1 //===-- Process.cpp ---------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <atomic> 10 #include <mutex> 11 12 #include "llvm/Support/ScopedPrinter.h" 13 #include "llvm/Support/Threading.h" 14 15 #include "Plugins/Process/Utility/InferiorCallPOSIX.h" 16 #include "lldb/Breakpoint/BreakpointLocation.h" 17 #include "lldb/Breakpoint/StoppointCallbackContext.h" 18 #include "lldb/Core/Debugger.h" 19 #include "lldb/Core/Module.h" 20 #include "lldb/Core/ModuleSpec.h" 21 #include "lldb/Core/PluginManager.h" 22 #include "lldb/Core/StreamFile.h" 23 #include "lldb/Expression/DiagnosticManager.h" 24 #include "lldb/Expression/IRDynamicChecks.h" 25 #include "lldb/Expression/UserExpression.h" 26 #include "lldb/Expression/UtilityFunction.h" 27 #include "lldb/Host/ConnectionFileDescriptor.h" 28 #include "lldb/Host/FileSystem.h" 29 #include "lldb/Host/Host.h" 30 #include "lldb/Host/HostInfo.h" 31 #include "lldb/Host/OptionParser.h" 32 #include "lldb/Host/Pipe.h" 33 #include "lldb/Host/Terminal.h" 34 #include "lldb/Host/ThreadLauncher.h" 35 #include "lldb/Interpreter/CommandInterpreter.h" 36 #include "lldb/Interpreter/OptionArgParser.h" 37 #include "lldb/Interpreter/OptionValueProperties.h" 38 #include "lldb/Symbol/Function.h" 39 #include "lldb/Symbol/Symbol.h" 40 #include "lldb/Target/ABI.h" 41 #include "lldb/Target/CPPLanguageRuntime.h" 42 #include "lldb/Target/DynamicLoader.h" 43 #include "lldb/Target/InstrumentationRuntime.h" 44 #include "lldb/Target/JITLoader.h" 45 #include "lldb/Target/JITLoaderList.h" 46 #include "lldb/Target/LanguageRuntime.h" 47 #include "lldb/Target/MemoryHistory.h" 48 #include "lldb/Target/MemoryRegionInfo.h" 49 #include "lldb/Target/ObjCLanguageRuntime.h" 50 #include "lldb/Target/OperatingSystem.h" 51 #include "lldb/Target/Platform.h" 52 #include "lldb/Target/Process.h" 53 #include "lldb/Target/RegisterContext.h" 54 #include "lldb/Target/StopInfo.h" 55 #include "lldb/Target/StructuredDataPlugin.h" 56 #include "lldb/Target/SystemRuntime.h" 57 #include "lldb/Target/Target.h" 58 #include "lldb/Target/TargetList.h" 59 #include "lldb/Target/Thread.h" 60 #include "lldb/Target/ThreadPlan.h" 61 #include "lldb/Target/ThreadPlanBase.h" 62 #include "lldb/Target/UnixSignals.h" 63 #include "lldb/Utility/Event.h" 64 #include "lldb/Utility/Log.h" 65 #include "lldb/Utility/NameMatches.h" 66 #include "lldb/Utility/SelectHelper.h" 67 #include "lldb/Utility/State.h" 68 69 using namespace lldb; 70 using namespace lldb_private; 71 using namespace std::chrono; 72 73 // Comment out line below to disable memory caching, overriding the process 74 // setting target.process.disable-memory-cache 75 #define ENABLE_MEMORY_CACHING 76 77 #ifdef ENABLE_MEMORY_CACHING 78 #define DISABLE_MEM_CACHE_DEFAULT false 79 #else 80 #define DISABLE_MEM_CACHE_DEFAULT true 81 #endif 82 83 class ProcessOptionValueProperties : public OptionValueProperties { 84 public: 85 ProcessOptionValueProperties(const ConstString &name) 86 : OptionValueProperties(name) {} 87 88 // This constructor is used when creating ProcessOptionValueProperties when 89 // it is part of a new lldb_private::Process instance. It will copy all 90 // current global property values as needed 91 ProcessOptionValueProperties(ProcessProperties *global_properties) 92 : OptionValueProperties(*global_properties->GetValueProperties()) {} 93 94 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 95 bool will_modify, 96 uint32_t idx) const override { 97 // When getting the value for a key from the process options, we will 98 // always try and grab the setting from the current process if there is 99 // one. Else we just use the one from this instance. 100 if (exe_ctx) { 101 Process *process = exe_ctx->GetProcessPtr(); 102 if (process) { 103 ProcessOptionValueProperties *instance_properties = 104 static_cast<ProcessOptionValueProperties *>( 105 process->GetValueProperties().get()); 106 if (this != instance_properties) 107 return instance_properties->ProtectedGetPropertyAtIndex(idx); 108 } 109 } 110 return ProtectedGetPropertyAtIndex(idx); 111 } 112 }; 113 114 static constexpr PropertyDefinition g_properties[] = { 115 {"disable-memory-cache", OptionValue::eTypeBoolean, false, 116 DISABLE_MEM_CACHE_DEFAULT, nullptr, {}, 117 "Disable reading and caching of memory in fixed-size units."}, 118 {"extra-startup-command", OptionValue::eTypeArray, false, 119 OptionValue::eTypeString, nullptr, {}, 120 "A list containing extra commands understood by the particular process " 121 "plugin used. " 122 "For instance, to turn on debugserver logging set this to " 123 "\"QSetLogging:bitmask=LOG_DEFAULT;\""}, 124 {"ignore-breakpoints-in-expressions", OptionValue::eTypeBoolean, true, true, 125 nullptr, {}, 126 "If true, breakpoints will be ignored during expression evaluation."}, 127 {"unwind-on-error-in-expressions", OptionValue::eTypeBoolean, true, true, 128 nullptr, {}, "If true, errors in expression evaluation will unwind " 129 "the stack back to the state before the call."}, 130 {"python-os-plugin-path", OptionValue::eTypeFileSpec, false, true, nullptr, 131 {}, "A path to a python OS plug-in module file that contains a " 132 "OperatingSystemPlugIn class."}, 133 {"stop-on-sharedlibrary-events", OptionValue::eTypeBoolean, true, false, 134 nullptr, {}, 135 "If true, stop when a shared library is loaded or unloaded."}, 136 {"detach-keeps-stopped", OptionValue::eTypeBoolean, true, false, nullptr, 137 {}, "If true, detach will attempt to keep the process stopped."}, 138 {"memory-cache-line-size", OptionValue::eTypeUInt64, false, 512, nullptr, 139 {}, "The memory cache line size"}, 140 {"optimization-warnings", OptionValue::eTypeBoolean, false, true, nullptr, 141 {}, "If true, warn when stopped in code that is optimized where " 142 "stepping and variable availability may not behave as expected."}, 143 {"stop-on-exec", OptionValue::eTypeBoolean, true, true, 144 nullptr, {}, 145 "If true, stop when a shared library is loaded or unloaded."}}; 146 147 enum { 148 ePropertyDisableMemCache, 149 ePropertyExtraStartCommand, 150 ePropertyIgnoreBreakpointsInExpressions, 151 ePropertyUnwindOnErrorInExpressions, 152 ePropertyPythonOSPluginPath, 153 ePropertyStopOnSharedLibraryEvents, 154 ePropertyDetachKeepsStopped, 155 ePropertyMemCacheLineSize, 156 ePropertyWarningOptimization, 157 ePropertyStopOnExec 158 }; 159 160 ProcessProperties::ProcessProperties(lldb_private::Process *process) 161 : Properties(), 162 m_process(process) // Can be nullptr for global ProcessProperties 163 { 164 if (process == nullptr) { 165 // Global process properties, set them up one time 166 m_collection_sp.reset( 167 new ProcessOptionValueProperties(ConstString("process"))); 168 m_collection_sp->Initialize(g_properties); 169 m_collection_sp->AppendProperty( 170 ConstString("thread"), ConstString("Settings specific to threads."), 171 true, Thread::GetGlobalProperties()->GetValueProperties()); 172 } else { 173 m_collection_sp.reset( 174 new ProcessOptionValueProperties(Process::GetGlobalProperties().get())); 175 m_collection_sp->SetValueChangedCallback( 176 ePropertyPythonOSPluginPath, 177 ProcessProperties::OptionValueChangedCallback, this); 178 } 179 } 180 181 ProcessProperties::~ProcessProperties() = default; 182 183 void ProcessProperties::OptionValueChangedCallback(void *baton, 184 OptionValue *option_value) { 185 ProcessProperties *properties = (ProcessProperties *)baton; 186 if (properties->m_process) 187 properties->m_process->LoadOperatingSystemPlugin(true); 188 } 189 190 bool ProcessProperties::GetDisableMemoryCache() const { 191 const uint32_t idx = ePropertyDisableMemCache; 192 return m_collection_sp->GetPropertyAtIndexAsBoolean( 193 nullptr, idx, g_properties[idx].default_uint_value != 0); 194 } 195 196 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 197 const uint32_t idx = ePropertyMemCacheLineSize; 198 return m_collection_sp->GetPropertyAtIndexAsUInt64( 199 nullptr, idx, g_properties[idx].default_uint_value); 200 } 201 202 Args ProcessProperties::GetExtraStartupCommands() const { 203 Args args; 204 const uint32_t idx = ePropertyExtraStartCommand; 205 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 206 return args; 207 } 208 209 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 210 const uint32_t idx = ePropertyExtraStartCommand; 211 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 212 } 213 214 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 215 const uint32_t idx = ePropertyPythonOSPluginPath; 216 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 217 } 218 219 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 220 const uint32_t idx = ePropertyPythonOSPluginPath; 221 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 222 } 223 224 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 225 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 226 return m_collection_sp->GetPropertyAtIndexAsBoolean( 227 nullptr, idx, g_properties[idx].default_uint_value != 0); 228 } 229 230 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 231 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 232 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 233 } 234 235 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 236 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 237 return m_collection_sp->GetPropertyAtIndexAsBoolean( 238 nullptr, idx, g_properties[idx].default_uint_value != 0); 239 } 240 241 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 242 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 243 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 244 } 245 246 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 247 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 248 return m_collection_sp->GetPropertyAtIndexAsBoolean( 249 nullptr, idx, g_properties[idx].default_uint_value != 0); 250 } 251 252 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 253 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 254 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 255 } 256 257 bool ProcessProperties::GetDetachKeepsStopped() const { 258 const uint32_t idx = ePropertyDetachKeepsStopped; 259 return m_collection_sp->GetPropertyAtIndexAsBoolean( 260 nullptr, idx, g_properties[idx].default_uint_value != 0); 261 } 262 263 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 264 const uint32_t idx = ePropertyDetachKeepsStopped; 265 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 266 } 267 268 bool ProcessProperties::GetWarningsOptimization() const { 269 const uint32_t idx = ePropertyWarningOptimization; 270 return m_collection_sp->GetPropertyAtIndexAsBoolean( 271 nullptr, idx, g_properties[idx].default_uint_value != 0); 272 } 273 274 bool ProcessProperties::GetStopOnExec() const { 275 const uint32_t idx = ePropertyStopOnExec; 276 return m_collection_sp->GetPropertyAtIndexAsBoolean( 277 nullptr, idx, g_properties[idx].default_uint_value != 0); 278 } 279 280 void ProcessInstanceInfo::Dump(Stream &s, Platform *platform) const { 281 const char *cstr; 282 if (m_pid != LLDB_INVALID_PROCESS_ID) 283 s.Printf(" pid = %" PRIu64 "\n", m_pid); 284 285 if (m_parent_pid != LLDB_INVALID_PROCESS_ID) 286 s.Printf(" parent = %" PRIu64 "\n", m_parent_pid); 287 288 if (m_executable) { 289 s.Printf(" name = %s\n", m_executable.GetFilename().GetCString()); 290 s.PutCString(" file = "); 291 m_executable.Dump(&s); 292 s.EOL(); 293 } 294 const uint32_t argc = m_arguments.GetArgumentCount(); 295 if (argc > 0) { 296 for (uint32_t i = 0; i < argc; i++) { 297 const char *arg = m_arguments.GetArgumentAtIndex(i); 298 if (i < 10) 299 s.Printf(" arg[%u] = %s\n", i, arg); 300 else 301 s.Printf("arg[%u] = %s\n", i, arg); 302 } 303 } 304 305 s.Format("{0}", m_environment); 306 307 if (m_arch.IsValid()) { 308 s.Printf(" arch = "); 309 m_arch.DumpTriple(s); 310 s.EOL(); 311 } 312 313 if (m_uid != UINT32_MAX) { 314 cstr = platform->GetUserName(m_uid); 315 s.Printf(" uid = %-5u (%s)\n", m_uid, cstr ? cstr : ""); 316 } 317 if (m_gid != UINT32_MAX) { 318 cstr = platform->GetGroupName(m_gid); 319 s.Printf(" gid = %-5u (%s)\n", m_gid, cstr ? cstr : ""); 320 } 321 if (m_euid != UINT32_MAX) { 322 cstr = platform->GetUserName(m_euid); 323 s.Printf(" euid = %-5u (%s)\n", m_euid, cstr ? cstr : ""); 324 } 325 if (m_egid != UINT32_MAX) { 326 cstr = platform->GetGroupName(m_egid); 327 s.Printf(" egid = %-5u (%s)\n", m_egid, cstr ? cstr : ""); 328 } 329 } 330 331 void ProcessInstanceInfo::DumpTableHeader(Stream &s, Platform *platform, 332 bool show_args, bool verbose) { 333 const char *label; 334 if (show_args || verbose) 335 label = "ARGUMENTS"; 336 else 337 label = "NAME"; 338 339 if (verbose) { 340 s.Printf("PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE " 341 " %s\n", 342 label); 343 s.PutCString("====== ====== ========== ========== ========== ========== " 344 "======================== ============================\n"); 345 } else { 346 s.Printf("PID PARENT USER TRIPLE %s\n", label); 347 s.PutCString("====== ====== ========== ======================== " 348 "============================\n"); 349 } 350 } 351 352 void ProcessInstanceInfo::DumpAsTableRow(Stream &s, Platform *platform, 353 bool show_args, bool verbose) const { 354 if (m_pid != LLDB_INVALID_PROCESS_ID) { 355 const char *cstr; 356 s.Printf("%-6" PRIu64 " %-6" PRIu64 " ", m_pid, m_parent_pid); 357 358 StreamString arch_strm; 359 if (m_arch.IsValid()) 360 m_arch.DumpTriple(arch_strm); 361 362 if (verbose) { 363 cstr = platform->GetUserName(m_uid); 364 if (cstr && 365 cstr[0]) // Watch for empty string that indicates lookup failed 366 s.Printf("%-10s ", cstr); 367 else 368 s.Printf("%-10u ", m_uid); 369 370 cstr = platform->GetGroupName(m_gid); 371 if (cstr && 372 cstr[0]) // Watch for empty string that indicates lookup failed 373 s.Printf("%-10s ", cstr); 374 else 375 s.Printf("%-10u ", m_gid); 376 377 cstr = platform->GetUserName(m_euid); 378 if (cstr && 379 cstr[0]) // Watch for empty string that indicates lookup failed 380 s.Printf("%-10s ", cstr); 381 else 382 s.Printf("%-10u ", m_euid); 383 384 cstr = platform->GetGroupName(m_egid); 385 if (cstr && 386 cstr[0]) // Watch for empty string that indicates lookup failed 387 s.Printf("%-10s ", cstr); 388 else 389 s.Printf("%-10u ", m_egid); 390 391 s.Printf("%-24s ", arch_strm.GetData()); 392 } else { 393 s.Printf("%-10s %-24s ", platform->GetUserName(m_euid), 394 arch_strm.GetData()); 395 } 396 397 if (verbose || show_args) { 398 const uint32_t argc = m_arguments.GetArgumentCount(); 399 if (argc > 0) { 400 for (uint32_t i = 0; i < argc; i++) { 401 if (i > 0) 402 s.PutChar(' '); 403 s.PutCString(m_arguments.GetArgumentAtIndex(i)); 404 } 405 } 406 } else { 407 s.PutCString(GetName()); 408 } 409 410 s.EOL(); 411 } 412 } 413 414 Status ProcessLaunchCommandOptions::SetOptionValue( 415 uint32_t option_idx, llvm::StringRef option_arg, 416 ExecutionContext *execution_context) { 417 Status error; 418 const int short_option = m_getopt_table[option_idx].val; 419 420 switch (short_option) { 421 case 's': // Stop at program entry point 422 launch_info.GetFlags().Set(eLaunchFlagStopAtEntry); 423 break; 424 425 case 'i': // STDIN for read only 426 { 427 FileAction action; 428 if (action.Open(STDIN_FILENO, FileSpec(option_arg), true, false)) 429 launch_info.AppendFileAction(action); 430 break; 431 } 432 433 case 'o': // Open STDOUT for write only 434 { 435 FileAction action; 436 if (action.Open(STDOUT_FILENO, FileSpec(option_arg), false, true)) 437 launch_info.AppendFileAction(action); 438 break; 439 } 440 441 case 'e': // STDERR for write only 442 { 443 FileAction action; 444 if (action.Open(STDERR_FILENO, FileSpec(option_arg), false, true)) 445 launch_info.AppendFileAction(action); 446 break; 447 } 448 449 case 'p': // Process plug-in name 450 launch_info.SetProcessPluginName(option_arg); 451 break; 452 453 case 'n': // Disable STDIO 454 { 455 FileAction action; 456 const FileSpec dev_null(FileSystem::DEV_NULL); 457 if (action.Open(STDIN_FILENO, dev_null, true, false)) 458 launch_info.AppendFileAction(action); 459 if (action.Open(STDOUT_FILENO, dev_null, false, true)) 460 launch_info.AppendFileAction(action); 461 if (action.Open(STDERR_FILENO, dev_null, false, true)) 462 launch_info.AppendFileAction(action); 463 break; 464 } 465 466 case 'w': 467 launch_info.SetWorkingDirectory(FileSpec(option_arg)); 468 break; 469 470 case 't': // Open process in new terminal window 471 launch_info.GetFlags().Set(eLaunchFlagLaunchInTTY); 472 break; 473 474 case 'a': { 475 TargetSP target_sp = 476 execution_context ? execution_context->GetTargetSP() : TargetSP(); 477 PlatformSP platform_sp = 478 target_sp ? target_sp->GetPlatform() : PlatformSP(); 479 launch_info.GetArchitecture() = 480 Platform::GetAugmentedArchSpec(platform_sp.get(), option_arg); 481 } break; 482 483 case 'A': // Disable ASLR. 484 { 485 bool success; 486 const bool disable_aslr_arg = 487 OptionArgParser::ToBoolean(option_arg, true, &success); 488 if (success) 489 disable_aslr = disable_aslr_arg ? eLazyBoolYes : eLazyBoolNo; 490 else 491 error.SetErrorStringWithFormat( 492 "Invalid boolean value for disable-aslr option: '%s'", 493 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 494 break; 495 } 496 497 case 'X': // shell expand args. 498 { 499 bool success; 500 const bool expand_args = 501 OptionArgParser::ToBoolean(option_arg, true, &success); 502 if (success) 503 launch_info.SetShellExpandArguments(expand_args); 504 else 505 error.SetErrorStringWithFormat( 506 "Invalid boolean value for shell-expand-args option: '%s'", 507 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 508 break; 509 } 510 511 case 'c': 512 if (!option_arg.empty()) 513 launch_info.SetShell(FileSpec(option_arg)); 514 else 515 launch_info.SetShell(HostInfo::GetDefaultShell()); 516 break; 517 518 case 'v': 519 launch_info.GetEnvironment().insert(option_arg); 520 break; 521 522 default: 523 error.SetErrorStringWithFormat("unrecognized short option character '%c'", 524 short_option); 525 break; 526 } 527 return error; 528 } 529 530 static constexpr OptionDefinition g_process_launch_options[] = { 531 {LLDB_OPT_SET_ALL, false, "stop-at-entry", 's', OptionParser::eNoArgument, 532 nullptr, {}, 0, eArgTypeNone, 533 "Stop at the entry point of the program when launching a process."}, 534 {LLDB_OPT_SET_ALL, false, "disable-aslr", 'A', 535 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeBoolean, 536 "Set whether to disable address space layout randomization when launching " 537 "a process."}, 538 {LLDB_OPT_SET_ALL, false, "plugin", 'p', OptionParser::eRequiredArgument, 539 nullptr, {}, 0, eArgTypePlugin, 540 "Name of the process plugin you want to use."}, 541 {LLDB_OPT_SET_ALL, false, "working-dir", 'w', 542 OptionParser::eRequiredArgument, nullptr, {}, 0, 543 eArgTypeDirectoryName, 544 "Set the current working directory to <path> when running the inferior."}, 545 {LLDB_OPT_SET_ALL, false, "arch", 'a', OptionParser::eRequiredArgument, 546 nullptr, {}, 0, eArgTypeArchitecture, 547 "Set the architecture for the process to launch when ambiguous."}, 548 {LLDB_OPT_SET_ALL, false, "environment", 'v', 549 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeNone, 550 "Specify an environment variable name/value string (--environment " 551 "NAME=VALUE). Can be specified multiple times for subsequent environment " 552 "entries."}, 553 {LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3, false, "shell", 'c', 554 OptionParser::eOptionalArgument, nullptr, {}, 0, eArgTypeFilename, 555 "Run the process in a shell (not supported on all platforms)."}, 556 557 {LLDB_OPT_SET_1, false, "stdin", 'i', OptionParser::eRequiredArgument, 558 nullptr, {}, 0, eArgTypeFilename, 559 "Redirect stdin for the process to <filename>."}, 560 {LLDB_OPT_SET_1, false, "stdout", 'o', OptionParser::eRequiredArgument, 561 nullptr, {}, 0, eArgTypeFilename, 562 "Redirect stdout for the process to <filename>."}, 563 {LLDB_OPT_SET_1, false, "stderr", 'e', OptionParser::eRequiredArgument, 564 nullptr, {}, 0, eArgTypeFilename, 565 "Redirect stderr for the process to <filename>."}, 566 567 {LLDB_OPT_SET_2, false, "tty", 't', OptionParser::eNoArgument, nullptr, 568 {}, 0, eArgTypeNone, 569 "Start the process in a terminal (not supported on all platforms)."}, 570 571 {LLDB_OPT_SET_3, false, "no-stdio", 'n', OptionParser::eNoArgument, nullptr, 572 {}, 0, eArgTypeNone, 573 "Do not set up for terminal I/O to go to running process."}, 574 {LLDB_OPT_SET_4, false, "shell-expand-args", 'X', 575 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeBoolean, 576 "Set whether to shell expand arguments to the process when launching."}, 577 }; 578 579 llvm::ArrayRef<OptionDefinition> ProcessLaunchCommandOptions::GetDefinitions() { 580 return llvm::makeArrayRef(g_process_launch_options); 581 } 582 583 bool ProcessInstanceInfoMatch::NameMatches(const char *process_name) const { 584 if (m_name_match_type == NameMatch::Ignore || process_name == nullptr) 585 return true; 586 const char *match_name = m_match_info.GetName(); 587 if (!match_name) 588 return true; 589 590 return lldb_private::NameMatches(process_name, m_name_match_type, match_name); 591 } 592 593 bool ProcessInstanceInfoMatch::Matches( 594 const ProcessInstanceInfo &proc_info) const { 595 if (!NameMatches(proc_info.GetName())) 596 return false; 597 598 if (m_match_info.ProcessIDIsValid() && 599 m_match_info.GetProcessID() != proc_info.GetProcessID()) 600 return false; 601 602 if (m_match_info.ParentProcessIDIsValid() && 603 m_match_info.GetParentProcessID() != proc_info.GetParentProcessID()) 604 return false; 605 606 if (m_match_info.UserIDIsValid() && 607 m_match_info.GetUserID() != proc_info.GetUserID()) 608 return false; 609 610 if (m_match_info.GroupIDIsValid() && 611 m_match_info.GetGroupID() != proc_info.GetGroupID()) 612 return false; 613 614 if (m_match_info.EffectiveUserIDIsValid() && 615 m_match_info.GetEffectiveUserID() != proc_info.GetEffectiveUserID()) 616 return false; 617 618 if (m_match_info.EffectiveGroupIDIsValid() && 619 m_match_info.GetEffectiveGroupID() != proc_info.GetEffectiveGroupID()) 620 return false; 621 622 if (m_match_info.GetArchitecture().IsValid() && 623 !m_match_info.GetArchitecture().IsCompatibleMatch( 624 proc_info.GetArchitecture())) 625 return false; 626 return true; 627 } 628 629 bool ProcessInstanceInfoMatch::MatchAllProcesses() const { 630 if (m_name_match_type != NameMatch::Ignore) 631 return false; 632 633 if (m_match_info.ProcessIDIsValid()) 634 return false; 635 636 if (m_match_info.ParentProcessIDIsValid()) 637 return false; 638 639 if (m_match_info.UserIDIsValid()) 640 return false; 641 642 if (m_match_info.GroupIDIsValid()) 643 return false; 644 645 if (m_match_info.EffectiveUserIDIsValid()) 646 return false; 647 648 if (m_match_info.EffectiveGroupIDIsValid()) 649 return false; 650 651 if (m_match_info.GetArchitecture().IsValid()) 652 return false; 653 654 if (m_match_all_users) 655 return false; 656 657 return true; 658 } 659 660 void ProcessInstanceInfoMatch::Clear() { 661 m_match_info.Clear(); 662 m_name_match_type = NameMatch::Ignore; 663 m_match_all_users = false; 664 } 665 666 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 667 llvm::StringRef plugin_name, 668 ListenerSP listener_sp, 669 const FileSpec *crash_file_path) { 670 static uint32_t g_process_unique_id = 0; 671 672 ProcessSP process_sp; 673 ProcessCreateInstance create_callback = nullptr; 674 if (!plugin_name.empty()) { 675 ConstString const_plugin_name(plugin_name); 676 create_callback = 677 PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name); 678 if (create_callback) { 679 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 680 if (process_sp) { 681 if (process_sp->CanDebug(target_sp, true)) { 682 process_sp->m_process_unique_id = ++g_process_unique_id; 683 } else 684 process_sp.reset(); 685 } 686 } 687 } else { 688 for (uint32_t idx = 0; 689 (create_callback = 690 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 691 ++idx) { 692 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 693 if (process_sp) { 694 if (process_sp->CanDebug(target_sp, false)) { 695 process_sp->m_process_unique_id = ++g_process_unique_id; 696 break; 697 } else 698 process_sp.reset(); 699 } 700 } 701 } 702 return process_sp; 703 } 704 705 ConstString &Process::GetStaticBroadcasterClass() { 706 static ConstString class_name("lldb.process"); 707 return class_name; 708 } 709 710 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 711 : Process(target_sp, listener_sp, 712 UnixSignals::Create(HostInfo::GetArchitecture())) { 713 // This constructor just delegates to the full Process constructor, 714 // defaulting to using the Host's UnixSignals. 715 } 716 717 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 718 const UnixSignalsSP &unix_signals_sp) 719 : ProcessProperties(this), UserID(LLDB_INVALID_PROCESS_ID), 720 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 721 Process::GetStaticBroadcasterClass().AsCString()), 722 m_target_wp(target_sp), m_public_state(eStateUnloaded), 723 m_private_state(eStateUnloaded), 724 m_private_state_broadcaster(nullptr, 725 "lldb.process.internal_state_broadcaster"), 726 m_private_state_control_broadcaster( 727 nullptr, "lldb.process.internal_state_control_broadcaster"), 728 m_private_state_listener_sp( 729 Listener::MakeListener("lldb.process.internal_state_listener")), 730 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 731 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 732 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 733 m_thread_list(this), m_extended_thread_list(this), 734 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 735 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 736 m_breakpoint_site_list(), m_dynamic_checkers_ap(), 737 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 738 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 739 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 740 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 741 m_memory_cache(*this), m_allocated_memory_cache(*this), 742 m_should_detach(false), m_next_event_action_ap(), m_public_run_lock(), 743 m_private_run_lock(), m_finalizing(false), m_finalize_called(false), 744 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 745 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 746 m_can_interpret_function_calls(false), m_warnings_issued(), 747 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 748 CheckInWithManager(); 749 750 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 751 if (log) 752 log->Printf("%p Process::Process()", static_cast<void *>(this)); 753 754 if (!m_unix_signals_sp) 755 m_unix_signals_sp = std::make_shared<UnixSignals>(); 756 757 SetEventName(eBroadcastBitStateChanged, "state-changed"); 758 SetEventName(eBroadcastBitInterrupt, "interrupt"); 759 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 760 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 761 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 762 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 763 764 m_private_state_control_broadcaster.SetEventName( 765 eBroadcastInternalStateControlStop, "control-stop"); 766 m_private_state_control_broadcaster.SetEventName( 767 eBroadcastInternalStateControlPause, "control-pause"); 768 m_private_state_control_broadcaster.SetEventName( 769 eBroadcastInternalStateControlResume, "control-resume"); 770 771 m_listener_sp->StartListeningForEvents( 772 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 773 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 774 eBroadcastBitProfileData | eBroadcastBitStructuredData); 775 776 m_private_state_listener_sp->StartListeningForEvents( 777 &m_private_state_broadcaster, 778 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 779 780 m_private_state_listener_sp->StartListeningForEvents( 781 &m_private_state_control_broadcaster, 782 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 783 eBroadcastInternalStateControlResume); 784 // We need something valid here, even if just the default UnixSignalsSP. 