLoader::DidAttach(), target " 3169 "executable is %s (using %s plugin)", 3170 __FUNCTION__, 3171 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3172 : "<none>", 3173 dyld->GetPluginName().AsCString("<unnamed>")); 3174 } 3175 } 3176 3177 GetJITLoaders().DidAttach(); 3178 3179 SystemRuntime *system_runtime = GetSystemRuntime(); 3180 if (system_runtime) { 3181 system_runtime->DidAttach(); 3182 if (log) { 3183 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3184 log->Printf("Process::%s after SystemRuntime::DidAttach(), target " 3185 "executable is %s (using %s plugin)", 3186 __FUNCTION__, 3187 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3188 : "<none>", 3189 system_runtime->GetPluginName().AsCString("<unnamed>")); 3190 } 3191 } 3192 3193 if (!m_os_ap) 3194 LoadOperatingSystemPlugin(false); 3195 // Figure out which one is the executable, and set that in our target: 3196 const ModuleList &target_modules = GetTarget().GetImages(); 3197 std::lock_guard<std::recursive_mutex> guard(target_modules.GetMutex()); 3198 size_t num_modules = target_modules.GetSize(); 3199 ModuleSP new_executable_module_sp; 3200 3201 for (size_t i = 0; i < num_modules; i++) { 3202 ModuleSP module_sp(target_modules.GetModuleAtIndexUnlocked(i)); 3203 if (module_sp && module_sp->IsExecutable()) { 3204 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 3205 new_executable_module_sp = module_sp; 3206 break; 3207 } 3208 } 3209 if (new_executable_module_sp) { 3210 GetTarget().SetExecutableModule(new_executable_module_sp, false); 3211 if (log) { 3212 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3213 log->Printf( 3214 "Process::%s after looping through modules, target executable is %s", 3215 __FUNCTION__, 3216 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3217 : "<none>"); 3218 } 3219 } 3220 3221 m_stop_info_override_callback = process_arch.GetStopInfoOverrideCallback(); 3222 } 3223 3224 Error Process::ConnectRemote(Stream *strm, llvm::StringRef remote_url) { 3225 m_abi_sp.reset(); 3226 m_process_input_reader.reset(); 3227 3228 // Find the process and its architecture. Make sure it matches the 3229 // architecture of the current Target, and if not adjust it. 3230 3231 Error error(DoConnectRemote(strm, remote_url)); 3232 if (error.Success()) { 3233 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3234 EventSP event_sp; 3235 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 3236 3237 if (state == eStateStopped || state == eStateCrashed) { 3238 // If we attached and actually have a process on the other end, then 3239 // this ended up being the equivalent of an attach. 3240 CompleteAttach(); 3241 3242 // This delays passing the stopped event to listeners till 3243 // CompleteAttach gets a chance to complete... 3244 HandlePrivateEvent(event_sp); 3245 } 3246 } 3247 3248 if (PrivateStateThreadIsValid()) 3249 ResumePrivateStateThread(); 3250 else 3251 StartPrivateStateThread(); 3252 } 3253 return error; 3254 } 3255 3256 Error Process::PrivateResume() { 3257 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3258 LIBLLDB_LOG_STEP)); 3259 if (log) 3260 log->Printf("Process::PrivateResume() m_stop_id = %u, public state: %s " 3261 "private state: %s", 3262 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3263 StateAsCString(m_private_state.GetValue())); 3264 3265 // If signals handing status changed we might want to update 3266 // our signal filters before resuming. 3267 UpdateAutomaticSignalFiltering(); 3268 3269 Error error(WillResume()); 3270 // Tell the process it is about to resume before the thread list 3271 if (error.Success()) { 3272 // Now let the thread list know we are about to resume so it 3273 // can let all of our threads know that they are about to be 3274 // resumed. Threads will each be called with 3275 // Thread::WillResume(StateType) where StateType contains the state 3276 // that they are supposed to have when the process is resumed 3277 // (suspended/running/stepping). Threads should also check 3278 // their resume signal in lldb::Thread::GetResumeSignal() 3279 // to see if they are supposed to start back up with a signal. 3280 if (m_thread_list.WillResume()) { 3281 // Last thing, do the PreResumeActions. 3282 if (!RunPreResumeActions()) { 3283 error.SetErrorStringWithFormat( 3284 "Process::PrivateResume PreResumeActions failed, not resuming."); 3285 } else { 3286 m_mod_id.BumpResumeID(); 3287 error = DoResume(); 3288 if (error.Success()) { 3289 DidResume(); 3290 m_thread_list.DidResume(); 3291 if (log) 3292 log->Printf("Process thinks the process has resumed."); 3293 } 3294 } 3295 } else { 3296 // Somebody wanted to run without running (e.g. we were faking a step from 3297 // one frame of a set of inlined 3298 // frames that share the same PC to another.) So generate a continue & a 3299 // stopped event, 3300 // and let the world handle them. 3301 if (log) 3302 log->Printf( 3303 "Process::PrivateResume() asked to simulate a start & stop."); 3304 3305 SetPrivateState(eStateRunning); 3306 SetPrivateState(eStateStopped); 3307 } 3308 } else if (log) 3309 log->Printf("Process::PrivateResume() got an error \"%s\".", 3310 error.AsCString("<unknown error>")); 3311 return error; 3312 } 3313 3314 Error Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3315 if (!StateIsRunningState(m_public_state.GetValue())) 3316 return Error("Process is not running."); 3317 3318 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if 3319 // in case it was already set and some thread plan logic calls halt on its 3320 // own. 3321 m_clear_thread_plans_on_stop |= clear_thread_plans; 3322 3323 ListenerSP halt_listener_sp( 3324 Listener::MakeListener("lldb.process.halt_listener")); 3325 HijackProcessEvents(halt_listener_sp); 3326 3327 EventSP event_sp; 3328 3329 SendAsyncInterrupt(); 3330 3331 if (m_public_state.GetValue() == eStateAttaching) { 3332 // Don't hijack and eat the eStateExited as the code that was doing 3333 // the attach will be waiting for this event... 3334 RestoreProcessEvents(); 3335 SetExitStatus(SIGKILL, "Cancelled async attach."); 3336 Destroy(false); 3337 return Error(); 3338 } 3339 3340 // Wait for 10 second for the process to stop. 3341 StateType state = WaitForProcessToStop( 3342 seconds(10), &event_sp, true, halt_listener_sp, nullptr, use_run_lock); 3343 RestoreProcessEvents(); 3344 3345 if (state == eStateInvalid || !event_sp) { 3346 // We timed out and didn't get a stop event... 3347 return Error("Halt timed out. State = %s", StateAsCString(GetState())); 3348 } 3349 3350 BroadcastEvent(event_sp); 3351 3352 return Error(); 3353 } 3354 3355 Error Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3356 Error error; 3357 3358 // Check both the public & private states here. If we're hung evaluating an 3359 // expression, for instance, then 3360 // the public state will be stopped, but we still need to interrupt. 3361 if (m_public_state.GetValue() == eStateRunning || 3362 m_private_state.GetValue() == eStateRunning) { 3363 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3364 if (log) 3365 log->Printf("Process::%s() About to stop.", __FUNCTION__); 3366 3367 ListenerSP listener_sp( 3368 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3369 HijackProcessEvents(listener_sp); 3370 3371 SendAsyncInterrupt(); 3372 3373 // Consume the interrupt event. 3374 StateType state = 3375 WaitForProcessToStop(seconds(10), &exit_event_sp, true, listener_sp); 3376 3377 RestoreProcessEvents(); 3378 3379 // If the process exited while we were waiting for it to stop, put the 3380 // exited event into 3381 // the shared pointer passed in and return. Our caller doesn't need to do 3382 // anything else, since 3383 // they don't have a process anymore... 3384 3385 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3386 if (log) 3387 log->Printf("Process::%s() Process exited while waiting to stop.", 3388 __FUNCTION__); 3389 return error; 3390 } else 3391 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3392 3393 if (state != eStateStopped) { 3394 if (log) 3395 log->Printf("Process::%s() failed to stop, state is: %s", __FUNCTION__, 3396 StateAsCString(state)); 3397 // If we really couldn't stop the process then we should just error out 3398 // here, but if the 3399 // lower levels just bobbled sending the event and we really are stopped, 3400 // then continue on. 3401 StateType private_state = m_private_state.GetValue(); 3402 if (private_state != eStateStopped) { 3403 return Error("Attempt to stop the target in order to detach timed out. " 3404 "State = %s", 3405 StateAsCString(GetState())); 3406 } 3407 } 3408 } 3409 return error; 3410 } 3411 3412 Error Process::Detach(bool keep_stopped) { 3413 EventSP exit_event_sp; 3414 Error error; 3415 m_destroy_in_process = true; 3416 3417 error = WillDetach(); 3418 3419 if (error.Success()) { 3420 if (DetachRequiresHalt()) { 3421 error = StopForDestroyOrDetach(exit_event_sp); 3422 if (!error.Success()) { 3423 m_destroy_in_process = false; 3424 return error; 3425 } else if (exit_event_sp) { 3426 // We shouldn't need to do anything else here. There's no process left 3427 // to detach from... 3428 StopPrivateStateThread(); 3429 m_destroy_in_process = false; 3430 return error; 3431 } 3432 } 3433 3434 m_thread_list.DiscardThreadPlans(); 3435 DisableAllBreakpointSites(); 3436 3437 error = DoDetach(keep_stopped); 3438 if (error.Success()) { 3439 DidDetach(); 3440 StopPrivateStateThread(); 3441 } else { 3442 return error; 3443 } 3444 } 3445 m_destroy_in_process = false; 3446 3447 // If we exited when we were waiting for a process to stop, then 3448 // forward the event here so we don't lose the event 3449 if (exit_event_sp) { 3450 // Directly broadcast our exited event because we shut down our 3451 // private state thread above 3452 BroadcastEvent(exit_event_sp); 3453 } 3454 3455 // If we have been interrupted (to kill us) in the middle of running, we may 3456 // not end up propagating 3457 // the last events through the event system, in which case we might strand the 3458 // write lock. Unlock 3459 // it here so when we do to tear down the process we don't get an error 3460 // destroying the lock. 3461 3462 m_public_run_lock.SetStopped(); 3463 return error; 3464 } 3465 3466 Error Process::Destroy(bool force_kill) { 3467 3468 // Tell ourselves we are in the process of destroying the process, so that we 3469 // don't do any unnecessary work 3470 // that might hinder the destruction. Remember to set this back to false when 3471 // we are done. That way if the attempt 3472 // failed and the process stays around for some reason it won't be in a 3473 // confused state. 3474 3475 if (force_kill) 3476 m_should_detach = false; 3477 3478 if (GetShouldDetach()) { 3479 // FIXME: This will have to be a process setting: 3480 bool keep_stopped = false; 3481 Detach(keep_stopped); 3482 } 3483 3484 m_destroy_in_process = true; 3485 3486 Error error(WillDestroy()); 3487 if (error.Success()) { 3488 EventSP exit_event_sp; 3489 if (DestroyRequiresHalt()) { 3490 error = StopForDestroyOrDetach(exit_event_sp); 3491 } 3492 3493 if (m_public_state.GetValue() != eStateRunning) { 3494 // Ditch all thread plans, and remove all our breakpoints: in case we have 3495 // to restart the target to 3496 // kill it, we don't want it hitting a breakpoint... 3497 // Only do this if we've stopped, however, since if we didn't manage to 3498 // halt it above, then 3499 // we're not going to have much luck doing this now. 3500 m_thread_list.DiscardThreadPlans(); 3501 DisableAllBreakpointSites(); 3502 } 3503 3504 error = DoDestroy(); 3505 if (error.Success()) { 3506 DidDestroy(); 3507 StopPrivateStateThread(); 3508 } 3509 m_stdio_communication.Disconnect(); 3510 m_stdio_communication.StopReadThread(); 3511 m_stdin_forward = false; 3512 3513 if (m_process_input_reader) { 3514 m_process_input_reader->SetIsDone(true); 3515 m_process_input_reader->Cancel(); 3516 m_process_input_reader.reset(); 3517 } 3518 3519 // If we exited when we were waiting for a process to stop, then 3520 // forward the event here so we don't lose the event 3521 if (exit_event_sp) { 3522 // Directly broadcast our exited event because we shut down our 3523 // private state thread above 3524 BroadcastEvent(exit_event_sp); 3525 } 3526 3527 // If we have been interrupted (to kill us) in the middle of running, we may 3528 // not end up propagating 3529 // the last events through the event system, in which case we might strand 3530 // the write lock. Unlock 3531 // it here so when we do to tear down the process we don't get an error 3532 // destroying the lock. 3533 m_public_run_lock.SetStopped(); 3534 } 3535 3536 m_destroy_in_process = false; 3537 3538 return error; 3539 } 3540 3541 Error Process::Signal(int signal) { 3542 Error error(WillSignal()); 3543 if (error.Success()) { 3544 error = DoSignal(signal); 3545 if (error.Success()) 3546 DidSignal(); 3547 } 3548 return error; 3549 } 3550 3551 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3552 assert(signals_sp && "null signals_sp"); 3553 m_unix_signals_sp = signals_sp; 3554 } 3555 3556 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3557 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3558 return m_unix_signals_sp; 3559 } 3560 3561 lldb::ByteOrder Process::GetByteOrder() const { 3562 return GetTarget().GetArchitecture().GetByteOrder(); 3563 } 3564 3565 uint32_t Process::GetAddressByteSize() const { 3566 return GetTarget().GetArchitecture().GetAddressByteSize(); 3567 } 3568 3569 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3570 const StateType state = 3571 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3572 bool return_value = true; 3573 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | 3574 LIBLLDB_LOG_PROCESS)); 3575 3576 switch (state) { 3577 case eStateDetached: 3578 case eStateExited: 3579 case eStateUnloaded: 3580 m_stdio_communication.SynchronizeWithReadThread(); 3581 m_stdio_communication.Disconnect(); 3582 m_stdio_communication.StopReadThread(); 3583 m_stdin_forward = false; 3584 3585 LLVM_FALLTHROUGH; 3586 case eStateConnected: 3587 case eStateAttaching: 3588 case eStateLaunching: 3589 // These events indicate changes in the state of the debugging session, 3590 // always report them. 3591 return_value = true; 3592 break; 3593 case eStateInvalid: 3594 // We stopped for no apparent reason, don't report it. 3595 return_value = false; 3596 break; 3597 case eStateRunning: 3598 case eStateStepping: 3599 // If we've started the target running, we handle the cases where we 3600 // are already running and where there is a transition from stopped to 3601 // running differently. 