1 //===-- Process.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <atomic> 10 #include <memory> 11 #include <mutex> 12 13 #include "llvm/Support/ScopedPrinter.h" 14 #include "llvm/Support/Threading.h" 15 16 #include "lldb/Breakpoint/BreakpointLocation.h" 17 #include "lldb/Breakpoint/StoppointCallbackContext.h" 18 #include "lldb/Core/Debugger.h" 19 #include "lldb/Core/Module.h" 20 #include "lldb/Core/ModuleSpec.h" 21 #include "lldb/Core/PluginManager.h" 22 #include "lldb/Core/StreamFile.h" 23 #include "lldb/Expression/DiagnosticManager.h" 24 #include "lldb/Expression/DynamicCheckerFunctions.h" 25 #include "lldb/Expression/UserExpression.h" 26 #include "lldb/Expression/UtilityFunction.h" 27 #include "lldb/Host/ConnectionFileDescriptor.h" 28 #include "lldb/Host/FileSystem.h" 29 #include "lldb/Host/Host.h" 30 #include "lldb/Host/HostInfo.h" 31 #include "lldb/Host/OptionParser.h" 32 #include "lldb/Host/Pipe.h" 33 #include "lldb/Host/Terminal.h" 34 #include "lldb/Host/ThreadLauncher.h" 35 #include "lldb/Interpreter/CommandInterpreter.h" 36 #include "lldb/Interpreter/OptionArgParser.h" 37 #include "lldb/Interpreter/OptionValueProperties.h" 38 #include "lldb/Symbol/Function.h" 39 #include "lldb/Symbol/Symbol.h" 40 #include "lldb/Target/ABI.h" 41 #include "lldb/Target/AssertFrameRecognizer.h" 42 #include "lldb/Target/DynamicLoader.h" 43 #include "lldb/Target/InstrumentationRuntime.h" 44 #include "lldb/Target/JITLoader.h" 45 #include "lldb/Target/JITLoaderList.h" 46 #include "lldb/Target/Language.h" 47 #include "lldb/Target/LanguageRuntime.h" 48 #include "lldb/Target/MemoryHistory.h" 49 #include "lldb/Target/MemoryRegionInfo.h" 50 #include "lldb/Target/OperatingSystem.h" 51 #include "lldb/Target/Platform.h" 52 #include "lldb/Target/Process.h" 53 #include "lldb/Target/RegisterContext.h" 54 #include "lldb/Target/StopInfo.h" 55 #include "lldb/Target/StructuredDataPlugin.h" 56 #include "lldb/Target/SystemRuntime.h" 57 #include "lldb/Target/Target.h" 58 #include "lldb/Target/TargetList.h" 59 #include "lldb/Target/Thread.h" 60 #include "lldb/Target/ThreadPlan.h" 61 #include "lldb/Target/ThreadPlanBase.h" 62 #include "lldb/Target/ThreadPlanCallFunction.h" 63 #include "lldb/Target/ThreadPlanStack.h" 64 #include "lldb/Target/UnixSignals.h" 65 #include "lldb/Utility/Event.h" 66 #include "lldb/Utility/Log.h" 67 #include "lldb/Utility/NameMatches.h" 68 #include "lldb/Utility/ProcessInfo.h" 69 #include "lldb/Utility/SelectHelper.h" 70 #include "lldb/Utility/State.h" 71 72 using namespace lldb; 73 using namespace lldb_private; 74 using namespace std::chrono; 75 76 // Comment out line below to disable memory caching, overriding the process 77 // setting target.process.disable-memory-cache 78 #define ENABLE_MEMORY_CACHING 79 80 #ifdef ENABLE_MEMORY_CACHING 81 #define DISABLE_MEM_CACHE_DEFAULT false 82 #else 83 #define DISABLE_MEM_CACHE_DEFAULT true 84 #endif 85 86 class ProcessOptionValueProperties : public OptionValueProperties { 87 public: 88 ProcessOptionValueProperties(ConstString name) 89 : OptionValueProperties(name) {} 90 91 // This constructor is used when creating ProcessOptionValueProperties when 92 // it is part of a new lldb_private::Process instance. It will copy all 93 // current global property values as needed 94 ProcessOptionValueProperties(ProcessProperties *global_properties) 95 : OptionValueProperties(*global_properties->GetValueProperties()) {} 96 97 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 98 bool will_modify, 99 uint32_t idx) const override { 100 // When getting the value for a key from the process options, we will 101 // always try and grab the setting from the current process if there is 102 // one. Else we just use the one from this instance. 103 if (exe_ctx) { 104 Process *process = exe_ctx->GetProcessPtr(); 105 if (process) { 106 ProcessOptionValueProperties *instance_properties = 107 static_cast<ProcessOptionValueProperties *>( 108 process->GetValueProperties().get()); 109 if (this != instance_properties) 110 return instance_properties->ProtectedGetPropertyAtIndex(idx); 111 } 112 } 113 return ProtectedGetPropertyAtIndex(idx); 114 } 115 }; 116 117 #define LLDB_PROPERTIES_process 118 #include "TargetProperties.inc" 119 120 enum { 121 #define LLDB_PROPERTIES_process 122 #include "TargetPropertiesEnum.inc" 123 ePropertyExperimental, 124 }; 125 126 #define LLDB_PROPERTIES_process_experimental 127 #include "TargetProperties.inc" 128 129 enum { 130 #define LLDB_PROPERTIES_process_experimental 131 #include "TargetPropertiesEnum.inc" 132 }; 133 134 class ProcessExperimentalOptionValueProperties : public OptionValueProperties { 135 public: 136 ProcessExperimentalOptionValueProperties() 137 : OptionValueProperties( 138 ConstString(Properties::GetExperimentalSettingsName())) {} 139 }; 140 141 ProcessExperimentalProperties::ProcessExperimentalProperties() 142 : Properties(OptionValuePropertiesSP( 143 new ProcessExperimentalOptionValueProperties())) { 144 m_collection_sp->Initialize(g_process_experimental_properties); 145 } 146 147 ProcessProperties::ProcessProperties(lldb_private::Process *process) 148 : Properties(), 149 m_process(process) // Can be nullptr for global ProcessProperties 150 { 151 if (process == nullptr) { 152 // Global process properties, set them up one time 153 m_collection_sp = 154 std::make_shared<ProcessOptionValueProperties>(ConstString("process")); 155 m_collection_sp->Initialize(g_process_properties); 156 m_collection_sp->AppendProperty( 157 ConstString("thread"), ConstString("Settings specific to threads."), 158 true, Thread::GetGlobalProperties()->GetValueProperties()); 159 } else { 160 m_collection_sp = std::make_shared<ProcessOptionValueProperties>( 161 Process::GetGlobalProperties().get()); 162 m_collection_sp->SetValueChangedCallback( 163 ePropertyPythonOSPluginPath, 164 [this] { m_process->LoadOperatingSystemPlugin(true); }); 165 } 166 167 m_experimental_properties_up = 168 std::make_unique<ProcessExperimentalProperties>(); 169 m_collection_sp->AppendProperty( 170 ConstString(Properties::GetExperimentalSettingsName()), 171 ConstString("Experimental settings - setting these won't produce " 172 "errors if the setting is not present."), 173 true, m_experimental_properties_up->GetValueProperties()); 174 } 175 176 ProcessProperties::~ProcessProperties() = default; 177 178 bool ProcessProperties::GetDisableMemoryCache() const { 179 const uint32_t idx = ePropertyDisableMemCache; 180 return m_collection_sp->GetPropertyAtIndexAsBoolean( 181 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 182 } 183 184 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 185 const uint32_t idx = ePropertyMemCacheLineSize; 186 return m_collection_sp->GetPropertyAtIndexAsUInt64( 187 nullptr, idx, g_process_properties[idx].default_uint_value); 188 } 189 190 Args ProcessProperties::GetExtraStartupCommands() const { 191 Args args; 192 const uint32_t idx = ePropertyExtraStartCommand; 193 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 194 return args; 195 } 196 197 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 198 const uint32_t idx = ePropertyExtraStartCommand; 199 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 200 } 201 202 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 203 const uint32_t idx = ePropertyPythonOSPluginPath; 204 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 205 } 206 207 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 208 const uint32_t idx = ePropertyPythonOSPluginPath; 209 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 210 } 211 212 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 213 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 214 return m_collection_sp->GetPropertyAtIndexAsBoolean( 215 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 216 } 217 218 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 219 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 220 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 221 } 222 223 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 224 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 225 return m_collection_sp->GetPropertyAtIndexAsBoolean( 226 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 227 } 228 229 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 230 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 231 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 232 } 233 234 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 235 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 236 return m_collection_sp->GetPropertyAtIndexAsBoolean( 237 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 238 } 239 240 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 241 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 242 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 243 } 244 245 bool ProcessProperties::GetDetachKeepsStopped() const { 246 const uint32_t idx = ePropertyDetachKeepsStopped; 247 return m_collection_sp->GetPropertyAtIndexAsBoolean( 248 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 249 } 250 251 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 252 const uint32_t idx = ePropertyDetachKeepsStopped; 253 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 254 } 255 256 bool ProcessProperties::GetWarningsOptimization() const { 257 const uint32_t idx = ePropertyWarningOptimization; 258 return m_collection_sp->GetPropertyAtIndexAsBoolean( 259 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 260 } 261 262 bool ProcessProperties::GetWarningsUnsupportedLanguage() const { 263 const uint32_t idx = ePropertyWarningUnsupportedLanguage; 264 return m_collection_sp->GetPropertyAtIndexAsBoolean( 265 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 266 } 267 268 bool ProcessProperties::GetStopOnExec() const { 269 const uint32_t idx = ePropertyStopOnExec; 270 return m_collection_sp->GetPropertyAtIndexAsBoolean( 271 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 272 } 273 274 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { 275 const uint32_t idx = ePropertyUtilityExpressionTimeout; 276 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 277 nullptr, idx, g_process_properties[idx].default_uint_value); 278 return std::chrono::seconds(value); 279 } 280 281 bool ProcessProperties::GetSteppingRunsAllThreads() const { 282 const uint32_t idx = ePropertySteppingRunsAllThreads; 283 return m_collection_sp->GetPropertyAtIndexAsBoolean( 284 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 285 } 286 287 bool ProcessProperties::GetOSPluginReportsAllThreads() const { 288 const bool fail_value = true; 289 const Property *exp_property = 290 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 291 OptionValueProperties *exp_values = 292 exp_property->GetValue()->GetAsProperties(); 293 if (!exp_values) 294 return fail_value; 295 296 return exp_values->GetPropertyAtIndexAsBoolean( 297 nullptr, ePropertyOSPluginReportsAllThreads, fail_value); 298 } 299 300 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) { 301 const Property *exp_property = 302 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 303 OptionValueProperties *exp_values = 304 exp_property->GetValue()->GetAsProperties(); 305 if (exp_values) 306 exp_values->SetPropertyAtIndexAsBoolean( 307 nullptr, ePropertyOSPluginReportsAllThreads, does_report); 308 } 309 310 Status ProcessLaunchCommandOptions::SetOptionValue( 311 uint32_t option_idx, llvm::StringRef option_arg, 312 ExecutionContext *execution_context) { 313 Status error; 314 const int short_option = m_getopt_table[option_idx].val; 315 316 switch (short_option) { 317 case 's': // Stop at program entry point 318 launch_info.GetFlags().Set(eLaunchFlagStopAtEntry); 319 break; 320 321 case 'i': // STDIN for read only 322 { 323 FileAction action; 324 if (action.Open(STDIN_FILENO, FileSpec(option_arg), true, false)) 325 launch_info.AppendFileAction(action); 326 break; 327 } 328 329 case 'o': // Open STDOUT for write only 330 { 331 FileAction action; 332 if (action.Open(STDOUT_FILENO, FileSpec(option_arg), false, true)) 333 launch_info.AppendFileAction(action); 334 break; 335 } 336 337 case 'e': // STDERR for write only 338 { 339 FileAction action; 340 if (action.Open(STDERR_FILENO, FileSpec(option_arg), false, true)) 341 launch_info.AppendFileAction(action); 342 break; 343 } 344 345 case 'p': // Process plug-in name 346 launch_info.SetProcessPluginName(option_arg); 347 break; 348 349 case 'n': // Disable STDIO 350 { 351 FileAction action; 352 const FileSpec dev_null(FileSystem::DEV_NULL); 353 if (action.Open(STDIN_FILENO, dev_null, true, false)) 354 launch_info.AppendFileAction(action); 355 if (action.Open(STDOUT_FILENO, dev_null, false, true)) 356 launch_info.AppendFileAction(action); 357 if (action.Open(STDERR_FILENO, dev_null, false, true)) 358 launch_info.AppendFileAction(action); 359 break; 360 } 361 362 case 'w': 363 launch_info.SetWorkingDirectory(FileSpec(option_arg)); 364 break; 365 366 case 't': // Open process in new terminal window 367 launch_info.GetFlags().Set(eLaunchFlagLaunchInTTY); 368 break; 369 370 case 'a': { 371 TargetSP target_sp = 372 execution_context ? execution_context->GetTargetSP() : TargetSP(); 373 PlatformSP platform_sp = 374 target_sp ? target_sp->GetPlatform() : PlatformSP(); 375 launch_info.GetArchitecture() = 376 Platform::GetAugmentedArchSpec(platform_sp.get(), option_arg); 377 } break; 378 379 case 'A': // Disable ASLR. 380 { 381 bool success; 382 const bool disable_aslr_arg = 383 OptionArgParser::ToBoolean(option_arg, true, &success); 384 if (success) 385 disable_aslr = disable_aslr_arg ? eLazyBoolYes : eLazyBoolNo; 386 else 387 error.SetErrorStringWithFormat( 388 "Invalid boolean value for disable-aslr option: '%s'", 389 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 390 break; 391 } 392 393 case 'X': // shell expand args. 394 { 395 bool success; 396 const bool expand_args = 397 OptionArgParser::ToBoolean(option_arg, true, &success); 398 if (success) 399 launch_info.SetShellExpandArguments(expand_args); 400 else 401 error.SetErrorStringWithFormat( 402 "Invalid boolean value for shell-expand-args option: '%s'", 403 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 404 break; 405 } 406 407 case 'c': 408 if (!option_arg.empty()) 409 launch_info.SetShell(FileSpec(option_arg)); 410 else 411 launch_info.SetShell(HostInfo::GetDefaultShell()); 412 break; 413 414 case 'v': 415 launch_info.GetEnvironment().insert(option_arg); 416 break; 417 418 default: 419 error.SetErrorStringWithFormat("unrecognized short option character '%c'", 420 short_option); 421 break; 422 } 423 return error; 424 } 425 426 static constexpr OptionDefinition g_process_launch_options[] = { 427 {LLDB_OPT_SET_ALL, false, "stop-at-entry", 's', OptionParser::eNoArgument, 428 nullptr, {}, 0, eArgTypeNone, 429 "Stop at the entry point of the program when launching a process."}, 430 {LLDB_OPT_SET_ALL, false, "disable-aslr", 'A', 431 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeBoolean, 432 "Set whether to disable address space layout randomization when launching " 433 "a process."}, 434 {LLDB_OPT_SET_ALL, false, "plugin", 'p', OptionParser::eRequiredArgument, 435 nullptr, {}, 0, eArgTypePlugin, 436 "Name of the process plugin you want to use."}, 437 {LLDB_OPT_SET_ALL, false, "working-dir", 'w', 438 OptionParser::eRequiredArgument, nullptr, {}, 0, 439 eArgTypeDirectoryName, 440 "Set the current working directory to <path> when running the inferior."}, 441 {LLDB_OPT_SET_ALL, false, "arch", 'a', OptionParser::eRequiredArgument, 442 nullptr, {}, 0, eArgTypeArchitecture, 443 "Set the architecture for the process to launch when ambiguous."}, 444 {LLDB_OPT_SET_ALL, false, "environment", 'v', 445 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeNone, 446 "Specify an environment variable name/value string (--environment " 447 "NAME=VALUE). Can be specified multiple times for subsequent environment " 448 "entries."}, 449 {LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3, false, "shell", 'c', 450 OptionParser::eOptionalArgument, nullptr, {}, 0, eArgTypeFilename, 451 "Run the process in a shell (not supported on all platforms)."}, 452 453 {LLDB_OPT_SET_1, false, "stdin", 'i', OptionParser::eRequiredArgument, 454 nullptr, {}, 0, eArgTypeFilename, 455 "Redirect stdin for the process to <filename>."}, 456 {LLDB_OPT_SET_1, false, "stdout", 'o', OptionParser::eRequiredArgument, 457 nullptr, {}, 0, eArgTypeFilename, 458 "Redirect stdout for the process to <filename>."}, 459 {LLDB_OPT_SET_1, false, "stderr", 'e', OptionParser::eRequiredArgument, 460 nullptr, {}, 0, eArgTypeFilename, 461 "Redirect stderr for the process to <filename>."}, 462 463 {LLDB_OPT_SET_2, false, "tty", 't', OptionParser::eNoArgument, nullptr, 464 {}, 0, eArgTypeNone, 465 "Start the process in a terminal (not supported on all platforms)."}, 466 467 {LLDB_OPT_SET_3, false, "no-stdio", 'n', OptionParser::eNoArgument, nullptr, 468 {}, 0, eArgTypeNone, 469 "Do not set up for terminal I/O to go to running process."}, 470 {LLDB_OPT_SET_4, false, "shell-expand-args", 'X', 471 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeBoolean, 472 "Set whether to shell expand arguments to the process when launching."}, 473 }; 474 475 llvm::ArrayRef<OptionDefinition> ProcessLaunchCommandOptions::GetDefinitions() { 476 return llvm::makeArrayRef(g_process_launch_options); 477 } 478 479 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 480 llvm::StringRef plugin_name, 481 ListenerSP listener_sp, 482 const FileSpec *crash_file_path, 483 bool can_connect) { 484 static uint32_t g_process_unique_id = 0; 485 486 ProcessSP process_sp; 487 ProcessCreateInstance create_callback = nullptr; 488 if (!plugin_name.empty()) { 489 ConstString const_plugin_name(plugin_name); 490 create_callback = 491 PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name); 492 if (create_callback) { 493 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 494 can_connect); 495 if (process_sp) { 496 if (process_sp->CanDebug(target_sp, true)) { 497 process_sp->m_process_unique_id = ++g_process_unique_id; 498 } else 499 process_sp.reset(); 500 } 501 } 502 } else { 503 for (uint32_t idx = 0; 504 (create_callback = 505 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 506 ++idx) { 507 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 508 can_connect); 509 if (process_sp) { 510 if (process_sp->CanDebug(target_sp, false)) { 511 process_sp->m_process_unique_id = ++g_process_unique_id; 512 break; 513 } else 514 process_sp.reset(); 515 } 516 } 517 } 518 return process_sp; 519 } 520 521 ConstString &Process::GetStaticBroadcasterClass() { 522 static ConstString class_name("lldb.process"); 523 return class_name; 524 } 525 526 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 527 : Process(target_sp, listener_sp, 528 UnixSignals::Create(HostInfo::GetArchitecture())) { 529 // This constructor just delegates to the full Process constructor, 530 // defaulting to using the Host's UnixSignals. 531 } 532 533 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 534 const UnixSignalsSP &unix_signals_sp) 535 : ProcessProperties(this), 536 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 537 Process::GetStaticBroadcasterClass().AsCString()), 538 m_target_wp(target_sp), m_public_state(eStateUnloaded), 539 m_private_state(eStateUnloaded), 540 m_private_state_broadcaster(nullptr, 541 "lldb.process.internal_state_broadcaster"), 542 m_private_state_control_broadcaster( 543 nullptr, "lldb.process.internal_state_control_broadcaster"), 544 m_private_state_listener_sp( 545 Listener::MakeListener("lldb.process.internal_state_listener")), 546 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 547 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 548 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 549 m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this), 550 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 551 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 552 m_breakpoint_site_list(), m_dynamic_checkers_up(), 553 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 554 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 555 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 556 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 557 m_memory_cache(*this), m_allocated_memory_cache(*this), 558 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), 559 m_private_run_lock(), m_finalizing(false), m_finalize_called(false), 560 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 561 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 562 m_can_interpret_function_calls(false), m_warnings_issued(), 563 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 564 CheckInWithManager(); 565 566 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 567 LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this)); 568 569 if (!m_unix_signals_sp) 570 m_unix_signals_sp = std::make_shared<UnixSignals>(); 571 572 SetEventName(eBroadcastBitStateChanged, "state-changed"); 573 SetEventName(eBroadcastBitInterrupt, "interrupt"); 574 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 575 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 576 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 577 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 578 579 m_private_state_control_broadcaster.SetEventName( 580 eBroadcastInternalStateControlStop, "control-stop"); 581 m_private_state_control_broadcaster.SetEventName( 582 eBroadcastInternalStateControlPause, "control-pause"); 583 m_private_state_control_broadcaster.SetEventName( 584 eBroadcastInternalStateControlResume, "control-resume"); 585 586 m_listener_sp->StartListeningForEvents( 587 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 588 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 589 eBroadcastBitProfileData | eBroadcastBitStructuredData); 590 591 m_private_state_listener_sp->StartListeningForEvents( 592 &m_private_state_broadcaster, 593 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 594 595 m_private_state_listener_sp->StartListeningForEvents( 596 &m_private_state_control_broadcaster, 597 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 598 eBroadcastInternalStateControlResume); 599 // We need something valid here, even if just the default UnixSignalsSP. 600 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 601 602 // Allow the platform to override the default cache line size 603 OptionValueSP value_sp = 604 m_collection_sp 605 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 606 ->GetValue(); 607 uint32_t platform_cache_line_size = 608 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 609 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 610 value_sp->SetUInt64Value(platform_cache_line_size); 611 612 RegisterAssertFrameRecognizer(this); 613 } 614 615 Process::~Process() { 616 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 617 LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this)); 618 StopPrivateStateThread(); 619 620 // ThreadList::Clear() will try to acquire this process's mutex, so 621 // explicitly clear the thread list here to ensure that the mutex is not 622 // destroyed before the thread list. 623 m_thread_list.Clear(); 624 } 625 626 const ProcessPropertiesSP &Process::GetGlobalProperties() { 627 // NOTE: intentional leak so we don't crash if global destructor chain gets 628 // called as other threads still use the result of this function 629 static ProcessPropertiesSP *g_settings_sp_ptr = 630 new ProcessPropertiesSP(new ProcessProperties(nullptr)); 631 return *g_settings_sp_ptr; 632 } 633 634 void Process::Finalize() { 635 m_finalizing = true; 636 637 // Destroy this process if needed 638 switch (GetPrivateState()) { 639 case eStateConnected: 640 case eStateAttaching: 641 case eStateLaunching: 642 case eStateStopped: 643 case eStateRunning: 644 case eStateStepping: 645 case eStateCrashed: 646 case eStateSuspended: 647 Destroy(false); 648 break; 649 650 case eStateInvalid: 651 case eStateUnloaded: 652 case eStateDetached: 653 case eStateExited: 654 break; 655 } 656 657 // Clear our broadcaster before we proceed with destroying 658 Broadcaster::Clear(); 659 660 // Do any cleanup needed prior to being destructed... Subclasses that 661 // override this method should call this superclass method as well. 662 663 // We need to destroy the loader before the derived Process class gets 664 // destroyed since it is very likely that undoing the loader will require 665 // access to the real process. 666 m_dynamic_checkers_up.reset(); 667 m_abi_sp.reset(); 668 m_os_up.reset(); 669 m_system_runtime_up.reset(); 670 m_dyld_up.reset(); 671 m_jit_loaders_up.reset(); 672 m_thread_plans.Clear(); 673 m_thread_list_real.Destroy(); 674 m_thread_list.Destroy(); 675 m_extended_thread_list.Destroy(); 676 m_queue_list.Clear(); 677 m_queue_list_stop_id = 0; 678 std::vector<Notifications> empty_notifications; 679 m_notifications.swap(empty_notifications); 680 m_image_tokens.clear(); 681 m_memory_cache.Clear(); 682 m_allocated_memory_cache.Clear(); 683 { 684 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 685 m_language_runtimes.clear(); 686 } 687 m_instrumentation_runtimes.clear(); 688 m_next_event_action_up.reset(); 689 // Clear the last natural stop ID since it has a strong reference to this 690 // process 691 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 692 //#ifdef LLDB_CONFIGURATION_DEBUG 693 // StreamFile s(stdout, false); 694 // EventSP event_sp; 695 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 696 // { 697 // event_sp->Dump (&s); 698 // s.EOL(); 699 // } 700 //#endif 701 // We have to be very careful here as the m_private_state_listener might 702 // contain events that have ProcessSP values in them which can keep this 703 // process around forever. These events need to be cleared out. 704 m_private_state_listener_sp->Clear(); 705 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 706 m_public_run_lock.SetStopped(); 707 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 708 m_private_run_lock.SetStopped(); 709 m_structured_data_plugin_map.clear(); 710 m_finalize_called = true; 711 } 712 713 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 714 m_notifications.push_back(callbacks); 715 if (callbacks.initialize != nullptr) 716 callbacks.initialize(callbacks.baton, this); 717 } 718 719 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 720 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 721 for (pos = m_notifications.begin(); pos != end; ++pos) { 722 if (pos->baton == callbacks.baton && 723 pos->initialize == callbacks.initialize && 724 pos->process_state_changed == callbacks.process_state_changed) { 725 m_notifications.erase(pos); 726 return true; 727 } 728 } 729 return false; 730 } 731 732 void Process::SynchronouslyNotifyStateChanged(StateType state) { 733 std::vector<Notifications>::iterator notification_pos, 734 notification_end = m_notifications.end(); 735 for (notification_pos = m_notifications.begin(); 736 notification_pos != notification_end; ++notification_pos) { 737 if (notification_pos->process_state_changed) 738 notification_pos->process_state_changed(notification_pos->baton, this, 739 state); 740 } 741 } 742 743 // FIXME: We need to do some work on events before the general Listener sees 744 // them. 745 // For instance if we are continuing from a breakpoint, we need to ensure that 746 // we do the little "insert real insn, step & stop" trick. But we can't do 747 // that when the event is delivered by the broadcaster - since that is done on 748 // the thread that is waiting for new events, so if we needed more than one 749 // event for our handling, we would stall. So instead we do it when we fetch 750 // the event off of the queue. 