1 //===-- Process.cpp ---------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // C Includes 11 // C++ Includes 12 #include <atomic> 13 #include <mutex> 14 15 // Other libraries and framework includes 16 #include "llvm/Support/ScopedPrinter.h" 17 // Project includes 18 #include "Plugins/Process/Utility/InferiorCallPOSIX.h" 19 #include "lldb/Breakpoint/BreakpointLocation.h" 20 #include "lldb/Breakpoint/StoppointCallbackContext.h" 21 #include "lldb/Core/Debugger.h" 22 #include "lldb/Core/Event.h" 23 #include "lldb/Core/Log.h" 24 #include "lldb/Core/Module.h" 25 #include "lldb/Core/ModuleSpec.h" 26 #include "lldb/Core/PluginManager.h" 27 #include "lldb/Core/State.h" 28 #include "lldb/Core/StreamFile.h" 29 #include "lldb/Expression/DiagnosticManager.h" 30 #include "lldb/Expression/IRDynamicChecks.h" 31 #include "lldb/Expression/UserExpression.h" 32 #include "lldb/Host/ConnectionFileDescriptor.h" 33 #include "lldb/Host/FileSystem.h" 34 #include "lldb/Host/Host.h" 35 #include "lldb/Host/HostInfo.h" 36 #include "lldb/Host/Pipe.h" 37 #include "lldb/Host/Terminal.h" 38 #include "lldb/Host/ThreadLauncher.h" 39 #include "lldb/Interpreter/CommandInterpreter.h" 40 #include "lldb/Interpreter/OptionValueProperties.h" 41 #include "lldb/Symbol/Function.h" 42 #include "lldb/Symbol/Symbol.h" 43 #include "lldb/Target/ABI.h" 44 #include "lldb/Target/CPPLanguageRuntime.h" 45 #include "lldb/Target/DynamicLoader.h" 46 #include "lldb/Target/InstrumentationRuntime.h" 47 #include "lldb/Target/JITLoader.h" 48 #include "lldb/Target/JITLoaderList.h" 49 #include "lldb/Target/LanguageRuntime.h" 50 #include "lldb/Target/MemoryHistory.h" 51 #include "lldb/Target/MemoryRegionInfo.h" 52 #include "lldb/Target/ObjCLanguageRuntime.h" 53 #include "lldb/Target/OperatingSystem.h" 54 #include "lldb/Target/Platform.h" 55 #include "lldb/Target/Process.h" 56 #include "lldb/Target/RegisterContext.h" 57 #include "lldb/Target/StopInfo.h" 58 #include "lldb/Target/StructuredDataPlugin.h" 59 #include "lldb/Target/SystemRuntime.h" 60 #include "lldb/Target/Target.h" 61 #include "lldb/Target/TargetList.h" 62 #include "lldb/Target/Thread.h" 63 #include "lldb/Target/ThreadPlan.h" 64 #include "lldb/Target/ThreadPlanBase.h" 65 #include "lldb/Target/UnixSignals.h" 66 #include "lldb/Utility/NameMatches.h" 67 #include "lldb/Utility/SelectHelper.h" 68 69 using namespace lldb; 70 using namespace lldb_private; 71 using namespace std::chrono; 72 73 // Comment out line below to disable memory caching, overriding the process 74 // setting target.process.disable-memory-cache 75 #define ENABLE_MEMORY_CACHING 76 77 #ifdef ENABLE_MEMORY_CACHING 78 #define DISABLE_MEM_CACHE_DEFAULT false 79 #else 80 #define DISABLE_MEM_CACHE_DEFAULT true 81 #endif 82 83 class ProcessOptionValueProperties : public OptionValueProperties { 84 public: 85 ProcessOptionValueProperties(const ConstString &name) 86 : OptionValueProperties(name) {} 87 88 // This constructor is used when creating ProcessOptionValueProperties when it 89 // is part of a new lldb_private::Process instance. It will copy all current 90 // global property values as needed 91 ProcessOptionValueProperties(ProcessProperties *global_properties) 92 : OptionValueProperties(*global_properties->GetValueProperties()) {} 93 94 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 95 bool will_modify, 96 uint32_t idx) const override { 97 // When getting the value for a key from the process options, we will always 98 // try and grab the setting from the current process if there is one. Else 99 // we just 100 // use the one from this instance. 101 if (exe_ctx) { 102 Process *process = exe_ctx->GetProcessPtr(); 103 if (process) { 104 ProcessOptionValueProperties *instance_properties = 105 static_cast<ProcessOptionValueProperties *>( 106 process->GetValueProperties().get()); 107 if (this != instance_properties) 108 return instance_properties->ProtectedGetPropertyAtIndex(idx); 109 } 110 } 111 return ProtectedGetPropertyAtIndex(idx); 112 } 113 }; 114 115 static PropertyDefinition g_properties[] = { 116 {"disable-memory-cache", OptionValue::eTypeBoolean, false, 117 DISABLE_MEM_CACHE_DEFAULT, nullptr, nullptr, 118 "Disable reading and caching of memory in fixed-size units."}, 119 {"extra-startup-command", OptionValue::eTypeArray, false, 120 OptionValue::eTypeString, nullptr, nullptr, 121 "A list containing extra commands understood by the particular process " 122 "plugin used. " 123 "For instance, to turn on debugserver logging set this to " 124 "\"QSetLogging:bitmask=LOG_DEFAULT;\""}, 125 {"ignore-breakpoints-in-expressions", OptionValue::eTypeBoolean, true, true, 126 nullptr, nullptr, 127 "If true, breakpoints will be ignored during expression evaluation."}, 128 {"unwind-on-error-in-expressions", OptionValue::eTypeBoolean, true, true, 129 nullptr, nullptr, "If true, errors in expression evaluation will unwind " 130 "the stack back to the state before the call."}, 131 {"python-os-plugin-path", OptionValue::eTypeFileSpec, false, true, nullptr, 132 nullptr, "A path to a python OS plug-in module file that contains a " 133 "OperatingSystemPlugIn class."}, 134 {"stop-on-sharedlibrary-events", OptionValue::eTypeBoolean, true, false, 135 nullptr, nullptr, 136 "If true, stop when a shared library is loaded or unloaded."}, 137 {"detach-keeps-stopped", OptionValue::eTypeBoolean, true, false, nullptr, 138 nullptr, "If true, detach will attempt to keep the process stopped."}, 139 {"memory-cache-line-size", OptionValue::eTypeUInt64, false, 512, nullptr, 140 nullptr, "The memory cache line size"}, 141 {"optimization-warnings", OptionValue::eTypeBoolean, false, true, nullptr, 142 nullptr, "If true, warn when stopped in code that is optimized where " 143 "stepping and variable availability may not behave as expected."}, 144 {nullptr, OptionValue::eTypeInvalid, false, 0, nullptr, nullptr, nullptr}}; 145 146 enum { 147 ePropertyDisableMemCache, 148 ePropertyExtraStartCommand, 149 ePropertyIgnoreBreakpointsInExpressions, 150 ePropertyUnwindOnErrorInExpressions, 151 ePropertyPythonOSPluginPath, 152 ePropertyStopOnSharedLibraryEvents, 153 ePropertyDetachKeepsStopped, 154 ePropertyMemCacheLineSize, 155 ePropertyWarningOptimization 156 }; 157 158 ProcessProperties::ProcessProperties(lldb_private::Process *process) 159 : Properties(), 160 m_process(process) // Can be nullptr for global ProcessProperties 161 { 162 if (process == nullptr) { 163 // Global process properties, set them up one time 164 m_collection_sp.reset( 165 new ProcessOptionValueProperties(ConstString("process"))); 166 m_collection_sp->Initialize(g_properties); 167 m_collection_sp->AppendProperty( 168 ConstString("thread"), ConstString("Settings specific to threads."), 169 true, Thread::GetGlobalProperties()->GetValueProperties()); 170 } else { 171 m_collection_sp.reset( 172 new ProcessOptionValueProperties(Process::GetGlobalProperties().get())); 173 m_collection_sp->SetValueChangedCallback( 174 ePropertyPythonOSPluginPath, 175 ProcessProperties::OptionValueChangedCallback, this); 176 } 177 } 178 179 ProcessProperties::~ProcessProperties() = default; 180 181 void ProcessProperties::OptionValueChangedCallback(void *baton, 182 OptionValue *option_value) { 183 ProcessProperties *properties = (ProcessProperties *)baton; 184 if (properties->m_process) 185 properties->m_process->LoadOperatingSystemPlugin(true); 186 } 187 188 bool ProcessProperties::GetDisableMemoryCache() const { 189 const uint32_t idx = ePropertyDisableMemCache; 190 return m_collection_sp->GetPropertyAtIndexAsBoolean( 191 nullptr, idx, g_properties[idx].default_uint_value != 0); 192 } 193 194 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 195 const uint32_t idx = ePropertyMemCacheLineSize; 196 return m_collection_sp->GetPropertyAtIndexAsUInt64( 197 nullptr, idx, g_properties[idx].default_uint_value); 198 } 199 200 Args ProcessProperties::GetExtraStartupCommands() const { 201 Args args; 202 const uint32_t idx = ePropertyExtraStartCommand; 203 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 204 return args; 205 } 206 207 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 208 const uint32_t idx = ePropertyExtraStartCommand; 209 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 210 } 211 212 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 213 const uint32_t idx = ePropertyPythonOSPluginPath; 214 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 215 } 216 217 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 218 const uint32_t idx = ePropertyPythonOSPluginPath; 219 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 220 } 221 222 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 223 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 224 return m_collection_sp->GetPropertyAtIndexAsBoolean( 225 nullptr, idx, g_properties[idx].default_uint_value != 0); 226 } 227 228 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 229 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 230 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 231 } 232 233 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 234 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 235 return m_collection_sp->GetPropertyAtIndexAsBoolean( 236 nullptr, idx, g_properties[idx].default_uint_value != 0); 237 } 238 239 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 240 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 241 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 242 } 243 244 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 245 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 246 return m_collection_sp->GetPropertyAtIndexAsBoolean( 247 nullptr, idx, g_properties[idx].default_uint_value != 0); 248 } 249 250 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 251 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 252 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 253 } 254 255 bool ProcessProperties::GetDetachKeepsStopped() const { 256 const uint32_t idx = ePropertyDetachKeepsStopped; 257 return m_collection_sp->GetPropertyAtIndexAsBoolean( 258 nullptr, idx, g_properties[idx].default_uint_value != 0); 259 } 260 261 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 262 const uint32_t idx = ePropertyDetachKeepsStopped; 263 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 264 } 265 266 bool ProcessProperties::GetWarningsOptimization() const { 267 const uint32_t idx = ePropertyWarningOptimization; 268 return m_collection_sp->GetPropertyAtIndexAsBoolean( 269 nullptr, idx, g_properties[idx].default_uint_value != 0); 270 } 271 272 void ProcessInstanceInfo::Dump(Stream &s, Platform *platform) const { 273 const char *cstr; 274 if (m_pid != LLDB_INVALID_PROCESS_ID) 275 s.Printf(" pid = %" PRIu64 "\n", m_pid); 276 277 if (m_parent_pid != LLDB_INVALID_PROCESS_ID) 278 s.Printf(" parent = %" PRIu64 "\n", m_parent_pid); 279 280 if (m_executable) { 281 s.Printf(" name = %s\n", m_executable.GetFilename().GetCString()); 282 s.PutCString(" file = "); 283 m_executable.Dump(&s); 284 s.EOL(); 285 } 286 const uint32_t argc = m_arguments.GetArgumentCount(); 287 if (argc > 0) { 288 for (uint32_t i = 0; i < argc; i++) { 289 const char *arg = m_arguments.GetArgumentAtIndex(i); 290 if (i < 10) 291 s.Printf(" arg[%u] = %s\n", i, arg); 292 else 293 s.Printf("arg[%u] = %s\n", i, arg); 294 } 295 } 296 297 const uint32_t envc = m_environment.GetArgumentCount(); 298 if (envc > 0) { 299 for (uint32_t i = 0; i < envc; i++) { 300 const char *env = m_environment.GetArgumentAtIndex(i); 301 if (i < 10) 302 s.Printf(" env[%u] = %s\n", i, env); 303 else 304 s.Printf("env[%u] = %s\n", i, env); 305 } 306 } 307 308 if (m_arch.IsValid()) { 309 s.Printf(" arch = "); 310 m_arch.DumpTriple(s); 311 s.EOL(); 312 } 313 314 if (m_uid != UINT32_MAX) { 315 cstr = platform->GetUserName(m_uid); 316 s.Printf(" uid = %-5u (%s)\n", m_uid, cstr ? cstr : ""); 317 } 318 if (m_gid != UINT32_MAX) { 319 cstr = platform->GetGroupName(m_gid); 320 s.Printf(" gid = %-5u (%s)\n", m_gid, cstr ? cstr : ""); 321 } 322 if (m_euid != UINT32_MAX) { 323 cstr = platform->GetUserName(m_euid); 324 s.Printf(" euid = %-5u (%s)\n", m_euid, cstr ? cstr : ""); 325 } 326 if (m_egid != UINT32_MAX) { 327 cstr = platform->GetGroupName(m_egid); 328 s.Printf(" egid = %-5u (%s)\n", m_egid, cstr ? cstr : ""); 329 } 330 } 331 332 void ProcessInstanceInfo::DumpTableHeader(Stream &s, Platform *platform, 333 bool show_args, bool verbose) { 334 const char *label; 335 if (show_args || verbose) 336 label = "ARGUMENTS"; 337 else 338 label = "NAME"; 339 340 if (verbose) { 341 s.Printf("PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE " 342 " %s\n", 343 label); 344 s.PutCString("====== ====== ========== ========== ========== ========== " 345 "======================== ============================\n"); 346 } else { 347 s.Printf("PID PARENT USER TRIPLE %s\n", label); 348 s.PutCString("====== ====== ========== ======================== " 349 "============================\n"); 350 } 351 } 352 353 void ProcessInstanceInfo::DumpAsTableRow(Stream &s, Platform *platform, 354 bool show_args, bool verbose) const { 355 if (m_pid != LLDB_INVALID_PROCESS_ID) { 356 const char *cstr; 357 s.Printf("%-6" PRIu64 " %-6" PRIu64 " ", m_pid, m_parent_pid); 358 359 StreamString arch_strm; 360 if (m_arch.IsValid()) 361 m_arch.DumpTriple(arch_strm); 362 363 if (verbose) { 364 cstr = platform->GetUserName(m_uid); 365 if (cstr && 366 cstr[0]) // Watch for empty string that indicates lookup failed 367 s.Printf("%-10s ", cstr); 368 else 369 s.Printf("%-10u ", m_uid); 370 371 cstr = platform->GetGroupName(m_gid); 372 if (cstr && 373 cstr[0]) // Watch for empty string that indicates lookup failed 374 s.Printf("%-10s ", cstr); 375 else 376 s.Printf("%-10u ", m_gid); 377 378 cstr = platform->GetUserName(m_euid); 379 if (cstr && 380 cstr[0]) // Watch for empty string that indicates lookup failed 381 s.Printf("%-10s ", cstr); 382 else 383 s.Printf("%-10u ", m_euid); 384 385 cstr = platform->GetGroupName(m_egid); 386 if (cstr && 387 cstr[0]) // Watch for empty string that indicates lookup failed 388 s.Printf("%-10s ", cstr); 389 else 390 s.Printf("%-10u ", m_egid); 391 392 s.Printf("%-24s ", arch_strm.GetData()); 393 } else { 394 s.Printf("%-10s %-24s ", platform->GetUserName(m_euid), 395 arch_strm.GetData()); 396 } 397 398 if (verbose || show_args) { 399 const uint32_t argc = m_arguments.GetArgumentCount(); 400 if (argc > 0) { 401 for (uint32_t i = 0; i < argc; i++) { 402 if (i > 0) 403 s.PutChar(' '); 404 s.PutCString(m_arguments.GetArgumentAtIndex(i)); 405 } 406 } 407 } else { 408 s.PutCString(GetName()); 409 } 410 411 s.EOL(); 412 } 413 } 414 415 Error ProcessLaunchCommandOptions::SetOptionValue( 416 uint32_t option_idx, llvm::StringRef option_arg, 417 ExecutionContext *execution_context) { 418 Error error; 419 const int short_option = m_getopt_table[option_idx].val; 420 421 switch (short_option) { 422 case 's': // Stop at program entry point 423 launch_info.GetFlags().Set(eLaunchFlagStopAtEntry); 424 break; 425 426 case 'i': // STDIN for read only 427 { 428 FileAction action; 429 if (action.Open(STDIN_FILENO, FileSpec{option_arg, false}, true, false)) 430 launch_info.AppendFileAction(action); 431 break; 432 } 433 434 case 'o': // Open STDOUT for write only 435 { 436 FileAction action; 437 if (action.Open(STDOUT_FILENO, FileSpec{option_arg, false}, false, true)) 438 launch_info.AppendFileAction(action); 439 break; 440 } 441 442 case 'e': // STDERR for write only 443 { 444 FileAction action; 445 if (action.Open(STDERR_FILENO, FileSpec{option_arg, false}, false, true)) 446 launch_info.AppendFileAction(action); 447 break; 448 } 449 450 case 'p': // Process plug-in name 451 launch_info.SetProcessPluginName(option_arg); 452 break; 453 454 case 'n': // Disable STDIO 455 { 456 FileAction action; 457 const FileSpec dev_null{FileSystem::DEV_NULL, false}; 458 if (action.Open(STDIN_FILENO, dev_null, true, false)) 459 launch_info.AppendFileAction(action); 460 if (action.Open(STDOUT_FILENO, dev_null, false, true)) 461 launch_info.AppendFileAction(action); 462 if (action.Open(STDERR_FILENO, dev_null, false, true)) 463 launch_info.AppendFileAction(action); 464 break; 465 } 466 467 case 'w': 468 launch_info.SetWorkingDirectory(FileSpec{option_arg, false}); 469 break; 470 471 case 't': // Open process in new terminal window 472 launch_info.GetFlags().Set(eLaunchFlagLaunchInTTY); 473 break; 474 475 case 'a': { 476 TargetSP target_sp = 477 execution_context ? execution_context->GetTargetSP() : TargetSP(); 478 PlatformSP platform_sp = 479 target_sp ? target_sp->GetPlatform() : PlatformSP(); 480 if (!launch_info.GetArchitecture().SetTriple(option_arg, platform_sp.get())) 481 launch_info.GetArchitecture().SetTriple(option_arg); 482 } break; 483 484 case 'A': // Disable ASLR. 485 { 486 bool success; 487 const bool disable_aslr_arg = 488 Args::StringToBoolean(option_arg, true, &success); 489 if (success) 490 disable_aslr = disable_aslr_arg ? eLazyBoolYes : eLazyBoolNo; 491 else 492 error.SetErrorStringWithFormat( 493 "Invalid boolean value for disable-aslr option: '%s'", 494 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 495 break; 496 } 497 498 case 'X': // shell expand args. 499 { 500 bool success; 501 const bool expand_args = Args::StringToBoolean(option_arg, true, &success); 502 if (success) 503 launch_info.SetShellExpandArguments(expand_args); 504 else 505 error.SetErrorStringWithFormat( 506 "Invalid boolean value for shell-expand-args option: '%s'", 507 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 508 break; 509 } 510 511 case 'c': 512 if (!option_arg.empty()) 513 launch_info.SetShell(FileSpec(option_arg, false)); 514 else 515 launch_info.SetShell(HostInfo::GetDefaultShell()); 516 break; 517 518 case 'v': 519 launch_info.GetEnvironmentEntries().AppendArgument(option_arg); 520 break; 521 522 default: 523 error.SetErrorStringWithFormat("unrecognized short option character '%c'", 524 short_option); 525 break; 526 } 527 return error; 528 } 529 530 static OptionDefinition g_process_launch_options[] = { 531 {LLDB_OPT_SET_ALL, false, "stop-at-entry", 's', OptionParser::eNoArgument, 532 nullptr, nullptr, 0, eArgTypeNone, 533 "Stop at the entry point of the program when launching a process."}, 534 {LLDB_OPT_SET_ALL, false, "disable-aslr", 'A', 535 OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeBoolean, 536 "Set whether to disable address space layout randomization when launching " 537 "a process."}, 538 {LLDB_OPT_SET_ALL, false, "plugin", 'p', OptionParser::eRequiredArgument, 539 nullptr, nullptr, 0, eArgTypePlugin, 540 "Name of the process plugin you want to use."}, 541 {LLDB_OPT_SET_ALL, false, "working-dir", 'w', 542 OptionParser::eRequiredArgument, nullptr, nullptr, 0, 543 eArgTypeDirectoryName, 544 "Set the current working directory to <path> when running the inferior."}, 545 {LLDB_OPT_SET_ALL, false, "arch", 'a', OptionParser::eRequiredArgument, 546 nullptr, nullptr, 0, eArgTypeArchitecture, 547 "Set the architecture for the process to launch when ambiguous."}, 548 {LLDB_OPT_SET_ALL, false, "environment", 'v', 549 OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeNone, 550 "Specify an environment variable name/value string (--environment " 551 "NAME=VALUE). Can be specified multiple times for subsequent environment " 552 "entries."}, 553 {LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3, false, "shell", 'c', 554 OptionParser::eOptionalArgument, nullptr, nullptr, 0, eArgTypeFilename, 555 "Run the process in a shell (not supported on all platforms)."}, 556 557 {LLDB_OPT_SET_1, false, "stdin", 'i', OptionParser::eRequiredArgument, 558 nullptr, nullptr, 0, eArgTypeFilename, 559 "Redirect stdin for the process to <filename>."}, 560 {LLDB_OPT_SET_1, false, "stdout", 'o', OptionParser::eRequiredArgument, 561 nullptr, nullptr, 0, eArgTypeFilename, 562 "Redirect stdout for the process to <filename>."}, 563 {LLDB_OPT_SET_1, false, "stderr", 'e', OptionParser::eRequiredArgument, 564 nullptr, nullptr, 0, eArgTypeFilename, 565 "Redirect stderr for the process to <filename>."}, 566 567 {LLDB_OPT_SET_2, false, "tty", 't', OptionParser::eNoArgument, nullptr, 568 nullptr, 0, eArgTypeNone, 569 "Start the process in a terminal (not supported on all platforms)."}, 570 571 {LLDB_OPT_SET_3, false, "no-stdio", 'n', OptionParser::eNoArgument, nullptr, 572 nullptr, 0, eArgTypeNone, 573 "Do not set up for terminal I/O to go to running process."}, 574 {LLDB_OPT_SET_4, false, "shell-expand-args", 'X', 575 OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeBoolean, 576 "Set whether to shell expand arguments to the process when launching."}, 577 }; 578 579 llvm::ArrayRef<OptionDefinition> ProcessLaunchCommandOptions::GetDefinitions() { 580 return llvm::makeArrayRef(g_process_launch_options); 581 } 582 583 bool ProcessInstanceInfoMatch::NameMatches(const char *process_name) const { 584 if (m_name_match_type == NameMatch::Ignore || process_name == nullptr) 585 return true; 586 const char *match_name = m_match_info.GetName(); 587 if (!match_name) 588 return true; 589 590 return lldb_private::NameMatches(process_name, m_name_match_type, match_name); 591 } 592 593 bool ProcessInstanceInfoMatch::Matches( 594 const ProcessInstanceInfo &proc_info) const { 595 if (!NameMatches(proc_info.GetName())) 596 return false; 597 598 if (m_match_info.ProcessIDIsValid() && 599 m_match_info.GetProcessID() != proc_info.GetProcessID()) 600 return false; 601 602 if (m_match_info.ParentProcessIDIsValid() && 603 m_match_info.GetParentProcessID() != proc_info.GetParentProcessID()) 604 return false; 605 606 if (m_match_info.UserIDIsValid() && 607 m_match_info.GetUserID() != proc_info.GetUserID()) 608 return false; 609 610 if (m_match_info.GroupIDIsValid() && 611 m_match_info.GetGroupID() != proc_info.GetGroupID()) 612 return false; 613 614 if (m_match_info.EffectiveUserIDIsValid() && 615 m_match_info.GetEffectiveUserID() != proc_info.GetEffectiveUserID()) 616 return false; 617 618 if (m_match_info.EffectiveGroupIDIsValid() && 619 m_match_info.GetEffectiveGroupID() != proc_info.GetEffectiveGroupID()) 620 return false; 621 622 if (m_match_info.GetArchitecture().IsValid() && 623 !m_match_info.GetArchitecture().IsCompatibleMatch( 624 proc_info.GetArchitecture())) 625 return false; 626 return true; 627 } 628 629 bool ProcessInstanceInfoMatch::MatchAllProcesses() const { 630 if (m_name_match_type != NameMatch::Ignore) 631 return false; 632 633 if (m_match_info.ProcessIDIsValid()) 634 return false; 635 636 if (m_match_info.ParentProcessIDIsValid()) 637 return false; 638 639 if (m_match_info.UserIDIsValid()) 640 return false; 641 642 if (m_match_info.GroupIDIsValid()) 643 return false; 644 645 if (m_match_info.EffectiveUserIDIsValid()) 646 return false; 647 648 if (m_match_info.EffectiveGroupIDIsValid()) 649 return false; 650 651 if (m_match_info.GetArchitecture().IsValid()) 652 return false; 653 654 if (m_match_all_users) 655 return false; 656 657 return true; 658 } 659 660 void ProcessInstanceInfoMatch::Clear() { 661 m_match_info.Clear(); 662 m_name_match_type = NameMatch::Ignore; 663 m_match_all_users = false; 664 } 665 666 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 667 llvm::StringRef plugin_name, 668 ListenerSP listener_sp, 669 const FileSpec *crash_file_path) { 670 static uint32_t g_process_unique_id = 0; 671 672 ProcessSP process_sp; 673 ProcessCreateInstance create_callback = nullptr; 674 if (!plugin_name.empty()) { 675 ConstString const_plugin_name(plugin_name); 676 create_callback = 677 PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name); 678 if (create_callback) { 679 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 680 if (process_sp) { 681 if (process_sp->CanDebug(target_sp, true)) { 682 process_sp->m_process_unique_id = ++g_process_unique_id; 683 } else 684 process_sp.reset(); 685 } 686 } 687 } else { 688 for (uint32_t idx = 0; 689 (create_callback = 690 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 691 ++idx) { 692 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 693 if (process_sp) { 694 if (process_sp->CanDebug(target_sp, false)) { 695 process_sp->m_process_unique_id = ++g_process_unique_id; 696 break; 697 } else 698 process_sp.reset(); 699 } 700 } 701 } 702 return process_sp; 703 } 704 705 ConstString &Process::GetStaticBroadcasterClass() { 706 static ConstString class_name("lldb.process"); 707 return class_name; 708 } 709 710 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 711 : Process(target_sp, listener_sp, 712 UnixSignals::Create(HostInfo::GetArchitecture())) { 713 // This constructor just delegates to the full Process constructor, 714 // defaulting to using the Host's UnixSignals. 715 } 716 717 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 718 const UnixSignalsSP &unix_signals_sp) 719 : ProcessProperties(this), UserID(LLDB_INVALID_PROCESS_ID), 720 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 721 Process::GetStaticBroadcasterClass().AsCString()), 722 m_target_sp(target_sp), m_public_state(eStateUnloaded), 723 m_private_state(eStateUnloaded), 724 m_private_state_broadcaster(nullptr, 725 "lldb.process.internal_state_broadcaster"), 726 m_private_state_control_broadcaster( 727 nullptr, "lldb.process.internal_state_control_broadcaster"), 728 m_private_state_listener_sp( 729 Listener::MakeListener("lldb.process.internal_state_listener")), 730 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 731 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 732 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 733 m_thread_list(this), m_extended_thread_list(this), 734 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 735 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 736 m_breakpoint_site_list(), m_dynamic_checkers_ap(), 737 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 738 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 739 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 740 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 741 m_memory_cache(*this), m_allocated_memory_cache(*this), 742 m_should_detach(false), m_next_event_action_ap(), m_public_run_lock(), 743 m_private_run_lock(), m_stop_info_override_callback(nullptr), 744 m_finalizing(false), m_finalize_called(false), 745 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 746 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 747 m_can_interpret_function_calls(false), m_warnings_issued(), 748 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 749 CheckInWithManager(); 750 751 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 752 if (log) 753 log->Printf("%p Process::Process()", static_cast<void *>(this)); 754 755 if (!m_unix_signals_sp) 756 m_unix_signals_sp = std::make_shared<UnixSignals>(); 757 758 SetEventName(eBroadcastBitStateChanged, "state-changed"); 759 SetEventName(eBroadcastBitInterrupt, "interrupt"); 760 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 761 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 762 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 763 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 764 765 m_private_state_control_broadcaster.SetEventName( 766 eBroadcastInternalStateControlStop, "control-stop"); 767 m_private_state_control_broadcaster.SetEventName( 768 eBroadcastInternalStateControlPause, "control-pause"); 769 m_private_state_control_broadcaster.SetEventName( 770 eBroadcastInternalStateControlResume, "control-resume"); 771 772 m_listener_sp->StartListeningForEvents( 773 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 774 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 775 eBroadcastBitProfileData | eBroadcastBitStructuredData); 776 777 m_private_state_listener_sp->StartListeningForEvents( 778 &m_private_state_broadcaster, 779 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 780 781 m_private_state_listener_sp->StartListeningForEvents( 782 &m_private_state_control_broadcaster, 783 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 784 eBroadcastInternalStateControlResume); 785 // We need something valid here, even if just the default UnixSignalsSP. 