785 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 786 787 // Allow the platform to override the default cache line size 788 OptionValueSP value_sp = 789 m_collection_sp 790 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 791 ->GetValue(); 792 uint32_t platform_cache_line_size = 793 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 794 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 795 value_sp->SetUInt64Value(platform_cache_line_size); 796 } 797 798 Process::~Process() { 799 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 800 if (log) 801 log->Printf("%p Process::~Process()", static_cast<void *>(this)); 802 StopPrivateStateThread(); 803 804 // ThreadList::Clear() will try to acquire this process's mutex, so 805 // explicitly clear the thread list here to ensure that the mutex is not 806 // destroyed before the thread list. 807 m_thread_list.Clear(); 808 } 809 810 const ProcessPropertiesSP &Process::GetGlobalProperties() { 811 // NOTE: intentional leak so we don't crash if global destructor chain gets 812 // called as other threads still use the result of this function 813 static ProcessPropertiesSP *g_settings_sp_ptr = 814 new ProcessPropertiesSP(new ProcessProperties(nullptr)); 815 return *g_settings_sp_ptr; 816 } 817 818 void Process::Finalize() { 819 m_finalizing = true; 820 821 // Destroy this process if needed 822 switch (GetPrivateState()) { 823 case eStateConnected: 824 case eStateAttaching: 825 case eStateLaunching: 826 case eStateStopped: 827 case eStateRunning: 828 case eStateStepping: 829 case eStateCrashed: 830 case eStateSuspended: 831 Destroy(false); 832 break; 833 834 case eStateInvalid: 835 case eStateUnloaded: 836 case eStateDetached: 837 case eStateExited: 838 break; 839 } 840 841 // Clear our broadcaster before we proceed with destroying 842 Broadcaster::Clear(); 843 844 // Do any cleanup needed prior to being destructed... Subclasses that 845 // override this method should call this superclass method as well. 846 847 // We need to destroy the loader before the derived Process class gets 848 // destroyed since it is very likely that undoing the loader will require 849 // access to the real process. 850 m_dynamic_checkers_ap.reset(); 851 m_abi_sp.reset(); 852 m_os_ap.reset(); 853 m_system_runtime_ap.reset(); 854 m_dyld_ap.reset(); 855 m_jit_loaders_ap.reset(); 856 m_thread_list_real.Destroy(); 857 m_thread_list.Destroy(); 858 m_extended_thread_list.Destroy(); 859 m_queue_list.Clear(); 860 m_queue_list_stop_id = 0; 861 std::vector<Notifications> empty_notifications; 862 m_notifications.swap(empty_notifications); 863 m_image_tokens.clear(); 864 m_memory_cache.Clear(); 865 m_allocated_memory_cache.Clear(); 866 m_language_runtimes.clear(); 867 m_instrumentation_runtimes.clear(); 868 m_next_event_action_ap.reset(); 869 // Clear the last natural stop ID since it has a strong reference to this 870 // process 871 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 872 //#ifdef LLDB_CONFIGURATION_DEBUG 873 // StreamFile s(stdout, false); 874 // EventSP event_sp; 875 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 876 // { 877 // event_sp->Dump (&s); 878 // s.EOL(); 879 // } 880 //#endif 881 // We have to be very careful here as the m_private_state_listener might 882 // contain events that have ProcessSP values in them which can keep this 883 // process around forever. These events need to be cleared out. 884 m_private_state_listener_sp->Clear(); 885 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 886 m_public_run_lock.SetStopped(); 887 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 888 m_private_run_lock.SetStopped(); 889 m_structured_data_plugin_map.clear(); 890 m_finalize_called = true; 891 } 892 893 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 894 m_notifications.push_back(callbacks); 895 if (callbacks.initialize != nullptr) 896 callbacks.initialize(callbacks.baton, this); 897 } 898 899 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 900 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 901 for (pos = m_notifications.begin(); pos != end; ++pos) { 902 if (pos->baton == callbacks.baton && 903 pos->initialize == callbacks.initialize && 904 pos->process_state_changed == callbacks.process_state_changed) { 905 m_notifications.erase(pos); 906 return true; 907 } 908 } 909 return false; 910 } 911 912 void Process::SynchronouslyNotifyStateChanged(StateType state) { 913 std::vector<Notifications>::iterator notification_pos, 914 notification_end = m_notifications.end(); 915 for (notification_pos = m_notifications.begin(); 916 notification_pos != notification_end; ++notification_pos) { 917 if (notification_pos->process_state_changed) 918 notification_pos->process_state_changed(notification_pos->baton, this, 919 state); 920 } 921 } 922 923 // FIXME: We need to do some work on events before the general Listener sees 924 // them. 925 // For instance if we are continuing from a breakpoint, we need to ensure that 926 // we do the little "insert real insn, step & stop" trick. But we can't do 927 // that when the event is delivered by the broadcaster - since that is done on 928 // the thread that is waiting for new events, so if we needed more than one 929 // event for our handling, we would stall. So instead we do it when we fetch 930 // the event off of the queue. 931 // 932 933 StateType Process::GetNextEvent(EventSP &event_sp) { 934 StateType state = eStateInvalid; 935 936 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 937 std::chrono::seconds(0)) && 938 event_sp) 939 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 940 941 return state; 942 } 943 944 void Process::SyncIOHandler(uint32_t iohandler_id, 945 const Timeout<std::micro> &timeout) { 946 // don't sync (potentially context switch) in case where there is no process 947 // IO 948 if (!m_process_input_reader) 949 return; 950 951 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 952 953 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 954 if (Result) { 955 LLDB_LOG( 956 log, 957 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 958 iohandler_id, *Result); 959 } else { 960 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 961 iohandler_id); 962 } 963 } 964 965 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 966 EventSP *event_sp_ptr, bool wait_always, 967 ListenerSP hijack_listener_sp, 968 Stream *stream, bool use_run_lock) { 969 // We can't just wait for a "stopped" event, because the stopped event may 970 // have restarted the target. We have to actually check each event, and in 971 // the case of a stopped event check the restarted flag on the event. 972 if (event_sp_ptr) 973 event_sp_ptr->reset(); 974 StateType state = GetState(); 975 // If we are exited or detached, we won't ever get back to any other valid 976 // state... 977 if (state == eStateDetached || state == eStateExited) 978 return state; 979 980 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 981 LLDB_LOG(log, "timeout = {0}", timeout); 982 983 if (!wait_always && StateIsStoppedState(state, true) && 984 StateIsStoppedState(GetPrivateState(), true)) { 985 if (log) 986 log->Printf("Process::%s returning without waiting for events; process " 987 "private and public states are already 'stopped'.", 988 __FUNCTION__); 989 // We need to toggle the run lock as this won't get done in 990 // SetPublicState() if the process is hijacked. 991 if (hijack_listener_sp && use_run_lock) 992 m_public_run_lock.SetStopped(); 993 return state; 994 } 995 996 while (state != eStateInvalid) { 997 EventSP event_sp; 998 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 999 if (event_sp_ptr && event_sp) 1000 *event_sp_ptr = event_sp; 1001 1002 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 1003 Process::HandleProcessStateChangedEvent(event_sp, stream, 1004 pop_process_io_handler); 1005 1006 switch (state) { 1007 case eStateCrashed: 1008 case eStateDetached: 1009 case eStateExited: 1010 case eStateUnloaded: 1011 // We need to toggle the run lock as this won't get done in 1012 // SetPublicState() if the process is hijacked. 1013 if (hijack_listener_sp && use_run_lock) 1014 m_public_run_lock.SetStopped(); 1015 return state; 1016 case eStateStopped: 1017 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 1018 continue; 1019 else { 1020 // We need to toggle the run lock as this won't get done in 1021 // SetPublicState() if the process is hijacked. 1022 if (hijack_listener_sp && use_run_lock) 1023 m_public_run_lock.SetStopped(); 1024 return state; 1025 } 1026 default: 1027 continue; 1028 } 1029 } 1030 return state; 1031 } 1032 1033 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 1034 Stream *stream, 1035 bool &pop_process_io_handler) { 1036 const bool handle_pop = pop_process_io_handler; 1037 1038 pop_process_io_handler = false; 1039 ProcessSP process_sp = 1040 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 1041 1042 if (!process_sp) 1043 return false; 1044 1045 StateType event_state = 1046 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1047 if (event_state == eStateInvalid) 1048 return false; 1049 1050 switch (event_state) { 1051 case eStateInvalid: 1052 case eStateUnloaded: 1053 case eStateAttaching: 1054 case eStateLaunching: 1055 case eStateStepping: 1056 case eStateDetached: 1057 if (stream) 1058 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 1059 StateAsCString(event_state)); 1060 if (event_state == eStateDetached) 1061 pop_process_io_handler = true; 1062 break; 1063 1064 case eStateConnected: 1065 case eStateRunning: 1066 // Don't be chatty when we run... 1067 break; 1068 1069 case eStateExited: 1070 if (stream) 1071 process_sp->GetStatus(*stream); 1072 pop_process_io_handler = true; 1073 break; 1074 1075 case eStateStopped: 1076 case eStateCrashed: 1077 case eStateSuspended: 1078 // Make sure the program hasn't been auto-restarted: 1079 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 1080 if (stream) { 1081 size_t num_reasons = 1082 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 1083 if (num_reasons > 0) { 1084 // FIXME: Do we want to report this, or would that just be annoyingly 1085 // chatty? 1086 if (num_reasons == 1) { 1087 const char *reason = 1088 Process::ProcessEventData::GetRestartedReasonAtIndex( 1089 event_sp.get(), 0); 1090 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 1091 process_sp->GetID(), 1092 reason ? reason : "<UNKNOWN REASON>"); 1093 } else { 1094 stream->Printf("Process %" PRIu64 1095 " stopped and restarted, reasons:\n", 1096 process_sp->GetID()); 1097 1098 for (size_t i = 0; i < num_reasons; i++) { 1099 const char *reason = 1100 Process::ProcessEventData::GetRestartedReasonAtIndex( 1101 event_sp.get(), i); 1102 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 1103 } 1104 } 1105 } 1106 } 1107 } else { 1108 StopInfoSP curr_thread_stop_info_sp; 1109 // Lock the thread list so it doesn't change on us, this is the scope for 1110 // the locker: 1111 { 1112 ThreadList &thread_list = process_sp->GetThreadList(); 1113 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 1114 1115 ThreadSP curr_thread(thread_list.GetSelectedThread()); 1116 ThreadSP thread; 1117 StopReason curr_thread_stop_reason = eStopReasonInvalid; 1118 if (curr_thread) { 1119 curr_thread_stop_reason = curr_thread->GetStopReason(); 1120 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 1121 } 1122 if (!curr_thread || !curr_thread->IsValid() || 1123 curr_thread_stop_reason == eStopReasonInvalid || 1124 curr_thread_stop_reason == eStopReasonNone) { 1125 // Prefer a thread that has just completed its plan over another 1126 // thread as current thread. 1127 ThreadSP plan_thread; 1128 ThreadSP other_thread; 1129 1130 const size_t num_threads = thread_list.GetSize(); 1131 size_t i; 1132 for (i = 0; i < num_threads; ++i) { 1133 thread = thread_list.GetThreadAtIndex(i); 1134 StopReason thread_stop_reason = thread->GetStopReason(); 1135 switch (thread_stop_reason) { 1136 case eStopReasonInvalid: 1137 case eStopReasonNone: 1138 break; 1139 1140 case eStopReasonSignal: { 1141 // Don't select a signal thread if we weren't going to stop at 1142 // that signal. We have to have had another reason for stopping 1143 // here, and the user doesn't want to see this thread. 1144 uint64_t signo = thread->GetStopInfo()->GetValue(); 1145 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 1146 if (!other_thread) 1147 other_thread = thread; 1148 } 1149 break; 1150 } 1151 case eStopReasonTrace: 1152 case eStopReasonBreakpoint: 1153 case eStopReasonWatchpoint: 1154 case eStopReasonException: 1155 case eStopReasonExec: 1156 case eStopReasonThreadExiting: 1157 case eStopReasonInstrumentation: 1158 if (!other_thread) 1159 other_thread = thread; 1160 break; 1161 case eStopReasonPlanComplete: 1162 if (!plan_thread) 1163 plan_thread = thread; 1164 break; 1165 } 1166 } 1167 if (plan_thread) 1168 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 1169 else if (other_thread) 1170 thread_list.SetSelectedThreadByID(other_thread->GetID()); 1171 else { 1172 if (curr_thread && curr_thread->IsValid()) 1173 thread = curr_thread; 1174 else 1175 thread = thread_list.GetThreadAtIndex(0); 1176 1177 if (thread) 1178 thread_list.SetSelectedThreadByID(thread->GetID()); 1179 } 1180 } 1181 } 1182 // Drop the ThreadList mutex by here, since GetThreadStatus below might 1183 // have to run code, e.g. for Data formatters, and if we hold the 1184 // ThreadList mutex, then the process is going to have a hard time 1185 // restarting the process. 1186 if (stream) { 1187 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 1188 if (debugger.GetTargetList().GetSelectedTarget().get() == 1189 &process_sp->GetTarget()) { 1190 const bool only_threads_with_stop_reason = true; 1191 const uint32_t start_frame = 0; 1192 const uint32_t num_frames = 1; 1193 const uint32_t num_frames_with_source = 1; 1194 const bool stop_format = true; 1195 process_sp->GetStatus(*stream); 1196 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 1197 start_frame, num_frames, 1198 num_frames_with_source, 1199 stop_format); 1200 if (curr_thread_stop_info_sp) { 1201 lldb::addr_t crashing_address; 1202 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 1203 curr_thread_stop_info_sp, &crashing_address); 1204 if (valobj_sp) { 1205 const bool qualify_cxx_base_classes = false; 1206 1207 const ValueObject::GetExpressionPathFormat format = 1208 ValueObject::GetExpressionPathFormat:: 1209 eGetExpressionPathFormatHonorPointers; 1210 stream->PutCString("Likely cause: "); 1211 valobj_sp->GetExpressionPath(*stream, qualify_cxx_base_classes, 1212 format); 1213 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 1214 } 1215 } 1216 } else { 1217 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 1218 process_sp->GetTarget().shared_from_this()); 1219 if (target_idx != UINT32_MAX) 1220 stream->Printf("Target %d: (", target_idx); 1221 else 1222 stream->Printf("Target <unknown index>: ("); 1223 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 1224 stream->Printf(") stopped.\n"); 1225 } 1226 } 1227 1228 // Pop the process IO handler 1229 pop_process_io_handler = true; 1230 } 1231 break; 1232 } 1233 1234 if (handle_pop && pop_process_io_handler) 1235 process_sp->PopProcessIOHandler(); 1236 1237 return true; 1238 } 1239 1240 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 1241 if (listener_sp) { 1242 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 1243 eBroadcastBitInterrupt); 1244 } else 1245 return false; 1246 } 1247 1248 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 1249 1250 StateType Process::GetStateChangedEvents(EventSP &event_sp, 1251 const Timeout<std::micro> &timeout, 1252 ListenerSP hijack_listener_sp) { 1253 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1254 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1255 1256 ListenerSP listener_sp = hijack_listener_sp; 1257 if (!listener_sp) 1258 listener_sp = m_listener_sp; 1259 1260 StateType state = eStateInvalid; 1261 if (listener_sp->GetEventForBroadcasterWithType( 1262 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1263 timeout)) { 1264 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1265 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1266 else 1267 LLDB_LOG(log, "got no event or was interrupted."); 1268 } 1269 1270 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 1271 return state; 1272 } 1273 1274 Event *Process::PeekAtStateChangedEvents() { 1275 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1276 1277 if (log) 1278 log->Printf("Process::%s...", __FUNCTION__); 1279 1280 Event *event_ptr; 1281 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 1282 this, eBroadcastBitStateChanged); 1283 if (log) { 1284 if (event_ptr) { 1285 log->Printf( 1286 "Process::%s (event_ptr) => %s", __FUNCTION__, 1287 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 1288 } else { 1289 log->Printf("Process::%s no events found", __FUNCTION__); 1290 } 1291 } 1292 return event_ptr; 1293 } 1294 1295 StateType 1296 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 1297 const Timeout<std::micro> &timeout) { 1298 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1299 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1300 1301 StateType state = eStateInvalid; 1302 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1303 &m_private_state_broadcaster, 1304 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1305 timeout)) 1306 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1307 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1308 1309 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1310 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1311 return state; 1312 } 1313 1314 bool Process::GetEventsPrivate(EventSP &event_sp, 1315 const Timeout<std::micro> &timeout, 1316 bool control_only) { 1317 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1318 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1319 1320 if (control_only) 1321 return m_private_state_listener_sp->GetEventForBroadcaster( 1322 &m_private_state_control_broadcaster, event_sp, timeout); 1323 else 1324 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1325 } 1326 1327 bool Process::IsRunning() const { 1328 return StateIsRunningState(m_public_state.GetValue()); 1329 } 1330 1331 int Process::GetExitStatus() { 1332 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1333 1334 if (m_public_state.GetValue() == eStateExited) 1335 return m_exit_status; 1336 return -1; 1337 } 1338 1339 const char *Process::GetExitDescription() { 1340 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1341 1342 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1343 return m_exit_string.c_str(); 1344 return nullptr; 1345 } 1346 1347 bool Process::SetExitStatus(int status, const char *cstr) { 1348 // Use a mutex to protect setting the exit status. 1349 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1350 1351 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1352 LIBLLDB_LOG_PROCESS)); 1353 if (log) 1354 log->Printf( 1355 "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1356 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", 1357 cstr ? "\"" : ""); 1358 1359 // We were already in the exited state 1360 if (m_private_state.GetValue() == eStateExited) { 1361 if (log) 1362 log->Printf("Process::SetExitStatus () ignoring exit status because " 1363 "state was already set to eStateExited"); 1364 return false; 1365 } 1366 1367 m_exit_status = status; 1368 if (cstr) 1369 m_exit_string = cstr; 1370 else 1371 m_exit_string.clear(); 1372 1373 // Clear the last natural stop ID since it has a strong reference to this 1374 // process 1375 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1376 1377 SetPrivateState(eStateExited); 1378 1379 // Allow subclasses to do some cleanup 1380 DidExit(); 1381 1382 return true; 1383 } 1384 1385 bool Process::IsAlive() { 1386 switch (m_private_state.GetValue()) { 1387 case eStateConnected: 1388 case eStateAttaching: 1389 case eStateLaunching: 1390 case eStateStopped: 1391 case eStateRunning: 1392 case eStateStepping: 1393 case eStateCrashed: 1394 case eStateSuspended: 1395 return true; 1396 default: 1397 return false; 1398 } 1399 } 1400 1401 // This static callback can be used to watch for local child processes on the 1402 // current host. The child process exits, the process will be found in the 1403 // global target list (we want to be completely sure that the 1404 // lldb_private::Process doesn't go away before we can deliver the signal. 1405 bool Process::SetProcessExitStatus( 1406 lldb::pid_t pid, bool exited, 1407 int signo, // Zero for no signal 1408 int exit_status // Exit value of process if signal is zero 1409 ) { 1410 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 1411 if (log) 1412 log->Printf("Process::SetProcessExitStatus (pid=%" PRIu64 1413 ", exited=%i, signal=%i, exit_status=%i)\n", 1414 pid, exited, signo, exit_status); 1415 1416 if (exited) { 1417 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1418 if (target_sp) { 1419 ProcessSP process_sp(target_sp->GetProcessSP()); 1420 if (process_sp) { 1421 const char *signal_cstr = nullptr; 1422 if (signo) 1423 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1424 1425 process_sp->SetExitStatus(exit_status, signal_cstr); 1426 } 1427 } 1428 return true; 1429 } 1430 return false; 1431 } 1432 1433 void Process::UpdateThreadListIfNeeded() { 1434 const uint32_t stop_id = GetStopID(); 1435 if (m_thread_list.GetSize(false) == 0 || 1436 stop_id != m_thread_list.GetStopID()) { 1437 const StateType state = GetPrivateState(); 1438 if (StateIsStoppedState(state, true)) { 1439 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1440 // m_thread_list does have its own mutex, but we need to hold onto the 1441 // mutex between the call to UpdateThreadList(...) and the 1442 // os->UpdateThreadList(...) so it doesn't change on us 1443 ThreadList &old_thread_list = m_thread_list; 1444 ThreadList real_thread_list(this); 1445 ThreadList new_thread_list(this); 1446 // Always update the thread list with the protocol specific thread list, 1447 // but only update if "true" is returned 1448 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1449 // Don't call into the OperatingSystem to update the thread list if we 1450 // are shutting down, since that may call back into the SBAPI's, 1451 // requiring the API lock which is already held by whoever is shutting 1452 // us down, causing a deadlock. 1453 OperatingSystem *os = GetOperatingSystem(); 1454 if (os && !m_destroy_in_process) { 1455 // Clear any old backing threads where memory threads might have been 1456 // backed by actual threads from the lldb_private::Process subclass 1457 size_t num_old_threads = old_thread_list.GetSize(false); 1458 for (size_t i = 0; i < num_old_threads; ++i) 1459 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1460 1461 // Turn off dynamic types to ensure we don't run any expressions. 