751 // 752 753 StateType Process::GetNextEvent(EventSP &event_sp) { 754 StateType state = eStateInvalid; 755 756 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 757 std::chrono::seconds(0)) && 758 event_sp) 759 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 760 761 return state; 762 } 763 764 void Process::SyncIOHandler(uint32_t iohandler_id, 765 const Timeout<std::micro> &timeout) { 766 // don't sync (potentially context switch) in case where there is no process 767 // IO 768 if (!m_process_input_reader) 769 return; 770 771 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 772 773 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 774 if (Result) { 775 LLDB_LOG( 776 log, 777 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 778 iohandler_id, *Result); 779 } else { 780 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 781 iohandler_id); 782 } 783 } 784 785 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 786 EventSP *event_sp_ptr, bool wait_always, 787 ListenerSP hijack_listener_sp, 788 Stream *stream, bool use_run_lock) { 789 // We can't just wait for a "stopped" event, because the stopped event may 790 // have restarted the target. We have to actually check each event, and in 791 // the case of a stopped event check the restarted flag on the event. 792 if (event_sp_ptr) 793 event_sp_ptr->reset(); 794 StateType state = GetState(); 795 // If we are exited or detached, we won't ever get back to any other valid 796 // state... 797 if (state == eStateDetached || state == eStateExited) 798 return state; 799 800 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 801 LLDB_LOG(log, "timeout = {0}", timeout); 802 803 if (!wait_always && StateIsStoppedState(state, true) && 804 StateIsStoppedState(GetPrivateState(), true)) { 805 LLDB_LOGF(log, 806 "Process::%s returning without waiting for events; process " 807 "private and public states are already 'stopped'.", 808 __FUNCTION__); 809 // We need to toggle the run lock as this won't get done in 810 // SetPublicState() if the process is hijacked. 811 if (hijack_listener_sp && use_run_lock) 812 m_public_run_lock.SetStopped(); 813 return state; 814 } 815 816 while (state != eStateInvalid) { 817 EventSP event_sp; 818 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 819 if (event_sp_ptr && event_sp) 820 *event_sp_ptr = event_sp; 821 822 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 823 Process::HandleProcessStateChangedEvent(event_sp, stream, 824 pop_process_io_handler); 825 826 switch (state) { 827 case eStateCrashed: 828 case eStateDetached: 829 case eStateExited: 830 case eStateUnloaded: 831 // We need to toggle the run lock as this won't get done in 832 // SetPublicState() if the process is hijacked. 833 if (hijack_listener_sp && use_run_lock) 834 m_public_run_lock.SetStopped(); 835 return state; 836 case eStateStopped: 837 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 838 continue; 839 else { 840 // We need to toggle the run lock as this won't get done in 841 // SetPublicState() if the process is hijacked. 842 if (hijack_listener_sp && use_run_lock) 843 m_public_run_lock.SetStopped(); 844 return state; 845 } 846 default: 847 continue; 848 } 849 } 850 return state; 851 } 852 853 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 854 Stream *stream, 855 bool &pop_process_io_handler) { 856 const bool handle_pop = pop_process_io_handler; 857 858 pop_process_io_handler = false; 859 ProcessSP process_sp = 860 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 861 862 if (!process_sp) 863 return false; 864 865 StateType event_state = 866 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 867 if (event_state == eStateInvalid) 868 return false; 869 870 switch (event_state) { 871 case eStateInvalid: 872 case eStateUnloaded: 873 case eStateAttaching: 874 case eStateLaunching: 875 case eStateStepping: 876 case eStateDetached: 877 if (stream) 878 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 879 StateAsCString(event_state)); 880 if (event_state == eStateDetached) 881 pop_process_io_handler = true; 882 break; 883 884 case eStateConnected: 885 case eStateRunning: 886 // Don't be chatty when we run... 887 break; 888 889 case eStateExited: 890 if (stream) 891 process_sp->GetStatus(*stream); 892 pop_process_io_handler = true; 893 break; 894 895 case eStateStopped: 896 case eStateCrashed: 897 case eStateSuspended: 898 // Make sure the program hasn't been auto-restarted: 899 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 900 if (stream) { 901 size_t num_reasons = 902 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 903 if (num_reasons > 0) { 904 // FIXME: Do we want to report this, or would that just be annoyingly 905 // chatty? 906 if (num_reasons == 1) { 907 const char *reason = 908 Process::ProcessEventData::GetRestartedReasonAtIndex( 909 event_sp.get(), 0); 910 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 911 process_sp->GetID(), 912 reason ? reason : "<UNKNOWN REASON>"); 913 } else { 914 stream->Printf("Process %" PRIu64 915 " stopped and restarted, reasons:\n", 916 process_sp->GetID()); 917 918 for (size_t i = 0; i < num_reasons; i++) { 919 const char *reason = 920 Process::ProcessEventData::GetRestartedReasonAtIndex( 921 event_sp.get(), i); 922 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 923 } 924 } 925 } 926 } 927 } else { 928 StopInfoSP curr_thread_stop_info_sp; 929 // Lock the thread list so it doesn't change on us, this is the scope for 930 // the locker: 931 { 932 ThreadList &thread_list = process_sp->GetThreadList(); 933 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 934 935 ThreadSP curr_thread(thread_list.GetSelectedThread()); 936 ThreadSP thread; 937 StopReason curr_thread_stop_reason = eStopReasonInvalid; 938 if (curr_thread) { 939 curr_thread_stop_reason = curr_thread->GetStopReason(); 940 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 941 } 942 if (!curr_thread || !curr_thread->IsValid() || 943 curr_thread_stop_reason == eStopReasonInvalid || 944 curr_thread_stop_reason == eStopReasonNone) { 945 // Prefer a thread that has just completed its plan over another 946 // thread as current thread. 947 ThreadSP plan_thread; 948 ThreadSP other_thread; 949 950 const size_t num_threads = thread_list.GetSize(); 951 size_t i; 952 for (i = 0; i < num_threads; ++i) { 953 thread = thread_list.GetThreadAtIndex(i); 954 StopReason thread_stop_reason = thread->GetStopReason(); 955 switch (thread_stop_reason) { 956 case eStopReasonInvalid: 957 case eStopReasonNone: 958 break; 959 960 case eStopReasonSignal: { 961 // Don't select a signal thread if we weren't going to stop at 962 // that signal. We have to have had another reason for stopping 963 // here, and the user doesn't want to see this thread. 964 uint64_t signo = thread->GetStopInfo()->GetValue(); 965 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 966 if (!other_thread) 967 other_thread = thread; 968 } 969 break; 970 } 971 case eStopReasonTrace: 972 case eStopReasonBreakpoint: 973 case eStopReasonWatchpoint: 974 case eStopReasonException: 975 case eStopReasonExec: 976 case eStopReasonThreadExiting: 977 case eStopReasonInstrumentation: 978 if (!other_thread) 979 other_thread = thread; 980 break; 981 case eStopReasonPlanComplete: 982 if (!plan_thread) 983 plan_thread = thread; 984 break; 985 } 986 } 987 if (plan_thread) 988 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 989 else if (other_thread) 990 thread_list.SetSelectedThreadByID(other_thread->GetID()); 991 else { 992 if (curr_thread && curr_thread->IsValid()) 993 thread = curr_thread; 994 else 995 thread = thread_list.GetThreadAtIndex(0); 996 997 if (thread) 998 thread_list.SetSelectedThreadByID(thread->GetID()); 999 } 1000 } 1001 } 1002 // Drop the ThreadList mutex by here, since GetThreadStatus below might 1003 // have to run code, e.g. for Data formatters, and if we hold the 1004 // ThreadList mutex, then the process is going to have a hard time 1005 // restarting the process. 1006 if (stream) { 1007 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 1008 if (debugger.GetTargetList().GetSelectedTarget().get() == 1009 &process_sp->GetTarget()) { 1010 ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); 1011 1012 if (!thread_sp || !thread_sp->IsValid()) 1013 return false; 1014 1015 const bool only_threads_with_stop_reason = true; 1016 const uint32_t start_frame = thread_sp->GetSelectedFrameIndex(); 1017 const uint32_t num_frames = 1; 1018 const uint32_t num_frames_with_source = 1; 1019 const bool stop_format = true; 1020 1021 process_sp->GetStatus(*stream); 1022 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 1023 start_frame, num_frames, 1024 num_frames_with_source, 1025 stop_format); 1026 if (curr_thread_stop_info_sp) { 1027 lldb::addr_t crashing_address; 1028 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 1029 curr_thread_stop_info_sp, &crashing_address); 1030 if (valobj_sp) { 1031 const ValueObject::GetExpressionPathFormat format = 1032 ValueObject::GetExpressionPathFormat:: 1033 eGetExpressionPathFormatHonorPointers; 1034 stream->PutCString("Likely cause: "); 1035 valobj_sp->GetExpressionPath(*stream, format); 1036 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 1037 } 1038 } 1039 } else { 1040 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 1041 process_sp->GetTarget().shared_from_this()); 1042 if (target_idx != UINT32_MAX) 1043 stream->Printf("Target %d: (", target_idx); 1044 else 1045 stream->Printf("Target <unknown index>: ("); 1046 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 1047 stream->Printf(") stopped.\n"); 1048 } 1049 } 1050 1051 // Pop the process IO handler 1052 pop_process_io_handler = true; 1053 } 1054 break; 1055 } 1056 1057 if (handle_pop && pop_process_io_handler) 1058 process_sp->PopProcessIOHandler(); 1059 1060 return true; 1061 } 1062 1063 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 1064 if (listener_sp) { 1065 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 1066 eBroadcastBitInterrupt); 1067 } else 1068 return false; 1069 } 1070 1071 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 1072 1073 StateType Process::GetStateChangedEvents(EventSP &event_sp, 1074 const Timeout<std::micro> &timeout, 1075 ListenerSP hijack_listener_sp) { 1076 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1077 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1078 1079 ListenerSP listener_sp = hijack_listener_sp; 1080 if (!listener_sp) 1081 listener_sp = m_listener_sp; 1082 1083 StateType state = eStateInvalid; 1084 if (listener_sp->GetEventForBroadcasterWithType( 1085 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1086 timeout)) { 1087 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1088 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1089 else 1090 LLDB_LOG(log, "got no event or was interrupted."); 1091 } 1092 1093 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 1094 return state; 1095 } 1096 1097 Event *Process::PeekAtStateChangedEvents() { 1098 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1099 1100 LLDB_LOGF(log, "Process::%s...", __FUNCTION__); 1101 1102 Event *event_ptr; 1103 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 1104 this, eBroadcastBitStateChanged); 1105 if (log) { 1106 if (event_ptr) { 1107 LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, 1108 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 1109 } else { 1110 LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); 1111 } 1112 } 1113 return event_ptr; 1114 } 1115 1116 StateType 1117 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 1118 const Timeout<std::micro> &timeout) { 1119 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1120 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1121 1122 StateType state = eStateInvalid; 1123 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1124 &m_private_state_broadcaster, 1125 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1126 timeout)) 1127 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1128 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1129 1130 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1131 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1132 return state; 1133 } 1134 1135 bool Process::GetEventsPrivate(EventSP &event_sp, 1136 const Timeout<std::micro> &timeout, 1137 bool control_only) { 1138 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1139 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1140 1141 if (control_only) 1142 return m_private_state_listener_sp->GetEventForBroadcaster( 1143 &m_private_state_control_broadcaster, event_sp, timeout); 1144 else 1145 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1146 } 1147 1148 bool Process::IsRunning() const { 1149 return StateIsRunningState(m_public_state.GetValue()); 1150 } 1151 1152 int Process::GetExitStatus() { 1153 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1154 1155 if (m_public_state.GetValue() == eStateExited) 1156 return m_exit_status; 1157 return -1; 1158 } 1159 1160 const char *Process::GetExitDescription() { 1161 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1162 1163 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1164 return m_exit_string.c_str(); 1165 return nullptr; 1166 } 1167 1168 bool Process::SetExitStatus(int status, const char *cstr) { 1169 // Use a mutex to protect setting the exit status. 1170 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1171 1172 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1173 LIBLLDB_LOG_PROCESS)); 1174 LLDB_LOGF( 1175 log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1176 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : ""); 1177 1178 // We were already in the exited state 1179 if (m_private_state.GetValue() == eStateExited) { 1180 LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because " 1181 "state was already set to eStateExited"); 1182 return false; 1183 } 1184 1185 m_exit_status = status; 1186 if (cstr) 1187 m_exit_string = cstr; 1188 else 1189 m_exit_string.clear(); 1190 1191 // Clear the last natural stop ID since it has a strong reference to this 1192 // process 1193 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1194 1195 SetPrivateState(eStateExited); 1196 1197 // Allow subclasses to do some cleanup 1198 DidExit(); 1199 1200 return true; 1201 } 1202 1203 bool Process::IsAlive() { 1204 switch (m_private_state.GetValue()) { 1205 case eStateConnected: 1206 case eStateAttaching: 1207 case eStateLaunching: 1208 case eStateStopped: 1209 case eStateRunning: 1210 case eStateStepping: 1211 case eStateCrashed: 1212 case eStateSuspended: 1213 return true; 1214 default: 1215 return false; 1216 } 1217 } 1218 1219 // This static callback can be used to watch for local child processes on the 1220 // current host. The child process exits, the process will be found in the 1221 // global target list (we want to be completely sure that the 1222 // lldb_private::Process doesn't go away before we can deliver the signal. 1223 bool Process::SetProcessExitStatus( 1224 lldb::pid_t pid, bool exited, 1225 int signo, // Zero for no signal 1226 int exit_status // Exit value of process if signal is zero 1227 ) { 1228 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 1229 LLDB_LOGF(log, 1230 "Process::SetProcessExitStatus (pid=%" PRIu64 1231 ", exited=%i, signal=%i, exit_status=%i)\n", 1232 pid, exited, signo, exit_status); 1233 1234 if (exited) { 1235 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1236 if (target_sp) { 1237 ProcessSP process_sp(target_sp->GetProcessSP()); 1238 if (process_sp) { 1239 const char *signal_cstr = nullptr; 1240 if (signo) 1241 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1242 1243 process_sp->SetExitStatus(exit_status, signal_cstr); 1244 } 1245 } 1246 return true; 1247 } 1248 return false; 1249 } 1250 1251 void Process::UpdateThreadListIfNeeded() { 1252 const uint32_t stop_id = GetStopID(); 1253 if (m_thread_list.GetSize(false) == 0 || 1254 stop_id != m_thread_list.GetStopID()) { 1255 bool clear_unused_threads = true; 1256 const StateType state = GetPrivateState(); 1257 if (StateIsStoppedState(state, true)) { 1258 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1259 m_thread_list.SetStopID(stop_id); 1260 1261 // m_thread_list does have its own mutex, but we need to hold onto the 1262 // mutex between the call to UpdateThreadList(...) and the 1263 // os->UpdateThreadList(...) so it doesn't change on us 1264 ThreadList &old_thread_list = m_thread_list; 1265 ThreadList real_thread_list(this); 1266 ThreadList new_thread_list(this); 1267 // Always update the thread list with the protocol specific thread list, 1268 // but only update if "true" is returned 1269 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1270 // Don't call into the OperatingSystem to update the thread list if we 1271 // are shutting down, since that may call back into the SBAPI's, 1272 // requiring the API lock which is already held by whoever is shutting 1273 // us down, causing a deadlock. 1274 OperatingSystem *os = GetOperatingSystem(); 1275 if (os && !m_destroy_in_process) { 1276 // Clear any old backing threads where memory threads might have been 1277 // backed by actual threads from the lldb_private::Process subclass 1278 size_t num_old_threads = old_thread_list.GetSize(false); 1279 for (size_t i = 0; i < num_old_threads; ++i) 1280 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1281 // See if the OS plugin reports all threads. If it does, then 1282 // it is safe to clear unseen thread's plans here. Otherwise we 1283 // should preserve them in case they show up again: 1284 clear_unused_threads = GetOSPluginReportsAllThreads(); 1285 1286 // Turn off dynamic types to ensure we don't run any expressions. 1287 // Objective-C can run an expression to determine if a SBValue is a 1288 // dynamic type or not and we need to avoid this. OperatingSystem 1289 // plug-ins can't run expressions that require running code... 1290 1291 Target &target = GetTarget(); 1292 const lldb::DynamicValueType saved_prefer_dynamic = 1293 target.GetPreferDynamicValue(); 1294 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1295 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1296 1297 // Now let the OperatingSystem plug-in update the thread list 1298 1299 os->UpdateThreadList( 1300 old_thread_list, // Old list full of threads created by OS plug-in 1301 real_thread_list, // The actual thread list full of threads 1302 // created by each lldb_private::Process 1303 // subclass 1304 new_thread_list); // The new thread list that we will show to the 1305 // user that gets filled in 1306 1307 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1308 target.SetPreferDynamicValue(saved_prefer_dynamic); 1309 } else { 1310 // No OS plug-in, the new thread list is the same as the real thread 1311 // list. 1312 new_thread_list = real_thread_list; 1313 } 1314 1315 m_thread_list_real.Update(real_thread_list); 1316 m_thread_list.Update(new_thread_list); 1317 m_thread_list.SetStopID(stop_id); 1318 1319 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1320 // Clear any extended threads that we may have accumulated previously 1321 m_extended_thread_list.Clear(); 1322 m_extended_thread_stop_id = GetLastNaturalStopID(); 1323 1324 m_queue_list.Clear(); 1325 m_queue_list_stop_id = GetLastNaturalStopID(); 1326 } 1327 } 1328 // Now update the plan stack map. 1329 // If we do have an OS plugin, any absent real threads in the 1330 // m_thread_list have already been removed from the ThreadPlanStackMap. 1331 // So any remaining threads are OS Plugin threads, and those we want to 1332 // preserve in case they show up again. 1333 m_thread_plans.Update(m_thread_list, clear_unused_threads); 1334 } 1335 } 1336 } 1337 1338 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) { 1339 return m_thread_plans.Find(tid); 1340 } 1341 1342 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) { 1343 return m_thread_plans.PrunePlansForTID(tid); 1344 } 1345 1346 void Process::PruneThreadPlans() { 1347 m_thread_plans.Update(GetThreadList(), true, false); 1348 } 1349 1350 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid, 1351 lldb::DescriptionLevel desc_level, 1352 bool internal, bool condense_trivial, 1353 bool skip_unreported_plans) { 1354 return m_thread_plans.DumpPlansForTID( 1355 strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans); 1356 } 1357 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level, 1358 bool internal, bool condense_trivial, 1359 bool skip_unreported_plans) { 1360 m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial, 1361 skip_unreported_plans); 1362 } 1363 1364 void Process::UpdateQueueListIfNeeded() { 1365 if (m_system_runtime_up) { 1366 if (m_queue_list.GetSize() == 0 || 1367 m_queue_list_stop_id != GetLastNaturalStopID()) { 1368 const StateType state = GetPrivateState(); 1369 if (StateIsStoppedState(state, true)) { 1370 m_system_runtime_up->PopulateQueueList(m_queue_list); 1371 m_queue_list_stop_id = GetLastNaturalStopID(); 1372 } 1373 } 1374 } 1375 } 1376 1377 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1378 OperatingSystem *os = GetOperatingSystem(); 1379 if (os) 1380 return os->CreateThread(tid, context); 1381 return ThreadSP(); 1382 } 1383 1384 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1385 return AssignIndexIDToThread(thread_id); 1386 } 1387 1388 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1389 return (m_thread_id_to_index_id_map.find(thread_id) != 1390 m_thread_id_to_index_id_map.end()); 1391 } 1392 1393 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1394 uint32_t result = 0; 1395 std::map<uint64_t, uint32_t>::iterator iterator = 1396 m_thread_id_to_index_id_map.find(thread_id); 1397 if (iterator == m_thread_id_to_index_id_map.end()) { 1398 result = ++m_thread_index_id; 1399 m_thread_id_to_index_id_map[thread_id] = result; 1400 } else { 1401 result = iterator->second; 1402 } 1403 1404 return result; 1405 } 1406 1407 StateType Process::GetState() { 1408 return m_public_state.GetValue(); 1409 } 1410 1411 void Process::SetPublicState(StateType new_state, bool restarted) { 1412 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1413 LIBLLDB_LOG_PROCESS)); 1414 LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)", 1415 StateAsCString(new_state), restarted); 1416 const StateType old_state = m_public_state.GetValue(); 1417 m_public_state.SetValue(new_state); 1418 1419 // On the transition from Run to Stopped, we unlock the writer end of the run 1420 // lock. The lock gets locked in Resume, which is the public API to tell the 1421 // program to run. 1422 if (!StateChangedIsExternallyHijacked()) { 1423 if (new_state == eStateDetached) { 1424 LLDB_LOGF(log, 1425 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1426 StateAsCString(new_state)); 1427 m_public_run_lock.SetStopped(); 1428 } else { 1429 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1430 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1431 if ((old_state_is_stopped != new_state_is_stopped)) { 1432 if (new_state_is_stopped && !restarted) { 1433 LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock", 1434 StateAsCString(new_state)); 1435 m_public_run_lock.SetStopped(); 1436 } 1437 } 1438 } 1439 } 1440 } 1441 1442 Status Process::Resume() { 1443 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1444 LIBLLDB_LOG_PROCESS)); 1445 LLDB_LOGF(log, "Process::Resume -- locking run lock"); 1446 if (!m_public_run_lock.TrySetRunning()) { 1447 Status error("Resume request failed - process still running."); 1448 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1449 return error; 1450 } 1451 Status error = PrivateResume(); 1452 if (!error.Success()) { 1453 // Undo running state change 1454 m_public_run_lock.SetStopped(); 1455 } 1456 return error; 1457 } 1458 1459 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack"; 1460 1461 Status Process::ResumeSynchronous(Stream *stream) { 1462 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1463 LIBLLDB_LOG_PROCESS)); 1464 LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); 1465 if (!m_public_run_lock.TrySetRunning()) { 1466 Status error("Resume request failed - process still running."); 1467 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1468 return error; 1469 } 1470 1471 ListenerSP listener_sp( 1472 Listener::MakeListener(g_resume_sync_name)); 1473 HijackProcessEvents(listener_sp); 1474 1475 Status error = PrivateResume(); 1476 if (error.Success()) { 1477 StateType state = 1478 WaitForProcessToStop(llvm::None, nullptr, true, listener_sp, stream); 1479 const bool must_be_alive = 1480 false; // eStateExited is ok, so this must be false 1481 if (!StateIsStoppedState(state, must_be_alive)) 1482 error.SetErrorStringWithFormat( 1483 "process not in stopped state after synchronous resume: %s", 1484 StateAsCString(state)); 1485 } else { 1486 // Undo running state change 1487 m_public_run_lock.SetStopped(); 1488 } 1489 1490 // Undo the hijacking of process events... 