786 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 787 788 // Allow the platform to override the default cache line size 789 OptionValueSP value_sp = 790 m_collection_sp 791 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 792 ->GetValue(); 793 uint32_t platform_cache_line_size = 794 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 795 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 796 value_sp->SetUInt64Value(platform_cache_line_size); 797 } 798 799 Process::~Process() { 800 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 801 if (log) 802 log->Printf("%p Process::~Process()", static_cast<void *>(this)); 803 StopPrivateStateThread(); 804 805 // ThreadList::Clear() will try to acquire this process's mutex, so 806 // explicitly clear the thread list here to ensure that the mutex 807 // is not destroyed before the thread list. 808 m_thread_list.Clear(); 809 } 810 811 const ProcessPropertiesSP &Process::GetGlobalProperties() { 812 // NOTE: intentional leak so we don't crash if global destructor chain gets 813 // called as other threads still use the result of this function 814 static ProcessPropertiesSP *g_settings_sp_ptr = 815 new ProcessPropertiesSP(new ProcessProperties(nullptr)); 816 return *g_settings_sp_ptr; 817 } 818 819 void Process::Finalize() { 820 m_finalizing = true; 821 822 // Destroy this process if needed 823 switch (GetPrivateState()) { 824 case eStateConnected: 825 case eStateAttaching: 826 case eStateLaunching: 827 case eStateStopped: 828 case eStateRunning: 829 case eStateStepping: 830 case eStateCrashed: 831 case eStateSuspended: 832 Destroy(false); 833 break; 834 835 case eStateInvalid: 836 case eStateUnloaded: 837 case eStateDetached: 838 case eStateExited: 839 break; 840 } 841 842 // Clear our broadcaster before we proceed with destroying 843 Broadcaster::Clear(); 844 845 // Do any cleanup needed prior to being destructed... Subclasses 846 // that override this method should call this superclass method as well. 847 848 // We need to destroy the loader before the derived Process class gets 849 // destroyed 850 // since it is very likely that undoing the loader will require access to the 851 // real process. 852 m_dynamic_checkers_ap.reset(); 853 m_abi_sp.reset(); 854 m_os_ap.reset(); 855 m_system_runtime_ap.reset(); 856 m_dyld_ap.reset(); 857 m_jit_loaders_ap.reset(); 858 m_thread_list_real.Destroy(); 859 m_thread_list.Destroy(); 860 m_extended_thread_list.Destroy(); 861 m_queue_list.Clear(); 862 m_queue_list_stop_id = 0; 863 std::vector<Notifications> empty_notifications; 864 m_notifications.swap(empty_notifications); 865 m_image_tokens.clear(); 866 m_memory_cache.Clear(); 867 m_allocated_memory_cache.Clear(); 868 m_language_runtimes.clear(); 869 m_instrumentation_runtimes.clear(); 870 m_next_event_action_ap.reset(); 871 m_stop_info_override_callback = nullptr; 872 // Clear the last natural stop ID since it has a strong 873 // reference to this process 874 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 875 //#ifdef LLDB_CONFIGURATION_DEBUG 876 // StreamFile s(stdout, false); 877 // EventSP event_sp; 878 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 879 // { 880 // event_sp->Dump (&s); 881 // s.EOL(); 882 // } 883 //#endif 884 // We have to be very careful here as the m_private_state_listener might 885 // contain events that have ProcessSP values in them which can keep this 886 // process around forever. These events need to be cleared out. 887 m_private_state_listener_sp->Clear(); 888 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 889 m_public_run_lock.SetStopped(); 890 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 891 m_private_run_lock.SetStopped(); 892 m_structured_data_plugin_map.clear(); 893 m_finalize_called = true; 894 } 895 896 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 897 m_notifications.push_back(callbacks); 898 if (callbacks.initialize != nullptr) 899 callbacks.initialize(callbacks.baton, this); 900 } 901 902 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 903 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 904 for (pos = m_notifications.begin(); pos != end; ++pos) { 905 if (pos->baton == callbacks.baton && 906 pos->initialize == callbacks.initialize && 907 pos->process_state_changed == callbacks.process_state_changed) { 908 m_notifications.erase(pos); 909 return true; 910 } 911 } 912 return false; 913 } 914 915 void Process::SynchronouslyNotifyStateChanged(StateType state) { 916 std::vector<Notifications>::iterator notification_pos, 917 notification_end = m_notifications.end(); 918 for (notification_pos = m_notifications.begin(); 919 notification_pos != notification_end; ++notification_pos) { 920 if (notification_pos->process_state_changed) 921 notification_pos->process_state_changed(notification_pos->baton, this, 922 state); 923 } 924 } 925 926 // FIXME: We need to do some work on events before the general Listener sees 927 // them. 928 // For instance if we are continuing from a breakpoint, we need to ensure that 929 // we do 930 // the little "insert real insn, step & stop" trick. But we can't do that when 931 // the 932 // event is delivered by the broadcaster - since that is done on the thread that 933 // is 934 // waiting for new events, so if we needed more than one event for our handling, 935 // we would 936 // stall. So instead we do it when we fetch the event off of the queue. 937 // 938 939 StateType Process::GetNextEvent(EventSP &event_sp) { 940 StateType state = eStateInvalid; 941 942 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 943 std::chrono::seconds(0)) && 944 event_sp) 945 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 946 947 return state; 948 } 949 950 void Process::SyncIOHandler(uint32_t iohandler_id, uint64_t timeout_msec) { 951 // don't sync (potentially context switch) in case where there is no process 952 // IO 953 if (!m_process_input_reader) 954 return; 955 956 uint32_t new_iohandler_id = 0; 957 m_iohandler_sync.WaitForValueNotEqualTo( 958 iohandler_id, new_iohandler_id, std::chrono::milliseconds(timeout_msec)); 959 960 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 961 if (log) 962 log->Printf("Process::%s waited for m_iohandler_sync to change from %u, " 963 "new value is %u", 964 __FUNCTION__, iohandler_id, new_iohandler_id); 965 } 966 967 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 968 EventSP *event_sp_ptr, bool wait_always, 969 ListenerSP hijack_listener_sp, 970 Stream *stream, bool use_run_lock) { 971 // We can't just wait for a "stopped" event, because the stopped event may 972 // have restarted the target. 973 // We have to actually check each event, and in the case of a stopped event 974 // check the restarted flag 975 // on the event. 976 if (event_sp_ptr) 977 event_sp_ptr->reset(); 978 StateType state = GetState(); 979 // If we are exited or detached, we won't ever get back to any 980 // other valid state... 981 if (state == eStateDetached || state == eStateExited) 982 return state; 983 984 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 985 LLDB_LOG(log, "timeout = {0}", timeout); 986 987 if (!wait_always && StateIsStoppedState(state, true) && 988 StateIsStoppedState(GetPrivateState(), true)) { 989 if (log) 990 log->Printf("Process::%s returning without waiting for events; process " 991 "private and public states are already 'stopped'.", 992 __FUNCTION__); 993 // We need to toggle the run lock as this won't get done in 994 // SetPublicState() if the process is hijacked. 995 if (hijack_listener_sp && use_run_lock) 996 m_public_run_lock.SetStopped(); 997 return state; 998 } 999 1000 while (state != eStateInvalid) { 1001 EventSP event_sp; 1002 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 1003 if (event_sp_ptr && event_sp) 1004 *event_sp_ptr = event_sp; 1005 1006 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 1007 Process::HandleProcessStateChangedEvent(event_sp, stream, 1008 pop_process_io_handler); 1009 1010 switch (state) { 1011 case eStateCrashed: 1012 case eStateDetached: 1013 case eStateExited: 1014 case eStateUnloaded: 1015 // We need to toggle the run lock as this won't get done in 1016 // SetPublicState() if the process is hijacked. 1017 if (hijack_listener_sp && use_run_lock) 1018 m_public_run_lock.SetStopped(); 1019 return state; 1020 case eStateStopped: 1021 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 1022 continue; 1023 else { 1024 // We need to toggle the run lock as this won't get done in 1025 // SetPublicState() if the process is hijacked. 1026 if (hijack_listener_sp && use_run_lock) 1027 m_public_run_lock.SetStopped(); 1028 return state; 1029 } 1030 default: 1031 continue; 1032 } 1033 } 1034 return state; 1035 } 1036 1037 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 1038 Stream *stream, 1039 bool &pop_process_io_handler) { 1040 const bool handle_pop = pop_process_io_handler; 1041 1042 pop_process_io_handler = false; 1043 ProcessSP process_sp = 1044 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 1045 1046 if (!process_sp) 1047 return false; 1048 1049 StateType event_state = 1050 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1051 if (event_state == eStateInvalid) 1052 return false; 1053 1054 switch (event_state) { 1055 case eStateInvalid: 1056 case eStateUnloaded: 1057 case eStateAttaching: 1058 case eStateLaunching: 1059 case eStateStepping: 1060 case eStateDetached: 1061 if (stream) 1062 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 1063 StateAsCString(event_state)); 1064 if (event_state == eStateDetached) 1065 pop_process_io_handler = true; 1066 break; 1067 1068 case eStateConnected: 1069 case eStateRunning: 1070 // Don't be chatty when we run... 1071 break; 1072 1073 case eStateExited: 1074 if (stream) 1075 process_sp->GetStatus(*stream); 1076 pop_process_io_handler = true; 1077 break; 1078 1079 case eStateStopped: 1080 case eStateCrashed: 1081 case eStateSuspended: 1082 // Make sure the program hasn't been auto-restarted: 1083 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 1084 if (stream) { 1085 size_t num_reasons = 1086 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 1087 if (num_reasons > 0) { 1088 // FIXME: Do we want to report this, or would that just be annoyingly 1089 // chatty? 1090 if (num_reasons == 1) { 1091 const char *reason = 1092 Process::ProcessEventData::GetRestartedReasonAtIndex( 1093 event_sp.get(), 0); 1094 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 1095 process_sp->GetID(), 1096 reason ? reason : "<UNKNOWN REASON>"); 1097 } else { 1098 stream->Printf("Process %" PRIu64 1099 " stopped and restarted, reasons:\n", 1100 process_sp->GetID()); 1101 1102 for (size_t i = 0; i < num_reasons; i++) { 1103 const char *reason = 1104 Process::ProcessEventData::GetRestartedReasonAtIndex( 1105 event_sp.get(), i); 1106 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 1107 } 1108 } 1109 } 1110 } 1111 } else { 1112 StopInfoSP curr_thread_stop_info_sp; 1113 // Lock the thread list so it doesn't change on us, this is the scope for 1114 // the locker: 1115 { 1116 ThreadList &thread_list = process_sp->GetThreadList(); 1117 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 1118 1119 ThreadSP curr_thread(thread_list.GetSelectedThread()); 1120 ThreadSP thread; 1121 StopReason curr_thread_stop_reason = eStopReasonInvalid; 1122 if (curr_thread) { 1123 curr_thread_stop_reason = curr_thread->GetStopReason(); 1124 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 1125 } 1126 if (!curr_thread || !curr_thread->IsValid() || 1127 curr_thread_stop_reason == eStopReasonInvalid || 1128 curr_thread_stop_reason == eStopReasonNone) { 1129 // Prefer a thread that has just completed its plan over another 1130 // thread as current thread. 1131 ThreadSP plan_thread; 1132 ThreadSP other_thread; 1133 1134 const size_t num_threads = thread_list.GetSize(); 1135 size_t i; 1136 for (i = 0; i < num_threads; ++i) { 1137 thread = thread_list.GetThreadAtIndex(i); 1138 StopReason thread_stop_reason = thread->GetStopReason(); 1139 switch (thread_stop_reason) { 1140 case eStopReasonInvalid: 1141 case eStopReasonNone: 1142 break; 1143 1144 case eStopReasonSignal: { 1145 // Don't select a signal thread if we weren't going to stop at 1146 // that 1147 // signal. We have to have had another reason for stopping here, 1148 // and 1149 // the user doesn't want to see this thread. 1150 uint64_t signo = thread->GetStopInfo()->GetValue(); 1151 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 1152 if (!other_thread) 1153 other_thread = thread; 1154 } 1155 break; 1156 } 1157 case eStopReasonTrace: 1158 case eStopReasonBreakpoint: 1159 case eStopReasonWatchpoint: 1160 case eStopReasonException: 1161 case eStopReasonExec: 1162 case eStopReasonThreadExiting: 1163 case eStopReasonInstrumentation: 1164 if (!other_thread) 1165 other_thread = thread; 1166 break; 1167 case eStopReasonPlanComplete: 1168 if (!plan_thread) 1169 plan_thread = thread; 1170 break; 1171 } 1172 } 1173 if (plan_thread) 1174 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 1175 else if (other_thread) 1176 thread_list.SetSelectedThreadByID(other_thread->GetID()); 1177 else { 1178 if (curr_thread && curr_thread->IsValid()) 1179 thread = curr_thread; 1180 else 1181 thread = thread_list.GetThreadAtIndex(0); 1182 1183 if (thread) 1184 thread_list.SetSelectedThreadByID(thread->GetID()); 1185 } 1186 } 1187 } 1188 // Drop the ThreadList mutex by here, since GetThreadStatus below might 1189 // have to run code, 1190 // e.g. for Data formatters, and if we hold the ThreadList mutex, then the 1191 // process is going to 1192 // have a hard time restarting the process. 1193 if (stream) { 1194 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 1195 if (debugger.GetTargetList().GetSelectedTarget().get() == 1196 &process_sp->GetTarget()) { 1197 const bool only_threads_with_stop_reason = true; 1198 const uint32_t start_frame = 0; 1199 const uint32_t num_frames = 1; 1200 const uint32_t num_frames_with_source = 1; 1201 const bool stop_format = true; 1202 process_sp->GetStatus(*stream); 1203 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 1204 start_frame, num_frames, 1205 num_frames_with_source, 1206 stop_format); 1207 if (curr_thread_stop_info_sp) { 1208 lldb::addr_t crashing_address; 1209 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 1210 curr_thread_stop_info_sp, &crashing_address); 1211 if (valobj_sp) { 1212 const bool qualify_cxx_base_classes = false; 1213 1214 const ValueObject::GetExpressionPathFormat format = 1215 ValueObject::GetExpressionPathFormat:: 1216 eGetExpressionPathFormatHonorPointers; 1217 stream->PutCString("Likely cause: "); 1218 valobj_sp->GetExpressionPath(*stream, qualify_cxx_base_classes, 1219 format); 1220 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 1221 } 1222 } 1223 } else { 1224 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 1225 process_sp->GetTarget().shared_from_this()); 1226 if (target_idx != UINT32_MAX) 1227 stream->Printf("Target %d: (", target_idx); 1228 else 1229 stream->Printf("Target <unknown index>: ("); 1230 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 1231 stream->Printf(") stopped.\n"); 1232 } 1233 } 1234 1235 // Pop the process IO handler 1236 pop_process_io_handler = true; 1237 } 1238 break; 1239 } 1240 1241 if (handle_pop && pop_process_io_handler) 1242 process_sp->PopProcessIOHandler(); 1243 1244 return true; 1245 } 1246 1247 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 1248 if (listener_sp) { 1249 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 1250 eBroadcastBitInterrupt); 1251 } else 1252 return false; 1253 } 1254 1255 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 1256 1257 StateType Process::GetStateChangedEvents(EventSP &event_sp, 1258 const Timeout<std::micro> &timeout, 1259 ListenerSP hijack_listener_sp) { 1260 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1261 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1262 1263 ListenerSP listener_sp = hijack_listener_sp; 1264 if (!listener_sp) 1265 listener_sp = m_listener_sp; 1266 1267 StateType state = eStateInvalid; 1268 if (listener_sp->GetEventForBroadcasterWithType( 1269 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1270 timeout)) { 1271 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1272 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1273 else 1274 LLDB_LOG(log, "got no event or was interrupted."); 1275 } 1276 1277 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 1278 return state; 1279 } 1280 1281 Event *Process::PeekAtStateChangedEvents() { 1282 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1283 1284 if (log) 1285 log->Printf("Process::%s...", __FUNCTION__); 1286 1287 Event *event_ptr; 1288 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 1289 this, eBroadcastBitStateChanged); 1290 if (log) { 1291 if (event_ptr) { 1292 log->Printf( 1293 "Process::%s (event_ptr) => %s", __FUNCTION__, 1294 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 1295 } else { 1296 log->Printf("Process::%s no events found", __FUNCTION__); 1297 } 1298 } 1299 return event_ptr; 1300 } 1301 1302 StateType 1303 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 1304 const Timeout<std::micro> &timeout) { 1305 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1306 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1307 1308 StateType state = eStateInvalid; 1309 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1310 &m_private_state_broadcaster, 1311 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1312 timeout)) 1313 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1314 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1315 1316 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1317 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1318 return state; 1319 } 1320 1321 bool Process::GetEventsPrivate(EventSP &event_sp, 1322 const Timeout<std::micro> &timeout, 1323 bool control_only) { 1324 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1325 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1326 1327 if (control_only) 1328 return m_private_state_listener_sp->GetEventForBroadcaster( 1329 &m_private_state_control_broadcaster, event_sp, timeout); 1330 else 1331 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1332 } 1333 1334 bool Process::IsRunning() const { 1335 return StateIsRunningState(m_public_state.GetValue()); 1336 } 1337 1338 int Process::GetExitStatus() { 1339 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1340 1341 if (m_public_state.GetValue() == eStateExited) 1342 return m_exit_status; 1343 return -1; 1344 } 1345 1346 const char *Process::GetExitDescription() { 1347 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1348 1349 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1350 return m_exit_string.c_str(); 1351 return nullptr; 1352 } 1353 1354 bool Process::SetExitStatus(int status, const char *cstr) { 1355 // Use a mutex to protect setting the exit status. 1356 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1357 1358 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1359 LIBLLDB_LOG_PROCESS)); 1360 if (log) 1361 log->Printf( 1362 "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1363 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", 1364 cstr ? "\"" : ""); 1365 1366 // We were already in the exited state 1367 if (m_private_state.GetValue() == eStateExited) { 1368 if (log) 1369 log->Printf("Process::SetExitStatus () ignoring exit status because " 1370 "state was already set to eStateExited"); 1371 return false; 1372 } 1373 1374 m_exit_status = status; 1375 if (cstr) 1376 m_exit_string = cstr; 1377 else 1378 m_exit_string.clear(); 1379 1380 // Clear the last natural stop ID since it has a strong 1381 // reference to this process 1382 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1383 1384 SetPrivateState(eStateExited); 1385 1386 // Allow subclasses to do some cleanup 1387 DidExit(); 1388 1389 return true; 1390 } 1391 1392 bool Process::IsAlive() { 1393 switch (m_private_state.GetValue()) { 1394 case eStateConnected: 1395 case eStateAttaching: 1396 case eStateLaunching: 1397 case eStateStopped: 1398 case eStateRunning: 1399 case eStateStepping: 1400 case eStateCrashed: 1401 case eStateSuspended: 1402 return true; 1403 default: 1404 return false; 1405 } 1406 } 1407 1408 // This static callback can be used to watch for local child processes on 1409 // the current host. The child process exits, the process will be 1410 // found in the global target list (we want to be completely sure that the 1411 // lldb_private::Process doesn't go away before we can deliver the signal. 1412 bool Process::SetProcessExitStatus( 1413 lldb::pid_t pid, bool exited, 1414 int signo, // Zero for no signal 1415 int exit_status // Exit value of process if signal is zero 1416 ) { 1417 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 1418 if (log) 1419 log->Printf("Process::SetProcessExitStatus (pid=%" PRIu64 1420 ", exited=%i, signal=%i, exit_status=%i)\n", 1421 pid, exited, signo, exit_status); 1422 1423 if (exited) { 1424 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1425 if (target_sp) { 1426 ProcessSP process_sp(target_sp->GetProcessSP()); 1427 if (process_sp) { 1428 const char *signal_cstr = nullptr; 1429 if (signo) 1430 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1431 1432 process_sp->SetExitStatus(exit_status, signal_cstr); 1433 } 1434 } 1435 return true; 1436 } 1437 return false; 1438 } 1439 1440 void Process::UpdateThreadListIfNeeded() { 1441 const uint32_t stop_id = GetStopID(); 1442 if (m_thread_list.GetSize(false) == 0 || 1443 stop_id != m_thread_list.GetStopID()) { 1444 const StateType state = GetPrivateState(); 1445 if (StateIsStoppedState(state, true)) { 1446 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1447 // m_thread_list does have its own mutex, but we need to 1448 // hold onto the mutex between the call to UpdateThreadList(...) 1449 // and the os->UpdateThreadList(...) so it doesn't change on us 1450 ThreadList &old_thread_list = m_thread_list; 1451 ThreadList real_thread_list(this); 1452 ThreadList new_thread_list(this); 1453 // Always update the thread list with the protocol specific 1454 // thread list, but only update if "true" is returned 1455 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1456 // Don't call into the OperatingSystem to update the thread list if we 1457 // are shutting down, since 1458 // that may call back into the SBAPI's, requiring the API lock which is 1459 // already held by whoever is 1460 // shutting us down, causing a deadlock. 1461 OperatingSystem *os = GetOperatingSystem(); 1462 if (os && !m_destroy_in_process) { 1463 // Clear any old backing threads where memory threads might have been 1464 // backed by actual threads from the lldb_private::Process subclass 1465 size_t num_old_threads = old_thread_list.GetSize(false); 1466 for (size_t i = 0; i < num_old_threads; ++i) 1467 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1468 1469 // Turn off dynamic types to ensure we don't run any expressions. 