1462 // Objective-C can run an expression to determine if a SBValue is a 1463 // dynamic type or not and we need to avoid this. OperatingSystem 1464 // plug-ins can't run expressions that require running code... 1465 1466 Target &target = GetTarget(); 1467 const lldb::DynamicValueType saved_prefer_dynamic = 1468 target.GetPreferDynamicValue(); 1469 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1470 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1471 1472 // Now let the OperatingSystem plug-in update the thread list 1473 1474 os->UpdateThreadList( 1475 old_thread_list, // Old list full of threads created by OS plug-in 1476 real_thread_list, // The actual thread list full of threads 1477 // created by each lldb_private::Process 1478 // subclass 1479 new_thread_list); // The new thread list that we will show to the 1480 // user that gets filled in 1481 1482 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1483 target.SetPreferDynamicValue(saved_prefer_dynamic); 1484 } else { 1485 // No OS plug-in, the new thread list is the same as the real thread 1486 // list 1487 new_thread_list = real_thread_list; 1488 } 1489 1490 m_thread_list_real.Update(real_thread_list); 1491 m_thread_list.Update(new_thread_list); 1492 m_thread_list.SetStopID(stop_id); 1493 1494 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1495 // Clear any extended threads that we may have accumulated previously 1496 m_extended_thread_list.Clear(); 1497 m_extended_thread_stop_id = GetLastNaturalStopID(); 1498 1499 m_queue_list.Clear(); 1500 m_queue_list_stop_id = GetLastNaturalStopID(); 1501 } 1502 } 1503 } 1504 } 1505 } 1506 1507 void Process::UpdateQueueListIfNeeded() { 1508 if (m_system_runtime_ap) { 1509 if (m_queue_list.GetSize() == 0 || 1510 m_queue_list_stop_id != GetLastNaturalStopID()) { 1511 const StateType state = GetPrivateState(); 1512 if (StateIsStoppedState(state, true)) { 1513 m_system_runtime_ap->PopulateQueueList(m_queue_list); 1514 m_queue_list_stop_id = GetLastNaturalStopID(); 1515 } 1516 } 1517 } 1518 } 1519 1520 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1521 OperatingSystem *os = GetOperatingSystem(); 1522 if (os) 1523 return os->CreateThread(tid, context); 1524 return ThreadSP(); 1525 } 1526 1527 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1528 return AssignIndexIDToThread(thread_id); 1529 } 1530 1531 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1532 return (m_thread_id_to_index_id_map.find(thread_id) != 1533 m_thread_id_to_index_id_map.end()); 1534 } 1535 1536 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1537 uint32_t result = 0; 1538 std::map<uint64_t, uint32_t>::iterator iterator = 1539 m_thread_id_to_index_id_map.find(thread_id); 1540 if (iterator == m_thread_id_to_index_id_map.end()) { 1541 result = ++m_thread_index_id; 1542 m_thread_id_to_index_id_map[thread_id] = result; 1543 } else { 1544 result = iterator->second; 1545 } 1546 1547 return result; 1548 } 1549 1550 StateType Process::GetState() { 1551 return m_public_state.GetValue(); 1552 } 1553 1554 bool Process::StateChangedIsExternallyHijacked() { 1555 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1556 const char *hijacking_name = GetHijackingListenerName(); 1557 if (hijacking_name && 1558 strcmp(hijacking_name, "lldb.Process.ResumeSynchronous.hijack")) 1559 return true; 1560 } 1561 return false; 1562 } 1563 1564 void Process::SetPublicState(StateType new_state, bool restarted) { 1565 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1566 LIBLLDB_LOG_PROCESS)); 1567 if (log) 1568 log->Printf("Process::SetPublicState (state = %s, restarted = %i)", 1569 StateAsCString(new_state), restarted); 1570 const StateType old_state = m_public_state.GetValue(); 1571 m_public_state.SetValue(new_state); 1572 1573 // On the transition from Run to Stopped, we unlock the writer end of the run 1574 // lock. The lock gets locked in Resume, which is the public API to tell the 1575 // program to run. 1576 if (!StateChangedIsExternallyHijacked()) { 1577 if (new_state == eStateDetached) { 1578 if (log) 1579 log->Printf( 1580 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1581 StateAsCString(new_state)); 1582 m_public_run_lock.SetStopped(); 1583 } else { 1584 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1585 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1586 if ((old_state_is_stopped != new_state_is_stopped)) { 1587 if (new_state_is_stopped && !restarted) { 1588 if (log) 1589 log->Printf("Process::SetPublicState (%s) -- unlocking run lock", 1590 StateAsCString(new_state)); 1591 m_public_run_lock.SetStopped(); 1592 } 1593 } 1594 } 1595 } 1596 } 1597 1598 Status Process::Resume() { 1599 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1600 LIBLLDB_LOG_PROCESS)); 1601 if (log) 1602 log->Printf("Process::Resume -- locking run lock"); 1603 if (!m_public_run_lock.TrySetRunning()) { 1604 Status error("Resume request failed - process still running."); 1605 if (log) 1606 log->Printf("Process::Resume: -- TrySetRunning failed, not resuming."); 1607 return error; 1608 } 1609 Status error = PrivateResume(); 1610 if (!error.Success()) { 1611 // Undo running state change 1612 m_public_run_lock.SetStopped(); 1613 } 1614 return error; 1615 } 1616 1617 Status Process::ResumeSynchronous(Stream *stream) { 1618 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1619 LIBLLDB_LOG_PROCESS)); 1620 if (log) 1621 log->Printf("Process::ResumeSynchronous -- locking run lock"); 1622 if (!m_public_run_lock.TrySetRunning()) { 1623 Status error("Resume request failed - process still running."); 1624 if (log) 1625 log->Printf("Process::Resume: -- TrySetRunning failed, not resuming."); 1626 return error; 1627 } 1628 1629 ListenerSP listener_sp( 1630 Listener::MakeListener("lldb.Process.ResumeSynchronous.hijack")); 1631 HijackProcessEvents(listener_sp); 1632 1633 Status error = PrivateResume(); 1634 if (error.Success()) { 1635 StateType state = 1636 WaitForProcessToStop(llvm::None, NULL, true, listener_sp, stream); 1637 const bool must_be_alive = 1638 false; // eStateExited is ok, so this must be false 1639 if (!StateIsStoppedState(state, must_be_alive)) 1640 error.SetErrorStringWithFormat( 1641 "process not in stopped state after synchronous resume: %s", 1642 StateAsCString(state)); 1643 } else { 1644 // Undo running state change 1645 m_public_run_lock.SetStopped(); 1646 } 1647 1648 // Undo the hijacking of process events... 1649 RestoreProcessEvents(); 1650 1651 return error; 1652 } 1653 1654 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1655 1656 void Process::SetPrivateState(StateType new_state) { 1657 if (m_finalize_called) 1658 return; 1659 1660 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1661 LIBLLDB_LOG_PROCESS)); 1662 bool state_changed = false; 1663 1664 if (log) 1665 log->Printf("Process::SetPrivateState (%s)", StateAsCString(new_state)); 1666 1667 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1668 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1669 1670 const StateType old_state = m_private_state.GetValueNoLock(); 1671 state_changed = old_state != new_state; 1672 1673 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1674 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1675 if (old_state_is_stopped != new_state_is_stopped) { 1676 if (new_state_is_stopped) 1677 m_private_run_lock.SetStopped(); 1678 else 1679 m_private_run_lock.SetRunning(); 1680 } 1681 1682 if (state_changed) { 1683 m_private_state.SetValueNoLock(new_state); 1684 EventSP event_sp( 1685 new Event(eBroadcastBitStateChanged, 1686 new ProcessEventData(shared_from_this(), new_state))); 1687 if (StateIsStoppedState(new_state, false)) { 1688 // Note, this currently assumes that all threads in the list stop when 1689 // the process stops. In the future we will want to support a debugging 1690 // model where some threads continue to run while others are stopped. 1691 // When that happens we will either need a way for the thread list to 1692 // identify which threads are stopping or create a special thread list 1693 // containing only threads which actually stopped. 1694 // 1695 // The process plugin is responsible for managing the actual behavior of 1696 // the threads and should have stopped any threads that are going to stop 1697 // before we get here. 1698 m_thread_list.DidStop(); 1699 1700 m_mod_id.BumpStopID(); 1701 if (!m_mod_id.IsLastResumeForUserExpression()) 1702 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1703 m_memory_cache.Clear(); 1704 if (log) 1705 log->Printf("Process::SetPrivateState (%s) stop_id = %u", 1706 StateAsCString(new_state), m_mod_id.GetStopID()); 1707 } 1708 1709 // Use our target to get a shared pointer to ourselves... 1710 if (m_finalize_called && !PrivateStateThreadIsValid()) 1711 BroadcastEvent(event_sp); 1712 else 1713 m_private_state_broadcaster.BroadcastEvent(event_sp); 1714 } else { 1715 if (log) 1716 log->Printf( 1717 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1718 StateAsCString(new_state)); 1719 } 1720 } 1721 1722 void Process::SetRunningUserExpression(bool on) { 1723 m_mod_id.SetRunningUserExpression(on); 1724 } 1725 1726 void Process::SetRunningUtilityFunction(bool on) { 1727 m_mod_id.SetRunningUtilityFunction(on); 1728 } 1729 1730 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1731 1732 const lldb::ABISP &Process::GetABI() { 1733 if (!m_abi_sp) 1734 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1735 return m_abi_sp; 1736 } 1737 1738 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language, 1739 bool retry_if_null) { 1740 if (m_finalizing) 1741 return nullptr; 1742 1743 LanguageRuntimeCollection::iterator pos; 1744 pos = m_language_runtimes.find(language); 1745 if (pos == m_language_runtimes.end() || (retry_if_null && !(*pos).second)) { 1746 lldb::LanguageRuntimeSP runtime_sp( 1747 LanguageRuntime::FindPlugin(this, language)); 1748 1749 m_language_runtimes[language] = runtime_sp; 1750 return runtime_sp.get(); 1751 } else 1752 return (*pos).second.get(); 1753 } 1754 1755 CPPLanguageRuntime *Process::GetCPPLanguageRuntime(bool retry_if_null) { 1756 LanguageRuntime *runtime = 1757 GetLanguageRuntime(eLanguageTypeC_plus_plus, retry_if_null); 1758 if (runtime != nullptr && 1759 runtime->GetLanguageType() == eLanguageTypeC_plus_plus) 1760 return static_cast<CPPLanguageRuntime *>(runtime); 1761 return nullptr; 1762 } 1763 1764 ObjCLanguageRuntime *Process::GetObjCLanguageRuntime(bool retry_if_null) { 1765 LanguageRuntime *runtime = 1766 GetLanguageRuntime(eLanguageTypeObjC, retry_if_null); 1767 if (runtime != nullptr && runtime->GetLanguageType() == eLanguageTypeObjC) 1768 return static_cast<ObjCLanguageRuntime *>(runtime); 1769 return nullptr; 1770 } 1771 1772 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1773 if (m_finalizing) 1774 return false; 1775 1776 if (in_value.IsDynamic()) 1777 return false; 1778 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1779 1780 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1781 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1782 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1783 } 1784 1785 LanguageRuntime *cpp_runtime = GetLanguageRuntime(eLanguageTypeC_plus_plus); 1786 if (cpp_runtime && cpp_runtime->CouldHaveDynamicValue(in_value)) 1787 return true; 1788 1789 LanguageRuntime *objc_runtime = GetLanguageRuntime(eLanguageTypeObjC); 1790 return objc_runtime ? objc_runtime->CouldHaveDynamicValue(in_value) : false; 1791 } 1792 1793 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1794 m_dynamic_checkers_ap.reset(dynamic_checkers); 1795 } 1796 1797 BreakpointSiteList &Process::GetBreakpointSiteList() { 1798 return m_breakpoint_site_list; 1799 } 1800 1801 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1802 return m_breakpoint_site_list; 1803 } 1804 1805 void Process::DisableAllBreakpointSites() { 1806 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1807 // bp_site->SetEnabled(true); 1808 DisableBreakpointSite(bp_site); 1809 }); 1810 } 1811 1812 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1813 Status error(DisableBreakpointSiteByID(break_id)); 1814 1815 if (error.Success()) 1816 m_breakpoint_site_list.Remove(break_id); 1817 1818 return error; 1819 } 1820 1821 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1822 Status error; 1823 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1824 if (bp_site_sp) { 1825 if (bp_site_sp->IsEnabled()) 1826 error = DisableBreakpointSite(bp_site_sp.get()); 1827 } else { 1828 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1829 break_id); 1830 } 1831 1832 return error; 1833 } 1834 1835 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1836 Status error; 1837 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1838 if (bp_site_sp) { 1839 if (!bp_site_sp->IsEnabled()) 1840 error = EnableBreakpointSite(bp_site_sp.get()); 1841 } else { 1842 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1843 break_id); 1844 } 1845 return error; 1846 } 1847 1848 lldb::break_id_t 1849 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1850 bool use_hardware) { 1851 addr_t load_addr = LLDB_INVALID_ADDRESS; 1852 1853 bool show_error = true; 1854 switch (GetState()) { 1855 case eStateInvalid: 1856 case eStateUnloaded: 1857 case eStateConnected: 1858 case eStateAttaching: 1859 case eStateLaunching: 1860 case eStateDetached: 1861 case eStateExited: 1862 show_error = false; 1863 break; 1864 1865 case eStateStopped: 1866 case eStateRunning: 1867 case eStateStepping: 1868 case eStateCrashed: 1869 case eStateSuspended: 1870 show_error = IsAlive(); 1871 break; 1872 } 1873 1874 // Reset the IsIndirect flag here, in case the location changes from pointing 1875 // to a indirect symbol to a regular symbol. 1876 owner->SetIsIndirect(false); 1877 1878 if (owner->ShouldResolveIndirectFunctions()) { 1879 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1880 if (symbol && symbol->IsIndirect()) { 1881 Status error; 1882 Address symbol_address = symbol->GetAddress(); 1883 load_addr = ResolveIndirectFunction(&symbol_address, error); 1884 if (!error.Success() && show_error) { 1885 GetTarget().GetDebugger().GetErrorFile()->Printf( 1886 "warning: failed to resolve indirect function at 0x%" PRIx64 1887 " for breakpoint %i.%i: %s\n", 1888 symbol->GetLoadAddress(&GetTarget()), 1889 owner->GetBreakpoint().GetID(), owner->GetID(), 1890 error.AsCString() ? error.AsCString() : "unknown error"); 1891 return LLDB_INVALID_BREAK_ID; 1892 } 1893 Address resolved_address(load_addr); 1894 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1895 owner->SetIsIndirect(true); 1896 } else 1897 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1898 } else 1899 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1900 1901 if (load_addr != LLDB_INVALID_ADDRESS) { 1902 BreakpointSiteSP bp_site_sp; 1903 1904 // Look up this breakpoint site. If it exists, then add this new owner, 1905 // otherwise create a new breakpoint site and add it. 1906 1907 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1908 1909 if (bp_site_sp) { 1910 bp_site_sp->AddOwner(owner); 1911 owner->SetBreakpointSite(bp_site_sp); 1912 return bp_site_sp->GetID(); 1913 } else { 1914 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1915 load_addr, use_hardware)); 1916 if (bp_site_sp) { 1917 Status error = EnableBreakpointSite(bp_site_sp.get()); 1918 if (error.Success()) { 1919 owner->SetBreakpointSite(bp_site_sp); 1920 return m_breakpoint_site_list.Add(bp_site_sp); 1921 } else { 1922 if (show_error || use_hardware) { 1923 // Report error for setting breakpoint... 1924 GetTarget().GetDebugger().GetErrorFile()->Printf( 1925 "warning: failed to set breakpoint site at 0x%" PRIx64 1926 " for breakpoint %i.%i: %s\n", 1927 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1928 error.AsCString() ? error.AsCString() : "unknown error"); 1929 } 1930 } 1931 } 1932 } 1933 } 1934 // We failed to enable the breakpoint 1935 return LLDB_INVALID_BREAK_ID; 1936 } 1937 1938 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1939 lldb::user_id_t owner_loc_id, 1940 BreakpointSiteSP &bp_site_sp) { 1941 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1942 if (num_owners == 0) { 1943 // Don't try to disable the site if we don't have a live process anymore. 1944 if (IsAlive()) 1945 DisableBreakpointSite(bp_site_sp.get()); 1946 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1947 } 1948 } 1949 1950 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1951 uint8_t *buf) const { 1952 size_t bytes_removed = 0; 1953 BreakpointSiteList bp_sites_in_range; 1954 1955 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1956 bp_sites_in_range)) { 1957 bp_sites_in_range.ForEach([bp_addr, size, 1958 buf](BreakpointSite *bp_site) -> void { 1959 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1960 addr_t intersect_addr; 1961 size_t intersect_size; 1962 size_t opcode_offset; 1963 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1964 &intersect_size, &opcode_offset)) { 1965 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1966 assert(bp_addr < intersect_addr + intersect_size && 1967 intersect_addr + intersect_size <= bp_addr + size); 1968 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1969 size_t buf_offset = intersect_addr - bp_addr; 1970 ::memcpy(buf + buf_offset, 1971 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1972 intersect_size); 1973 } 1974 } 1975 }); 1976 } 1977 return bytes_removed; 1978 } 1979 1980 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1981 PlatformSP platform_sp(GetTarget().GetPlatform()); 1982 if (platform_sp) 1983 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1984 return 0; 1985 } 1986 1987 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1988 Status error; 1989 assert(bp_site != nullptr); 1990 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1991 const addr_t bp_addr = bp_site->GetLoadAddress(); 1992 if (log) 1993 log->Printf( 1994 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1995 bp_site->GetID(), (uint64_t)bp_addr); 1996 if (bp_site->IsEnabled()) { 1997 if (log) 1998 log->Printf( 1999 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2000 " -- already enabled", 2001 bp_site->GetID(), (uint64_t)bp_addr); 2002 return error; 2003 } 2004 2005 if (bp_addr == LLDB_INVALID_ADDRESS) { 2006 error.SetErrorString("BreakpointSite contains an invalid load address."); 2007 return error; 2008 } 2009 // Ask the lldb::Process subclass to fill in the correct software breakpoint 2010 // trap for the breakpoint site 2011 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 2012 2013 if (bp_opcode_size == 0) { 2014 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 2015 "returned zero, unable to get breakpoint " 2016 "trap for address 0x%" PRIx64, 2017 bp_addr); 2018 } else { 2019 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 2020 2021 if (bp_opcode_bytes == nullptr) { 2022 error.SetErrorString( 2023 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 2024 return error; 2025 } 2026 2027 // Save the original opcode by reading it 2028 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 2029 error) == bp_opcode_size) { 2030 // Write a software breakpoint in place of the original opcode 2031 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 2032 bp_opcode_size) { 2033 uint8_t verify_bp_opcode_bytes[64]; 2034 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 2035 error) == bp_opcode_size) { 2036 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 2037 bp_opcode_size) == 0) { 2038 bp_site->SetEnabled(true); 2039 bp_site->SetType(BreakpointSite::eSoftware); 2040 if (log) 2041 log->Printf("Process::EnableSoftwareBreakpoint (site_id = %d) " 2042 "addr = 0x%" PRIx64 " -- SUCCESS", 2043 bp_site->GetID(), (uint64_t)bp_addr); 2044 } else 2045 error.SetErrorString( 2046 "failed to verify the breakpoint trap in memory."); 2047 } else 2048 error.SetErrorString( 2049 "Unable to read memory to verify breakpoint trap."); 2050 } else 2051 error.SetErrorString("Unable to write breakpoint trap to memory."); 2052 } else 2053 error.SetErrorString("Unable to read memory at breakpoint address."); 2054 } 2055 if (log && error.Fail()) 2056 log->Printf( 2057 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2058 " -- FAILED: %s", 2059 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 2060 return error; 2061 } 2062 2063 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 2064 Status error; 2065 assert(bp_site != nullptr); 2066 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 2067 addr_t bp_addr = bp_site->GetLoadAddress(); 2068 lldb::user_id_t breakID = bp_site->GetID(); 2069 if (log) 2070 log->Printf("Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 2071 ") addr = 0x%" PRIx64, 2072 breakID, (uint64_t)bp_addr); 2073 2074 if (bp_site->IsHardware()) { 2075 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 2076 } else if (bp_site->IsEnabled()) { 2077 const size_t break_op_size = bp_site->GetByteSize(); 2078 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 2079 if (break_op_size > 0) { 2080 // Clear a software breakpoint instruction 2081 uint8_t curr_break_op[8]; 2082 assert(break_op_size <= sizeof(curr_break_op)); 2083 bool break_op_found = false; 2084 2085 // Read the breakpoint opcode 2086 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 2087 break_op_size) { 2088 bool verify = false; 2089 // Make sure the breakpoint opcode exists at this address 2090 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 2091 break_op_found = true; 2092 // We found a valid breakpoint opcode at this address, now restore 2093 // the saved opcode. 2094 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 2095 break_op_size, error) == break_op_size) { 2096 verify = true; 2097 } else 2098 error.SetErrorString( 2099 "Memory write failed when restoring original opcode."); 2100 } else { 2101 error.SetErrorString( 2102 "Original breakpoint trap is no longer in memory."); 2103 // Set verify to true and so we can check if the original opcode has 2104 // already been restored 2105 verify = true; 2106 } 2107 2108 if (verify) { 2109 uint8_t verify_opcode[8]; 2110 assert(break_op_size < sizeof(verify_opcode)); 2111 // Verify that our original opcode made it back to the inferior 2112 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 2113 break_op_size) { 2114 // compare the memory we just read with the original opcode 2115 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 2116 break_op_size) == 0) { 2117 // SUCCESS 2118 bp_site->SetEnabled(false); 2119 if (log) 2120 log->Printf("Process::DisableSoftwareBreakpoint (site_id = %d) " 2121 "addr = 0x%" PRIx64 " -- SUCCESS", 2122 bp_site->GetID(), (uint64_t)bp_addr); 2123 return error; 2124 } else { 2125 if (break_op_found) 2126 error.SetErrorString("Failed to restore original opcode."); 2127 } 2128 } else 2129 error.SetErrorString("Failed to read memory to verify that " 2130 "breakpoint trap was restored."); 2131 } 2132 } else 2133 error.SetErrorString( 2134 "Unable to read memory that should contain the breakpoint trap."); 2135 } 2136 } else { 2137 if (log) 2138 log->Printf( 2139 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2140 " -- already disabled", 2141 bp_site->GetID(), (uint64_t)bp_addr); 2142 return error; 2143 } 2144 2145 if (log) 2146 log->Printf( 2147 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2148 " -- FAILED: %s", 2149 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 2150 return error; 2151 } 2152 2153 // Uncomment to verify memory caching works after making changes to caching 2154 // code 2155 //#define VERIFY_MEMORY_READS 2156 2157 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 2158 error.Clear(); 2159 if (!GetDisableMemoryCache()) { 2160 #if defined(VERIFY_MEMORY_READS) 2161 // Memory caching is enabled, with debug verification 2162 2163 if (buf && size) { 2164 // Uncomment the line below to make sure memory caching is working. 2165 // I ran this through the test suite and got no assertions, so I am 2166 // pretty confident this is working well. If any changes are made to 2167 // memory caching, uncomment the line below and test your changes! 2168 2169 // Verify all memory reads by using the cache first, then redundantly 2170 // reading the same memory from the inferior and comparing to make sure 2171 // everything is exactly the same. 2172 std::string verify_buf(size, '\0'); 2173 assert(verify_buf.size() == size); 2174 const size_t cache_bytes_read = 2175 m_memory_cache.Read(this, addr, buf, size, error); 2176 Status verify_error; 2177 const size_t verify_bytes_read = 2178 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 2179 verify_buf.size(), verify_error); 2180 assert(cache_bytes_read == verify_bytes_read); 2181 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 2182 assert(verify_error.Success() == error.Success()); 2183 return cache_bytes_read; 2184 } 2185 return 0; 2186 #else // !defined(VERIFY_MEMORY_READS) 2187 // Memory caching is enabled, without debug verification 2188 2189 return m_memory_cache.Read(addr, buf, size, error); 2190 #endif // defined (VERIFY_MEMORY_READS) 2191 } else { 2192 // Memory caching is disabled 2193 2194 return ReadMemoryFromInferior(addr, buf, size, error); 2195 } 2196 } 2197 2198 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 2199 Status &error) { 2200 char buf[256]; 2201 out_str.clear(); 2202 addr_t curr_addr = addr; 2203 while (true) { 2204 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 2205 if (length == 0) 2206 break; 2207 out_str.append(buf, length); 2208 // If we got "length - 1" bytes, we didn't get the whole C string, we need 2209 // to read some more characters 2210 if (length == sizeof(buf) - 1) 2211 curr_addr += length; 2212 else 2213 break; 2214 } 2215 return out_str.size(); 2216 } 2217 2218 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes, 2219 Status &error, size_t type_width) { 2220 size_t total_bytes_read = 0; 2221 if (dst && max_bytes && type_width && max_bytes >= type_width) { 2222 // Ensure a null terminator independent of the number of bytes that is 2223 // read. 2224 memset(dst, 0, max_bytes); 2225 size_t bytes_left = max_bytes - type_width; 2226 2227 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 2228 assert(sizeof(terminator) >= type_width && "Attempting to validate a " 2229 "string with more than 4 bytes " 2230 "per character!"); 2231 2232 addr_t curr_addr = addr; 2233 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2234 char *curr_dst = dst; 2235 2236 error.Clear(); 2237 while (bytes_left > 0 && error.Success()) { 2238 addr_t cache_line_bytes_left = 2239 cache_line_size - (curr_addr % cache_line_size); 2240 addr_t bytes_to_read = 2241 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2242 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2243 2244 if (bytes_read == 0) 2245 break; 2246 2247 // Search for a null terminator of correct size and alignment in 2248 // bytes_read 2249 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 2250 for (size_t i = aligned_start; 2251 i + type_width <= total_bytes_read + bytes_read; i += type_width) 2252 if (::memcmp(&dst[i], terminator, type_width) == 0) { 2253 error.Clear(); 2254 return i; 2255 } 2256 2257 total_bytes_read += bytes_read; 2258 curr_dst += bytes_read; 2259 curr_addr += bytes_read; 2260 bytes_left -= bytes_read; 2261 } 2262 } else { 2263 if (max_bytes) 2264 error.SetErrorString("invalid arguments"); 2265 } 2266 return total_bytes_read; 2267 } 2268 2269 // Deprecated in favor of ReadStringFromMemory which has wchar support and 2270 // correct code to find null terminators. 