3602 // running -> running: Automatically suppress extra running events 3603 // stopped -> running: Report except when there is one or more no votes 3604 // and no yes votes. 3605 SynchronouslyNotifyStateChanged(state); 3606 if (m_force_next_event_delivery) 3607 return_value = true; 3608 else { 3609 switch (m_last_broadcast_state) { 3610 case eStateRunning: 3611 case eStateStepping: 3612 // We always suppress multiple runnings with no PUBLIC stop in between. 3613 return_value = false; 3614 break; 3615 default: 3616 // TODO: make this work correctly. For now always report 3617 // run if we aren't running so we don't miss any running 3618 // events. If I run the lldb/test/thread/a.out file and 3619 // break at main.cpp:58, run and hit the breakpoints on 3620 // multiple threads, then somehow during the stepping over 3621 // of all breakpoints no run gets reported. 3622 3623 // This is a transition from stop to run. 3624 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3625 case eVoteYes: 3626 case eVoteNoOpinion: 3627 return_value = true; 3628 break; 3629 case eVoteNo: 3630 return_value = false; 3631 break; 3632 } 3633 break; 3634 } 3635 } 3636 break; 3637 case eStateStopped: 3638 case eStateCrashed: 3639 case eStateSuspended: 3640 // We've stopped. First see if we're going to restart the target. 3641 // If we are going to stop, then we always broadcast the event. 3642 // If we aren't going to stop, let the thread plans decide if we're going to 3643 // report this event. 3644 // If no thread has an opinion, we don't report it. 3645 3646 m_stdio_communication.SynchronizeWithReadThread(); 3647 RefreshStateAfterStop(); 3648 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3649 if (log) 3650 log->Printf("Process::ShouldBroadcastEvent (%p) stopped due to an " 3651 "interrupt, state: %s", 3652 static_cast<void *>(event_ptr), StateAsCString(state)); 3653 // Even though we know we are going to stop, we should let the threads 3654 // have a look at the stop, 3655 // so they can properly set their state. 3656 m_thread_list.ShouldStop(event_ptr); 3657 return_value = true; 3658 } else { 3659 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3660 bool should_resume = false; 3661 3662 // It makes no sense to ask "ShouldStop" if we've already been 3663 // restarted... 3664 // Asking the thread list is also not likely to go well, since we are 3665 // running again. 3666 // So in that case just report the event. 3667 3668 if (!was_restarted) 3669 should_resume = !m_thread_list.ShouldStop(event_ptr); 3670 3671 if (was_restarted || should_resume || m_resume_requested) { 3672 Vote stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3673 if (log) 3674 log->Printf("Process::ShouldBroadcastEvent: should_resume: %i state: " 3675 "%s was_restarted: %i stop_vote: %d.", 3676 should_resume, StateAsCString(state), was_restarted, 3677 stop_vote); 3678 3679 switch (stop_vote) { 3680 case eVoteYes: 3681 return_value = true; 3682 break; 3683 case eVoteNoOpinion: 3684 case eVoteNo: 3685 return_value = false; 3686 break; 3687 } 3688 3689 if (!was_restarted) { 3690 if (log) 3691 log->Printf("Process::ShouldBroadcastEvent (%p) Restarting process " 3692 "from state: %s", 3693 static_cast<void *>(event_ptr), StateAsCString(state)); 3694 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3695 PrivateResume(); 3696 } 3697 } else { 3698 return_value = true; 3699 SynchronouslyNotifyStateChanged(state); 3700 } 3701 } 3702 break; 3703 } 3704 3705 // Forcing the next event delivery is a one shot deal. So reset it here. 3706 m_force_next_event_delivery = false; 3707 3708 // We do some coalescing of events (for instance two consecutive running 3709 // events get coalesced.) 3710 // But we only coalesce against events we actually broadcast. So we use 3711 // m_last_broadcast_state 3712 // to track that. NB - you can't use "m_public_state.GetValue()" for that 3713 // purpose, as was originally done, 3714 // because the PublicState reflects the last event pulled off the queue, and 3715 // there may be several 3716 // events stacked up on the queue unserviced. So the PublicState may not 3717 // reflect the last broadcasted event 3718 // yet. m_last_broadcast_state gets updated here. 3719 3720 if (return_value) 3721 m_last_broadcast_state = state; 3722 3723 if (log) 3724 log->Printf("Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3725 "broadcast state: %s - %s", 3726 static_cast<void *>(event_ptr), StateAsCString(state), 3727 StateAsCString(m_last_broadcast_state), 3728 return_value ? "YES" : "NO"); 3729 return return_value; 3730 } 3731 3732 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3733 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 3734 3735 bool already_running = PrivateStateThreadIsValid(); 3736 if (log) 3737 log->Printf("Process::%s()%s ", __FUNCTION__, 3738 already_running ? " already running" 3739 : " starting private state thread"); 3740 3741 if (!is_secondary_thread && already_running) 3742 return true; 3743 3744 // Create a thread that watches our internal state and controls which 3745 // events make it to clients (into the DCProcess event queue). 3746 char thread_name[1024]; 3747 uint32_t max_len = llvm::get_max_thread_name_length(); 3748 if (max_len > 0 && max_len <= 30) { 3749 // On platforms with abbreviated thread name lengths, choose thread names 3750 // that fit within the limit. 3751 if (already_running) 3752 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3753 else 3754 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3755 } else { 3756 if (already_running) 3757 snprintf(thread_name, sizeof(thread_name), 3758 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3759 GetID()); 3760 else 3761 snprintf(thread_name, sizeof(thread_name), 3762 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3763 } 3764 3765 // Create the private state thread, and start it running. 3766 PrivateStateThreadArgs *args_ptr = 3767 new PrivateStateThreadArgs(this, is_secondary_thread); 3768 m_private_state_thread = 3769 ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, 3770 (void *)args_ptr, nullptr, 8 * 1024 * 1024); 3771 if (m_private_state_thread.IsJoinable()) { 3772 ResumePrivateStateThread(); 3773 return true; 3774 } else 3775 return false; 3776 } 3777 3778 void Process::PausePrivateStateThread() { 3779 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3780 } 3781 3782 void Process::ResumePrivateStateThread() { 3783 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3784 } 3785 3786 void Process::StopPrivateStateThread() { 3787 if (m_private_state_thread.IsJoinable()) 3788 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3789 else { 3790 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3791 if (log) 3792 log->Printf( 3793 "Went to stop the private state thread, but it was already invalid."); 3794 } 3795 } 3796 3797 void Process::ControlPrivateStateThread(uint32_t signal) { 3798 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3799 3800 assert(signal == eBroadcastInternalStateControlStop || 3801 signal == eBroadcastInternalStateControlPause || 3802 signal == eBroadcastInternalStateControlResume); 3803 3804 if (log) 3805 log->Printf("Process::%s (signal = %d)", __FUNCTION__, signal); 3806 3807 // Signal the private state thread 3808 if (m_private_state_thread.IsJoinable()) { 3809 // Broadcast the event. 3810 // It is important to do this outside of the if below, because 3811 // it's possible that the thread state is invalid but that the 3812 // thread is waiting on a control event instead of simply being 3813 // on its way out (this should not happen, but it apparently can). 3814 if (log) 3815 log->Printf("Sending control event of type: %d.", signal); 3816 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3817 m_private_state_control_broadcaster.BroadcastEvent(signal, 3818 event_receipt_sp); 3819 3820 // Wait for the event receipt or for the private state thread to exit 3821 bool receipt_received = false; 3822 if (PrivateStateThreadIsValid()) { 3823 while (!receipt_received) { 3824 bool timed_out = false; 3825 // Check for a receipt for 2 seconds and then check if the private state 3826 // thread is still around. 3827 receipt_received = event_receipt_sp->WaitForEventReceived( 3828 std::chrono::seconds(2), &timed_out); 3829 if (!receipt_received) { 3830 // Check if the private state thread is still around. If it isn't then 3831 // we are done waiting 3832 if (!PrivateStateThreadIsValid()) 3833 break; // Private state thread exited or is exiting, we are done 3834 } 3835 } 3836 } 3837 3838 if (signal == eBroadcastInternalStateControlStop) { 3839 thread_result_t result = NULL; 3840 m_private_state_thread.Join(&result); 3841 m_private_state_thread.Reset(); 3842 } 3843 } else { 3844 if (log) 3845 log->Printf( 3846 "Private state thread already dead, no need to signal it to stop."); 3847 } 3848 } 3849 3850 void Process::SendAsyncInterrupt() { 3851 if (PrivateStateThreadIsValid()) 3852 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3853 nullptr); 3854 else 3855 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3856 } 3857 3858 void Process::HandlePrivateEvent(EventSP &event_sp) { 3859 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3860 m_resume_requested = false; 3861 3862 const StateType new_state = 3863 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3864 3865 // First check to see if anybody wants a shot at this event: 3866 if (m_next_event_action_ap) { 3867 NextEventAction::EventActionResult action_result = 3868 m_next_event_action_ap->PerformAction(event_sp); 3869 if (log) 3870 log->Printf("Ran next event action, result was %d.", action_result); 3871 3872 switch (action_result) { 3873 case NextEventAction::eEventActionSuccess: 3874 SetNextEventAction(nullptr); 3875 break; 3876 3877 case NextEventAction::eEventActionRetry: 3878 break; 3879 3880 case NextEventAction::eEventActionExit: 3881 // Handle Exiting Here. If we already got an exited event, 3882 // we should just propagate it. Otherwise, swallow this event, 3883 // and set our state to exit so the next event will kill us. 3884 if (new_state != eStateExited) { 3885 // FIXME: should cons up an exited event, and discard this one. 3886 SetExitStatus(0, m_next_event_action_ap->GetExitString()); 3887 SetNextEventAction(nullptr); 3888 return; 3889 } 3890 SetNextEventAction(nullptr); 3891 break; 3892 } 3893 } 3894 3895 // See if we should broadcast this state to external clients? 3896 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3897 3898 if (should_broadcast) { 3899 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3900 if (log) { 3901 log->Printf("Process::%s (pid = %" PRIu64 3902 ") broadcasting new state %s (old state %s) to %s", 3903 __FUNCTION__, GetID(), StateAsCString(new_state), 3904 StateAsCString(GetState()), 3905 is_hijacked ? "hijacked" : "public"); 3906 } 3907 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3908 if (StateIsRunningState(new_state)) { 3909 // Only push the input handler if we aren't fowarding events, 3910 // as this means the curses GUI is in use... 3911 // Or don't push it if we are launching since it will come up stopped. 