1491 RestoreProcessEvents(); 1492 1493 return error; 1494 } 1495 1496 bool Process::StateChangedIsExternallyHijacked() { 1497 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1498 const char *hijacking_name = GetHijackingListenerName(); 1499 if (hijacking_name && 1500 strcmp(hijacking_name, g_resume_sync_name)) 1501 return true; 1502 } 1503 return false; 1504 } 1505 1506 bool Process::StateChangedIsHijackedForSynchronousResume() { 1507 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1508 const char *hijacking_name = GetHijackingListenerName(); 1509 if (hijacking_name && 1510 strcmp(hijacking_name, g_resume_sync_name) == 0) 1511 return true; 1512 } 1513 return false; 1514 } 1515 1516 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1517 1518 void Process::SetPrivateState(StateType new_state) { 1519 if (m_finalize_called) 1520 return; 1521 1522 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1523 LIBLLDB_LOG_PROCESS)); 1524 bool state_changed = false; 1525 1526 LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state)); 1527 1528 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1529 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1530 1531 const StateType old_state = m_private_state.GetValueNoLock(); 1532 state_changed = old_state != new_state; 1533 1534 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1535 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1536 if (old_state_is_stopped != new_state_is_stopped) { 1537 if (new_state_is_stopped) 1538 m_private_run_lock.SetStopped(); 1539 else 1540 m_private_run_lock.SetRunning(); 1541 } 1542 1543 if (state_changed) { 1544 m_private_state.SetValueNoLock(new_state); 1545 EventSP event_sp( 1546 new Event(eBroadcastBitStateChanged, 1547 new ProcessEventData(shared_from_this(), new_state))); 1548 if (StateIsStoppedState(new_state, false)) { 1549 // Note, this currently assumes that all threads in the list stop when 1550 // the process stops. In the future we will want to support a debugging 1551 // model where some threads continue to run while others are stopped. 1552 // When that happens we will either need a way for the thread list to 1553 // identify which threads are stopping or create a special thread list 1554 // containing only threads which actually stopped. 1555 // 1556 // The process plugin is responsible for managing the actual behavior of 1557 // the threads and should have stopped any threads that are going to stop 1558 // before we get here. 1559 m_thread_list.DidStop(); 1560 1561 m_mod_id.BumpStopID(); 1562 if (!m_mod_id.IsLastResumeForUserExpression()) 1563 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1564 m_memory_cache.Clear(); 1565 LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u", 1566 StateAsCString(new_state), m_mod_id.GetStopID()); 1567 } 1568 1569 // Use our target to get a shared pointer to ourselves... 1570 if (m_finalize_called && !PrivateStateThreadIsValid()) 1571 BroadcastEvent(event_sp); 1572 else 1573 m_private_state_broadcaster.BroadcastEvent(event_sp); 1574 } else { 1575 LLDB_LOGF(log, 1576 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1577 StateAsCString(new_state)); 1578 } 1579 } 1580 1581 void Process::SetRunningUserExpression(bool on) { 1582 m_mod_id.SetRunningUserExpression(on); 1583 } 1584 1585 void Process::SetRunningUtilityFunction(bool on) { 1586 m_mod_id.SetRunningUtilityFunction(on); 1587 } 1588 1589 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1590 1591 const lldb::ABISP &Process::GetABI() { 1592 if (!m_abi_sp) 1593 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1594 return m_abi_sp; 1595 } 1596 1597 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { 1598 std::vector<LanguageRuntime *> language_runtimes; 1599 1600 if (m_finalizing) 1601 return language_runtimes; 1602 1603 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1604 // Before we pass off a copy of the language runtimes, we must make sure that 1605 // our collection is properly populated. It's possible that some of the 1606 // language runtimes were not loaded yet, either because nobody requested it 1607 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so 1608 // hadn't been loaded). 1609 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 1610 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 1611 language_runtimes.emplace_back(runtime); 1612 } 1613 1614 return language_runtimes; 1615 } 1616 1617 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { 1618 if (m_finalizing) 1619 return nullptr; 1620 1621 LanguageRuntime *runtime = nullptr; 1622 1623 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1624 LanguageRuntimeCollection::iterator pos; 1625 pos = m_language_runtimes.find(language); 1626 if (pos == m_language_runtimes.end() || !pos->second) { 1627 lldb::LanguageRuntimeSP runtime_sp( 1628 LanguageRuntime::FindPlugin(this, language)); 1629 1630 m_language_runtimes[language] = runtime_sp; 1631 runtime = runtime_sp.get(); 1632 } else 1633 runtime = pos->second.get(); 1634 1635 if (runtime) 1636 // It's possible that a language runtime can support multiple LanguageTypes, 1637 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, 1638 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the 1639 // primary language type and make sure that our runtime supports it. 1640 assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); 1641 1642 return runtime; 1643 } 1644 1645 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1646 if (m_finalizing) 1647 return false; 1648 1649 if (in_value.IsDynamic()) 1650 return false; 1651 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1652 1653 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1654 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1655 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1656 } 1657 1658 for (LanguageRuntime *runtime : GetLanguageRuntimes()) { 1659 if (runtime->CouldHaveDynamicValue(in_value)) 1660 return true; 1661 } 1662 1663 return false; 1664 } 1665 1666 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1667 m_dynamic_checkers_up.reset(dynamic_checkers); 1668 } 1669 1670 BreakpointSiteList &Process::GetBreakpointSiteList() { 1671 return m_breakpoint_site_list; 1672 } 1673 1674 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1675 return m_breakpoint_site_list; 1676 } 1677 1678 void Process::DisableAllBreakpointSites() { 1679 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1680 // bp_site->SetEnabled(true); 1681 DisableBreakpointSite(bp_site); 1682 }); 1683 } 1684 1685 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1686 Status error(DisableBreakpointSiteByID(break_id)); 1687 1688 if (error.Success()) 1689 m_breakpoint_site_list.Remove(break_id); 1690 1691 return error; 1692 } 1693 1694 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1695 Status error; 1696 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1697 if (bp_site_sp) { 1698 if (bp_site_sp->IsEnabled()) 1699 error = DisableBreakpointSite(bp_site_sp.get()); 1700 } else { 1701 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1702 break_id); 1703 } 1704 1705 return error; 1706 } 1707 1708 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1709 Status error; 1710 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1711 if (bp_site_sp) { 1712 if (!bp_site_sp->IsEnabled()) 1713 error = EnableBreakpointSite(bp_site_sp.get()); 1714 } else { 1715 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1716 break_id); 1717 } 1718 return error; 1719 } 1720 1721 lldb::break_id_t 1722 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1723 bool use_hardware) { 1724 addr_t load_addr = LLDB_INVALID_ADDRESS; 1725 1726 bool show_error = true; 1727 switch (GetState()) { 1728 case eStateInvalid: 1729 case eStateUnloaded: 1730 case eStateConnected: 1731 case eStateAttaching: 1732 case eStateLaunching: 1733 case eStateDetached: 1734 case eStateExited: 1735 show_error = false; 1736 break; 1737 1738 case eStateStopped: 1739 case eStateRunning: 1740 case eStateStepping: 1741 case eStateCrashed: 1742 case eStateSuspended: 1743 show_error = IsAlive(); 1744 break; 1745 } 1746 1747 // Reset the IsIndirect flag here, in case the location changes from pointing 1748 // to a indirect symbol to a regular symbol. 1749 owner->SetIsIndirect(false); 1750 1751 if (owner->ShouldResolveIndirectFunctions()) { 1752 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1753 if (symbol && symbol->IsIndirect()) { 1754 Status error; 1755 Address symbol_address = symbol->GetAddress(); 1756 load_addr = ResolveIndirectFunction(&symbol_address, error); 1757 if (!error.Success() && show_error) { 1758 GetTarget().GetDebugger().GetErrorStream().Printf( 1759 "warning: failed to resolve indirect function at 0x%" PRIx64 1760 " for breakpoint %i.%i: %s\n", 1761 symbol->GetLoadAddress(&GetTarget()), 1762 owner->GetBreakpoint().GetID(), owner->GetID(), 1763 error.AsCString() ? error.AsCString() : "unknown error"); 1764 return LLDB_INVALID_BREAK_ID; 1765 } 1766 Address resolved_address(load_addr); 1767 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1768 owner->SetIsIndirect(true); 1769 } else 1770 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1771 } else 1772 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1773 1774 if (load_addr != LLDB_INVALID_ADDRESS) { 1775 BreakpointSiteSP bp_site_sp; 1776 1777 // Look up this breakpoint site. If it exists, then add this new owner, 1778 // otherwise create a new breakpoint site and add it. 1779 1780 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1781 1782 if (bp_site_sp) { 1783 bp_site_sp->AddOwner(owner); 1784 owner->SetBreakpointSite(bp_site_sp); 1785 return bp_site_sp->GetID(); 1786 } else { 1787 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1788 load_addr, use_hardware)); 1789 if (bp_site_sp) { 1790 Status error = EnableBreakpointSite(bp_site_sp.get()); 1791 if (error.Success()) { 1792 owner->SetBreakpointSite(bp_site_sp); 1793 return m_breakpoint_site_list.Add(bp_site_sp); 1794 } else { 1795 if (show_error || use_hardware) { 1796 // Report error for setting breakpoint... 1797 GetTarget().GetDebugger().GetErrorStream().Printf( 1798 "warning: failed to set breakpoint site at 0x%" PRIx64 1799 " for breakpoint %i.%i: %s\n", 1800 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1801 error.AsCString() ? error.AsCString() : "unknown error"); 1802 } 1803 } 1804 } 1805 } 1806 } 1807 // We failed to enable the breakpoint 1808 return LLDB_INVALID_BREAK_ID; 1809 } 1810 1811 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1812 lldb::user_id_t owner_loc_id, 1813 BreakpointSiteSP &bp_site_sp) { 1814 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1815 if (num_owners == 0) { 1816 // Don't try to disable the site if we don't have a live process anymore. 1817 if (IsAlive()) 1818 DisableBreakpointSite(bp_site_sp.get()); 1819 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1820 } 1821 } 1822 1823 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1824 uint8_t *buf) const { 1825 size_t bytes_removed = 0; 1826 BreakpointSiteList bp_sites_in_range; 1827 1828 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1829 bp_sites_in_range)) { 1830 bp_sites_in_range.ForEach([bp_addr, size, 1831 buf](BreakpointSite *bp_site) -> void { 1832 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1833 addr_t intersect_addr; 1834 size_t intersect_size; 1835 size_t opcode_offset; 1836 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1837 &intersect_size, &opcode_offset)) { 1838 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1839 assert(bp_addr < intersect_addr + intersect_size && 1840 intersect_addr + intersect_size <= bp_addr + size); 1841 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1842 size_t buf_offset = intersect_addr - bp_addr; 1843 ::memcpy(buf + buf_offset, 1844 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1845 intersect_size); 1846 } 1847 } 1848 }); 1849 } 1850 return bytes_removed; 1851 } 1852 1853 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1854 PlatformSP platform_sp(GetTarget().GetPlatform()); 1855 if (platform_sp) 1856 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1857 return 0; 1858 } 1859 1860 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1861 Status error; 1862 assert(bp_site != nullptr); 1863 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1864 const addr_t bp_addr = bp_site->GetLoadAddress(); 1865 LLDB_LOGF( 1866 log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1867 bp_site->GetID(), (uint64_t)bp_addr); 1868 if (bp_site->IsEnabled()) { 1869 LLDB_LOGF( 1870 log, 1871 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1872 " -- already enabled", 1873 bp_site->GetID(), (uint64_t)bp_addr); 1874 return error; 1875 } 1876 1877 if (bp_addr == LLDB_INVALID_ADDRESS) { 1878 error.SetErrorString("BreakpointSite contains an invalid load address."); 1879 return error; 1880 } 1881 // Ask the lldb::Process subclass to fill in the correct software breakpoint 1882 // trap for the breakpoint site 1883 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 1884 1885 if (bp_opcode_size == 0) { 1886 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 1887 "returned zero, unable to get breakpoint " 1888 "trap for address 0x%" PRIx64, 1889 bp_addr); 1890 } else { 1891 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 1892 1893 if (bp_opcode_bytes == nullptr) { 1894 error.SetErrorString( 1895 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 1896 return error; 1897 } 1898 1899 // Save the original opcode by reading it 1900 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 1901 error) == bp_opcode_size) { 1902 // Write a software breakpoint in place of the original opcode 1903 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 1904 bp_opcode_size) { 1905 uint8_t verify_bp_opcode_bytes[64]; 1906 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 1907 error) == bp_opcode_size) { 1908 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 1909 bp_opcode_size) == 0) { 1910 bp_site->SetEnabled(true); 1911 bp_site->SetType(BreakpointSite::eSoftware); 1912 LLDB_LOGF(log, 1913 "Process::EnableSoftwareBreakpoint (site_id = %d) " 1914 "addr = 0x%" PRIx64 " -- SUCCESS", 1915 bp_site->GetID(), (uint64_t)bp_addr); 1916 } else 1917 error.SetErrorString( 1918 "failed to verify the breakpoint trap in memory."); 1919 } else 1920 error.SetErrorString( 1921 "Unable to read memory to verify breakpoint trap."); 1922 } else 1923 error.SetErrorString("Unable to write breakpoint trap to memory."); 1924 } else 1925 error.SetErrorString("Unable to read memory at breakpoint address."); 1926 } 1927 if (log && error.Fail()) 1928 LLDB_LOGF( 1929 log, 1930 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1931 " -- FAILED: %s", 1932 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1933 return error; 1934 } 1935 1936 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 1937 Status error; 1938 assert(bp_site != nullptr); 1939 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1940 addr_t bp_addr = bp_site->GetLoadAddress(); 1941 lldb::user_id_t breakID = bp_site->GetID(); 1942 LLDB_LOGF(log, 1943 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 1944 ") addr = 0x%" PRIx64, 1945 breakID, (uint64_t)bp_addr); 1946 1947 if (bp_site->IsHardware()) { 1948 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 1949 } else if (bp_site->IsEnabled()) { 1950 const size_t break_op_size = bp_site->GetByteSize(); 1951 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 1952 if (break_op_size > 0) { 1953 // Clear a software breakpoint instruction 1954 uint8_t curr_break_op[8]; 1955 assert(break_op_size <= sizeof(curr_break_op)); 1956 bool break_op_found = false; 1957 1958 // Read the breakpoint opcode 1959 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 1960 break_op_size) { 1961 bool verify = false; 1962 // Make sure the breakpoint opcode exists at this address 1963 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 1964 break_op_found = true; 1965 // We found a valid breakpoint opcode at this address, now restore 1966 // the saved opcode. 1967 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 1968 break_op_size, error) == break_op_size) { 1969 verify = true; 1970 } else 1971 error.SetErrorString( 1972 "Memory write failed when restoring original opcode."); 1973 } else { 1974 error.SetErrorString( 1975 "Original breakpoint trap is no longer in memory."); 1976 // Set verify to true and so we can check if the original opcode has 1977 // already been restored 1978 verify = true; 1979 } 1980 1981 if (verify) { 1982 uint8_t verify_opcode[8]; 1983 assert(break_op_size < sizeof(verify_opcode)); 1984 // Verify that our original opcode made it back to the inferior 1985 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 1986 break_op_size) { 1987 // compare the memory we just read with the original opcode 1988 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 1989 break_op_size) == 0) { 1990 // SUCCESS 1991 bp_site->SetEnabled(false); 1992 LLDB_LOGF(log, 1993 "Process::DisableSoftwareBreakpoint (site_id = %d) " 1994 "addr = 0x%" PRIx64 " -- SUCCESS", 1995 bp_site->GetID(), (uint64_t)bp_addr); 1996 return error; 1997 } else { 1998 if (break_op_found) 1999 error.SetErrorString("Failed to restore original opcode."); 2000 } 2001 } else 2002 error.SetErrorString("Failed to read memory to verify that " 2003 "breakpoint trap was restored."); 2004 } 2005 } else 2006 error.SetErrorString( 2007 "Unable to read memory that should contain the breakpoint trap."); 2008 } 2009 } else { 2010 LLDB_LOGF( 2011 log, 2012 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2013 " -- already disabled", 2014 bp_site->GetID(), (uint64_t)bp_addr); 2015 return error; 2016 } 2017 2018 LLDB_LOGF( 2019 log, 2020 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2021 " -- FAILED: %s", 2022 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 2023 return error; 2024 } 2025 2026 // Uncomment to verify memory caching works after making changes to caching 2027 // code 2028 //#define VERIFY_MEMORY_READS 2029 2030 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 2031 error.Clear(); 2032 if (!GetDisableMemoryCache()) { 2033 #if defined(VERIFY_MEMORY_READS) 2034 // Memory caching is enabled, with debug verification 2035 2036 if (buf && size) { 2037 // Uncomment the line below to make sure memory caching is working. 2038 // I ran this through the test suite and got no assertions, so I am 2039 // pretty confident this is working well. If any changes are made to 2040 // memory caching, uncomment the line below and test your changes! 2041 2042 // Verify all memory reads by using the cache first, then redundantly 2043 // reading the same memory from the inferior and comparing to make sure 2044 // everything is exactly the same. 2045 std::string verify_buf(size, '\0'); 2046 assert(verify_buf.size() == size); 2047 const size_t cache_bytes_read = 2048 m_memory_cache.Read(this, addr, buf, size, error); 2049 Status verify_error; 2050 const size_t verify_bytes_read = 2051 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 2052 verify_buf.size(), verify_error); 2053 assert(cache_bytes_read == verify_bytes_read); 2054 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 2055 assert(verify_error.Success() == error.Success()); 2056 return cache_bytes_read; 2057 } 2058 return 0; 2059 #else // !defined(VERIFY_MEMORY_READS) 2060 // Memory caching is enabled, without debug verification 2061 2062 return m_memory_cache.Read(addr, buf, size, error); 2063 #endif // defined (VERIFY_MEMORY_READS) 2064 } else { 2065 // Memory caching is disabled 2066 2067 return ReadMemoryFromInferior(addr, buf, size, error); 2068 } 2069 } 2070 2071 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 2072 Status &error) { 2073 char buf[256]; 2074 out_str.clear(); 2075 addr_t curr_addr = addr; 2076 while (true) { 2077 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 2078 if (length == 0) 2079 break; 2080 out_str.append(buf, length); 2081 // If we got "length - 1" bytes, we didn't get the whole C string, we need 2082 // to read some more characters 2083 if (length == sizeof(buf) - 1) 2084 curr_addr += length; 2085 else 2086 break; 2087 } 2088 return out_str.size(); 2089 } 2090 2091 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes, 2092 Status &error, size_t type_width) { 2093 size_t total_bytes_read = 0; 2094 if (dst && max_bytes && type_width && max_bytes >= type_width) { 2095 // Ensure a null terminator independent of the number of bytes that is 2096 // read. 2097 memset(dst, 0, max_bytes); 2098 size_t bytes_left = max_bytes - type_width; 2099 2100 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 2101 assert(sizeof(terminator) >= type_width && "Attempting to validate a " 2102 "string with more than 4 bytes " 2103 "per character!"); 2104 2105 addr_t curr_addr = addr; 2106 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2107 char *curr_dst = dst; 2108 2109 error.Clear(); 2110 while (bytes_left > 0 && error.Success()) { 2111 addr_t cache_line_bytes_left = 2112 cache_line_size - (curr_addr % cache_line_size); 2113 addr_t bytes_to_read = 2114 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2115 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2116 2117 if (bytes_read == 0) 2118 break; 2119 2120 // Search for a null terminator of correct size and alignment in 2121 // bytes_read 2122 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 2123 for (size_t i = aligned_start; 2124 i + type_width <= total_bytes_read + bytes_read; i += type_width) 2125 if (::memcmp(&dst[i], terminator, type_width) == 0) { 2126 error.Clear(); 2127 return i; 2128 } 2129 2130 total_bytes_read += bytes_read; 2131 curr_dst += bytes_read; 2132 curr_addr += bytes_read; 2133 bytes_left -= bytes_read; 2134 } 2135 } else { 2136 if (max_bytes) 2137 error.SetErrorString("invalid arguments"); 2138 } 2139 return total_bytes_read; 2140 } 2141 2142 // Deprecated in favor of ReadStringFromMemory which has wchar support and 2143 // correct code to find null terminators. 2144 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 2145 size_t dst_max_len, 2146 Status &result_error) { 2147 size_t total_cstr_len = 0; 2148 if (dst && dst_max_len) { 2149 result_error.Clear(); 2150 // NULL out everything just to be safe 2151 memset(dst, 0, dst_max_len); 2152 Status error; 2153 addr_t curr_addr = addr; 2154 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2155 size_t bytes_left = dst_max_len - 1; 2156 char *curr_dst = dst; 2157 2158 while (bytes_left > 0) { 2159 addr_t cache_line_bytes_left = 2160 cache_line_size - (curr_addr % cache_line_size); 2161 addr_t bytes_to_read = 2162 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2163 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2164 2165 if (bytes_read == 0) { 2166 result_error = error; 2167 dst[total_cstr_len] = '\0'; 2168 break; 2169 } 2170 const size_t len = strlen(curr_dst); 2171 2172 total_cstr_len += len; 2173 2174 if (len < bytes_to_read) 2175 break; 2176 2177 curr_dst += bytes_read; 2178 curr_addr += bytes_read; 2179 bytes_left -= bytes_read; 2180 } 2181 } else { 2182 if (dst == nullptr) 2183 result_error.SetErrorString("invalid arguments"); 2184 else 2185 result_error.Clear(); 2186 } 2187 return total_cstr_len; 2188 } 2189 2190 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2191 Status &error) { 2192 if (buf == nullptr || size == 0) 2193 return 0; 2194 2195 size_t bytes_read = 0; 2196 uint8_t *bytes = (uint8_t *)buf; 2197 2198 while (bytes_read < size) { 2199 const size_t curr_size = size - bytes_read; 2200 const size_t curr_bytes_read = 2201 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2202 bytes_read += curr_bytes_read; 2203 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2204 break; 2205 } 2206 2207 // Replace any software breakpoint opcodes that fall into this range back 2208 // into "buf" before we return 2209 if (bytes_read > 0) 2210 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2211 return bytes_read; 2212 } 2213 2214 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2215 size_t integer_byte_size, 2216 uint64_t fail_value, 2217 Status &error) { 2218 Scalar scalar; 2219 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2220 error)) 2221 return scalar.ULongLong(fail_value); 2222 return fail_value; 2223 } 2224 2225 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2226 size_t integer_byte_size, 2227 int64_t fail_value, 2228 Status &error) { 2229 Scalar scalar; 2230 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2231 error)) 2232 return scalar.SLongLong(fail_value); 2233 return fail_value; 2234 } 2235 2236 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2237 Scalar scalar; 2238 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2239 error)) 2240 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2241 return LLDB_INVALID_ADDRESS; 2242 } 2243 2244 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2245 Status &error) { 2246 Scalar scalar; 2247 const uint32_t addr_byte_size = GetAddressByteSize(); 2248 if (addr_byte_size <= 4) 2249 scalar = (uint32_t)ptr_value; 2250 else 2251 scalar = ptr_value; 2252 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2253 addr_byte_size; 2254 } 2255 2256 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2257 Status &error) { 2258 size_t bytes_written = 0; 2259 const uint8_t *bytes = (const uint8_t *)buf; 2260 2261 while (bytes_written < size) { 2262 const size_t curr_size = size - bytes_written; 2263 const size_t curr_bytes_written = DoWriteMemory( 2264 addr + bytes_written, bytes + bytes_written, curr_size, error); 2265 bytes_written += curr_bytes_written; 2266 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2267 break; 2268 } 2269 return bytes_written; 2270 } 2271 2272 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2273 Status &error) { 2274 #if defined(ENABLE_MEMORY_CACHING) 2275 m_memory_cache.Flush(addr, size); 2276 #endif 2277 2278 if (buf == nullptr || size == 0) 2279 return 0; 2280 2281 m_mod_id.BumpMemoryID(); 2282 2283 // We need to write any data that would go where any current software traps 2284 // (enabled software breakpoints) any software traps (breakpoints) that we 2285 // may have placed in our tasks memory. 