1 //===-- Process.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <atomic> 10 #include <memory> 11 #include <mutex> 12 13 #include "llvm/Support/ScopedPrinter.h" 14 #include "llvm/Support/Threading.h" 15 16 #include "lldb/Breakpoint/BreakpointLocation.h" 17 #include "lldb/Breakpoint/StoppointCallbackContext.h" 18 #include "lldb/Core/Debugger.h" 19 #include "lldb/Core/Module.h" 20 #include "lldb/Core/ModuleSpec.h" 21 #include "lldb/Core/PluginManager.h" 22 #include "lldb/Core/StreamFile.h" 23 #include "lldb/Expression/DiagnosticManager.h" 24 #include "lldb/Expression/DynamicCheckerFunctions.h" 25 #include "lldb/Expression/UserExpression.h" 26 #include "lldb/Expression/UtilityFunction.h" 27 #include "lldb/Host/ConnectionFileDescriptor.h" 28 #include "lldb/Host/FileSystem.h" 29 #include "lldb/Host/Host.h" 30 #include "lldb/Host/HostInfo.h" 31 #include "lldb/Host/OptionParser.h" 32 #include "lldb/Host/Pipe.h" 33 #include "lldb/Host/Terminal.h" 34 #include "lldb/Host/ThreadLauncher.h" 35 #include "lldb/Interpreter/CommandInterpreter.h" 36 #include "lldb/Interpreter/OptionArgParser.h" 37 #include "lldb/Interpreter/OptionValueProperties.h" 38 #include "lldb/Symbol/Function.h" 39 #include "lldb/Symbol/Symbol.h" 40 #include "lldb/Target/ABI.h" 41 #include "lldb/Target/DynamicLoader.h" 42 #include "lldb/Target/InstrumentationRuntime.h" 43 #include "lldb/Target/JITLoader.h" 44 #include "lldb/Target/JITLoaderList.h" 45 #include "lldb/Target/Language.h" 46 #include "lldb/Target/LanguageRuntime.h" 47 #include "lldb/Target/MemoryHistory.h" 48 #include "lldb/Target/MemoryRegionInfo.h" 49 #include "lldb/Target/OperatingSystem.h" 50 #include "lldb/Target/Platform.h" 51 #include "lldb/Target/Process.h" 52 #include "lldb/Target/RegisterContext.h" 53 #include "lldb/Target/StopInfo.h" 54 #include "lldb/Target/StructuredDataPlugin.h" 55 #include "lldb/Target/SystemRuntime.h" 56 #include "lldb/Target/Target.h" 57 #include "lldb/Target/TargetList.h" 58 #include "lldb/Target/Thread.h" 59 #include "lldb/Target/ThreadPlan.h" 60 #include "lldb/Target/ThreadPlanBase.h" 61 #include "lldb/Target/ThreadPlanCallFunction.h" 62 #include "lldb/Target/UnixSignals.h" 63 #include "lldb/Utility/Event.h" 64 #include "lldb/Utility/Log.h" 65 #include "lldb/Utility/NameMatches.h" 66 #include "lldb/Utility/ProcessInfo.h" 67 #include "lldb/Utility/SelectHelper.h" 68 #include "lldb/Utility/State.h" 69 70 using namespace lldb; 71 using namespace lldb_private; 72 using namespace std::chrono; 73 74 // Comment out line below to disable memory caching, overriding the process 75 // setting target.process.disable-memory-cache 76 #define ENABLE_MEMORY_CACHING 77 78 #ifdef ENABLE_MEMORY_CACHING 79 #define DISABLE_MEM_CACHE_DEFAULT false 80 #else 81 #define DISABLE_MEM_CACHE_DEFAULT true 82 #endif 83 84 class ProcessOptionValueProperties : public OptionValueProperties { 85 public: 86 ProcessOptionValueProperties(ConstString name) 87 : OptionValueProperties(name) {} 88 89 // This constructor is used when creating ProcessOptionValueProperties when 90 // it is part of a new lldb_private::Process instance. It will copy all 91 // current global property values as needed 92 ProcessOptionValueProperties(ProcessProperties *global_properties) 93 : OptionValueProperties(*global_properties->GetValueProperties()) {} 94 95 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 96 bool will_modify, 97 uint32_t idx) const override { 98 // When getting the value for a key from the process options, we will 99 // always try and grab the setting from the current process if there is 100 // one. Else we just use the one from this instance. 