1470 // Objective C 1471 // can run an expression to determine if a SBValue is a dynamic type 1472 // or not 1473 // and we need to avoid this. OperatingSystem plug-ins can't run 1474 // expressions 1475 // that require running code... 1476 1477 Target &target = GetTarget(); 1478 const lldb::DynamicValueType saved_prefer_dynamic = 1479 target.GetPreferDynamicValue(); 1480 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1481 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1482 1483 // Now let the OperatingSystem plug-in update the thread list 1484 1485 os->UpdateThreadList( 1486 old_thread_list, // Old list full of threads created by OS plug-in 1487 real_thread_list, // The actual thread list full of threads 1488 // created by each lldb_private::Process 1489 // subclass 1490 new_thread_list); // The new thread list that we will show to the 1491 // user that gets filled in 1492 1493 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1494 target.SetPreferDynamicValue(saved_prefer_dynamic); 1495 } else { 1496 // No OS plug-in, the new thread list is the same as the real thread 1497 // list 1498 new_thread_list = real_thread_list; 1499 } 1500 1501 m_thread_list_real.Update(real_thread_list); 1502 m_thread_list.Update(new_thread_list); 1503 m_thread_list.SetStopID(stop_id); 1504 1505 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1506 // Clear any extended threads that we may have accumulated previously 1507 m_extended_thread_list.Clear(); 1508 m_extended_thread_stop_id = GetLastNaturalStopID(); 1509 1510 m_queue_list.Clear(); 1511 m_queue_list_stop_id = GetLastNaturalStopID(); 1512 } 1513 } 1514 } 1515 } 1516 } 1517 1518 void Process::UpdateQueueListIfNeeded() { 1519 if (m_system_runtime_ap) { 1520 if (m_queue_list.GetSize() == 0 || 1521 m_queue_list_stop_id != GetLastNaturalStopID()) { 1522 const StateType state = GetPrivateState(); 1523 if (StateIsStoppedState(state, true)) { 1524 m_system_runtime_ap->PopulateQueueList(m_queue_list); 1525 m_queue_list_stop_id = GetLastNaturalStopID(); 1526 } 1527 } 1528 } 1529 } 1530 1531 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1532 OperatingSystem *os = GetOperatingSystem(); 1533 if (os) 1534 return os->CreateThread(tid, context); 1535 return ThreadSP(); 1536 } 1537 1538 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1539 return AssignIndexIDToThread(thread_id); 1540 } 1541 1542 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1543 return (m_thread_id_to_index_id_map.find(thread_id) != 1544 m_thread_id_to_index_id_map.end()); 1545 } 1546 1547 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1548 uint32_t result = 0; 1549 std::map<uint64_t, uint32_t>::iterator iterator = 1550 m_thread_id_to_index_id_map.find(thread_id); 1551 if (iterator == m_thread_id_to_index_id_map.end()) { 1552 result = ++m_thread_index_id; 1553 m_thread_id_to_index_id_map[thread_id] = result; 1554 } else { 1555 result = iterator->second; 1556 } 1557 1558 return result; 1559 } 1560 1561 StateType Process::GetState() { 1562 // If any other threads access this we will need a mutex for it 1563 return m_public_state.GetValue(); 1564 } 1565 1566 bool Process::StateChangedIsExternallyHijacked() { 1567 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1568 const char *hijacking_name = GetHijackingListenerName(); 1569 if (hijacking_name && 1570 strcmp(hijacking_name, "lldb.Process.ResumeSynchronous.hijack")) 1571 return true; 1572 } 1573 return false; 1574 } 1575 1576 void Process::SetPublicState(StateType new_state, bool restarted) { 1577 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1578 LIBLLDB_LOG_PROCESS)); 1579 if (log) 1580 log->Printf("Process::SetPublicState (state = %s, restarted = %i)", 1581 StateAsCString(new_state), restarted); 1582 const StateType old_state = m_public_state.GetValue(); 1583 m_public_state.SetValue(new_state); 1584 1585 // On the transition from Run to Stopped, we unlock the writer end of the 1586 // run lock. The lock gets locked in Resume, which is the public API 1587 // to tell the program to run. 1588 if (!StateChangedIsExternallyHijacked()) { 1589 if (new_state == eStateDetached) { 1590 if (log) 1591 log->Printf( 1592 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1593 StateAsCString(new_state)); 1594 m_public_run_lock.SetStopped(); 1595 } else { 1596 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1597 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1598 if ((old_state_is_stopped != new_state_is_stopped)) { 1599 if (new_state_is_stopped && !restarted) { 1600 if (log) 1601 log->Printf("Process::SetPublicState (%s) -- unlocking run lock", 1602 StateAsCString(new_state)); 1603 m_public_run_lock.SetStopped(); 1604 } 1605 } 1606 } 1607 } 1608 } 1609 1610 Error Process::Resume() { 1611 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1612 LIBLLDB_LOG_PROCESS)); 1613 if (log) 1614 log->Printf("Process::Resume -- locking run lock"); 1615 if (!m_public_run_lock.TrySetRunning()) { 1616 Error error("Resume request failed - process still running."); 1617 if (log) 1618 log->Printf("Process::Resume: -- TrySetRunning failed, not resuming."); 1619 return error; 1620 } 1621 return PrivateResume(); 1622 } 1623 1624 Error Process::ResumeSynchronous(Stream *stream) { 1625 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1626 LIBLLDB_LOG_PROCESS)); 1627 if (log) 1628 log->Printf("Process::ResumeSynchronous -- locking run lock"); 1629 if (!m_public_run_lock.TrySetRunning()) { 1630 Error error("Resume request failed - process still running."); 1631 if (log) 1632 log->Printf("Process::Resume: -- TrySetRunning failed, not resuming."); 1633 return error; 1634 } 1635 1636 ListenerSP listener_sp( 1637 Listener::MakeListener("lldb.Process.ResumeSynchronous.hijack")); 1638 HijackProcessEvents(listener_sp); 1639 1640 Error error = PrivateResume(); 1641 if (error.Success()) { 1642 StateType state = 1643 WaitForProcessToStop(llvm::None, NULL, true, listener_sp, stream); 1644 const bool must_be_alive = 1645 false; // eStateExited is ok, so this must be false 1646 if (!StateIsStoppedState(state, must_be_alive)) 1647 error.SetErrorStringWithFormat( 1648 "process not in stopped state after synchronous resume: %s", 1649 StateAsCString(state)); 1650 } 1651 1652 // Undo the hijacking of process events... 1653 RestoreProcessEvents(); 1654 1655 return error; 1656 } 1657 1658 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1659 1660 void Process::SetPrivateState(StateType new_state) { 1661 if (m_finalize_called) 1662 return; 1663 1664 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1665 LIBLLDB_LOG_PROCESS)); 1666 bool state_changed = false; 1667 1668 if (log) 1669 log->Printf("Process::SetPrivateState (%s)", StateAsCString(new_state)); 1670 1671 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1672 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1673 1674 const StateType old_state = m_private_state.GetValueNoLock(); 1675 state_changed = old_state != new_state; 1676 1677 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1678 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1679 if (old_state_is_stopped != new_state_is_stopped) { 1680 if (new_state_is_stopped) 1681 m_private_run_lock.SetStopped(); 1682 else 1683 m_private_run_lock.SetRunning(); 1684 } 1685 1686 if (state_changed) { 1687 m_private_state.SetValueNoLock(new_state); 1688 EventSP event_sp( 1689 new Event(eBroadcastBitStateChanged, 1690 new ProcessEventData(shared_from_this(), new_state))); 1691 if (StateIsStoppedState(new_state, false)) { 1692 // Note, this currently assumes that all threads in the list 1693 // stop when the process stops. In the future we will want to 1694 // support a debugging model where some threads continue to run 1695 // while others are stopped. When that happens we will either need 1696 // a way for the thread list to identify which threads are stopping 1697 // or create a special thread list containing only threads which 1698 // actually stopped. 1699 // 1700 // The process plugin is responsible for managing the actual 1701 // behavior of the threads and should have stopped any threads 1702 // that are going to stop before we get here. 1703 m_thread_list.DidStop(); 1704 1705 m_mod_id.BumpStopID(); 1706 if (!m_mod_id.IsLastResumeForUserExpression()) 1707 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1708 m_memory_cache.Clear(); 1709 if (log) 1710 log->Printf("Process::SetPrivateState (%s) stop_id = %u", 1711 StateAsCString(new_state), m_mod_id.GetStopID()); 1712 } 1713 1714 // Use our target to get a shared pointer to ourselves... 1715 if (m_finalize_called && !PrivateStateThreadIsValid()) 1716 BroadcastEvent(event_sp); 1717 else 1718 m_private_state_broadcaster.BroadcastEvent(event_sp); 1719 } else { 1720 if (log) 1721 log->Printf( 1722 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1723 StateAsCString(new_state)); 1724 } 1725 } 1726 1727 void Process::SetRunningUserExpression(bool on) { 1728 m_mod_id.SetRunningUserExpression(on); 1729 } 1730 1731 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1732 1733 const lldb::ABISP &Process::GetABI() { 1734 if (!m_abi_sp) 1735 m_abi_sp = ABI::FindPlugin(GetTarget().GetArchitecture()); 1736 return m_abi_sp; 1737 } 1738 1739 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language, 1740 bool retry_if_null) { 1741 if (m_finalizing) 1742 return nullptr; 1743 1744 LanguageRuntimeCollection::iterator pos; 1745 pos = m_language_runtimes.find(language); 1746 if (pos == m_language_runtimes.end() || (retry_if_null && !(*pos).second)) { 1747 lldb::LanguageRuntimeSP runtime_sp( 1748 LanguageRuntime::FindPlugin(this, language)); 1749 1750 m_language_runtimes[language] = runtime_sp; 1751 return runtime_sp.get(); 1752 } else 1753 return (*pos).second.get(); 1754 } 1755 1756 CPPLanguageRuntime *Process::GetCPPLanguageRuntime(bool retry_if_null) { 1757 LanguageRuntime *runtime = 1758 GetLanguageRuntime(eLanguageTypeC_plus_plus, retry_if_null); 1759 if (runtime != nullptr && 1760 runtime->GetLanguageType() == eLanguageTypeC_plus_plus) 1761 return static_cast<CPPLanguageRuntime *>(runtime); 1762 return nullptr; 1763 } 1764 1765 ObjCLanguageRuntime *Process::GetObjCLanguageRuntime(bool retry_if_null) { 1766 LanguageRuntime *runtime = 1767 GetLanguageRuntime(eLanguageTypeObjC, retry_if_null); 1768 if (runtime != nullptr && runtime->GetLanguageType() == eLanguageTypeObjC) 1769 return static_cast<ObjCLanguageRuntime *>(runtime); 1770 return nullptr; 1771 } 1772 1773 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1774 if (m_finalizing) 1775 return false; 1776 1777 if (in_value.IsDynamic()) 1778 return false; 1779 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1780 1781 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1782 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1783 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1784 } 1785 1786 LanguageRuntime *cpp_runtime = GetLanguageRuntime(eLanguageTypeC_plus_plus); 1787 if (cpp_runtime && cpp_runtime->CouldHaveDynamicValue(in_value)) 1788 return true; 1789 1790 LanguageRuntime *objc_runtime = GetLanguageRuntime(eLanguageTypeObjC); 1791 return objc_runtime ? objc_runtime->CouldHaveDynamicValue(in_value) : false; 1792 } 1793 1794 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1795 m_dynamic_checkers_ap.reset(dynamic_checkers); 1796 } 1797 1798 BreakpointSiteList &Process::GetBreakpointSiteList() { 1799 return m_breakpoint_site_list; 1800 } 1801 1802 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1803 return m_breakpoint_site_list; 1804 } 1805 1806 void Process::DisableAllBreakpointSites() { 1807 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1808 // bp_site->SetEnabled(true); 1809 DisableBreakpointSite(bp_site); 1810 }); 1811 } 1812 1813 Error Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1814 Error error(DisableBreakpointSiteByID(break_id)); 1815 1816 if (error.Success()) 1817 m_breakpoint_site_list.Remove(break_id); 1818 1819 return error; 1820 } 1821 1822 Error Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1823 Error error; 1824 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1825 if (bp_site_sp) { 1826 if (bp_site_sp->IsEnabled()) 1827 error = DisableBreakpointSite(bp_site_sp.get()); 1828 } else { 1829 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1830 break_id); 1831 } 1832 1833 return error; 1834 } 1835 1836 Error Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1837 Error error; 1838 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1839 if (bp_site_sp) { 1840 if (!bp_site_sp->IsEnabled()) 1841 error = EnableBreakpointSite(bp_site_sp.get()); 1842 } else { 1843 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1844 break_id); 1845 } 1846 return error; 1847 } 1848 1849 lldb::break_id_t 1850 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1851 bool use_hardware) { 1852 addr_t load_addr = LLDB_INVALID_ADDRESS; 1853 1854 bool show_error = true; 1855 switch (GetState()) { 1856 case eStateInvalid: 1857 case eStateUnloaded: 1858 case eStateConnected: 1859 case eStateAttaching: 1860 case eStateLaunching: 1861 case eStateDetached: 1862 case eStateExited: 1863 show_error = false; 1864 break; 1865 1866 case eStateStopped: 1867 case eStateRunning: 1868 case eStateStepping: 1869 case eStateCrashed: 1870 case eStateSuspended: 1871 show_error = IsAlive(); 1872 break; 1873 } 1874 1875 // Reset the IsIndirect flag here, in case the location changes from 1876 // pointing to a indirect symbol to a regular symbol. 1877 owner->SetIsIndirect(false); 1878 1879 if (owner->ShouldResolveIndirectFunctions()) { 1880 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1881 if (symbol && symbol->IsIndirect()) { 1882 Error error; 1883 Address symbol_address = symbol->GetAddress(); 1884 load_addr = ResolveIndirectFunction(&symbol_address, error); 1885 if (!error.Success() && show_error) { 1886 GetTarget().GetDebugger().GetErrorFile()->Printf( 1887 "warning: failed to resolve indirect function at 0x%" PRIx64 1888 " for breakpoint %i.%i: %s\n", 1889 symbol->GetLoadAddress(&GetTarget()), 1890 owner->GetBreakpoint().GetID(), owner->GetID(), 1891 error.AsCString() ? error.AsCString() : "unknown error"); 1892 return LLDB_INVALID_BREAK_ID; 1893 } 1894 Address resolved_address(load_addr); 1895 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1896 owner->SetIsIndirect(true); 1897 } else 1898 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1899 } else 1900 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1901 1902 if (load_addr != LLDB_INVALID_ADDRESS) { 1903 BreakpointSiteSP bp_site_sp; 1904 1905 // Look up this breakpoint site. If it exists, then add this new owner, 1906 // otherwise 1907 // create a new breakpoint site and add it. 1908 1909 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1910 1911 if (bp_site_sp) { 1912 bp_site_sp->AddOwner(owner); 1913 owner->SetBreakpointSite(bp_site_sp); 1914 return bp_site_sp->GetID(); 1915 } else { 1916 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1917 load_addr, use_hardware)); 1918 if (bp_site_sp) { 1919 Error error = EnableBreakpointSite(bp_site_sp.get()); 1920 if (error.Success()) { 1921 owner->SetBreakpointSite(bp_site_sp); 1922 return m_breakpoint_site_list.Add(bp_site_sp); 1923 } else { 1924 if (show_error) { 1925 // Report error for setting breakpoint... 1926 GetTarget().GetDebugger().GetErrorFile()->Printf( 1927 "warning: failed to set breakpoint site at 0x%" PRIx64 1928 " for breakpoint %i.%i: %s\n", 1929 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1930 error.AsCString() ? error.AsCString() : "unknown error"); 1931 } 1932 } 1933 } 1934 } 1935 } 1936 // We failed to enable the breakpoint 1937 return LLDB_INVALID_BREAK_ID; 1938 } 1939 1940 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1941 lldb::user_id_t owner_loc_id, 1942 BreakpointSiteSP &bp_site_sp) { 1943 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1944 if (num_owners == 0) { 1945 // Don't try to disable the site if we don't have a live process anymore. 1946 if (IsAlive()) 1947 DisableBreakpointSite(bp_site_sp.get()); 1948 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1949 } 1950 } 1951 1952 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1953 uint8_t *buf) const { 1954 size_t bytes_removed = 0; 1955 BreakpointSiteList bp_sites_in_range; 1956 1957 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1958 bp_sites_in_range)) { 1959 bp_sites_in_range.ForEach([bp_addr, size, 1960 buf](BreakpointSite *bp_site) -> void { 1961 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1962 addr_t intersect_addr; 1963 size_t intersect_size; 1964 size_t opcode_offset; 1965 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1966 &intersect_size, &opcode_offset)) { 1967 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1968 assert(bp_addr < intersect_addr + intersect_size && 1969 intersect_addr + intersect_size <= bp_addr + size); 1970 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1971 size_t buf_offset = intersect_addr - bp_addr; 1972 ::memcpy(buf + buf_offset, 1973 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1974 intersect_size); 1975 } 1976 } 1977 }); 1978 } 1979 return bytes_removed; 1980 } 1981 1982 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1983 PlatformSP platform_sp(GetTarget().GetPlatform()); 1984 if (platform_sp) 1985 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1986 return 0; 1987 } 1988 1989 Error Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1990 Error error; 1991 assert(bp_site != nullptr); 1992 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1993 const addr_t bp_addr = bp_site->GetLoadAddress(); 1994 if (log) 1995 log->Printf( 1996 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1997 bp_site->GetID(), (uint64_t)bp_addr); 1998 if (bp_site->IsEnabled()) { 1999 if (log) 2000 log->Printf( 2001 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2002 " -- already enabled", 2003 bp_site->GetID(), (uint64_t)bp_addr); 2004 return error; 2005 } 2006 2007 if (bp_addr == LLDB_INVALID_ADDRESS) { 2008 error.SetErrorString("BreakpointSite contains an invalid load address."); 2009 return error; 2010 } 2011 // Ask the lldb::Process subclass to fill in the correct software breakpoint 2012 // trap for the breakpoint site 2013 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 2014 2015 if (bp_opcode_size == 0) { 2016 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 2017 "returned zero, unable to get breakpoint " 2018 "trap for address 0x%" PRIx64, 2019 bp_addr); 2020 } else { 2021 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 2022 2023 if (bp_opcode_bytes == nullptr) { 2024 error.SetErrorString( 2025 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 2026 return error; 2027 } 2028 2029 // Save the original opcode by reading it 2030 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 2031 error) == bp_opcode_size) { 2032 // Write a software breakpoint in place of the original opcode 2033 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 2034 bp_opcode_size) { 2035 uint8_t verify_bp_opcode_bytes[64]; 2036 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 2037 error) == bp_opcode_size) { 2038 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 2039 bp_opcode_size) == 0) { 2040 bp_site->SetEnabled(true); 2041 bp_site->SetType(BreakpointSite::eSoftware); 2042 if (log) 2043 log->Printf("Process::EnableSoftwareBreakpoint (site_id = %d) " 2044 "addr = 0x%" PRIx64 " -- SUCCESS", 2045 bp_site->GetID(), (uint64_t)bp_addr); 2046 } else 2047 error.SetErrorString( 2048 "failed to verify the breakpoint trap in memory."); 2049 } else 2050 error.SetErrorString( 2051 "Unable to read memory to verify breakpoint trap."); 2052 } else 2053 error.SetErrorString("Unable to write breakpoint trap to memory."); 2054 } else 2055 error.SetErrorString("Unable to read memory at breakpoint address."); 2056 } 2057 if (log && error.Fail()) 2058 log->Printf( 2059 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2060 " -- FAILED: %s", 2061 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 2062 return error; 2063 } 2064 2065 Error Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 2066 Error error; 2067 assert(bp_site != nullptr); 2068 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 2069 addr_t bp_addr = bp_site->GetLoadAddress(); 2070 lldb::user_id_t breakID = bp_site->GetID(); 2071 if (log) 2072 log->Printf("Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 2073 ") addr = 0x%" PRIx64, 2074 breakID, (uint64_t)bp_addr); 2075 2076 if (bp_site->IsHardware()) { 2077 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 2078 } else if (bp_site->IsEnabled()) { 2079 const size_t break_op_size = bp_site->GetByteSize(); 2080 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 2081 if (break_op_size > 0) { 2082 // Clear a software breakpoint instruction 2083 uint8_t curr_break_op[8]; 2084 assert(break_op_size <= sizeof(curr_break_op)); 2085 bool break_op_found = false; 2086 2087 // Read the breakpoint opcode 2088 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 2089 break_op_size) { 2090 bool verify = false; 2091 // Make sure the breakpoint opcode exists at this address 2092 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 2093 break_op_found = true; 2094 // We found a valid breakpoint opcode at this address, now restore 2095 // the saved opcode. 2096 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 2097 break_op_size, error) == break_op_size) { 2098 verify = true; 2099 } else 2100 error.SetErrorString( 2101 "Memory write failed when restoring original opcode."); 2102 } else { 2103 error.SetErrorString( 2104 "Original breakpoint trap is no longer in memory."); 2105 // Set verify to true and so we can check if the original opcode has 2106 // already been restored 2107 verify = true; 2108 } 2109 2110 if (verify) { 2111 uint8_t verify_opcode[8]; 2112 assert(break_op_size < sizeof(verify_opcode)); 2113 // Verify that our original opcode made it back to the inferior 2114 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 2115 break_op_size) { 2116 // compare the memory we just read with the original opcode 2117 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 2118 break_op_size) == 0) { 2119 // SUCCESS 2120 bp_site->SetEnabled(false); 2121 if (log) 2122 log->Printf("Process::DisableSoftwareBreakpoint (site_id = %d) " 2123 "addr = 0x%" PRIx64 " -- SUCCESS", 2124 bp_site->GetID(), (uint64_t)bp_addr); 2125 return error; 2126 } else { 2127 if (break_op_found) 2128 error.SetErrorString("Failed to restore original opcode."); 2129 } 2130 } else 2131 error.SetErrorString("Failed to read memory to verify that " 2132 "breakpoint trap was restored."); 2133 } 2134 } else 2135 error.SetErrorString( 2136 "Unable to read memory that should contain the breakpoint trap."); 2137 } 2138 } else { 2139 if (log) 2140 log->Printf( 2141 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2142 " -- already disabled", 2143 bp_site->GetID(), (uint64_t)bp_addr); 2144 return error; 2145 } 2146 2147 if (log) 2148 log->Printf( 2149 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2150 " -- FAILED: %s", 2151 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 2152 return error; 2153 } 2154 2155 // Uncomment to verify memory caching works after making changes to caching code 2156 //#define VERIFY_MEMORY_READS 2157 2158 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Error &error) { 2159 error.Clear(); 2160 if (!GetDisableMemoryCache()) { 2161 #if defined(VERIFY_MEMORY_READS) 2162 // Memory caching is enabled, with debug verification 2163 2164 if (buf && size) { 2165 // Uncomment the line below to make sure memory caching is working. 2166 // I ran this through the test suite and got no assertions, so I am 2167 // pretty confident this is working well. If any changes are made to 2168 // memory caching, uncomment the line below and test your changes! 2169 2170 // Verify all memory reads by using the cache first, then redundantly 2171 // reading the same memory from the inferior and comparing to make sure 2172 // everything is exactly the same. 2173 std::string verify_buf(size, '\0'); 2174 assert(verify_buf.size() == size); 2175 const size_t cache_bytes_read = 2176 m_memory_cache.Read(this, addr, buf, size, error); 2177 Error verify_error; 2178 const size_t verify_bytes_read = 2179 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 2180 verify_buf.size(), verify_error); 2181 assert(cache_bytes_read == verify_bytes_read); 2182 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 2183 assert(verify_error.Success() == error.Success()); 2184 return cache_bytes_read; 2185 } 2186 return 0; 2187 #else // !defined(VERIFY_MEMORY_READS) 2188 // Memory caching is enabled, without debug verification 2189 2190 return m_memory_cache.Read(addr, buf, size, error); 2191 #endif // defined (VERIFY_MEMORY_READS) 2192 } else { 2193 // Memory caching is disabled 2194 2195 return ReadMemoryFromInferior(addr, buf, size, error); 2196 } 2197 } 2198 2199 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 2200 Error &error) { 2201 char buf[256]; 2202 out_str.clear(); 2203 addr_t curr_addr = addr; 2204 while (true) { 2205 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 2206 if (length == 0) 2207 break; 2208 out_str.append(buf, length); 2209 // If we got "length - 1" bytes, we didn't get the whole C string, we 2210 // need to read some more characters 2211 if (length == sizeof(buf) - 1) 2212 curr_addr += length; 2213 else 2214 break; 2215 } 2216 return out_str.size(); 2217 } 2218 2219 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes, 2220 Error &error, size_t type_width) { 2221 size_t total_bytes_read = 0; 2222 if (dst && max_bytes && type_width && max_bytes >= type_width) { 2223 // Ensure a null terminator independent of the number of bytes that is read. 2224 memset(dst, 0, max_bytes); 2225 size_t bytes_left = max_bytes - type_width; 2226 2227 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 2228 assert(sizeof(terminator) >= type_width && "Attempting to validate a " 2229 "string with more than 4 bytes " 2230 "per character!"); 2231 2232 addr_t curr_addr = addr; 2233 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2234 char *curr_dst = dst; 2235 2236 error.Clear(); 2237 while (bytes_left > 0 && error.Success()) { 2238 addr_t cache_line_bytes_left = 2239 cache_line_size - (curr_addr % cache_line_size); 2240 addr_t bytes_to_read = 2241 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2242 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2243 2244 if (bytes_read == 0) 2245 break; 2246 2247 // Search for a null terminator of correct size and alignment in 2248 // bytes_read 2249 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 2250 for (size_t i = aligned_start; 2251 i + type_width <= total_bytes_read + bytes_read; i += type_width) 2252 if (::memcmp(&dst[i], terminator, type_width) == 0) { 2253 error.Clear(); 2254 return i; 2255 } 2256 2257 total_bytes_read += bytes_read; 2258 curr_dst += bytes_read; 2259 curr_addr += bytes_read; 2260 bytes_left -= bytes_read; 2261 } 2262 } else { 2263 if (max_bytes) 2264 error.SetErrorString("invalid arguments"); 2265 } 2266 return total_bytes_read; 2267 } 2268 2269 // Deprecated in favor of ReadStringFromMemory which has wchar support and 2270 // correct code to find 2271 // null terminators. 