2286 2287 BreakpointSiteList bp_sites_in_range; 2288 if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range)) 2289 return WriteMemoryPrivate(addr, buf, size, error); 2290 2291 // No breakpoint sites overlap 2292 if (bp_sites_in_range.IsEmpty()) 2293 return WriteMemoryPrivate(addr, buf, size, error); 2294 2295 const uint8_t *ubuf = (const uint8_t *)buf; 2296 uint64_t bytes_written = 0; 2297 2298 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2299 &error](BreakpointSite *bp) -> void { 2300 if (error.Fail()) 2301 return; 2302 2303 if (bp->GetType() != BreakpointSite::eSoftware) 2304 return; 2305 2306 addr_t intersect_addr; 2307 size_t intersect_size; 2308 size_t opcode_offset; 2309 const bool intersects = bp->IntersectsRange( 2310 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2311 UNUSED_IF_ASSERT_DISABLED(intersects); 2312 assert(intersects); 2313 assert(addr <= intersect_addr && intersect_addr < addr + size); 2314 assert(addr < intersect_addr + intersect_size && 2315 intersect_addr + intersect_size <= addr + size); 2316 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2317 2318 // Check for bytes before this breakpoint 2319 const addr_t curr_addr = addr + bytes_written; 2320 if (intersect_addr > curr_addr) { 2321 // There are some bytes before this breakpoint that we need to just 2322 // write to memory 2323 size_t curr_size = intersect_addr - curr_addr; 2324 size_t curr_bytes_written = 2325 WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error); 2326 bytes_written += curr_bytes_written; 2327 if (curr_bytes_written != curr_size) { 2328 // We weren't able to write all of the requested bytes, we are 2329 // done looping and will return the number of bytes that we have 2330 // written so far. 2331 if (error.Success()) 2332 error.SetErrorToGenericError(); 2333 } 2334 } 2335 // Now write any bytes that would cover up any software breakpoints 2336 // directly into the breakpoint opcode buffer 2337 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, 2338 intersect_size); 2339 bytes_written += intersect_size; 2340 }); 2341 2342 // Write any remaining bytes after the last breakpoint if we have any left 2343 if (bytes_written < size) 2344 bytes_written += 2345 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2346 size - bytes_written, error); 2347 2348 return bytes_written; 2349 } 2350 2351 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2352 size_t byte_size, Status &error) { 2353 if (byte_size == UINT32_MAX) 2354 byte_size = scalar.GetByteSize(); 2355 if (byte_size > 0) { 2356 uint8_t buf[32]; 2357 const size_t mem_size = 2358 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2359 if (mem_size > 0) 2360 return WriteMemory(addr, buf, mem_size, error); 2361 else 2362 error.SetErrorString("failed to get scalar as memory data"); 2363 } else { 2364 error.SetErrorString("invalid scalar value"); 2365 } 2366 return 0; 2367 } 2368 2369 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2370 bool is_signed, Scalar &scalar, 2371 Status &error) { 2372 uint64_t uval = 0; 2373 if (byte_size == 0) { 2374 error.SetErrorString("byte size is zero"); 2375 } else if (byte_size & (byte_size - 1)) { 2376 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2377 byte_size); 2378 } else if (byte_size <= sizeof(uval)) { 2379 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2380 if (bytes_read == byte_size) { 2381 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2382 GetAddressByteSize()); 2383 lldb::offset_t offset = 0; 2384 if (byte_size <= 4) 2385 scalar = data.GetMaxU32(&offset, byte_size); 2386 else 2387 scalar = data.GetMaxU64(&offset, byte_size); 2388 if (is_signed) 2389 scalar.SignExtend(byte_size * 8); 2390 return bytes_read; 2391 } 2392 } else { 2393 error.SetErrorStringWithFormat( 2394 "byte size of %u is too large for integer scalar type", byte_size); 2395 } 2396 return 0; 2397 } 2398 2399 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2400 Status error; 2401 for (const auto &Entry : entries) { 2402 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2403 error); 2404 if (!error.Success()) 2405 break; 2406 } 2407 return error; 2408 } 2409 2410 #define USE_ALLOCATE_MEMORY_CACHE 1 2411 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2412 Status &error) { 2413 if (GetPrivateState() != eStateStopped) { 2414 error.SetErrorToGenericError(); 2415 return LLDB_INVALID_ADDRESS; 2416 } 2417 2418 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2419 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2420 #else 2421 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2422 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2423 LLDB_LOGF(log, 2424 "Process::AllocateMemory(size=%" PRIu64 2425 ", permissions=%s) => 0x%16.16" PRIx64 2426 " (m_stop_id = %u m_memory_id = %u)", 2427 (uint64_t)size, GetPermissionsAsCString(permissions), 2428 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2429 m_mod_id.GetMemoryID()); 2430 return allocated_addr; 2431 #endif 2432 } 2433 2434 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2435 Status &error) { 2436 addr_t return_addr = AllocateMemory(size, permissions, error); 2437 if (error.Success()) { 2438 std::string buffer(size, 0); 2439 WriteMemory(return_addr, buffer.c_str(), size, error); 2440 } 2441 return return_addr; 2442 } 2443 2444 bool Process::CanJIT() { 2445 if (m_can_jit == eCanJITDontKnow) { 2446 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2447 Status err; 2448 2449 uint64_t allocated_memory = AllocateMemory( 2450 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2451 err); 2452 2453 if (err.Success()) { 2454 m_can_jit = eCanJITYes; 2455 LLDB_LOGF(log, 2456 "Process::%s pid %" PRIu64 2457 " allocation test passed, CanJIT () is true", 2458 __FUNCTION__, GetID()); 2459 } else { 2460 m_can_jit = eCanJITNo; 2461 LLDB_LOGF(log, 2462 "Process::%s pid %" PRIu64 2463 " allocation test failed, CanJIT () is false: %s", 2464 __FUNCTION__, GetID(), err.AsCString()); 2465 } 2466 2467 DeallocateMemory(allocated_memory); 2468 } 2469 2470 return m_can_jit == eCanJITYes; 2471 } 2472 2473 void Process::SetCanJIT(bool can_jit) { 2474 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2475 } 2476 2477 void Process::SetCanRunCode(bool can_run_code) { 2478 SetCanJIT(can_run_code); 2479 m_can_interpret_function_calls = can_run_code; 2480 } 2481 2482 Status Process::DeallocateMemory(addr_t ptr) { 2483 Status error; 2484 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2485 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2486 error.SetErrorStringWithFormat( 2487 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2488 } 2489 #else 2490 error = DoDeallocateMemory(ptr); 2491 2492 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2493 LLDB_LOGF(log, 2494 "Process::DeallocateMemory(addr=0x%16.16" PRIx64 2495 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2496 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2497 m_mod_id.GetMemoryID()); 2498 #endif 2499 return error; 2500 } 2501 2502 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2503 lldb::addr_t header_addr, 2504 size_t size_to_read) { 2505 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2506 if (log) { 2507 LLDB_LOGF(log, 2508 "Process::ReadModuleFromMemory reading %s binary from memory", 2509 file_spec.GetPath().c_str()); 2510 } 2511 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2512 if (module_sp) { 2513 Status error; 2514 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2515 shared_from_this(), header_addr, error, size_to_read); 2516 if (objfile) 2517 return module_sp; 2518 } 2519 return ModuleSP(); 2520 } 2521 2522 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2523 uint32_t &permissions) { 2524 MemoryRegionInfo range_info; 2525 permissions = 0; 2526 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2527 if (!error.Success()) 2528 return false; 2529 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2530 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2531 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2532 return false; 2533 } 2534 2535 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2536 permissions |= lldb::ePermissionsReadable; 2537 2538 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2539 permissions |= lldb::ePermissionsWritable; 2540 2541 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2542 permissions |= lldb::ePermissionsExecutable; 2543 2544 return true; 2545 } 2546 2547 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2548 Status error; 2549 error.SetErrorString("watchpoints are not supported"); 2550 return error; 2551 } 2552 2553 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2554 Status error; 2555 error.SetErrorString("watchpoints are not supported"); 2556 return error; 2557 } 2558 2559 StateType 2560 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2561 const Timeout<std::micro> &timeout) { 2562 StateType state; 2563 2564 while (true) { 2565 event_sp.reset(); 2566 state = GetStateChangedEventsPrivate(event_sp, timeout); 2567 2568 if (StateIsStoppedState(state, false)) 2569 break; 2570 2571 // If state is invalid, then we timed out 2572 if (state == eStateInvalid) 2573 break; 2574 2575 if (event_sp) 2576 HandlePrivateEvent(event_sp); 2577 } 2578 return state; 2579 } 2580 2581 void Process::LoadOperatingSystemPlugin(bool flush) { 2582 if (flush) 2583 m_thread_list.Clear(); 2584 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); 2585 if (flush) 2586 Flush(); 2587 } 2588 2589 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2590 Status error; 2591 m_abi_sp.reset(); 2592 m_dyld_up.reset(); 2593 m_jit_loaders_up.reset(); 2594 m_system_runtime_up.reset(); 2595 m_os_up.reset(); 2596 m_process_input_reader.reset(); 2597 2598 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2599 if (!exe_module) { 2600 error.SetErrorString("executable module does not exist"); 2601 return error; 2602 } 2603 2604 char local_exec_file_path[PATH_MAX]; 2605 char platform_exec_file_path[PATH_MAX]; 2606 exe_module->GetFileSpec().GetPath(local_exec_file_path, 2607 sizeof(local_exec_file_path)); 2608 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, 2609 sizeof(platform_exec_file_path)); 2610 if (FileSystem::Instance().Exists(exe_module->GetFileSpec())) { 2611 // Install anything that might need to be installed prior to launching. 2612 // For host systems, this will do nothing, but if we are connected to a 2613 // remote platform it will install any needed binaries 2614 error = GetTarget().Install(&launch_info); 2615 if (error.Fail()) 2616 return error; 2617 2618 if (PrivateStateThreadIsValid()) 2619 PausePrivateStateThread(); 2620 2621 error = WillLaunch(exe_module); 2622 if (error.Success()) { 2623 const bool restarted = false; 2624 SetPublicState(eStateLaunching, restarted); 2625 m_should_detach = false; 2626 2627 if (m_public_run_lock.TrySetRunning()) { 2628 // Now launch using these arguments. 2629 error = DoLaunch(exe_module, launch_info); 2630 } else { 2631 // This shouldn't happen 2632 error.SetErrorString("failed to acquire process run lock"); 2633 } 2634 2635 if (error.Fail()) { 2636 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2637 SetID(LLDB_INVALID_PROCESS_ID); 2638 const char *error_string = error.AsCString(); 2639 if (error_string == nullptr) 2640 error_string = "launch failed"; 2641 SetExitStatus(-1, error_string); 2642 } 2643 } else { 2644 EventSP event_sp; 2645 2646 // Now wait for the process to launch and return control to us, and then 2647 // call DidLaunch: 2648 StateType state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2649 2650 if (state == eStateInvalid || !event_sp) { 2651 // We were able to launch the process, but we failed to catch the 2652 // initial stop. 2653 error.SetErrorString("failed to catch stop after launch"); 2654 SetExitStatus(0, "failed to catch stop after launch"); 2655 Destroy(false); 2656 } else if (state == eStateStopped || state == eStateCrashed) { 2657 DidLaunch(); 2658 2659 DynamicLoader *dyld = GetDynamicLoader(); 2660 if (dyld) 2661 dyld->DidLaunch(); 2662 2663 GetJITLoaders().DidLaunch(); 2664 2665 SystemRuntime *system_runtime = GetSystemRuntime(); 2666 if (system_runtime) 2667 system_runtime->DidLaunch(); 2668 2669 if (!m_os_up) 2670 LoadOperatingSystemPlugin(false); 2671 2672 // We successfully launched the process and stopped, now it the 2673 // right time to set up signal filters before resuming. 2674 UpdateAutomaticSignalFiltering(); 2675 2676 // Note, the stop event was consumed above, but not handled. This 2677 // was done to give DidLaunch a chance to run. The target is either 2678 // stopped or crashed. Directly set the state. This is done to 2679 // prevent a stop message with a bunch of spurious output on thread 2680 // status, as well as not pop a ProcessIOHandler. 2681 SetPublicState(state, false); 2682 2683 if (PrivateStateThreadIsValid()) 2684 ResumePrivateStateThread(); 2685 else 2686 StartPrivateStateThread(); 2687 2688 // Target was stopped at entry as was intended. Need to notify the 2689 // listeners about it. 2690 if (state == eStateStopped && 2691 launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2692 HandlePrivateEvent(event_sp); 2693 } else if (state == eStateExited) { 2694 // We exited while trying to launch somehow. Don't call DidLaunch 2695 // as that's not likely to work, and return an invalid pid. 2696 HandlePrivateEvent(event_sp); 2697 } 2698 } 2699 } 2700 } else { 2701 error.SetErrorStringWithFormat("file doesn't exist: '%s'", 2702 local_exec_file_path); 2703 } 2704 2705 return error; 2706 } 2707 2708 Status Process::LoadCore() { 2709 Status error = DoLoadCore(); 2710 if (error.Success()) { 2711 ListenerSP listener_sp( 2712 Listener::MakeListener("lldb.process.load_core_listener")); 2713 HijackProcessEvents(listener_sp); 2714 2715 if (PrivateStateThreadIsValid()) 2716 ResumePrivateStateThread(); 2717 else 2718 StartPrivateStateThread(); 2719 2720 DynamicLoader *dyld = GetDynamicLoader(); 2721 if (dyld) 2722 dyld->DidAttach(); 2723 2724 GetJITLoaders().DidAttach(); 2725 2726 SystemRuntime *system_runtime = GetSystemRuntime(); 2727 if (system_runtime) 2728 system_runtime->DidAttach(); 2729 2730 if (!m_os_up) 2731 LoadOperatingSystemPlugin(false); 2732 2733 // We successfully loaded a core file, now pretend we stopped so we can 2734 // show all of the threads in the core file and explore the crashed state. 2735 SetPrivateState(eStateStopped); 2736 2737 // Wait for a stopped event since we just posted one above... 2738 lldb::EventSP event_sp; 2739 StateType state = 2740 WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp); 2741 2742 if (!StateIsStoppedState(state, false)) { 2743 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2744 LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", 2745 StateAsCString(state)); 2746 error.SetErrorString( 2747 "Did not get stopped event after loading the core file."); 2748 } 2749 RestoreProcessEvents(); 2750 } 2751 return error; 2752 } 2753 2754 DynamicLoader *Process::GetDynamicLoader() { 2755 if (!m_dyld_up) 2756 m_dyld_up.reset(DynamicLoader::FindPlugin(this, nullptr)); 2757 return m_dyld_up.get(); 2758 } 2759 2760 DataExtractor Process::GetAuxvData() { return DataExtractor(); } 2761 2762 JITLoaderList &Process::GetJITLoaders() { 2763 if (!m_jit_loaders_up) { 2764 m_jit_loaders_up = std::make_unique<JITLoaderList>(); 2765 JITLoader::LoadPlugins(this, *m_jit_loaders_up); 2766 } 2767 return *m_jit_loaders_up; 2768 } 2769 2770 SystemRuntime *Process::GetSystemRuntime() { 2771 if (!m_system_runtime_up) 2772 m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); 2773 return m_system_runtime_up.get(); 2774 } 2775 2776 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2777 uint32_t exec_count) 2778 : NextEventAction(process), m_exec_count(exec_count) { 2779 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2780 LLDB_LOGF( 2781 log, 2782 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2783 __FUNCTION__, static_cast<void *>(process), exec_count); 2784 } 2785 2786 Process::NextEventAction::EventActionResult 2787 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2788 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2789 2790 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2791 LLDB_LOGF(log, 2792 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2793 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2794 2795 switch (state) { 2796 case eStateAttaching: 2797 return eEventActionSuccess; 2798 2799 case eStateRunning: 2800 case eStateConnected: 2801 return eEventActionRetry; 2802 2803 case eStateStopped: 2804 case eStateCrashed: 2805 // During attach, prior to sending the eStateStopped event, 2806 // lldb_private::Process subclasses must set the new process ID. 2807 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2808 // We don't want these events to be reported, so go set the 2809 // ShouldReportStop here: 2810 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2811 2812 if (m_exec_count > 0) { 2813 --m_exec_count; 2814 2815 LLDB_LOGF(log, 2816 "Process::AttachCompletionHandler::%s state %s: reduced " 2817 "remaining exec count to %" PRIu32 ", requesting resume", 2818 __FUNCTION__, StateAsCString(state), m_exec_count); 2819 2820 RequestResume(); 2821 return eEventActionRetry; 2822 } else { 2823 LLDB_LOGF(log, 2824 "Process::AttachCompletionHandler::%s state %s: no more " 2825 "execs expected to start, continuing with attach", 2826 __FUNCTION__, StateAsCString(state)); 2827 2828 m_process->CompleteAttach(); 2829 return eEventActionSuccess; 2830 } 2831 break; 2832 2833 default: 2834 case eStateExited: 2835 case eStateInvalid: 2836 break; 2837 } 2838 2839 m_exit_string.assign("No valid Process"); 2840 return eEventActionExit; 2841 } 2842 2843 Process::NextEventAction::EventActionResult 2844 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2845 return eEventActionSuccess; 2846 } 2847 2848 const char *Process::AttachCompletionHandler::GetExitString() { 2849 return m_exit_string.c_str(); 2850 } 2851 2852 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2853 if (m_listener_sp) 2854 return m_listener_sp; 2855 else 2856 return debugger.GetListener(); 2857 } 2858 2859 Status Process::Attach(ProcessAttachInfo &attach_info) { 2860 m_abi_sp.reset(); 2861 m_process_input_reader.reset(); 2862 m_dyld_up.reset(); 2863 m_jit_loaders_up.reset(); 2864 m_system_runtime_up.reset(); 2865 m_os_up.reset(); 2866 2867 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2868 Status error; 2869 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2870 char process_name[PATH_MAX]; 2871 2872 if (attach_info.GetExecutableFile().GetPath(process_name, 2873 sizeof(process_name))) { 2874 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2875 2876 if (wait_for_launch) { 2877 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2878 if (error.Success()) { 2879 if (m_public_run_lock.TrySetRunning()) { 2880 m_should_detach = true; 2881 const bool restarted = false; 2882 SetPublicState(eStateAttaching, restarted); 2883 // Now attach using these arguments. 2884 error = DoAttachToProcessWithName(process_name, attach_info); 2885 } else { 2886 // This shouldn't happen 2887 error.SetErrorString("failed to acquire process run lock"); 2888 } 2889 2890 if (error.Fail()) { 2891 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2892 SetID(LLDB_INVALID_PROCESS_ID); 2893 if (error.AsCString() == nullptr) 2894 error.SetErrorString("attach failed"); 2895 2896 SetExitStatus(-1, error.AsCString()); 2897 } 2898 } else { 2899 SetNextEventAction(new Process::AttachCompletionHandler( 2900 this, attach_info.GetResumeCount())); 2901 StartPrivateStateThread(); 2902 } 2903 return error; 2904 } 2905 } else { 2906 ProcessInstanceInfoList process_infos; 2907 PlatformSP platform_sp(GetTarget().GetPlatform()); 2908 2909 if (platform_sp) { 2910 ProcessInstanceInfoMatch match_info; 2911 match_info.GetProcessInfo() = attach_info; 2912 match_info.SetNameMatchType(NameMatch::Equals); 2913 platform_sp->FindProcesses(match_info, process_infos); 2914 const uint32_t num_matches = process_infos.size(); 2915 if (num_matches == 1) { 2916 attach_pid = process_infos[0].GetProcessID(); 2917 // Fall through and attach using the above process ID 2918 } else { 2919 match_info.GetProcessInfo().GetExecutableFile().GetPath( 2920 process_name, sizeof(process_name)); 2921 if (num_matches > 1) { 2922 StreamString s; 2923 ProcessInstanceInfo::DumpTableHeader(s, true, false); 2924 for (size_t i = 0; i < num_matches; i++) { 2925 process_infos[i].DumpAsTableRow( 2926 s, platform_sp->GetUserIDResolver(), true, false); 2927 } 2928 error.SetErrorStringWithFormat( 2929 "more than one process named %s:\n%s", process_name, 2930 s.GetData()); 2931 } else 2932 error.SetErrorStringWithFormat( 2933 "could not find a process named %s", process_name); 2934 } 2935 } else { 2936 error.SetErrorString( 2937 "invalid platform, can't find processes by name"); 2938 return error; 2939 } 2940 } 2941 } else { 2942 error.SetErrorString("invalid process name"); 2943 } 2944 } 2945 2946 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 2947 error = WillAttachToProcessWithID(attach_pid); 2948 if (error.Success()) { 2949 2950 if (m_public_run_lock.TrySetRunning()) { 2951 // Now attach using these arguments. 2952 m_should_detach = true; 2953 const bool restarted = false; 2954 SetPublicState(eStateAttaching, restarted); 2955 error = DoAttachToProcessWithID(attach_pid, attach_info); 2956 } else { 2957 // This shouldn't happen 2958 error.SetErrorString("failed to acquire process run lock"); 2959 } 2960 2961 if (error.Success()) { 2962 SetNextEventAction(new Process::AttachCompletionHandler( 2963 this, attach_info.GetResumeCount())); 2964 StartPrivateStateThread(); 2965 } else { 2966 if (GetID() != LLDB_INVALID_PROCESS_ID) 2967 SetID(LLDB_INVALID_PROCESS_ID); 2968 2969 const char *error_string = error.AsCString(); 2970 if (error_string == nullptr) 2971 error_string = "attach failed"; 2972 2973 SetExitStatus(-1, error_string); 2974 } 2975 } 2976 } 2977 return error; 2978 } 2979 2980 void Process::CompleteAttach() { 2981 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 2982 LIBLLDB_LOG_TARGET)); 2983 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 2984 2985 // Let the process subclass figure out at much as it can about the process 2986 // before we go looking for a dynamic loader plug-in. 2987 ArchSpec process_arch; 2988 DidAttach(process_arch); 2989 2990 if (process_arch.IsValid()) { 2991 GetTarget().SetArchitecture(process_arch); 2992 if (log) { 2993 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 2994 LLDB_LOGF(log, 2995 "Process::%s replacing process architecture with DidAttach() " 2996 "architecture: %s", 2997 __FUNCTION__, triple_str ? triple_str : "<null>"); 2998 } 2999 } 3000 3001 // We just attached. If we have a platform, ask it for the process 3002 // architecture, and if it isn't the same as the one we've already set, 3003 // switch architectures. 3004 PlatformSP platform_sp(GetTarget().GetPlatform()); 3005 assert(platform_sp); 3006 if (platform_sp) { 3007 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 3008 if (target_arch.IsValid() && 3009 !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) { 3010 ArchSpec platform_arch; 3011 platform_sp = 3012 platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch); 3013 if (platform_sp) { 3014 GetTarget().SetPlatform(platform_sp); 3015 GetTarget().SetArchitecture(platform_arch); 3016 LLDB_LOGF(log, 3017 "Process::%s switching platform to %s and architecture " 3018 "to %s based on info from attach", 3019 __FUNCTION__, platform_sp->GetName().AsCString(""), 3020 platform_arch.GetTriple().getTriple().c_str()); 3021 } 3022 } else if (!process_arch.IsValid()) { 3023 ProcessInstanceInfo process_info; 3024 GetProcessInfo(process_info); 3025 const ArchSpec &process_arch = process_info.GetArchitecture(); 3026 if (process_arch.IsValid() && 3027 !GetTarget().GetArchitecture().IsExactMatch(process_arch)) { 3028 GetTarget().SetArchitecture(process_arch); 3029 LLDB_LOGF(log, 3030 "Process::%s switching architecture to %s based on info " 3031 "the platform retrieved for pid %" PRIu64, 3032 __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), 3033 GetID()); 3034 } 3035 } 3036 } 3037 3038 // We have completed the attach, now it is time to find the dynamic loader 3039 // plug-in 3040 DynamicLoader *dyld = GetDynamicLoader(); 3041 if (dyld) { 3042 dyld->DidAttach(); 3043 if (log) { 3044 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3045 LLDB_LOGF(log, 3046 "Process::%s after DynamicLoader::DidAttach(), target " 3047 "executable is %s (using %s plugin)", 3048 __FUNCTION__, 3049 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3050 : "<none>", 3051 dyld->GetPluginName().AsCString("<unnamed>")); 3052 } 3053 } 3054 3055 GetJITLoaders().DidAttach(); 3056 3057 SystemRuntime *system_runtime = GetSystemRuntime(); 3058 if (system_runtime) { 3059 system_runtime->DidAttach(); 3060 if (log) { 3061 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3062 LLDB_LOGF(log, 3063 "Process::%s after SystemRuntime::DidAttach(), target " 3064 "executable is %s (using %s plugin)", 3065 __FUNCTION__, 3066 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3067 : "<none>", 3068 system_runtime->GetPluginName().AsCString("<unnamed>")); 3069 } 3070 } 3071 3072 if (!m_os_up) { 3073 LoadOperatingSystemPlugin(false); 3074 if (m_os_up) { 3075 // Somebody might have gotten threads before now, but we need to force the 3076 // update after we've loaded the OperatingSystem plugin or it won't get a 3077 // chance to process the threads. 3078 m_thread_list.Clear(); 3079 UpdateThreadListIfNeeded(); 3080 } 3081 } 3082 // Figure out which one is the executable, and set that in our target: 3083 const ModuleList &target_modules = GetTarget().GetImages(); 3084 std::lock_guard<std::recursive_mutex> guard(target_modules.GetMutex()); 3085 size_t num_modules = target_modules.GetSize(); 3086 ModuleSP new_executable_module_sp; 3087 3088 for (size_t i = 0; i < num_modules; i++) { 3089 ModuleSP module_sp(target_modules.GetModuleAtIndexUnlocked(i)); 3090 if (module_sp && module_sp->IsExecutable()) { 3091 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 3092 new_executable_module_sp = module_sp; 3093 break; 3094 } 3095 } 3096 if (new_executable_module_sp) { 3097 GetTarget().SetExecutableModule(new_executable_module_sp, 3098 eLoadDependentsNo); 3099 if (log) { 3100 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3101 LLDB_LOGF( 3102 log, 3103 "Process::%s after looping through modules, target executable is %s", 3104 __FUNCTION__, 3105 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3106 : "<none>"); 3107 } 3108 } 3109 } 3110 3111 Status Process::ConnectRemote(llvm::StringRef remote_url) { 3112 m_abi_sp.reset(); 3113 m_process_input_reader.reset(); 3114 3115 // Find the process and its architecture. Make sure it matches the 3116 // architecture of the current Target, and if not adjust it. 3117 3118 Status error(DoConnectRemote(remote_url)); 3119 if (error.Success()) { 3120 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3121 EventSP event_sp; 3122 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 3123 3124 if (state == eStateStopped || state == eStateCrashed) { 3125 // If we attached and actually have a process on the other end, then 3126 // this ended up being the equivalent of an attach. 3127 CompleteAttach(); 3128 3129 // This delays passing the stopped event to listeners till 3130 // CompleteAttach gets a chance to complete... 