3912 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3913 new_state != eStateLaunching && new_state != eStateAttaching) { 3914 PushProcessIOHandler(); 3915 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3916 eBroadcastAlways); 3917 if (log) 3918 log->Printf("Process::%s updated m_iohandler_sync to %d", 3919 __FUNCTION__, m_iohandler_sync.GetValue()); 3920 } 3921 } else if (StateIsStoppedState(new_state, false)) { 3922 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3923 // If the lldb_private::Debugger is handling the events, we don't 3924 // want to pop the process IOHandler here, we want to do it when 3925 // we receive the stopped event so we can carefully control when 3926 // the process IOHandler is popped because when we stop we want to 3927 // display some text stating how and why we stopped, then maybe some 3928 // process/thread/frame info, and then we want the "(lldb) " prompt 3929 // to show up. If we pop the process IOHandler here, then we will 3930 // cause the command interpreter to become the top IOHandler after 3931 // the process pops off and it will update its prompt right away... 3932 // See the Debugger.cpp file where it calls the function as 3933 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3934 // Otherwise we end up getting overlapping "(lldb) " prompts and 3935 // garbled output. 3936 // 3937 // If we aren't handling the events in the debugger (which is indicated 3938 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or we 3939 // are hijacked, then we always pop the process IO handler manually. 3940 // Hijacking happens when the internal process state thread is running 3941 // thread plans, or when commands want to run in synchronous mode 3942 // and they call "process->WaitForProcessToStop()". An example of 3943 // something 3944 // that will hijack the events is a simple expression: 3945 // 3946 // (lldb) expr (int)puts("hello") 3947 // 3948 // This will cause the internal process state thread to resume and halt 3949 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3950 // events) and we do need the IO handler to be pushed and popped 3951 // correctly. 3952 3953 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3954 PopProcessIOHandler(); 3955 } 3956 } 3957 3958 BroadcastEvent(event_sp); 3959 } else { 3960 if (log) { 3961 log->Printf( 3962 "Process::%s (pid = %" PRIu64 3963 ") suppressing state %s (old state %s): should_broadcast == false", 3964 __FUNCTION__, GetID(), StateAsCString(new_state), 3965 StateAsCString(GetState())); 3966 } 3967 } 3968 } 3969 3970 Error Process::HaltPrivate() { 3971 EventSP event_sp; 3972 Error error(WillHalt()); 3973 if (error.Fail()) 3974 return error; 3975 3976 // Ask the process subclass to actually halt our process 3977 bool caused_stop; 3978 error = DoHalt(caused_stop); 3979 3980 DidHalt(); 3981 return error; 3982 } 3983 3984 thread_result_t Process::PrivateStateThread(void *arg) { 3985 std::unique_ptr<PrivateStateThreadArgs> args_up( 3986 static_cast<PrivateStateThreadArgs *>(arg)); 3987 thread_result_t result = 3988 args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 3989 return result; 3990 } 3991 3992 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3993 bool control_only = true; 3994 3995 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3996 if (log) 3997 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3998 __FUNCTION__, static_cast<void *>(this), GetID()); 3999 4000 bool exit_now = false; 4001 bool interrupt_requested = false; 4002 while (!exit_now) { 4003 EventSP event_sp; 4004 GetEventsPrivate(event_sp, llvm::None, control_only); 4005 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 4006 if (log) 4007 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4008 ") got a control event: %d", 4009 __FUNCTION__, static_cast<void *>(this), GetID(), 4010 event_sp->GetType()); 4011 4012 switch (event_sp->GetType()) { 4013 case eBroadcastInternalStateControlStop: 4014 exit_now = true; 4015 break; // doing any internal state management below 4016 4017 case eBroadcastInternalStateControlPause: 4018 control_only = true; 4019 break; 4020 4021 case eBroadcastInternalStateControlResume: 4022 control_only = false; 4023 break; 4024 } 4025 4026 continue; 4027 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 4028 if (m_public_state.GetValue() == eStateAttaching) { 4029 if (log) 4030 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4031 ") woke up with an interrupt while attaching - " 4032 "forwarding interrupt.", 4033 __FUNCTION__, static_cast<void *>(this), GetID()); 4034 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 4035 } else if (StateIsRunningState(m_last_broadcast_state)) { 4036 if (log) 4037 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4038 ") woke up with an interrupt - Halting.", 4039 __FUNCTION__, static_cast<void *>(this), GetID()); 4040 Error error = HaltPrivate(); 4041 if (error.Fail() && log) 4042 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4043 ") failed to halt the process: %s", 4044 __FUNCTION__, static_cast<void *>(this), GetID(), 4045 error.AsCString()); 4046 // Halt should generate a stopped event. Make a note of the fact that we 4047 // were 4048 // doing the interrupt, so we can set the interrupted flag after we 4049 // receive the 4050 // event. We deliberately set this to true even if HaltPrivate failed, 4051 // so that we 4052 // can interrupt on the next natural stop. 4053 interrupt_requested = true; 4054 } else { 4055 // This can happen when someone (e.g. Process::Halt) sees that we are 4056 // running and 4057 // sends an interrupt request, but the process actually stops before we 4058 // receive 4059 // it. In that case, we can just ignore the request. We use 4060 // m_last_broadcast_state, because the Stopped event may not have been 4061 // popped of 4062 // the event queue yet, which is when the public state gets updated. 4063 if (log) 4064 log->Printf( 4065 "Process::%s ignoring interrupt as we have already stopped.", 4066 __FUNCTION__); 4067 } 4068 continue; 4069 } 4070 4071 const StateType internal_state = 4072 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4073 4074 if (internal_state != eStateInvalid) { 4075 if (m_clear_thread_plans_on_stop && 4076 StateIsStoppedState(internal_state, true)) { 4077 m_clear_thread_plans_on_stop = false; 4078 m_thread_list.DiscardThreadPlans(); 4079 } 4080 4081 if (interrupt_requested) { 4082 if (StateIsStoppedState(internal_state, true)) { 4083 // We requested the interrupt, so mark this as such in the stop event 4084 // so 4085 // clients can tell an interrupted process from a natural stop 4086 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 4087 interrupt_requested = false; 4088 } else if (log) { 4089 log->Printf("Process::%s interrupt_requested, but a non-stopped " 4090 "state '%s' received.", 4091 __FUNCTION__, StateAsCString(internal_state)); 4092 } 4093 } 4094 4095 HandlePrivateEvent(event_sp); 4096 } 4097 4098 if (internal_state == eStateInvalid || internal_state == eStateExited || 4099 internal_state == eStateDetached) { 4100 if (log) 4101 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4102 ") about to exit with internal state %s...", 4103 __FUNCTION__, static_cast<void *>(this), GetID(), 4104 StateAsCString(internal_state)); 4105 4106 break; 4107 } 4108 } 4109 4110 // Verify log is still enabled before attempting to write to it... 4111 if (log) 4112 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 4113 __FUNCTION__, static_cast<void *>(this), GetID()); 4114 4115 // If we are a secondary thread, then the primary thread we are working for 4116 // will have already 4117 // acquired the public_run_lock, and isn't done with what it was doing yet, so 4118 // don't 4119 // try to change it on the way out. 4120 if (!is_secondary_thread) 4121 m_public_run_lock.SetStopped(); 4122 return NULL; 4123 } 4124 4125 //------------------------------------------------------------------ 4126 // Process Event Data 4127 //------------------------------------------------------------------ 4128 4129 Process::ProcessEventData::ProcessEventData() 4130 : EventData(), m_process_wp(), m_state(eStateInvalid), m_restarted(false), 4131 m_update_state(0), m_interrupted(false) {} 4132 4133 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 4134 StateType state) 4135 : EventData(), m_process_wp(), m_state(state), m_restarted(false), 4136 m_update_state(0), m_interrupted(false) { 4137 if (process_sp) 4138 m_process_wp = process_sp; 4139 } 4140 4141 Process::ProcessEventData::~ProcessEventData() = default; 4142 4143 const ConstString &Process::ProcessEventData::GetFlavorString() { 4144 static ConstString g_flavor("Process::ProcessEventData"); 4145 return g_flavor; 4146 } 4147 4148 const ConstString &Process::ProcessEventData::GetFlavor() const { 4149 return ProcessEventData::GetFlavorString(); 4150 } 4151 4152 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 4153 ProcessSP process_sp(m_process_wp.lock()); 4154 4155 if (!process_sp) 4156 return; 4157 4158 // This function gets called twice for each event, once when the event gets 4159 // pulled 4160 // off of the private process event queue, and then any number of times, first 4161 // when it gets pulled off of 4162 // the public event queue, then other times when we're pretending that this is 4163 // where we stopped at the 4164 // end of expression evaluation. m_update_state is used to distinguish these 4165 // three cases; it is 0 when we're just pulling it off for private handling, 4166 // and > 1 for expression evaluation, and we don't want to do the breakpoint 4167 // command handling then. 4168 if (m_update_state != 1) 4169 return; 4170 4171 process_sp->SetPublicState( 4172 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4173 4174 if (m_state == eStateStopped && !m_restarted) { 4175 // Let process subclasses know we are about to do a public stop and 4176 // do anything they might need to in order to speed up register and 4177 // memory accesses. 4178 process_sp->WillPublicStop(); 4179 } 4180 4181 // If this is a halt event, even if the halt stopped with some reason other 4182 // than a plain interrupt (e.g. we had 4183 // already stopped for a breakpoint when the halt request came through) don't 4184 // do the StopInfo actions, as they may 4185 // end up restarting the process. 4186 if (m_interrupted) 4187 return; 4188 4189 // If we're stopped and haven't restarted, then do the StopInfo actions here: 4190 if (m_state == eStateStopped && !m_restarted) { 4191 ThreadList &curr_thread_list = process_sp->GetThreadList(); 4192 uint32_t num_threads = curr_thread_list.GetSize(); 4193 uint32_t idx; 4194 4195 // The actions might change one of the thread's stop_info's opinions about 4196 // whether we should 4197 // stop the process, so we need to query that as we go. 4198 4199 // One other complication here, is that we try to catch any case where the 4200 // target has run (except for expressions) 4201 // and immediately exit, but if we get that wrong (which is possible) then 4202 // the thread list might have changed, and 4203 // that would cause our iteration here to crash. We could make a copy of 4204 // the thread list, but we'd really like 4205 // to also know if it has changed at all, so we make up a vector of the 4206 // thread ID's and check what we get back 4207 // against this list & bag out if anything differs. 4208 std::vector<uint32_t> thread_index_array(num_threads); 4209 for (idx = 0; idx < num_threads; ++idx) 4210 thread_index_array[idx] = 4211 curr_thread_list.GetThreadAtIndex(idx)->GetIndexID(); 4212 4213 // Use this to track whether we should continue from here. We will only 4214 // continue the target running if 4215 // no thread says we should stop. Of course if some thread's PerformAction 4216 // actually sets the target running, 4217 // then it doesn't matter what the other threads say... 4218 4219 bool still_should_stop = false; 4220 4221 // Sometimes - for instance if we have a bug in the stub we are talking to, 4222 // we stop but no thread has a 4223 // valid stop reason. In that case we should just stop, because we have no 4224 // way of telling what the right 4225 // thing to do is, and it's better to let the user decide than continue 4226 // behind their backs. 4227 4228 bool does_anybody_have_an_opinion = false; 4229 4230 for (idx = 0; idx < num_threads; ++idx) { 4231 curr_thread_list = process_sp->GetThreadList(); 4232 if (curr_thread_list.GetSize() != num_threads) { 4233 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4234 LIBLLDB_LOG_PROCESS)); 4235 if (log) 4236 log->Printf( 4237 "Number of threads changed from %u to %u while processing event.", 4238 num_threads, curr_thread_list.GetSize()); 4239 break; 4240 } 4241 4242 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 4243 4244 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 4245 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4246 LIBLLDB_LOG_PROCESS)); 4247 if (log) 4248 log->Printf("The thread at position %u changed from %u to %u while " 4249 "processing event.", 4250 idx, thread_index_array[idx], thread_sp->GetIndexID()); 4251 break; 4252 } 4253 4254 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4255 if (stop_info_sp && stop_info_sp->IsValid()) { 4256 does_anybody_have_an_opinion = true; 4257 bool this_thread_wants_to_stop; 4258 if (stop_info_sp->GetOverrideShouldStop()) { 4259 this_thread_wants_to_stop = 4260 stop_info_sp->GetOverriddenShouldStopValue(); 4261 } else { 4262 stop_info_sp->PerformAction(event_ptr); 4263 // The stop action might restart the target. If it does, then we want 4264 // to mark that in the 4265 // event so that whoever is receiving it will know to wait for the 4266 // running event and reflect 4267 // that state appropriately. 