2272 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 2273 size_t dst_max_len, Error &result_error) { 2274 size_t total_cstr_len = 0; 2275 if (dst && dst_max_len) { 2276 result_error.Clear(); 2277 // NULL out everything just to be safe 2278 memset(dst, 0, dst_max_len); 2279 Error error; 2280 addr_t curr_addr = addr; 2281 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2282 size_t bytes_left = dst_max_len - 1; 2283 char *curr_dst = dst; 2284 2285 while (bytes_left > 0) { 2286 addr_t cache_line_bytes_left = 2287 cache_line_size - (curr_addr % cache_line_size); 2288 addr_t bytes_to_read = 2289 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2290 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2291 2292 if (bytes_read == 0) { 2293 result_error = error; 2294 dst[total_cstr_len] = '\0'; 2295 break; 2296 } 2297 const size_t len = strlen(curr_dst); 2298 2299 total_cstr_len += len; 2300 2301 if (len < bytes_to_read) 2302 break; 2303 2304 curr_dst += bytes_read; 2305 curr_addr += bytes_read; 2306 bytes_left -= bytes_read; 2307 } 2308 } else { 2309 if (dst == nullptr) 2310 result_error.SetErrorString("invalid arguments"); 2311 else 2312 result_error.Clear(); 2313 } 2314 return total_cstr_len; 2315 } 2316 2317 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2318 Error &error) { 2319 if (buf == nullptr || size == 0) 2320 return 0; 2321 2322 size_t bytes_read = 0; 2323 uint8_t *bytes = (uint8_t *)buf; 2324 2325 while (bytes_read < size) { 2326 const size_t curr_size = size - bytes_read; 2327 const size_t curr_bytes_read = 2328 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2329 bytes_read += curr_bytes_read; 2330 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2331 break; 2332 } 2333 2334 // Replace any software breakpoint opcodes that fall into this range back 2335 // into "buf" before we return 2336 if (bytes_read > 0) 2337 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2338 return bytes_read; 2339 } 2340 2341 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2342 size_t integer_byte_size, 2343 uint64_t fail_value, 2344 Error &error) { 2345 Scalar scalar; 2346 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2347 error)) 2348 return scalar.ULongLong(fail_value); 2349 return fail_value; 2350 } 2351 2352 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2353 size_t integer_byte_size, 2354 int64_t fail_value, Error &error) { 2355 Scalar scalar; 2356 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2357 error)) 2358 return scalar.SLongLong(fail_value); 2359 return fail_value; 2360 } 2361 2362 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Error &error) { 2363 Scalar scalar; 2364 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2365 error)) 2366 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2367 return LLDB_INVALID_ADDRESS; 2368 } 2369 2370 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2371 Error &error) { 2372 Scalar scalar; 2373 const uint32_t addr_byte_size = GetAddressByteSize(); 2374 if (addr_byte_size <= 4) 2375 scalar = (uint32_t)ptr_value; 2376 else 2377 scalar = ptr_value; 2378 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2379 addr_byte_size; 2380 } 2381 2382 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2383 Error &error) { 2384 size_t bytes_written = 0; 2385 const uint8_t *bytes = (const uint8_t *)buf; 2386 2387 while (bytes_written < size) { 2388 const size_t curr_size = size - bytes_written; 2389 const size_t curr_bytes_written = DoWriteMemory( 2390 addr + bytes_written, bytes + bytes_written, curr_size, error); 2391 bytes_written += curr_bytes_written; 2392 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2393 break; 2394 } 2395 return bytes_written; 2396 } 2397 2398 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2399 Error &error) { 2400 #if defined(ENABLE_MEMORY_CACHING) 2401 m_memory_cache.Flush(addr, size); 2402 #endif 2403 2404 if (buf == nullptr || size == 0) 2405 return 0; 2406 2407 m_mod_id.BumpMemoryID(); 2408 2409 // We need to write any data that would go where any current software traps 2410 // (enabled software breakpoints) any software traps (breakpoints) that we 2411 // may have placed in our tasks memory. 2412 2413 BreakpointSiteList bp_sites_in_range; 2414 2415 if (m_breakpoint_site_list.FindInRange(addr, addr + size, 2416 bp_sites_in_range)) { 2417 // No breakpoint sites overlap 2418 if (bp_sites_in_range.IsEmpty()) 2419 return WriteMemoryPrivate(addr, buf, size, error); 2420 else { 2421 const uint8_t *ubuf = (const uint8_t *)buf; 2422 uint64_t bytes_written = 0; 2423 2424 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2425 &error](BreakpointSite *bp) -> void { 2426 2427 if (error.Success()) { 2428 addr_t intersect_addr; 2429 size_t intersect_size; 2430 size_t opcode_offset; 2431 const bool intersects = bp->IntersectsRange( 2432 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2433 UNUSED_IF_ASSERT_DISABLED(intersects); 2434 assert(intersects); 2435 assert(addr <= intersect_addr && intersect_addr < addr + size); 2436 assert(addr < intersect_addr + intersect_size && 2437 intersect_addr + intersect_size <= addr + size); 2438 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2439 2440 // Check for bytes before this breakpoint 2441 const addr_t curr_addr = addr + bytes_written; 2442 if (intersect_addr > curr_addr) { 2443 // There are some bytes before this breakpoint that we need to 2444 // just write to memory 2445 size_t curr_size = intersect_addr - curr_addr; 2446 size_t curr_bytes_written = WriteMemoryPrivate( 2447 curr_addr, ubuf + bytes_written, curr_size, error); 2448 bytes_written += curr_bytes_written; 2449 if (curr_bytes_written != curr_size) { 2450 // We weren't able to write all of the requested bytes, we 2451 // are done looping and will return the number of bytes that 2452 // we have written so far. 2453 if (error.Success()) 2454 error.SetErrorToGenericError(); 2455 } 2456 } 2457 // Now write any bytes that would cover up any software breakpoints 2458 // directly into the breakpoint opcode buffer 2459 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, 2460 ubuf + bytes_written, intersect_size); 2461 bytes_written += intersect_size; 2462 } 2463 }); 2464 2465 if (bytes_written < size) 2466 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2467 size - bytes_written, error); 2468 } 2469 } else { 2470 return WriteMemoryPrivate(addr, buf, size, error); 2471 } 2472 2473 // Write any remaining bytes after the last breakpoint if we have any left 2474 return 0; // bytes_written; 2475 } 2476 2477 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2478 size_t byte_size, Error &error) { 2479 if (byte_size == UINT32_MAX) 2480 byte_size = scalar.GetByteSize(); 2481 if (byte_size > 0) { 2482 uint8_t buf[32]; 2483 const size_t mem_size = 2484 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2485 if (mem_size > 0) 2486 return WriteMemory(addr, buf, mem_size, error); 2487 else 2488 error.SetErrorString("failed to get scalar as memory data"); 2489 } else { 2490 error.SetErrorString("invalid scalar value"); 2491 } 2492 return 0; 2493 } 2494 2495 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2496 bool is_signed, Scalar &scalar, 2497 Error &error) { 2498 uint64_t uval = 0; 2499 if (byte_size == 0) { 2500 error.SetErrorString("byte size is zero"); 2501 } else if (byte_size & (byte_size - 1)) { 2502 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2503 byte_size); 2504 } else if (byte_size <= sizeof(uval)) { 2505 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2506 if (bytes_read == byte_size) { 2507 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2508 GetAddressByteSize()); 2509 lldb::offset_t offset = 0; 2510 if (byte_size <= 4) 2511 scalar = data.GetMaxU32(&offset, byte_size); 2512 else 2513 scalar = data.GetMaxU64(&offset, byte_size); 2514 if (is_signed) 2515 scalar.SignExtend(byte_size * 8); 2516 return bytes_read; 2517 } 2518 } else { 2519 error.SetErrorStringWithFormat( 2520 "byte size of %u is too large for integer scalar type", byte_size); 2521 } 2522 return 0; 2523 } 2524 2525 #define USE_ALLOCATE_MEMORY_CACHE 1 2526 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2527 Error &error) { 2528 if (GetPrivateState() != eStateStopped) 2529 return LLDB_INVALID_ADDRESS; 2530 2531 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2532 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2533 #else 2534 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2535 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2536 if (log) 2537 log->Printf("Process::AllocateMemory(size=%" PRIu64 2538 ", permissions=%s) => 0x%16.16" PRIx64 2539 " (m_stop_id = %u m_memory_id = %u)", 2540 (uint64_t)size, GetPermissionsAsCString(permissions), 2541 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2542 m_mod_id.GetMemoryID()); 2543 return allocated_addr; 2544 #endif 2545 } 2546 2547 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2548 Error &error) { 2549 addr_t return_addr = AllocateMemory(size, permissions, error); 2550 if (error.Success()) { 2551 std::string buffer(size, 0); 2552 WriteMemory(return_addr, buffer.c_str(), size, error); 2553 } 2554 return return_addr; 2555 } 2556 2557 bool Process::CanJIT() { 2558 if (m_can_jit == eCanJITDontKnow) { 2559 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2560 Error err; 2561 2562 uint64_t allocated_memory = AllocateMemory( 2563 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2564 err); 2565 2566 if (err.Success()) { 2567 m_can_jit = eCanJITYes; 2568 if (log) 2569 log->Printf("Process::%s pid %" PRIu64 2570 " allocation test passed, CanJIT () is true", 2571 __FUNCTION__, GetID()); 2572 } else { 2573 m_can_jit = eCanJITNo; 2574 if (log) 2575 log->Printf("Process::%s pid %" PRIu64 2576 " allocation test failed, CanJIT () is false: %s", 2577 __FUNCTION__, GetID(), err.AsCString()); 2578 } 2579 2580 DeallocateMemory(allocated_memory); 2581 } 2582 2583 return m_can_jit == eCanJITYes; 2584 } 2585 2586 void Process::SetCanJIT(bool can_jit) { 2587 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2588 } 2589 2590 void Process::SetCanRunCode(bool can_run_code) { 2591 SetCanJIT(can_run_code); 2592 m_can_interpret_function_calls = can_run_code; 2593 } 2594 2595 Error Process::DeallocateMemory(addr_t ptr) { 2596 Error error; 2597 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2598 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2599 error.SetErrorStringWithFormat( 2600 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2601 } 2602 #else 2603 error = DoDeallocateMemory(ptr); 2604 2605 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2606 if (log) 2607 log->Printf("Process::DeallocateMemory(addr=0x%16.16" PRIx64 2608 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2609 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2610 m_mod_id.GetMemoryID()); 2611 #endif 2612 return error; 2613 } 2614 2615 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2616 lldb::addr_t header_addr, 2617 size_t size_to_read) { 2618 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2619 if (log) { 2620 log->Printf("Process::ReadModuleFromMemory reading %s binary from memory", 2621 file_spec.GetPath().c_str()); 2622 } 2623 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2624 if (module_sp) { 2625 Error error; 2626 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2627 shared_from_this(), header_addr, error, size_to_read); 2628 if (objfile) 2629 return module_sp; 2630 } 2631 return ModuleSP(); 2632 } 2633 2634 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2635 uint32_t &permissions) { 2636 MemoryRegionInfo range_info; 2637 permissions = 0; 2638 Error error(GetMemoryRegionInfo(load_addr, range_info)); 2639 if (!error.Success()) 2640 return false; 2641 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2642 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2643 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2644 return false; 2645 } 2646 2647 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2648 permissions |= lldb::ePermissionsReadable; 2649 2650 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2651 permissions |= lldb::ePermissionsWritable; 2652 2653 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2654 permissions |= lldb::ePermissionsExecutable; 2655 2656 return true; 2657 } 2658 2659 Error Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2660 Error error; 2661 error.SetErrorString("watchpoints are not supported"); 2662 return error; 2663 } 2664 2665 Error Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2666 Error error; 2667 error.SetErrorString("watchpoints are not supported"); 2668 return error; 2669 } 2670 2671 StateType 2672 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2673 const Timeout<std::micro> &timeout) { 2674 StateType state; 2675 // Now wait for the process to launch and return control to us, and then 2676 // call DidLaunch: 2677 while (true) { 2678 event_sp.reset(); 2679 state = GetStateChangedEventsPrivate(event_sp, timeout); 2680 2681 if (StateIsStoppedState(state, false)) 2682 break; 2683 2684 // If state is invalid, then we timed out 2685 if (state == eStateInvalid) 2686 break; 2687 2688 if (event_sp) 2689 HandlePrivateEvent(event_sp); 2690 } 2691 return state; 2692 } 2693 2694 void Process::LoadOperatingSystemPlugin(bool flush) { 2695 if (flush) 2696 m_thread_list.Clear(); 2697 m_os_ap.reset(OperatingSystem::FindPlugin(this, nullptr)); 2698 if (flush) 2699 Flush(); 2700 } 2701 2702 Error Process::Launch(ProcessLaunchInfo &launch_info) { 2703 Error error; 2704 m_abi_sp.reset(); 2705 m_dyld_ap.reset(); 2706 m_jit_loaders_ap.reset(); 2707 m_system_runtime_ap.reset(); 2708 m_os_ap.reset(); 2709 m_process_input_reader.reset(); 2710 m_stop_info_override_callback = nullptr; 2711 2712 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2713 if (exe_module) { 2714 char local_exec_file_path[PATH_MAX]; 2715 char platform_exec_file_path[PATH_MAX]; 2716 exe_module->GetFileSpec().GetPath(local_exec_file_path, 2717 sizeof(local_exec_file_path)); 2718 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, 2719 sizeof(platform_exec_file_path)); 2720 if (exe_module->GetFileSpec().Exists()) { 2721 // Install anything that might need to be installed prior to launching. 2722 // For host systems, this will do nothing, but if we are connected to a 2723 // remote platform it will install any needed binaries 2724 error = GetTarget().Install(&launch_info); 2725 if (error.Fail()) 2726 return error; 2727 2728 if (PrivateStateThreadIsValid()) 2729 PausePrivateStateThread(); 2730 2731 error = WillLaunch(exe_module); 2732 if (error.Success()) { 2733 const bool restarted = false; 2734 SetPublicState(eStateLaunching, restarted); 2735 m_should_detach = false; 2736 2737 if (m_public_run_lock.TrySetRunning()) { 2738 // Now launch using these arguments. 2739 error = DoLaunch(exe_module, launch_info); 2740 } else { 2741 // This shouldn't happen 2742 error.SetErrorString("failed to acquire process run lock"); 2743 } 2744 2745 if (error.Fail()) { 2746 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2747 SetID(LLDB_INVALID_PROCESS_ID); 2748 const char *error_string = error.AsCString(); 2749 if (error_string == nullptr) 2750 error_string = "launch failed"; 2751 SetExitStatus(-1, error_string); 2752 } 2753 } else { 2754 EventSP event_sp; 2755 StateType state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2756 2757 if (state == eStateInvalid || !event_sp) { 2758 // We were able to launch the process, but we failed to 2759 // catch the initial stop. 2760 error.SetErrorString("failed to catch stop after launch"); 2761 SetExitStatus(0, "failed to catch stop after launch"); 2762 Destroy(false); 2763 } else if (state == eStateStopped || state == eStateCrashed) { 2764 DidLaunch(); 2765 2766 DynamicLoader *dyld = GetDynamicLoader(); 2767 if (dyld) 2768 dyld->DidLaunch(); 2769 2770 GetJITLoaders().DidLaunch(); 2771 2772 SystemRuntime *system_runtime = GetSystemRuntime(); 2773 if (system_runtime) 2774 system_runtime->DidLaunch(); 2775 2776 if (!m_os_ap) 2777 LoadOperatingSystemPlugin(false); 2778 2779 // Note, the stop event was consumed above, but not handled. This 2780 // was done 2781 // to give DidLaunch a chance to run. The target is either stopped 2782 // or crashed. 2783 // Directly set the state. This is done to prevent a stop message 2784 // with a bunch 2785 // of spurious output on thread status, as well as not pop a 2786 // ProcessIOHandler. 2787 SetPublicState(state, false); 2788 2789 if (PrivateStateThreadIsValid()) 2790 ResumePrivateStateThread(); 2791 else 2792 StartPrivateStateThread(); 2793 2794 m_stop_info_override_callback = 2795 GetTarget().GetArchitecture().GetStopInfoOverrideCallback(); 2796 2797 // Target was stopped at entry as was intended. Need to notify the 2798 // listeners 2799 // about it. 2800 if (state == eStateStopped && 2801 launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2802 HandlePrivateEvent(event_sp); 2803 } else if (state == eStateExited) { 2804 // We exited while trying to launch somehow. Don't call DidLaunch 2805 // as that's 2806 // not likely to work, and return an invalid pid. 2807 HandlePrivateEvent(event_sp); 2808 } 2809 } 2810 } 2811 } else { 2812 error.SetErrorStringWithFormat("file doesn't exist: '%s'", 2813 local_exec_file_path); 2814 } 2815 } 2816 return error; 2817 } 2818 2819 Error Process::LoadCore() { 2820 Error error = DoLoadCore(); 2821 if (error.Success()) { 2822 ListenerSP listener_sp( 2823 Listener::MakeListener("lldb.process.load_core_listener")); 2824 HijackProcessEvents(listener_sp); 2825 2826 if (PrivateStateThreadIsValid()) 2827 ResumePrivateStateThread(); 2828 else 2829 StartPrivateStateThread(); 2830 2831 DynamicLoader *dyld = GetDynamicLoader(); 2832 if (dyld) 2833 dyld->DidAttach(); 2834 2835 GetJITLoaders().DidAttach(); 2836 2837 SystemRuntime *system_runtime = GetSystemRuntime(); 2838 if (system_runtime) 2839 system_runtime->DidAttach(); 2840 2841 if (!m_os_ap) 2842 LoadOperatingSystemPlugin(false); 2843 2844 // We successfully loaded a core file, now pretend we stopped so we can 2845 // show all of the threads in the core file and explore the crashed 2846 // state. 2847 SetPrivateState(eStateStopped); 2848 2849 // Wait indefinitely for a stopped event since we just posted one above... 2850 lldb::EventSP event_sp; 2851 listener_sp->GetEvent(event_sp, llvm::None); 2852 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2853 2854 if (!StateIsStoppedState(state, false)) { 2855 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2856 if (log) 2857 log->Printf("Process::Halt() failed to stop, state is: %s", 2858 StateAsCString(state)); 2859 error.SetErrorString( 2860 "Did not get stopped event after loading the core file."); 2861 } 2862 RestoreProcessEvents(); 2863 } 2864 return error; 2865 } 2866 2867 DynamicLoader *Process::GetDynamicLoader() { 2868 if (!m_dyld_ap) 2869 m_dyld_ap.reset(DynamicLoader::FindPlugin(this, nullptr)); 2870 return m_dyld_ap.get(); 2871 } 2872 2873 const lldb::DataBufferSP Process::GetAuxvData() { return DataBufferSP(); } 2874 2875 JITLoaderList &Process::GetJITLoaders() { 2876 if (!m_jit_loaders_ap) { 2877 m_jit_loaders_ap.reset(new JITLoaderList()); 2878 JITLoader::LoadPlugins(this, *m_jit_loaders_ap); 2879 } 2880 return *m_jit_loaders_ap; 2881 } 2882 2883 SystemRuntime *Process::GetSystemRuntime() { 2884 if (!m_system_runtime_ap) 2885 m_system_runtime_ap.reset(SystemRuntime::FindPlugin(this)); 2886 return m_system_runtime_ap.get(); 2887 } 2888 2889 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2890 uint32_t exec_count) 2891 : NextEventAction(process), m_exec_count(exec_count) { 2892 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2893 if (log) 2894 log->Printf( 2895 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2896 __FUNCTION__, static_cast<void *>(process), exec_count); 2897 } 2898 2899 Process::NextEventAction::EventActionResult 2900 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2901 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2902 2903 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2904 if (log) 2905 log->Printf( 2906 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2907 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2908 2909 switch (state) { 2910 case eStateAttaching: 2911 return eEventActionSuccess; 2912 2913 case eStateRunning: 2914 case eStateConnected: 2915 return eEventActionRetry; 2916 2917 case eStateStopped: 2918 case eStateCrashed: 2919 // During attach, prior to sending the eStateStopped event, 2920 // lldb_private::Process subclasses must set the new process ID. 2921 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2922 // We don't want these events to be reported, so go set the ShouldReportStop 2923 // here: 2924 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2925 2926 if (m_exec_count > 0) { 2927 --m_exec_count; 2928 2929 if (log) 2930 log->Printf("Process::AttachCompletionHandler::%s state %s: reduced " 2931 "remaining exec count to %" PRIu32 ", requesting resume", 2932 __FUNCTION__, StateAsCString(state), m_exec_count); 2933 2934 RequestResume(); 2935 return eEventActionRetry; 2936 } else { 2937 if (log) 2938 log->Printf("Process::AttachCompletionHandler::%s state %s: no more " 2939 "execs expected to start, continuing with attach", 2940 __FUNCTION__, StateAsCString(state)); 2941 2942 m_process->CompleteAttach(); 2943 return eEventActionSuccess; 2944 } 2945 break; 2946 2947 default: 2948 case eStateExited: 2949 case eStateInvalid: 2950 break; 2951 } 2952 2953 m_exit_string.assign("No valid Process"); 2954 return eEventActionExit; 2955 } 2956 2957 Process::NextEventAction::EventActionResult 2958 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2959 return eEventActionSuccess; 2960 } 2961 2962 const char *Process::AttachCompletionHandler::GetExitString() { 2963 return m_exit_string.c_str(); 2964 } 2965 2966 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2967 if (m_listener_sp) 2968 return m_listener_sp; 2969 else 2970 return debugger.GetListener(); 2971 } 2972 2973 Error Process::Attach(ProcessAttachInfo &attach_info) { 2974 m_abi_sp.reset(); 2975 m_process_input_reader.reset(); 2976 m_dyld_ap.reset(); 2977 m_jit_loaders_ap.reset(); 2978 m_system_runtime_ap.reset(); 2979 m_os_ap.reset(); 2980 m_stop_info_override_callback = nullptr; 2981 2982 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2983 Error error; 2984 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2985 char process_name[PATH_MAX]; 2986 2987 if (attach_info.GetExecutableFile().GetPath(process_name, 2988 sizeof(process_name))) { 2989 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2990 2991 if (wait_for_launch) { 2992 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2993 if (error.Success()) { 2994 if (m_public_run_lock.TrySetRunning()) { 2995 m_should_detach = true; 2996 const bool restarted = false; 2997 SetPublicState(eStateAttaching, restarted); 2998 // Now attach using these arguments. 2999 error = DoAttachToProcessWithName(process_name, attach_info); 3000 } else { 3001 // This shouldn't happen 3002 error.SetErrorString("failed to acquire process run lock"); 3003 } 3004 3005 if (error.Fail()) { 3006 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3007 SetID(LLDB_INVALID_PROCESS_ID); 3008 if (error.AsCString() == nullptr) 3009 error.SetErrorString("attach failed"); 3010 3011 SetExitStatus(-1, error.AsCString()); 3012 } 3013 } else { 3014 SetNextEventAction(new Process::AttachCompletionHandler( 3015 this, attach_info.GetResumeCount())); 3016 StartPrivateStateThread(); 3017 } 3018 return error; 3019 } 3020 } else { 3021 ProcessInstanceInfoList process_infos; 3022 PlatformSP platform_sp(GetTarget().GetPlatform()); 3023 3024 if (platform_sp) { 3025 ProcessInstanceInfoMatch match_info; 3026 match_info.GetProcessInfo() = attach_info; 3027 match_info.SetNameMatchType(NameMatch::Equals); 3028 platform_sp->FindProcesses(match_info, process_infos); 3029 const uint32_t num_matches = process_infos.GetSize(); 3030 if (num_matches == 1) { 3031 attach_pid = process_infos.GetProcessIDAtIndex(0); 3032 // Fall through and attach using the above process ID 3033 } else { 3034 match_info.GetProcessInfo().GetExecutableFile().GetPath( 3035 process_name, sizeof(process_name)); 3036 if (num_matches > 1) { 3037 StreamString s; 3038 ProcessInstanceInfo::DumpTableHeader(s, platform_sp.get(), true, 3039 false); 3040 for (size_t i = 0; i < num_matches; i++) { 3041 process_infos.GetProcessInfoAtIndex(i).DumpAsTableRow( 3042 s, platform_sp.get(), true, false); 3043 } 3044 error.SetErrorStringWithFormat( 3045 "more than one process named %s:\n%s", process_name, 3046 s.GetData()); 3047 } else 3048 error.SetErrorStringWithFormat( 3049 "could not find a process named %s", process_name); 3050 } 3051 } else { 3052 error.SetErrorString( 3053 "invalid platform, can't find processes by name"); 3054 return error; 3055 } 3056 } 3057 } else { 3058 error.SetErrorString("invalid process name"); 3059 } 3060 } 3061 3062 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 3063 error = WillAttachToProcessWithID(attach_pid); 3064 if (error.Success()) { 3065 3066 if (m_public_run_lock.TrySetRunning()) { 3067 // Now attach using these arguments. 3068 m_should_detach = true; 3069 const bool restarted = false; 3070 SetPublicState(eStateAttaching, restarted); 3071 error = DoAttachToProcessWithID(attach_pid, attach_info); 3072 } else { 3073 // This shouldn't happen 3074 error.SetErrorString("failed to acquire process run lock"); 3075 } 3076 3077 if (error.Success()) { 3078 SetNextEventAction(new Process::AttachCompletionHandler( 3079 this, attach_info.GetResumeCount())); 3080 StartPrivateStateThread(); 3081 } else { 3082 if (GetID() != LLDB_INVALID_PROCESS_ID) 3083 SetID(LLDB_INVALID_PROCESS_ID); 3084 3085 const char *error_string = error.AsCString(); 3086 if (error_string == nullptr) 3087 error_string = "attach failed"; 3088 3089 SetExitStatus(-1, error_string); 3090 } 3091 } 3092 } 3093 return error; 3094 } 3095 3096 void Process::CompleteAttach() { 3097 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3098 LIBLLDB_LOG_TARGET)); 3099 if (log) 3100 log->Printf("Process::%s()", __FUNCTION__); 3101 3102 // Let the process subclass figure out at much as it can about the process 3103 // before we go looking for a dynamic loader plug-in. 3104 ArchSpec process_arch; 3105 DidAttach(process_arch); 3106 3107 if (process_arch.IsValid()) { 3108 GetTarget().SetArchitecture(process_arch); 3109 if (log) { 3110 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 3111 log->Printf("Process::%s replacing process architecture with DidAttach() " 3112 "architecture: %s", 3113 __FUNCTION__, triple_str ? triple_str : "<null>"); 3114 } 3115 } 3116 3117 // We just attached. If we have a platform, ask it for the process 3118 // architecture, and if it isn't 3119 // the same as the one we've already set, switch architectures. 3120 PlatformSP platform_sp(GetTarget().GetPlatform()); 3121 assert(platform_sp); 3122 if (platform_sp) { 3123 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 3124 if (target_arch.IsValid() && 3125 !