101 if (exe_ctx) { 102 Process *process = exe_ctx->GetProcessPtr(); 103 if (process) { 104 ProcessOptionValueProperties *instance_properties = 105 static_cast<ProcessOptionValueProperties *>( 106 process->GetValueProperties().get()); 107 if (this != instance_properties) 108 return instance_properties->ProtectedGetPropertyAtIndex(idx); 109 } 110 } 111 return ProtectedGetPropertyAtIndex(idx); 112 } 113 }; 114 115 #define LLDB_PROPERTIES_process 116 #include "TargetProperties.inc" 117 118 enum { 119 #define LLDB_PROPERTIES_process 120 #include "TargetPropertiesEnum.inc" 121 }; 122 123 ProcessProperties::ProcessProperties(lldb_private::Process *process) 124 : Properties(), 125 m_process(process) // Can be nullptr for global ProcessProperties 126 { 127 if (process == nullptr) { 128 // Global process properties, set them up one time 129 m_collection_sp = 130 std::make_shared<ProcessOptionValueProperties>(ConstString("process")); 131 m_collection_sp->Initialize(g_process_properties); 132 m_collection_sp->AppendProperty( 133 ConstString("thread"), ConstString("Settings specific to threads."), 134 true, Thread::GetGlobalProperties()->GetValueProperties()); 135 } else { 136 m_collection_sp = std::make_shared<ProcessOptionValueProperties>( 137 Process::GetGlobalProperties().get()); 138 m_collection_sp->SetValueChangedCallback( 139 ePropertyPythonOSPluginPath, 140 [this] { m_process->LoadOperatingSystemPlugin(true); }); 141 } 142 } 143 144 ProcessProperties::~ProcessProperties() = default; 145 146 bool ProcessProperties::GetDisableMemoryCache() const { 147 const uint32_t idx = ePropertyDisableMemCache; 148 return m_collection_sp->GetPropertyAtIndexAsBoolean( 149 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 150 } 151 152 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 153 const uint32_t idx = ePropertyMemCacheLineSize; 154 return m_collection_sp->GetPropertyAtIndexAsUInt64( 155 nullptr, idx, g_process_properties[idx].default_uint_value); 156 } 157 158 Args ProcessProperties::GetExtraStartupCommands() const { 159 Args args; 160 const uint32_t idx = ePropertyExtraStartCommand; 161 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 162 return args; 163 } 164 165 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 166 const uint32_t idx = ePropertyExtraStartCommand; 167 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 168 } 169 170 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 171 const uint32_t idx = ePropertyPythonOSPluginPath; 172 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 173 } 174 175 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 176 const uint32_t idx = ePropertyPythonOSPluginPath; 177 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 178 } 179 180 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 181 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 182 return m_collection_sp->GetPropertyAtIndexAsBoolean( 183 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 184 } 185 186 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 187 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 188 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 189 } 190 191 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 192 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 193 return m_collection_sp->GetPropertyAtIndexAsBoolean( 194 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 195 } 196 197 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 198 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 199 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 200 } 201 202 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 203 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 204 return m_collection_sp->GetPropertyAtIndexAsBoolean( 205 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 206 } 207 208 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 209 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 210 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 211 } 212 213 bool ProcessProperties::GetDetachKeepsStopped() const { 214 const uint32_t idx = ePropertyDetachKeepsStopped; 215 return m_collection_sp->GetPropertyAtIndexAsBoolean( 216 