4268 // We also need to stop processing actions, since they aren't 4269 // expecting the target to be running. 4270 4271 // FIXME: we might have run. 4272 if (stop_info_sp->HasTargetRunSinceMe()) { 4273 SetRestarted(true); 4274 break; 4275 } 4276 4277 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4278 } 4279 4280 if (!still_should_stop) 4281 still_should_stop = this_thread_wants_to_stop; 4282 } 4283 } 4284 4285 if (!GetRestarted()) { 4286 if (!still_should_stop && does_anybody_have_an_opinion) { 4287 // We've been asked to continue, so do that here. 4288 SetRestarted(true); 4289 // Use the public resume method here, since this is just 4290 // extending a public resume. 4291 process_sp->PrivateResume(); 4292 } else { 4293 // If we didn't restart, run the Stop Hooks here: 4294 // They might also restart the target, so watch for that. 4295 process_sp->GetTarget().RunStopHooks(); 4296 if (process_sp->GetPrivateState() == eStateRunning) 4297 SetRestarted(true); 4298 } 4299 } 4300 } 4301 } 4302 4303 void Process::ProcessEventData::Dump(Stream *s) const { 4304 ProcessSP process_sp(m_process_wp.lock()); 4305 4306 if (process_sp) 4307 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4308 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4309 else 4310 s->PutCString(" process = NULL, "); 4311 4312 s->Printf("state = %s", StateAsCString(GetState())); 4313 } 4314 4315 const Process::ProcessEventData * 4316 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4317 if (event_ptr) { 4318 const EventData *event_data = event_ptr->GetData(); 4319 if (event_data && 4320 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4321 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4322 } 4323 return nullptr; 4324 } 4325 4326 ProcessSP 4327 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4328 ProcessSP process_sp; 4329 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4330 if (data) 4331 process_sp = data->GetProcessSP(); 4332 return process_sp; 4333 } 4334 4335 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4336 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4337 if (data == nullptr) 4338 return eStateInvalid; 4339 else 4340 return data->GetState(); 4341 } 4342 4343 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4344 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4345 if (data == nullptr) 4346 return false; 4347 else 4348 return data->GetRestarted(); 4349 } 4350 4351 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4352 bool new_value) { 4353 ProcessEventData *data = 4354 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4355 if (data != nullptr) 4356 data->SetRestarted(new_value); 4357 } 4358 4359 size_t 4360 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4361 ProcessEventData *data = 4362 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4363 if (data != nullptr) 4364 return data->GetNumRestartedReasons(); 4365 else 4366 return 0; 4367 } 4368 4369 const char * 4370 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4371 size_t idx) { 4372 ProcessEventData *data = 4373 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4374 if (data != nullptr) 4375 return data->GetRestartedReasonAtIndex(idx); 4376 else 4377 return nullptr; 4378 } 4379 4380 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4381 const char *reason) { 4382 ProcessEventData *data = 4383 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4384 if (data != nullptr) 4385 data->AddRestartedReason(reason); 4386 } 4387 4388 bool Process::ProcessEventData::GetInterruptedFromEvent( 4389 const Event *event_ptr) { 4390 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4391 if (data == nullptr) 4392 return false; 4393 else 4394 return data->GetInterrupted(); 4395 } 4396 4397 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4398 bool new_value) { 4399 ProcessEventData *data = 4400 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4401 if (data != nullptr) 4402 data->SetInterrupted(new_value); 4403 } 4404 4405 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4406 ProcessEventData *data = 4407 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4408 if (data) { 4409 data->SetUpdateStateOnRemoval(); 4410 return true; 4411 } 4412 return false; 4413 } 4414 4415 lldb::TargetSP Process::CalculateTarget() { return m_target_sp.lock(); } 4416 4417 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4418 exe_ctx.SetTargetPtr(&GetTarget()); 4419 exe_ctx.SetProcessPtr(this); 4420 exe_ctx.SetThreadPtr(nullptr); 4421 exe_ctx.SetFramePtr(nullptr); 4422 } 4423 4424 // uint32_t 4425 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4426 // std::vector<lldb::pid_t> &pids) 4427 //{ 4428 // return 0; 4429 //} 4430 // 4431 // ArchSpec 4432 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4433 //{ 4434 // return Host::GetArchSpecForExistingProcess (pid); 4435 //} 4436 // 4437 // ArchSpec 4438 // Process::GetArchSpecForExistingProcess (const char *process_name) 4439 //{ 4440 // return Host::GetArchSpecForExistingProcess (process_name); 4441 //} 4442 4443 void Process::AppendSTDOUT(const char *s, size_t len) { 4444 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4445 m_stdout_data.append(s, len); 4446 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4447 new ProcessEventData(shared_from_this(), GetState())); 4448 } 4449 4450 void Process::AppendSTDERR(const char *s, size_t len) { 4451 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4452 m_stderr_data.append(s, len); 4453 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4454 new ProcessEventData(shared_from_this(), GetState())); 4455 } 4456 4457 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4458 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4459 m_profile_data.push_back(one_profile_data); 4460 BroadcastEventIfUnique(eBroadcastBitProfileData, 4461 new ProcessEventData(shared_from_this(), GetState())); 4462 } 4463 4464 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4465 const StructuredDataPluginSP &plugin_sp) { 4466 BroadcastEvent( 4467 eBroadcastBitStructuredData, 4468 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4469 } 4470 4471 StructuredDataPluginSP 4472 Process::GetStructuredDataPlugin(const ConstString &type_name) const { 4473 auto find_it = m_structured_data_plugin_map.find(type_name); 4474 if (find_it != m_structured_data_plugin_map.end()) 4475 return find_it->second; 4476 else 4477 return StructuredDataPluginSP(); 4478 } 4479 4480 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Error &error) { 4481 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4482 if (m_profile_data.empty()) 4483 return 0; 4484 4485 std::string &one_profile_data = m_profile_data.front(); 4486 size_t bytes_available = one_profile_data.size(); 4487 if (bytes_available > 0) { 4488 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4489 if (log) 4490 log->Printf("Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4491 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4492 if (bytes_available > buf_size) { 4493 memcpy(buf, one_profile_data.c_str(), buf_size); 4494 one_profile_data.erase(0, buf_size); 4495 bytes_available = buf_size; 4496 } else { 4497 memcpy(buf, one_profile_data.c_str(), bytes_available); 4498 m_profile_data.erase(m_profile_data.begin()); 4499 } 4500 } 4501 return bytes_available; 4502 } 4503 4504 //------------------------------------------------------------------ 4505 // Process STDIO 4506 //------------------------------------------------------------------ 4507 4508 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Error &error) { 4509 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4510 size_t bytes_available = m_stdout_data.size(); 4511 if (bytes_available > 0) { 4512 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4513 if (log) 4514 log->Printf("Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4515 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4516 if (bytes_available > buf_size) { 4517 memcpy(buf, m_stdout_data.c_str(), buf_size); 4518 m_stdout_data.erase(0, buf_size); 4519 bytes_available = buf_size; 4520 } else { 4521 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4522 m_stdout_data.clear(); 4523 } 4524 } 4525 return bytes_available; 4526 } 4527 4528 size_t Process::GetSTDERR(char *buf, size_t buf_size, Error &error) { 4529 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4530 size_t bytes_available = m_stderr_data.size(); 4531 if (bytes_available > 0) { 4532 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4533 if (log) 4534 log->Printf("Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4535 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4536 if (bytes_available > buf_size) { 4537 memcpy(buf, m_stderr_data.c_str(), buf_size); 4538 m_stderr_data.erase(0, buf_size); 4539 bytes_available = buf_size; 4540 } else { 4541 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4542 m_stderr_data.clear(); 4543 } 4544 } 4545 return bytes_available; 4546 } 4547 4548 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4549 size_t src_len) { 4550 Process *process = (Process *)baton; 4551 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4552 } 4553 4554 class IOHandlerProcessSTDIO : public IOHandler { 4555 public: 4556 IOHandlerProcessSTDIO(Process *process, int write_fd) 4557 : IOHandler(process->GetTarget().GetDebugger(), 4558 IOHandler::Type::ProcessIO), 4559 m_process(process), m_write_file(write_fd, false) { 4560 m_pipe.CreateNew(false); 4561 m_read_file.SetDescriptor(GetInputFD(), false); 4562 } 4563 4564 ~IOHandlerProcessSTDIO() override = default; 4565 4566 // Each IOHandler gets to run until it is done. It should read data 4567 // from the "in" and place output into "out" and "err and return 4568 // when done. 4569 void Run() override { 4570 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4571 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4572 SetIsDone(true); 4573 return; 4574 } 4575 4576 SetIsDone(false); 4577 const int read_fd = m_read_file.GetDescriptor(); 4578 TerminalState terminal_state; 4579 terminal_state.Save(read_fd, false); 4580 Terminal terminal(read_fd); 4581 terminal.SetCanonical(false); 4582 terminal.SetEcho(false); 4583 // FD_ZERO, FD_SET are not supported on windows 4584 #ifndef _WIN32 4585 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4586 m_is_running = true; 4587 while (!GetIsDone()) { 4588 SelectHelper select_helper; 4589 select_helper.FDSetRead(read_fd); 4590 select_helper.FDSetRead(pipe_read_fd); 4591 Error error = select_helper.Select(); 4592 4593 if (error.Fail()) { 4594 SetIsDone(true); 4595 } else { 4596 char ch = 0; 4597 size_t n; 4598 if (select_helper.FDIsSetRead(read_fd)) { 4599 n = 1; 4600 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4601 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4602 SetIsDone(true); 4603 } else 4604 SetIsDone(true); 4605 } 4606 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4607 size_t bytes_read; 4608 // Consume the interrupt byte 4609 Error error = m_pipe.Read(&ch, 1, bytes_read); 4610 if (error.Success()) { 4611 switch (ch) { 4612 case 'q': 4613 SetIsDone(true); 4614 break; 4615 case 'i': 4616 if (StateIsRunningState(m_process->GetState())) 4617 m_process->SendAsyncInterrupt(); 4618 break; 4619 } 4620 } 4621 } 4622 } 4623 } 4624 m_is_running = false; 4625 #endif 4626 terminal_state.Restore(); 4627 } 4628 4629 void Cancel() override { 4630 SetIsDone(true); 4631 // Only write to our pipe to cancel if we are in 4632 // IOHandlerProcessSTDIO::Run(). 4633 // We can end up with a python command that is being run from the command 4634 // interpreter: 4635 // 4636 // (lldb) step_process_thousands_of_times 4637 // 4638 // In this case the command interpreter will be in the middle of handling 4639 // the command and if the process pushes and pops the IOHandler thousands 4640 // of times, we can end up writing to m_pipe without ever consuming the 4641 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4642 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4643 if (m_is_running) { 4644 char ch = 'q'; // Send 'q' for quit 4645 size_t bytes_written = 0; 4646 m_pipe.Write(&ch, 1, bytes_written); 4647 } 4648 } 4649 4650 bool Interrupt() override { 4651 // Do only things that are safe to do in an interrupt context (like in 4652 // a SIGINT handler), like write 1 byte to a file descriptor. This will 4653 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4654 // that was written to the pipe and then call 4655 // m_process->SendAsyncInterrupt() 4656 // from a much safer location in code. 4657 if (m_active) { 4658 char ch = 'i'; // Send 'i' for interrupt 4659 size_t bytes_written = 0; 4660 Error result = m_pipe.Write(&ch, 1, bytes_written); 4661 return result.Success(); 4662 } else { 4663 // This IOHandler might be pushed on the stack, but not being run 4664 // currently 4665 // so do the right thing if we aren't actively watching for STDIN by 4666 // sending 4667 // the interrupt to the process. Otherwise the write to the pipe above 4668 // would 4669 // do nothing. This can happen when the command interpreter is running and 4670 // gets a "expression ...". It will be on the IOHandler thread and sending 4671 // the input is complete to the delegate which will cause the expression 4672 // to 4673 // run, which will push the process IO handler, but not run it. 4674 4675 if (StateIsRunningState(m_process->GetState())) { 4676 m_process->SendAsyncInterrupt(); 4677 return true; 4678 } 4679 } 4680 return false; 4681 } 4682 4683 void GotEOF() override {} 4684 4685 protected: 4686 Process *m_process; 4687 File m_read_file; // Read from this file (usually actual STDIN for LLDB 4688 File m_write_file; // Write to this file (usually the master pty for getting 4689 // io to debuggee) 4690 Pipe m_pipe; 4691 std::atomic<bool> m_is_running{false}; 4692 }; 4693 4694 void Process::SetSTDIOFileDescriptor(int fd) { 4695 // First set up the Read Thread for reading/handling process I/O 4696 4697 std::unique_ptr<ConnectionFileDescriptor> conn_ap( 4698 new ConnectionFileDescriptor(fd, true)); 4699 4700 if (conn_ap) { 4701 m_stdio_communication.SetConnection(conn_ap.release()); 4702 if (m_stdio_communication.IsConnected()) { 4703 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4704 STDIOReadThreadBytesReceived, this); 4705 m_stdio_communication.StartReadThread(); 4706 4707 // Now read thread is set up, set up input reader. 