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) { 3126 ArchSpec platform_arch; 3127 platform_sp = 3128 platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch); 3129 if (platform_sp) { 3130 GetTarget().SetPlatform(platform_sp); 3131 GetTarget().SetArchitecture(platform_arch); 3132 if (log) 3133 log->Printf("Process::%s switching platform to %s and architecture " 3134 "to %s based on info from attach", 3135 __FUNCTION__, platform_sp->GetName().AsCString(""), 3136 platform_arch.GetTriple().getTriple().c_str()); 3137 } 3138 } else if (!process_arch.IsValid()) { 3139 ProcessInstanceInfo process_info; 3140 GetProcessInfo(process_info); 3141 const ArchSpec &process_arch = process_info.GetArchitecture(); 3142 if (process_arch.IsValid() && 3143 !GetTarget().GetArchitecture().IsExactMatch(process_arch)) { 3144 GetTarget().SetArchitecture(process_arch); 3145 if (log) 3146 log->Printf("Process::%s switching architecture to %s based on info " 3147 "the platform retrieved for pid %" PRIu64, 3148 __FUNCTION__, 3149 process_arch.GetTriple().getTriple().c_str(), GetID()); 3150 } 3151 } 3152 } 3153 3154 // We have completed the attach, now it is time to find the dynamic loader 3155 // plug-in 3156 DynamicLoader *dyld = GetDynamicLoader(); 3157 if (dyld) { 3158 dyld->DidAttach(); 3159 if (log) { 3160 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3161 log->Printf("Process::%s after DynamicLoader::DidAttach(), target " 3162 "executable is %s (using %s plugin)", 3163 __FUNCTION__, 3164 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3165 : "<none>", 3166 dyld->GetPluginName().AsCString("<unnamed>")); 3167 } 3168 } 3169 3170 GetJITLoaders().DidAttach(); 3171 3172 SystemRuntime *system_runtime = GetSystemRuntime(); 3173 if (system_runtime) { 3174 system_runtime->DidAttach(); 3175 if (log) { 3176 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3177 log->Printf("Process::%s after SystemRuntime::DidAttach(), target " 3178 "executable is %s (using %s plugin)", 3179 __FUNCTION__, 3180 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3181 : "<none>", 3182 system_runtime->GetPluginName().AsCString("<unnamed>")); 3183 } 3184 } 3185 3186 if (!m_os_ap) 3187 LoadOperatingSystemPlugin(false); 3188 // Figure out which one is the executable, and set that in our target: 3189 const ModuleList &target_modules = GetTarget().GetImages(); 3190 std::lock_guard<std::recursive_mutex> guard(target_modules.GetMutex()); 3191 size_t num_modules = target_modules.GetSize(); 3192 ModuleSP new_executable_module_sp; 3193 3194 for (size_t i = 0; i < num_modules; i++) { 3195 ModuleSP module_sp(target_modules.GetModuleAtIndexUnlocked(i)); 3196 if (module_sp && module_sp->IsExecutable()) { 3197 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 3198 new_executable_module_sp = module_sp; 3199 break; 3200 } 3201 } 3202 if (new_executable_module_sp) { 3203 GetTarget().SetExecutableModule(new_executable_module_sp, false); 3204 if (log) { 3205 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3206 log->Printf( 3207 "Process::%s after looping through modules, target executable is %s", 3208 __FUNCTION__, 3209 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3210 : "<none>"); 3211 } 3212 } 3213 3214 m_stop_info_override_callback = process_arch.GetStopInfoOverrideCallback(); 3215 } 3216 3217 Error Process::ConnectRemote(Stream *strm, llvm::StringRef remote_url) { 3218 m_abi_sp.reset(); 3219 m_process_input_reader.reset(); 3220 3221 // Find the process and its architecture. Make sure it matches the 3222 // architecture of the current Target, and if not adjust it. 3223 3224 Error error(DoConnectRemote(strm, remote_url)); 3225 if (error.Success()) { 3226 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3227 EventSP event_sp; 3228 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 3229 3230 if (state == eStateStopped || state == eStateCrashed) { 3231 // If we attached and actually have a process on the other end, then 3232 // this ended up being the equivalent of an attach. 3233 CompleteAttach(); 3234 3235 // This delays passing the stopped event to listeners till 3236 // CompleteAttach gets a chance to complete... 3237 HandlePrivateEvent(event_sp); 3238 } 3239 } 3240 3241 if (PrivateStateThreadIsValid()) 3242 ResumePrivateStateThread(); 3243 else 3244 StartPrivateStateThread(); 3245 } 3246 return error; 3247 } 3248 3249 Error Process::PrivateResume() { 3250 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3251 LIBLLDB_LOG_STEP)); 3252 if (log) 3253 log->Printf("Process::PrivateResume() m_stop_id = %u, public state: %s " 3254 "private state: %s", 3255 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3256 StateAsCString(m_private_state.GetValue())); 3257 3258 Error error(WillResume()); 3259 // Tell the process it is about to resume before the thread list 3260 if (error.Success()) { 3261 // Now let the thread list know we are about to resume so it 3262 // can let all of our threads know that they are about to be 3263 // resumed. Threads will each be called with 3264 // Thread::WillResume(StateType) where StateType contains the state 3265 // that they are supposed to have when the process is resumed 3266 // (suspended/running/stepping). Threads should also check 3267 // their resume signal in lldb::Thread::GetResumeSignal() 3268 // to see if they are supposed to start back up with a signal. 3269 if (m_thread_list.WillResume()) { 3270 // Last thing, do the PreResumeActions. 3271 if (!RunPreResumeActions()) { 3272 error.SetErrorStringWithFormat( 3273 "Process::PrivateResume PreResumeActions failed, not resuming."); 3274 } else { 3275 m_mod_id.BumpResumeID(); 3276 error = DoResume(); 3277 if (error.Success()) { 3278 DidResume(); 3279 m_thread_list.DidResume(); 3280 if (log) 3281 log->Printf("Process thinks the process has resumed."); 3282 } 3283 } 3284 } else { 3285 // Somebody wanted to run without running (e.g. we were faking a step from 3286 // one frame of a set of inlined 3287 // frames that share the same PC to another.) So generate a continue & a 3288 // stopped event, 3289 // and let the world handle them. 3290 if (log) 3291 log->Printf( 3292 "Process::PrivateResume() asked to simulate a start & stop."); 3293 3294 SetPrivateState(eStateRunning); 3295 SetPrivateState(eStateStopped); 3296 } 3297 } else if (log) 3298 log->Printf("Process::PrivateResume() got an error \"%s\".", 3299 error.AsCString("<unknown error>")); 3300 return error; 3301 } 3302 3303 Error Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3304 if (!StateIsRunningState(m_public_state.GetValue())) 3305 return Error("Process is not running."); 3306 3307 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if 3308 // in case it was already set and some thread plan logic calls halt on its 3309 // own. 3310 m_clear_thread_plans_on_stop |= clear_thread_plans; 3311 3312 ListenerSP halt_listener_sp( 3313 Listener::MakeListener("lldb.process.halt_listener")); 3314 HijackProcessEvents(halt_listener_sp); 3315 3316 EventSP event_sp; 3317 3318 SendAsyncInterrupt(); 3319 3320 if (m_public_state.GetValue() == eStateAttaching) { 3321 // Don't hijack and eat the eStateExited as the code that was doing 3322 // the attach will be waiting for this event... 3323 RestoreProcessEvents(); 3324 SetExitStatus(SIGKILL, "Cancelled async attach."); 3325 Destroy(false); 3326 return Error(); 3327 } 3328 3329 // Wait for 10 second for the process to stop. 3330 StateType state = WaitForProcessToStop( 3331 seconds(10), &event_sp, true, halt_listener_sp, nullptr, use_run_lock); 3332 RestoreProcessEvents(); 3333 3334 if (state == eStateInvalid || !event_sp) { 3335 // We timed out and didn't get a stop event... 3336 return Error("Halt timed out. State = %s", StateAsCString(GetState())); 3337 } 3338 3339 BroadcastEvent(event_sp); 3340 3341 return Error(); 3342 } 3343 3344 Error Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3345 Error error; 3346 3347 // Check both the public & private states here. If we're hung evaluating an 3348 // expression, for instance, then 3349 // the public state will be stopped, but we still need to interrupt. 3350 if (m_public_state.GetValue() == eStateRunning || 3351 m_private_state.GetValue() == eStateRunning) { 3352 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3353 if (log) 3354 log->Printf("Process::%s() About to stop.", __FUNCTION__); 3355 3356 ListenerSP listener_sp( 3357 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3358 HijackProcessEvents(listener_sp); 3359 3360 SendAsyncInterrupt(); 3361 3362 // Consume the interrupt event. 3363 StateType state = 3364 WaitForProcessToStop(seconds(10), &exit_event_sp, true, listener_sp); 3365 3366 RestoreProcessEvents(); 3367 3368 // If the process exited while we were waiting for it to stop, put the 3369 // exited event into 3370 // the shared pointer passed in and return. Our caller doesn't need to do 3371 // anything else, since 3372 // they don't have a process anymore... 3373 3374 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3375 if (log) 3376 log->Printf("Process::%s() Process exited while waiting to stop.", 3377 __FUNCTION__); 3378 return error; 3379 } else 3380 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3381 3382 if (state != eStateStopped) { 3383 if (log) 3384 log->Printf("Process::%s() failed to stop, state is: %s", __FUNCTION__, 3385 StateAsCString(state)); 3386 // If we really couldn't stop the process then we should just error out 3387 // here, but if the 3388 // lower levels just bobbled sending the event and we really are stopped, 3389 // then continue on. 3390 StateType private_state = m_private_state.GetValue(); 3391 if (private_state != eStateStopped) { 3392 return Error("Attempt to stop the target in order to detach timed out. " 3393 "State = %s", 3394 StateAsCString(GetState())); 3395 } 3396 } 3397 } 3398 return error; 3399 } 3400 3401 Error Process::Detach(bool keep_stopped) { 3402 EventSP exit_event_sp; 3403 Error error; 3404 m_destroy_in_process = true; 3405 3406 error = WillDetach(); 3407 3408 if (error.Success()) { 3409 if (DetachRequiresHalt()) { 3410 error = StopForDestroyOrDetach(exit_event_sp); 3411 if (!error.Success()) { 3412 m_destroy_in_process = false; 3413 return error; 3414 } else if (exit_event_sp) { 3415 // We shouldn't need to do anything else here. There's no process left 3416 // to detach from... 3417 StopPrivateStateThread(); 3418 m_destroy_in_process = false; 3419 return error; 3420 } 3421 } 3422 3423 m_thread_list.DiscardThreadPlans(); 3424 DisableAllBreakpointSites(); 3425 3426 error = DoDetach(keep_stopped); 3427 if (error.Success()) { 3428 DidDetach(); 3429 StopPrivateStateThread(); 3430 } else { 3431 return error; 3432 } 3433 } 3434 m_destroy_in_process = false; 3435 3436 // If we exited when we were waiting for a process to stop, then 3437 // forward the event here so we don't lose the event 3438 if (exit_event_sp) { 3439 // Directly broadcast our exited event because we shut down our 3440 // private state thread above 3441 BroadcastEvent(exit_event_sp); 3442 } 3443 3444 // If we have been interrupted (to kill us) in the middle of running, we may 3445 // not end up propagating 3446 // the last events through the event system, in which case we might strand the 3447 // write lock. Unlock 3448 // it here so when we do to tear down the process we don't get an error 3449 // destroying the lock. 3450 3451 m_public_run_lock.SetStopped(); 3452 return error; 3453 } 3454 3455 Error Process::Destroy(bool force_kill) { 3456 3457 // Tell ourselves we are in the process of destroying the process, so that we 3458 // don't do any unnecessary work 3459 // that might hinder the destruction. Remember to set this back to false when 3460 // we are done. That way if the attempt 3461 // failed and the process stays around for some reason it won't be in a 3462 // confused state. 3463 3464 if (force_kill) 3465 m_should_detach = false; 3466 3467 if (GetShouldDetach()) { 3468 // FIXME: This will have to be a process setting: 3469 bool keep_stopped = false; 3470 Detach(keep_stopped); 3471 } 3472 3473 m_destroy_in_process = true; 3474 3475 Error error(WillDestroy()); 3476 if (error.Success()) { 3477 EventSP exit_event_sp; 3478 if (DestroyRequiresHalt()) { 3479 error = StopForDestroyOrDetach(exit_event_sp); 3480 } 3481 3482 if (m_public_state.GetValue() != eStateRunning) { 3483 // Ditch all thread plans, and remove all our breakpoints: in case we have 3484 // to restart the target to 3485 // kill it, we don't want it hitting a breakpoint... 3486 // Only do this if we've stopped, however, since if we didn't manage to 3487 // halt it above, then 3488 // we're not going to have much luck doing this now. 3489 m_thread_list.DiscardThreadPlans(); 3490 DisableAllBreakpointSites(); 3491 } 3492 3493 error = DoDestroy(); 3494 if (error.Success()) { 3495 DidDestroy(); 3496 StopPrivateStateThread(); 3497 } 3498 m_stdio_communication.Disconnect(); 3499 m_stdio_communication.StopReadThread(); 3500 m_stdin_forward = false; 3501 3502 if (m_process_input_reader) { 3503 m_process_input_reader->SetIsDone(true); 3504 m_process_input_reader->Cancel(); 3505 m_process_input_reader.reset(); 3506 } 3507 3508 // If we exited when we were waiting for a process to stop, then 3509 // forward the event here so we don't lose the event 3510 if (exit_event_sp) { 3511 // Directly broadcast our exited event because we shut down our 3512 // private state thread above 3513 BroadcastEvent(exit_event_sp); 3514 } 3515 3516 // If we have been interrupted (to kill us) in the middle of running, we may 3517 // not end up propagating 3518 // the last events through the event system, in which case we might strand 3519 // the write lock. Unlock 3520 // it here so when we do to tear down the process we don't get an error 3521 // destroying the lock. 3522 m_public_run_lock.SetStopped(); 3523 } 3524 3525 m_destroy_in_process = false; 3526 3527 return error; 3528 } 3529 3530 Error Process::Signal(int signal) { 3531 Error error(WillSignal()); 3532 if (error.Success()) { 3533 error = DoSignal(signal); 3534 if (error.Success()) 3535 DidSignal(); 3536 } 3537 return error; 3538 } 3539 3540 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3541 assert(signals_sp && "null signals_sp"); 3542 m_unix_signals_sp = signals_sp; 3543 } 3544 3545 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3546 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3547 return m_unix_signals_sp; 3548 } 3549 3550 lldb::ByteOrder Process::GetByteOrder() const { 3551 return GetTarget().GetArchitecture().GetByteOrder(); 3552 } 3553 3554 uint32_t Process::GetAddressByteSize() const { 3555 return GetTarget().GetArchitecture().GetAddressByteSize(); 3556 } 3557 3558 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3559 const StateType state = 3560 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3561 bool return_value = true; 3562 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | 3563 LIBLLDB_LOG_PROCESS)); 3564 3565 switch (state) { 3566 case eStateDetached: 3567 case eStateExited: 3568 case eStateUnloaded: 3569 m_stdio_communication.SynchronizeWithReadThread(); 3570 m_stdio_communication.Disconnect(); 3571 m_stdio_communication.StopReadThread(); 3572 m_stdin_forward = false; 3573 3574 LLVM_FALLTHROUGH; 3575 case eStateConnected: 3576 case eStateAttaching: 3577 case eStateLaunching: 3578 // These events indicate changes in the state of the debugging session, 3579 // always report them. 3580 return_value = true; 3581 break; 3582 case eStateInvalid: 3583 // We stopped for no apparent reason, don't report it. 3584 return_value = false; 3585 break; 3586 case eStateRunning: 3587 case eStateStepping: 3588 // If we've started the target running, we handle the cases where we 3589 // are already running and where there is a transition from stopped to 3590 // running differently. 3591 // running -> running: Automatically suppress extra running events 3592 // stopped -> running: Report except when there is one or more no votes 3593 // and no yes votes. 3594 SynchronouslyNotifyStateChanged(state); 3595 if (m_force_next_event_delivery) 3596 return_value = true; 3597 else { 3598 switch (m_last_broadcast_state) { 3599 case eStateRunning: 3600 case eStateStepping: 3601 // We always suppress multiple runnings with no PUBLIC stop in between. 3602 return_value = false; 3603 break; 3604 default: 3605 // TODO: make this work correctly. For now always report 3606 // run if we aren't running so we don't miss any running 3607 // events. If I run the lldb/test/thread/a.out file and 3608 // break at main.cpp:58, run and hit the breakpoints on 3609 // multiple threads, then somehow during the stepping over 3610 // of all breakpoints no run gets reported. 3611 3612 // This is a transition from stop to run. 3613 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3614 case eVoteYes: 3615 case eVoteNoOpinion: 3616 return_value = true; 3617 break; 3618 case eVoteNo: 3619 return_value = false; 3620 break; 3621 } 3622 break; 3623 } 3624 } 3625 break; 3626 case eStateStopped: 3627 case eStateCrashed: 3628 case eStateSuspended: 3629 // We've stopped. First see if we're going to restart the target. 3630 // If we are going to stop, then we always broadcast the event. 3631 // If we aren't going to stop, let the thread plans decide if we're going to 3632 // report this event. 3633 // If no thread has an opinion, we don't report it. 3634 3635 m_stdio_communication.SynchronizeWithReadThread(); 3636 RefreshStateAfterStop(); 3637 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3638 if (log) 3639 log->Printf("Process::ShouldBroadcastEvent (%p) stopped due to an " 3640 "interrupt, state: %s", 3641 static_cast<void *>(event_ptr), StateAsCString(state)); 3642 // Even though we know we are going to stop, we should let the threads 3643 // have a look at the stop, 3644 // so they can properly set their state. 3645 m_thread_list.ShouldStop(event_ptr); 3646 return_value = true; 3647 } else { 3648 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3649 bool should_resume = false; 3650 3651 // It makes no sense to ask "ShouldStop" if we've already been 3652 // restarted... 3653 // Asking the thread list is also not likely to go well, since we are 3654 // running again. 3655 // So in that case just report the event. 3656 3657 if (!was_restarted) 3658 should_resume = !m_thread_list.ShouldStop(event_ptr); 3659 3660 if (was_restarted || should_resume || m_resume_requested) { 3661 Vote stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3662 if (log) 3663 log->Printf("Process::ShouldBroadcastEvent: should_resume: %i state: " 3664 "%s was_restarted: %i stop_vote: %d.", 3665 should_resume, StateAsCString(state), was_restarted, 3666 stop_vote); 3667 3668 switch (stop_vote) { 3669 case eVoteYes: 3670 return_value = true; 3671 break; 3672 case eVoteNoOpinion: 3673 case eVoteNo: 3674 return_value = false; 3675 break; 3676 } 3677 3678 if (!was_restarted) { 3679 if (log) 3680 log->Printf("Process::ShouldBroadcastEvent (%p) Restarting process " 3681 "from state: %s", 3682 static_cast<void *>(event_ptr), StateAsCString(state)); 3683 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3684 PrivateResume(); 3685 } 3686 } else { 3687 return_value = true; 3688 SynchronouslyNotifyStateChanged(state); 3689 } 3690 } 3691 break; 3692 } 3693 3694 // Forcing the next event delivery is a one shot deal. So reset it here. 3695 m_force_next_event_delivery = false; 3696 3697 // We do some coalescing of events (for instance two consecutive running 3698 // events get coalesced.) 3699 // But we only coalesce against events we actually broadcast. So we use 3700 // m_last_broadcast_state 3701 // to track that. NB - you can't use "m_public_state.GetValue()" for that 3702 // purpose, as was originally done, 3703 // because the PublicState reflects the last event pulled off the queue, and 3704 // there may be several 3705 // events stacked up on the queue unserviced. So the PublicState may not 3706 // reflect the last broadcasted event 3707 // yet. m_last_broadcast_state gets updated here. 3708 3709 if (return_value) 3710 m_last_broadcast_state = state; 3711 3712 if (log) 3713 log->Printf("Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3714 "broadcast state: %s - %s", 3715 static_cast<void *>(event_ptr), StateAsCString(state), 3716 StateAsCString(m_last_broadcast_state), 3717 return_value ? "YES" : "NO"); 3718 return return_value; 3719 } 3720 3721 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3722 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 3723 3724 bool already_running = PrivateStateThreadIsValid(); 3725 if (log) 3726 log->Printf("Process::%s()%s ", __FUNCTION__, 3727 already_running ? " already running" 3728 : " starting private state thread"); 3729 3730 if (!is_secondary_thread && already_running) 3731 return true; 3732 3733 // Create a thread that watches our internal state and controls which 3734 // events make it to clients (into the DCProcess event queue). 3735 char thread_name[1024]; 3736 3737 if (HostInfo::GetMaxThreadNameLength() <= 30) { 3738 // On platforms with abbreviated thread name lengths, choose thread names 3739 // that fit within the limit. 3740 if (already_running) 3741 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3742 else 3743 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3744 } else { 3745 if (already_running) 3746 snprintf(thread_name, sizeof(thread_name), 3747 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3748 GetID()); 3749 else 3750 snprintf(thread_name, sizeof(thread_name), 3751 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3752 } 3753 3754 // Create the private state thread, and start it running. 3755 PrivateStateThreadArgs *args_ptr = 3756 new PrivateStateThreadArgs(this, is_secondary_thread); 3757 m_private_state_thread = 3758 ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, 3759 (void *)args_ptr, nullptr, 8 * 1024 * 1024); 3760 if (m_private_state_thread.IsJoinable()) { 3761 ResumePrivateStateThread(); 3762 return true; 3763 } else 3764 return false; 3765 } 3766 3767 void Process::PausePrivateStateThread() { 3768 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3769 } 3770 3771 void Process::ResumePrivateStateThread() { 3772 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3773 } 3774 3775 void Process::StopPrivateStateThread() { 3776 if (m_private_state_thread.IsJoinable()) 3777 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3778 else { 3779 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3780 if (log) 3781 log->Printf( 3782 "Went to stop the private state thread, but it was already invalid."); 3783 } 3784 } 3785 3786 void Process::ControlPrivateStateThread(uint32_t signal) { 3787 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3788 3789 assert(signal == eBroadcastInternalStateControlStop || 3790 signal == eBroadcastInternalStateControlPause || 3791 signal == eBroadcastInternalStateControlResume); 3792 3793 if (log) 3794 log->Printf("Process::%s (signal = %d)", __FUNCTION__, signal); 3795 3796 // Signal the private state thread 3797 if (m_private_state_thread.IsJoinable()) { 3798 // Broadcast the event. 3799 // It is important to do this outside of the if below, because 3800 // it's possible that the thread state is invalid but that the 3801 // thread is waiting on a control event instead of simply being 3802 // on its way out (this should not happen, but it apparently can). 3803 if (log) 3804 log->Printf("Sending control event of type: %d.", signal); 3805 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3806 m_private_state_control_broadcaster.BroadcastEvent(signal, 3807 event_receipt_sp); 3808 3809 // Wait for the event receipt or for the private state thread to exit 3810 bool receipt_received = false; 3811 if (PrivateStateThreadIsValid()) { 3812 while (!receipt_received) { 3813 bool timed_out = false; 3814 // Check for a receipt for 2 seconds and then check if the private state 3815 // thread is still around. 3816 receipt_received = event_receipt_sp->WaitForEventReceived( 3817 std::chrono::seconds(2), &timed_out); 3818 if (!receipt_received) { 3819 // Check if the private state thread is still around. If it isn't then 3820 // we are done waiting 3821 if (!PrivateStateThreadIsValid()) 3822 break; // Private state thread exited or is exiting, we are done 3823 } 3824 } 3825 } 3826 3827 if (signal == eBroadcastInternalStateControlStop) { 3828 thread_result_t result = NULL; 3829 m_private_state_thread.Join(&result); 3830 m_private_state_thread.Reset(); 3831 } 3832 } else { 3833 if (log) 3834 log->Printf( 3835 "Private state thread already dead, no need to signal it to stop."); 3836 } 3837 } 3838 3839 void Process::SendAsyncInterrupt() { 3840 if (PrivateStateThreadIsValid()) 3841 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3842 nullptr); 3843 else 3844 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3845 } 3846 3847 void Process::HandlePrivateEvent(EventSP &event_sp) { 3848 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3849 m_resume_requested = false; 3850 3851 const StateType new_state = 3852 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3853 3854 // First check to see if anybody wants a shot at this event: 3855 if (m_next_event_action_ap) { 3856 NextEventAction::EventActionResult action_result = 3857 m_next_event_action_ap->PerformAction(event_sp); 3858 if (log) 3859 log->Printf("Ran next event action, result was %d.", action_result); 3860 3861 switch (action_result) { 3862 case NextEventAction::eEventActionSuccess: 3863 SetNextEventAction(nullptr); 3864 break; 3865 3866 case NextEventAction::eEventActionRetry: 3867 break; 3868 3869 case NextEventAction::eEventActionExit: 3870 // Handle Exiting Here. If we already got an exited event, 3871 // we should just propagate it. Otherwise, swallow this event, 3872 // and set our state to exit so the next event will kill us. 3873 if (new_state != eStateExited) { 3874 // FIXME: should cons up an exited event, and discard this one. 3875 SetExitStatus(0, m_next_event_action_ap->GetExitString()); 3876 SetNextEventAction(nullptr); 3877 return; 3878 } 3879 SetNextEventAction(nullptr); 3880 break; 3881 } 3882 } 3883 3884 // See if we should broadcast this state to external clients? 3885 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3886 3887 if (should_broadcast) { 3888 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3889 if (log) { 3890 log->Printf("Process::%s (pid = %" PRIu64 3891 ") broadcasting new state %s (old state %s) to %s", 3892 __FUNCTION__, GetID(), StateAsCString(new_state), 3893 StateAsCString(GetState()), 3894 is_hijacked ? "hijacked" : "public"); 3895 } 3896 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3897 if (StateIsRunningState(new_state)) { 3898 // Only push the input handler if we aren't fowarding events, 3899 // as this means the curses GUI is in use... 3900 // Or don't push it if we are launching since it will come up stopped. 