2271 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 2272 size_t dst_max_len, 2273 Status &result_error) { 2274 size_t total_cstr_len = 0; 2275 if (dst && dst_max_len) { 2276 result_error.Clear(); 2277 // NULL out everything just to be safe 2278 memset(dst, 0, dst_max_len); 2279 Status error; 2280 addr_t curr_addr = addr; 2281 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2282 size_t bytes_left = dst_max_len - 1; 2283 char *curr_dst = dst; 2284 2285 while (bytes_left > 0) { 2286 addr_t cache_line_bytes_left = 2287 cache_line_size - (curr_addr % cache_line_size); 2288 addr_t bytes_to_read = 2289 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2290 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2291 2292 if (bytes_read == 0) { 2293 result_error = error; 2294 dst[total_cstr_len] = '\0'; 2295 break; 2296 } 2297 const size_t len = strlen(curr_dst); 2298 2299 total_cstr_len += len; 2300 2301 if (len < bytes_to_read) 2302 break; 2303 2304 curr_dst += bytes_read; 2305 curr_addr += bytes_read; 2306 bytes_left -= bytes_read; 2307 } 2308 } else { 2309 if (dst == nullptr) 2310 result_error.SetErrorString("invalid arguments"); 2311 else 2312 result_error.Clear(); 2313 } 2314 return total_cstr_len; 2315 } 2316 2317 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2318 Status &error) { 2319 if (buf == nullptr || size == 0) 2320 return 0; 2321 2322 size_t bytes_read = 0; 2323 uint8_t *bytes = (uint8_t *)buf; 2324 2325 while (bytes_read < size) { 2326 const size_t curr_size = size - bytes_read; 2327 const size_t curr_bytes_read = 2328 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2329 bytes_read += curr_bytes_read; 2330 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2331 break; 2332 } 2333 2334 // Replace any software breakpoint opcodes that fall into this range back 2335 // into "buf" before we return 2336 if (bytes_read > 0) 2337 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2338 return bytes_read; 2339 } 2340 2341 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2342 size_t integer_byte_size, 2343 uint64_t fail_value, 2344 Status &error) { 2345 Scalar scalar; 2346 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2347 error)) 2348 return scalar.ULongLong(fail_value); 2349 return fail_value; 2350 } 2351 2352 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2353 size_t integer_byte_size, 2354 int64_t fail_value, 2355 Status &error) { 2356 Scalar scalar; 2357 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2358 error)) 2359 return scalar.SLongLong(fail_value); 2360 return fail_value; 2361 } 2362 2363 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2364 Scalar scalar; 2365 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2366 error)) 2367 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2368 return LLDB_INVALID_ADDRESS; 2369 } 2370 2371 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2372 Status &error) { 2373 Scalar scalar; 2374 const uint32_t addr_byte_size = GetAddressByteSize(); 2375 if (addr_byte_size <= 4) 2376 scalar = (uint32_t)ptr_value; 2377 else 2378 scalar = ptr_value; 2379 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2380 addr_byte_size; 2381 } 2382 2383 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2384 Status &error) { 2385 size_t bytes_written = 0; 2386 const uint8_t *bytes = (const uint8_t *)buf; 2387 2388 while (bytes_written < size) { 2389 const size_t curr_size = size - bytes_written; 2390 const size_t curr_bytes_written = DoWriteMemory( 2391 addr + bytes_written, bytes + bytes_written, curr_size, error); 2392 bytes_written += curr_bytes_written; 2393 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2394 break; 2395 } 2396 return bytes_written; 2397 } 2398 2399 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2400 Status &error) { 2401 #if defined(ENABLE_MEMORY_CACHING) 2402 m_memory_cache.Flush(addr, size); 2403 #endif 2404 2405 if (buf == nullptr || size == 0) 2406 return 0; 2407 2408 m_mod_id.BumpMemoryID(); 2409 2410 // We need to write any data that would go where any current software traps 2411 // (enabled software breakpoints) any software traps (breakpoints) that we 2412 // may have placed in our tasks memory. 2413 2414 BreakpointSiteList bp_sites_in_range; 2415 2416 if (m_breakpoint_site_list.FindInRange(addr, addr + size, 2417 bp_sites_in_range)) { 2418 // No breakpoint sites overlap 2419 if (bp_sites_in_range.IsEmpty()) 2420 return WriteMemoryPrivate(addr, buf, size, error); 2421 else { 2422 const uint8_t *ubuf = (const uint8_t *)buf; 2423 uint64_t bytes_written = 0; 2424 2425 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2426 &error](BreakpointSite *bp) -> void { 2427 2428 if (error.Success()) { 2429 addr_t intersect_addr; 2430 size_t intersect_size; 2431 size_t opcode_offset; 2432 const bool intersects = bp->IntersectsRange( 2433 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2434 UNUSED_IF_ASSERT_DISABLED(intersects); 2435 assert(intersects); 2436 assert(addr <= intersect_addr && intersect_addr < addr + size); 2437 assert(addr < intersect_addr + intersect_size && 2438 intersect_addr + intersect_size <= addr + size); 2439 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2440 2441 // Check for bytes before this breakpoint 2442 const addr_t curr_addr = addr + bytes_written; 2443 if (intersect_addr > curr_addr) { 2444 // There are some bytes before this breakpoint that we need to just 2445 // write to memory 2446 size_t curr_size = intersect_addr - curr_addr; 2447 size_t curr_bytes_written = WriteMemoryPrivate( 2448 curr_addr, ubuf + bytes_written, curr_size, error); 2449 bytes_written += curr_bytes_written; 2450 if (curr_bytes_written != curr_size) { 2451 // We weren't able to write all of the requested bytes, we are 2452 // done looping and will return the number of bytes that we have 2453 // written so far. 2454 if (error.Success()) 2455 error.SetErrorToGenericError(); 2456 } 2457 } 2458 // Now write any bytes that would cover up any software breakpoints 2459 // directly into the breakpoint opcode buffer 2460 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, 2461 ubuf + bytes_written, intersect_size); 2462 bytes_written += intersect_size; 2463 } 2464 }); 2465 2466 if (bytes_written < size) 2467 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2468 size - bytes_written, error); 2469 } 2470 } else { 2471 return WriteMemoryPrivate(addr, buf, size, error); 2472 } 2473 2474 // Write any remaining bytes after the last breakpoint if we have any left 2475 return 0; // bytes_written; 2476 } 2477 2478 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2479 size_t byte_size, Status &error) { 2480 if (byte_size == UINT32_MAX) 2481 byte_size = scalar.GetByteSize(); 2482 if (byte_size > 0) { 2483 uint8_t buf[32]; 2484 const size_t mem_size = 2485 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2486 if (mem_size > 0) 2487 return WriteMemory(addr, buf, mem_size, error); 2488 else 2489 error.SetErrorString("failed to get scalar as memory data"); 2490 } else { 2491 error.SetErrorString("invalid scalar value"); 2492 } 2493 return 0; 2494 } 2495 2496 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2497 bool is_signed, Scalar &scalar, 2498 Status &error) { 2499 uint64_t uval = 0; 2500 if (byte_size == 0) { 2501 error.SetErrorString("byte size is zero"); 2502 } else if (byte_size & (byte_size - 1)) { 2503 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2504 byte_size); 2505 } else if (byte_size <= sizeof(uval)) { 2506 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2507 if (bytes_read == byte_size) { 2508 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2509 GetAddressByteSize()); 2510 lldb::offset_t offset = 0; 2511 if (byte_size <= 4) 2512 scalar = data.GetMaxU32(&offset, byte_size); 2513 else 2514 scalar = data.GetMaxU64(&offset, byte_size); 2515 if (is_signed) 2516 scalar.SignExtend(byte_size * 8); 2517 return bytes_read; 2518 } 2519 } else { 2520 error.SetErrorStringWithFormat( 2521 "byte size of %u is too large for integer scalar type", byte_size); 2522 } 2523 return 0; 2524 } 2525 2526 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2527 Status error; 2528 for (const auto &Entry : entries) { 2529 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2530 error); 2531 if (!error.Success()) 2532 break; 2533 } 2534 return error; 2535 } 2536 2537 #define USE_ALLOCATE_MEMORY_CACHE 1 2538 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2539 Status &error) { 2540 if (GetPrivateState() != eStateStopped) { 2541 error.SetErrorToGenericError(); 2542 return LLDB_INVALID_ADDRESS; 2543 } 2544 2545 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2546 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2547 #else 2548 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2549 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2550 if (log) 2551 log->Printf("Process::AllocateMemory(size=%" PRIu64 2552 ", permissions=%s) => 0x%16.16" PRIx64 2553 " (m_stop_id = %u m_memory_id = %u)", 2554 (uint64_t)size, GetPermissionsAsCString(permissions), 2555 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2556 m_mod_id.GetMemoryID()); 2557 return allocated_addr; 2558 #endif 2559 } 2560 2561 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2562 Status &error) { 2563 addr_t return_addr = AllocateMemory(size, permissions, error); 2564 if (error.Success()) { 2565 std::string buffer(size, 0); 2566 WriteMemory(return_addr, buffer.c_str(), size, error); 2567 } 2568 return return_addr; 2569 } 2570 2571 bool Process::CanJIT() { 2572 if (m_can_jit == eCanJITDontKnow) { 2573 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2574 Status err; 2575 2576 uint64_t allocated_memory = AllocateMemory( 2577 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2578 err); 2579 2580 if (err.Success()) { 2581 m_can_jit = eCanJITYes; 2582 if (log) 2583 log->Printf("Process::%s pid %" PRIu64 2584 " allocation test passed, CanJIT () is true", 2585 __FUNCTION__, GetID()); 2586 } else { 2587 m_can_jit = eCanJITNo; 2588 if (log) 2589 log->Printf("Process::%s pid %" PRIu64 2590 " allocation test failed, CanJIT () is false: %s", 2591 __FUNCTION__, GetID(), err.AsCString()); 2592 } 2593 2594 DeallocateMemory(allocated_memory); 2595 } 2596 2597 return m_can_jit == eCanJITYes; 2598 } 2599 2600 void Process::SetCanJIT(bool can_jit) { 2601 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2602 } 2603 2604 void Process::SetCanRunCode(bool can_run_code) { 2605 SetCanJIT(can_run_code); 2606 m_can_interpret_function_calls = can_run_code; 2607 } 2608 2609 Status Process::DeallocateMemory(addr_t ptr) { 2610 Status error; 2611 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2612 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2613 error.SetErrorStringWithFormat( 2614 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2615 } 2616 #else 2617 error = DoDeallocateMemory(ptr); 2618 2619 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2620 if (log) 2621 log->Printf("Process::DeallocateMemory(addr=0x%16.16" PRIx64 2622 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2623 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2624 m_mod_id.GetMemoryID()); 2625 #endif 2626 return error; 2627 } 2628 2629 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2630 lldb::addr_t header_addr, 2631 size_t size_to_read) { 2632 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2633 if (log) { 2634 log->Printf("Process::ReadModuleFromMemory reading %s binary from memory", 2635 file_spec.GetPath().c_str()); 2636 } 2637 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2638 if (module_sp) { 2639 Status error; 2640 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2641 shared_from_this(), header_addr, error, size_to_read); 2642 if (objfile) 2643 return module_sp; 2644 } 2645 return ModuleSP(); 2646 } 2647 2648 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2649 uint32_t &permissions) { 2650 MemoryRegionInfo range_info; 2651 permissions = 0; 2652 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2653 if (!error.Success()) 2654 return false; 2655 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2656 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2657 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2658 return false; 2659 } 2660 2661 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2662 permissions |= lldb::ePermissionsReadable; 2663 2664 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2665 permissions |= lldb::ePermissionsWritable; 2666 2667 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2668 permissions |= lldb::ePermissionsExecutable; 2669 2670 return true; 2671 } 2672 2673 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2674 Status error; 2675 error.SetErrorString("watchpoints are not supported"); 2676 return error; 2677 } 2678 2679 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2680 Status error; 2681 error.SetErrorString("watchpoints are not supported"); 2682 return error; 2683 } 2684 2685 StateType 2686 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2687 const Timeout<std::micro> &timeout) { 2688 StateType state; 2689 2690 while (true) { 2691 event_sp.reset(); 2692 state = GetStateChangedEventsPrivate(event_sp, timeout); 2693 2694 if (StateIsStoppedState(state, false)) 2695 break; 2696 2697 // If state is invalid, then we timed out 2698 if (state == eStateInvalid) 2699 break; 2700 2701 if (event_sp) 2702 HandlePrivateEvent(event_sp); 2703 } 2704 return state; 2705 } 2706 2707 void Process::LoadOperatingSystemPlugin(bool flush) { 2708 if (flush) 2709 m_thread_list.Clear(); 2710 m_os_ap.reset(OperatingSystem::FindPlugin(this, nullptr)); 2711 if (flush) 2712 Flush(); 2713 } 2714 2715 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2716 Status error; 2717 m_abi_sp.reset(); 2718 m_dyld_ap.reset(); 2719 m_jit_loaders_ap.reset(); 2720 m_system_runtime_ap.reset(); 2721 m_os_ap.reset(); 2722 m_process_input_reader.reset(); 2723 2724 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2725 if (exe_module) { 2726 char local_exec_file_path[PATH_MAX]; 2727 char platform_exec_file_path[PATH_MAX]; 2728 exe_module->GetFileSpec().GetPath(local_exec_file_path, 2729 sizeof(local_exec_file_path)); 2730 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, 2731 sizeof(platform_exec_file_path)); 2732 if (FileSystem::Instance().Exists(exe_module->GetFileSpec())) { 2733 // Install anything that might need to be installed prior to launching. 2734 // For host systems, this will do nothing, but if we are connected to a 2735 // remote platform it will install any needed binaries 2736 error = GetTarget().Install(&launch_info); 2737 if (error.Fail()) 2738 return error; 2739 2740 if (PrivateStateThreadIsValid()) 2741 PausePrivateStateThread(); 2742 2743 error = WillLaunch(exe_module); 2744 if (error.Success()) { 2745 const bool restarted = false; 2746 SetPublicState(eStateLaunching, restarted); 2747 m_should_detach = false; 2748 2749 if (m_public_run_lock.TrySetRunning()) { 2750 // Now launch using these arguments. 2751 error = DoLaunch(exe_module, launch_info); 2752 } else { 2753 // This shouldn't happen 2754 error.SetErrorString("failed to acquire process run lock"); 2755 } 2756 2757 if (error.Fail()) { 2758 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2759 SetID(LLDB_INVALID_PROCESS_ID); 2760 const char *error_string = error.AsCString(); 2761 if (error_string == nullptr) 2762 error_string = "launch failed"; 2763 SetExitStatus(-1, error_string); 2764 } 2765 } else { 2766 EventSP event_sp; 2767 2768 // Now wait for the process to launch and return control to us, and then call 2769 // DidLaunch: 2770 StateType state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2771 2772 if (state == eStateInvalid || !event_sp) { 2773 // We were able to launch the process, but we failed to catch the 2774 // initial stop. 2775 error.SetErrorString("failed to catch stop after launch"); 2776 SetExitStatus(0, "failed to catch stop after launch"); 2777 Destroy(false); 2778 } else if (state == eStateStopped || state == eStateCrashed) { 2779 DidLaunch(); 2780 2781 DynamicLoader *dyld = GetDynamicLoader(); 2782 if (dyld) 2783 dyld->DidLaunch(); 2784 2785 GetJITLoaders().DidLaunch(); 2786 2787 SystemRuntime *system_runtime = GetSystemRuntime(); 2788 if (system_runtime) 2789 system_runtime->DidLaunch(); 2790 2791 if (!m_os_ap) 2792 LoadOperatingSystemPlugin(false); 2793 2794 // We successfully launched the process and stopped, now it the 2795 // right time to set up signal filters before resuming. 2796 UpdateAutomaticSignalFiltering(); 2797 2798 // Note, the stop event was consumed above, but not handled. This 2799 // was done to give DidLaunch a chance to run. The target is either 2800 // stopped or crashed. Directly set the state. This is done to 2801 // prevent a stop message with a bunch of spurious output on thread 2802 // status, as well as not pop a ProcessIOHandler. 2803 SetPublicState(state, false); 2804 2805 if (PrivateStateThreadIsValid()) 2806 ResumePrivateStateThread(); 2807 else 2808 StartPrivateStateThread(); 2809 2810 // Target was stopped at entry as was intended. Need to notify the 2811 // listeners about it. 2812 if (state == eStateStopped && 2813 launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2814 HandlePrivateEvent(event_sp); 2815 } else if (state == eStateExited) { 2816 // We exited while trying to launch somehow. Don't call DidLaunch 2817 // as that's not likely to work, and return an invalid pid. 2818 HandlePrivateEvent(event_sp); 2819 } 2820 } 2821 } 2822 } else { 2823 error.SetErrorStringWithFormat("file doesn't exist: '%s'", 2824 local_exec_file_path); 2825 } 2826 } 2827 return error; 2828 } 2829 2830 Status Process::LoadCore() { 2831 Status error = DoLoadCore(); 2832 if (error.Success()) { 2833 ListenerSP listener_sp( 2834 Listener::MakeListener("lldb.process.load_core_listener")); 2835 HijackProcessEvents(listener_sp); 2836 2837 if (PrivateStateThreadIsValid()) 2838 ResumePrivateStateThread(); 2839 else 2840 StartPrivateStateThread(); 2841 2842 DynamicLoader *dyld = GetDynamicLoader(); 2843 if (dyld) 2844 dyld->DidAttach(); 2845 2846 GetJITLoaders().DidAttach(); 2847 2848 SystemRuntime *system_runtime = GetSystemRuntime(); 2849 if (system_runtime) 2850 system_runtime->DidAttach(); 2851 2852 if (!m_os_ap) 2853 LoadOperatingSystemPlugin(false); 2854 2855 // We successfully loaded a core file, now pretend we stopped so we can 2856 // show all of the threads in the core file and explore the crashed state. 2857 SetPrivateState(eStateStopped); 2858 2859 // Wait for a stopped event since we just posted one above... 2860 lldb::EventSP event_sp; 2861 StateType state = 2862 WaitForProcessToStop(seconds(10), &event_sp, true, listener_sp); 2863 2864 if (!StateIsStoppedState(state, false)) { 2865 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2866 if (log) 2867 log->Printf("Process::Halt() failed to stop, state is: %s", 2868 StateAsCString(state)); 2869 error.SetErrorString( 2870 "Did not get stopped event after loading the core file."); 2871 } 2872 RestoreProcessEvents(); 2873 } 2874 return error; 2875 } 2876 2877 DynamicLoader *Process::GetDynamicLoader() { 2878 if (!m_dyld_ap) 2879 m_dyld_ap.reset(DynamicLoader::FindPlugin(this, nullptr)); 2880 return m_dyld_ap.get(); 2881 } 2882 2883 const lldb::DataBufferSP Process::GetAuxvData() { return DataBufferSP(); } 2884 2885 JITLoaderList &Process::GetJITLoaders() { 2886 if (!m_jit_loaders_ap) { 2887 m_jit_loaders_ap.reset(new JITLoaderList()); 2888 JITLoader::LoadPlugins(this, *m_jit_loaders_ap); 2889 } 2890 return *m_jit_loaders_ap; 2891 } 2892 2893 SystemRuntime *Process::GetSystemRuntime() { 2894 if (!m_system_runtime_ap) 2895 m_system_runtime_ap.reset(SystemRuntime::FindPlugin(this)); 2896 return m_system_runtime_ap.get(); 2897 } 2898 2899 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2900 uint32_t exec_count) 2901 : NextEventAction(process), m_exec_count(exec_count) { 2902 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2903 if (log) 2904 log->Printf( 2905 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2906 __FUNCTION__, static_cast<void *>(process), exec_count); 2907 } 2908 2909 Process::NextEventAction::EventActionResult 2910 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2911 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2912 2913 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2914 if (log) 2915 log->Printf( 2916 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2917 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2918 2919 switch (state) { 2920 case eStateAttaching: 2921 return eEventActionSuccess; 2922 2923 case eStateRunning: 2924 case eStateConnected: 2925 return eEventActionRetry; 2926 2927 case eStateStopped: 2928 case eStateCrashed: 2929 // During attach, prior to sending the eStateStopped event, 2930 // lldb_private::Process subclasses must set the new process ID. 2931 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2932 // We don't want these events to be reported, so go set the 2933 // ShouldReportStop here: 2934 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2935 2936 if (m_exec_count > 0) { 2937 --m_exec_count; 2938 2939 if (log) 2940 log->Printf("Process::AttachCompletionHandler::%s state %s: reduced " 2941 "remaining exec count to %" PRIu32 ", requesting resume", 2942 __FUNCTION__, StateAsCString(state), m_exec_count); 2943 2944 RequestResume(); 2945 return eEventActionRetry; 2946 } else { 2947 if (log) 2948 log->Printf("Process::AttachCompletionHandler::%s state %s: no more " 2949 "execs expected to start, continuing with attach", 2950 __FUNCTION__, StateAsCString(state)); 2951 2952 m_process->CompleteAttach(); 2953 return eEventActionSuccess; 2954 } 2955 break; 2956 2957 default: 2958 case eStateExited: 2959 case eStateInvalid: 2960 break; 2961 } 2962 2963 m_exit_string.assign("No valid Process"); 2964 return eEventActionExit; 2965 } 2966 2967 Process::NextEventAction::EventActionResult 2968 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2969 return eEventActionSuccess; 2970 } 2971 2972 const char *Process::AttachCompletionHandler::GetExitString() { 2973 return m_exit_string.c_str(); 2974 } 2975 2976 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2977 if (m_listener_sp) 2978 return m_listener_sp; 2979 else 2980 return debugger.GetListener(); 2981 } 2982 2983 Status Process::Attach(ProcessAttachInfo &attach_info) { 2984 m_abi_sp.reset(); 2985 m_process_input_reader.reset(); 2986 m_dyld_ap.reset(); 2987 m_jit_loaders_ap.reset(); 2988 m_system_runtime_ap.reset(); 2989 m_os_ap.reset(); 2990 2991 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2992 Status error; 2993 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2994 char process_name[PATH_MAX]; 2995 2996 if (attach_info.GetExecutableFile().GetPath(process_name, 2997 sizeof(process_name))) { 2998 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2999 3000 if (wait_for_launch) { 3001 error = WillAttachToProcessWithName(process_name, wait_for_launch); 3002 if (error.Success()) { 3003 if (m_public_run_lock.TrySetRunning()) { 3004 m_should_detach = true; 3005 const bool restarted = false; 3006 SetPublicState(eStateAttaching, restarted); 3007 // Now attach using these arguments. 3008 error = DoAttachToProcessWithName(process_name, attach_info); 3009 } else { 3010 // This shouldn't happen 3011 error.SetErrorString("failed to acquire process run lock"); 3012 } 3013 3014 if (error.Fail()) { 3015 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3016 SetID(LLDB_INVALID_PROCESS_ID); 3017 if (error.AsCString() == nullptr) 3018 error.SetErrorString("attach failed"); 3019 3020 SetExitStatus(-1, error.AsCString()); 3021 } 3022 } else { 3023 SetNextEventAction(new Process::AttachCompletionHandler( 3024 this, attach_info.GetResumeCount())); 3025 StartPrivateStateThread(); 3026 } 3027 return error; 3028 } 3029 } else { 3030 ProcessInstanceInfoList process_infos; 3031 PlatformSP platform_sp(GetTarget().GetPlatform()); 3032 3033 if (platform_sp) { 3034 ProcessInstanceInfoMatch match_info; 3035 match_info.GetProcessInfo() = attach_info; 3036 match_info.SetNameMatchType(NameMatch::Equals); 3037 platform_sp->FindProcesses(match_info, process_infos); 3038 const uint32_t num_matches = process_infos.GetSize(); 3039 if (num_matches == 1) { 3040 attach_pid = process_infos.GetProcessIDAtIndex(0); 3041 // Fall through and attach using the above process ID 3042 } else { 3043 match_info.GetProcessInfo().GetExecutableFile().GetPath( 3044 process_name, sizeof(process_name)); 3045 if (num_matches > 1) { 3046 StreamString s; 3047 ProcessInstanceInfo::DumpTableHeader(s, platform_sp.get(), true, 3048 false); 3049 for (size_t i = 0; i < num_matches; i++) { 3050 process_infos.GetProcessInfoAtIndex(i).DumpAsTableRow( 3051 s, platform_sp.get(), true, false); 3052 } 3053 error.SetErrorStringWithFormat( 3054 "more than one process named %s:\n%s", process_name, 3055 s.GetData()); 3056 } else 3057 error.SetErrorStringWithFormat( 3058 "could not find a process named %s", process_name); 3059 } 3060 } else { 3061 error.SetErrorString( 3062 "invalid platform, can't find processes by name"); 3063 return error; 3064 } 3065 } 3066 } else { 3067 error.SetErrorString("invalid process name"); 3068 } 3069 } 3070 3071 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 3072 error = WillAttachToProcessWithID(attach_pid); 3073 if (error.Success()) { 3074 3075 if (m_public_run_lock.TrySetRunning()) { 3076 // Now attach using these arguments. 3077 m_should_detach = true; 3078 const bool restarted = false; 3079 SetPublicState(eStateAttaching, restarted); 3080 error = DoAttachToProcessWithID(attach_pid, attach_info); 3081 } else { 3082 // This shouldn't happen 3083 error.SetErrorString("failed to acquire process run lock"); 3084 } 3085 3086 if (error.Success()) { 3087 SetNextEventAction(new Process::AttachCompletionHandler( 3088 this, attach_info.GetResumeCount())); 3089 StartPrivateStateThread(); 3090 } else { 3091 if (GetID() != LLDB_INVALID_PROCESS_ID) 3092 SetID(LLDB_INVALID_PROCESS_ID); 3093 3094 const char *error_string = error.AsCString(); 3095 if (error_string == nullptr) 3096 error_string = "attach failed"; 3097 3098 SetExitStatus(-1, error_string); 3099 } 3100 } 3101 } 3102 return error; 3103 } 3104 3105 void Process::CompleteAttach() { 3106 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3107 LIBLLDB_LOG_TARGET)); 3108 if (log) 3109 log->Printf("Process::%s()", __FUNCTION__); 3110 3111 // Let the process subclass figure out at much as it can about the process 3112 // before we go looking for a dynamic loader plug-in. 3113 ArchSpec process_arch; 3114 DidAttach(process_arch); 3115 3116 if (process_arch.IsValid()) { 3117 GetTarget().SetArchitecture(process_arch); 3118 if (log) { 3119 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 3120 log->Printf("Process::%s replacing process architecture with DidAttach() " 3121 "architecture: %s", 3122 __FUNCTION__, triple_str ? triple_str : "<null>"); 3123 } 3124 } 3125 3126 // We just attached. If we have a platform, ask it for the process 3127 // architecture, and if it isn't the same as the one we've already set, 3128 // switch architectures. 3129 PlatformSP platform_sp(GetTarget().GetPlatform()); 3130 assert(platform_sp); 3131 if (platform_sp) { 3132 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 3133 if (target_arch.IsValid() && 3134 !