4708 4709 if (!m_process_input_reader) 4710 m_process_input_reader.reset(new IOHandlerProcessSTDIO(this, fd)); 4711 } 4712 } 4713 } 4714 4715 bool Process::ProcessIOHandlerIsActive() { 4716 IOHandlerSP io_handler_sp(m_process_input_reader); 4717 if (io_handler_sp) 4718 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4719 return false; 4720 } 4721 bool Process::PushProcessIOHandler() { 4722 IOHandlerSP io_handler_sp(m_process_input_reader); 4723 if (io_handler_sp) { 4724 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4725 if (log) 4726 log->Printf("Process::%s pushing IO handler", __FUNCTION__); 4727 4728 io_handler_sp->SetIsDone(false); 4729 GetTarget().GetDebugger().PushIOHandler(io_handler_sp); 4730 return true; 4731 } 4732 return false; 4733 } 4734 4735 bool Process::PopProcessIOHandler() { 4736 IOHandlerSP io_handler_sp(m_process_input_reader); 4737 if (io_handler_sp) 4738 return GetTarget().GetDebugger().PopIOHandler(io_handler_sp); 4739 return false; 4740 } 4741 4742 // The process needs to know about installed plug-ins 4743 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4744 4745 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4746 4747 namespace { 4748 // RestorePlanState is used to record the "is private", "is master" and "okay to 4749 // discard" fields of 4750 // the plan we are running, and reset it on Clean or on destruction. 4751 // It will only reset the state once, so you can call Clean and then monkey with 4752 // the state and it 4753 // won't get reset on you again. 4754 4755 class RestorePlanState { 4756 public: 4757 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4758 : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) { 4759 if (m_thread_plan_sp) { 4760 m_private = m_thread_plan_sp->GetPrivate(); 4761 m_is_master = m_thread_plan_sp->IsMasterPlan(); 4762 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4763 } 4764 } 4765 4766 ~RestorePlanState() { Clean(); } 4767 4768 void Clean() { 4769 if (!m_already_reset && m_thread_plan_sp) { 4770 m_already_reset = true; 4771 m_thread_plan_sp->SetPrivate(m_private); 4772 m_thread_plan_sp->SetIsMasterPlan(m_is_master); 4773 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4774 } 4775 } 4776 4777 private: 4778 lldb::ThreadPlanSP m_thread_plan_sp; 4779 bool m_already_reset; 4780 bool m_private; 4781 bool m_is_master; 4782 bool m_okay_to_discard; 4783 }; 4784 } // anonymous namespace 4785 4786 static microseconds 4787 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4788 const milliseconds default_one_thread_timeout(250); 4789 4790 // If the overall wait is forever, then we don't need to worry about it. 4791 if (!options.GetTimeout()) { 4792 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4793 : default_one_thread_timeout; 4794 } 4795 4796 // If the one thread timeout is set, use it. 4797 if (options.GetOneThreadTimeout()) 4798 return *options.GetOneThreadTimeout(); 4799 4800 // Otherwise use half the total timeout, bounded by the 4801 // default_one_thread_timeout. 4802 return std::min<microseconds>(default_one_thread_timeout, 4803 *options.GetTimeout() / 2); 4804 } 4805 4806 static Timeout<std::micro> 4807 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4808 bool before_first_timeout) { 4809 // If we are going to run all threads the whole time, or if we are only 4810 // going to run one thread, we can just return the overall timeout. 4811 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4812 return options.GetTimeout(); 4813 4814 if (before_first_timeout) 4815 return GetOneThreadExpressionTimeout(options); 4816 4817 if (!options.GetTimeout()) 4818 return llvm::None; 4819 else 4820 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4821 } 4822 4823 ExpressionResults 4824 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4825 lldb::ThreadPlanSP &thread_plan_sp, 4826 const EvaluateExpressionOptions &options, 4827 DiagnosticManager &diagnostic_manager) { 4828 ExpressionResults return_value = eExpressionSetupError; 4829 4830 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4831 4832 if (!thread_plan_sp) { 4833 diagnostic_manager.PutString( 4834 eDiagnosticSeverityError, 4835 "RunThreadPlan called with empty thread plan."); 4836 return eExpressionSetupError; 4837 } 4838 4839 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4840 diagnostic_manager.PutString( 4841 eDiagnosticSeverityError, 4842 "RunThreadPlan called with an invalid thread plan."); 4843 return eExpressionSetupError; 4844 } 4845 4846 if (exe_ctx.GetProcessPtr() != this) { 4847 diagnostic_manager.PutString(eDiagnosticSeverityError, 4848 "RunThreadPlan called on wrong process."); 4849 return eExpressionSetupError; 4850 } 4851 4852 Thread *thread = exe_ctx.GetThreadPtr(); 4853 if (thread == nullptr) { 4854 diagnostic_manager.PutString(eDiagnosticSeverityError, 4855 "RunThreadPlan called with invalid thread."); 4856 return eExpressionSetupError; 4857 } 4858 4859 // We need to change some of the thread plan attributes for the thread plan 4860 // runner. This will restore them 4861 // when we are done: 4862 4863 RestorePlanState thread_plan_restorer(thread_plan_sp); 4864 4865 // We rely on the thread plan we are running returning "PlanCompleted" if when 4866 // it successfully completes. 4867 // For that to be true the plan can't be private - since private plans 4868 // suppress themselves in the 4869 // GetCompletedPlan call. 4870 4871 thread_plan_sp->SetPrivate(false); 4872 4873 // The plans run with RunThreadPlan also need to be terminal master plans or 4874 // when they are done we will end 4875 // up asking the plan above us whether we should stop, which may give the 4876 // wrong answer. 4877 4878 thread_plan_sp->SetIsMasterPlan(true); 4879 thread_plan_sp->SetOkayToDiscard(false); 4880 4881 if (m_private_state.GetValue() != eStateStopped) { 4882 diagnostic_manager.PutString( 4883 eDiagnosticSeverityError, 4884 "RunThreadPlan called while the private state was not stopped."); 4885 return eExpressionSetupError; 4886 } 4887 4888 // Save the thread & frame from the exe_ctx for restoration after we run 4889 const uint32_t thread_idx_id = thread->GetIndexID(); 4890 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4891 if (!selected_frame_sp) { 4892 thread->SetSelectedFrame(nullptr); 4893 selected_frame_sp = thread->GetSelectedFrame(); 4894 if (!selected_frame_sp) { 4895 diagnostic_manager.Printf( 4896 eDiagnosticSeverityError, 4897 "RunThreadPlan called without a selected frame on thread %d", 4898 thread_idx_id); 4899 return eExpressionSetupError; 4900 } 4901 } 4902 4903 // Make sure the timeout values make sense. The one thread timeout needs to be 4904 // smaller than the overall timeout. 4905 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4906 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4907 diagnostic_manager.PutString(eDiagnosticSeverityError, 4908 "RunThreadPlan called with one thread " 4909 "timeout greater than total timeout"); 4910 return eExpressionSetupError; 4911 } 4912 4913 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4914 4915 // N.B. Running the target may unset the currently selected thread and frame. 4916 // We don't want to do that either, 4917 // so we should arrange to reset them as well. 4918 4919 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4920 4921 uint32_t selected_tid; 4922 StackID selected_stack_id; 4923 if (selected_thread_sp) { 4924 selected_tid = selected_thread_sp->GetIndexID(); 4925 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4926 } else { 4927 selected_tid = LLDB_INVALID_THREAD_ID; 4928 } 4929 4930 HostThread backup_private_state_thread; 4931 lldb::StateType old_state = eStateInvalid; 4932 lldb::ThreadPlanSP stopper_base_plan_sp; 4933 4934 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4935 LIBLLDB_LOG_PROCESS)); 4936 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4937 // Yikes, we are running on the private state thread! So we can't wait for 4938 // public events on this thread, since 4939 // we are the thread that is generating public events. 4940 // The simplest thing to do is to spin up a temporary thread to handle 4941 // private state thread events while 4942 // we are fielding public events here. 4943 if (log) 4944 log->Printf("Running thread plan on private state thread, spinning up " 4945 "another state thread to handle the events."); 4946 4947 backup_private_state_thread = m_private_state_thread; 4948 4949 // One other bit of business: we want to run just this thread plan and 4950 // anything it pushes, and then stop, 4951 // returning control here. 4952 // But in the normal course of things, the plan above us on the stack would 4953 // be given a shot at the stop 4954 // event before deciding to stop, and we don't want that. So we insert a 4955 // "stopper" base plan on the stack 4956 // before the plan we want to run. Since base plans always stop and return 4957 // control to the user, that will 4958 // do just what we want. 4959 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4960 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4961 // Have to make sure our public state is stopped, since otherwise the 4962 // reporting logic below doesn't work correctly. 4963 old_state = m_public_state.GetValue(); 4964 m_public_state.SetValueNoLock(eStateStopped); 4965 4966 // Now spin up the private state thread: 4967 StartPrivateStateThread(true); 4968 } 4969 4970 thread->QueueThreadPlan( 4971 thread_plan_sp, false); // This used to pass "true" does that make sense? 4972 4973 if (options.GetDebug()) { 4974 // In this case, we aren't actually going to run, we just want to stop right 4975 // away. 4976 // Flush this thread so we will refetch the stacks and show the correct 4977 // backtrace. 4978 // FIXME: To make this prettier we should invent some stop reason for this, 4979 // but that 4980 // is only cosmetic, and this functionality is only of use to lldb 4981 // developers who can 4982 // live with not pretty... 4983 thread->Flush(); 4984 return eExpressionStoppedForDebug; 4985 } 4986 4987 ListenerSP listener_sp( 4988 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4989 4990 lldb::EventSP event_to_broadcast_sp; 4991 4992 { 4993 // This process event hijacker Hijacks the Public events and its destructor 4994 // makes sure that the process events get 4995 // restored on exit to the function. 4996 // 4997 // If the event needs to propagate beyond the hijacker (e.g., the process 4998 // exits during execution), then the event 4999 // is put into event_to_broadcast_sp for rebroadcasting. 5000 5001 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 5002 5003 if (log) { 5004 StreamString s; 5005 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 5006 log->Printf("Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 5007 " to run thread plan \"%s\".", 5008 thread->GetIndexID(), thread->GetID(), s.GetData()); 5009 } 5010 5011 bool got_event; 5012 lldb::EventSP event_sp; 5013 lldb::StateType stop_state = lldb::eStateInvalid; 5014 5015 bool before_first_timeout = true; // This is set to false the first time 5016 // that we have to halt the target. 5017 bool do_resume = true; 5018 bool handle_running_event = true; 5019 5020 // This is just for accounting: 5021 uint32_t num_resumes = 0; 5022 5023 // If we are going to run all threads the whole time, or if we are only 5024 // going to run one thread, then we don't need the first timeout. So we 5025 // pretend we are after the first timeout already. 5026 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 5027 before_first_timeout = false; 5028 5029 if (log) 5030 log->Printf("Stop others: %u, try all: %u, before_first: %u.