3901 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3902 new_state != eStateLaunching && new_state != eStateAttaching) { 3903 PushProcessIOHandler(); 3904 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3905 eBroadcastAlways); 3906 if (log) 3907 log->Printf("Process::%s updated m_iohandler_sync to %d", 3908 __FUNCTION__, m_iohandler_sync.GetValue()); 3909 } 3910 } else if (StateIsStoppedState(new_state, false)) { 3911 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3912 // If the lldb_private::Debugger is handling the events, we don't 3913 // want to pop the process IOHandler here, we want to do it when 3914 // we receive the stopped event so we can carefully control when 3915 // the process IOHandler is popped because when we stop we want to 3916 // display some text stating how and why we stopped, then maybe some 3917 // process/thread/frame info, and then we want the "(lldb) " prompt 3918 // to show up. If we pop the process IOHandler here, then we will 3919 // cause the command interpreter to become the top IOHandler after 3920 // the process pops off and it will update its prompt right away... 3921 // See the Debugger.cpp file where it calls the function as 3922 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3923 // Otherwise we end up getting overlapping "(lldb) " prompts and 3924 // garbled output. 3925 // 3926 // If we aren't handling the events in the debugger (which is indicated 3927 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or we 3928 // are hijacked, then we always pop the process IO handler manually. 3929 // Hijacking happens when the internal process state thread is running 3930 // thread plans, or when commands want to run in synchronous mode 3931 // and they call "process->WaitForProcessToStop()". An example of 3932 // something 3933 // that will hijack the events is a simple expression: 3934 // 3935 // (lldb) expr (int)puts("hello") 3936 // 3937 // This will cause the internal process state thread to resume and halt 3938 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3939 // events) and we do need the IO handler to be pushed and popped 3940 // correctly. 3941 3942 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3943 PopProcessIOHandler(); 3944 } 3945 } 3946 3947 BroadcastEvent(event_sp); 3948 } else { 3949 if (log) { 3950 log->Printf( 3951 "Process::%s (pid = %" PRIu64 3952 ") suppressing state %s (old state %s): should_broadcast == false", 3953 __FUNCTION__, GetID(), StateAsCString(new_state), 3954 StateAsCString(GetState())); 3955 } 3956 } 3957 } 3958 3959 Error Process::HaltPrivate() { 3960 EventSP event_sp; 3961 Error error(WillHalt()); 3962 if (error.Fail()) 3963 return error; 3964 3965 // Ask the process subclass to actually halt our process 3966 bool caused_stop; 3967 error = DoHalt(caused_stop); 3968 3969 DidHalt(); 3970 return error; 3971 } 3972 3973 thread_result_t Process::PrivateStateThread(void *arg) { 3974 std::unique_ptr<PrivateStateThreadArgs> args_up( 3975 static_cast<PrivateStateThreadArgs *>(arg)); 3976 thread_result_t result = 3977 args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 3978 return result; 3979 } 3980 3981 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3982 bool control_only = true; 3983 3984 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3985 if (log) 3986 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3987 __FUNCTION__, static_cast<void *>(this), GetID()); 3988 3989 bool exit_now = false; 3990 bool interrupt_requested = false; 3991 while (!exit_now) { 3992 EventSP event_sp; 3993 GetEventsPrivate(event_sp, llvm::None, control_only); 3994 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3995 if (log) 3996 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 3997 ") got a control event: %d", 3998 __FUNCTION__, static_cast<void *>(this), GetID(), 3999 event_sp->GetType()); 4000 4001 switch (event_sp->GetType()) { 4002 case eBroadcastInternalStateControlStop: 4003 exit_now = true; 4004 break; // doing any internal state management below 4005 4006 case eBroadcastInternalStateControlPause: 4007 control_only = true; 4008 break; 4009 4010 case eBroadcastInternalStateControlResume: 4011 control_only = false; 4012 break; 4013 } 4014 4015 continue; 4016 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 4017 if (m_public_state.GetValue() == eStateAttaching) { 4018 if (log) 4019 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4020 ") woke up with an interrupt while attaching - " 4021 "forwarding interrupt.", 4022 __FUNCTION__, static_cast<void *>(this), GetID()); 4023 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 4024 } else if (StateIsRunningState(m_last_broadcast_state)) { 4025 if (log) 4026 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4027 ") woke up with an interrupt - Halting.", 4028 __FUNCTION__, static_cast<void *>(this), GetID()); 4029 Error error = HaltPrivate(); 4030 if (error.Fail() && log) 4031 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4032 ") failed to halt the process: %s", 4033 __FUNCTION__, static_cast<void *>(this), GetID(), 4034 error.AsCString()); 4035 // Halt should generate a stopped event. Make a note of the fact that we 4036 // were 4037 // doing the interrupt, so we can set the interrupted flag after we 4038 // receive the 4039 // event. We deliberately set this to true even if HaltPrivate failed, 4040 // so that we 4041 // can interrupt on the next natural stop. 4042 interrupt_requested = true; 4043 } else { 4044 // This can happen when someone (e.g. Process::Halt) sees that we are 4045 // running and 4046 // sends an interrupt request, but the process actually stops before we 4047 // receive 4048 // it. In that case, we can just ignore the request. We use 4049 // m_last_broadcast_state, because the Stopped event may not have been 4050 // popped of 4051 // the event queue yet, which is when the public state gets updated. 4052 if (log) 4053 log->Printf( 4054 "Process::%s ignoring interrupt as we have already stopped.", 4055 __FUNCTION__); 4056 } 4057 continue; 4058 } 4059 4060 const StateType internal_state = 4061 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4062 4063 if (internal_state != eStateInvalid) { 4064 if (m_clear_thread_plans_on_stop && 4065 StateIsStoppedState(internal_state, true)) { 4066 m_clear_thread_plans_on_stop = false; 4067 m_thread_list.DiscardThreadPlans(); 4068 } 4069 4070 if (interrupt_requested) { 4071 if (StateIsStoppedState(internal_state, true)) { 4072 // We requested the interrupt, so mark this as such in the stop event 4073 // so 4074 // clients can tell an interrupted process from a natural stop 4075 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 4076 interrupt_requested = false; 4077 } else if (log) { 4078 log->Printf("Process::%s interrupt_requested, but a non-stopped " 4079 "state '%s' received.", 4080 __FUNCTION__, StateAsCString(internal_state)); 4081 } 4082 } 4083 4084 HandlePrivateEvent(event_sp); 4085 } 4086 4087 if (internal_state == eStateInvalid || internal_state == eStateExited || 4088 internal_state == eStateDetached) { 4089 if (log) 4090 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 4091 ") about to exit with internal state %s...", 4092 __FUNCTION__, static_cast<void *>(this), GetID(), 4093 StateAsCString(internal_state)); 4094 4095 break; 4096 } 4097 } 4098 4099 // Verify log is still enabled before attempting to write to it... 4100 if (log) 4101 log->Printf("Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 4102 __FUNCTION__, static_cast<void *>(this), GetID()); 4103 4104 // If we are a secondary thread, then the primary thread we are working for 4105 // will have already 4106 // acquired the public_run_lock, and isn't done with what it was doing yet, so 4107 // don't 4108 // try to change it on the way out. 4109 if (!is_secondary_thread) 4110 m_public_run_lock.SetStopped(); 4111 return NULL; 4112 } 4113 4114 //------------------------------------------------------------------ 4115 // Process Event Data 4116 //------------------------------------------------------------------ 4117 4118 Process::ProcessEventData::ProcessEventData() 4119 : EventData(), m_process_wp(), m_state(eStateInvalid), m_restarted(false), 4120 m_update_state(0), m_interrupted(false) {} 4121 4122 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 4123 StateType state) 4124 : EventData(), m_process_wp(), m_state(state), m_restarted(false), 4125 m_update_state(0), m_interrupted(false) { 4126 if (process_sp) 4127 m_process_wp = process_sp; 4128 } 4129 4130 Process::ProcessEventData::~ProcessEventData() = default; 4131 4132 const ConstString &Process::ProcessEventData::GetFlavorString() { 4133 static ConstString g_flavor("Process::ProcessEventData"); 4134 return g_flavor; 4135 } 4136 4137 const ConstString &Process::ProcessEventData::GetFlavor() const { 4138 return ProcessEventData::GetFlavorString(); 4139 } 4140 4141 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 4142 ProcessSP process_sp(m_process_wp.lock()); 4143 4144 if (!process_sp) 4145 return; 4146 4147 // This function gets called twice for each event, once when the event gets 4148 // pulled 4149 // off of the private process event queue, and then any number of times, first 4150 // when it gets pulled off of 4151 // the public event queue, then other times when we're pretending that this is 4152 // where we stopped at the 4153 // end of expression evaluation. m_update_state is used to distinguish these 4154 // three cases; it is 0 when we're just pulling it off for private handling, 4155 // and > 1 for expression evaluation, and we don't want to do the breakpoint 4156 // command handling then. 4157 if (m_update_state != 1) 4158 return; 4159 4160 process_sp->SetPublicState( 4161 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4162 4163 if (m_state == eStateStopped && !m_restarted) { 4164 // Let process subclasses know we are about to do a public stop and 4165 // do anything they might need to in order to speed up register and 4166 // memory accesses. 4167 process_sp->WillPublicStop(); 4168 } 4169 4170 // If this is a halt event, even if the halt stopped with some reason other 4171 // than a plain interrupt (e.g. we had 4172 // already stopped for a breakpoint when the halt request came through) don't 4173 // do the StopInfo actions, as they may 4174 // end up restarting the process. 4175 if (m_interrupted) 4176 return; 4177 4178 // If we're stopped and haven't restarted, then do the StopInfo actions here: 4179 if (m_state == eStateStopped && !m_restarted) { 4180 ThreadList &curr_thread_list = process_sp->GetThreadList(); 4181 uint32_t num_threads = curr_thread_list.GetSize(); 4182 uint32_t idx; 4183 4184 // The actions might change one of the thread's stop_info's opinions about 4185 // whether we should 4186 // stop the process, so we need to query that as we go. 4187 4188 // One other complication here, is that we try to catch any case where the 4189 // target has run (except for expressions) 4190 // and immediately exit, but if we get that wrong (which is possible) then 4191 // the thread list might have changed, and 4192 // that would cause our iteration here to crash. We could make a copy of 4193 // the thread list, but we'd really like 4194 // to also know if it has changed at all, so we make up a vector of the 4195 // thread ID's and check what we get back 4196 // against this list & bag out if anything differs. 4197 std::vector<uint32_t> thread_index_array(num_threads); 4198 for (idx = 0; idx < num_threads; ++idx) 4199 thread_index_array[idx] = 4200 curr_thread_list.GetThreadAtIndex(idx)->GetIndexID(); 4201 4202 // Use this to track whether we should continue from here. We will only 4203 // continue the target running if 4204 // no thread says we should stop. Of course if some thread's PerformAction 4205 // actually sets the target running, 4206 // then it doesn't matter what the other threads say... 4207 4208 bool still_should_stop = false; 4209 4210 // Sometimes - for instance if we have a bug in the stub we are talking to, 4211 // we stop but no thread has a 4212 // valid stop reason. In that case we should just stop, because we have no 4213 // way of telling what the right 4214 // thing to do is, and it's better to let the user decide than continue 4215 // behind their backs. 4216 4217 bool does_anybody_have_an_opinion = false; 4218 4219 for (idx = 0; idx < num_threads; ++idx) { 4220 curr_thread_list = process_sp->GetThreadList(); 4221 if (curr_thread_list.GetSize() != num_threads) { 4222 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4223 LIBLLDB_LOG_PROCESS)); 4224 if (log) 4225 log->Printf( 4226 "Number of threads changed from %u to %u while processing event.", 4227 num_threads, curr_thread_list.GetSize()); 4228 break; 4229 } 4230 4231 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 4232 4233 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 4234 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4235 LIBLLDB_LOG_PROCESS)); 4236 if (log) 4237 log->Printf("The thread at position %u changed from %u to %u while " 4238 "processing event.", 4239 idx, thread_index_array[idx], thread_sp->GetIndexID()); 4240 break; 4241 } 4242 4243 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4244 if (stop_info_sp && stop_info_sp->IsValid()) { 4245 does_anybody_have_an_opinion = true; 4246 bool this_thread_wants_to_stop; 4247 if (stop_info_sp->GetOverrideShouldStop()) { 4248 this_thread_wants_to_stop = 4249 stop_info_sp->GetOverriddenShouldStopValue(); 4250 } else { 4251 stop_info_sp->PerformAction(event_ptr); 4252 // The stop action might restart the target. If it does, then we want 4253 // to mark that in the 4254 // event so that whoever is receiving it will know to wait for the 4255 // running event and reflect 4256 // that state appropriately. 4257 // We also need to stop processing actions, since they aren't 4258 // expecting the target to be running. 4259 4260 // FIXME: we might have run. 4261 if (stop_info_sp->HasTargetRunSinceMe()) { 4262 SetRestarted(true); 4263 break; 4264 } 4265 4266 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4267 } 4268 4269 if (!still_should_stop) 4270 still_should_stop = this_thread_wants_to_stop; 4271 } 4272 } 4273 4274 if (!GetRestarted()) { 4275 if (!still_should_stop && does_anybody_have_an_opinion) { 4276 // We've been asked to continue, so do that here. 4277 SetRestarted(true); 4278 // Use the public resume method here, since this is just 4279 // extending a public resume. 4280 process_sp->PrivateResume(); 4281 } else { 4282 // If we didn't restart, run the Stop Hooks here: 4283 // They might also restart the target, so watch for that. 4284 process_sp->GetTarget().RunStopHooks(); 4285 if (process_sp->GetPrivateState() == eStateRunning) 4286 SetRestarted(true); 4287 } 4288 } 4289 } 4290 } 4291 4292 void Process::ProcessEventData::Dump(Stream *s) const { 4293 ProcessSP process_sp(m_process_wp.lock()); 4294 4295 if (process_sp) 4296 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4297 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4298 else 4299 s->PutCString(" process = NULL, "); 4300 4301 s->Printf("state = %s", StateAsCString(GetState())); 4302 } 4303 4304 const Process::ProcessEventData * 4305 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4306 if (event_ptr) { 4307 const EventData *event_data = event_ptr->GetData(); 4308 if (event_data && 4309 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4310 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4311 } 4312 return nullptr; 4313 } 4314 4315 ProcessSP 4316 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4317 ProcessSP process_sp; 4318 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4319 if (data) 4320 process_sp = data->GetProcessSP(); 4321 return process_sp; 4322 } 4323 4324 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4325 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4326 if (data == nullptr) 4327 return eStateInvalid; 4328 else 4329 return data->GetState(); 4330 } 4331 4332 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4333 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4334 if (data == nullptr) 4335 return false; 4336 else 4337 return data->GetRestarted(); 4338 } 4339 4340 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4341 bool new_value) { 4342 ProcessEventData *data = 4343 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4344 if (data != nullptr) 4345 data->SetRestarted(new_value); 4346 } 4347 4348 size_t 4349 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4350 ProcessEventData *data = 4351 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4352 if (data != nullptr) 4353 return data->GetNumRestartedReasons(); 4354 else 4355 return 0; 4356 } 4357 4358 const char * 4359 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4360 size_t idx) { 4361 ProcessEventData *data = 4362 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4363 if (data != nullptr) 4364 return data->GetRestartedReasonAtIndex(idx); 4365 else 4366 return nullptr; 4367 } 4368 4369 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4370 const char *reason) { 4371 ProcessEventData *data = 4372 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4373 if (data != nullptr) 4374 data->AddRestartedReason(reason); 4375 } 4376 4377 bool Process::ProcessEventData::GetInterruptedFromEvent( 4378 const Event *event_ptr) { 4379 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4380 if (data == nullptr) 4381 return false; 4382 else 4383 return data->GetInterrupted(); 4384 } 4385 4386 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4387 bool new_value) { 4388 ProcessEventData *data = 4389 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4390 if (data != nullptr) 4391 data->SetInterrupted(new_value); 4392 } 4393 4394 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4395 ProcessEventData *data = 4396 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4397 if (data) { 4398 data->SetUpdateStateOnRemoval(); 4399 return true; 4400 } 4401 return false; 4402 } 4403 4404 lldb::TargetSP Process::CalculateTarget() { return m_target_sp.lock(); } 4405 4406 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4407 exe_ctx.SetTargetPtr(&GetTarget()); 4408 exe_ctx.SetProcessPtr(this); 4409 exe_ctx.SetThreadPtr(nullptr); 4410 exe_ctx.SetFramePtr(nullptr); 4411 } 4412 4413 // uint32_t 4414 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4415 // std::vector<lldb::pid_t> &pids) 4416 //{ 4417 // return 0; 4418 //} 4419 // 4420 // ArchSpec 4421 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4422 //{ 4423 // return Host::GetArchSpecForExistingProcess (pid); 4424 //} 4425 // 4426 // ArchSpec 4427 // Process::GetArchSpecForExistingProcess (const char *process_name) 4428 //{ 4429 // return Host::GetArchSpecForExistingProcess (process_name); 4430 //} 4431 4432 void Process::AppendSTDOUT(const char *s, size_t len) { 4433 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4434 m_stdout_data.append(s, len); 4435 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4436 new ProcessEventData(shared_from_this(), GetState())); 4437 } 4438 4439 void Process::AppendSTDERR(const char *s, size_t len) { 4440 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4441 m_stderr_data.append(s, len); 4442 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4443 new ProcessEventData(shared_from_this(), GetState())); 4444 } 4445 4446 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4447 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4448 m_profile_data.push_back(one_profile_data); 4449 BroadcastEventIfUnique(eBroadcastBitProfileData, 4450 new ProcessEventData(shared_from_this(), GetState())); 4451 } 4452 4453 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4454 const StructuredDataPluginSP &plugin_sp) { 4455 BroadcastEvent( 4456 eBroadcastBitStructuredData, 4457 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4458 } 4459 4460 StructuredDataPluginSP 4461 Process::GetStructuredDataPlugin(const ConstString &type_name) const { 4462 auto find_it = m_structured_data_plugin_map.find(type_name); 4463 if (find_it != m_structured_data_plugin_map.end()) 4464 return find_it->second; 4465 else 4466 return StructuredDataPluginSP(); 4467 } 4468 4469 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Error &error) { 4470 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4471 if (m_profile_data.empty()) 4472 return 0; 4473 4474 std::string &one_profile_data = m_profile_data.front(); 4475 size_t bytes_available = one_profile_data.size(); 4476 if (bytes_available > 0) { 4477 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4478 if (log) 4479 log->Printf("Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4480 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4481 if (bytes_available > buf_size) { 4482 memcpy(buf, one_profile_data.c_str(), buf_size); 4483 one_profile_data.erase(0, buf_size); 4484 bytes_available = buf_size; 4485 } else { 4486 memcpy(buf, one_profile_data.c_str(), bytes_available); 4487 m_profile_data.erase(m_profile_data.begin()); 4488 } 4489 } 4490 return bytes_available; 4491 } 4492 4493 //------------------------------------------------------------------ 4494 // Process STDIO 4495 //------------------------------------------------------------------ 4496 4497 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Error &error) { 4498 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4499 size_t bytes_available = m_stdout_data.size(); 4500 if (bytes_available > 0) { 4501 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4502 if (log) 4503 log->Printf("Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4504 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4505 if (bytes_available > buf_size) { 4506 memcpy(buf, m_stdout_data.c_str(), buf_size); 4507 m_stdout_data.erase(0, buf_size); 4508 bytes_available = buf_size; 4509 } else { 4510 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4511 m_stdout_data.clear(); 4512 } 4513 } 4514 return bytes_available; 4515 } 4516 4517 size_t Process::GetSTDERR(char *buf, size_t buf_size, Error &error) { 4518 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4519 size_t bytes_available = m_stderr_data.size(); 4520 if (bytes_available > 0) { 4521 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4522 if (log) 4523 log->Printf("Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4524 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4525 if (bytes_available > buf_size) { 4526 memcpy(buf, m_stderr_data.c_str(), buf_size); 4527 m_stderr_data.erase(0, buf_size); 4528 bytes_available = buf_size; 4529 } else { 4530 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4531 m_stderr_data.clear(); 4532 } 4533 } 4534 return bytes_available; 4535 } 4536 4537 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4538 size_t src_len) { 4539 Process *process = (Process *)baton; 4540 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4541 } 4542 4543 class IOHandlerProcessSTDIO : public IOHandler { 4544 public: 4545 IOHandlerProcessSTDIO(Process *process, int write_fd) 4546 : IOHandler(process->GetTarget().GetDebugger(), 4547 IOHandler::Type::ProcessIO), 4548 m_process(process), m_write_file(write_fd, false) { 4549 m_pipe.CreateNew(false); 4550 m_read_file.SetDescriptor(GetInputFD(), false); 4551 } 4552 4553 ~IOHandlerProcessSTDIO() override = default; 4554 4555 // Each IOHandler gets to run until it is done. It should read data 4556 // from the "in" and place output into "out" and "err and return 4557 // when done. 4558 void Run() override { 4559 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4560 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4561 SetIsDone(true); 4562 return; 4563 } 4564 4565 SetIsDone(false); 4566 const int read_fd = m_read_file.GetDescriptor(); 4567 TerminalState terminal_state; 4568 terminal_state.Save(read_fd, false); 4569 Terminal terminal(read_fd); 4570 terminal.SetCanonical(false); 4571 terminal.SetEcho(false); 4572 // FD_ZERO, FD_SET are not supported on windows 4573 #ifndef _WIN32 4574 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4575 m_is_running = true; 4576 while (!GetIsDone()) { 4577 SelectHelper select_helper; 4578 select_helper.FDSetRead(read_fd); 4579 select_helper.FDSetRead(pipe_read_fd); 4580 Error error = select_helper.Select(); 4581 4582 if (error.Fail()) { 4583 SetIsDone(true); 4584 } else { 4585 char ch = 0; 4586 size_t n; 4587 if (select_helper.FDIsSetRead(read_fd)) { 4588 n = 1; 4589 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4590 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4591 SetIsDone(true); 4592 } else 4593 SetIsDone(true); 4594 } 4595 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4596 size_t bytes_read; 4597 // Consume the interrupt byte 4598 Error error = m_pipe.Read(&ch, 1, bytes_read); 4599 if (error.Success()) { 4600 switch (ch) { 4601 case 'q': 4602 SetIsDone(true); 4603 break; 4604 case 'i': 4605 if (StateIsRunningState(m_process->GetState())) 4606 m_process->SendAsyncInterrupt(); 4607 break; 4608 } 4609 } 4610 } 4611 } 4612 } 4613 m_is_running = false; 4614 #endif 4615 terminal_state.Restore(); 4616 } 4617 4618 void Cancel() override { 4619 SetIsDone(true); 4620 // Only write to our pipe to cancel if we are in 4621 // IOHandlerProcessSTDIO::Run(). 