3131 HandlePrivateEvent(event_sp); 3132 } 3133 } 3134 3135 if (PrivateStateThreadIsValid()) 3136 ResumePrivateStateThread(); 3137 else 3138 StartPrivateStateThread(); 3139 } 3140 return error; 3141 } 3142 3143 Status Process::PrivateResume() { 3144 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3145 LIBLLDB_LOG_STEP)); 3146 LLDB_LOGF(log, 3147 "Process::PrivateResume() m_stop_id = %u, public state: %s " 3148 "private state: %s", 3149 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3150 StateAsCString(m_private_state.GetValue())); 3151 3152 // If signals handing status changed we might want to update our signal 3153 // filters before resuming. 3154 UpdateAutomaticSignalFiltering(); 3155 3156 Status error(WillResume()); 3157 // Tell the process it is about to resume before the thread list 3158 if (error.Success()) { 3159 // Now let the thread list know we are about to resume so it can let all of 3160 // our threads know that they are about to be resumed. Threads will each be 3161 // called with Thread::WillResume(StateType) where StateType contains the 3162 // state that they are supposed to have when the process is resumed 3163 // (suspended/running/stepping). Threads should also check their resume 3164 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3165 // start back up with a signal. 3166 if (m_thread_list.WillResume()) { 3167 // Last thing, do the PreResumeActions. 3168 if (!RunPreResumeActions()) { 3169 error.SetErrorString( 3170 "Process::PrivateResume PreResumeActions failed, not resuming."); 3171 } else { 3172 m_mod_id.BumpResumeID(); 3173 error = DoResume(); 3174 if (error.Success()) { 3175 DidResume(); 3176 m_thread_list.DidResume(); 3177 LLDB_LOGF(log, "Process thinks the process has resumed."); 3178 } else { 3179 LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); 3180 return error; 3181 } 3182 } 3183 } else { 3184 // Somebody wanted to run without running (e.g. we were faking a step 3185 // from one frame of a set of inlined frames that share the same PC to 3186 // another.) So generate a continue & a stopped event, and let the world 3187 // handle them. 3188 LLDB_LOGF(log, 3189 "Process::PrivateResume() asked to simulate a start & stop."); 3190 3191 SetPrivateState(eStateRunning); 3192 SetPrivateState(eStateStopped); 3193 } 3194 } else 3195 LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", 3196 error.AsCString("<unknown error>")); 3197 return error; 3198 } 3199 3200 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3201 if (!StateIsRunningState(m_public_state.GetValue())) 3202 return Status("Process is not running."); 3203 3204 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3205 // case it was already set and some thread plan logic calls halt on its own. 3206 m_clear_thread_plans_on_stop |= clear_thread_plans; 3207 3208 ListenerSP halt_listener_sp( 3209 Listener::MakeListener("lldb.process.halt_listener")); 3210 HijackProcessEvents(halt_listener_sp); 3211 3212 EventSP event_sp; 3213 3214 SendAsyncInterrupt(); 3215 3216 if (m_public_state.GetValue() == eStateAttaching) { 3217 // Don't hijack and eat the eStateExited as the code that was doing the 3218 // attach will be waiting for this event... 3219 RestoreProcessEvents(); 3220 SetExitStatus(SIGKILL, "Cancelled async attach."); 3221 Destroy(false); 3222 return Status(); 3223 } 3224 3225 // Wait for 10 second for the process to stop. 3226 StateType state = WaitForProcessToStop( 3227 seconds(10), &event_sp, true, halt_listener_sp, nullptr, use_run_lock); 3228 RestoreProcessEvents(); 3229 3230 if (state == eStateInvalid || !event_sp) { 3231 // We timed out and didn't get a stop event... 3232 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3233 } 3234 3235 BroadcastEvent(event_sp); 3236 3237 return Status(); 3238 } 3239 3240 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3241 Status error; 3242 3243 // Check both the public & private states here. If we're hung evaluating an 3244 // expression, for instance, then the public state will be stopped, but we 3245 // still need to interrupt. 3246 if (m_public_state.GetValue() == eStateRunning || 3247 m_private_state.GetValue() == eStateRunning) { 3248 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3249 LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); 3250 3251 ListenerSP listener_sp( 3252 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3253 HijackProcessEvents(listener_sp); 3254 3255 SendAsyncInterrupt(); 3256 3257 // Consume the interrupt event. 3258 StateType state = 3259 WaitForProcessToStop(seconds(10), &exit_event_sp, true, listener_sp); 3260 3261 RestoreProcessEvents(); 3262 3263 // If the process exited while we were waiting for it to stop, put the 3264 // exited event into the shared pointer passed in and return. Our caller 3265 // doesn't need to do anything else, since they don't have a process 3266 // anymore... 3267 3268 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3269 LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", 3270 __FUNCTION__); 3271 return error; 3272 } else 3273 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3274 3275 if (state != eStateStopped) { 3276 LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, 3277 StateAsCString(state)); 3278 // If we really couldn't stop the process then we should just error out 3279 // here, but if the lower levels just bobbled sending the event and we 3280 // really are stopped, then continue on. 3281 StateType private_state = m_private_state.GetValue(); 3282 if (private_state != eStateStopped) { 3283 return Status( 3284 "Attempt to stop the target in order to detach timed out. " 3285 "State = %s", 3286 StateAsCString(GetState())); 3287 } 3288 } 3289 } 3290 return error; 3291 } 3292 3293 Status Process::Detach(bool keep_stopped) { 3294 EventSP exit_event_sp; 3295 Status error; 3296 m_destroy_in_process = true; 3297 3298 error = WillDetach(); 3299 3300 if (error.Success()) { 3301 if (DetachRequiresHalt()) { 3302 error = StopForDestroyOrDetach(exit_event_sp); 3303 if (!error.Success()) { 3304 m_destroy_in_process = false; 3305 return error; 3306 } else if (exit_event_sp) { 3307 // We shouldn't need to do anything else here. There's no process left 3308 // to detach from... 3309 StopPrivateStateThread(); 3310 m_destroy_in_process = false; 3311 return error; 3312 } 3313 } 3314 3315 m_thread_list.DiscardThreadPlans(); 3316 DisableAllBreakpointSites(); 3317 3318 error = DoDetach(keep_stopped); 3319 if (error.Success()) { 3320 DidDetach(); 3321 StopPrivateStateThread(); 3322 } else { 3323 return error; 3324 } 3325 } 3326 m_destroy_in_process = false; 3327 3328 // If we exited when we were waiting for a process to stop, then forward the 3329 // event here so we don't lose the event 3330 if (exit_event_sp) { 3331 // Directly broadcast our exited event because we shut down our private 3332 // state thread above 3333 BroadcastEvent(exit_event_sp); 3334 } 3335 3336 // If we have been interrupted (to kill us) in the middle of running, we may 3337 // not end up propagating the last events through the event system, in which 3338 // case we might strand the write lock. Unlock it here so when we do to tear 3339 // down the process we don't get an error destroying the lock. 3340 3341 m_public_run_lock.SetStopped(); 3342 return error; 3343 } 3344 3345 Status Process::Destroy(bool force_kill) { 3346 // If we've already called Process::Finalize then there's nothing useful to 3347 // be done here. Finalize has actually called Destroy already. 3348 if (m_finalize_called) 3349 return {}; 3350 3351 // Tell ourselves we are in the process of destroying the process, so that we 3352 // don't do any unnecessary work that might hinder the destruction. Remember 3353 // to set this back to false when we are done. That way if the attempt 3354 // failed and the process stays around for some reason it won't be in a 3355 // confused state. 3356 3357 if (force_kill) 3358 m_should_detach = false; 3359 3360 if (GetShouldDetach()) { 3361 // FIXME: This will have to be a process setting: 3362 bool keep_stopped = false; 3363 Detach(keep_stopped); 3364 } 3365 3366 m_destroy_in_process = true; 3367 3368 Status error(WillDestroy()); 3369 if (error.Success()) { 3370 EventSP exit_event_sp; 3371 if (DestroyRequiresHalt()) { 3372 error = StopForDestroyOrDetach(exit_event_sp); 3373 } 3374 3375 if (m_public_state.GetValue() != eStateRunning) { 3376 // Ditch all thread plans, and remove all our breakpoints: in case we 3377 // have to restart the target to kill it, we don't want it hitting a 3378 // breakpoint... Only do this if we've stopped, however, since if we 3379 // didn't manage to halt it above, then we're not going to have much luck 3380 // doing this now. 3381 m_thread_list.DiscardThreadPlans(); 3382 DisableAllBreakpointSites(); 3383 } 3384 3385 error = DoDestroy(); 3386 if (error.Success()) { 3387 DidDestroy(); 3388 StopPrivateStateThread(); 3389 } 3390 m_stdio_communication.StopReadThread(); 3391 m_stdio_communication.Disconnect(); 3392 m_stdin_forward = false; 3393 3394 if (m_process_input_reader) { 3395 m_process_input_reader->SetIsDone(true); 3396 m_process_input_reader->Cancel(); 3397 m_process_input_reader.reset(); 3398 } 3399 3400 // If we exited when we were waiting for a process to stop, then forward 3401 // the event here so we don't lose the event 3402 if (exit_event_sp) { 3403 // Directly broadcast our exited event because we shut down our private 3404 // state thread above 3405 BroadcastEvent(exit_event_sp); 3406 } 3407 3408 // If we have been interrupted (to kill us) in the middle of running, we 3409 // may not end up propagating the last events through the event system, in 3410 // which case we might strand the write lock. Unlock it here so when we do 3411 // to tear down the process we don't get an error destroying the lock. 3412 m_public_run_lock.SetStopped(); 3413 } 3414 3415 m_destroy_in_process = false; 3416 3417 return error; 3418 } 3419 3420 Status Process::Signal(int signal) { 3421 Status error(WillSignal()); 3422 if (error.Success()) { 3423 error = DoSignal(signal); 3424 if (error.Success()) 3425 DidSignal(); 3426 } 3427 return error; 3428 } 3429 3430 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3431 assert(signals_sp && "null signals_sp"); 3432 m_unix_signals_sp = signals_sp; 3433 } 3434 3435 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3436 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3437 return m_unix_signals_sp; 3438 } 3439 3440 lldb::ByteOrder Process::GetByteOrder() const { 3441 return GetTarget().GetArchitecture().GetByteOrder(); 3442 } 3443 3444 uint32_t Process::GetAddressByteSize() const { 3445 return GetTarget().GetArchitecture().GetAddressByteSize(); 3446 } 3447 3448 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3449 const StateType state = 3450 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3451 bool return_value = true; 3452 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | 3453 LIBLLDB_LOG_PROCESS)); 3454 3455 switch (state) { 3456 case eStateDetached: 3457 case eStateExited: 3458 case eStateUnloaded: 3459 m_stdio_communication.SynchronizeWithReadThread(); 3460 m_stdio_communication.StopReadThread(); 3461 m_stdio_communication.Disconnect(); 3462 m_stdin_forward = false; 3463 3464 LLVM_FALLTHROUGH; 3465 case eStateConnected: 3466 case eStateAttaching: 3467 case eStateLaunching: 3468 // These events indicate changes in the state of the debugging session, 3469 // always report them. 3470 return_value = true; 3471 break; 3472 case eStateInvalid: 3473 // We stopped for no apparent reason, don't report it. 3474 return_value = false; 3475 break; 3476 case eStateRunning: 3477 case eStateStepping: 3478 // If we've started the target running, we handle the cases where we are 3479 // already running and where there is a transition from stopped to running 3480 // differently. running -> running: Automatically suppress extra running 3481 // events stopped -> running: Report except when there is one or more no 3482 // votes 3483 // and no yes votes. 3484 SynchronouslyNotifyStateChanged(state); 3485 if (m_force_next_event_delivery) 3486 return_value = true; 3487 else { 3488 switch (m_last_broadcast_state) { 3489 case eStateRunning: 3490 case eStateStepping: 3491 // We always suppress multiple runnings with no PUBLIC stop in between. 3492 return_value = false; 3493 break; 3494 default: 3495 // TODO: make this work correctly. For now always report 3496 // run if we aren't running so we don't miss any running events. If I 3497 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3498 // and hit the breakpoints on multiple threads, then somehow during the 3499 // stepping over of all breakpoints no run gets reported. 3500 3501 // This is a transition from stop to run. 3502 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3503 case eVoteYes: 3504 case eVoteNoOpinion: 3505 return_value = true; 3506 break; 3507 case eVoteNo: 3508 return_value = false; 3509 break; 3510 } 3511 break; 3512 } 3513 } 3514 break; 3515 case eStateStopped: 3516 case eStateCrashed: 3517 case eStateSuspended: 3518 // We've stopped. First see if we're going to restart the target. If we 3519 // are going to stop, then we always broadcast the event. If we aren't 3520 // going to stop, let the thread plans decide if we're going to report this 3521 // event. If no thread has an opinion, we don't report it. 3522 3523 m_stdio_communication.SynchronizeWithReadThread(); 3524 RefreshStateAfterStop(); 3525 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3526 LLDB_LOGF(log, 3527 "Process::ShouldBroadcastEvent (%p) stopped due to an " 3528 "interrupt, state: %s", 3529 static_cast<void *>(event_ptr), StateAsCString(state)); 3530 // Even though we know we are going to stop, we should let the threads 3531 // have a look at the stop, so they can properly set their state. 3532 m_thread_list.ShouldStop(event_ptr); 3533 return_value = true; 3534 } else { 3535 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3536 bool should_resume = false; 3537 3538 // It makes no sense to ask "ShouldStop" if we've already been 3539 // restarted... Asking the thread list is also not likely to go well, 3540 // since we are running again. So in that case just report the event. 3541 3542 if (!was_restarted) 3543 should_resume = !m_thread_list.ShouldStop(event_ptr); 3544 3545 if (was_restarted || should_resume || m_resume_requested) { 3546 Vote stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3547 LLDB_LOGF(log, 3548 "Process::ShouldBroadcastEvent: should_resume: %i state: " 3549 "%s was_restarted: %i stop_vote: %d.", 3550 should_resume, StateAsCString(state), was_restarted, 3551 stop_vote); 3552 3553 switch (stop_vote) { 3554 case eVoteYes: 3555 return_value = true; 3556 break; 3557 case eVoteNoOpinion: 3558 case eVoteNo: 3559 return_value = false; 3560 break; 3561 } 3562 3563 if (!was_restarted) { 3564 LLDB_LOGF(log, 3565 "Process::ShouldBroadcastEvent (%p) Restarting process " 3566 "from state: %s", 3567 static_cast<void *>(event_ptr), StateAsCString(state)); 3568 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3569 PrivateResume(); 3570 } 3571 } else { 3572 return_value = true; 3573 SynchronouslyNotifyStateChanged(state); 3574 } 3575 } 3576 break; 3577 } 3578 3579 // Forcing the next event delivery is a one shot deal. So reset it here. 3580 m_force_next_event_delivery = false; 3581 3582 // We do some coalescing of events (for instance two consecutive running 3583 // events get coalesced.) But we only coalesce against events we actually 3584 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3585 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3586 // done, because the PublicState reflects the last event pulled off the 3587 // queue, and there may be several events stacked up on the queue unserviced. 3588 // So the PublicState may not reflect the last broadcasted event yet. 3589 // m_last_broadcast_state gets updated here. 3590 3591 if (return_value) 3592 m_last_broadcast_state = state; 3593 3594 LLDB_LOGF(log, 3595 "Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3596 "broadcast state: %s - %s", 3597 static_cast<void *>(event_ptr), StateAsCString(state), 3598 StateAsCString(m_last_broadcast_state), 3599 return_value ? "YES" : "NO"); 3600 return return_value; 3601 } 3602 3603 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3604 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 3605 3606 bool already_running = PrivateStateThreadIsValid(); 3607 LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, 3608 already_running ? " already running" 3609 : " starting private state thread"); 3610 3611 if (!is_secondary_thread && already_running) 3612 return true; 3613 3614 // Create a thread that watches our internal state and controls which events 3615 // make it to clients (into the DCProcess event queue). 3616 char thread_name[1024]; 3617 uint32_t max_len = llvm::get_max_thread_name_length(); 3618 if (max_len > 0 && max_len <= 30) { 3619 // On platforms with abbreviated thread name lengths, choose thread names 3620 // that fit within the limit. 3621 if (already_running) 3622 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3623 else 3624 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3625 } else { 3626 if (already_running) 3627 snprintf(thread_name, sizeof(thread_name), 3628 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3629 GetID()); 3630 else 3631 snprintf(thread_name, sizeof(thread_name), 3632 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3633 } 3634 3635 // Create the private state thread, and start it running. 3636 PrivateStateThreadArgs *args_ptr = 3637 new PrivateStateThreadArgs(this, is_secondary_thread); 3638 llvm::Expected<HostThread> private_state_thread = 3639 ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, 3640 (void *)args_ptr, 8 * 1024 * 1024); 3641 if (!private_state_thread) { 3642 LLDB_LOG(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST), 3643 "failed to launch host thread: {}", 3644 llvm::toString(private_state_thread.takeError())); 3645 return false; 3646 } 3647 3648 assert(private_state_thread->IsJoinable()); 3649 m_private_state_thread = *private_state_thread; 3650 ResumePrivateStateThread(); 3651 return true; 3652 } 3653 3654 void Process::PausePrivateStateThread() { 3655 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3656 } 3657 3658 void Process::ResumePrivateStateThread() { 3659 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3660 } 3661 3662 void Process::StopPrivateStateThread() { 3663 if (m_private_state_thread.IsJoinable()) 3664 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3665 else { 3666 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3667 LLDB_LOGF( 3668 log, 3669 "Went to stop the private state thread, but it was already invalid."); 3670 } 3671 } 3672 3673 void Process::ControlPrivateStateThread(uint32_t signal) { 3674 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3675 3676 assert(signal == eBroadcastInternalStateControlStop || 3677 signal == eBroadcastInternalStateControlPause || 3678 signal == eBroadcastInternalStateControlResume); 3679 3680 LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); 3681 3682 // Signal the private state thread 3683 if (m_private_state_thread.IsJoinable()) { 3684 // Broadcast the event. 3685 // It is important to do this outside of the if below, because it's 3686 // possible that the thread state is invalid but that the thread is waiting 3687 // on a control event instead of simply being on its way out (this should 3688 // not happen, but it apparently can). 3689 LLDB_LOGF(log, "Sending control event of type: %d.", signal); 3690 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3691 m_private_state_control_broadcaster.BroadcastEvent(signal, 3692 event_receipt_sp); 3693 3694 // Wait for the event receipt or for the private state thread to exit 3695 bool receipt_received = false; 3696 if (PrivateStateThreadIsValid()) { 3697 while (!receipt_received) { 3698 // Check for a receipt for n seconds and then check if the private 3699 // state thread is still around. 3700 receipt_received = 3701 event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout()); 3702 if (!receipt_received) { 3703 // Check if the private state thread is still around. If it isn't 3704 // then we are done waiting 3705 if (!PrivateStateThreadIsValid()) 3706 break; // Private state thread exited or is exiting, we are done 3707 } 3708 } 3709 } 3710 3711 if (signal == eBroadcastInternalStateControlStop) { 3712 thread_result_t result = {}; 3713 m_private_state_thread.Join(&result); 3714 m_private_state_thread.Reset(); 3715 } 3716 } else { 3717 LLDB_LOGF( 3718 log, 3719 "Private state thread already dead, no need to signal it to stop."); 3720 } 3721 } 3722 3723 void Process::SendAsyncInterrupt() { 3724 if (PrivateStateThreadIsValid()) 3725 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3726 nullptr); 3727 else 3728 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3729 } 3730 3731 void Process::HandlePrivateEvent(EventSP &event_sp) { 3732 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3733 m_resume_requested = false; 3734 3735 const StateType new_state = 3736 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3737 3738 // First check to see if anybody wants a shot at this event: 3739 if (m_next_event_action_up) { 3740 NextEventAction::EventActionResult action_result = 3741 m_next_event_action_up->PerformAction(event_sp); 3742 LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); 3743 3744 switch (action_result) { 3745 case NextEventAction::eEventActionSuccess: 3746 SetNextEventAction(nullptr); 3747 break; 3748 3749 case NextEventAction::eEventActionRetry: 3750 break; 3751 3752 case NextEventAction::eEventActionExit: 3753 // Handle Exiting Here. If we already got an exited event, we should 3754 // just propagate it. Otherwise, swallow this event, and set our state 3755 // to exit so the next event will kill us. 3756 if (new_state != eStateExited) { 3757 // FIXME: should cons up an exited event, and discard this one. 3758 SetExitStatus(0, m_next_event_action_up->GetExitString()); 3759 SetNextEventAction(nullptr); 3760 return; 3761 } 3762 SetNextEventAction(nullptr); 3763 break; 3764 } 3765 } 3766 3767 // See if we should broadcast this state to external clients? 3768 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3769 3770 if (should_broadcast) { 3771 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3772 if (log) { 3773 LLDB_LOGF(log, 3774 "Process::%s (pid = %" PRIu64 3775 ") broadcasting new state %s (old state %s) to %s", 3776 __FUNCTION__, GetID(), StateAsCString(new_state), 3777 StateAsCString(GetState()), 3778 is_hijacked ? "hijacked" : "public"); 3779 } 3780 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3781 if (StateIsRunningState(new_state)) { 3782 // Only push the input handler if we aren't fowarding events, as this 3783 // means the curses GUI is in use... Or don't push it if we are launching 3784 // since it will come up stopped. 3785 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3786 new_state != eStateLaunching && new_state != eStateAttaching) { 3787 PushProcessIOHandler(); 3788 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3789 eBroadcastAlways); 3790 LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", 3791 __FUNCTION__, m_iohandler_sync.GetValue()); 3792 } 3793 } else if (StateIsStoppedState(new_state, false)) { 3794 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3795 // If the lldb_private::Debugger is handling the events, we don't want 3796 // to pop the process IOHandler here, we want to do it when we receive 3797 // the stopped event so we can carefully control when the process 3798 // IOHandler is popped because when we stop we want to display some 3799 // text stating how and why we stopped, then maybe some 3800 // process/thread/frame info, and then we want the "(lldb) " prompt to 3801 // show up. If we pop the process IOHandler here, then we will cause 3802 // the command interpreter to become the top IOHandler after the 3803 // process pops off and it will update its prompt right away... See the 3804 // Debugger.cpp file where it calls the function as 3805 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3806 // Otherwise we end up getting overlapping "(lldb) " prompts and 3807 // garbled output. 3808 // 3809 // If we aren't handling the events in the debugger (which is indicated 3810 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3811 // we are hijacked, then we always pop the process IO handler manually. 3812 // Hijacking happens when the internal process state thread is running 3813 // thread plans, or when commands want to run in synchronous mode and 3814 // they call "process->WaitForProcessToStop()". An example of something 3815 // that will hijack the events is a simple expression: 3816 // 3817 // (lldb) expr (int)puts("hello") 3818 // 3819 // This will cause the internal process state thread to resume and halt 3820 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3821 // events) and we do need the IO handler to be pushed and popped 3822 // correctly. 