\n", 5031 options.GetStopOthers(), options.GetTryAllThreads(), 5032 before_first_timeout); 5033 5034 // This isn't going to work if there are unfetched events on the queue. 5035 // Are there cases where we might want to run the remaining events here, and 5036 // then try to 5037 // call the function? That's probably being too tricky for our own good. 5038 5039 Event *other_events = listener_sp->PeekAtNextEvent(); 5040 if (other_events != nullptr) { 5041 diagnostic_manager.PutString( 5042 eDiagnosticSeverityError, 5043 "RunThreadPlan called with pending events on the queue."); 5044 return eExpressionSetupError; 5045 } 5046 5047 // We also need to make sure that the next event is delivered. We might be 5048 // calling a function as part of 5049 // a thread plan, in which case the last delivered event could be the 5050 // running event, and we don't want 5051 // event coalescing to cause us to lose OUR running event... 5052 ForceNextEventDelivery(); 5053 5054 // This while loop must exit out the bottom, there's cleanup that we need to do 5055 // when we are done. 5056 // So don't call return anywhere within it. 5057 5058 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5059 // It's pretty much impossible to write test cases for things like: 5060 // One thread timeout expires, I go to halt, but the process already stopped 5061 // on the function call stop breakpoint. Turning on this define will make 5062 // us not 5063 // fetch the first event till after the halt. So if you run a quick 5064 // function, it will have 5065 // completed, and the completion event will be waiting, when you interrupt 5066 // for halt. 5067 // The expression evaluation should still succeed. 5068 bool miss_first_event = true; 5069 #endif 5070 while (true) { 5071 // We usually want to resume the process if we get to the top of the loop. 5072 // The only exception is if we get two running events with no intervening 5073 // stop, which can happen, we will just wait for then next stop event. 5074 if (log) 5075 log->Printf("Top of while loop: do_resume: %i handle_running_event: %i " 5076 "before_first_timeout: %i.", 5077 do_resume, handle_running_event, before_first_timeout); 5078 5079 if (do_resume || handle_running_event) { 5080 // Do the initial resume and wait for the running event before going 5081 // further. 5082 5083 if (do_resume) { 5084 num_resumes++; 5085 Error resume_error = PrivateResume(); 5086 if (!resume_error.Success()) { 5087 diagnostic_manager.Printf( 5088 eDiagnosticSeverityError, 5089 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 5090 resume_error.AsCString()); 5091 return_value = eExpressionSetupError; 5092 break; 5093 } 5094 } 5095 5096 got_event = 5097 listener_sp->GetEvent(event_sp, std::chrono::milliseconds(500)); 5098 if (!got_event) { 5099 if (log) 5100 log->Printf("Process::RunThreadPlan(): didn't get any event after " 5101 "resume %" PRIu32 ", exiting.", 5102 num_resumes); 5103 5104 diagnostic_manager.Printf(eDiagnosticSeverityError, 5105 "didn't get any event after resume %" PRIu32 5106 ", exiting.", 5107 num_resumes); 5108 return_value = eExpressionSetupError; 5109 break; 5110 } 5111 5112 stop_state = 5113 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5114 5115 if (stop_state != eStateRunning) { 5116 bool restarted = false; 5117 5118 if (stop_state == eStateStopped) { 5119 restarted = Process::ProcessEventData::GetRestartedFromEvent( 5120 event_sp.get()); 5121 if (log) 5122 log->Printf( 5123 "Process::RunThreadPlan(): didn't get running event after " 5124 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 5125 "handle_running_event: %i).", 5126 num_resumes, StateAsCString(stop_state), restarted, do_resume, 5127 handle_running_event); 5128 } 5129 5130 if (restarted) { 5131 // This is probably an overabundance of caution, I don't think I 5132 // should ever get a stopped & restarted 5133 // event here. But if I do, the best thing is to Halt and then get 5134 // out of here. 5135 const bool clear_thread_plans = false; 5136 const bool use_run_lock = false; 5137 Halt(clear_thread_plans, use_run_lock); 5138 } 5139 5140 diagnostic_manager.Printf( 5141 eDiagnosticSeverityError, 5142 "didn't get running event after initial resume, got %s instead.", 5143 StateAsCString(stop_state)); 5144 return_value = eExpressionSetupError; 5145 break; 5146 } 5147 5148 if (log) 5149 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 5150 // We need to call the function synchronously, so spin waiting for it to 5151 // return. 5152 // If we get interrupted while executing, we're going to lose our 5153 // context, and 5154 // won't be able to gather the result at this point. 5155 // We set the timeout AFTER the resume, since the resume takes some time 5156 // and we 5157 // don't want to charge that to the timeout. 5158 } else { 5159 if (log) 5160 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 5161 } 5162 5163 do_resume = true; 5164 handle_running_event = true; 5165 5166 // Now wait for the process to stop again: 5167 event_sp.reset(); 5168 5169 Timeout<std::micro> timeout = 5170 GetExpressionTimeout(options, before_first_timeout); 5171 if (log) { 5172 if (timeout) { 5173 auto now = system_clock::now(); 5174 log->Printf("Process::RunThreadPlan(): about to wait - now is %s - " 5175 "endpoint is %s", 5176 llvm::to_string(now).c_str(), 5177 llvm::to_string(now + *timeout).c_str()); 5178 } else { 5179 log->Printf("Process::RunThreadPlan(): about to wait forever."); 5180 } 5181 } 5182 5183 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5184 // See comment above... 5185 if (miss_first_event) { 5186 usleep(1000); 5187 miss_first_event = false; 5188 got_event = false; 5189 } else 5190 #endif 5191 got_event = listener_sp->GetEvent(event_sp, timeout); 5192 5193 if (got_event) { 5194 if (event_sp) { 5195 bool keep_going = false; 5196 if (event_sp->GetType() == eBroadcastBitInterrupt) { 5197 const bool clear_thread_plans = false; 5198 const bool use_run_lock = false; 5199 Halt(clear_thread_plans, use_run_lock); 5200 return_value = eExpressionInterrupted; 5201 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 5202 "execution halted by user interrupt."); 5203 if (log) 5204 log->Printf("Process::RunThreadPlan(): Got interrupted by " 5205 "eBroadcastBitInterrupted, exiting."); 5206 break; 5207 } else { 5208 stop_state = 5209 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5210 if (log) 5211 log->Printf( 5212 "Process::RunThreadPlan(): in while loop, got event: %s.", 5213 StateAsCString(stop_state)); 5214 5215 switch (stop_state) { 5216 case lldb::eStateStopped: { 5217 // We stopped, figure out what we are going to do now. 5218 ThreadSP thread_sp = 5219 GetThreadList().FindThreadByIndexID(thread_idx_id); 5220 if (!thread_sp) { 5221 // Ooh, our thread has vanished. Unlikely that this was 5222 // successful execution... 5223 if (log) 5224 log->Printf("Process::RunThreadPlan(): execution completed " 5225 "but our thread (index-id=%u) has vanished.", 5226 thread_idx_id); 5227 return_value = eExpressionInterrupted; 5228 } else { 5229 // If we were restarted, we just need to go back up to fetch 5230 // another event. 5231 if (Process::ProcessEventData::GetRestartedFromEvent( 5232 event_sp.get())) { 5233 if (log) { 5234 log->Printf("Process::RunThreadPlan(): Got a stop and " 5235 "restart, so we'll continue waiting."); 5236 } 5237 keep_going = true; 5238 do_resume = false; 5239 handle_running_event = true; 5240 } else { 5241 ThreadPlanSP plan = thread->GetCompletedPlan(); 5242 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 5243 5244 if (log) 5245 log->PutCString("Process::RunThreadPlan(): execution " 5246 "completed successfully."); 5247 5248 // Restore the plan state so it will get reported as 5249 // intended when we are done. 5250 thread_plan_restorer.Clean(); 5251 5252 return_value = eExpressionCompleted; 5253 } else { 5254 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5255 // Something restarted the target, so just wait for it to 5256 // stop for real. 5257 if (stop_info_sp && 5258 stop_info_sp->GetStopReason() == eStopReasonBreakpoint) { 5259 if (log) 5260 log->Printf("Process::RunThreadPlan() stopped for " 5261 "breakpoint: %s.", 5262 stop_info_sp->GetDescription()); 5263 return_value = eExpressionHitBreakpoint; 5264 if (!options.DoesIgnoreBreakpoints()) { 5265 // Restore the plan state and then force Private to 5266 // false. We are 5267 // going to stop because of this plan so we need it to 5268 // become a public 5269 // plan or it won't report correctly when we continue to 5270 // its termination 5271 // later on. 5272 thread_plan_restorer.Clean(); 5273 if (thread_plan_sp) 5274 thread_plan_sp->SetPrivate(false); 5275 event_to_broadcast_sp = event_sp; 5276 } 5277 } else { 5278 if (log) 5279 log->PutCString("Process::RunThreadPlan(): thread plan " 5280 "didn't successfully complete."); 5281 if (!options.DoesUnwindOnError()) 5282 event_to_broadcast_sp = event_sp; 5283 return_value = eExpressionInterrupted; 5284 } 5285 } 5286 } 5287 } 5288 } break; 5289 5290 case lldb::eStateRunning: 5291 // This shouldn't really happen, but sometimes we do get two 5292 // running events without an 5293 // intervening stop, and in that case we should just go back to 5294 // waiting for the stop. 5295 do_resume = false; 5296 keep_going = true; 5297 handle_running_event = false; 5298 break; 5299 5300 default: 5301 if (log) 5302 log->Printf("Process::RunThreadPlan(): execution stopped with " 5303 "unexpected state: %s.", 5304 StateAsCString(stop_state)); 5305 5306 if (stop_state == eStateExited) 5307 event_to_broadcast_sp = event_sp; 5308 5309 diagnostic_manager.PutString( 5310 eDiagnosticSeverityError, 5311 "execution stopped with unexpected state."); 5312 return_value = eExpressionInterrupted; 5313 break; 5314 } 5315 } 5316 5317 if (keep_going) 5318 continue; 5319 else 5320 break; 5321 } else { 5322 if (log) 5323 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5324 "the event pointer was null. How odd..."); 5325 return_value = eExpressionInterrupted; 5326 break; 5327 } 5328 } else { 5329 // If we didn't get an event that means we've timed out... 5330 // We will interrupt the process here. Depending on what we were asked 5331 // to do we will 5332 // either exit, or try with all threads running for the same timeout. 5333 5334 if (log) { 5335 if (options.GetTryAllThreads()) { 5336 if (before_first_timeout) { 5337 LLDB_LOG(log, 5338 "Running function with one thread timeout timed out."); 5339 } else 5340 LLDB_LOG(log, "Restarting function with all threads enabled and " 5341 "timeout: {0} timed out, abandoning execution.", 5342 timeout); 5343 } else 5344 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5345 "abandoning execution.", 5346 timeout); 5347 } 5348 5349 // It is possible that between the time we issued the Halt, and we get 5350 // around to calling Halt the target 5351 // could have stopped. That's fine, Halt will figure that out and send 5352 // the appropriate Stopped event. 5353 // BUT it is also possible that we stopped & restarted (e.g. hit a 5354 // signal with "stop" set to false.) In 5355 // that case, we'll get the stopped & restarted event, and we should go 5356 // back to waiting for the Halt's 5357 // stopped event. That's what this while loop does. 5358 5359 bool back_to_top = true; 5360 uint32_t try_halt_again = 0; 5361 bool do_halt = true; 5362 const uint32_t num_retries = 5; 5363 while (try_halt_again < num_retries) { 5364 Error halt_error; 5365 if (do_halt) { 5366 if (log) 5367 log->Printf("Process::RunThreadPlan(): Running Halt."); 5368 const bool clear_thread_plans = false; 5369 const bool use_run_lock = false; 5370 Halt(clear_thread_plans, use_run_lock); 5371 } 5372 if (halt_error.Success()) { 5373 if (log) 5374 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5375 5376 got_event = 5377 listener_sp->GetEvent(event_sp, std::chrono::milliseconds(500)); 5378 5379 if (got_event) { 5380 stop_state = 5381 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5382 if (log) { 5383 log->Printf("Process::RunThreadPlan(): Stopped with event: %s", 5384 StateAsCString(stop_state)); 5385 if (stop_state == lldb::eStateStopped && 5386 Process::ProcessEventData::GetInterruptedFromEvent( 5387 event_sp.get())) 5388 log->PutCString(" Event was the Halt interruption event."); 5389 } 5390 5391 if (stop_state == lldb::eStateStopped) { 5392 // Between the time we initiated the Halt and the time we 5393 // delivered it, the process could have 5394 // already finished its job. Check that here: 5395 5396 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5397 if (log) 5398 log->PutCString("Process::RunThreadPlan(): Even though we " 5399 "timed out, the call plan was done. " 5400 "Exiting wait loop."); 5401 return_value = eExpressionCompleted; 5402 back_to_top = false; 5403 break; 5404 } 5405 5406 if (Process::ProcessEventData::GetRestartedFromEvent( 5407 event_sp.get())) { 5408 if (log) 5409 log->PutCString("Process::RunThreadPlan(): Went to halt " 5410 "but got a restarted event, there must be " 5411 "an un-restarted stopped event so try " 5412 "again... " 5413 "Exiting wait loop."); 5414 try_halt_again++; 5415 do_halt = false; 5416 continue; 5417 } 5418 5419 if (!options.GetTryAllThreads()) { 5420 if (log) 5421 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5422 "was false, we stopped so now we're " 5423 "quitting."); 5424 return_value = eExpressionInterrupted; 5425 back_to_top = false; 5426 break; 5427 } 5428 5429 if (before_first_timeout) { 5430 // Set all the other threads to run, and return to the top of 5431 // the loop, which will continue; 5432 before_first_timeout = false; 5433 thread_plan_sp->SetStopOthers(false); 5434 if (log) 5435 log->PutCString( 5436 "Process::RunThreadPlan(): about to resume."); 5437 5438 back_to_top = true; 5439 break; 5440 } else { 5441 // Running all threads failed, so return Interrupted. 