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) { 3135 ArchSpec platform_arch; 3136 platform_sp = 3137 platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch); 3138 if (platform_sp) { 3139 GetTarget().SetPlatform(platform_sp); 3140 GetTarget().SetArchitecture(platform_arch); 3141 if (log) 3142 log->Printf("Process::%s switching platform to %s and architecture " 3143 "to %s based on info from attach", 3144 __FUNCTION__, platform_sp->GetName().AsCString(""), 3145 platform_arch.GetTriple().getTriple().c_str()); 3146 } 3147 } else if (!process_arch.IsValid()) { 3148 ProcessInstanceInfo process_info; 3149 GetProcessInfo(process_info); 3150 const ArchSpec &process_arch = process_info.GetArchitecture(); 3151 if (process_arch.IsValid() && 3152 !GetTarget().GetArchitecture().IsExactMatch(process_arch)) { 3153 GetTarget().SetArchitecture(process_arch); 3154 if (log) 3155 log->Printf("Process::%s switching architecture to %s based on info " 3156 "the platform retrieved for pid %" PRIu64, 3157 __FUNCTION__, 3158 process_arch.GetTriple().getTriple().c_str(), GetID()); 3159 } 3160 } 3161 } 3162 3163 // We have completed the attach, now it is time to find the dynamic loader 3164 // plug-in 3165 DynamicLoader *dyld = GetDynamicLoader(); 3166 if (dyld) { 3167 dyld->DidAttach(); 3168 if (log) { 3169 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3170 log->Printf("Process::%s after DynamicLoader::DidAttach(), target " 3171 "executable is %s (using %s plugin)", 3172 __FUNCTION__, 3173 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3174 : "<none>", 3175 dyld->GetPluginName().AsCString("<unnamed>")); 3176 } 3177 } 3178 3179 GetJITLoaders().DidAttach(); 3180 3181 SystemRuntime *system_runtime = GetSystemRuntime(); 3182 if (system_runtime) { 3183 system_runtime->DidAttach(); 3184 if (log) { 3185 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3186 log->Printf("Process::%s after SystemRuntime::DidAttach(), target " 3187 "executable is %s (using %s plugin)", 3188 __FUNCTION__, 3189 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3190 : "<none>", 3191 system_runtime->GetPluginName().AsCString("<unnamed>")); 3192 } 3193 } 3194 3195 if (!m_os_ap) 3196 LoadOperatingSystemPlugin(false); 3197 // Figure out which one is the executable, and set that in our target: 3198 const ModuleList &target_modules = GetTarget().GetImages(); 3199 std::lock_guard<std::recursive_mutex> guard(target_modules.GetMutex()); 3200 size_t num_modules = target_modules.GetSize(); 3201 ModuleSP new_executable_module_sp; 3202 3203 for (size_t i = 0; i < num_modules; i++) { 3204 ModuleSP module_sp(target_modules.GetModuleAtIndexUnlocked(i)); 3205 if (module_sp && module_sp->IsExecutable()) { 3206 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 3207 new_executable_module_sp = module_sp; 3208 break; 3209 } 3210 } 3211 if (new_executable_module_sp) { 3212 GetTarget().SetExecutableModule(new_executable_module_sp, 3213 eLoadDependentsNo); 3214 if (log) { 3215 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3216 log->Printf( 3217 "Process::%s after looping through modules, target executable is %s", 3218 __FUNCTION__, 3219 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3220 : "<none>"); 3221 } 3222 } 3223 } 3224 3225 Status Process::ConnectRemote(Stream *strm, llvm::StringRef remote_url) { 3226 m_abi_sp.reset(); 3227 m_process_input_reader.reset(); 3228 3229 // Find the process and its architecture. Make sure it matches the 3230 // architecture of the current Target, and if not adjust it. 3231 3232 Status error(DoConnectRemote(strm, remote_url)); 3233 if (error.Success()) { 3234 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3235 EventSP event_sp; 3236 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 3237 3238 if (state == eStateStopped || state == eStateCrashed) { 3239 // If we attached and actually have a process on the other end, then 3240 // this ended up being the equivalent of an attach. 3241 CompleteAttach(); 3242 3243 // This delays passing the stopped event to listeners till 3244 // CompleteAttach gets a chance to complete... 3245 HandlePrivateEvent(event_sp); 3246 } 3247 } 3248 3249 if (PrivateStateThreadIsValid()) 3250 ResumePrivateStateThread(); 3251 else 3252 StartPrivateStateThread(); 3253 } 3254 return error; 3255 } 3256 3257 Status Process::PrivateResume() { 3258 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3259 LIBLLDB_LOG_STEP)); 3260 if (log) 3261 log->Printf("Process::PrivateResume() m_stop_id = %u, public state: %s " 3262 "private state: %s", 3263 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3264 StateAsCString(m_private_state.GetValue())); 3265 3266 // If signals handing status changed we might want to update our signal 3267 // filters before resuming. 3268 UpdateAutomaticSignalFiltering(); 3269 3270 Status error(WillResume()); 3271 // Tell the process it is about to resume before the thread list 3272 if (error.Success()) { 3273 // Now let the thread list know we are about to resume so it can let all of 3274 // our threads know that they are about to be resumed. Threads will each be 3275 // called with Thread::WillResume(StateType) where StateType contains the 3276 // state that they are supposed to have when the process is resumed 3277 // (suspended/running/stepping). Threads should also check their resume 3278 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3279 // start back up with a signal. 3280 if (m_thread_list.WillResume()) { 3281 // Last thing, do the PreResumeActions. 3282 if (!RunPreResumeActions()) { 3283 error.SetErrorStringWithFormat( 3284 "Process::PrivateResume PreResumeActions failed, not resuming."); 3285 } else { 3286 m_mod_id.BumpResumeID(); 3287 error = DoResume(); 3288 if (error.Success()) { 3289 DidResume(); 3290 m_thread_list.DidResume(); 3291 if (log) 3292 log->Printf("Process thinks the process has resumed."); 3293 } else { 3294 if (log) 3295 log->Printf( 3296 "Process::PrivateResume() DoResume failed."); 3297 return error; 3298 } 3299 } 3300 } else { 3301 // Somebody wanted to run without running (e.g. we were faking a step 3302 // from one frame of a set of inlined frames that share the same PC to 3303 // another.) So generate a continue & a stopped event, and let the world 3304 // handle them. 3305 if (log) 3306 log->Printf( 3307 "Process::PrivateResume() asked to simulate a start & stop."); 3308 3309 SetPrivateState(eStateRunning); 3310 SetPrivateState(eStateStopped); 3311 } 3312 } else if (log) 3313 log->Printf("Process::PrivateResume() got an error \"%s\".", 3314 error.AsCString("<unknown error>")); 3315 return error; 3316 } 3317 3318 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3319 if (!StateIsRunningState(m_public_state.GetValue())) 3320 return Status("Process is not running."); 3321 3322 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3323 // case it was already set and some thread plan logic calls halt on its own. 3324 m_clear_thread_plans_on_stop |= clear_thread_plans; 3325 3326 ListenerSP halt_listener_sp( 3327 Listener::MakeListener("lldb.process.halt_listener")); 3328 HijackProcessEvents(halt_listener_sp); 3329 3330 EventSP event_sp; 3331 3332 SendAsyncInterrupt(); 3333 3334 if (m_public_state.GetValue() == eStateAttaching) { 3335 // Don't hijack and eat the eStateExited as the code that was doing the 3336 // attach will be waiting for this event... 3337 RestoreProcessEvents(); 3338 SetExitStatus(SIGKILL, "Cancelled async attach."); 3339 Destroy(false); 3340 return Status(); 3341 } 3342 3343 // Wait for 10 second for the process to stop. 3344 StateType state = WaitForProcessToStop( 3345 seconds(10), &event_sp, true, halt_listener_sp, nullptr, use_run_lock); 3346 RestoreProcessEvents(); 3347 3348 if (state == eStateInvalid || !event_sp) { 3349 // We timed out and didn't get a stop event... 3350 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3351 } 3352 3353 BroadcastEvent(event_sp); 3354 3355 return Status(); 3356 } 3357 3358 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3359 Status error; 3360 3361 // Check both the public & private states here. If we're hung evaluating an 3362 // expression, for instance, then the public state will be stopped, but we 3363 // still need to interrupt. 3364 if (m_public_state.GetValue() == eStateRunning || 3365 m_private_state.GetValue() == eStateRunning) { 3366 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3367 if (log) 3368 log->Printf("Process::%s() About to stop.", __FUNCTION__); 3369 3370 ListenerSP listener_sp( 3371 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3372 HijackProcessEvents(listener_sp); 3373 3374 SendAsyncInterrupt(); 3375 3376 // Consume the interrupt event. 3377 StateType state = 3378 WaitForProcessToStop(seconds(10), &exit_event_sp, true, listener_sp); 3379 3380 RestoreProcessEvents(); 3381 3382 // If the process exited while we were waiting for it to stop, put the 3383 // exited event into the shared pointer passed in and return. Our caller 3384 // doesn't need to do anything else, since they don't have a process 3385 // anymore... 3386 3387 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3388 if (log) 3389 log->Printf("Process::%s() Process exited while waiting to stop.", 3390 __FUNCTION__); 3391 return error; 3392 } else 3393 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3394 3395 if (state != eStateStopped) { 3396 if (log) 3397 log->Printf("Process::%s() failed to stop, state is: %s", __FUNCTION__, 3398 StateAsCString(state)); 3399 // If we really couldn't stop the process then we should just error out 3400 // here, but if the lower levels just bobbled sending the event and we 3401 // really are stopped, then continue on. 3402 StateType private_state = m_private_state.GetValue(); 3403 if (private_state != eStateStopped) { 3404 return Status( 3405 "Attempt to stop the target in order to detach timed out. " 3406 "State = %s", 3407 StateAsCString(GetState())); 3408 } 3409 } 3410 } 3411 return error; 3412 } 3413 3414 Status Process::Detach(bool keep_stopped) { 3415 EventSP exit_event_sp; 3416 Status error; 3417 m_destroy_in_process = true; 3418 3419 error = WillDetach(); 3420 3421 if (error.Success()) { 3422 if (DetachRequiresHalt()) { 3423 error = StopForDestroyOrDetach(exit_event_sp); 3424 if (!error.Success()) { 3425 m_destroy_in_process = false; 3426 return error; 3427 } else if (exit_event_sp) { 3428 // We shouldn't need to do anything else here. There's no process left 3429 // to detach from... 3430 StopPrivateStateThread(); 3431 m_destroy_in_process = false; 3432 return error; 3433 } 3434 } 3435 3436 m_thread_list.DiscardThreadPlans(); 3437 DisableAllBreakpointSites(); 3438 3439 error = DoDetach(keep_stopped); 3440 if (error.Success()) { 3441 DidDetach(); 3442 StopPrivateStateThread(); 3443 } else { 3444 return error; 3445 } 3446 } 3447 m_destroy_in_process = false; 3448 3449 // If we exited when we were waiting for a process to stop, then forward the 3450 // event here so we don't lose the event 3451 if (exit_event_sp) { 3452 // Directly broadcast our exited event because we shut down our private 3453 // state thread above 3454 BroadcastEvent(exit_event_sp); 3455 } 3456 3457 // If we have been interrupted (to kill us) in the middle of running, we may 3458 // not end up propagating the last events through the event system, in which 3459 // case we might strand the write lock. Unlock it here so when we do to tear 3460 // down the process we don't get an error destroying the lock. 3461 3462 m_public_run_lock.SetStopped(); 3463 return error; 3464 } 3465 3466 Status Process::Destroy(bool force_kill) { 3467 3468 // Tell ourselves we are in the process of destroying the process, so that we 3469 // don't do any unnecessary work that might hinder the destruction. Remember 3470 // to set this back to false when we are done. That way if the attempt 3471 // failed and the process stays around for some reason it won't be in a 3472 // confused state. 3473 3474 if (force_kill) 3475 m_should_detach = false; 3476 3477 if (GetShouldDetach()) { 3478 // FIXME: This will have to be a process setting: 3479 bool keep_stopped = false; 3480 Detach(keep_stopped); 3481 } 3482 3483 m_destroy_in_process = true; 3484 3485 Status error(WillDestroy()); 3486 if (error.Success()) { 3487 EventSP exit_event_sp; 3488 if (DestroyRequiresHalt()) { 3489 error = StopForDestroyOrDetach(exit_event_sp); 3490 } 3491 3492 if (m_public_state.GetValue() != eStateRunning) { 3493 // Ditch all thread plans, and remove all our breakpoints: in case we 3494 // have to restart the target to kill it, we don't want it hitting a 3495 // breakpoint... Only do this if we've stopped, however, since if we 3496 // didn't manage to halt it above, then we're not going to have much luck 3497 // doing this now. 3498 m_thread_list.DiscardThreadPlans(); 3499 DisableAllBreakpointSites(); 3500 } 3501 3502 error = DoDestroy(); 3503 if (error.Success()) { 3504 DidDestroy(); 3505 StopPrivateStateThread(); 3506 } 3507 m_stdio_communication.Disconnect(); 3508 m_stdio_communication.StopReadThread(); 3509 m_stdin_forward = false; 3510 3511 if (m_process_input_reader) { 3512 m_process_input_reader->SetIsDone(true); 3513 m_process_input_reader->Cancel(); 3514 m_process_input_reader.reset(); 3515 } 3516 3517 // If we exited when we were waiting for a process to stop, then forward 3518 // the event here so we don't lose the event 3519 if (exit_event_sp) { 3520 // Directly broadcast our exited event because we shut down our private 3521 // state thread above 3522 BroadcastEvent(exit_event_sp); 3523 } 3524 3525 // If we have been interrupted (to kill us) in the middle of running, we 3526 // may not end up propagating the last events through the event system, in 3527 // which case we might strand the write lock. Unlock it here so when we do 3528 // to tear down the process we don't get an error destroying the lock. 3529 m_public_run_lock.SetStopped(); 3530 } 3531 3532 m_destroy_in_process = false; 3533 3534 return error; 3535 } 3536 3537 Status Process::Signal(int signal) { 3538 Status error(WillSignal()); 3539 if (error.Success()) { 3540 error = DoSignal(signal); 3541 if (error.Success()) 3542 DidSignal(); 3543 } 3544 return error; 3545 } 3546 3547 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3548 assert(signals_sp && "null signals_sp"); 3549 m_unix_signals_sp = signals_sp; 3550 } 3551 3552 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3553 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3554 return m_unix_signals_sp; 3555 } 3556 3557 lldb::ByteOrder Process::GetByteOrder() const { 3558 return GetTarget().GetArchitecture().GetByteOrder(); 3559 } 3560 3561 uint32_t Process::GetAddressByteSize() const { 3562 return GetTarget().GetArchitecture().GetAddressByteSize(); 3563 } 3564 3565 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3566 const StateType state = 3567 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3568 bool return_value = true; 3569 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | 3570 LIBLLDB_LOG_PROCESS)); 3571 3572 switch (state) { 3573 case eStateDetached: 3574 case eStateExited: 3575 case eStateUnloaded: 3576 m_stdio_communication.SynchronizeWithReadThread(); 3577 m_stdio_communication.Disconnect(); 3578 m_stdio_communication.StopReadThread(); 3579 m_stdin_forward = false; 3580 3581 LLVM_FALLTHROUGH; 3582 case eStateConnected: 3583 case eStateAttaching: 3584 case eStateLaunching: 3585 // These events indicate changes in the state of the debugging session, 3586 // always report them. 3587 return_value = true; 3588 break; 3589 case eStateInvalid: 3590 // We stopped for no apparent reason, don't report it. 3591 return_value = false; 3592 break; 3593 case eStateRunning: 3594 case eStateStepping: 3595 // If we've started the target running, we handle the cases where we are 3596 // already running and where there is a transition from stopped to running 3597 // differently. running -> running: Automatically suppress extra running 3598 // events stopped -> running: Report except when there is one or more no 3599 // votes 3600 // and no yes votes. 3601 SynchronouslyNotifyStateChanged(state); 3602 if (m_force_next_event_delivery) 3603 return_value = true; 3604 else { 3605 switch (m_last_broadcast_state) { 3606 case eStateRunning: 3607 case eStateStepping: 3608 // We always suppress multiple runnings with no PUBLIC stop in between. 3609 return_value = false; 3610 break; 3611 default: 3612 // TODO: make this work correctly. For now always report 3613 // run if we aren't running so we don't miss any running events. If I 3614 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3615 // and hit the breakpoints on multiple threads, then somehow during the 3616 // stepping over of all breakpoints no run gets reported. 3617 3618 // This is a transition from stop to run. 3619 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3620 case eVoteYes: 3621 case eVoteNoOpinion: 3622 return_value = true; 3623 break; 3624 case eVoteNo: 3625 return_value = false; 3626 break; 3627 } 3628 break; 3629 } 3630 } 3631 break; 3632 case eStateStopped: 3633 case eStateCrashed: 3634 case eStateSuspended: 3635 // We've stopped. First see if we're going to restart the target. If we 3636 // are going to stop, then we always broadcast the event. If we aren't 3637 // going to stop, let the thread plans decide if we're going to report this 3638 // event. If no thread has an opinion, we don't report it. 3639 3640 m_stdio_communication.SynchronizeWithReadThread(); 3641 RefreshStateAfterStop(); 3642 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3643 if (log) 3644 log->Printf("Process::ShouldBroadcastEvent (%p) stopped due to an " 3645 "interrupt, state: %s", 3646 static_cast<void *>(event_ptr), StateAsCString(state)); 3647 // Even though we know we are going to stop, we should let the threads 3648 // have a look at the stop, so they can properly set their state. 3649 m_thread_list.ShouldStop(event_ptr); 3650 return_value = true; 3651 } else { 3652 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3653 bool should_resume = false; 3654 3655 // It makes no sense to ask "ShouldStop" if we've already been 3656 // restarted... Asking the thread list is also not likely to go well, 3657 // since we are running again. So in that case just report the event. 3658 3659 if (!was_restarted) 3660 should_resume = !m_thread_list.ShouldStop(event_ptr); 3661 3662 if (was_restarted || should_resume || m_resume_requested) { 3663 Vote stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3664 if (log) 3665 log->Printf("Process::ShouldBroadcastEvent: should_resume: %i state: " 3666 "%s was_restarted: %i stop_vote: %d.", 3667 should_resume, StateAsCString(state), was_restarted, 3668 stop_vote); 3669 3670 switch (stop_vote) { 3671 case eVoteYes: 3672 return_value = true; 3673 break; 3674 case eVoteNoOpinion: 3675 case eVoteNo: 3676 return_value = false; 3677 break; 3678 } 3679 3680 if (!was_restarted) { 3681 if (log) 3682 log->Printf("Process::ShouldBroadcastEvent (%p) Restarting process " 3683 "from state: %s", 3684 static_cast<void *>(event_ptr), StateAsCString(state)); 3685 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3686 PrivateResume(); 3687 } 3688 } else { 3689 return_value = true; 3690 SynchronouslyNotifyStateChanged(state); 3691 } 3692 } 3693 break; 3694 } 3695 3696 // Forcing the next event delivery is a one shot deal. So reset it here. 3697 m_force_next_event_delivery = false; 3698 3699 // We do some coalescing of events (for instance two consecutive running 3700 // events get coalesced.) But we only coalesce against events we actually 3701 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3702 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3703 // done, because the PublicState reflects the last event pulled off the 3704 // queue, and there may be several events stacked up on the queue unserviced. 3705 // So the PublicState may not reflect the last broadcasted event yet. 3706 // m_last_broadcast_state gets updated here. 3707 3708 if (return_value) 3709 m_last_broadcast_state = state; 3710 3711 if (log) 3712 log->Printf("Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3713 "broadcast state: %s - %s", 3714 static_cast<void *>(event_ptr), StateAsCString(state), 3715 StateAsCString(m_last_broadcast_state), 3716 return_value ? "YES" : "NO"); 3717 return return_value; 3718 } 3719 3720 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3721 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 3722 3723 bool already_running = PrivateStateThreadIsValid(); 3724 if (log) 3725 log->Printf("Process::%s()%s ", __FUNCTION__, 3726 already_running ? " already running" 3727 : " starting private state thread"); 3728 3729 if (!is_secondary_thread && already_running) 3730 return true; 3731 3732 // Create a thread that watches our internal state and controls which events 3733 // make it to clients (into the DCProcess event queue). 3734 char thread_name[1024]; 3735 uint32_t max_len = llvm::get_max_thread_name_length(); 3736 if (max_len > 0 && max_len <= 30) { 3737 // On platforms with abbreviated thread name lengths, choose thread names 3738 // that fit within the limit. 3739 if (already_running) 3740 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3741 else 3742 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3743 } else { 3744 if (already_running) 3745 snprintf(thread_name, sizeof(thread_name), 3746 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3747 GetID()); 3748 else 3749 snprintf(thread_name, sizeof(thread_name), 3750 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3751 } 3752 3753 // Create the private state thread, and start it running. 3754 PrivateStateThreadArgs *args_ptr = 3755 new PrivateStateThreadArgs(this, is_secondary_thread); 3756 m_private_state_thread = 3757 ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, 3758 (void *)args_ptr, nullptr, 8 * 1024 * 1024); 3759 if (m_private_state_thread.IsJoinable()) { 3760 ResumePrivateStateThread(); 3761 return true; 3762 } else 3763 return false; 3764 } 3765 3766 void Process::PausePrivateStateThread() { 3767 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3768 } 3769 3770 void Process::ResumePrivateStateThread() { 3771 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3772 } 3773 3774 void Process::StopPrivateStateThread() { 3775 if (m_private_state_thread.IsJoinable()) 3776 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3777 else { 3778 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3779 if (log) 3780 log->Printf( 3781 "Went to stop the private state thread, but it was already invalid."); 3782 } 3783 } 3784 3785 void Process::ControlPrivateStateThread(uint32_t signal) { 3786 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3787 3788 assert(signal == eBroadcastInternalStateControlStop || 3789 signal == eBroadcastInternalStateControlPause || 3790 signal == eBroadcastInternalStateControlResume); 3791 3792 if (log) 3793 log->Printf("Process::%s (signal = %d)", __FUNCTION__, signal); 3794 3795 // Signal the private state thread 3796 if (m_private_state_thread.IsJoinable()) { 3797 // Broadcast the event. 3798 // It is important to do this outside of the if below, because it's 3799 // possible that the thread state is invalid but that the thread is waiting 3800 // on a control event instead of simply being on its way out (this should 3801 // not happen, but it apparently can). 3802 if (log) 3803 log->Printf("Sending control event of type: %d.", signal); 3804 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3805 m_private_state_control_broadcaster.BroadcastEvent(signal, 3806 event_receipt_sp); 3807 3808 // Wait for the event receipt or for the private state thread to exit 3809 bool receipt_received = false; 3810 if (PrivateStateThreadIsValid()) { 3811 while (!receipt_received) { 3812 // Check for a receipt for 2 seconds and then check if the private 3813 // state thread is still around. 3814 receipt_received = 3815 event_receipt_sp->WaitForEventReceived(std::chrono::seconds(2)); 3816 if (!receipt_received) { 3817 // Check if the private state thread is still around. If it isn't 3818 // then we are done waiting 3819 if (!PrivateStateThreadIsValid()) 3820 break; // Private state thread exited or is exiting, we are done 3821 } 3822 } 3823 } 3824 3825 if (signal == eBroadcastInternalStateControlStop) { 3826 thread_result_t result = NULL; 3827 m_private_state_thread.Join(&result); 3828 m_private_state_thread.Reset(); 3829 } 3830 } else { 3831 if (log) 3832 log->Printf( 3833 "Private state thread already dead, no need to signal it to stop."); 3834 } 3835 } 3836 3837 void Process::SendAsyncInterrupt() { 3838 if (PrivateStateThreadIsValid()) 3839 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3840 nullptr); 3841 else 3842 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3843 } 3844 3845 void Process::HandlePrivateEvent(EventSP &event_sp) { 3846 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3847 m_resume_requested = false; 3848 3849 const StateType new_state = 3850 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3851 3852 // First check to see if anybody wants a shot at this event: 3853 if (m_next_event_action_ap) { 3854 NextEventAction::EventActionResult action_result = 3855 m_next_event_action_ap->PerformAction(event_sp); 3856 if (log) 3857 log->Printf("Ran next event action, result was %d.", action_result); 3858 3859 switch (action_result) { 3860 case NextEventAction::eEventActionSuccess: 3861 SetNextEventAction(nullptr); 3862 break; 3863 3864 case NextEventAction::eEventActionRetry: 3865 break; 3866 3867 case NextEventAction::eEventActionExit: 3868 // Handle Exiting Here. If we already got an exited event, we should 3869 // just propagate it. Otherwise, swallow this event, and set our state 3870 // to exit so the next event will kill us. 3871 if (new_state != eStateExited) { 3872 // FIXME: should cons up an exited event, and discard this one. 3873 SetExitStatus(0, m_next_event_action_ap->GetExitString()); 3874 SetNextEventAction(nullptr); 3875 return; 3876 } 3877 SetNextEventAction(nullptr); 3878 break; 3879 } 3880 } 3881 3882 // See if we should broadcast this state to external clients? 3883 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3884 3885 if (should_broadcast) { 3886 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3887 if (log) { 3888 log->Printf("Process::%s (pid = %" PRIu64 3889 ") broadcasting new state %s (old state %s) to %s", 3890 __FUNCTION__, GetID(), StateAsCString(new_state), 3891 StateAsCString(GetState()), 3892 is_hijacked ? "hijacked" : "public"); 3893 } 3894 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3895 if (StateIsRunningState(new_state)) { 3896 // Only push the input handler if we aren't fowarding events, as this 3897 // means the curses GUI is in use... Or don't push it if we are launching 3898 // since it will come up stopped. 