4622 // We can end up with a python command that is being run from the command 4623 // interpreter: 4624 // 4625 // (lldb) step_process_thousands_of_times 4626 // 4627 // In this case the command interpreter will be in the middle of handling 4628 // the command and if the process pushes and pops the IOHandler thousands 4629 // of times, we can end up writing to m_pipe without ever consuming the 4630 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4631 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4632 if (m_is_running) { 4633 char ch = 'q'; // Send 'q' for quit 4634 size_t bytes_written = 0; 4635 m_pipe.Write(&ch, 1, bytes_written); 4636 } 4637 } 4638 4639 bool Interrupt() override { 4640 // Do only things that are safe to do in an interrupt context (like in 4641 // a SIGINT handler), like write 1 byte to a file descriptor. This will 4642 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4643 // that was written to the pipe and then call 4644 // m_process->SendAsyncInterrupt() 4645 // from a much safer location in code. 4646 if (m_active) { 4647 char ch = 'i'; // Send 'i' for interrupt 4648 size_t bytes_written = 0; 4649 Error result = m_pipe.Write(&ch, 1, bytes_written); 4650 return result.Success(); 4651 } else { 4652 // This IOHandler might be pushed on the stack, but not being run 4653 // currently 4654 // so do the right thing if we aren't actively watching for STDIN by 4655 // sending 4656 // the interrupt to the process. Otherwise the write to the pipe above 4657 // would 4658 // do nothing. This can happen when the command interpreter is running and 4659 // gets a "expression ...". It will be on the IOHandler thread and sending 4660 // the input is complete to the delegate which will cause the expression 4661 // to 4662 // run, which will push the process IO handler, but not run it. 4663 4664 if (StateIsRunningState(m_process->GetState())) { 4665 m_process->SendAsyncInterrupt(); 4666 return true; 4667 } 4668 } 4669 return false; 4670 } 4671 4672 void GotEOF() override {} 4673 4674 protected: 4675 Process *m_process; 4676 File m_read_file; // Read from this file (usually actual STDIN for LLDB 4677 File m_write_file; // Write to this file (usually the master pty for getting 4678 // io to debuggee) 4679 Pipe m_pipe; 4680 std::atomic<bool> m_is_running{false}; 4681 }; 4682 4683 void Process::SetSTDIOFileDescriptor(int fd) { 4684 // First set up the Read Thread for reading/handling process I/O 4685 4686 std::unique_ptr<ConnectionFileDescriptor> conn_ap( 4687 new ConnectionFileDescriptor(fd, true)); 4688 4689 if (conn_ap) { 4690 m_stdio_communication.SetConnection(conn_ap.release()); 4691 if (m_stdio_communication.IsConnected()) { 4692 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4693 STDIOReadThreadBytesReceived, this); 4694 m_stdio_communication.StartReadThread(); 4695 4696 // Now read thread is set up, set up input reader. 4697 4698 if (!m_process_input_reader) 4699 m_process_input_reader.reset(new IOHandlerProcessSTDIO(this, fd)); 4700 } 4701 } 4702 } 4703 4704 bool Process::ProcessIOHandlerIsActive() { 4705 IOHandlerSP io_handler_sp(m_process_input_reader); 4706 if (io_handler_sp) 4707 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4708 return false; 4709 } 4710 bool Process::PushProcessIOHandler() { 4711 IOHandlerSP io_handler_sp(m_process_input_reader); 4712 if (io_handler_sp) { 4713 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4714 if (log) 4715 log->Printf("Process::%s pushing IO handler", __FUNCTION__); 4716 4717 io_handler_sp->SetIsDone(false); 4718 GetTarget().GetDebugger().PushIOHandler(io_handler_sp); 4719 return true; 4720 } 4721 return false; 4722 } 4723 4724 bool Process::PopProcessIOHandler() { 4725 IOHandlerSP io_handler_sp(m_process_input_reader); 4726 if (io_handler_sp) 4727 return GetTarget().GetDebugger().PopIOHandler(io_handler_sp); 4728 return false; 4729 } 4730 4731 // The process needs to know about installed plug-ins 4732 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4733 4734 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4735 4736 namespace { 4737 // RestorePlanState is used to record the "is private", "is master" and "okay to 4738 // discard" fields of 4739 // the plan we are running, and reset it on Clean or on destruction. 4740 // It will only reset the state once, so you can call Clean and then monkey with 4741 // the state and it 4742 // won't get reset on you again. 4743 4744 class RestorePlanState { 4745 public: 4746 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4747 : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) { 4748 if (m_thread_plan_sp) { 4749 m_private = m_thread_plan_sp->GetPrivate(); 4750 m_is_master = m_thread_plan_sp->IsMasterPlan(); 4751 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4752 } 4753 } 4754 4755 ~RestorePlanState() { Clean(); } 4756 4757 void Clean() { 4758 if (!m_already_reset && m_thread_plan_sp) { 4759 m_already_reset = true; 4760 m_thread_plan_sp->SetPrivate(m_private); 4761 m_thread_plan_sp->SetIsMasterPlan(m_is_master); 4762 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4763 } 4764 } 4765 4766 private: 4767 lldb::ThreadPlanSP m_thread_plan_sp; 4768 bool m_already_reset; 4769 bool m_private; 4770 bool m_is_master; 4771 bool m_okay_to_discard; 4772 }; 4773 } // anonymous namespace 4774 4775 static microseconds 4776 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4777 const milliseconds default_one_thread_timeout(250); 4778 4779 // If the overall wait is forever, then we don't need to worry about it. 4780 if (!options.GetTimeout()) { 4781 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4782 : default_one_thread_timeout; 4783 } 4784 4785 // If the one thread timeout is set, use it. 4786 if (options.GetOneThreadTimeout()) 4787 return *options.GetOneThreadTimeout(); 4788 4789 // Otherwise use half the total timeout, bounded by the 4790 // default_one_thread_timeout. 4791 return std::min<microseconds>(default_one_thread_timeout, 4792 *options.GetTimeout() / 2); 4793 } 4794 4795 static Timeout<std::micro> 4796 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4797 bool before_first_timeout) { 4798 // If we are going to run all threads the whole time, or if we are only 4799 // going to run one thread, we can just return the overall timeout. 4800 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4801 return options.GetTimeout(); 4802 4803 if (before_first_timeout) 4804 return GetOneThreadExpressionTimeout(options); 4805 4806 if (!options.GetTimeout()) 4807 return llvm::None; 4808 else 4809 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4810 } 4811 4812 ExpressionResults 4813 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4814 lldb::ThreadPlanSP &thread_plan_sp, 4815 const EvaluateExpressionOptions &options, 4816 DiagnosticManager &diagnostic_manager) { 4817 ExpressionResults return_value = eExpressionSetupError; 4818 4819 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4820 4821 if (!thread_plan_sp) { 4822 diagnostic_manager.PutString( 4823 eDiagnosticSeverityError, 4824 "RunThreadPlan called with empty thread plan."); 4825 return eExpressionSetupError; 4826 } 4827 4828 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4829 diagnostic_manager.PutString( 4830 eDiagnosticSeverityError, 4831 "RunThreadPlan called with an invalid thread plan."); 4832 return eExpressionSetupError; 4833 } 4834 4835 if (exe_ctx.GetProcessPtr() != this) { 4836 diagnostic_manager.PutString(eDiagnosticSeverityError, 4837 "RunThreadPlan called on wrong process."); 4838 return eExpressionSetupError; 4839 } 4840 4841 Thread *thread = exe_ctx.GetThreadPtr(); 4842 if (thread == nullptr) { 4843 diagnostic_manager.PutString(eDiagnosticSeverityError, 4844 "RunThreadPlan called with invalid thread."); 4845 return eExpressionSetupError; 4846 } 4847 4848 // We need to change some of the thread plan attributes for the thread plan 4849 // runner. This will restore them 4850 // when we are done: 4851 4852 RestorePlanState thread_plan_restorer(thread_plan_sp); 4853 4854 // We rely on the thread plan we are running returning "PlanCompleted" if when 4855 // it successfully completes. 4856 // For that to be true the plan can't be private - since private plans 4857 // suppress themselves in the 4858 // GetCompletedPlan call. 4859 4860 thread_plan_sp->SetPrivate(false); 4861 4862 // The plans run with RunThreadPlan also need to be terminal master plans or 4863 // when they are done we will end 4864 // up asking the plan above us whether we should stop, which may give the 4865 // wrong answer. 4866 4867 thread_plan_sp->SetIsMasterPlan(true); 4868 thread_plan_sp->SetOkayToDiscard(false); 4869 4870 if (m_private_state.GetValue() != eStateStopped) { 4871 diagnostic_manager.PutString( 4872 eDiagnosticSeverityError, 4873 "RunThreadPlan called while the private state was not stopped."); 4874 return eExpressionSetupError; 4875 } 4876 4877 // Save the thread & frame from the exe_ctx for restoration after we run 4878 const uint32_t thread_idx_id = thread->GetIndexID(); 4879 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4880 if (!selected_frame_sp) { 4881 thread->SetSelectedFrame(nullptr); 4882 selected_frame_sp = thread->GetSelectedFrame(); 4883 if (!selected_frame_sp) { 4884 diagnostic_manager.Printf( 4885 eDiagnosticSeverityError, 4886 "RunThreadPlan called without a selected frame on thread %d", 4887 thread_idx_id); 4888 return eExpressionSetupError; 4889 } 4890 } 4891 4892 // Make sure the timeout values make sense. The one thread timeout needs to be 4893 // smaller than the overall timeout. 4894 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4895 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4896 diagnostic_manager.PutString(eDiagnosticSeverityError, 4897 "RunThreadPlan called with one thread " 4898 "timeout greater than total timeout"); 4899 return eExpressionSetupError; 4900 } 4901 4902 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4903 4904 // N.B. Running the target may unset the currently selected thread and frame. 4905 // We don't want to do that either, 4906 // so we should arrange to reset them as well. 4907 4908 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4909 4910 uint32_t selected_tid; 4911 StackID selected_stack_id; 4912 if (selected_thread_sp) { 4913 selected_tid = selected_thread_sp->GetIndexID(); 4914 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4915 } else { 4916 selected_tid = LLDB_INVALID_THREAD_ID; 4917 } 4918 4919 HostThread backup_private_state_thread; 4920 lldb::StateType old_state = eStateInvalid; 4921 lldb::ThreadPlanSP stopper_base_plan_sp; 4922 4923 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4924 LIBLLDB_LOG_PROCESS)); 4925 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4926 // Yikes, we are running on the private state thread! So we can't wait for 4927 // public events on this thread, since 4928 // we are the thread that is generating public events. 4929 // The simplest thing to do is to spin up a temporary thread to handle 4930 // private state thread events while 4931 // we are fielding public events here. 4932 if (log) 4933 log->Printf("Running thread plan on private state thread, spinning up " 4934 "another state thread to handle the events."); 4935 4936 backup_private_state_thread = m_private_state_thread; 4937 4938 // One other bit of business: we want to run just this thread plan and 4939 // anything it pushes, and then stop, 4940 // returning control here. 4941 // But in the normal course of things, the plan above us on the stack would 4942 // be given a shot at the stop 4943 // event before deciding to stop, and we don't want that. So we insert a 4944 // "stopper" base plan on the stack 4945 // before the plan we want to run. Since base plans always stop and return 4946 // control to the user, that will 4947 // do just what we want. 4948 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4949 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4950 // Have to make sure our public state is stopped, since otherwise the 4951 // reporting logic below doesn't work correctly. 4952 old_state = m_public_state.GetValue(); 4953 m_public_state.SetValueNoLock(eStateStopped); 4954 4955 // Now spin up the private state thread: 4956 StartPrivateStateThread(true); 4957 } 4958 4959 thread->QueueThreadPlan( 4960 thread_plan_sp, false); // This used to pass "true" does that make sense? 4961 4962 if (options.GetDebug()) { 4963 // In this case, we aren't actually going to run, we just want to stop right 4964 // away. 4965 // Flush this thread so we will refetch the stacks and show the correct 4966 // backtrace. 4967 // FIXME: To make this prettier we should invent some stop reason for this, 4968 // but that 4969 // is only cosmetic, and this functionality is only of use to lldb 4970 // developers who can 4971 // live with not pretty... 4972 thread->Flush(); 4973 return eExpressionStoppedForDebug; 4974 } 4975 4976 ListenerSP listener_sp( 4977 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4978 4979 lldb::EventSP event_to_broadcast_sp; 4980 4981 { 4982 // This process event hijacker Hijacks the Public events and its destructor 4983 // makes sure that the process events get 4984 // restored on exit to the function. 4985 // 4986 // If the event needs to propagate beyond the hijacker (e.g., the process 4987 // exits during execution), then the event 4988 // is put into event_to_broadcast_sp for rebroadcasting. 4989 4990 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 4991 4992 if (log) { 4993 StreamString s; 4994 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 4995 log->Printf("Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 4996 " to run thread plan \"%s\".", 4997 thread->GetIndexID(), thread->GetID(), s.GetData()); 4998 } 4999 5000 bool got_event; 5001 lldb::EventSP event_sp; 5002 lldb::StateType stop_state = lldb::eStateInvalid; 5003 5004 bool before_first_timeout = true; // This is set to false the first time 5005 // that we have to halt the target. 5006 bool do_resume = true; 5007 bool handle_running_event = true; 5008 5009 // This is just for accounting: 5010 uint32_t num_resumes = 0; 5011 5012 // If we are going to run all threads the whole time, or if we are only 5013 // going to run one thread, then we don't need the first timeout. So we 5014 // pretend we are after the first timeout already. 5015 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 5016 before_first_timeout = false; 5017 5018 if (log) 5019 log->Printf("Stop others: %u, try all: %u, before_first: %u.\n", 5020 options.GetStopOthers(), options.GetTryAllThreads(), 5021 before_first_timeout); 5022 5023 // This isn't going to work if there are unfetched events on the queue. 5024 // Are there cases where we might want to run the remaining events here, and 5025 // then try to 5026 // call the function? That's probably being too tricky for our own good. 5027 5028 Event *other_events = listener_sp->PeekAtNextEvent(); 5029 if (other_events != nullptr) { 5030 diagnostic_manager.PutString( 5031 eDiagnosticSeverityError, 5032 "RunThreadPlan called with pending events on the queue."); 5033 return eExpressionSetupError; 5034 } 5035 5036 // We also need to make sure that the next event is delivered. We might be 5037 // calling a function as part of 5038 // a thread plan, in which case the last delivered event could be the 5039 // running event, and we don't want 5040 // event coalescing to cause us to lose OUR running event... 5041 ForceNextEventDelivery(); 5042 5043 // This while loop must exit out the bottom, there's cleanup that we need to do 5044 // when we are done. 5045 // So don't call return anywhere within it. 5046 5047 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5048 // It's pretty much impossible to write test cases for things like: 5049 // One thread timeout expires, I go to halt, but the process already stopped 5050 // on the function call stop breakpoint. Turning on this define will make 5051 // us not 5052 // fetch the first event till after the halt. So if you run a quick 5053 // function, it will have 5054 // completed, and the completion event will be waiting, when you interrupt 5055 // for halt. 5056 // The expression evaluation should still succeed. 5057 bool miss_first_event = true; 5058 #endif 5059 while (true) { 5060 // We usually want to resume the process if we get to the top of the loop. 5061 // The only exception is if we get two running events with no intervening 5062 // stop, which can happen, we will just wait for then next stop event. 5063 if (log) 5064 log->Printf("Top of while loop: do_resume: %i handle_running_event: %i " 5065 "before_first_timeout: %i.", 5066 do_resume, handle_running_event, before_first_timeout); 5067 5068 if (do_resume || handle_running_event) { 5069 // Do the initial resume and wait for the running event before going 5070 // further. 5071 5072 if (do_resume) { 5073 num_resumes++; 5074 Error resume_error = PrivateResume(); 5075 if (!resume_error.Success()) { 5076 diagnostic_manager.Printf( 5077 eDiagnosticSeverityError, 5078 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 5079 resume_error.AsCString()); 5080 return_value = eExpressionSetupError; 5081 break; 5082 } 5083 } 5084 5085 got_event = 5086 listener_sp->GetEvent(event_sp, std::chrono::milliseconds(500)); 5087 if (!got_event) { 5088 if (log) 5089 log->Printf("Process::RunThreadPlan(): didn't get any event after " 5090 "resume %" PRIu32 ", exiting.", 5091 num_resumes); 5092 5093 diagnostic_manager.Printf(eDiagnosticSeverityError, 5094 "didn't get any event after resume %" PRIu32 5095 ", exiting.", 5096 num_resumes); 5097 return_value = eExpressionSetupError; 5098 break; 5099 } 5100 5101 stop_state = 5102 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5103 5104 if (stop_state != eStateRunning) { 5105 bool restarted = false; 5106 5107 if (stop_state == eStateStopped) { 5108 restarted = Process::ProcessEventData::GetRestartedFromEvent( 5109 event_sp.get()); 5110 if (log) 5111 log->Printf( 5112 "Process::RunThreadPlan(): didn't get running event after " 5113 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 5114 "handle_running_event: %i).", 5115 num_resumes, StateAsCString(stop_state), restarted, do_resume, 5116 handle_running_event); 5117 } 5118 5119 if (restarted) { 5120 // This is probably an overabundance of caution, I don't think I 5121 // should ever get a stopped & restarted 5122 // event here. But if I do, the best thing is to Halt and then get 5123 // out of here. 5124 const bool clear_thread_plans = false; 5125 const bool use_run_lock = false; 5126 Halt(clear_thread_plans, use_run_lock); 5127 } 5128 5129 diagnostic_manager.Printf( 5130 eDiagnosticSeverityError, 5131 "didn't get running event after initial resume, got %s instead.", 5132 StateAsCString(stop_state)); 5133 return_value = eExpressionSetupError; 5134 break; 5135 } 5136 5137 if (log) 5138 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 5139 // We need to call the function synchronously, so spin waiting for it to 5140 // return. 5141 // If we get interrupted while executing, we're going to lose our 5142 // context, and 5143 // won't be able to gather the result at this point. 5144 // We set the timeout AFTER the resume, since the resume takes some time 5145 // and we 5146 // don't want to charge that to the timeout. 5147 } else { 5148 if (log) 5149 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 5150 } 5151 5152 do_resume = true; 5153 handle_running_event = true; 5154 5155 // Now wait for the process to stop again: 5156 event_sp.reset(); 5157 5158 Timeout<std::micro> timeout = 5159 GetExpressionTimeout(options, before_first_timeout); 5160 if (log) { 5161 if (timeout) { 5162 auto now = system_clock::now(); 5163 log->Printf("Process::RunThreadPlan(): about to wait - now is %s - " 5164 "endpoint is %s", 5165 llvm::to_string(now).c_str(), 5166 llvm::to_string(now + *timeout).c_str()); 5167 } else { 5168 log->Printf("Process::RunThreadPlan(): about to wait forever."); 5169 } 5170 } 5171 5172 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5173 // See comment above... 5174 if (miss_first_event) { 5175 usleep(1000); 5176 miss_first_event = false; 5177 got_event = false; 5178 } else 5179 #endif 5180 got_event = listener_sp->GetEvent(event_sp, timeout); 5181 5182 if (got_event) { 5183 if (event_sp) { 5184 bool keep_going = false; 5185 if (event_sp->GetType() == eBroadcastBitInterrupt) { 5186 const bool clear_thread_plans = false; 5187 const bool use_run_lock = false; 5188 Halt(clear_thread_plans, use_run_lock); 5189 return_value = eExpressionInterrupted; 5190 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 5191 "execution halted by user interrupt."); 5192 if (log) 5193 log->Printf("Process::RunThreadPlan(): Got interrupted by " 5194 "eBroadcastBitInterrupted, exiting."); 5195 break; 5196 } else { 5197 stop_state = 5198 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5199 if (log) 5200 log->Printf( 5201 "Process::RunThreadPlan(): in while loop, got event: %s.", 5202 StateAsCString(stop_state)); 5203 5204 switch (stop_state) { 5205 case lldb::eStateStopped: { 5206 // We stopped, figure out what we are going to do now. 5207 ThreadSP thread_sp = 5208 GetThreadList().FindThreadByIndexID(thread_idx_id); 5209 if (!thread_sp) { 5210 // Ooh, our thread has vanished. Unlikely that this was 5211 // successful execution... 5212 if (log) 5213 log->Printf("Process::RunThreadPlan(): execution completed " 5214 "but our thread (index-id=%u) has vanished.", 5215 thread_idx_id); 5216 return_value = eExpressionInterrupted; 5217 } else { 5218 // If we were restarted, we just need to go back up to fetch 5219 // another event. 5220 if (Process::ProcessEventData::GetRestartedFromEvent( 5221 event_sp.get())) { 5222 if (log) { 5223 log->Printf("Process::RunThreadPlan(): Got a stop and " 5224 "restart, so we'll continue waiting."); 5225 } 5226 keep_going = true; 5227 do_resume = false; 5228 handle_running_event = true; 5229 } else { 5230 ThreadPlanSP plan = thread->GetCompletedPlan(); 5231 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 5232 5233 if (log) 5234 log->PutCString("Process::RunThreadPlan(): execution " 5235 "completed successfully."); 5236 5237 // Restore the plan state so it will get reported as 5238 // intended when we are done. 5239 thread_plan_restorer.Clean(); 5240 5241 return_value = eExpressionCompleted; 5242 } else { 5243 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5244 // Something restarted the target, so just wait for it to 5245 // stop for real. 5246 if (stop_info_sp && 5247 stop_info_sp->GetStopReason() == eStopReasonBreakpoint) { 5248 if (log) 5249 log->Printf("Process::RunThreadPlan() stopped for " 5250 "breakpoint: %s.", 5251 stop_info_sp->GetDescription()); 5252 return_value = eExpressionHitBreakpoint; 5253 if (!options.DoesIgnoreBreakpoints()) { 5254 // Restore the plan state and then force Private to 5255 // false. We are 5256 // going to stop because of this plan so we need it to 5257 // become a public 5258 // plan or it won't report correctly when we continue to 5259 // its termination 5260 // later on. 5261 thread_plan_restorer.Clean(); 5262 if (thread_plan_sp) 5263 thread_plan_sp->SetPrivate(false); 5264 event_to_broadcast_sp = event_sp; 5265 } 5266 } else { 5267 if (log) 5268 log->PutCString("Process::RunThreadPlan(): thread plan " 5269 "didn't successfully complete."); 5270 if (!options.DoesUnwindOnError()) 5271 event_to_broadcast_sp = event_sp; 5272 return_value = eExpressionInterrupted; 5273 } 5274 } 5275 } 5276 } 5277 } break; 5278 5279 case lldb::eStateRunning: 5280 // This shouldn't really happen, but sometimes we do get two 5281 // running events without an 5282 // intervening stop, and in that case we should just go back to 5283 // waiting for the stop. 5284 do_resume = false; 5285 keep_going = true; 5286 handle_running_event = false; 5287 break; 5288 5289 default: 5290 if (log) 5291 log->Printf("Process::RunThreadPlan(): execution stopped with " 5292 "unexpected state: %s.", 5293 StateAsCString(stop_state)); 5294 5295 if (stop_state == eStateExited) 5296 event_to_broadcast_sp = event_sp; 5297 5298 diagnostic_manager.PutString( 5299 eDiagnosticSeverityError, 5300 "execution stopped with unexpected state."); 5301 return_value = eExpressionInterrupted; 5302 break; 5303 } 5304 } 5305 5306 if (keep_going) 5307 continue; 5308 else 5309 break; 5310 } else { 5311 if (log) 5312 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5313 "the event pointer was null. How odd..."); 5314 return_value = eExpressionInterrupted; 5315 break; 5316 } 5317 } else { 5318 // If we didn't get an event that means we've timed out... 5319 // We will interrupt the process here. Depending on what we were asked 5320 // to do we will 5321 // either exit, or try with all threads running for the same timeout. 5322 5323 if (log) { 5324 if (options.GetTryAllThreads()) { 5325 if (before_first_timeout) { 5326 LLDB_LOG(log, 5327 "Running function with one thread timeout timed out."); 5328 } else 5329 LLDB_LOG(log, "Restarting function with all threads enabled and " 5330 "timeout: {0} timed out, abandoning execution.", 5331 timeout); 5332 } else 5333 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5334 "abandoning execution.", 5335 timeout); 5336 } 5337 5338 // It is possible that between the time we issued the Halt, and we get 5339 // around to calling Halt the target 5340 // could have stopped. That's fine, Halt will figure that out and send 5341 // the appropriate Stopped event. 5342 // BUT it is also possible that we stopped & restarted (e.g. hit a 5343 // signal with "stop" set to false.) In 5344 // that case, we'll get the stopped & restarted event, and we should go 5345 // back to waiting for the Halt's 5346 // stopped event. That's what this while loop does. 5347 5348 bool back_to_top = true; 5349 uint32_t try_halt_again = 0; 5350 bool do_halt = true; 5351 const uint32_t num_retries = 5; 5352 while (try_halt_again < num_retries) { 5353 Error halt_error; 5354 if (do_halt) { 5355 if (log) 5356 log->Printf("Process::RunThreadPlan(): Running Halt."); 5357 const bool clear_thread_plans = false; 5358 const bool use_run_lock = false; 5359 Halt(clear_thread_plans, use_run_lock); 5360 } 5361 if (halt_error.Success()) { 5362 if (log) 5363 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5364 5365 got_event = 5366 listener_sp->GetEvent(event_sp, std::chrono::milliseconds(500)); 5367 5368 if (got_event) { 5369 stop_state = 5370 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5371 if (log) { 5372 log->Printf("Process::RunThreadPlan(): Stopped with event: %s", 5373 StateAsCString(stop_state)); 5374 if (stop_state == lldb::eStateStopped && 5375 Process::ProcessEventData::GetInterruptedFromEvent( 5376 event_sp.get())) 5377 log->PutCString(" Event was the Halt interruption event."); 5378 } 5379 5380 if (stop_state == lldb::eStateStopped) { 5381 // Between the time we initiated the Halt and the time we 5382 // delivered it, the process could have 5383 // already finished its job. Check that here: 5384 5385 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5386 if (log) 5387 log->PutCString("Process::RunThreadPlan(): Even though we " 5388 "timed out, the call plan was done. " 5389 "Exiting wait loop."); 5390 return_value = eExpressionCompleted; 5391 back_to_top = false; 5392 break; 5393 } 5394 5395 if (Process::ProcessEventData::GetRestartedFromEvent( 5396 event_sp.get())) { 5397 if (log) 5398 log->PutCString("Process::RunThreadPlan(): Went to halt " 5399 "but got a restarted event, there must be " 5400 "an un-restarted stopped event so try " 5401 "again... " 5402 "Exiting wait loop."); 5403 try_halt_again++; 5404 do_halt = false; 5405 continue; 5406 } 5407 5408 if (!options.GetTryAllThreads()) { 5409 if (log) 5410 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5411 "was false, we stopped so now we're " 5412 "quitting."); 5413 return_value = eExpressionInterrupted; 5414 back_to_top = false; 5415 break; 5416 } 5417 5418 if (before_first_timeout) { 5419 // Set all the other threads to run, and return to the top of 5420 // the loop, which will continue; 5421 before_first_timeout = false; 5422 thread_plan_sp->SetStopOthers(false); 5423 if (log) 5424 log->PutCString( 5425 "Process::RunThreadPlan(): about to resume."); 5426 5427 back_to_top = true; 5428 break; 5429 } else { 5430 // Running all threads failed, so return Interrupted. 