5442 if (log) 5443 log->PutCString("Process::RunThreadPlan(): running all " 5444 "threads timed out."); 5445 return_value = eExpressionInterrupted; 5446 back_to_top = false; 5447 break; 5448 } 5449 } 5450 } else { 5451 if (log) 5452 log->PutCString("Process::RunThreadPlan(): halt said it " 5453 "succeeded, but I got no event. " 5454 "I'm getting out of here passing Interrupted."); 5455 return_value = eExpressionInterrupted; 5456 back_to_top = false; 5457 break; 5458 } 5459 } else { 5460 try_halt_again++; 5461 continue; 5462 } 5463 } 5464 5465 if (!back_to_top || try_halt_again > num_retries) 5466 break; 5467 else 5468 continue; 5469 } 5470 } // END WAIT LOOP 5471 5472 // If we had to start up a temporary private state thread to run this thread 5473 // plan, shut it down now. 5474 if (backup_private_state_thread.IsJoinable()) { 5475 StopPrivateStateThread(); 5476 Error error; 5477 m_private_state_thread = backup_private_state_thread; 5478 if (stopper_base_plan_sp) { 5479 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5480 } 5481 if (old_state != eStateInvalid) 5482 m_public_state.SetValueNoLock(old_state); 5483 } 5484 5485 if (return_value != eExpressionCompleted && log) { 5486 // Print a backtrace into the log so we can figure out where we are: 5487 StreamString s; 5488 s.PutCString("Thread state after unsuccessful completion: \n"); 5489 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5490 log->PutString(s.GetString()); 5491 } 5492 // Restore the thread state if we are going to discard the plan execution. 5493 // There are three cases where this 5494 // could happen: 5495 // 1) The execution successfully completed 5496 // 2) We hit a breakpoint, and ignore_breakpoints was true 5497 // 3) We got some other error, and discard_on_error was true 5498 bool should_unwind = (return_value == eExpressionInterrupted && 5499 options.DoesUnwindOnError()) || 5500 (return_value == eExpressionHitBreakpoint && 5501 options.DoesIgnoreBreakpoints()); 5502 5503 if (return_value == eExpressionCompleted || should_unwind) { 5504 thread_plan_sp->RestoreThreadState(); 5505 } 5506 5507 // Now do some processing on the results of the run: 5508 if (return_value == eExpressionInterrupted || 5509 return_value == eExpressionHitBreakpoint) { 5510 if (log) { 5511 StreamString s; 5512 if (event_sp) 5513 event_sp->Dump(&s); 5514 else { 5515 log->PutCString("Process::RunThreadPlan(): Stop event that " 5516 "interrupted us is NULL."); 5517 } 5518 5519 StreamString ts; 5520 5521 const char *event_explanation = nullptr; 5522 5523 do { 5524 if (!event_sp) { 5525 event_explanation = "<no event>"; 5526 break; 5527 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5528 event_explanation = "<user interrupt>"; 5529 break; 5530 } else { 5531 const Process::ProcessEventData *event_data = 5532 Process::ProcessEventData::GetEventDataFromEvent( 5533 event_sp.get()); 5534 5535 if (!event_data) { 5536 event_explanation = "<no event data>"; 5537 break; 5538 } 5539 5540 Process *process = event_data->GetProcessSP().get(); 5541 5542 if (!process) { 5543 event_explanation = "<no process>"; 5544 break; 5545 } 5546 5547 ThreadList &thread_list = process->GetThreadList(); 5548 5549 uint32_t num_threads = thread_list.GetSize(); 5550 uint32_t thread_index; 5551 5552 ts.Printf("<%u threads> ", num_threads); 5553 5554 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5555 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5556 5557 if (!thread) { 5558 ts.Printf("<?> "); 5559 continue; 5560 } 5561 5562 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5563 RegisterContext *register_context = 5564 thread->GetRegisterContext().get(); 5565 5566 if (register_context) 5567 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5568 else 5569 ts.Printf("[ip unknown] "); 5570 5571 // Show the private stop info here, the public stop info will be 5572 // from the last natural stop. 5573 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5574 if (stop_info_sp) { 5575 const char *stop_desc = stop_info_sp->GetDescription(); 5576 if (stop_desc) 5577 ts.PutCString(stop_desc); 5578 } 5579 ts.Printf(">"); 5580 } 5581 5582 event_explanation = ts.GetData(); 5583 } 5584 } while (0); 5585 5586 if (event_explanation) 5587 log->Printf("Process::RunThreadPlan(): execution interrupted: %s %s", 5588 s.GetData(), event_explanation); 5589 else 5590 log->Printf("Process::RunThreadPlan(): execution interrupted: %s", 5591 s.GetData()); 5592 } 5593 5594 if (should_unwind) { 5595 if (log) 5596 log->Printf("Process::RunThreadPlan: ExecutionInterrupted - " 5597 "discarding thread plans up to %p.", 5598 static_cast<void *>(thread_plan_sp.get())); 5599 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5600 } else { 5601 if (log) 5602 log->Printf("Process::RunThreadPlan: ExecutionInterrupted - for " 5603 "plan: %p not discarding.", 5604 static_cast<void *>(thread_plan_sp.get())); 5605 } 5606 } else if (return_value == eExpressionSetupError) { 5607 if (log) 5608 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5609 5610 if (options.DoesUnwindOnError()) { 5611 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5612 } 5613 } else { 5614 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5615 if (log) 5616 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5617 return_value = eExpressionCompleted; 5618 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5619 if (log) 5620 log->PutCString( 5621 "Process::RunThreadPlan(): thread plan was discarded"); 5622 return_value = eExpressionDiscarded; 5623 } else { 5624 if (log) 5625 log->PutCString( 5626 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5627 if (options.DoesUnwindOnError() && thread_plan_sp) { 5628 if (log) 5629 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5630 "'cause unwind_on_error is set."); 5631 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5632 } 5633 } 5634 } 5635 5636 // Thread we ran the function in may have gone away because we ran the 5637 // target 5638 // Check that it's still there, and if it is put it back in the context. 5639 // Also restore the 5640 // frame in the context if it is still present. 5641 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5642 if (thread) { 5643 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5644 } 5645 5646 // Also restore the current process'es selected frame & thread, since this 5647 // function calling may 5648 // be done behind the user's back. 5649 5650 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5651 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5652 selected_stack_id.IsValid()) { 5653 // We were able to restore the selected thread, now restore the frame: 5654 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5655 StackFrameSP old_frame_sp = 5656 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5657 selected_stack_id); 5658 if (old_frame_sp) 5659 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5660 old_frame_sp.get()); 5661 } 5662 } 5663 } 5664 5665 // If the process exited during the run of the thread plan, notify everyone. 5666 5667 if (event_to_broadcast_sp) { 5668 if (log) 5669 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5670 BroadcastEvent(event_to_broadcast_sp); 5671 } 5672 5673 return return_value; 5674 } 5675 5676 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5677 const char *result_name; 5678 5679 switch (result) { 5680 case eExpressionCompleted: 5681 result_name = "eExpressionCompleted"; 5682 break; 5683 case eExpressionDiscarded: 5684 result_name = "eExpressionDiscarded"; 5685 break; 5686 case eExpressionInterrupted: 5687 result_name = "eExpressionInterrupted"; 5688 break; 5689 case eExpressionHitBreakpoint: 5690 result_name = "eExpressionHitBreakpoint"; 5691 break; 5692 case eExpressionSetupError: 5693 result_name = "eExpressionSetupError"; 5694 break; 5695 case eExpressionParseError: 5696 result_name = "eExpressionParseError"; 5697 break; 5698 case eExpressionResultUnavailable: 5699 result_name = "eExpressionResultUnavailable"; 5700 break; 5701 case eExpressionTimedOut: 5702 result_name = "eExpressionTimedOut"; 5703 break; 5704 case eExpressionStoppedForDebug: 5705 result_name = "eExpressionStoppedForDebug"; 5706 break; 5707 } 5708 return result_name; 5709 } 5710 5711 void Process::GetStatus(Stream &strm) { 5712 const StateType state = GetState(); 5713 if (StateIsStoppedState(state, false)) { 5714 if (state == eStateExited) { 5715 int exit_status = GetExitStatus(); 5716 const char *exit_description = GetExitDescription(); 5717 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5718 GetID(), exit_status, exit_status, 5719 exit_description ? exit_description : ""); 5720 } else { 5721 if (state == eStateConnected) 5722 strm.Printf("Connected to remote target.\n"); 5723 else 5724 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5725 } 5726 } else { 5727 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5728 } 5729 } 5730 5731 size_t Process::GetThreadStatus(Stream &strm, 5732 bool only_threads_with_stop_reason, 5733 uint32_t start_frame, uint32_t num_frames, 5734 uint32_t num_frames_with_source, 5735 bool stop_format) { 5736 size_t num_thread_infos_dumped = 0; 5737 5738 // You can't hold the thread list lock while calling Thread::GetStatus. That 5739 // very well might run code (e.g. if we need it 5740 // to get return values or arguments.) For that to work the process has to be 5741 // able to acquire it. So instead copy the thread 5742 // ID's, and look them up one by one: 5743 5744 uint32_t num_threads; 5745 std::vector<lldb::tid_t> thread_id_array; 5746 // Scope for thread list locker; 5747 { 5748 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5749 ThreadList &curr_thread_list = GetThreadList(); 5750 num_threads = curr_thread_list.GetSize(); 5751 uint32_t idx; 5752 thread_id_array.resize(num_threads); 5753 for (idx = 0; idx < num_threads; ++idx) 5754 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5755 } 5756 5757 for (uint32_t i = 0; i < num_threads; i++) { 5758 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5759 if (thread_sp) { 5760 if (only_threads_with_stop_reason) { 5761 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5762 if (!stop_info_sp || !stop_info_sp->IsValid()) 5763 continue; 5764 } 5765 thread_sp->GetStatus(strm, start_frame, num_frames, 5766 num_frames_with_source, 5767 stop_format); 5768 ++num_thread_infos_dumped; 5769 } else { 5770 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5771 if (log) 5772 log->Printf("Process::GetThreadStatus - thread 0x" PRIu64 5773 " vanished while running Thread::GetStatus."); 5774 } 5775 } 5776 return num_thread_infos_dumped; 5777 } 5778 5779 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5780 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5781 } 5782 5783 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5784 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5785 region.GetByteSize()); 5786 } 5787 5788 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5789 void *baton) { 5790 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5791 } 5792 5793 bool Process::RunPreResumeActions() { 5794 bool result = true; 5795 while (!m_pre_resume_actions.empty()) { 5796 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5797 m_pre_resume_actions.pop_back(); 5798 bool this_result = action.callback(action.baton); 5799 if (result) 5800 result = this_result; 5801 } 5802 return result; 5803 } 5804 5805 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5806 5807 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5808 { 5809 PreResumeCallbackAndBaton element(callback, baton); 5810 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5811 if (found_iter != m_pre_resume_actions.end()) 5812 { 5813 m_pre_resume_actions.erase(found_iter); 5814 } 5815 } 5816 5817 ProcessRunLock &Process::GetRunLock() { 5818 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5819 return m_private_run_lock; 5820 else 5821 return m_public_run_lock; 5822 } 5823 5824 void Process::Flush() { 5825 m_thread_list.Flush(); 5826 m_extended_thread_list.Flush(); 5827 m_extended_thread_stop_id = 0; 5828 m_queue_list.Clear(); 5829 m_queue_list_stop_id = 0; 5830 } 5831 5832 void Process::DidExec() { 5833 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 5834 if (log) 5835 log->Printf("Process::%s()", __FUNCTION__); 5836 5837 Target &target = GetTarget(); 5838 target.CleanupProcess(); 5839 target.ClearModules(false); 5840 m_dynamic_checkers_ap.reset(); 5841 m_abi_sp.reset(); 5842 m_system_runtime_ap.reset(); 5843 m_os_ap.reset(); 5844 m_dyld_ap.reset(); 5845 m_jit_loaders_ap.reset(); 5846 m_image_tokens.clear(); 5847 m_allocated_memory_cache.Clear(); 5848 m_language_runtimes.clear(); 5849 m_instrumentation_runtimes.clear(); 5850 m_thread_list.DiscardThreadPlans(); 5851 m_memory_cache.Clear(true); 5852 m_stop_info_override_callback = nullptr; 5853 DoDidExec(); 5854 CompleteAttach(); 5855 // Flush the process (threads and all stack frames) after running 5856 // CompleteAttach() 5857 // in case the dynamic loader loaded things in new locations. 