3823 3824 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3825 PopProcessIOHandler(); 3826 } 3827 } 3828 3829 BroadcastEvent(event_sp); 3830 } else { 3831 if (log) { 3832 LLDB_LOGF( 3833 log, 3834 "Process::%s (pid = %" PRIu64 3835 ") suppressing state %s (old state %s): should_broadcast == false", 3836 __FUNCTION__, GetID(), StateAsCString(new_state), 3837 StateAsCString(GetState())); 3838 } 3839 } 3840 } 3841 3842 Status Process::HaltPrivate() { 3843 EventSP event_sp; 3844 Status error(WillHalt()); 3845 if (error.Fail()) 3846 return error; 3847 3848 // Ask the process subclass to actually halt our process 3849 bool caused_stop; 3850 error = DoHalt(caused_stop); 3851 3852 DidHalt(); 3853 return error; 3854 } 3855 3856 thread_result_t Process::PrivateStateThread(void *arg) { 3857 std::unique_ptr<PrivateStateThreadArgs> args_up( 3858 static_cast<PrivateStateThreadArgs *>(arg)); 3859 thread_result_t result = 3860 args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 3861 return result; 3862 } 3863 3864 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3865 bool control_only = true; 3866 3867 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3868 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3869 __FUNCTION__, static_cast<void *>(this), GetID()); 3870 3871 bool exit_now = false; 3872 bool interrupt_requested = false; 3873 while (!exit_now) { 3874 EventSP event_sp; 3875 GetEventsPrivate(event_sp, llvm::None, control_only); 3876 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3877 LLDB_LOGF(log, 3878 "Process::%s (arg = %p, pid = %" PRIu64 3879 ") got a control event: %d", 3880 __FUNCTION__, static_cast<void *>(this), GetID(), 3881 event_sp->GetType()); 3882 3883 switch (event_sp->GetType()) { 3884 case eBroadcastInternalStateControlStop: 3885 exit_now = true; 3886 break; // doing any internal state management below 3887 3888 case eBroadcastInternalStateControlPause: 3889 control_only = true; 3890 break; 3891 3892 case eBroadcastInternalStateControlResume: 3893 control_only = false; 3894 break; 3895 } 3896 3897 continue; 3898 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 3899 if (m_public_state.GetValue() == eStateAttaching) { 3900 LLDB_LOGF(log, 3901 "Process::%s (arg = %p, pid = %" PRIu64 3902 ") woke up with an interrupt while attaching - " 3903 "forwarding interrupt.", 3904 __FUNCTION__, static_cast<void *>(this), GetID()); 3905 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 3906 } else if (StateIsRunningState(m_last_broadcast_state)) { 3907 LLDB_LOGF(log, 3908 "Process::%s (arg = %p, pid = %" PRIu64 3909 ") woke up with an interrupt - Halting.", 3910 __FUNCTION__, static_cast<void *>(this), GetID()); 3911 Status error = HaltPrivate(); 3912 if (error.Fail() && log) 3913 LLDB_LOGF(log, 3914 "Process::%s (arg = %p, pid = %" PRIu64 3915 ") failed to halt the process: %s", 3916 __FUNCTION__, static_cast<void *>(this), GetID(), 3917 error.AsCString()); 3918 // Halt should generate a stopped event. Make a note of the fact that 3919 // we were doing the interrupt, so we can set the interrupted flag 3920 // after we receive the event. We deliberately set this to true even if 3921 // HaltPrivate failed, so that we can interrupt on the next natural 3922 // stop. 3923 interrupt_requested = true; 3924 } else { 3925 // This can happen when someone (e.g. Process::Halt) sees that we are 3926 // running and sends an interrupt request, but the process actually 3927 // stops before we receive it. In that case, we can just ignore the 3928 // request. We use m_last_broadcast_state, because the Stopped event 3929 // may not have been popped of the event queue yet, which is when the 3930 // public state gets updated. 3931 LLDB_LOGF(log, 3932 "Process::%s ignoring interrupt as we have already stopped.", 3933 __FUNCTION__); 3934 } 3935 continue; 3936 } 3937 3938 const StateType internal_state = 3939 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3940 3941 if (internal_state != eStateInvalid) { 3942 if (m_clear_thread_plans_on_stop && 3943 StateIsStoppedState(internal_state, true)) { 3944 m_clear_thread_plans_on_stop = false; 3945 m_thread_list.DiscardThreadPlans(); 3946 } 3947 3948 if (interrupt_requested) { 3949 if (StateIsStoppedState(internal_state, true)) { 3950 // We requested the interrupt, so mark this as such in the stop event 3951 // so clients can tell an interrupted process from a natural stop 3952 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 3953 interrupt_requested = false; 3954 } else if (log) { 3955 LLDB_LOGF(log, 3956 "Process::%s interrupt_requested, but a non-stopped " 3957 "state '%s' received.", 3958 __FUNCTION__, StateAsCString(internal_state)); 3959 } 3960 } 3961 3962 HandlePrivateEvent(event_sp); 3963 } 3964 3965 if (internal_state == eStateInvalid || internal_state == eStateExited || 3966 internal_state == eStateDetached) { 3967 LLDB_LOGF(log, 3968 "Process::%s (arg = %p, pid = %" PRIu64 3969 ") about to exit with internal state %s...", 3970 __FUNCTION__, static_cast<void *>(this), GetID(), 3971 StateAsCString(internal_state)); 3972 3973 break; 3974 } 3975 } 3976 3977 // Verify log is still enabled before attempting to write to it... 3978 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 3979 __FUNCTION__, static_cast<void *>(this), GetID()); 3980 3981 // If we are a secondary thread, then the primary thread we are working for 3982 // will have already acquired the public_run_lock, and isn't done with what 3983 // it was doing yet, so don't try to change it on the way out. 3984 if (!is_secondary_thread) 3985 m_public_run_lock.SetStopped(); 3986 return {}; 3987 } 3988 3989 // Process Event Data 3990 3991 Process::ProcessEventData::ProcessEventData() 3992 : EventData(), m_process_wp(), m_state(eStateInvalid), m_restarted(false), 3993 m_update_state(0), m_interrupted(false) {} 3994 3995 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 3996 StateType state) 3997 : EventData(), m_process_wp(), m_state(state), m_restarted(false), 3998 m_update_state(0), m_interrupted(false) { 3999 if (process_sp) 4000 m_process_wp = process_sp; 4001 } 4002 4003 Process::ProcessEventData::~ProcessEventData() = default; 4004 4005 ConstString Process::ProcessEventData::GetFlavorString() { 4006 static ConstString g_flavor("Process::ProcessEventData"); 4007 return g_flavor; 4008 } 4009 4010 ConstString Process::ProcessEventData::GetFlavor() const { 4011 return ProcessEventData::GetFlavorString(); 4012 } 4013 4014 bool Process::ProcessEventData::ShouldStop(Event *event_ptr, 4015 bool &found_valid_stopinfo) { 4016 found_valid_stopinfo = false; 4017 4018 ProcessSP process_sp(m_process_wp.lock()); 4019 if (!process_sp) 4020 return false; 4021 4022 ThreadList &curr_thread_list = process_sp->GetThreadList(); 4023 uint32_t num_threads = curr_thread_list.GetSize(); 4024 uint32_t idx; 4025 4026 // The actions might change one of the thread's stop_info's opinions about 4027 // whether we should stop the process, so we need to query that as we go. 4028 4029 // One other complication here, is that we try to catch any case where the 4030 // target has run (except for expressions) and immediately exit, but if we 4031 // get that wrong (which is possible) then the thread list might have 4032 // changed, and that would cause our iteration here to crash. We could 4033 // make a copy of the thread list, but we'd really like to also know if it 4034 // has changed at all, so we make up a vector of the thread ID's and check 4035 // what we get back against this list & bag out if anything differs. 4036 ThreadList not_suspended_thread_list(process_sp.get()); 4037 std::vector<uint32_t> thread_index_array(num_threads); 4038 uint32_t not_suspended_idx = 0; 4039 for (idx = 0; idx < num_threads; ++idx) { 4040 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 4041 4042 /* 4043 Filter out all suspended threads, they could not be the reason 4044 of stop and no need to perform any actions on them. 4045 */ 4046 if (thread_sp->GetResumeState() != eStateSuspended) { 4047 not_suspended_thread_list.AddThread(thread_sp); 4048 thread_index_array[not_suspended_idx] = thread_sp->GetIndexID(); 4049 not_suspended_idx++; 4050 } 4051 } 4052 4053 // Use this to track whether we should continue from here. We will only 4054 // continue the target running if no thread says we should stop. Of course 4055 // if some thread's PerformAction actually sets the target running, then it 4056 // doesn't matter what the other threads say... 4057 4058 bool still_should_stop = false; 4059 4060 // Sometimes - for instance if we have a bug in the stub we are talking to, 4061 // we stop but no thread has a valid stop reason. In that case we should 4062 // just stop, because we have no way of telling what the right thing to do 4063 // is, and it's better to let the user decide than continue behind their 4064 // backs. 4065 4066 for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) { 4067 curr_thread_list = process_sp->GetThreadList(); 4068 if (curr_thread_list.GetSize() != num_threads) { 4069 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4070 LIBLLDB_LOG_PROCESS)); 4071 LLDB_LOGF( 4072 log, 4073 "Number of threads changed from %u to %u while processing event.", 4074 num_threads, curr_thread_list.GetSize()); 4075 break; 4076 } 4077 4078 lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx); 4079 4080 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 4081 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4082 LIBLLDB_LOG_PROCESS)); 4083 LLDB_LOGF(log, 4084 "The thread at position %u changed from %u to %u while " 4085 "processing event.", 4086 idx, thread_index_array[idx], thread_sp->GetIndexID()); 4087 break; 4088 } 4089 4090 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4091 if (stop_info_sp && stop_info_sp->IsValid()) { 4092 found_valid_stopinfo = true; 4093 bool this_thread_wants_to_stop; 4094 if (stop_info_sp->GetOverrideShouldStop()) { 4095 this_thread_wants_to_stop = 4096 stop_info_sp->GetOverriddenShouldStopValue(); 4097 } else { 4098 stop_info_sp->PerformAction(event_ptr); 4099 // The stop action might restart the target. If it does, then we 4100 // want to mark that in the event so that whoever is receiving it 4101 // will know to wait for the running event and reflect that state 4102 // appropriately. We also need to stop processing actions, since they 4103 // aren't expecting the target to be running. 4104 4105 // FIXME: we might have run. 4106 if (stop_info_sp->HasTargetRunSinceMe()) { 4107 SetRestarted(true); 4108 break; 4109 } 4110 4111 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4112 } 4113 4114 if (!still_should_stop) 4115 still_should_stop = this_thread_wants_to_stop; 4116 } 4117 } 4118 4119 return still_should_stop; 4120 } 4121 4122 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 4123 ProcessSP process_sp(m_process_wp.lock()); 4124 4125 if (!process_sp) 4126 return; 4127 4128 // This function gets called twice for each event, once when the event gets 4129 // pulled off of the private process event queue, and then any number of 4130 // times, first when it gets pulled off of the public event queue, then other 4131 // times when we're pretending that this is where we stopped at the end of 4132 // expression evaluation. m_update_state is used to distinguish these three 4133 // cases; it is 0 when we're just pulling it off for private handling, and > 4134 // 1 for expression evaluation, and we don't want to do the breakpoint 4135 // command handling then. 4136 if (m_update_state != 1) 4137 return; 4138 4139 process_sp->SetPublicState( 4140 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4141 4142 if (m_state == eStateStopped && !m_restarted) { 4143 // Let process subclasses know we are about to do a public stop and do 4144 // anything they might need to in order to speed up register and memory 4145 // accesses. 4146 process_sp->WillPublicStop(); 4147 } 4148 4149 // If this is a halt event, even if the halt stopped with some reason other 4150 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 4151 // the halt request came through) don't do the StopInfo actions, as they may 4152 // end up restarting the process. 4153 if (m_interrupted) 4154 return; 4155 4156 // If we're not stopped or have restarted, then skip the StopInfo actions: 4157 if (m_state != eStateStopped || m_restarted) { 4158 return; 4159 } 4160 4161 bool does_anybody_have_an_opinion = false; 4162 bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion); 4163 4164 if (GetRestarted()) { 4165 return; 4166 } 4167 4168 if (!still_should_stop && does_anybody_have_an_opinion) { 4169 // We've been asked to continue, so do that here. 4170 SetRestarted(true); 4171 // Use the public resume method here, since this is just extending a 4172 // public resume. 4173 process_sp->PrivateResume(); 4174 } else { 4175 bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) && 4176 !process_sp->StateChangedIsHijackedForSynchronousResume(); 4177 4178 if (!hijacked) { 4179 // If we didn't restart, run the Stop Hooks here. 4180 // Don't do that if state changed events aren't hooked up to the 4181 // public (or SyncResume) broadcasters. StopHooks are just for 4182 // real public stops. They might also restart the target, 4183 // so watch for that. 4184 if (process_sp->GetTarget().RunStopHooks()) 4185 SetRestarted(true); 4186 } 4187 } 4188 } 4189 4190 void Process::ProcessEventData::Dump(Stream *s) const { 4191 ProcessSP process_sp(m_process_wp.lock()); 4192 4193 if (process_sp) 4194 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4195 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4196 else 4197 s->PutCString(" process = NULL, "); 4198 4199 s->Printf("state = %s", StateAsCString(GetState())); 4200 } 4201 4202 const Process::ProcessEventData * 4203 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4204 if (event_ptr) { 4205 const EventData *event_data = event_ptr->GetData(); 4206 if (event_data && 4207 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4208 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4209 } 4210 return nullptr; 4211 } 4212 4213 ProcessSP 4214 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4215 ProcessSP process_sp; 4216 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4217 if (data) 4218 process_sp = data->GetProcessSP(); 4219 return process_sp; 4220 } 4221 4222 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4223 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4224 if (data == nullptr) 4225 return eStateInvalid; 4226 else 4227 return data->GetState(); 4228 } 4229 4230 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4231 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4232 if (data == nullptr) 4233 return false; 4234 else 4235 return data->GetRestarted(); 4236 } 4237 4238 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4239 bool new_value) { 4240 ProcessEventData *data = 4241 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4242 if (data != nullptr) 4243 data->SetRestarted(new_value); 4244 } 4245 4246 size_t 4247 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4248 ProcessEventData *data = 4249 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4250 if (data != nullptr) 4251 return data->GetNumRestartedReasons(); 4252 else 4253 return 0; 4254 } 4255 4256 const char * 4257 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4258 size_t idx) { 4259 ProcessEventData *data = 4260 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4261 if (data != nullptr) 4262 return data->GetRestartedReasonAtIndex(idx); 4263 else 4264 return nullptr; 4265 } 4266 4267 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4268 const char *reason) { 4269 ProcessEventData *data = 4270 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4271 if (data != nullptr) 4272 data->AddRestartedReason(reason); 4273 } 4274 4275 bool Process::ProcessEventData::GetInterruptedFromEvent( 4276 const Event *event_ptr) { 4277 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4278 if (data == nullptr) 4279 return false; 4280 else 4281 return data->GetInterrupted(); 4282 } 4283 4284 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4285 bool new_value) { 4286 ProcessEventData *data = 4287 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4288 if (data != nullptr) 4289 data->SetInterrupted(new_value); 4290 } 4291 4292 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4293 ProcessEventData *data = 4294 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4295 if (data) { 4296 data->SetUpdateStateOnRemoval(); 4297 return true; 4298 } 4299 return false; 4300 } 4301 4302 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4303 4304 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4305 exe_ctx.SetTargetPtr(&GetTarget()); 4306 exe_ctx.SetProcessPtr(this); 4307 exe_ctx.SetThreadPtr(nullptr); 4308 exe_ctx.SetFramePtr(nullptr); 4309 } 4310 4311 // uint32_t 4312 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4313 // std::vector<lldb::pid_t> &pids) 4314 //{ 4315 // return 0; 4316 //} 4317 // 4318 // ArchSpec 4319 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4320 //{ 4321 // return Host::GetArchSpecForExistingProcess (pid); 4322 //} 4323 // 4324 // ArchSpec 4325 // Process::GetArchSpecForExistingProcess (const char *process_name) 4326 //{ 4327 // return Host::GetArchSpecForExistingProcess (process_name); 4328 //} 4329 4330 void Process::AppendSTDOUT(const char *s, size_t len) { 4331 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4332 m_stdout_data.append(s, len); 4333 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4334 new ProcessEventData(shared_from_this(), GetState())); 4335 } 4336 4337 void Process::AppendSTDERR(const char *s, size_t len) { 4338 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4339 m_stderr_data.append(s, len); 4340 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4341 new ProcessEventData(shared_from_this(), GetState())); 4342 } 4343 4344 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4345 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4346 m_profile_data.push_back(one_profile_data); 4347 BroadcastEventIfUnique(eBroadcastBitProfileData, 4348 new ProcessEventData(shared_from_this(), GetState())); 4349 } 4350 4351 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4352 const StructuredDataPluginSP &plugin_sp) { 4353 BroadcastEvent( 4354 eBroadcastBitStructuredData, 4355 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4356 } 4357 4358 StructuredDataPluginSP 4359 Process::GetStructuredDataPlugin(ConstString type_name) const { 4360 auto find_it = m_structured_data_plugin_map.find(type_name); 4361 if (find_it != m_structured_data_plugin_map.end()) 4362 return find_it->second; 4363 else 4364 return StructuredDataPluginSP(); 4365 } 4366 4367 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4368 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4369 if (m_profile_data.empty()) 4370 return 0; 4371 4372 std::string &one_profile_data = m_profile_data.front(); 4373 size_t bytes_available = one_profile_data.size(); 4374 if (bytes_available > 0) { 4375 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4376 LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4377 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4378 if (bytes_available > buf_size) { 4379 memcpy(buf, one_profile_data.c_str(), buf_size); 4380 one_profile_data.erase(0, buf_size); 4381 bytes_available = buf_size; 4382 } else { 4383 memcpy(buf, one_profile_data.c_str(), bytes_available); 4384 m_profile_data.erase(m_profile_data.begin()); 4385 } 4386 } 4387 return bytes_available; 4388 } 4389 4390 // Process STDIO 4391 4392 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4393 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4394 size_t bytes_available = m_stdout_data.size(); 4395 if (bytes_available > 0) { 4396 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4397 LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4398 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4399 if (bytes_available > buf_size) { 4400 memcpy(buf, m_stdout_data.c_str(), buf_size); 4401 m_stdout_data.erase(0, buf_size); 4402 bytes_available = buf_size; 4403 } else { 4404 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4405 m_stdout_data.clear(); 4406 } 4407 } 4408 return bytes_available; 4409 } 4410 4411 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4412 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4413 size_t bytes_available = m_stderr_data.size(); 4414 if (bytes_available > 0) { 4415 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4416 LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4417 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4418 if (bytes_available > buf_size) { 4419 memcpy(buf, m_stderr_data.c_str(), buf_size); 4420 m_stderr_data.erase(0, buf_size); 4421 bytes_available = buf_size; 4422 } else { 4423 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4424 m_stderr_data.clear(); 4425 } 4426 } 4427 return bytes_available; 4428 } 4429 4430 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4431 size_t src_len) { 4432 Process *process = (Process *)baton; 4433 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4434 } 4435 4436 class IOHandlerProcessSTDIO : public IOHandler { 4437 public: 4438 IOHandlerProcessSTDIO(Process *process, int write_fd) 4439 : IOHandler(process->GetTarget().GetDebugger(), 4440 IOHandler::Type::ProcessIO), 4441 m_process(process), 4442 m_read_file(GetInputFD(), File::eOpenOptionRead, false), 4443 m_write_file(write_fd, File::eOpenOptionWrite, false) { 4444 m_pipe.CreateNew(false); 4445 } 4446 4447 ~IOHandlerProcessSTDIO() override = default; 4448 4449 // Each IOHandler gets to run until it is done. It should read data from the 4450 // "in" and place output into "out" and "err and return when done. 4451 void Run() override { 4452 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4453 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4454 SetIsDone(true); 4455 return; 4456 } 4457 4458 SetIsDone(false); 4459 const int read_fd = m_read_file.GetDescriptor(); 4460 TerminalState terminal_state; 4461 terminal_state.Save(read_fd, false); 4462 Terminal terminal(read_fd); 4463 terminal.SetCanonical(false); 4464 terminal.SetEcho(false); 4465 // FD_ZERO, FD_SET are not supported on windows 4466 #ifndef _WIN32 4467 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4468 m_is_running = true; 4469 while (!GetIsDone()) { 4470 SelectHelper select_helper; 4471 select_helper.FDSetRead(read_fd); 4472 select_helper.FDSetRead(pipe_read_fd); 4473 Status error = select_helper.Select(); 4474 4475 if (error.Fail()) { 4476 SetIsDone(true); 4477 } else { 4478 char ch = 0; 4479 size_t n; 4480 if (select_helper.FDIsSetRead(read_fd)) { 4481 n = 1; 4482 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4483 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4484 SetIsDone(true); 4485 } else 4486 SetIsDone(true); 4487 } 4488 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4489 size_t bytes_read; 4490 // Consume the interrupt byte 4491 Status error = m_pipe.Read(&ch, 1, bytes_read); 4492 if (error.Success()) { 4493 switch (ch) { 4494 case 'q': 4495 SetIsDone(true); 4496 break; 4497 case 'i': 4498 if (StateIsRunningState(m_process->GetState())) 4499 m_process->SendAsyncInterrupt(); 4500 break; 4501 } 4502 } 4503 } 4504 } 4505 } 4506 m_is_running = false; 4507 #endif 4508 terminal_state.Restore(); 4509 } 4510 4511 void Cancel() override { 4512 SetIsDone(true); 4513 // Only write to our pipe to cancel if we are in 4514 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4515 // is being run from the command interpreter: 4516 // 4517 // (lldb) step_process_thousands_of_times 4518 // 4519 // In this case the command interpreter will be in the middle of handling 4520 // the command and if the process pushes and pops the IOHandler thousands 4521 // of times, we can end up writing to m_pipe without ever consuming the 4522 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4523 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4524 if (m_is_running) { 4525 char ch = 'q'; // Send 'q' for quit 4526 size_t bytes_written = 0; 4527 m_pipe.Write(&ch, 1, bytes_written); 4528 } 4529 } 4530 4531 bool Interrupt() override { 4532 // Do only things that are safe to do in an interrupt context (like in a 4533 // SIGINT handler), like write 1 byte to a file descriptor. This will 4534 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4535 // that was written to the pipe and then call 4536 // m_process->SendAsyncInterrupt() from a much safer location in code. 4537 if (m_active) { 4538 char ch = 'i'; // Send 'i' for interrupt 4539 size_t bytes_written = 0; 4540 Status result = m_pipe.Write(&ch, 1, bytes_written); 4541 return result.Success(); 4542 } else { 4543 // This IOHandler might be pushed on the stack, but not being run 4544 // currently so do the right thing if we aren't actively watching for 4545 // STDIN by sending the interrupt to the process. Otherwise the write to 4546 // the pipe above would do nothing. This can happen when the command 4547 // interpreter is running and gets a "expression ...". It will be on the 4548 // IOHandler thread and sending the input is complete to the delegate 4549 // which will cause the expression to run, which will push the process IO 4550 // handler, but not run it. 4551 4552 if (StateIsRunningState(m_process->GetState())) { 4553 m_process->SendAsyncInterrupt(); 4554 return true; 4555 } 4556 } 4557 return false; 4558 } 4559 4560 void GotEOF() override {} 4561 4562 protected: 4563 Process *m_process; 4564 NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB 4565 NativeFile m_write_file; // Write to this file (usually the master pty for 4566 // getting io to debuggee) 4567 Pipe m_pipe; 4568 std::atomic<bool> m_is_running{false}; 4569 }; 4570 4571 void Process::SetSTDIOFileDescriptor(int fd) { 4572 // First set up the Read Thread for reading/handling process I/O 4573 m_stdio_communication.SetConnection( 4574 std::make_unique<ConnectionFileDescriptor>(fd, true)); 4575 if (m_stdio_communication.IsConnected()) { 4576 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4577 STDIOReadThreadBytesReceived, this); 4578 m_stdio_communication.StartReadThread(); 4579 4580 // Now read thread is set up, set up input reader. 4581 4582 if (!m_process_input_reader) 4583 m_process_input_reader = 4584 std::make_shared<IOHandlerProcessSTDIO>(this, fd); 4585 } 4586 } 4587 4588 bool Process::ProcessIOHandlerIsActive() { 4589 IOHandlerSP io_handler_sp(m_process_input_reader); 4590 if (io_handler_sp) 4591 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4592 return false; 4593 } 4594 bool Process::PushProcessIOHandler() { 4595 IOHandlerSP io_handler_sp(m_process_input_reader); 4596 if (io_handler_sp) { 4597 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4598 LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); 4599 4600 io_handler_sp->SetIsDone(false); 4601 // If we evaluate an utility function, then we don't cancel the current 4602 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the 4603 // existing IOHandler that potentially provides the user interface (e.g. 4604 // the IOHandler for Editline). 4605 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); 4606 GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp, 4607 cancel_top_handler); 4608 return true; 4609 } 4610 return false; 4611 } 4612 4613 bool Process::PopProcessIOHandler() { 4614 IOHandlerSP io_handler_sp(m_process_input_reader); 4615 if (io_handler_sp) 4616 return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp); 4617 return false; 4618 } 4619 4620 // The process needs to know about installed plug-ins 4621 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4622 4623 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4624 4625 namespace { 4626 // RestorePlanState is used to record the "is private", "is master" and "okay 4627 // to discard" fields of the plan we are running, and reset it on Clean or on 4628 // destruction. It will only reset the state once, so you can call Clean and 4629 // then monkey with the state and it won't get reset on you again. 