3899 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3900 new_state != eStateLaunching && new_state != eStateAttaching) { 3901 PushProcessIOHandler(); 3902 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3903 eBroadcastAlways); 3904 if (log) 3905 log->Printf("Process::%s updated m_iohandler_sync to %d", 3906 __FUNCTION__, m_iohandler_sync.GetValue()); 3907 } 3908 } else if (StateIsStoppedState(new_state, false)) { 3909 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3910 // If the lldb_private::Debugger is handling the events, we don't want 3911 // to pop the process IOHandler here, we want to do it when we receive 3912 // the stopped event so we can carefully control when the process 3913 // IOHandler is popped because when we stop we want to display some 3914 // text stating how and why we stopped, then maybe some 3915 // process/thread/frame info, and then we want the "(lldb) " prompt to 3916 // show up. If we pop the process IOHandler here, then we will cause 3917 // the command interpreter to become the top IOHandler after the 3918 // process pops off and it will update its prompt right away... See the 3919 // Debugger.cpp file where it calls the function as 3920 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3921 // Otherwise we end up getting overlapping "(lldb) " prompts and 3922 // garbled output. 3923 // 3924 // If we aren't handling the events in the debugger (which is indicated 3925 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3926 // we are hijacked, then we always pop the process IO handler manually. 3927 // Hijacking happens when the internal process state thread is running 3928 // thread plans, or when commands want to run in synchronous mode and 3929 // they call "process->WaitForProcessToStop()". An example of something 3930 // that will hijack the events is a simple expression: 3931 // 3932 // (lldb) expr (int)puts("hello") 3933 // 3934 // This will cause the internal process state thread to resume and halt 3935 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3936 // events) and we do need the IO handler to be pushed and popped 3937 // correctly. 3938 3939 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3940 PopProcessIOHandler(); 3941 } 3942 } 3943 3944 BroadcastEvent(event_sp); 3945 } else { 3946 if (log) { 3947 log->Printf( 3948 "Process::%s (pid = %" PRIu64 3949 ") suppressing state %s (old state %s): should_broadcast == false", 3950 __FUNCTION__, GetID(), StateAsCString(new_state), 3951 StateAsCString(GetState())); 3952 } 3953 } 3954 } 3955 3956 Status Process::HaltPrivate() { 3957 EventSP event_sp; 3958 Status error(WillHalt()); 3959 if (error.Fail()) 3960 return error; 3961 3962 // Ask the process subclass to actually halt our process 3963 bool caused_stop; 3964 error = DoHalt(caused_stop); 3965 3966 DidHalt(); 3967 return error; 3968 } 3969 3970 thread_result_t Process::PrivateStateThread(void *arg) { 3971 std::unique_ptr<PrivateStateThreadArgs> args_up( 3972 static_cast<PrivateStateThreadArgs *>(arg)); 3973 thread_result_t result = 3974 args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 3975 return result; 3976 } 3977 3978 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3979 bool control_only = true; 3980 3981 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3982 if (log) 3983 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3984 __FUNCTION__, static_cast<void *>(this), GetID()); 3985 3986 bool exit_now = false; 3987 bool interrupt_requested = false; 3988 while (!exit_now) { 3989 EventSP event_sp; 3990 GetEventsPrivate(event_sp, llvm::None, control_only); 3991 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3992 if (log) 3993 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 3994 ") got a control event: %d", 3995 __FUNCTION__, static_cast<void *>(this), GetID(), 3996 event_sp->GetType()); 3997 3998 switch (event_sp->GetType()) { 3999 case eBroadcastInternalStateControlStop: 4000 exit_now = true; 4001 break; // doing any internal state management below 4002 4003 case eBroadcastInternalStateControlPause: 4004 control_only = true; 4005 break; 4006 4007 case eBroadcastInternalStateControlResume: 4008 control_only = false; 4009 break; 4010 } 4011 4012 continue; 4013 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 4014 if (m_public_state.GetValue() == eStateAttaching) { 4015 if (log) 4016 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4017 ") woke up with an interrupt while attaching - " 4018 "forwarding interrupt.", 4019 __FUNCTION__, static_cast<void *>(this), GetID()); 4020 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 4021 } else if (StateIsRunningState(m_last_broadcast_state)) { 4022 if (log) 4023 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4024 ") woke up with an interrupt - Halting.", 4025 __FUNCTION__, static_cast<void *>(this), GetID()); 4026 Status error = HaltPrivate(); 4027 if (error.Fail() && log) 4028 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4029 ") failed to halt the process: %s", 4030 __FUNCTION__, static_cast<void *>(this), GetID(), 4031 error.AsCString()); 4032 // Halt should generate a stopped event. Make a note of the fact that 4033 // we were doing the interrupt, so we can set the interrupted flag 4034 // after we receive the event. We deliberately set this to true even if 4035 // HaltPrivate failed, so that we can interrupt on the next natural 4036 // stop. 4037 interrupt_requested = true; 4038 } else { 4039 // This can happen when someone (e.g. Process::Halt) sees that we are 4040 // running and sends an interrupt request, but the process actually 4041 // stops before we receive it. In that case, we can just ignore the 4042 // request. We use m_last_broadcast_state, because the Stopped event 4043 // may not have been popped of the event queue yet, which is when the 4044 // public state gets updated. 4045 if (log) 4046 log->Printf( 4047 "Process::%s ignoring interrupt as we have already stopped.", 4048 __FUNCTION__); 4049 } 4050 continue; 4051 } 4052 4053 const StateType internal_state = 4054 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4055 4056 if (internal_state != eStateInvalid) { 4057 if (m_clear_thread_plans_on_stop && 4058 StateIsStoppedState(internal_state, true)) { 4059 m_clear_thread_plans_on_stop = false; 4060 m_thread_list.DiscardThreadPlans(); 4061 } 4062 4063 if (interrupt_requested) { 4064 if (StateIsStoppedState(internal_state, true)) { 4065 // We requested the interrupt, so mark this as such in the stop event 4066 // so clients can tell an interrupted process from a natural stop 4067 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 4068 interrupt_requested = false; 4069 } else if (log) { 4070 log->Printf("Process::%s interrupt_requested, but a non-stopped " 4071 "state '%s' received.", 4072 __FUNCTION__, StateAsCString(internal_state)); 4073 } 4074 } 4075 4076 HandlePrivateEvent(event_sp); 4077 } 4078 4079 if (internal_state == eStateInvalid || internal_state == eStateExited || 4080 internal_state == eStateDetached) { 4081 if (log) 4082 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4083 ") about to exit with internal state %s...", 4084 __FUNCTION__, static_cast<void *>(this), GetID(), 4085 StateAsCString(internal_state)); 4086 4087 break; 4088 } 4089 } 4090 4091 // Verify log is still enabled before attempting to write to it... 4092 if (log) 4093 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 4094 __FUNCTION__, static_cast<void *>(this), GetID()); 4095 4096 // If we are a secondary thread, then the primary thread we are working for 4097 // will have already acquired the public_run_lock, and isn't done with what 4098 // it was doing yet, so don't try to change it on the way out. 4099 if (!is_secondary_thread) 4100 m_public_run_lock.SetStopped(); 4101 return NULL; 4102 } 4103 4104 //------------------------------------------------------------------ 4105 // Process Event Data 4106 //------------------------------------------------------------------ 4107 4108 Process::ProcessEventData::ProcessEventData() 4109 : EventData(), m_process_wp(), m_state(eStateInvalid), m_restarted(false), 4110 m_update_state(0), m_interrupted(false) {} 4111 4112 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 4113 StateType state) 4114 : EventData(), m_process_wp(), m_state(state), m_restarted(false), 4115 m_update_state(0), m_interrupted(false) { 4116 if (process_sp) 4117 m_process_wp = process_sp; 4118 } 4119 4120 Process::ProcessEventData::~ProcessEventData() = default; 4121 4122 const ConstString &Process::ProcessEventData::GetFlavorString() { 4123 static ConstString g_flavor("Process::ProcessEventData"); 4124 return g_flavor; 4125 } 4126 4127 const ConstString &Process::ProcessEventData::GetFlavor() const { 4128 return ProcessEventData::GetFlavorString(); 4129 } 4130 4131 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 4132 ProcessSP process_sp(m_process_wp.lock()); 4133 4134 if (!process_sp) 4135 return; 4136 4137 // This function gets called twice for each event, once when the event gets 4138 // pulled off of the private process event queue, and then any number of 4139 // times, first when it gets pulled off of the public event queue, then other 4140 // times when we're pretending that this is where we stopped at the end of 4141 // expression evaluation. m_update_state is used to distinguish these three 4142 // cases; it is 0 when we're just pulling it off for private handling, and > 4143 // 1 for expression evaluation, and we don't want to do the breakpoint 4144 // command handling then. 4145 if (m_update_state != 1) 4146 return; 4147 4148 process_sp->SetPublicState( 4149 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4150 4151 if (m_state == eStateStopped && !m_restarted) { 4152 // Let process subclasses know we are about to do a public stop and do 4153 // anything they might need to in order to speed up register and memory 4154 // accesses. 4155 process_sp->WillPublicStop(); 4156 } 4157 4158 // If this is a halt event, even if the halt stopped with some reason other 4159 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 4160 // the halt request came through) don't do the StopInfo actions, as they may 4161 // end up restarting the process. 4162 if (m_interrupted) 4163 return; 4164 4165 // If we're stopped and haven't restarted, then do the StopInfo actions here: 4166 if (m_state == eStateStopped && !m_restarted) { 4167 ThreadList &curr_thread_list = process_sp->GetThreadList(); 4168 uint32_t num_threads = curr_thread_list.GetSize(); 4169 uint32_t idx; 4170 4171 // The actions might change one of the thread's stop_info's opinions about 4172 // whether we should stop the process, so we need to query that as we go. 4173 4174 // One other complication here, is that we try to catch any case where the 4175 // target has run (except for expressions) and immediately exit, but if we 4176 // get that wrong (which is possible) then the thread list might have 4177 // changed, and that would cause our iteration here to crash. We could 4178 // make a copy of the thread list, but we'd really like to also know if it 4179 // has changed at all, so we make up a vector of the thread ID's and check 4180 // what we get back against this list & bag out if anything differs. 4181 std::vector<uint32_t> thread_index_array(num_threads); 4182 for (idx = 0; idx < num_threads; ++idx) 4183 thread_index_array[idx] = 4184 curr_thread_list.GetThreadAtIndex(idx)->GetIndexID(); 4185 4186 // Use this to track whether we should continue from here. We will only 4187 // continue the target running if no thread says we should stop. Of course 4188 // if some thread's PerformAction actually sets the target running, then it 4189 // doesn't matter what the other threads say... 4190 4191 bool still_should_stop = false; 4192 4193 // Sometimes - for instance if we have a bug in the stub we are talking to, 4194 // we stop but no thread has a valid stop reason. In that case we should 4195 // just stop, because we have no way of telling what the right thing to do 4196 // is, and it's better to let the user decide than continue behind their 4197 // backs. 4198 4199 bool does_anybody_have_an_opinion = false; 4200 4201 for (idx = 0; idx < num_threads; ++idx) { 4202 curr_thread_list = process_sp->GetThreadList(); 4203 if (curr_thread_list.GetSize() != num_threads) { 4204 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4205 LIBLLDB_LOG_PROCESS)); 4206 if (log) 4207 log->Printf( 4208 "Number of threads changed from %u to %u while processing event.", 4209 num_threads, curr_thread_list.GetSize()); 4210 break; 4211 } 4212 4213 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 4214 4215 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 4216 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4217 LIBLLDB_LOG_PROCESS)); 4218 if (log) 4219 log->Printf("The thread at position %u changed from %u to %u while " 4220 "processing event.", 4221 idx, thread_index_array[idx], thread_sp->GetIndexID()); 4222 break; 4223 } 4224 4225 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4226 if (stop_info_sp && stop_info_sp->IsValid()) { 4227 does_anybody_have_an_opinion = true; 4228 bool this_thread_wants_to_stop; 4229 if (stop_info_sp->GetOverrideShouldStop()) { 4230 this_thread_wants_to_stop = 4231 stop_info_sp->GetOverriddenShouldStopValue(); 4232 } else { 4233 stop_info_sp->PerformAction(event_ptr); 4234 // The stop action might restart the target. If it does, then we 4235 // want to mark that in the event so that whoever is receiving it 4236 // will know to wait for the running event and reflect that state 4237 // appropriately. We also need to stop processing actions, since they 4238 // aren't expecting the target to be running. 4239 4240 // FIXME: we might have run. 4241 if (stop_info_sp->HasTargetRunSinceMe()) { 4242 SetRestarted(true); 4243 break; 4244 } 4245 4246 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4247 } 4248 4249 if (!still_should_stop) 4250 still_should_stop = this_thread_wants_to_stop; 4251 } 4252 } 4253 4254 if (!GetRestarted()) { 4255 if (!still_should_stop && does_anybody_have_an_opinion) { 4256 // We've been asked to continue, so do that here. 4257 SetRestarted(true); 4258 // Use the public resume method here, since this is just extending a 4259 // public resume. 4260 process_sp->PrivateResume(); 4261 } else { 4262 // If we didn't restart, run the Stop Hooks here: They might also 4263 // restart the target, so watch for that. 4264 process_sp->GetTarget().RunStopHooks(); 4265 if (process_sp->GetPrivateState() == eStateRunning) 4266 SetRestarted(true); 4267 } 4268 } 4269 } 4270 } 4271 4272 void Process::ProcessEventData::Dump(Stream *s) const { 4273 ProcessSP process_sp(m_process_wp.lock()); 4274 4275 if (process_sp) 4276 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4277 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4278 else 4279 s->PutCString(" process = NULL, "); 4280 4281 s->Printf("state = %s", StateAsCString(GetState())); 4282 } 4283 4284 const Process::ProcessEventData * 4285 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4286 if (event_ptr) { 4287 const EventData *event_data = event_ptr->GetData(); 4288 if (event_data && 4289 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4290 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4291 } 4292 return nullptr; 4293 } 4294 4295 ProcessSP 4296 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4297 ProcessSP process_sp; 4298 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4299 if (data) 4300 process_sp = data->GetProcessSP(); 4301 return process_sp; 4302 } 4303 4304 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4305 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4306 if (data == nullptr) 4307 return eStateInvalid; 4308 else 4309 return data->GetState(); 4310 } 4311 4312 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4313 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4314 if (data == nullptr) 4315 return false; 4316 else 4317 return data->GetRestarted(); 4318 } 4319 4320 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4321 bool new_value) { 4322 ProcessEventData *data = 4323 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4324 if (data != nullptr) 4325 data->SetRestarted(new_value); 4326 } 4327 4328 size_t 4329 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4330 ProcessEventData *data = 4331 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4332 if (data != nullptr) 4333 return data->GetNumRestartedReasons(); 4334 else 4335 return 0; 4336 } 4337 4338 const char * 4339 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4340 size_t idx) { 4341 ProcessEventData *data = 4342 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4343 if (data != nullptr) 4344 return data->GetRestartedReasonAtIndex(idx); 4345 else 4346 return nullptr; 4347 } 4348 4349 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4350 const char *reason) { 4351 ProcessEventData *data = 4352 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4353 if (data != nullptr) 4354 data->AddRestartedReason(reason); 4355 } 4356 4357 bool Process::ProcessEventData::GetInterruptedFromEvent( 4358 const Event *event_ptr) { 4359 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4360 if (data == nullptr) 4361 return false; 4362 else 4363 return data->GetInterrupted(); 4364 } 4365 4366 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4367 bool new_value) { 4368 ProcessEventData *data = 4369 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4370 if (data != nullptr) 4371 data->SetInterrupted(new_value); 4372 } 4373 4374 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4375 ProcessEventData *data = 4376 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4377 if (data) { 4378 data->SetUpdateStateOnRemoval(); 4379 return true; 4380 } 4381 return false; 4382 } 4383 4384 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4385 4386 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4387 exe_ctx.SetTargetPtr(&GetTarget()); 4388 exe_ctx.SetProcessPtr(this); 4389 exe_ctx.SetThreadPtr(nullptr); 4390 exe_ctx.SetFramePtr(nullptr); 4391 } 4392 4393 // uint32_t 4394 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4395 // std::vector<lldb::pid_t> &pids) 4396 //{ 4397 // return 0; 4398 //} 4399 // 4400 // ArchSpec 4401 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4402 //{ 4403 // return Host::GetArchSpecForExistingProcess (pid); 4404 //} 4405 // 4406 // ArchSpec 4407 // Process::GetArchSpecForExistingProcess (const char *process_name) 4408 //{ 4409 // return Host::GetArchSpecForExistingProcess (process_name); 4410 //} 4411 4412 void Process::AppendSTDOUT(const char *s, size_t len) { 4413 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4414 m_stdout_data.append(s, len); 4415 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4416 new ProcessEventData(shared_from_this(), GetState())); 4417 } 4418 4419 void Process::AppendSTDERR(const char *s, size_t len) { 4420 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4421 m_stderr_data.append(s, len); 4422 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4423 new ProcessEventData(shared_from_this(), GetState())); 4424 } 4425 4426 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4427 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4428 m_profile_data.push_back(one_profile_data); 4429 BroadcastEventIfUnique(eBroadcastBitProfileData, 4430 new ProcessEventData(shared_from_this(), GetState())); 4431 } 4432 4433 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4434 const StructuredDataPluginSP &plugin_sp) { 4435 BroadcastEvent( 4436 eBroadcastBitStructuredData, 4437 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4438 } 4439 4440 StructuredDataPluginSP 4441 Process::GetStructuredDataPlugin(const ConstString &type_name) const { 4442 auto find_it = m_structured_data_plugin_map.find(type_name); 4443 if (find_it != m_structured_data_plugin_map.end()) 4444 return find_it->second; 4445 else 4446 return StructuredDataPluginSP(); 4447 } 4448 4449 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4450 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4451 if (m_profile_data.empty()) 4452 return 0; 4453 4454 std::string &one_profile_data = m_profile_data.front(); 4455 size_t bytes_available = one_profile_data.size(); 4456 if (bytes_available > 0) { 4457 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4458 if (log) 4459 log->Printf("Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4460 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4461 if (bytes_available > buf_size) { 4462 memcpy(buf, one_profile_data.c_str(), buf_size); 4463 one_profile_data.erase(0, buf_size); 4464 bytes_available = buf_size; 4465 } else { 4466 memcpy(buf, one_profile_data.c_str(), bytes_available); 4467 m_profile_data.erase(m_profile_data.begin()); 4468 } 4469 } 4470 return bytes_available; 4471 } 4472 4473 //------------------------------------------------------------------ 4474 // Process STDIO 4475 //------------------------------------------------------------------ 4476 4477 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4478 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4479 size_t bytes_available = m_stdout_data.size(); 4480 if (bytes_available > 0) { 4481 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4482 if (log) 4483 log->Printf("Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4484 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4485 if (bytes_available > buf_size) { 4486 memcpy(buf, m_stdout_data.c_str(), buf_size); 4487 m_stdout_data.erase(0, buf_size); 4488 bytes_available = buf_size; 4489 } else { 4490 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4491 m_stdout_data.clear(); 4492 } 4493 } 4494 return bytes_available; 4495 } 4496 4497 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4498 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4499 size_t bytes_available = m_stderr_data.size(); 4500 if (bytes_available > 0) { 4501 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4502 if (log) 4503 log->Printf("Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4504 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4505 if (bytes_available > buf_size) { 4506 memcpy(buf, m_stderr_data.c_str(), buf_size); 4507 m_stderr_data.erase(0, buf_size); 4508 bytes_available = buf_size; 4509 } else { 4510 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4511 m_stderr_data.clear(); 4512 } 4513 } 4514 return bytes_available; 4515 } 4516 4517 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4518 size_t src_len) { 4519 Process *process = (Process *)baton; 4520 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4521 } 4522 4523 class IOHandlerProcessSTDIO : public IOHandler { 4524 public: 4525 IOHandlerProcessSTDIO(Process *process, int write_fd) 4526 : IOHandler(process->GetTarget().GetDebugger(), 4527 IOHandler::Type::ProcessIO), 4528 m_process(process), m_write_file(write_fd, false) { 4529 m_pipe.CreateNew(false); 4530 m_read_file.SetDescriptor(GetInputFD(), false); 4531 } 4532 4533 ~IOHandlerProcessSTDIO() override = default; 4534 4535 // Each IOHandler gets to run until it is done. It should read data from the 4536 // "in" and place output into "out" and "err and return when done. 4537 void Run() override { 4538 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4539 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4540 SetIsDone(true); 4541 return; 4542 } 4543 4544 SetIsDone(false); 4545 const int read_fd = m_read_file.GetDescriptor(); 4546 TerminalState terminal_state; 4547 terminal_state.Save(read_fd, false); 4548 Terminal terminal(read_fd); 4549 terminal.SetCanonical(false); 4550 terminal.SetEcho(false); 4551 // FD_ZERO, FD_SET are not supported on windows 4552 #ifndef _WIN32 4553 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4554 m_is_running = true; 4555 while (!GetIsDone()) { 4556 SelectHelper select_helper; 4557 select_helper.FDSetRead(read_fd); 4558 select_helper.FDSetRead(pipe_read_fd); 4559 Status error = select_helper.Select(); 4560 4561 if (error.Fail()) { 4562 SetIsDone(true); 4563 } else { 4564 char ch = 0; 4565 size_t n; 4566 if (select_helper.FDIsSetRead(read_fd)) { 4567 n = 1; 4568 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4569 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4570 SetIsDone(true); 4571 } else 4572 SetIsDone(true); 4573 } 4574 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4575 size_t bytes_read; 4576 // Consume the interrupt byte 4577 Status error = m_pipe.Read(&ch, 1, bytes_read); 4578 if (error.Success()) { 4579 switch (ch) { 4580 case 'q': 4581 SetIsDone(true); 4582 break; 4583 case 'i': 4584 if (StateIsRunningState(m_process->GetState())) 4585 m_process->SendAsyncInterrupt(); 4586 break; 4587 } 4588 } 4589 } 4590 } 4591 } 4592 m_is_running = false; 4593 #endif 4594 terminal_state.Restore(); 4595 } 4596 4597 void Cancel() override { 4598 SetIsDone(true); 4599 // Only write to our pipe to cancel if we are in 4600 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4601 // is being run from the command interpreter: 4602 // 4603 // (lldb) step_process_thousands_of_times 4604 // 4605 // In this case the command interpreter will be in the middle of handling 4606 // the command and if the process pushes and pops the IOHandler thousands 4607 // of times, we can end up writing to m_pipe without ever consuming the 4608 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4609 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4610 if (m_is_running) { 4611 char ch = 'q'; // Send 'q' for quit 4612 size_t bytes_written = 0; 4613 m_pipe.Write(&ch, 1, bytes_written); 4614 } 4615 } 4616 4617 bool Interrupt() override { 4618 // Do only things that are safe to do in an interrupt context (like in a 4619 // SIGINT handler), like write 1 byte to a file descriptor. This will 4620 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4621 // that was written to the pipe and then call 4622 // m_process->SendAsyncInterrupt() from a much safer location in code. 4623 if (m_active) { 4624 char ch = 'i'; // Send 'i' for interrupt 4625 size_t bytes_written = 0; 4626 Status result = m_pipe.Write(&ch, 1, bytes_written); 4627 return result.Success(); 4628 } else { 4629 // This IOHandler might be pushed on the stack, but not being run 4630 // currently so do the right thing if we aren't actively watching for 4631 // STDIN by sending the interrupt to the process. Otherwise the write to 4632 // the pipe above would do nothing. This can happen when the command 4633 // interpreter is running and gets a "expression ...". It will be on the 4634 // IOHandler thread and sending the input is complete to the delegate 4635 // which will cause the expression to run, which will push the process IO 4636 // handler, but not run it. 4637 4638 if (StateIsRunningState(m_process->GetState())) { 4639 m_process->SendAsyncInterrupt(); 4640 return true; 4641 } 4642 } 4643 return false; 4644 } 4645 4646 void GotEOF() override {} 4647 4648 protected: 4649 Process *m_process; 4650 File m_read_file; // Read from this file (usually actual STDIN for LLDB 4651 File m_write_file; // Write to this file (usually the master pty for getting 4652 // io to debuggee) 4653 Pipe m_pipe; 4654 std::atomic<bool> m_is_running{false}; 4655 }; 4656 4657 void Process::SetSTDIOFileDescriptor(int fd) { 4658 // First set up the Read Thread for reading/handling process I/O 4659 4660 std::unique_ptr<ConnectionFileDescriptor> conn_ap( 4661 new ConnectionFileDescriptor(fd, true)); 4662 4663 if (conn_ap) { 4664 m_stdio_communication.SetConnection(conn_ap.release()); 4665 if (m_stdio_communication.IsConnected()) { 4666 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4667 STDIOReadThreadBytesReceived, this); 4668 m_stdio_communication.StartReadThread(); 4669 4670 // Now read thread is set up, set up input reader. 