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 217 } 218 219 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 220 const uint32_t idx = ePropertyDetachKeepsStopped; 221 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 222 } 223 224 bool ProcessProperties::GetWarningsOptimization() const { 225 const uint32_t idx = ePropertyWarningOptimization; 226 return m_collection_sp->GetPropertyAtIndexAsBoolean( 227 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 228 } 229 230 bool ProcessProperties::GetStopOnExec() const { 231 const uint32_t idx = ePropertyStopOnExec; 232 return m_collection_sp->GetPropertyAtIndexAsBoolean( 233 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 234 } 235 236 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { 237 const uint32_t idx = ePropertyUtilityExpressionTimeout; 238 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 239 nullptr, idx, g_process_properties[idx].default_uint_value); 240 return std::chrono::seconds(value); 241 } 242 243 Status ProcessLaunchCommandOptions::SetOptionValue( 244 uint32_t option_idx, llvm::StringRef option_arg, 245 ExecutionContext *execution_context) { 246 Status error; 247 const int short_option = m_getopt_table[option_idx].val; 248 249 switch (short_option) { 250 case 's': // Stop at program entry point 251 launch_info.GetFlags().Set(eLaunchFlagStopAtEntry); 252 break; 253 254 case 'i': // STDIN for read only 255 { 256 FileAction action; 257 if (action.Open(STDIN_FILENO, FileSpec(option_arg), true, false)) 258 launch_info.AppendFileAction(action); 259 break; 260 } 261 262 case 'o': // Open STDOUT for write only 263 { 264 FileAction action; 265 if (action.Open(STDOUT_FILENO, FileSpec(option_arg), false, true)) 266 launch_info.AppendFileAction(action); 267 break; 268 } 269 270 case 'e': // STDERR for write only 271 { 272 FileAction action; 273 if (action.Open(STDERR_FILENO, FileSpec(option_arg), false, true)) 274 launch_info.AppendFileAction(action); 275 break; 276 } 277 278 case 'p': // Process plug-in name 279 launch_info.SetProcessPluginName(option_arg); 280 break; 281 282 case 'n': // Disable STDIO 283 { 284 FileAction action; 285 const FileSpec dev_null(FileSystem::DEV_NULL); 286 if (action.Open(STDIN_FILENO, dev_null, true, false)) 287 launch_info.AppendFileAction(action); 288 if (action.Open(STDOUT_FILENO, dev_null, false, true)) 289 launch_info.AppendFileAction(action); 290 if (action.Open(STDERR_FILENO, dev_null, false, true)) 291 launch_info.AppendFileAction(action); 292 break; 293 } 294 295 case 'w': 296 launch_info.SetWorkingDirectory(FileSpec(option_arg)); 297 break; 298 299 case 't': // Open process in new terminal window 300 launch_info.GetFlags().Set(eLaunchFlagLaunchInTTY); 301 break; 302 303 case 'a': { 304 TargetSP target_sp = 305 execution_context ? execution_context->GetTargetSP() : TargetSP(); 306 PlatformSP platform_sp = 307 target_sp ? target_sp->GetPlatform() : PlatformSP(); 308 launch_info.GetArchitecture() = 309 Platform::GetAugmentedArchSpec(platform_sp.get(), option_arg); 310 } break; 311 312 case 'A': // Disable ASLR. 313 { 314 bool success; 315 const bool disable_aslr_arg = 316 OptionArgParser::ToBoolean(option_arg, true, &success); 317 if (success) 318 disable_aslr = disable_aslr_arg ? eLazyBoolYes : eLazyBoolNo; 319 else 320 error.SetErrorStringWithFormat( 321 "Invalid boolean value for disable-aslr option: '%s'", 322 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 323 break; 324 } 325 326 case 'X': // shell expand args. 327 { 328 bool success; 329 const bool expand_args = 330 OptionArgParser::ToBoolean(option_arg, true, &success); 331 if (success) 332 launch_info.SetShellExpandArguments(expand_args); 333 else 334 error.SetErrorStringWithFormat( 335 "Invalid boolean value for shell-expand-args option: '%s'", 336 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 337 break; 338 } 339 340 case 'c': 341 if (!option_arg.empty()) 