5858 Flush(); 5859 5860 // After we figure out what was loaded/unloaded in CompleteAttach, 5861 // we need to let the target know so it can do any cleanup it needs to. 5862 target.DidExec(); 5863 } 5864 5865 addr_t Process::ResolveIndirectFunction(const Address *address, Error &error) { 5866 if (address == nullptr) { 5867 error.SetErrorString("Invalid address argument"); 5868 return LLDB_INVALID_ADDRESS; 5869 } 5870 5871 addr_t function_addr = LLDB_INVALID_ADDRESS; 5872 5873 addr_t addr = address->GetLoadAddress(&GetTarget()); 5874 std::map<addr_t, addr_t>::const_iterator iter = 5875 m_resolved_indirect_addresses.find(addr); 5876 if (iter != m_resolved_indirect_addresses.end()) { 5877 function_addr = (*iter).second; 5878 } else { 5879 if (!InferiorCall(this, address, function_addr)) { 5880 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5881 error.SetErrorStringWithFormat( 5882 "Unable to call resolver for indirect function %s", 5883 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5884 function_addr = LLDB_INVALID_ADDRESS; 5885 } else { 5886 m_resolved_indirect_addresses.insert( 5887 std::pair<addr_t, addr_t>(addr, function_addr)); 5888 } 5889 } 5890 return function_addr; 5891 } 5892 5893 void Process::ModulesDidLoad(ModuleList &module_list) { 5894 SystemRuntime *sys_runtime = GetSystemRuntime(); 5895 if (sys_runtime) { 5896 sys_runtime->ModulesDidLoad(module_list); 5897 } 5898 5899 GetJITLoaders().ModulesDidLoad(module_list); 5900 5901 // Give runtimes a chance to be created. 5902 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5903 m_instrumentation_runtimes); 5904 5905 // Tell runtimes about new modules. 5906 for (auto pos = m_instrumentation_runtimes.begin(); 5907 pos != m_instrumentation_runtimes.end(); ++pos) { 5908 InstrumentationRuntimeSP runtime = pos->second; 5909 runtime->ModulesDidLoad(module_list); 5910 } 5911 5912 // Let any language runtimes we have already created know 5913 // about the modules that loaded. 5914 5915 // Iterate over a copy of this language runtime list in case 5916 // the language runtime ModulesDidLoad somehow causes the language 5917 // riuntime to be unloaded. 5918 LanguageRuntimeCollection language_runtimes(m_language_runtimes); 5919 for (const auto &pair : language_runtimes) { 5920 // We must check language_runtime_sp to make sure it is not 5921 // nullptr as we might cache the fact that we didn't have a 5922 // language runtime for a language. 5923 LanguageRuntimeSP language_runtime_sp = pair.second; 5924 if (language_runtime_sp) 5925 language_runtime_sp->ModulesDidLoad(module_list); 5926 } 5927 5928 // If we don't have an operating system plug-in, try to load one since 5929 // loading shared libraries might cause a new one to try and load 5930 if (!m_os_ap) 5931 LoadOperatingSystemPlugin(false); 5932 5933 // Give structured-data plugins a chance to see the modified modules. 5934 for (auto pair : m_structured_data_plugin_map) { 5935 if (pair.second) 5936 pair.second->ModulesDidLoad(*this, module_list); 5937 } 5938 } 5939 5940 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5941 const char *fmt, ...) { 5942 bool print_warning = true; 5943 5944 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5945 if (!stream_sp) 5946 return; 5947 if (warning_type == eWarningsOptimization && !GetWarningsOptimization()) { 5948 return; 5949 } 5950 5951 if (repeat_key != nullptr) { 5952 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5953 if (it == m_warnings_issued.end()) { 5954 m_warnings_issued[warning_type] = WarningsPointerSet(); 5955 m_warnings_issued[warning_type].insert(repeat_key); 5956 } else { 5957 if (it->second.find(repeat_key) != it->second.end()) { 5958 print_warning = false; 5959 } else { 5960 it->second.insert(repeat_key); 5961 } 5962 } 5963 } 5964 5965 if (print_warning) { 5966 va_list args; 5967 va_start(args, fmt); 5968 stream_sp->PrintfVarArg(fmt, args); 5969 va_end(args); 5970 } 5971 } 5972 5973 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5974 if (GetWarningsOptimization() && sc.module_sp && 5975 !sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5976 sc.function->GetIsOptimized()) { 5977 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5978 "%s was compiled with optimization - stepping may behave " 5979 "oddly; variables may not be available.\n", 5980 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5981 } 5982 } 5983 5984 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5985 info.Clear(); 5986 5987 PlatformSP platform_sp = GetTarget().GetPlatform(); 5988 if (!platform_sp) 5989 return false; 5990 5991 return platform_sp->GetProcessInfo(GetID(), info); 5992 } 5993 5994 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5995 ThreadCollectionSP threads; 5996 5997 const MemoryHistorySP &memory_history = 5998 MemoryHistory::FindPlugin(shared_from_this()); 5999 6000 if (!memory_history) { 6001 return threads; 6002 } 6003 6004 threads.reset(new ThreadCollection(memory_history->GetHistoryThreads(addr))); 6005 6006 return threads; 6007 } 6008 6009 InstrumentationRuntimeSP 6010 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 6011 InstrumentationRuntimeCollection::iterator pos; 6012 pos = m_instrumentation_runtimes.find(type); 6013 if (pos == m_instrumentation_runtimes.end()) { 6014 return InstrumentationRuntimeSP(); 6015 } else 6016 return (*pos).second; 6017 } 6018 6019 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 6020 const ArchSpec &arch, ModuleSpec &module_spec) { 6021 module_spec.Clear(); 6022 return false; 6023 } 6024 6025 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 6026 m_image_tokens.push_back(image_ptr); 6027 return m_image_tokens.size() - 1; 6028 } 6029 6030 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 6031 if (token < m_image_tokens.size()) 6032 return m_image_tokens[token]; 6033 return LLDB_INVALID_IMAGE_TOKEN; 6034 } 6035 6036 void Process::ResetImageToken(size_t token) { 6037 if (token < m_image_tokens.size()) 6038 m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN; 6039 } 6040 6041 Address 6042 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 6043 AddressRange range_bounds) { 6044 Target &target = GetTarget(); 6045 DisassemblerSP disassembler_sp; 6046 InstructionList *insn_list = nullptr; 6047 6048 Address retval = default_stop_addr; 6049 6050 if (!target.GetUseFastStepping()) 6051 return retval; 6052 if (!default_stop_addr.IsValid()) 6053 return retval; 6054 6055 ExecutionContext exe_ctx(this); 6056 const char *plugin_name = nullptr; 6057 const char *flavor = nullptr; 6058 const bool prefer_file_cache = true; 6059 disassembler_sp = Disassembler::DisassembleRange( 6060 target.GetArchitecture(), plugin_name, flavor, exe_ctx, range_bounds, 6061 prefer_file_cache); 6062 if (disassembler_sp) 6063 insn_list = &disassembler_sp->GetInstructionList(); 6064 6065 if (insn_list == nullptr) { 6066 return retval; 6067 } 6068 6069 size_t insn_offset = 6070 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 6071 if (insn_offset == UINT32_MAX) { 6072 return retval; 6073 } 6074 6075 uint32_t branch_index = 6076 insn_list->GetIndexOfNextBranchInstruction(insn_offset, target); 6077 if (branch_index == UINT32_MAX) { 6078 return retval; 6079 } 6080 6081 if (branch_index > insn_offset) { 6082 Address next_branch_insn_address = 6083 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 6084 if (next_branch_insn_address.IsValid() && 6085 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 6086 retval = next_branch_insn_address; 6087 } 6088 } 6089 6090 return retval; 6091 } 6092 6093 Error Process::GetMemoryRegions( 6094 std::vector<lldb::MemoryRegionInfoSP> ®ion_list) { 6095 6096 Error error; 6097 6098 lldb::addr_t range_end = 0; 6099 6100 region_list.clear(); 6101 do { 6102 lldb::MemoryRegionInfoSP region_info(new lldb_private::MemoryRegionInfo()); 6103 error = GetMemoryRegionInfo(range_end, *region_info); 6104 // GetMemoryRegionInfo should only return an error if it is unimplemented. 6105 if (error.Fail()) { 6106 region_list.clear(); 6107 break; 6108 } 6109 6110 range_end = region_info->GetRange().GetRangeEnd(); 6111 if (region_info->GetMapped() == MemoryRegionInfo::eYes) { 6112 region_list.push_back(region_info); 6113 } 6114 } while (range_end != LLDB_INVALID_ADDRESS); 6115 6116 return error; 6117 } 6118 6119 Error Process::ConfigureStructuredData( 6120 const ConstString &type_name, const StructuredData::ObjectSP &config_sp) { 6121 // If you get this, the Process-derived class needs to implement a method 6122 // to enable an already-reported asynchronous structured data feature. 6123 // See ProcessGDBRemote for an example implementation over gdb-remote. 6124 return Error("unimplemented"); 6125 } 6126 6127 void Process::MapSupportedStructuredDataPlugins( 6128 const StructuredData::Array &supported_type_names) { 6129 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 6130 6131 // Bail out early if there are no type names to map. 6132 if (supported_type_names.GetSize() == 0) { 6133 if (log) 6134 log->Printf("Process::%s(): no structured data types supported", 6135 __FUNCTION__); 6136 return; 6137 } 6138 6139 // Convert StructuredData type names to ConstString instances. 6140 std::set<ConstString> const_type_names; 6141 6142 if (log) 6143 log->Printf("Process::%s(): the process supports the following async " 6144 "structured data types:", 6145 __FUNCTION__); 6146 6147 supported_type_names.ForEach( 6148 [&const_type_names, &log](StructuredData::Object *object) { 6149 if (!object) { 6150 // Invalid - shouldn't be null objects in the array. 6151 return false; 6152 } 6153 6154 auto type_name = object->GetAsString(); 6155 if (!type_name) { 6156 // Invalid format - all type names should be strings. 6157 return false; 6158 } 6159 6160 const_type_names.insert(ConstString(type_name->GetValue())); 6161 if (log) 6162 log->Printf("- %s", type_name->GetValue().c_str()); 6163 return true; 6164 }); 6165 6166 // For each StructuredDataPlugin, if the plugin handles any of the 6167 // types in the supported_type_names, map that type name to that plugin. 6168 uint32_t plugin_index = 0; 6169 for (auto create_instance = 6170 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 6171 plugin_index); 6172 create_instance && !const_type_names.empty(); ++plugin_index) { 6173 // Create the plugin. 6174 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 6175 if (!plugin_sp) { 6176 // This plugin doesn't think it can work with the process. 6177 // Move on to the next. 6178 continue; 6179 } 6180 6181 // For any of the remaining type names, map any that this plugin 6182 // supports. 6183 std::vector<ConstString> names_to_remove; 6184 for (auto &type_name : const_type_names) { 6185 if (plugin_sp->SupportsStructuredDataType(type_name)) { 6186 m_structured_data_plugin_map.insert( 6187 std::make_pair(type_name, plugin_sp)); 6188 names_to_remove.push_back(type_name); 6189 if (log) 6190 log->Printf("Process::%s(): using plugin %s for type name " 6191 "%s", 6192 __FUNCTION__, plugin_sp->GetPluginName().GetCString(), 6193 type_name.GetCString()); 6194 } 6195 } 6196 6197 // Remove the type names that were consumed by this plugin. 6198 for (auto &type_name : names_to_remove) 6199 const_type_names.erase(type_name); 6200 } 6201 } 6202 6203 bool Process::RouteAsyncStructuredData( 6204 const StructuredData::ObjectSP object_sp) { 6205 // Nothing to do if there's no data. 6206 if (!object_sp) 6207 return false; 6208 6209 // The contract is this must be a dictionary, so we can look up the 6210 // routing key via the top-level 'type' string value within the dictionary. 6211 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 6212 if (!dictionary) 6213 return false; 6214 6215 // Grab the async structured type name (i.e. the feature/plugin name). 6216 ConstString type_name; 6217 if (!dictionary->GetValueForKeyAsString("type", type_name)) 6218 return false; 6219 6220 // Check if there's a plugin registered for this type name. 6221 auto find_it = m_structured_data_plugin_map.find(type_name); 6222 if (find_it == m_structured_data_plugin_map.end()) { 6223 // We don't have a mapping for this structured data type. 6224 return false; 6225 } 6226 6227 // Route the structured data to the plugin. 6228 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 6229 return true; 6230 } 6231 6232 Error Process::UpdateAutomaticSignalFiltering() { 6233 // Default implementation does nothign. 6234 // No automatic signal filtering to speak of. 6235 return Error(); 6236 } 6237