4630 4631 class RestorePlanState { 4632 public: 4633 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4634 : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) { 4635 if (m_thread_plan_sp) { 4636 m_private = m_thread_plan_sp->GetPrivate(); 4637 m_is_master = m_thread_plan_sp->IsMasterPlan(); 4638 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4639 } 4640 } 4641 4642 ~RestorePlanState() { Clean(); } 4643 4644 void Clean() { 4645 if (!m_already_reset && m_thread_plan_sp) { 4646 m_already_reset = true; 4647 m_thread_plan_sp->SetPrivate(m_private); 4648 m_thread_plan_sp->SetIsMasterPlan(m_is_master); 4649 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4650 } 4651 } 4652 4653 private: 4654 lldb::ThreadPlanSP m_thread_plan_sp; 4655 bool m_already_reset; 4656 bool m_private; 4657 bool m_is_master; 4658 bool m_okay_to_discard; 4659 }; 4660 } // anonymous namespace 4661 4662 static microseconds 4663 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4664 const milliseconds default_one_thread_timeout(250); 4665 4666 // If the overall wait is forever, then we don't need to worry about it. 4667 if (!options.GetTimeout()) { 4668 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4669 : default_one_thread_timeout; 4670 } 4671 4672 // If the one thread timeout is set, use it. 4673 if (options.GetOneThreadTimeout()) 4674 return *options.GetOneThreadTimeout(); 4675 4676 // Otherwise use half the total timeout, bounded by the 4677 // default_one_thread_timeout. 4678 return std::min<microseconds>(default_one_thread_timeout, 4679 *options.GetTimeout() / 2); 4680 } 4681 4682 static Timeout<std::micro> 4683 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4684 bool before_first_timeout) { 4685 // If we are going to run all threads the whole time, or if we are only going 4686 // to run one thread, we can just return the overall timeout. 4687 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4688 return options.GetTimeout(); 4689 4690 if (before_first_timeout) 4691 return GetOneThreadExpressionTimeout(options); 4692 4693 if (!options.GetTimeout()) 4694 return llvm::None; 4695 else 4696 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4697 } 4698 4699 static llvm::Optional<ExpressionResults> 4700 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp, 4701 RestorePlanState &restorer, const EventSP &event_sp, 4702 EventSP &event_to_broadcast_sp, 4703 const EvaluateExpressionOptions &options, 4704 bool handle_interrupts) { 4705 Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS); 4706 4707 ThreadSP thread_sp = thread_plan_sp->GetTarget() 4708 .GetProcessSP() 4709 ->GetThreadList() 4710 .FindThreadByID(thread_id); 4711 if (!thread_sp) { 4712 LLDB_LOG(log, 4713 "The thread on which we were running the " 4714 "expression: tid = {0}, exited while " 4715 "the expression was running.", 4716 thread_id); 4717 return eExpressionThreadVanished; 4718 } 4719 4720 ThreadPlanSP plan = thread_sp->GetCompletedPlan(); 4721 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4722 LLDB_LOG(log, "execution completed successfully"); 4723 4724 // Restore the plan state so it will get reported as intended when we are 4725 // done. 4726 restorer.Clean(); 4727 return eExpressionCompleted; 4728 } 4729 4730 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4731 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4732 stop_info_sp->ShouldNotify(event_sp.get())) { 4733 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4734 if (!options.DoesIgnoreBreakpoints()) { 4735 // Restore the plan state and then force Private to false. We are going 4736 // to stop because of this plan so we need it to become a public plan or 4737 // it won't report correctly when we continue to its termination later 4738 // on. 4739 restorer.Clean(); 4740 thread_plan_sp->SetPrivate(false); 4741 event_to_broadcast_sp = event_sp; 4742 } 4743 return eExpressionHitBreakpoint; 4744 } 4745 4746 if (!handle_interrupts && 4747 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4748 return llvm::None; 4749 4750 LLDB_LOG(log, "thread plan did not successfully complete"); 4751 if (!options.DoesUnwindOnError()) 4752 event_to_broadcast_sp = event_sp; 4753 return eExpressionInterrupted; 4754 } 4755 4756 ExpressionResults 4757 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4758 lldb::ThreadPlanSP &thread_plan_sp, 4759 const EvaluateExpressionOptions &options, 4760 DiagnosticManager &diagnostic_manager) { 4761 ExpressionResults return_value = eExpressionSetupError; 4762 4763 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4764 4765 if (!thread_plan_sp) { 4766 diagnostic_manager.PutString( 4767 eDiagnosticSeverityError, 4768 "RunThreadPlan called with empty thread plan."); 4769 return eExpressionSetupError; 4770 } 4771 4772 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4773 diagnostic_manager.PutString( 4774 eDiagnosticSeverityError, 4775 "RunThreadPlan called with an invalid thread plan."); 4776 return eExpressionSetupError; 4777 } 4778 4779 if (exe_ctx.GetProcessPtr() != this) { 4780 diagnostic_manager.PutString(eDiagnosticSeverityError, 4781 "RunThreadPlan called on wrong process."); 4782 return eExpressionSetupError; 4783 } 4784 4785 Thread *thread = exe_ctx.GetThreadPtr(); 4786 if (thread == nullptr) { 4787 diagnostic_manager.PutString(eDiagnosticSeverityError, 4788 "RunThreadPlan called with invalid thread."); 4789 return eExpressionSetupError; 4790 } 4791 4792 // Record the thread's id so we can tell when a thread we were using 4793 // to run the expression exits during the expression evaluation. 4794 lldb::tid_t expr_thread_id = thread->GetID(); 4795 4796 // We need to change some of the thread plan attributes for the thread plan 4797 // runner. This will restore them when we are done: 4798 4799 RestorePlanState thread_plan_restorer(thread_plan_sp); 4800 4801 // We rely on the thread plan we are running returning "PlanCompleted" if 4802 // when it successfully completes. For that to be true the plan can't be 4803 // private - since private plans suppress themselves in the GetCompletedPlan 4804 // call. 4805 4806 thread_plan_sp->SetPrivate(false); 4807 4808 // The plans run with RunThreadPlan also need to be terminal master plans or 4809 // when they are done we will end up asking the plan above us whether we 4810 // should stop, which may give the wrong answer. 4811 4812 thread_plan_sp->SetIsMasterPlan(true); 4813 thread_plan_sp->SetOkayToDiscard(false); 4814 4815 // If we are running some utility expression for LLDB, we now have to mark 4816 // this in the ProcesModID of this process. This RAII takes care of marking 4817 // and reverting the mark it once we are done running the expression. 4818 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); 4819 4820 if (m_private_state.GetValue() != eStateStopped) { 4821 diagnostic_manager.PutString( 4822 eDiagnosticSeverityError, 4823 "RunThreadPlan called while the private state was not stopped."); 4824 return eExpressionSetupError; 4825 } 4826 4827 // Save the thread & frame from the exe_ctx for restoration after we run 4828 const uint32_t thread_idx_id = thread->GetIndexID(); 4829 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4830 if (!selected_frame_sp) { 4831 thread->SetSelectedFrame(nullptr); 4832 selected_frame_sp = thread->GetSelectedFrame(); 4833 if (!selected_frame_sp) { 4834 diagnostic_manager.Printf( 4835 eDiagnosticSeverityError, 4836 "RunThreadPlan called without a selected frame on thread %d", 4837 thread_idx_id); 4838 return eExpressionSetupError; 4839 } 4840 } 4841 4842 // Make sure the timeout values make sense. The one thread timeout needs to 4843 // be smaller than the overall timeout. 4844 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4845 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4846 diagnostic_manager.PutString(eDiagnosticSeverityError, 4847 "RunThreadPlan called with one thread " 4848 "timeout greater than total timeout"); 4849 return eExpressionSetupError; 4850 } 4851 4852 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4853 4854 // N.B. Running the target may unset the currently selected thread and frame. 4855 // We don't want to do that either, so we should arrange to reset them as 4856 // well. 4857 4858 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4859 4860 uint32_t selected_tid; 4861 StackID selected_stack_id; 4862 if (selected_thread_sp) { 4863 selected_tid = selected_thread_sp->GetIndexID(); 4864 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4865 } else { 4866 selected_tid = LLDB_INVALID_THREAD_ID; 4867 } 4868 4869 HostThread backup_private_state_thread; 4870 lldb::StateType old_state = eStateInvalid; 4871 lldb::ThreadPlanSP stopper_base_plan_sp; 4872 4873 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4874 LIBLLDB_LOG_PROCESS)); 4875 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4876 // Yikes, we are running on the private state thread! So we can't wait for 4877 // public events on this thread, since we are the thread that is generating 4878 // public events. The simplest thing to do is to spin up a temporary thread 4879 // to handle private state thread events while we are fielding public 4880 // events here. 4881 LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " 4882 "another state thread to handle the events."); 4883 4884 backup_private_state_thread = m_private_state_thread; 4885 4886 // One other bit of business: we want to run just this thread plan and 4887 // anything it pushes, and then stop, returning control here. But in the 4888 // normal course of things, the plan above us on the stack would be given a 4889 // shot at the stop event before deciding to stop, and we don't want that. 4890 // So we insert a "stopper" base plan on the stack before the plan we want 4891 // to run. Since base plans always stop and return control to the user, 4892 // that will do just what we want. 4893 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4894 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4895 // Have to make sure our public state is stopped, since otherwise the 4896 // reporting logic below doesn't work correctly. 4897 old_state = m_public_state.GetValue(); 4898 m_public_state.SetValueNoLock(eStateStopped); 4899 4900 // Now spin up the private state thread: 4901 StartPrivateStateThread(true); 4902 } 4903 4904 thread->QueueThreadPlan( 4905 thread_plan_sp, false); // This used to pass "true" does that make sense? 4906 4907 if (options.GetDebug()) { 4908 // In this case, we aren't actually going to run, we just want to stop 4909 // right away. Flush this thread so we will refetch the stacks and show the 4910 // correct backtrace. 4911 // FIXME: To make this prettier we should invent some stop reason for this, 4912 // but that 4913 // is only cosmetic, and this functionality is only of use to lldb 4914 // developers who can live with not pretty... 4915 thread->Flush(); 4916 return eExpressionStoppedForDebug; 4917 } 4918 4919 ListenerSP listener_sp( 4920 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4921 4922 lldb::EventSP event_to_broadcast_sp; 4923 4924 { 4925 // This process event hijacker Hijacks the Public events and its destructor 4926 // makes sure that the process events get restored on exit to the function. 4927 // 4928 // If the event needs to propagate beyond the hijacker (e.g., the process 4929 // exits during execution), then the event is put into 4930 // event_to_broadcast_sp for rebroadcasting. 4931 4932 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 4933 4934 if (log) { 4935 StreamString s; 4936 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 4937 LLDB_LOGF(log, 4938 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 4939 " to run thread plan \"%s\".", 4940 thread_idx_id, expr_thread_id, s.GetData()); 4941 } 4942 4943 bool got_event; 4944 lldb::EventSP event_sp; 4945 lldb::StateType stop_state = lldb::eStateInvalid; 4946 4947 bool before_first_timeout = true; // This is set to false the first time 4948 // that we have to halt the target. 4949 bool do_resume = true; 4950 bool handle_running_event = true; 4951 4952 // This is just for accounting: 4953 uint32_t num_resumes = 0; 4954 4955 // If we are going to run all threads the whole time, or if we are only 4956 // going to run one thread, then we don't need the first timeout. So we 4957 // pretend we are after the first timeout already. 4958 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4959 before_first_timeout = false; 4960 4961 LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", 4962 options.GetStopOthers(), options.GetTryAllThreads(), 4963 before_first_timeout); 4964 4965 // This isn't going to work if there are unfetched events on the queue. Are 4966 // there cases where we might want to run the remaining events here, and 4967 // then try to call the function? That's probably being too tricky for our 4968 // own good. 4969 4970 Event *other_events = listener_sp->PeekAtNextEvent(); 4971 if (other_events != nullptr) { 4972 diagnostic_manager.PutString( 4973 eDiagnosticSeverityError, 4974 "RunThreadPlan called with pending events on the queue."); 4975 return eExpressionSetupError; 4976 } 4977 4978 // We also need to make sure that the next event is delivered. We might be 4979 // calling a function as part of a thread plan, in which case the last 4980 // delivered event could be the running event, and we don't want event 4981 // coalescing to cause us to lose OUR running event... 4982 ForceNextEventDelivery(); 4983 4984 // This while loop must exit out the bottom, there's cleanup that we need to do 4985 // when we are done. So don't call return anywhere within it. 4986 4987 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4988 // It's pretty much impossible to write test cases for things like: One 4989 // thread timeout expires, I go to halt, but the process already stopped on 4990 // the function call stop breakpoint. Turning on this define will make us 4991 // not fetch the first event till after the halt. So if you run a quick 4992 // function, it will have completed, and the completion event will be 4993 // waiting, when you interrupt for halt. The expression evaluation should 4994 // still succeed. 4995 bool miss_first_event = true; 4996 #endif 4997 while (true) { 4998 // We usually want to resume the process if we get to the top of the 4999 // loop. The only exception is if we get two running events with no 5000 // intervening stop, which can happen, we will just wait for then next 5001 // stop event. 5002 LLDB_LOGF(log, 5003 "Top of while loop: do_resume: %i handle_running_event: %i " 5004 "before_first_timeout: %i.", 5005 do_resume, handle_running_event, before_first_timeout); 5006 5007 if (do_resume || handle_running_event) { 5008 // Do the initial resume and wait for the running event before going 5009 // further. 5010 5011 if (do_resume) { 5012 num_resumes++; 5013 Status resume_error = PrivateResume(); 5014 if (!resume_error.Success()) { 5015 diagnostic_manager.Printf( 5016 eDiagnosticSeverityError, 5017 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 5018 resume_error.AsCString()); 5019 return_value = eExpressionSetupError; 5020 break; 5021 } 5022 } 5023 5024 got_event = 5025 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5026 if (!got_event) { 5027 LLDB_LOGF(log, 5028 "Process::RunThreadPlan(): didn't get any event after " 5029 "resume %" PRIu32 ", exiting.", 5030 num_resumes); 5031 5032 diagnostic_manager.Printf(eDiagnosticSeverityError, 5033 "didn't get any event after resume %" PRIu32 5034 ", exiting.", 5035 num_resumes); 5036 return_value = eExpressionSetupError; 5037 break; 5038 } 5039 5040 stop_state = 5041 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5042 5043 if (stop_state != eStateRunning) { 5044 bool restarted = false; 5045 5046 if (stop_state == eStateStopped) { 5047 restarted = Process::ProcessEventData::GetRestartedFromEvent( 5048 event_sp.get()); 5049 LLDB_LOGF( 5050 log, 5051 "Process::RunThreadPlan(): didn't get running event after " 5052 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 5053 "handle_running_event: %i).", 5054 num_resumes, StateAsCString(stop_state), restarted, do_resume, 5055 handle_running_event); 5056 } 5057 5058 if (restarted) { 5059 // This is probably an overabundance of caution, I don't think I 5060 // should ever get a stopped & restarted event here. But if I do, 5061 // the best thing is to Halt and then get out of here. 5062 const bool clear_thread_plans = false; 5063 const bool use_run_lock = false; 5064 Halt(clear_thread_plans, use_run_lock); 5065 } 5066 5067 diagnostic_manager.Printf( 5068 eDiagnosticSeverityError, 5069 "didn't get running event after initial resume, got %s instead.", 5070 StateAsCString(stop_state)); 5071 return_value = eExpressionSetupError; 5072 break; 5073 } 5074 5075 if (log) 5076 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 5077 // We need to call the function synchronously, so spin waiting for it 5078 // to return. If we get interrupted while executing, we're going to 5079 // lose our context, and won't be able to gather the result at this 5080 // point. We set the timeout AFTER the resume, since the resume takes 5081 // some time and we don't want to charge that to the timeout. 5082 } else { 5083 if (log) 5084 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 5085 } 5086 5087 do_resume = true; 5088 handle_running_event = true; 5089 5090 // Now wait for the process to stop again: 5091 event_sp.reset(); 5092 5093 Timeout<std::micro> timeout = 5094 GetExpressionTimeout(options, before_first_timeout); 5095 if (log) { 5096 if (timeout) { 5097 auto now = system_clock::now(); 5098 LLDB_LOGF(log, 5099 "Process::RunThreadPlan(): about to wait - now is %s - " 5100 "endpoint is %s", 5101 llvm::to_string(now).c_str(), 5102 llvm::to_string(now + *timeout).c_str()); 5103 } else { 5104 LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); 5105 } 5106 } 5107 5108 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5109 // See comment above... 5110 if (miss_first_event) { 5111 std::this_thread::sleep_for(std::chrono::milliseconds(1)); 5112 miss_first_event = false; 5113 got_event = false; 5114 } else 5115 #endif 5116 got_event = listener_sp->GetEvent(event_sp, timeout); 5117 5118 if (got_event) { 5119 if (event_sp) { 5120 bool keep_going = false; 5121 if (event_sp->GetType() == eBroadcastBitInterrupt) { 5122 const bool clear_thread_plans = false; 5123 const bool use_run_lock = false; 5124 Halt(clear_thread_plans, use_run_lock); 5125 return_value = eExpressionInterrupted; 5126 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 5127 "execution halted by user interrupt."); 5128 LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " 5129 "eBroadcastBitInterrupted, exiting."); 5130 break; 5131 } else { 5132 stop_state = 5133 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5134 LLDB_LOGF(log, 5135 "Process::RunThreadPlan(): in while loop, got event: %s.", 5136 StateAsCString(stop_state)); 5137 5138 switch (stop_state) { 5139 case lldb::eStateStopped: { 5140 if (Process::ProcessEventData::GetRestartedFromEvent( 5141 event_sp.get())) { 5142 // If we were restarted, we just need to go back up to fetch 5143 // another event. 5144 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " 5145 "restart, so we'll continue waiting."); 5146 keep_going = true; 5147 do_resume = false; 5148 handle_running_event = true; 5149 } else { 5150 const bool handle_interrupts = true; 5151 return_value = *HandleStoppedEvent( 5152 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5153 event_sp, event_to_broadcast_sp, options, 5154 handle_interrupts); 5155 if (return_value == eExpressionThreadVanished) 5156 keep_going = false; 5157 } 5158 } break; 5159 5160 case lldb::eStateRunning: 5161 // This shouldn't really happen, but sometimes we do get two 5162 // running events without an intervening stop, and in that case 5163 // we should just go back to waiting for the stop. 5164 do_resume = false; 5165 keep_going = true; 5166 handle_running_event = false; 5167 break; 5168 5169 default: 5170 LLDB_LOGF(log, 5171 "Process::RunThreadPlan(): execution stopped with " 5172 "unexpected state: %s.", 5173 StateAsCString(stop_state)); 5174 5175 if (stop_state == eStateExited) 5176 event_to_broadcast_sp = event_sp; 5177 5178 diagnostic_manager.PutString( 5179 eDiagnosticSeverityError, 5180 "execution stopped with unexpected state."); 5181 return_value = eExpressionInterrupted; 5182 break; 5183 } 5184 } 5185 5186 if (keep_going) 5187 continue; 5188 else 5189 break; 5190 } else { 5191 if (log) 5192 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5193 "the event pointer was null. How odd..."); 5194 return_value = eExpressionInterrupted; 5195 break; 5196 } 5197 } else { 5198 // If we didn't get an event that means we've timed out... We will 5199 // interrupt the process here. Depending on what we were asked to do 5200 // we will either exit, or try with all threads running for the same 5201 // timeout. 5202 5203 if (log) { 5204 if (options.GetTryAllThreads()) { 5205 if (before_first_timeout) { 5206 LLDB_LOG(log, 5207 "Running function with one thread timeout timed out."); 5208 } else 5209 LLDB_LOG(log, "Restarting function with all threads enabled and " 5210 "timeout: {0} timed out, abandoning execution.", 5211 timeout); 5212 } else 5213 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5214 "abandoning execution.", 5215 timeout); 5216 } 5217 5218 // It is possible that between the time we issued the Halt, and we get 5219 // around to calling Halt the target could have stopped. That's fine, 5220 // Halt will figure that out and send the appropriate Stopped event. 5221 // BUT it is also possible that we stopped & restarted (e.g. hit a 5222 // signal with "stop" set to false.) In 5223 // that case, we'll get the stopped & restarted event, and we should go 5224 // back to waiting for the Halt's stopped event. That's what this 5225 // while loop does. 5226 5227 bool back_to_top = true; 5228 uint32_t try_halt_again = 0; 5229 bool do_halt = true; 5230 const uint32_t num_retries = 5; 5231 while (try_halt_again < num_retries) { 5232 Status halt_error; 5233 if (do_halt) { 5234 LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); 5235 const bool clear_thread_plans = false; 5236 const bool use_run_lock = false; 5237 Halt(clear_thread_plans, use_run_lock); 5238 } 5239 if (halt_error.Success()) { 5240 if (log) 5241 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5242 5243 got_event = 5244 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5245 5246 if (got_event) { 5247 stop_state = 5248 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5249 if (log) { 5250 LLDB_LOGF(log, 5251 "Process::RunThreadPlan(): Stopped with event: %s", 5252 StateAsCString(stop_state)); 5253 if (stop_state == lldb::eStateStopped && 5254 Process::ProcessEventData::GetInterruptedFromEvent( 5255 event_sp.get())) 5256 log->PutCString(" Event was the Halt interruption event."); 5257 } 5258 5259 if (stop_state == lldb::eStateStopped) { 5260 if (Process::ProcessEventData::GetRestartedFromEvent( 5261 event_sp.get())) { 5262 if (log) 5263 log->PutCString("Process::RunThreadPlan(): Went to halt " 5264 "but got a restarted event, there must be " 5265 "an un-restarted stopped event so try " 5266 "again... " 5267 "Exiting wait loop."); 5268 try_halt_again++; 5269 do_halt = false; 5270 continue; 5271 } 5272 5273 // Between the time we initiated the Halt and the time we 5274 // delivered it, the process could have already finished its 5275 // job. Check that here: 5276 const bool handle_interrupts = false; 5277 if (auto result = HandleStoppedEvent( 5278 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5279 event_sp, event_to_broadcast_sp, options, 5280 handle_interrupts)) { 5281 return_value = *result; 5282 back_to_top = false; 5283 break; 5284 } 5285 5286 if (!options.GetTryAllThreads()) { 5287 if (log) 5288 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5289 "was false, we stopped so now we're " 5290 "quitting."); 5291 return_value = eExpressionInterrupted; 5292 back_to_top = false; 5293 break; 5294 } 5295 5296 if (before_first_timeout) { 5297 // Set all the other threads to run, and return to the top of 5298 // the loop, which will continue; 5299 before_first_timeout = false; 5300 thread_plan_sp->SetStopOthers(false); 5301 if (log) 5302 log->PutCString( 5303 "Process::RunThreadPlan(): about to resume."); 5304 5305 back_to_top = true; 5306 break; 5307 } else { 5308 // Running all threads failed, so return Interrupted. 5309 if (log) 5310 log->PutCString("Process::RunThreadPlan(): running all " 5311 "threads timed out."); 5312 return_value = eExpressionInterrupted; 5313 back_to_top = false; 5314 break; 5315 } 5316 } 5317 } else { 5318 if (log) 5319 log->PutCString("Process::RunThreadPlan(): halt said it " 5320 "succeeded, but I got no event. " 5321 "I'm getting out of here passing Interrupted."); 5322 return_value = eExpressionInterrupted; 5323 back_to_top = false; 5324 break; 5325 } 5326 } else { 5327 try_halt_again++; 5328 continue; 5329 } 5330 } 5331 5332 if (!back_to_top || try_halt_again > num_retries) 5333 break; 5334 else 5335 continue; 5336 } 5337 } // END WAIT LOOP 5338 5339 // If we had to start up a temporary private state thread to run this 5340 // thread plan, shut it down now. 5341 if (backup_private_state_thread.IsJoinable()) { 5342 StopPrivateStateThread(); 5343 Status error; 5344 m_private_state_thread = backup_private_state_thread; 5345 if (stopper_base_plan_sp) { 5346 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5347 } 5348 if (old_state != eStateInvalid) 5349 m_public_state.SetValueNoLock(old_state); 5350 } 5351 5352 // If our thread went away on us, we need to get out of here without 5353 // doing any more work. We don't have to clean up the thread plan, that 5354 // will have happened when the Thread was destroyed. 5355 if (return_value == eExpressionThreadVanished) { 5356 return return_value; 5357 } 5358 5359 if (return_value != eExpressionCompleted && log) { 5360 // Print a backtrace into the log so we can figure out where we are: 5361 StreamString s; 5362 s.PutCString("Thread state after unsuccessful completion: \n"); 5363 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5364 log->PutString(s.GetString()); 5365 } 5366 // Restore the thread state if we are going to discard the plan execution. 