4671 4672 if (!m_process_input_reader) 4673 m_process_input_reader.reset(new IOHandlerProcessSTDIO(this, fd)); 4674 } 4675 } 4676 } 4677 4678 bool Process::ProcessIOHandlerIsActive() { 4679 IOHandlerSP io_handler_sp(m_process_input_reader); 4680 if (io_handler_sp) 4681 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4682 return false; 4683 } 4684 bool Process::PushProcessIOHandler() { 4685 IOHandlerSP io_handler_sp(m_process_input_reader); 4686 if (io_handler_sp) { 4687 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4688 if (log) 4689 log->Printf("Process::%s pushing IO handler", __FUNCTION__); 4690 4691 io_handler_sp->SetIsDone(false); 4692 // If we evaluate an utility function, then we don't cancel the current 4693 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the 4694 // existing IOHandler that potentially provides the user interface (e.g. 4695 // the IOHandler for Editline). 4696 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); 4697 GetTarget().GetDebugger().PushIOHandler(io_handler_sp, cancel_top_handler); 4698 return true; 4699 } 4700 return false; 4701 } 4702 4703 bool Process::PopProcessIOHandler() { 4704 IOHandlerSP io_handler_sp(m_process_input_reader); 4705 if (io_handler_sp) 4706 return GetTarget().GetDebugger().PopIOHandler(io_handler_sp); 4707 return false; 4708 } 4709 4710 // The process needs to know about installed plug-ins 4711 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4712 4713 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4714 4715 namespace { 4716 // RestorePlanState is used to record the "is private", "is master" and "okay 4717 // to discard" fields of the plan we are running, and reset it on Clean or on 4718 // destruction. It will only reset the state once, so you can call Clean and 4719 // then monkey with the state and it won't get reset on you again. 4720 4721 class RestorePlanState { 4722 public: 4723 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4724 : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) { 4725 if (m_thread_plan_sp) { 4726 m_private = m_thread_plan_sp->GetPrivate(); 4727 m_is_master = m_thread_plan_sp->IsMasterPlan(); 4728 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4729 } 4730 } 4731 4732 ~RestorePlanState() { Clean(); } 4733 4734 void Clean() { 4735 if (!m_already_reset && m_thread_plan_sp) { 4736 m_already_reset = true; 4737 m_thread_plan_sp->SetPrivate(m_private); 4738 m_thread_plan_sp->SetIsMasterPlan(m_is_master); 4739 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4740 } 4741 } 4742 4743 private: 4744 lldb::ThreadPlanSP m_thread_plan_sp; 4745 bool m_already_reset; 4746 bool m_private; 4747 bool m_is_master; 4748 bool m_okay_to_discard; 4749 }; 4750 } // anonymous namespace 4751 4752 static microseconds 4753 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4754 const milliseconds default_one_thread_timeout(250); 4755 4756 // If the overall wait is forever, then we don't need to worry about it. 4757 if (!options.GetTimeout()) { 4758 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4759 : default_one_thread_timeout; 4760 } 4761 4762 // If the one thread timeout is set, use it. 4763 if (options.GetOneThreadTimeout()) 4764 return *options.GetOneThreadTimeout(); 4765 4766 // Otherwise use half the total timeout, bounded by the 4767 // default_one_thread_timeout. 4768 return std::min<microseconds>(default_one_thread_timeout, 4769 *options.GetTimeout() / 2); 4770 } 4771 4772 static Timeout<std::micro> 4773 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4774 bool before_first_timeout) { 4775 // If we are going to run all threads the whole time, or if we are only going 4776 // to run one thread, we can just return the overall timeout. 4777 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4778 return options.GetTimeout(); 4779 4780 if (before_first_timeout) 4781 return GetOneThreadExpressionTimeout(options); 4782 4783 if (!options.GetTimeout()) 4784 return llvm::None; 4785 else 4786 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4787 } 4788 4789 static llvm::Optional<ExpressionResults> 4790 HandleStoppedEvent(Thread &thread, const ThreadPlanSP &thread_plan_sp, 4791 RestorePlanState &restorer, const EventSP &event_sp, 4792 EventSP &event_to_broadcast_sp, 4793 const EvaluateExpressionOptions &options, bool handle_interrupts) { 4794 Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS); 4795 4796 ThreadPlanSP plan = thread.GetCompletedPlan(); 4797 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4798 LLDB_LOG(log, "execution completed successfully"); 4799 4800 // Restore the plan state so it will get reported as intended when we are 4801 // done. 4802 restorer.Clean(); 4803 return eExpressionCompleted; 4804 } 4805 4806 StopInfoSP stop_info_sp = thread.GetStopInfo(); 4807 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4808 stop_info_sp->ShouldNotify(event_sp.get())) { 4809 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4810 if (!options.DoesIgnoreBreakpoints()) { 4811 // Restore the plan state and then force Private to false. We are going 4812 // to stop because of this plan so we need it to become a public plan or 4813 // it won't report correctly when we continue to its termination later 4814 // on. 4815 restorer.Clean(); 4816 thread_plan_sp->SetPrivate(false); 4817 event_to_broadcast_sp = event_sp; 4818 } 4819 return eExpressionHitBreakpoint; 4820 } 4821 4822 if (!handle_interrupts && 4823 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4824 return llvm::None; 4825 4826 LLDB_LOG(log, "thread plan did not successfully complete"); 4827 if (!options.DoesUnwindOnError()) 4828 event_to_broadcast_sp = event_sp; 4829 return eExpressionInterrupted; 4830 } 4831 4832 ExpressionResults 4833 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4834 lldb::ThreadPlanSP &thread_plan_sp, 4835 const EvaluateExpressionOptions &options, 4836 DiagnosticManager &diagnostic_manager) { 4837 ExpressionResults return_value = eExpressionSetupError; 4838 4839 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4840 4841 if (!thread_plan_sp) { 4842 diagnostic_manager.PutString( 4843 eDiagnosticSeverityError, 4844 "RunThreadPlan called with empty thread plan."); 4845 return eExpressionSetupError; 4846 } 4847 4848 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4849 diagnostic_manager.PutString( 4850 eDiagnosticSeverityError, 4851 "RunThreadPlan called with an invalid thread plan."); 4852 return eExpressionSetupError; 4853 } 4854 4855 if (exe_ctx.GetProcessPtr() != this) { 4856 diagnostic_manager.PutString(eDiagnosticSeverityError, 4857 "RunThreadPlan called on wrong process."); 4858 return eExpressionSetupError; 4859 } 4860 4861 Thread *thread = exe_ctx.GetThreadPtr(); 4862 if (thread == nullptr) { 4863 diagnostic_manager.PutString(eDiagnosticSeverityError, 4864 "RunThreadPlan called with invalid thread."); 4865 return eExpressionSetupError; 4866 } 4867 4868 // We need to change some of the thread plan attributes for the thread plan 4869 // runner. This will restore them when we are done: 4870 4871 RestorePlanState thread_plan_restorer(thread_plan_sp); 4872 4873 // We rely on the thread plan we are running returning "PlanCompleted" if 4874 // when it successfully completes. For that to be true the plan can't be 4875 // private - since private plans suppress themselves in the GetCompletedPlan 4876 // call. 4877 4878 thread_plan_sp->SetPrivate(false); 4879 4880 // The plans run with RunThreadPlan also need to be terminal master plans or 4881 // when they are done we will end up asking the plan above us whether we 4882 // should stop, which may give the wrong answer. 4883 4884 thread_plan_sp->SetIsMasterPlan(true); 4885 thread_plan_sp->SetOkayToDiscard(false); 4886 4887 // If we are running some utility expression for LLDB, we now have to mark 4888 // this in the ProcesModID of this process. This RAII takes care of marking 4889 // and reverting the mark it once we are done running the expression. 4890 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); 4891 4892 if (m_private_state.GetValue() != eStateStopped) { 4893 diagnostic_manager.PutString( 4894 eDiagnosticSeverityError, 4895 "RunThreadPlan called while the private state was not stopped."); 4896 return eExpressionSetupError; 4897 } 4898 4899 // Save the thread & frame from the exe_ctx for restoration after we run 4900 const uint32_t thread_idx_id = thread->GetIndexID(); 4901 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4902 if (!selected_frame_sp) { 4903 thread->SetSelectedFrame(nullptr); 4904 selected_frame_sp = thread->GetSelectedFrame(); 4905 if (!selected_frame_sp) { 4906 diagnostic_manager.Printf( 4907 eDiagnosticSeverityError, 4908 "RunThreadPlan called without a selected frame on thread %d", 4909 thread_idx_id); 4910 return eExpressionSetupError; 4911 } 4912 } 4913 4914 // Make sure the timeout values make sense. The one thread timeout needs to 4915 // be smaller than the overall timeout. 4916 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4917 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4918 diagnostic_manager.PutString(eDiagnosticSeverityError, 4919 "RunThreadPlan called with one thread " 4920 "timeout greater than total timeout"); 4921 return eExpressionSetupError; 4922 } 4923 4924 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4925 4926 // N.B. Running the target may unset the currently selected thread and frame. 4927 // We don't want to do that either, so we should arrange to reset them as 4928 // well. 4929 4930 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4931 4932 uint32_t selected_tid; 4933 StackID selected_stack_id; 4934 if (selected_thread_sp) { 4935 selected_tid = selected_thread_sp->GetIndexID(); 4936 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4937 } else { 4938 selected_tid = LLDB_INVALID_THREAD_ID; 4939 } 4940 4941 HostThread backup_private_state_thread; 4942 lldb::StateType old_state = eStateInvalid; 4943 lldb::ThreadPlanSP stopper_base_plan_sp; 4944 4945 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4946 LIBLLDB_LOG_PROCESS)); 4947 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4948 // Yikes, we are running on the private state thread! So we can't wait for 4949 // public events on this thread, since we are the thread that is generating 4950 // public events. The simplest thing to do is to spin up a temporary thread 4951 // to handle private state thread events while we are fielding public 4952 // events here. 4953 if (log) 4954 log->Printf("Running thread plan on private state thread, spinning up " 4955 "another state thread to handle the events."); 4956 4957 backup_private_state_thread = m_private_state_thread; 4958 4959 // One other bit of business: we want to run just this thread plan and 4960 // anything it pushes, and then stop, returning control here. But in the 4961 // normal course of things, the plan above us on the stack would be given a 4962 // shot at the stop event before deciding to stop, and we don't want that. 4963 // So we insert a "stopper" base plan on the stack before the plan we want 4964 // to run. Since base plans always stop and return control to the user, 4965 // that will do just what we want. 4966 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4967 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4968 // Have to make sure our public state is stopped, since otherwise the 4969 // reporting logic below doesn't work correctly. 4970 old_state = m_public_state.GetValue(); 4971 m_public_state.SetValueNoLock(eStateStopped); 4972 4973 // Now spin up the private state thread: 4974 StartPrivateStateThread(true); 4975 } 4976 4977 thread->QueueThreadPlan( 4978 thread_plan_sp, false); // This used to pass "true" does that make sense? 4979 4980 if (options.GetDebug()) { 4981 // In this case, we aren't actually going to run, we just want to stop 4982 // right away. Flush this thread so we will refetch the stacks and show the 4983 // correct backtrace. 4984 // FIXME: To make this prettier we should invent some stop reason for this, 4985 // but that 4986 // is only cosmetic, and this functionality is only of use to lldb 4987 // developers who can live with not pretty... 4988 thread->Flush(); 4989 return eExpressionStoppedForDebug; 4990 } 4991 4992 ListenerSP listener_sp( 4993 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4994 4995 lldb::EventSP event_to_broadcast_sp; 4996 4997 { 4998 // This process event hijacker Hijacks the Public events and its destructor 4999 // makes sure that the process events get restored on exit to the function. 5000 // 5001 // If the event needs to propagate beyond the hijacker (e.g., the process 5002 // exits during execution), then the event is put into 5003 // event_to_broadcast_sp for rebroadcasting. 5004 5005 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 5006 5007 if (log) { 5008 StreamString s; 5009 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 5010 log->Printf("Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 5011 " to run thread plan \"%s\".", 5012 thread->GetIndexID(), thread->GetID(), s.GetData()); 5013 } 5014 5015 bool got_event; 5016 lldb::EventSP event_sp; 5017 lldb::StateType stop_state = lldb::eStateInvalid; 5018 5019 bool before_first_timeout = true; // This is set to false the first time 5020 // that we have to halt the target. 5021 bool do_resume = true; 5022 bool handle_running_event = true; 5023 5024 // This is just for accounting: 5025 uint32_t num_resumes = 0; 5026 5027 // If we are going to run all threads the whole time, or if we are only 5028 // going to run one thread, then we don't need the first timeout. So we 5029 // pretend we are after the first timeout already. 5030 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 5031 before_first_timeout = false; 5032 5033 if (log) 5034 log->Printf("Stop others: %u, try all: %u, before_first: %u.\n", 5035 options.GetStopOthers(), options.GetTryAllThreads(), 5036 before_first_timeout); 5037 5038 // This isn't going to work if there are unfetched events on the queue. Are 5039 // there cases where we might want to run the remaining events here, and 5040 // then try to call the function? That's probably being too tricky for our 5041 // own good. 5042 5043 Event *other_events = listener_sp->PeekAtNextEvent(); 5044 if (other_events != nullptr) { 5045 diagnostic_manager.PutString( 5046 eDiagnosticSeverityError, 5047 "RunThreadPlan called with pending events on the queue."); 5048 return eExpressionSetupError; 5049 } 5050 5051 // We also need to make sure that the next event is delivered. We might be 5052 // calling a function as part of a thread plan, in which case the last 5053 // delivered event could be the running event, and we don't want event 5054 // coalescing to cause us to lose OUR running event... 5055 ForceNextEventDelivery(); 5056 5057 // This while loop must exit out the bottom, there's cleanup that we need to do 5058 // when we are done. So don't call return anywhere within it. 5059 5060 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5061 // It's pretty much impossible to write test cases for things like: One 5062 // thread timeout expires, I go to halt, but the process already stopped on 5063 // the function call stop breakpoint. Turning on this define will make us 5064 // not fetch the first event till after the halt. So if you run a quick 5065 // function, it will have completed, and the completion event will be 5066 // waiting, when you interrupt for halt. The expression evaluation should 5067 // still succeed. 5068 bool miss_first_event = true; 5069 #endif 5070 while (true) { 5071 // We usually want to resume the process if we get to the top of the 5072 // loop. The only exception is if we get two running events with no 5073 // intervening stop, which can happen, we will just wait for then next 5074 // stop event. 5075 if (log) 5076 log->Printf("Top of while loop: do_resume: %i handle_running_event: %i " 5077 "before_first_timeout: %i.", 5078 do_resume, handle_running_event, before_first_timeout); 5079 5080 if (do_resume || handle_running_event) { 5081 // Do the initial resume and wait for the running event before going 5082 // further. 5083 5084 if (do_resume) { 5085 num_resumes++; 5086 Status resume_error = PrivateResume(); 5087 if (!resume_error.Success()) { 5088 diagnostic_manager.Printf( 5089 eDiagnosticSeverityError, 5090 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 5091 resume_error.AsCString()); 5092 return_value = eExpressionSetupError; 5093 break; 5094 } 5095 } 5096 5097 got_event = 5098 listener_sp->GetEvent(event_sp, std::chrono::milliseconds(500)); 5099 if (!got_event) { 5100 if (log) 5101 log->Printf("Process::RunThreadPlan(): didn't get any event after " 5102 "resume %" PRIu32 ", exiting.", 5103 num_resumes); 5104 5105 diagnostic_manager.Printf(eDiagnosticSeverityError, 5106 "didn't get any event after resume %" PRIu32 5107 ", exiting.", 5108 num_resumes); 5109 return_value = eExpressionSetupError; 5110 break; 5111 } 5112 5113 stop_state = 5114 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5115 5116 if (stop_state != eStateRunning) { 5117 bool restarted = false; 5118 5119 if (stop_state == eStateStopped) { 5120 restarted = Process::ProcessEventData::GetRestartedFromEvent( 5121 event_sp.get()); 5122 if (log) 5123 log->Printf( 5124 "Process::RunThreadPlan(): didn't get running event after " 5125 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 5126 "handle_running_event: %i).", 5127 num_resumes, StateAsCString(stop_state), restarted, do_resume, 5128 handle_running_event); 5129 } 5130 5131 if (restarted) { 5132 // This is probably an overabundance of caution, I don't think I 5133 // should ever get a stopped & restarted event here. But if I do, 5134 // the best thing is to Halt and then get out of here. 5135 const bool clear_thread_plans = false; 5136 const bool use_run_lock = false; 5137 Halt(clear_thread_plans, use_run_lock); 5138 } 5139 5140 diagnostic_manager.Printf( 5141 eDiagnosticSeverityError, 5142 "didn't get running event after initial resume, got %s instead.", 5143 StateAsCString(stop_state)); 5144 return_value = eExpressionSetupError; 5145 break; 5146 } 5147 5148 if (log) 5149 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 5150 // We need to call the function synchronously, so spin waiting for it 5151 // to return. If we get interrupted while executing, we're going to 5152 // lose our context, and won't be able to gather the result at this 5153 // point. We set the timeout AFTER the resume, since the resume takes 5154 // some time and we don't want to charge that to the timeout. 5155 } else { 5156 if (log) 5157 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 5158 } 5159 5160 do_resume = true; 5161 handle_running_event = true; 5162 5163 // Now wait for the process to stop again: 5164 event_sp.reset(); 5165 5166 Timeout<std::micro> timeout = 5167 GetExpressionTimeout(options, before_first_timeout); 5168 if (log) { 5169 if (timeout) { 5170 auto now = system_clock::now(); 5171 log->Printf("Process::RunThreadPlan(): about to wait - now is %s - " 5172 "endpoint is %s", 5173 llvm::to_string(now).c_str(), 5174 llvm::to_string(now + *timeout).c_str()); 5175 } else { 5176 log->Printf("Process::RunThreadPlan(): about to wait forever."); 5177 } 5178 } 5179 5180 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5181 // See comment above... 5182 if (miss_first_event) { 5183 usleep(1000); 5184 miss_first_event = false; 5185 got_event = false; 5186 } else 5187 #endif 5188 got_event = listener_sp->GetEvent(event_sp, timeout); 5189 5190 if (got_event) { 5191 if (event_sp) { 5192 bool keep_going = false; 5193 if (event_sp->GetType() == eBroadcastBitInterrupt) { 5194 const bool clear_thread_plans = false; 5195 const bool use_run_lock = false; 5196 Halt(clear_thread_plans, use_run_lock); 5197 return_value = eExpressionInterrupted; 5198 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 5199 "execution halted by user interrupt."); 5200 if (log) 5201 log->Printf("Process::RunThreadPlan(): Got interrupted by " 5202 "eBroadcastBitInterrupted, exiting."); 5203 break; 5204 } else { 5205 stop_state = 5206 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5207 if (log) 5208 log->Printf( 5209 "Process::RunThreadPlan(): in while loop, got event: %s.", 5210 StateAsCString(stop_state)); 5211 5212 switch (stop_state) { 5213 case lldb::eStateStopped: { 5214 // We stopped, figure out what we are going to do now. 5215 ThreadSP thread_sp = 5216 GetThreadList().FindThreadByIndexID(thread_idx_id); 5217 if (!thread_sp) { 5218 // Ooh, our thread has vanished. Unlikely that this was 5219 // successful execution... 5220 if (log) 5221 log->Printf("Process::RunThreadPlan(): execution completed " 5222 "but our thread (index-id=%u) has vanished.", 5223 thread_idx_id); 5224 return_value = eExpressionInterrupted; 5225 } else if (Process::ProcessEventData::GetRestartedFromEvent( 5226 event_sp.get())) { 5227 // If we were restarted, we just need to go back up to fetch 5228 // another event. 5229 if (log) { 5230 log->Printf("Process::RunThreadPlan(): Got a stop and " 5231 "restart, so we'll continue waiting."); 5232 } 5233 keep_going = true; 5234 do_resume = false; 5235 handle_running_event = true; 5236 } else { 5237 const bool handle_interrupts = true; 5238 return_value = *HandleStoppedEvent( 5239 *thread, thread_plan_sp, thread_plan_restorer, event_sp, 5240 event_to_broadcast_sp, options, handle_interrupts); 5241 } 5242 } break; 5243 5244 case lldb::eStateRunning: 5245 // This shouldn't really happen, but sometimes we do get two 5246 // running events without an intervening stop, and in that case 5247 // we should just go back to waiting for the stop. 5248 do_resume = false; 5249 keep_going = true; 5250 handle_running_event = false; 5251 break; 5252 5253 default: 5254 if (log) 5255 log->Printf("Process::RunThreadPlan(): execution stopped with " 5256 "unexpected state: %s.", 5257 StateAsCString(stop_state)); 5258 5259 if (stop_state == eStateExited) 5260 event_to_broadcast_sp = event_sp; 5261 5262 diagnostic_manager.PutString( 5263 eDiagnosticSeverityError, 5264 "execution stopped with unexpected state."); 5265 return_value = eExpressionInterrupted; 5266 break; 5267 } 5268 } 5269 5270 if (keep_going) 5271 continue; 5272 else 5273 break; 5274 } else { 5275 if (log) 5276 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5277 "the event pointer was null. How odd..."); 5278 return_value = eExpressionInterrupted; 5279 break; 5280 } 5281 } else { 5282 // If we didn't get an event that means we've timed out... We will 5283 // interrupt the process here. Depending on what we were asked to do 5284 // we will either exit, or try with all threads running for the same 5285 // timeout. 5286 5287 if (log) { 5288 if (options.GetTryAllThreads()) { 5289 if (before_first_timeout) { 5290 LLDB_LOG(log, 5291 "Running function with one thread timeout timed out."); 5292 } else 5293 LLDB_LOG(log, "Restarting function with all threads enabled and " 5294 "timeout: {0} timed out, abandoning execution.", 5295 timeout); 5296 } else 5297 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5298 "abandoning execution.", 5299 timeout); 5300 } 5301 5302 // It is possible that between the time we issued the Halt, and we get 5303 // around to calling Halt the target could have stopped. That's fine, 5304 // Halt will figure that out and send the appropriate Stopped event. 5305 // BUT it is also possible that we stopped & restarted (e.g. hit a 5306 // signal with "stop" set to false.) In 5307 // that case, we'll get the stopped & restarted event, and we should go 5308 // back to waiting for the Halt's stopped event. That's what this 5309 // while loop does. 5310 5311 bool back_to_top = true; 5312 uint32_t try_halt_again = 0; 5313 bool do_halt = true; 5314 const uint32_t num_retries = 5; 5315 while (try_halt_again < num_retries) { 5316 Status halt_error; 5317 if (do_halt) { 5318 if (log) 5319 log->Printf("Process::RunThreadPlan(): Running Halt."); 5320 const bool clear_thread_plans = false; 5321 const bool use_run_lock = false; 5322 Halt(clear_thread_plans, use_run_lock); 5323 } 5324 if (halt_error.Success()) { 5325 if (log) 5326 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5327 5328 got_event = 5329 listener_sp->GetEvent(event_sp, std::chrono::milliseconds(500)); 5330 5331 if (got_event) { 5332 stop_state = 5333 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5334 if (log) { 5335 log->Printf("Process::RunThreadPlan(): Stopped with event: %s", 5336 StateAsCString(stop_state)); 5337 if (stop_state == lldb::eStateStopped && 5338 Process::ProcessEventData::GetInterruptedFromEvent( 5339 event_sp.get())) 5340 log->PutCString(" Event was the Halt interruption event."); 5341 } 5342 5343 if (stop_state == lldb::eStateStopped) { 5344 if (Process::ProcessEventData::GetRestartedFromEvent( 5345 event_sp.get())) { 5346 if (log) 5347 log->PutCString("Process::RunThreadPlan(): Went to halt " 5348 "but got a restarted event, there must be " 5349 "an un-restarted stopped event so try " 5350 "again... " 5351 "Exiting wait loop."); 5352 try_halt_again++; 5353 do_halt = false; 5354 continue; 5355 } 5356 5357 // Between the time we initiated the Halt and the time we 5358 // delivered it, the process could have already finished its 5359 // job. Check that here: 5360 const bool handle_interrupts = false; 5361 if (auto result = HandleStoppedEvent( 5362 *thread, thread_plan_sp, thread_plan_restorer, event_sp, 5363 event_to_broadcast_sp, options, handle_interrupts)) { 5364 return_value = *result; 5365 back_to_top = false; 5366 break; 5367 } 5368 5369 if (!options.GetTryAllThreads()) { 5370 if (log) 5371 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5372 "was false, we stopped so now we're " 5373 "quitting."); 5374 return_value = eExpressionInterrupted; 5375 back_to_top = false; 5376 break; 5377 } 5378 5379 if (before_first_timeout) { 5380 // Set all the other threads to run, and return to the top of 5381 // the loop, which will continue; 5382 before_first_timeout = false; 5383 thread_plan_sp->SetStopOthers(false); 5384 if (log) 5385 log->PutCString( 5386 "Process::RunThreadPlan(): about to resume."); 5387 5388 back_to_top = true; 5389 break; 5390 } else { 5391 // Running all threads failed, so return Interrupted. 