5431 if (log) 5432 log->PutCString("Process::RunThreadPlan(): running all " 5433 "threads timed out."); 5434 return_value = eExpressionInterrupted; 5435 back_to_top = false; 5436 break; 5437 } 5438 } 5439 } else { 5440 if (log) 5441 log->PutCString("Process::RunThreadPlan(): halt said it " 5442 "succeeded, but I got no event. " 5443 "I'm getting out of here passing Interrupted."); 5444 return_value = eExpressionInterrupted; 5445 back_to_top = false; 5446 break; 5447 } 5448 } else { 5449 try_halt_again++; 5450 continue; 5451 } 5452 } 5453 5454 if (!back_to_top || try_halt_again > num_retries) 5455 break; 5456 else 5457 continue; 5458 } 5459 } // END WAIT LOOP 5460 5461 // If we had to start up a temporary private state thread to run this thread 5462 // plan, shut it down now. 5463 if (backup_private_state_thread.IsJoinable()) { 5464 StopPrivateStateThread(); 5465 Error error; 5466 m_private_state_thread = backup_private_state_thread; 5467 if (stopper_base_plan_sp) { 5468 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5469 } 5470 if (old_state != eStateInvalid) 5471 m_public_state.SetValueNoLock(old_state); 5472 } 5473 5474 if (return_value != eExpressionCompleted && log) { 5475 // Print a backtrace into the log so we can figure out where we are: 5476 StreamString s; 5477 s.PutCString("Thread state after unsuccessful completion: \n"); 5478 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5479 log->PutString(s.GetString()); 5480 } 5481 // Restore the thread state if we are going to discard the plan execution. 5482 // There are three cases where this 5483 // could happen: 5484 // 1) The execution successfully completed 5485 // 2) We hit a breakpoint, and ignore_breakpoints was true 5486 // 3) We got some other error, and discard_on_error was true 5487 bool should_unwind = (return_value == eExpressionInterrupted && 5488 options.DoesUnwindOnError()) || 5489 (return_value == eExpressionHitBreakpoint && 5490 options.DoesIgnoreBreakpoints()); 5491 5492 if (return_value == eExpressionCompleted || should_unwind) { 5493 thread_plan_sp->RestoreThreadState(); 5494 } 5495 5496 // Now do some processing on the results of the run: 5497 if (return_value == eExpressionInterrupted || 5498 return_value == eExpressionHitBreakpoint) { 5499 if (log) { 5500 StreamString s; 5501 if (event_sp) 5502 event_sp->Dump(&s); 5503 else { 5504 log->PutCString("Process::RunThreadPlan(): Stop event that " 5505 "interrupted us is NULL."); 5506 } 5507 5508 StreamString ts; 5509 5510 const char *event_explanation = nullptr; 5511 5512 do { 5513 if (!event_sp) { 5514 event_explanation = "<no event>"; 5515 break; 5516 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5517 event_explanation = "<user interrupt>"; 5518 break; 5519 } else { 5520 const Process::ProcessEventData *event_data = 5521 Process::ProcessEventData::GetEventDataFromEvent( 5522 event_sp.get()); 5523 5524 if (!event_data) { 5525 event_explanation = "<no event data>"; 5526 break; 5527 } 5528 5529 Process *process = event_data->GetProcessSP().get(); 5530 5531 if (!process) { 5532 event_explanation = "<no process>"; 5533 break; 5534 } 5535 5536 ThreadList &thread_list = process->GetThreadList(); 5537 5538 uint32_t num_threads = thread_list.GetSize(); 5539 uint32_t thread_index; 5540 5541 ts.Printf("<%u threads> ", num_threads); 5542 5543 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5544 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5545 5546 if (!thread) { 5547 ts.Printf("<?> "); 5548 continue; 5549 } 5550 5551 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5552 RegisterContext *register_context = 5553 thread->GetRegisterContext().get(); 5554 5555 if (register_context) 5556 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5557 else 5558 ts.Printf("[ip unknown] "); 5559 5560 // Show the private stop info here, the public stop info will be 5561 // from the last natural stop. 5562 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5563 if (stop_info_sp) { 5564 const char *stop_desc = stop_info_sp->GetDescription(); 5565 if (stop_desc) 5566 ts.PutCString(stop_desc); 5567 } 5568 ts.Printf(">"); 5569 } 5570 5571 event_explanation = ts.GetData(); 5572 } 5573 } while (0); 5574 5575 if (event_explanation) 5576 log->Printf("Process::RunThreadPlan(): execution interrupted: %s %s", 5577 s.GetData(), event_explanation); 5578 else 5579 log->Printf("Process::RunThreadPlan(): execution interrupted: %s", 5580 s.GetData()); 5581 } 5582 5583 if (should_unwind) { 5584 if (log) 5585 log->Printf("Process::RunThreadPlan: ExecutionInterrupted - " 5586 "discarding thread plans up to %p.", 5587 static_cast<void *>(thread_plan_sp.get())); 5588 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5589 } else { 5590 if (log) 5591 log->Printf("Process::RunThreadPlan: ExecutionInterrupted - for " 5592 "plan: %p not discarding.", 5593 static_cast<void *>(thread_plan_sp.get())); 5594 } 5595 } else if (return_value == eExpressionSetupError) { 5596 if (log) 5597 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5598 5599 if (options.DoesUnwindOnError()) { 5600 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5601 } 5602 } else { 5603 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5604 if (log) 5605 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5606 return_value = eExpressionCompleted; 5607 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5608 if (log) 5609 log->PutCString( 5610 "Process::RunThreadPlan(): thread plan was discarded"); 5611 return_value = eExpressionDiscarded; 5612 } else { 5613 if (log) 5614 log->PutCString( 5615 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5616 if (options.DoesUnwindOnError() && thread_plan_sp) { 5617 if (log) 5618 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5619 "'cause unwind_on_error is set."); 5620 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5621 } 5622 } 5623 } 5624 5625 // Thread we ran the function in may have gone away because we ran the 5626 // target 5627 // Check that it's still there, and if it is put it back in the context. 5628 // Also restore the 5629 // frame in the context if it is still present. 5630 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5631 if (thread) { 5632 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5633 } 5634 5635 // Also restore the current process'es selected frame & thread, since this 5636 // function calling may 5637 // be done behind the user's back. 5638 5639 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5640 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5641 selected_stack_id.IsValid()) { 5642 // We were able to restore the selected thread, now restore the frame: 5643 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5644 StackFrameSP old_frame_sp = 5645 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5646 selected_stack_id); 5647 if (old_frame_sp) 5648 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5649 old_frame_sp.get()); 5650 } 5651 } 5652 } 5653 5654 // If the process exited during the run of the thread plan, notify everyone. 5655 5656 if (event_to_broadcast_sp) { 5657 if (log) 5658 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5659 BroadcastEvent(event_to_broadcast_sp); 5660 } 5661 5662 return return_value; 5663 } 5664 5665 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5666 const char *result_name; 5667 5668 switch (result) { 5669 case eExpressionCompleted: 5670 result_name = "eExpressionCompleted"; 5671 break; 5672 case eExpressionDiscarded: 5673 result_name = "eExpressionDiscarded"; 5674 break; 5675 case eExpressionInterrupted: 5676 result_name = "eExpressionInterrupted"; 5677 break; 5678 case eExpressionHitBreakpoint: 5679 result_name = "eExpressionHitBreakpoint"; 5680 break; 5681 case eExpressionSetupError: 5682 result_name = "eExpressionSetupError"; 5683 break; 5684 case eExpressionParseError: 5685 result_name = "eExpressionParseError"; 5686 break; 5687 case eExpressionResultUnavailable: 5688 result_name = "eExpressionResultUnavailable"; 5689 break; 5690 case eExpressionTimedOut: 5691 result_name = "eExpressionTimedOut"; 5692 break; 5693 case eExpressionStoppedForDebug: 5694 result_name = "eExpressionStoppedForDebug"; 5695 break; 5696 } 5697 return result_name; 5698 } 5699 5700 void Process::GetStatus(Stream &strm) { 5701 const StateType state = GetState(); 5702 if (StateIsStoppedState(state, false)) { 5703 if (state == eStateExited) { 5704 int exit_status = GetExitStatus(); 5705 const char *exit_description = GetExitDescription(); 5706 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5707 GetID(), exit_status, exit_status, 5708 exit_description ? exit_description : ""); 5709 } else { 5710 if (state == eStateConnected) 5711 strm.Printf("Connected to remote target.\n"); 5712 else 5713 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5714 } 5715 } else { 5716 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5717 } 5718 } 5719 5720 size_t Process::GetThreadStatus(Stream &strm, 5721 bool only_threads_with_stop_reason, 5722 uint32_t start_frame, uint32_t num_frames, 5723 uint32_t num_frames_with_source, 5724 bool stop_format) { 5725 size_t num_thread_infos_dumped = 0; 5726 5727 // You can't hold the thread list lock while calling Thread::GetStatus. That 5728 // very well might run code (e.g. if we need it 5729 // to get return values or arguments.) For that to work the process has to be 5730 // able to acquire it. So instead copy the thread 5731 // ID's, and look them up one by one: 5732 5733 uint32_t num_threads; 5734 std::vector<lldb::tid_t> thread_id_array; 5735 // Scope for thread list locker; 5736 { 5737 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5738 ThreadList &curr_thread_list = GetThreadList(); 5739 num_threads = curr_thread_list.GetSize(); 5740 uint32_t idx; 5741 thread_id_array.resize(num_threads); 5742 for (idx = 0; idx < num_threads; ++idx) 5743 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5744 } 5745 5746 for (uint32_t i = 0; i < num_threads; i++) { 5747 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5748 if (thread_sp) { 5749 if (only_threads_with_stop_reason) { 5750 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5751 if (!stop_info_sp || !stop_info_sp->IsValid()) 5752 continue; 5753 } 5754 thread_sp->GetStatus(strm, start_frame, num_frames, 5755 num_frames_with_source, 5756 stop_format); 5757 ++num_thread_infos_dumped; 5758 } else { 5759 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5760 if (log) 5761 log->Printf("Process::GetThreadStatus - thread 0x" PRIu64 5762 " vanished while running Thread::GetStatus."); 5763 } 5764 } 5765 return num_thread_infos_dumped; 5766 } 5767 5768 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5769 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5770 } 5771 5772 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5773 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5774 region.GetByteSize()); 5775 } 5776 5777 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5778 void *baton) { 5779 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5780 } 5781 5782 bool Process::RunPreResumeActions() { 5783 bool result = true; 5784 while (!m_pre_resume_actions.empty()) { 5785 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5786 m_pre_resume_actions.pop_back(); 5787 bool this_result = action.callback(action.baton); 5788 if (result) 5789 result = this_result; 5790 } 5791 return result; 5792 } 5793 5794 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5795 5796 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5797 { 5798 PreResumeCallbackAndBaton element(callback, baton); 5799 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5800 if (found_iter != m_pre_resume_actions.end()) 5801 { 5802 m_pre_resume_actions.erase(found_iter); 5803 } 5804 } 5805 5806 ProcessRunLock &Process::GetRunLock() { 5807 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5808 return m_private_run_lock; 5809 else 5810 return m_public_run_lock; 5811 } 5812 5813 void Process::Flush() { 5814 m_thread_list.Flush(); 5815 m_extended_thread_list.Flush(); 5816 m_extended_thread_stop_id = 0; 5817 m_queue_list.Clear(); 5818 m_queue_list_stop_id = 0; 5819 } 5820 5821 void Process::DidExec() { 5822 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 5823 if (log) 5824 log->Printf("Process::%s()", __FUNCTION__); 5825 5826 Target &target = GetTarget(); 5827 target.CleanupProcess(); 5828 target.ClearModules(false); 5829 m_dynamic_checkers_ap.reset(); 5830 m_abi_sp.reset(); 5831 m_system_runtime_ap.reset(); 5832 m_os_ap.reset(); 5833 m_dyld_ap.reset(); 5834 m_jit_loaders_ap.reset(); 5835 m_image_tokens.clear(); 5836 m_allocated_memory_cache.Clear(); 5837 m_language_runtimes.clear(); 5838 m_instrumentation_runtimes.clear(); 5839 m_thread_list.DiscardThreadPlans(); 5840 m_memory_cache.Clear(true); 5841 m_stop_info_override_callback = nullptr; 5842 DoDidExec(); 5843 CompleteAttach(); 5844 // Flush the process (threads and all stack frames) after running 5845 // CompleteAttach() 5846 // in case the dynamic loader loaded things in new locations. 5847 Flush(); 5848 5849 // After we figure out what was loaded/unloaded in CompleteAttach, 5850 // we need to let the target know so it can do any cleanup it needs to. 5851 target.DidExec(); 5852 } 5853 5854 addr_t Process::ResolveIndirectFunction(const Address *address, Error &error) { 5855 if (address == nullptr) { 5856 error.SetErrorString("Invalid address argument"); 5857 return LLDB_INVALID_ADDRESS; 5858 } 5859 5860 addr_t function_addr = LLDB_INVALID_ADDRESS; 5861 5862 addr_t addr = address->GetLoadAddress(&GetTarget()); 5863 std::map<addr_t, addr_t>::const_iterator iter = 5864 m_resolved_indirect_addresses.find(addr); 5865 if (iter != m_resolved_indirect_addresses.end()) { 5866 function_addr = (*iter).second; 5867 } else { 5868 if (!InferiorCall(this, address, function_addr)) { 5869 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5870 error.SetErrorStringWithFormat( 5871 "Unable to call resolver for indirect function %s", 5872 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5873 function_addr = LLDB_INVALID_ADDRESS; 5874 } else { 5875 m_resolved_indirect_addresses.insert( 5876 std::pair<addr_t, addr_t>(addr, function_addr)); 5877 } 5878 } 5879 return function_addr; 5880 } 5881 5882 void Process::ModulesDidLoad(ModuleList &module_list) { 5883 SystemRuntime *sys_runtime = GetSystemRuntime(); 5884 if (sys_runtime) { 5885 sys_runtime->ModulesDidLoad(module_list); 5886 } 5887 5888 GetJITLoaders().ModulesDidLoad(module_list); 5889 5890 // Give runtimes a chance to be created. 5891 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5892 m_instrumentation_runtimes); 5893 5894 // Tell runtimes about new modules. 5895 for (auto pos = m_instrumentation_runtimes.begin(); 5896 pos != m_instrumentation_runtimes.end(); ++pos) { 5897 InstrumentationRuntimeSP runtime = pos->second; 5898 runtime->ModulesDidLoad(module_list); 5899 } 5900 5901 // Let any language runtimes we have already created know 5902 // about the modules that loaded. 5903 5904 // Iterate over a copy of this language runtime list in case 5905 // the language runtime ModulesDidLoad somehow causes the language 5906 // riuntime to be unloaded. 5907 LanguageRuntimeCollection language_runtimes(m_language_runtimes); 5908 for (const auto &pair : language_runtimes) { 5909 // We must check language_runtime_sp to make sure it is not 5910 // nullptr as we might cache the fact that we didn't have a 5911 // language runtime for a language. 5912 LanguageRuntimeSP language_runtime_sp = pair.second; 5913 if (language_runtime_sp) 5914 language_runtime_sp->ModulesDidLoad(module_list); 5915 } 5916 5917 // If we don't have an operating system plug-in, try to load one since 5918 // loading shared libraries might cause a new one to try and load 5919 if (!m_os_ap) 5920 LoadOperatingSystemPlugin(false); 5921 5922 // Give structured-data plugins a chance to see the modified modules. 5923 for (auto pair : m_structured_data_plugin_map) { 5924 if (pair.second) 5925 pair.second->ModulesDidLoad(*this, module_list); 5926 } 5927 } 5928 5929 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5930 const char *fmt, ...) { 5931 bool print_warning = true; 5932 5933 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5934 if (!stream_sp) 5935 return; 5936 if (warning_type == eWarningsOptimization && !GetWarningsOptimization()) { 5937 return; 5938 } 5939 5940 if (repeat_key != nullptr) { 5941 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5942 if (it == m_warnings_issued.end()) { 5943 m_warnings_issued[warning_type] = WarningsPointerSet(); 5944 m_warnings_issued[warning_type].insert(repeat_key); 5945 } else { 5946 if (it->second.find(repeat_key) != it->second.end()) { 5947 print_warning = false; 5948 } else { 5949 it->second.insert(repeat_key); 5950 } 5951 } 5952 } 5953 5954 if (print_warning) { 5955 va_list args; 5956 va_start(args, fmt); 5957 stream_sp->PrintfVarArg(fmt, args); 5958 va_end(args); 5959 } 5960 } 5961 5962 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5963 if (GetWarningsOptimization() && sc.module_sp && 5964 !sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5965 sc.function->GetIsOptimized()) { 5966 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5967 "%s was compiled with optimization - stepping may behave " 5968 "oddly; variables may not be available.\n", 5969 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5970 } 5971 } 5972 5973 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5974 info.Clear(); 5975 5976 PlatformSP platform_sp = GetTarget().GetPlatform(); 5977 if (!platform_sp) 5978 return false; 5979 5980 return platform_sp->GetProcessInfo(GetID(), info); 5981 } 5982 5983 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5984 ThreadCollectionSP threads; 5985 5986 const MemoryHistorySP &memory_history = 5987 MemoryHistory::FindPlugin(shared_from_this()); 5988 5989 if (!memory_history) { 5990 return threads; 5991 } 5992 5993 threads.reset(new ThreadCollection(memory_history->GetHistoryThreads(addr))); 5994 5995 return threads; 5996 } 5997 5998 InstrumentationRuntimeSP 5999 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 6000 InstrumentationRuntimeCollection::iterator pos; 6001 pos = m_instrumentation_runtimes.find(type); 6002 if (pos == m_instrumentation_runtimes.end()) { 6003 return InstrumentationRuntimeSP(); 6004 } else 6005 return (*pos).second; 6006 } 6007 6008 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 6009 const ArchSpec &arch, ModuleSpec &module_spec) { 6010 module_spec.Clear(); 6011 return false; 6012 } 6013 6014 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 6015 m_image_tokens.push_back(image_ptr); 6016 return m_image_tokens.size() - 1; 6017 } 6018 6019 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 6020 if (token < m_image_tokens.size()) 6021 return m_image_tokens[token]; 6022 return LLDB_INVALID_IMAGE_TOKEN; 6023 } 6024 6025 void Process::ResetImageToken(size_t token) { 6026 if (token < m_image_tokens.size()) 6027 m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN; 6028 } 6029 6030 Address 6031 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 6032 AddressRange range_bounds) { 6033 Target &target = GetTarget(); 6034 DisassemblerSP disassembler_sp; 6035 InstructionList *insn_list = nullptr; 6036 6037 Address retval = default_stop_addr; 6038 6039 if (!target.GetUseFastStepping()) 6040 return retval; 6041 if (!default_stop_addr.IsValid()) 6042 return retval; 6043 6044 ExecutionContext exe_ctx(this); 6045 const char *plugin_name = nullptr; 6046 const char *flavor = nullptr; 6047 const bool prefer_file_cache = true; 6048 disassembler_sp = Disassembler::DisassembleRange( 6049 target.GetArchitecture(), plugin_name, flavor, exe_ctx, range_bounds, 6050 prefer_file_cache); 6051 if (disassembler_sp) 6052 insn_list = &disassembler_sp->GetInstructionList(); 6053 6054 if (insn_list == nullptr) { 6055 return retval; 6056 } 6057 6058 size_t insn_offset = 6059 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 6060 if (insn_offset == UINT32_MAX) { 6061 return retval; 6062 } 6063 6064 uint32_t branch_index = 6065 insn_list->GetIndexOfNextBranchInstruction(insn_offset, target); 6066 if (branch_index == UINT32_MAX) { 6067 return retval; 6068 } 6069 6070 if (branch_index > insn_offset) { 6071 Address next_branch_insn_address = 6072 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 6073 if (next_branch_insn_address.IsValid() && 6074 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 6075 retval = next_branch_insn_address; 6076 } 6077 } 6078 6079 return retval; 6080 } 6081 6082 Error Process::GetMemoryRegions( 6083 std::vector<lldb::MemoryRegionInfoSP> ®ion_list) { 6084 6085 Error error; 6086 6087 lldb::addr_t range_end = 0; 6088 6089 region_list.clear(); 6090 do { 6091 lldb::MemoryRegionInfoSP region_info(new lldb_private::MemoryRegionInfo()); 6092 error = GetMemoryRegionInfo(range_end, *region_info); 6093 // GetMemoryRegionInfo should only return an error if it is unimplemented. 6094 if (error.Fail()) { 6095 region_list.clear(); 6096 break; 6097 } 6098 6099 range_end = region_info->GetRange().GetRangeEnd(); 6100 if (region_info->GetMapped() == MemoryRegionInfo::eYes) { 6101 region_list.push_back(region_info); 6102 } 6103 } while (range_end != LLDB_INVALID_ADDRESS); 6104 6105 return error; 6106 } 6107 6108 Error Process::ConfigureStructuredData( 6109 const ConstString &type_name, const StructuredData::ObjectSP &config_sp) { 6110 // If you get this, the Process-derived class needs to implement a method 6111 // to enable an already-reported asynchronous structured data feature. 6112 // See ProcessGDBRemote for an example implementation over gdb-remote. 6113 return Error("unimplemented"); 6114 } 6115 6116 void Process::MapSupportedStructuredDataPlugins( 6117 const StructuredData::Array &supported_type_names) { 6118 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 6119 6120 // Bail out early if there are no type names to map. 6121 if (supported_type_names.GetSize() == 0) { 6122 if (log) 6123 log->Printf("Process::%s(): no structured data types supported", 6124 __FUNCTION__); 6125 return; 6126 } 6127 6128 // Convert StructuredData type names to ConstString instances. 6129 std::set<ConstString> const_type_names; 6130 6131 if (log) 6132 log->Printf("Process::%s(): the process supports the following async " 6133 "structured data types:", 6134 __FUNCTION__); 6135 6136 supported_type_names.ForEach( 6137 [&const_type_names, &log](StructuredData::Object *object) { 6138 if (!object) { 6139 // Invalid - shouldn't be null objects in the array. 6140 return false; 6141 } 6142 6143 auto type_name = object->GetAsString(); 6144 if (!type_name) { 6145 // Invalid format - all type names should be strings. 6146 return false; 6147 } 6148 6149 const_type_names.insert(ConstString(type_name->GetValue())); 6150 if (log) 6151 log->Printf("- %s", type_name->GetValue().c_str()); 6152 return true; 6153 }); 6154 6155 // For each StructuredDataPlugin, if the plugin handles any of the 6156 // types in the supported_type_names, map that type name to that plugin. 6157 uint32_t plugin_index = 0; 6158 for (auto create_instance = 6159 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 6160 plugin_index); 6161 create_instance && !const_type_names.empty(); ++plugin_index) { 6162 // Create the plugin. 6163 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 6164 if (!plugin_sp) { 6165 // This plugin doesn't think it can work with the process. 6166 // Move on to the next. 6167 continue; 6168 } 6169 6170 // For any of the remaining type names, map any that this plugin 6171 // supports. 6172 std::vector<ConstString> names_to_remove; 6173 for (auto &type_name : const_type_names) { 6174 if (plugin_sp->SupportsStructuredDataType(type_name)) { 6175 m_structured_data_plugin_map.insert( 6176 std::make_pair(type_name, plugin_sp)); 6177 names_to_remove.push_back(type_name); 6178 if (log) 6179 log->Printf("Process::%s(): using plugin %s for type name " 6180 "%s", 6181 __FUNCTION__, plugin_sp->GetPluginName().GetCString(), 6182 type_name.GetCString()); 6183 } 6184 } 6185 6186 // Remove the type names that were consumed by this plugin. 6187 for (auto &type_name : names_to_remove) 6188 const_type_names.erase(type_name); 6189 } 6190 } 6191 6192 bool Process::RouteAsyncStructuredData( 6193 const StructuredData::ObjectSP object_sp) { 6194 // Nothing to do if there's no data. 6195 if (!object_sp) 6196 return false; 6197 6198 // The contract is this must be a dictionary, so we can look up the 6199 // routing key via the top-level 'type' string value within the dictionary. 6200 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 6201 if (!dictionary) 6202 return false; 6203 6204 // Grab the async structured type name (i.e. the feature/plugin name). 6205 ConstString type_name; 6206 if (!dictionary->GetValueForKeyAsString("type", type_name)) 6207 return false; 6208 6209 // Check if there's a plugin registered for this type name. 6210 auto find_it = m_structured_data_plugin_map.find(type_name); 6211 if (find_it == m_structured_data_plugin_map.end()) { 6212 // We don't have a mapping for this structured data type. 6213 return false; 6214 } 6215 6216 // Route the structured data to the plugin. 6217 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 6218 return true; 6219 } 6220