5367 // There are three cases where this could happen: 1) The execution 5368 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5369 // was true 3) We got some other error, and discard_on_error was true 5370 bool should_unwind = (return_value == eExpressionInterrupted && 5371 options.DoesUnwindOnError()) || 5372 (return_value == eExpressionHitBreakpoint && 5373 options.DoesIgnoreBreakpoints()); 5374 5375 if (return_value == eExpressionCompleted || should_unwind) { 5376 thread_plan_sp->RestoreThreadState(); 5377 } 5378 5379 // Now do some processing on the results of the run: 5380 if (return_value == eExpressionInterrupted || 5381 return_value == eExpressionHitBreakpoint) { 5382 if (log) { 5383 StreamString s; 5384 if (event_sp) 5385 event_sp->Dump(&s); 5386 else { 5387 log->PutCString("Process::RunThreadPlan(): Stop event that " 5388 "interrupted us is NULL."); 5389 } 5390 5391 StreamString ts; 5392 5393 const char *event_explanation = nullptr; 5394 5395 do { 5396 if (!event_sp) { 5397 event_explanation = "<no event>"; 5398 break; 5399 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5400 event_explanation = "<user interrupt>"; 5401 break; 5402 } else { 5403 const Process::ProcessEventData *event_data = 5404 Process::ProcessEventData::GetEventDataFromEvent( 5405 event_sp.get()); 5406 5407 if (!event_data) { 5408 event_explanation = "<no event data>"; 5409 break; 5410 } 5411 5412 Process *process = event_data->GetProcessSP().get(); 5413 5414 if (!process) { 5415 event_explanation = "<no process>"; 5416 break; 5417 } 5418 5419 ThreadList &thread_list = process->GetThreadList(); 5420 5421 uint32_t num_threads = thread_list.GetSize(); 5422 uint32_t thread_index; 5423 5424 ts.Printf("<%u threads> ", num_threads); 5425 5426 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5427 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5428 5429 if (!thread) { 5430 ts.Printf("<?> "); 5431 continue; 5432 } 5433 5434 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5435 RegisterContext *register_context = 5436 thread->GetRegisterContext().get(); 5437 5438 if (register_context) 5439 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5440 else 5441 ts.Printf("[ip unknown] "); 5442 5443 // Show the private stop info here, the public stop info will be 5444 // from the last natural stop. 5445 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5446 if (stop_info_sp) { 5447 const char *stop_desc = stop_info_sp->GetDescription(); 5448 if (stop_desc) 5449 ts.PutCString(stop_desc); 5450 } 5451 ts.Printf(">"); 5452 } 5453 5454 event_explanation = ts.GetData(); 5455 } 5456 } while (false); 5457 5458 if (event_explanation) 5459 LLDB_LOGF(log, 5460 "Process::RunThreadPlan(): execution interrupted: %s %s", 5461 s.GetData(), event_explanation); 5462 else 5463 LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", 5464 s.GetData()); 5465 } 5466 5467 if (should_unwind) { 5468 LLDB_LOGF(log, 5469 "Process::RunThreadPlan: ExecutionInterrupted - " 5470 "discarding thread plans up to %p.", 5471 static_cast<void *>(thread_plan_sp.get())); 5472 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5473 } else { 5474 LLDB_LOGF(log, 5475 "Process::RunThreadPlan: ExecutionInterrupted - for " 5476 "plan: %p not discarding.", 5477 static_cast<void *>(thread_plan_sp.get())); 5478 } 5479 } else if (return_value == eExpressionSetupError) { 5480 if (log) 5481 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5482 5483 if (options.DoesUnwindOnError()) { 5484 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5485 } 5486 } else { 5487 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5488 if (log) 5489 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5490 return_value = eExpressionCompleted; 5491 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5492 if (log) 5493 log->PutCString( 5494 "Process::RunThreadPlan(): thread plan was discarded"); 5495 return_value = eExpressionDiscarded; 5496 } else { 5497 if (log) 5498 log->PutCString( 5499 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5500 if (options.DoesUnwindOnError() && thread_plan_sp) { 5501 if (log) 5502 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5503 "'cause unwind_on_error is set."); 5504 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5505 } 5506 } 5507 } 5508 5509 // Thread we ran the function in may have gone away because we ran the 5510 // target Check that it's still there, and if it is put it back in the 5511 // context. Also restore the frame in the context if it is still present. 5512 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5513 if (thread) { 5514 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5515 } 5516 5517 // Also restore the current process'es selected frame & thread, since this 5518 // function calling may be done behind the user's back. 5519 5520 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5521 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5522 selected_stack_id.IsValid()) { 5523 // We were able to restore the selected thread, now restore the frame: 5524 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5525 StackFrameSP old_frame_sp = 5526 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5527 selected_stack_id); 5528 if (old_frame_sp) 5529 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5530 old_frame_sp.get()); 5531 } 5532 } 5533 } 5534 5535 // If the process exited during the run of the thread plan, notify everyone. 5536 5537 if (event_to_broadcast_sp) { 5538 if (log) 5539 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5540 BroadcastEvent(event_to_broadcast_sp); 5541 } 5542 5543 return return_value; 5544 } 5545 5546 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5547 const char *result_name = "<unknown>"; 5548 5549 switch (result) { 5550 case eExpressionCompleted: 5551 result_name = "eExpressionCompleted"; 5552 break; 5553 case eExpressionDiscarded: 5554 result_name = "eExpressionDiscarded"; 5555 break; 5556 case eExpressionInterrupted: 5557 result_name = "eExpressionInterrupted"; 5558 break; 5559 case eExpressionHitBreakpoint: 5560 result_name = "eExpressionHitBreakpoint"; 5561 break; 5562 case eExpressionSetupError: 5563 result_name = "eExpressionSetupError"; 5564 break; 5565 case eExpressionParseError: 5566 result_name = "eExpressionParseError"; 5567 break; 5568 case eExpressionResultUnavailable: 5569 result_name = "eExpressionResultUnavailable"; 5570 break; 5571 case eExpressionTimedOut: 5572 result_name = "eExpressionTimedOut"; 5573 break; 5574 case eExpressionStoppedForDebug: 5575 result_name = "eExpressionStoppedForDebug"; 5576 break; 5577 case eExpressionThreadVanished: 5578 result_name = "eExpressionThreadVanished"; 5579 } 5580 return result_name; 5581 } 5582 5583 void Process::GetStatus(Stream &strm) { 5584 const StateType state = GetState(); 5585 if (StateIsStoppedState(state, false)) { 5586 if (state == eStateExited) { 5587 int exit_status = GetExitStatus(); 5588 const char *exit_description = GetExitDescription(); 5589 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5590 GetID(), exit_status, exit_status, 5591 exit_description ? exit_description : ""); 5592 } else { 5593 if (state == eStateConnected) 5594 strm.Printf("Connected to remote target.\n"); 5595 else 5596 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5597 } 5598 } else { 5599 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5600 } 5601 } 5602 5603 size_t Process::GetThreadStatus(Stream &strm, 5604 bool only_threads_with_stop_reason, 5605 uint32_t start_frame, uint32_t num_frames, 5606 uint32_t num_frames_with_source, 5607 bool stop_format) { 5608 size_t num_thread_infos_dumped = 0; 5609 5610 // You can't hold the thread list lock while calling Thread::GetStatus. That 5611 // very well might run code (e.g. if we need it to get return values or 5612 // arguments.) For that to work the process has to be able to acquire it. 5613 // So instead copy the thread ID's, and look them up one by one: 5614 5615 uint32_t num_threads; 5616 std::vector<lldb::tid_t> thread_id_array; 5617 // Scope for thread list locker; 5618 { 5619 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5620 ThreadList &curr_thread_list = GetThreadList(); 5621 num_threads = curr_thread_list.GetSize(); 5622 uint32_t idx; 5623 thread_id_array.resize(num_threads); 5624 for (idx = 0; idx < num_threads; ++idx) 5625 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5626 } 5627 5628 for (uint32_t i = 0; i < num_threads; i++) { 5629 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5630 if (thread_sp) { 5631 if (only_threads_with_stop_reason) { 5632 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5633 if (!stop_info_sp || !stop_info_sp->IsValid()) 5634 continue; 5635 } 5636 thread_sp->GetStatus(strm, start_frame, num_frames, 5637 num_frames_with_source, 5638 stop_format); 5639 ++num_thread_infos_dumped; 5640 } else { 5641 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5642 LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 5643 " vanished while running Thread::GetStatus."); 5644 } 5645 } 5646 return num_thread_infos_dumped; 5647 } 5648 5649 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5650 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5651 } 5652 5653 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5654 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5655 region.GetByteSize()); 5656 } 5657 5658 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5659 void *baton) { 5660 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5661 } 5662 5663 bool Process::RunPreResumeActions() { 5664 bool result = true; 5665 while (!m_pre_resume_actions.empty()) { 5666 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5667 m_pre_resume_actions.pop_back(); 5668 bool this_result = action.callback(action.baton); 5669 if (result) 5670 result = this_result; 5671 } 5672 return result; 5673 } 5674 5675 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5676 5677 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5678 { 5679 PreResumeCallbackAndBaton element(callback, baton); 5680 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5681 if (found_iter != m_pre_resume_actions.end()) 5682 { 5683 m_pre_resume_actions.erase(found_iter); 5684 } 5685 } 5686 5687 ProcessRunLock &Process::GetRunLock() { 5688 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5689 return m_private_run_lock; 5690 else 5691 return m_public_run_lock; 5692 } 5693 5694 bool Process::CurrentThreadIsPrivateStateThread() 5695 { 5696 return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); 5697 } 5698 5699 5700 void Process::Flush() { 5701 m_thread_list.Flush(); 5702 m_extended_thread_list.Flush(); 5703 m_extended_thread_stop_id = 0; 5704 m_queue_list.Clear(); 5705 m_queue_list_stop_id = 0; 5706 } 5707 5708 void Process::DidExec() { 5709 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 5710 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 5711 5712 Target &target = GetTarget(); 5713 target.CleanupProcess(); 5714 target.ClearModules(false); 5715 m_dynamic_checkers_up.reset(); 5716 m_abi_sp.reset(); 5717 m_system_runtime_up.reset(); 5718 m_os_up.reset(); 5719 m_dyld_up.reset(); 5720 m_jit_loaders_up.reset(); 5721 m_image_tokens.clear(); 5722 m_allocated_memory_cache.Clear(); 5723 { 5724 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5725 m_language_runtimes.clear(); 5726 } 5727 m_instrumentation_runtimes.clear(); 5728 m_thread_list.DiscardThreadPlans(); 5729 m_memory_cache.Clear(true); 5730 DoDidExec(); 5731 CompleteAttach(); 5732 // Flush the process (threads and all stack frames) after running 5733 // CompleteAttach() in case the dynamic loader loaded things in new 5734 // locations. 5735 Flush(); 5736 5737 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5738 // let the target know so it can do any cleanup it needs to. 5739 target.DidExec(); 5740 } 5741 5742 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5743 if (address == nullptr) { 5744 error.SetErrorString("Invalid address argument"); 5745 return LLDB_INVALID_ADDRESS; 5746 } 5747 5748 addr_t function_addr = LLDB_INVALID_ADDRESS; 5749 5750 addr_t addr = address->GetLoadAddress(&GetTarget()); 5751 std::map<addr_t, addr_t>::const_iterator iter = 5752 m_resolved_indirect_addresses.find(addr); 5753 if (iter != m_resolved_indirect_addresses.end()) { 5754 function_addr = (*iter).second; 5755 } else { 5756 if (!CallVoidArgVoidPtrReturn(address, function_addr)) { 5757 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5758 error.SetErrorStringWithFormat( 5759 "Unable to call resolver for indirect function %s", 5760 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5761 function_addr = LLDB_INVALID_ADDRESS; 5762 } else { 5763 m_resolved_indirect_addresses.insert( 5764 std::pair<addr_t, addr_t>(addr, function_addr)); 5765 } 5766 } 5767 return function_addr; 5768 } 5769 5770 void Process::ModulesDidLoad(ModuleList &module_list) { 5771 // Inform the system runtime of the modified modules. 5772 SystemRuntime *sys_runtime = GetSystemRuntime(); 5773 if (sys_runtime) 5774 sys_runtime->ModulesDidLoad(module_list); 5775 5776 GetJITLoaders().ModulesDidLoad(module_list); 5777 5778 // Give the instrumentation runtimes a chance to be created before informing 5779 // them of the modified modules. 5780 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5781 m_instrumentation_runtimes); 5782 for (auto &runtime : m_instrumentation_runtimes) 5783 runtime.second->ModulesDidLoad(module_list); 5784 5785 // Give the language runtimes a chance to be created before informing them of 5786 // the modified modules. 5787 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 5788 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 5789 runtime->ModulesDidLoad(module_list); 5790 } 5791 5792 // If we don't have an operating system plug-in, try to load one since 5793 // loading shared libraries might cause a new one to try and load 5794 if (!m_os_up) 5795 LoadOperatingSystemPlugin(false); 5796 5797 // Inform the structured-data plugins of the modified modules. 5798 for (auto pair : m_structured_data_plugin_map) { 5799 if (pair.second) 5800 pair.second->ModulesDidLoad(*this, module_list); 5801 } 5802 } 5803 5804 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5805 const char *fmt, ...) { 5806 bool print_warning = true; 5807 5808 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5809 if (!stream_sp) 5810 return; 5811 5812 if (repeat_key != nullptr) { 5813 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5814 if (it == m_warnings_issued.end()) { 5815 m_warnings_issued[warning_type] = WarningsPointerSet(); 5816 m_warnings_issued[warning_type].insert(repeat_key); 5817 } else { 5818 if (it->second.find(repeat_key) != it->second.end()) { 5819 print_warning = false; 5820 } else { 5821 it->second.insert(repeat_key); 5822 } 5823 } 5824 } 5825 5826 if (print_warning) { 5827 va_list args; 5828 va_start(args, fmt); 5829 stream_sp->PrintfVarArg(fmt, args); 5830 va_end(args); 5831 } 5832 } 5833 5834 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5835 if (!GetWarningsOptimization()) 5836 return; 5837 if (!sc.module_sp) 5838 return; 5839 if (!sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5840 sc.function->GetIsOptimized()) { 5841 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5842 "%s was compiled with optimization - stepping may behave " 5843 "oddly; variables may not be available.\n", 5844 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5845 } 5846 } 5847 5848 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) { 5849 if (!GetWarningsUnsupportedLanguage()) 5850 return; 5851 if (!sc.module_sp) 5852 return; 5853 LanguageType language = sc.GetLanguage(); 5854 if (language == eLanguageTypeUnknown) 5855 return; 5856 auto type_system_or_err = sc.module_sp->GetTypeSystemForLanguage(language); 5857 if (auto err = type_system_or_err.takeError()) { 5858 llvm::consumeError(std::move(err)); 5859 PrintWarning(Process::Warnings::eWarningsUnsupportedLanguage, 5860 sc.module_sp.get(), 5861 "This version of LLDB has no plugin for the %s language. " 5862 "Inspection of frame variables will be limited.\n", 5863 Language::GetNameForLanguageType(language)); 5864 } 5865 } 5866 5867 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5868 info.Clear(); 5869 5870 PlatformSP platform_sp = GetTarget().GetPlatform(); 5871 if (!platform_sp) 5872 return false; 5873 5874 return platform_sp->GetProcessInfo(GetID(), info); 5875 } 5876 5877 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5878 ThreadCollectionSP threads; 5879 5880 const MemoryHistorySP &memory_history = 5881 MemoryHistory::FindPlugin(shared_from_this()); 5882 5883 if (!memory_history) { 5884 return threads; 5885 } 5886 5887 threads = std::make_shared<ThreadCollection>( 5888 memory_history->GetHistoryThreads(addr)); 5889 5890 return threads; 5891 } 5892 5893 InstrumentationRuntimeSP 5894 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5895 InstrumentationRuntimeCollection::iterator pos; 5896 pos = m_instrumentation_runtimes.find(type); 5897 if (pos == m_instrumentation_runtimes.end()) { 5898 return InstrumentationRuntimeSP(); 5899 } else 5900 return (*pos).second; 5901 } 5902 5903 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5904 const ArchSpec &arch, ModuleSpec &module_spec) { 5905 module_spec.Clear(); 5906 return false; 5907 } 5908 5909 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5910 m_image_tokens.push_back(image_ptr); 5911 return m_image_tokens.size() - 1; 5912 } 5913 5914 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5915 if (token < m_image_tokens.size()) 5916 return m_image_tokens[token]; 5917 return LLDB_INVALID_ADDRESS; 5918 } 5919 5920 void Process::ResetImageToken(size_t token) { 5921 if (token < m_image_tokens.size()) 5922 m_image_tokens[token] = LLDB_INVALID_ADDRESS; 5923 } 5924 5925 Address 5926 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5927 AddressRange range_bounds) { 5928 Target &target = GetTarget(); 5929 DisassemblerSP disassembler_sp; 5930 InstructionList *insn_list = nullptr; 5931 5932 Address retval = default_stop_addr; 5933 5934 if (!target.GetUseFastStepping()) 5935 return retval; 5936 if (!default_stop_addr.IsValid()) 5937 return retval; 5938 5939 const char *plugin_name = nullptr; 5940 const char *flavor = nullptr; 5941 const bool prefer_file_cache = true; 5942 disassembler_sp = Disassembler::DisassembleRange( 5943 target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds, 5944 prefer_file_cache); 5945 if (disassembler_sp) 5946 insn_list = &disassembler_sp->GetInstructionList(); 5947 5948 if (insn_list == nullptr) { 5949 return retval; 5950 } 5951 5952 size_t insn_offset = 5953 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 5954 if (insn_offset == UINT32_MAX) { 5955 return retval; 5956 } 5957 5958 uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction( 5959 insn_offset, false /* ignore_calls*/, nullptr); 5960 if (branch_index == UINT32_MAX) { 5961 return retval; 5962 } 5963 5964 if (branch_index > insn_offset) { 5965 Address next_branch_insn_address = 5966 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 5967 if (next_branch_insn_address.IsValid() && 5968 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 5969 retval = next_branch_insn_address; 5970 } 5971 } 5972 5973 return retval; 5974 } 5975 5976 Status 5977 Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { 5978 5979 Status error; 5980 5981 lldb::addr_t range_end = 0; 5982 5983 region_list.clear(); 5984 do { 5985 lldb_private::MemoryRegionInfo region_info; 5986 error = GetMemoryRegionInfo(range_end, region_info); 5987 // GetMemoryRegionInfo should only return an error if it is unimplemented. 5988 if (error.Fail()) { 5989 region_list.clear(); 5990 break; 5991 } 5992 5993 range_end = region_info.GetRange().GetRangeEnd(); 5994 if (region_info.GetMapped() == MemoryRegionInfo::eYes) { 5995 region_list.push_back(std::move(region_info)); 5996 } 5997 } while (range_end != LLDB_INVALID_ADDRESS); 5998 5999 return error; 6000 } 6001 6002 Status 6003 Process::ConfigureStructuredData(ConstString type_name, 6004 const StructuredData::ObjectSP &config_sp) { 6005 // If you get this, the Process-derived class needs to implement a method to 6006 // enable an already-reported asynchronous structured data feature. See 6007 // ProcessGDBRemote for an example implementation over gdb-remote. 6008 return Status("unimplemented"); 6009 } 6010 6011 void Process::MapSupportedStructuredDataPlugins( 6012 const StructuredData::Array &supported_type_names) { 6013 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 6014 6015 // Bail out early if there are no type names to map. 6016 if (supported_type_names.GetSize() == 0) { 6017 LLDB_LOGF(log, "Process::%s(): no structured data types supported", 6018 __FUNCTION__); 6019 return; 6020 } 6021 6022 // Convert StructuredData type names to ConstString instances. 6023 std::set<ConstString> const_type_names; 6024 6025 LLDB_LOGF(log, 6026 "Process::%s(): the process supports the following async " 6027 "structured data types:", 6028 __FUNCTION__); 6029 6030 supported_type_names.ForEach( 6031 [&const_type_names, &log](StructuredData::Object *object) { 6032 if (!object) { 6033 // Invalid - shouldn't be null objects in the array. 6034 return false; 6035 } 6036 6037 auto type_name = object->GetAsString(); 6038 if (!type_name) { 6039 // Invalid format - all type names should be strings. 6040 return false; 6041 } 6042 6043 const_type_names.insert(ConstString(type_name->GetValue())); 6044 LLDB_LOG(log, "- {0}", type_name->GetValue()); 6045 return true; 6046 }); 6047 6048 // For each StructuredDataPlugin, if the plugin handles any of the types in 6049 // the supported_type_names, map that type name to that plugin. Stop when 6050 // we've consumed all the type names. 6051 // FIXME: should we return an error if there are type names nobody 6052 // supports? 6053 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 6054 auto create_instance = 6055 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 6056 plugin_index); 6057 if (!create_instance) 6058 break; 6059 6060 // Create the plugin. 6061 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 6062 if (!plugin_sp) { 6063 // This plugin doesn't think it can work with the process. Move on to the 6064 // next. 6065 continue; 6066 } 6067 6068 // For any of the remaining type names, map any that this plugin supports. 6069 std::vector<ConstString> names_to_remove; 6070 for (auto &type_name : const_type_names) { 6071 if (plugin_sp->SupportsStructuredDataType(type_name)) { 6072 m_structured_data_plugin_map.insert( 6073 std::make_pair(type_name, plugin_sp)); 6074 names_to_remove.push_back(type_name); 6075 LLDB_LOGF(log, 6076 "Process::%s(): using plugin %s for type name " 6077 "%s", 6078 __FUNCTION__, plugin_sp->GetPluginName().GetCString(), 6079 type_name.GetCString()); 6080 } 6081 } 6082 6083 // Remove the type names that were consumed by this plugin. 6084 for (auto &type_name : names_to_remove) 6085 const_type_names.erase(type_name); 6086 } 6087 } 6088 6089 bool Process::RouteAsyncStructuredData( 6090 const StructuredData::ObjectSP object_sp) { 6091 // Nothing to do if there's no data. 6092 if (!object_sp) 6093 return false; 6094 6095 // The contract is this must be a dictionary, so we can look up the routing 6096 // key via the top-level 'type' string value within the dictionary. 6097 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 6098 if (!dictionary) 6099 return false; 6100 6101 // Grab the async structured type name (i.e. the feature/plugin name). 6102 ConstString type_name; 6103 if (!dictionary->GetValueForKeyAsString("type", type_name)) 6104 return false; 6105 6106 // Check if there's a plugin registered for this type name. 6107 auto find_it = m_structured_data_plugin_map.find(type_name); 6108 if (find_it == m_structured_data_plugin_map.end()) { 6109 // We don't have a mapping for this structured data type. 6110 return false; 6111 } 6112 6113 // Route the structured data to the plugin. 6114 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 6115 return true; 6116 } 6117 6118 Status Process::UpdateAutomaticSignalFiltering() { 6119 // Default implementation does nothign. 6120 // No automatic signal filtering to speak of. 6121 return Status(); 6122 } 6123 6124 UtilityFunction *Process::GetLoadImageUtilityFunction( 6125 Platform *platform, 6126 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 6127 if (platform != GetTarget().GetPlatform().get()) 6128 return nullptr; 6129 llvm::call_once(m_dlopen_utility_func_flag_once, 6130 [&] { m_dlopen_utility_func_up = factory(); }); 6131 return m_dlopen_utility_func_up.get(); 6132 } 6133 6134 llvm::Expected<TraceTypeInfo> Process::GetSupportedTraceType() { 6135 if (!IsLiveDebugSession()) 6136 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6137 "Can't trace a non-live process."); 6138 return llvm::make_error<UnimplementedError>(); 6139 } 6140 6141 bool Process::CallVoidArgVoidPtrReturn(const Address *address, 6142 addr_t &returned_func, 6143 bool trap_exceptions) { 6144 Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); 6145 if (thread == nullptr || address == nullptr) 6146 return false; 6147 6148 EvaluateExpressionOptions options; 6149 options.SetStopOthers(true); 6150 options.SetUnwindOnError(true); 6151 options.SetIgnoreBreakpoints(true); 6152 options.SetTryAllThreads(true); 6153 options.SetDebug(false); 6154 options.SetTimeout(GetUtilityExpressionTimeout()); 6155 options.SetTrapExceptions(trap_exceptions); 6156 6157 auto type_system_or_err = 6158 GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC); 6159 if (!type_system_or_err) { 6160 llvm::consumeError(type_system_or_err.takeError()); 6161 return false; 6162 } 6163 CompilerType void_ptr_type = 6164 type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType(); 6165 lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( 6166 *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); 6167 if (call_plan_sp) { 6168 DiagnosticManager diagnostics; 6169 6170 StackFrame *frame = thread->GetStackFrameAtIndex(0).get(); 6171 if (frame) { 6172 ExecutionContext exe_ctx; 6173 frame->CalculateExecutionContext(exe_ctx); 6174 ExpressionResults result = 6175 RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics); 6176 if (result == eExpressionCompleted) { 6177 returned_func = 6178 call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( 6179 LLDB_INVALID_ADDRESS); 6180 6181 if (GetAddressByteSize() == 4) { 6182 if (returned_func == UINT32_MAX) 6183 return false; 6184 } else if (GetAddressByteSize() == 8) { 6185 if (returned_func == UINT64_MAX) 6186 return false; 6187 } 6188 return true; 6189 } 6190 } 6191 } 6192 6193 return false; 6194 } 6195