5392 if (log) 5393 log->PutCString("Process::RunThreadPlan(): running all " 5394 "threads timed out."); 5395 return_value = eExpressionInterrupted; 5396 back_to_top = false; 5397 break; 5398 } 5399 } 5400 } else { 5401 if (log) 5402 log->PutCString("Process::RunThreadPlan(): halt said it " 5403 "succeeded, but I got no event. " 5404 "I'm getting out of here passing Interrupted."); 5405 return_value = eExpressionInterrupted; 5406 back_to_top = false; 5407 break; 5408 } 5409 } else { 5410 try_halt_again++; 5411 continue; 5412 } 5413 } 5414 5415 if (!back_to_top || try_halt_again > num_retries) 5416 break; 5417 else 5418 continue; 5419 } 5420 } // END WAIT LOOP 5421 5422 // If we had to start up a temporary private state thread to run this 5423 // thread plan, shut it down now. 5424 if (backup_private_state_thread.IsJoinable()) { 5425 StopPrivateStateThread(); 5426 Status error; 5427 m_private_state_thread = backup_private_state_thread; 5428 if (stopper_base_plan_sp) { 5429 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5430 } 5431 if (old_state != eStateInvalid) 5432 m_public_state.SetValueNoLock(old_state); 5433 } 5434 5435 if (return_value != eExpressionCompleted && log) { 5436 // Print a backtrace into the log so we can figure out where we are: 5437 StreamString s; 5438 s.PutCString("Thread state after unsuccessful completion: \n"); 5439 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5440 log->PutString(s.GetString()); 5441 } 5442 // Restore the thread state if we are going to discard the plan execution. 5443 // There are three cases where this could happen: 1) The execution 5444 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5445 // was true 3) We got some other error, and discard_on_error was true 5446 bool should_unwind = (return_value == eExpressionInterrupted && 5447 options.DoesUnwindOnError()) || 5448 (return_value == eExpressionHitBreakpoint && 5449 options.DoesIgnoreBreakpoints()); 5450 5451 if (return_value == eExpressionCompleted || should_unwind) { 5452 thread_plan_sp->RestoreThreadState(); 5453 } 5454 5455 // Now do some processing on the results of the run: 5456 if (return_value == eExpressionInterrupted || 5457 return_value == eExpressionHitBreakpoint) { 5458 if (log) { 5459 StreamString s; 5460 if (event_sp) 5461 event_sp->Dump(&s); 5462 else { 5463 log->PutCString("Process::RunThreadPlan(): Stop event that " 5464 "interrupted us is NULL."); 5465 } 5466 5467 StreamString ts; 5468 5469 const char *event_explanation = nullptr; 5470 5471 do { 5472 if (!event_sp) { 5473 event_explanation = "<no event>"; 5474 break; 5475 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5476 event_explanation = "<user interrupt>"; 5477 break; 5478 } else { 5479 const Process::ProcessEventData *event_data = 5480 Process::ProcessEventData::GetEventDataFromEvent( 5481 event_sp.get()); 5482 5483 if (!event_data) { 5484 event_explanation = "<no event data>"; 5485 break; 5486 } 5487 5488 Process *process = event_data->GetProcessSP().get(); 5489 5490 if (!process) { 5491 event_explanation = "<no process>"; 5492 break; 5493 } 5494 5495 ThreadList &thread_list = process->GetThreadList(); 5496 5497 uint32_t num_threads = thread_list.GetSize(); 5498 uint32_t thread_index; 5499 5500 ts.Printf("<%u threads> ", num_threads); 5501 5502 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5503 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5504 5505 if (!thread) { 5506 ts.Printf("<?> "); 5507 continue; 5508 } 5509 5510 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5511 RegisterContext *register_context = 5512 thread->GetRegisterContext().get(); 5513 5514 if (register_context) 5515 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5516 else 5517 ts.Printf("[ip unknown] "); 5518 5519 // Show the private stop info here, the public stop info will be 5520 // from the last natural stop. 5521 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5522 if (stop_info_sp) { 5523 const char *stop_desc = stop_info_sp->GetDescription(); 5524 if (stop_desc) 5525 ts.PutCString(stop_desc); 5526 } 5527 ts.Printf(">"); 5528 } 5529 5530 event_explanation = ts.GetData(); 5531 } 5532 } while (0); 5533 5534 if (event_explanation) 5535 log->Printf("Process::RunThreadPlan(): execution interrupted: %s %s", 5536 s.GetData(), event_explanation); 5537 else 5538 log->Printf("Process::RunThreadPlan(): execution interrupted: %s", 5539 s.GetData()); 5540 } 5541 5542 if (should_unwind) { 5543 if (log) 5544 log->Printf("Process::RunThreadPlan: ExecutionInterrupted - " 5545 "discarding thread plans up to %p.", 5546 static_cast<void *>(thread_plan_sp.get())); 5547 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5548 } else { 5549 if (log) 5550 log->Printf("Process::RunThreadPlan: ExecutionInterrupted - for " 5551 "plan: %p not discarding.", 5552 static_cast<void *>(thread_plan_sp.get())); 5553 } 5554 } else if (return_value == eExpressionSetupError) { 5555 if (log) 5556 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5557 5558 if (options.DoesUnwindOnError()) { 5559 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5560 } 5561 } else { 5562 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5563 if (log) 5564 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5565 return_value = eExpressionCompleted; 5566 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5567 if (log) 5568 log->PutCString( 5569 "Process::RunThreadPlan(): thread plan was discarded"); 5570 return_value = eExpressionDiscarded; 5571 } else { 5572 if (log) 5573 log->PutCString( 5574 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5575 if (options.DoesUnwindOnError() && thread_plan_sp) { 5576 if (log) 5577 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5578 "'cause unwind_on_error is set."); 5579 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5580 } 5581 } 5582 } 5583 5584 // Thread we ran the function in may have gone away because we ran the 5585 // target Check that it's still there, and if it is put it back in the 5586 // context. Also restore the frame in the context if it is still present. 5587 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5588 if (thread) { 5589 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5590 } 5591 5592 // Also restore the current process'es selected frame & thread, since this 5593 // function calling may be done behind the user's back. 5594 5595 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5596 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5597 selected_stack_id.IsValid()) { 5598 // We were able to restore the selected thread, now restore the frame: 5599 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5600 StackFrameSP old_frame_sp = 5601 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5602 selected_stack_id); 5603 if (old_frame_sp) 5604 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5605 old_frame_sp.get()); 5606 } 5607 } 5608 } 5609 5610 // If the process exited during the run of the thread plan, notify everyone. 5611 5612 if (event_to_broadcast_sp) { 5613 if (log) 5614 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5615 BroadcastEvent(event_to_broadcast_sp); 5616 } 5617 5618 return return_value; 5619 } 5620 5621 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5622 const char *result_name; 5623 5624 switch (result) { 5625 case eExpressionCompleted: 5626 result_name = "eExpressionCompleted"; 5627 break; 5628 case eExpressionDiscarded: 5629 result_name = "eExpressionDiscarded"; 5630 break; 5631 case eExpressionInterrupted: 5632 result_name = "eExpressionInterrupted"; 5633 break; 5634 case eExpressionHitBreakpoint: 5635 result_name = "eExpressionHitBreakpoint"; 5636 break; 5637 case eExpressionSetupError: 5638 result_name = "eExpressionSetupError"; 5639 break; 5640 case eExpressionParseError: 5641 result_name = "eExpressionParseError"; 5642 break; 5643 case eExpressionResultUnavailable: 5644 result_name = "eExpressionResultUnavailable"; 5645 break; 5646 case eExpressionTimedOut: 5647 result_name = "eExpressionTimedOut"; 5648 break; 5649 case eExpressionStoppedForDebug: 5650 result_name = "eExpressionStoppedForDebug"; 5651 break; 5652 } 5653 return result_name; 5654 } 5655 5656 void Process::GetStatus(Stream &strm) { 5657 const StateType state = GetState(); 5658 if (StateIsStoppedState(state, false)) { 5659 if (state == eStateExited) { 5660 int exit_status = GetExitStatus(); 5661 const char *exit_description = GetExitDescription(); 5662 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5663 GetID(), exit_status, exit_status, 5664 exit_description ? exit_description : ""); 5665 } else { 5666 if (state == eStateConnected) 5667 strm.Printf("Connected to remote target.\n"); 5668 else 5669 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5670 } 5671 } else { 5672 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5673 } 5674 } 5675 5676 size_t Process::GetThreadStatus(Stream &strm, 5677 bool only_threads_with_stop_reason, 5678 uint32_t start_frame, uint32_t num_frames, 5679 uint32_t num_frames_with_source, 5680 bool stop_format) { 5681 size_t num_thread_infos_dumped = 0; 5682 5683 // You can't hold the thread list lock while calling Thread::GetStatus. That 5684 // very well might run code (e.g. if we need it to get return values or 5685 // arguments.) For that to work the process has to be able to acquire it. 5686 // So instead copy the thread ID's, and look them up one by one: 5687 5688 uint32_t num_threads; 5689 std::vector<lldb::tid_t> thread_id_array; 5690 // Scope for thread list locker; 5691 { 5692 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5693 ThreadList &curr_thread_list = GetThreadList(); 5694 num_threads = curr_thread_list.GetSize(); 5695 uint32_t idx; 5696 thread_id_array.resize(num_threads); 5697 for (idx = 0; idx < num_threads; ++idx) 5698 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5699 } 5700 5701 for (uint32_t i = 0; i < num_threads; i++) { 5702 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5703 if (thread_sp) { 5704 if (only_threads_with_stop_reason) { 5705 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5706 if (!stop_info_sp || !stop_info_sp->IsValid()) 5707 continue; 5708 } 5709 thread_sp->GetStatus(strm, start_frame, num_frames, 5710 num_frames_with_source, 5711 stop_format); 5712 ++num_thread_infos_dumped; 5713 } else { 5714 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5715 if (log) 5716 log->Printf("Process::GetThreadStatus - thread 0x" PRIu64 5717 " vanished while running Thread::GetStatus."); 5718 } 5719 } 5720 return num_thread_infos_dumped; 5721 } 5722 5723 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5724 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5725 } 5726 5727 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5728 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5729 region.GetByteSize()); 5730 } 5731 5732 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5733 void *baton) { 5734 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5735 } 5736 5737 bool Process::RunPreResumeActions() { 5738 bool result = true; 5739 while (!m_pre_resume_actions.empty()) { 5740 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5741 m_pre_resume_actions.pop_back(); 5742 bool this_result = action.callback(action.baton); 5743 if (result) 5744 result = this_result; 5745 } 5746 return result; 5747 } 5748 5749 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5750 5751 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5752 { 5753 PreResumeCallbackAndBaton element(callback, baton); 5754 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5755 if (found_iter != m_pre_resume_actions.end()) 5756 { 5757 m_pre_resume_actions.erase(found_iter); 5758 } 5759 } 5760 5761 ProcessRunLock &Process::GetRunLock() { 5762 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5763 return m_private_run_lock; 5764 else 5765 return m_public_run_lock; 5766 } 5767 5768 void Process::Flush() { 5769 m_thread_list.Flush(); 5770 m_extended_thread_list.Flush(); 5771 m_extended_thread_stop_id = 0; 5772 m_queue_list.Clear(); 5773 m_queue_list_stop_id = 0; 5774 } 5775 5776 void Process::DidExec() { 5777 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 5778 if (log) 5779 log->Printf("Process::%s()", __FUNCTION__); 5780 5781 Target &target = GetTarget(); 5782 target.CleanupProcess(); 5783 target.ClearModules(false); 5784 m_dynamic_checkers_ap.reset(); 5785 m_abi_sp.reset(); 5786 m_system_runtime_ap.reset(); 5787 m_os_ap.reset(); 5788 m_dyld_ap.reset(); 5789 m_jit_loaders_ap.reset(); 5790 m_image_tokens.clear(); 5791 m_allocated_memory_cache.Clear(); 5792 m_language_runtimes.clear(); 5793 m_instrumentation_runtimes.clear(); 5794 m_thread_list.DiscardThreadPlans(); 5795 m_memory_cache.Clear(true); 5796 DoDidExec(); 5797 CompleteAttach(); 5798 // Flush the process (threads and all stack frames) after running 5799 // CompleteAttach() in case the dynamic loader loaded things in new 5800 // locations. 5801 Flush(); 5802 5803 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5804 // let the target know so it can do any cleanup it needs to. 5805 target.DidExec(); 5806 } 5807 5808 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5809 if (address == nullptr) { 5810 error.SetErrorString("Invalid address argument"); 5811 return LLDB_INVALID_ADDRESS; 5812 } 5813 5814 addr_t function_addr = LLDB_INVALID_ADDRESS; 5815 5816 addr_t addr = address->GetLoadAddress(&GetTarget()); 5817 std::map<addr_t, addr_t>::const_iterator iter = 5818 m_resolved_indirect_addresses.find(addr); 5819 if (iter != m_resolved_indirect_addresses.end()) { 5820 function_addr = (*iter).second; 5821 } else { 5822 if (!InferiorCall(this, address, function_addr)) { 5823 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5824 error.SetErrorStringWithFormat( 5825 "Unable to call resolver for indirect function %s", 5826 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5827 function_addr = LLDB_INVALID_ADDRESS; 5828 } else { 5829 m_resolved_indirect_addresses.insert( 5830 std::pair<addr_t, addr_t>(addr, function_addr)); 5831 } 5832 } 5833 return function_addr; 5834 } 5835 5836 void Process::ModulesDidLoad(ModuleList &module_list) { 5837 SystemRuntime *sys_runtime = GetSystemRuntime(); 5838 if (sys_runtime) { 5839 sys_runtime->ModulesDidLoad(module_list); 5840 } 5841 5842 GetJITLoaders().ModulesDidLoad(module_list); 5843 5844 // Give runtimes a chance to be created. 5845 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5846 m_instrumentation_runtimes); 5847 5848 // Tell runtimes about new modules. 5849 for (auto pos = m_instrumentation_runtimes.begin(); 5850 pos != m_instrumentation_runtimes.end(); ++pos) { 5851 InstrumentationRuntimeSP runtime = pos->second; 5852 runtime->ModulesDidLoad(module_list); 5853 } 5854 5855 // Let any language runtimes we have already created know about the modules 5856 // that loaded. 5857 5858 // Iterate over a copy of this language runtime list in case the language 5859 // runtime ModulesDidLoad somehow causes the language runtime to be 5860 // unloaded. 5861 LanguageRuntimeCollection language_runtimes(m_language_runtimes); 5862 for (const auto &pair : language_runtimes) { 5863 // We must check language_runtime_sp to make sure it is not nullptr as we 5864 // might cache the fact that we didn't have a language runtime for a 5865 // language. 5866 LanguageRuntimeSP language_runtime_sp = pair.second; 5867 if (language_runtime_sp) 5868 language_runtime_sp->ModulesDidLoad(module_list); 5869 } 5870 5871 // If we don't have an operating system plug-in, try to load one since 5872 // loading shared libraries might cause a new one to try and load 5873 if (!m_os_ap) 5874 LoadOperatingSystemPlugin(false); 5875 5876 // Give structured-data plugins a chance to see the modified modules. 5877 for (auto pair : m_structured_data_plugin_map) { 5878 if (pair.second) 5879 pair.second->ModulesDidLoad(*this, module_list); 5880 } 5881 } 5882 5883 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5884 const char *fmt, ...) { 5885 bool print_warning = true; 5886 5887 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5888 if (!stream_sp) 5889 return; 5890 if (warning_type == eWarningsOptimization && !GetWarningsOptimization()) { 5891 return; 5892 } 5893 5894 if (repeat_key != nullptr) { 5895 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5896 if (it == m_warnings_issued.end()) { 5897 m_warnings_issued[warning_type] = WarningsPointerSet(); 5898 m_warnings_issued[warning_type].insert(repeat_key); 5899 } else { 5900 if (it->second.find(repeat_key) != it->second.end()) { 5901 print_warning = false; 5902 } else { 5903 it->second.insert(repeat_key); 5904 } 5905 } 5906 } 5907 5908 if (print_warning) { 5909 va_list args; 5910 va_start(args, fmt); 5911 stream_sp->PrintfVarArg(fmt, args); 5912 va_end(args); 5913 } 5914 } 5915 5916 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5917 if (GetWarningsOptimization() && sc.module_sp && 5918 !sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5919 sc.function->GetIsOptimized()) { 5920 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5921 "%s was compiled with optimization - stepping may behave " 5922 "oddly; variables may not be available.\n", 5923 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5924 } 5925 } 5926 5927 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5928 info.Clear(); 5929 5930 PlatformSP platform_sp = GetTarget().GetPlatform(); 5931 if (!platform_sp) 5932 return false; 5933 5934 return platform_sp->GetProcessInfo(GetID(), info); 5935 } 5936 5937 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5938 ThreadCollectionSP threads; 5939 5940 const MemoryHistorySP &memory_history = 5941 MemoryHistory::FindPlugin(shared_from_this()); 5942 5943 if (!memory_history) { 5944 return threads; 5945 } 5946 5947 threads.reset(new ThreadCollection(memory_history->GetHistoryThreads(addr))); 5948 5949 return threads; 5950 } 5951 5952 InstrumentationRuntimeSP 5953 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5954 InstrumentationRuntimeCollection::iterator pos; 5955 pos = m_instrumentation_runtimes.find(type); 5956 if (pos == m_instrumentation_runtimes.end()) { 5957 return InstrumentationRuntimeSP(); 5958 } else 5959 return (*pos).second; 5960 } 5961 5962 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5963 const ArchSpec &arch, ModuleSpec &module_spec) { 5964 module_spec.Clear(); 5965 return false; 5966 } 5967 5968 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5969 m_image_tokens.push_back(image_ptr); 5970 return m_image_tokens.size() - 1; 5971 } 5972 5973 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5974 if (token < m_image_tokens.size()) 5975 return m_image_tokens[token]; 5976 return LLDB_INVALID_IMAGE_TOKEN; 5977 } 5978 5979 void Process::ResetImageToken(size_t token) { 5980 if (token < m_image_tokens.size()) 5981 m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN; 5982 } 5983 5984 Address 5985 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5986 AddressRange range_bounds) { 5987 Target &target = GetTarget(); 5988 DisassemblerSP disassembler_sp; 5989 InstructionList *insn_list = nullptr; 5990 5991 Address retval = default_stop_addr; 5992 5993 if (!target.GetUseFastStepping()) 5994 return retval; 5995 if (!default_stop_addr.IsValid()) 5996 return retval; 5997 5998 ExecutionContext exe_ctx(this); 5999 const char *plugin_name = nullptr; 6000 const char *flavor = nullptr; 6001 const bool prefer_file_cache = true; 6002 disassembler_sp = Disassembler::DisassembleRange( 6003 target.GetArchitecture(), plugin_name, flavor, exe_ctx, range_bounds, 6004 prefer_file_cache); 6005 if (disassembler_sp) 6006 insn_list = &disassembler_sp->GetInstructionList(); 6007 6008 if (insn_list == nullptr) { 6009 return retval; 6010 } 6011 6012 size_t insn_offset = 6013 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 6014 if (insn_offset == UINT32_MAX) { 6015 return retval; 6016 } 6017 6018 uint32_t branch_index = 6019 insn_list->GetIndexOfNextBranchInstruction(insn_offset, target); 6020 if (branch_index == UINT32_MAX) { 6021 return retval; 6022 } 6023 6024 if (branch_index > insn_offset) { 6025 Address next_branch_insn_address = 6026 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 6027 if (next_branch_insn_address.IsValid() && 6028 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 6029 retval = next_branch_insn_address; 6030 } 6031 } 6032 6033 return retval; 6034 } 6035 6036 Status 6037 Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { 6038 6039 Status error; 6040 6041 lldb::addr_t range_end = 0; 6042 6043 region_list.clear(); 6044 do { 6045 lldb_private::MemoryRegionInfo region_info; 6046 error = GetMemoryRegionInfo(range_end, region_info); 6047 // GetMemoryRegionInfo should only return an error if it is unimplemented. 6048 if (error.Fail()) { 6049 region_list.clear(); 6050 break; 6051 } 6052 6053 range_end = region_info.GetRange().GetRangeEnd(); 6054 if (region_info.GetMapped() == MemoryRegionInfo::eYes) { 6055 region_list.push_back(std::move(region_info)); 6056 } 6057 } while (range_end != LLDB_INVALID_ADDRESS); 6058 6059 return error; 6060 } 6061 6062 Status 6063 Process::ConfigureStructuredData(const ConstString &type_name, 6064 const StructuredData::ObjectSP &config_sp) { 6065 // If you get this, the Process-derived class needs to implement a method to 6066 // enable an already-reported asynchronous structured data feature. See 6067 // ProcessGDBRemote for an example implementation over gdb-remote. 6068 return Status("unimplemented"); 6069 } 6070 6071 void Process::MapSupportedStructuredDataPlugins( 6072 const StructuredData::Array &supported_type_names) { 6073 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 6074 6075 // Bail out early if there are no type names to map. 6076 if (supported_type_names.GetSize() == 0) { 6077 if (log) 6078 log->Printf("Process::%s(): no structured data types supported", 6079 __FUNCTION__); 6080 return; 6081 } 6082 6083 // Convert StructuredData type names to ConstString instances. 6084 std::set<ConstString> const_type_names; 6085 6086 if (log) 6087 log->Printf("Process::%s(): the process supports the following async " 6088 "structured data types:", 6089 __FUNCTION__); 6090 6091 supported_type_names.ForEach( 6092 [&const_type_names, &log](StructuredData::Object *object) { 6093 if (!object) { 6094 // Invalid - shouldn't be null objects in the array. 6095 return false; 6096 } 6097 6098 auto type_name = object->GetAsString(); 6099 if (!type_name) { 6100 // Invalid format - all type names should be strings. 6101 return false; 6102 } 6103 6104 const_type_names.insert(ConstString(type_name->GetValue())); 6105 LLDB_LOG(log, "- {0}", type_name->GetValue()); 6106 return true; 6107 }); 6108 6109 // For each StructuredDataPlugin, if the plugin handles any of the types in 6110 // the supported_type_names, map that type name to that plugin. Stop when 6111 // we've consumed all the type names. 6112 // FIXME: should we return an error if there are type names nobody 6113 // supports? 6114 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 6115 auto create_instance = 6116 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 6117 plugin_index); 6118 if (!create_instance) 6119 break; 6120 6121 // Create the plugin. 6122 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 6123 if (!plugin_sp) { 6124 // This plugin doesn't think it can work with the process. Move on to the 6125 // next. 6126 continue; 6127 } 6128 6129 // For any of the remaining type names, map any that this plugin supports. 6130 std::vector<ConstString> names_to_remove; 6131 for (auto &type_name : const_type_names) { 6132 if (plugin_sp->SupportsStructuredDataType(type_name)) { 6133 m_structured_data_plugin_map.insert( 6134 std::make_pair(type_name, plugin_sp)); 6135 names_to_remove.push_back(type_name); 6136 if (log) 6137 log->Printf("Process::%s(): using plugin %s for type name " 6138 "%s", 6139 __FUNCTION__, plugin_sp->GetPluginName().GetCString(), 6140 type_name.GetCString()); 6141 } 6142 } 6143 6144 // Remove the type names that were consumed by this plugin. 6145 for (auto &type_name : names_to_remove) 6146 const_type_names.erase(type_name); 6147 } 6148 } 6149 6150 bool Process::RouteAsyncStructuredData( 6151 const StructuredData::ObjectSP object_sp) { 6152 // Nothing to do if there's no data. 6153 if (!object_sp) 6154 return false; 6155 6156 // The contract is this must be a dictionary, so we can look up the routing 6157 // key via the top-level 'type' string value within the dictionary. 6158 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 6159 if (!dictionary) 6160 return false; 6161 6162 // Grab the async structured type name (i.e. the feature/plugin name). 6163 ConstString type_name; 6164 if (!dictionary->GetValueForKeyAsString("type", type_name)) 6165 return false; 6166 6167 // Check if there's a plugin registered for this type name. 6168 auto find_it = m_structured_data_plugin_map.find(type_name); 6169 if (find_it == m_structured_data_plugin_map.end()) { 6170 // We don't have a mapping for this structured data type. 6171 return false; 6172 } 6173 6174 // Route the structured data to the plugin. 6175 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 6176 return true; 6177 } 6178 6179 Status Process::UpdateAutomaticSignalFiltering() { 6180 // Default implementation does nothign. 6181 // No automatic signal filtering to speak of. 6182 return Status(); 6183 } 6184 6185 UtilityFunction *Process::GetLoadImageUtilityFunction( 6186 Platform *platform, 6187 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 6188 if (platform != GetTarget().GetPlatform().get()) 6189 return nullptr; 6190 std::call_once(m_dlopen_utility_func_flag_once, 6191 [&] { m_dlopen_utility_func_up = factory(); }); 6192 return m_dlopen_utility_func_up.get(); 6193 } 6194