342 launch_info.SetShell(FileSpec(option_arg)); 343 else 344 launch_info.SetShell(HostInfo::GetDefaultShell()); 345 break; 346 347 case 'v': 348 launch_info.GetEnvironment().insert(option_arg); 349 break; 350 351 default: 352 error.SetErrorStringWithFormat("unrecognized short option character '%c'", 353 short_option); 354 break; 355 } 356 return error; 357 } 358 359 static constexpr OptionDefinition g_process_launch_options[] = { 360 {LLDB_OPT_SET_ALL, false, "stop-at-entry", 's', OptionParser::eNoArgument, 361 nullptr, {}, 0, eArgTypeNone, 362 "Stop at the entry point of the program when launching a process."}, 363 {LLDB_OPT_SET_ALL, false, "disable-aslr", 'A', 364 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeBoolean, 365 "Set whether to disable address space layout randomization when launching " 366 "a process."}, 367 {LLDB_OPT_SET_ALL, false, "plugin", 'p', OptionParser::eRequiredArgument, 368 nullptr, {}, 0, eArgTypePlugin, 369 "Name of the process plugin you want to use."}, 370 {LLDB_OPT_SET_ALL, false, "working-dir", 'w', 371 OptionParser::eRequiredArgument, nullptr, {}, 0, 372 eArgTypeDirectoryName, 373 "Set the current working directory to <path> when running the inferior."}, 374 {LLDB_OPT_SET_ALL, false, "arch", 'a', OptionParser::eRequiredArgument, 375 nullptr, {}, 0, eArgTypeArchitecture, 376 "Set the architecture for the process to launch when ambiguous."}, 377 {LLDB_OPT_SET_ALL, false, "environment", 'v', 378 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeNone, 379 "Specify an environment variable name/value string (--environment " 380 "NAME=VALUE). Can be specified multiple times for subsequent environment " 381 "entries."}, 382 {LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3, false, "shell", 'c', 383 OptionParser::eOptionalArgument, nullptr, {}, 0, eArgTypeFilename, 384 "Run the process in a shell (not supported on all platforms)."}, 385 386 {LLDB_OPT_SET_1, false, "stdin", 'i', OptionParser::eRequiredArgument, 387 nullptr, {}, 0, eArgTypeFilename, 388 "Redirect stdin for the process to <filename>."}, 389 {LLDB_OPT_SET_1, false, "stdout", 'o', OptionParser::eRequiredArgument, 390 nullptr, {}, 0, eArgTypeFilename, 391 "Redirect stdout for the process to <filename>."}, 392 {LLDB_OPT_SET_1, false, "stderr", 'e', OptionParser::eRequiredArgument, 393 nullptr, {}, 0, eArgTypeFilename, 394 "Redirect stderr for the process to <filename>."}, 395 396 {LLDB_OPT_SET_2, false, "tty", 't', OptionParser::eNoArgument, nullptr, 397 {}, 0, eArgTypeNone, 398 "Start the process in a terminal (not supported on all platforms)."}, 399 400 {LLDB_OPT_SET_3, false, "no-stdio", 'n', OptionParser::eNoArgument, nullptr, 401 {}, 0, eArgTypeNone, 402 "Do not set up for terminal I/O to go to running process."}, 403 {LLDB_OPT_SET_4, false, "shell-expand-args", 'X', 404 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeBoolean, 405 "Set whether to shell expand arguments to the process when launching."}, 406 }; 407 408 llvm::ArrayRef<OptionDefinition> ProcessLaunchCommandOptions::GetDefinitions() { 409 return llvm::makeArrayRef(g_process_launch_options); 410 } 411 412 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 413 llvm::StringRef plugin_name, 414 ListenerSP listener_sp, 415 const FileSpec *crash_file_path) { 416 static uint32_t g_process_unique_id = 0; 417 418 ProcessSP process_sp; 419 ProcessCreateInstance create_callback = nullptr; 420 if (!plugin_name.empty()) { 421 ConstString const_plugin_name(plugin_name); 422 create_callback = 423 PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name); 424 if (create_callback) { 425 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 426 if (process_sp) { 427 if (process_sp->CanDebug(target_sp, true)) { 428 process_sp->m_process_unique_id = ++g_process_unique_id; 429 } else 430 process_sp.reset(); 431 } 432 } 433 } else { 434 for (uint32_t idx = 0; 435 (create_callback = 436 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 437 ++idx) { 438 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 439 if (process_sp) { 440 if (process_sp->CanDebug(target_sp, false)) { 441 process_sp->m_process_unique_id = ++g_process_unique_id; 442 break; 443 } else 444 process_sp.reset(); 445 } 446 } 447 } 448 return process_sp; 449 } 450 451 ConstString &Process::GetStaticBroadcasterClass() { 452 static ConstString class_name("lldb.process"); 453 return class_name; 454 } 455 456 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 457 : Process(target_sp, listener_sp, 458 UnixSignals::Create(HostInfo::GetArchitecture())) { 459 // This constructor just delegates to the full Process constructor, 460 // defaulting to using the Host's UnixSignals. 461 } 462 463 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 464 const UnixSignalsSP &unix_signals_sp) 465 : ProcessProperties(this), UserID(LLDB_INVALID_PROCESS_ID), 466 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 467 Process::GetStaticBroadcasterClass().AsCString()), 468 m_target_wp(target_sp), m_public_state(eStateUnloaded), 469 m_private_state(eStateUnloaded), 470 m_private_state_broadcaster(nullptr, 471 "lldb.process.internal_state_broadcaster"), 472 m_private_state_control_broadcaster( 473 nullptr, "lldb.process.internal_state_control_broadcaster"), 474 m_private_state_listener_sp( 475 Listener::MakeListener("lldb.process.internal_state_listener")), 476 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 477 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 478 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 479 m_thread_list(this), m_extended_thread_list(this), 480 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 481 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 482 m_breakpoint_site_list(), m_dynamic_checkers_up(), 483 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 484 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 485 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 486 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 487 m_memory_cache(*this), m_allocated_memory_cache(*this), 488 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), 489 m_private_run_lock(), m_finalizing(false), m_finalize_called(false), 490 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 491 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 492 m_can_interpret_function_calls(false), m_warnings_issued(), 493 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 494 CheckInWithManager(); 495 496 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 497 LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this)); 498 499 if (!m_unix_signals_sp) 500 m_unix_signals_sp = std::make_shared<UnixSignals>(); 501 502 SetEventName(eBroadcastBitStateChanged, "state-changed"); 503 SetEventName(eBroadcastBitInterrupt, "interrupt"); 504 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 505 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 506 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 507 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 508 509 m_private_state_control_broadcaster.SetEventName( 510 eBroadcastInternalStateControlStop, "control-stop"); 511 m_private_state_control_broadcaster.SetEventName( 512 eBroadcastInternalStateControlPause, "control-pause"); 513 m_private_state_control_broadcaster.SetEventName( 514 eBroadcastInternalStateControlResume, "control-resume"); 515 516 m_listener_sp->StartListeningForEvents( 517 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 518 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 519 eBroadcastBitProfileData | eBroadcastBitStructuredData); 520 521 m_private_state_listener_sp->StartListeningForEvents( 522 &m_private_state_broadcaster, 523 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 524 525 m_private_state_listener_sp->StartListeningForEvents( 526 &m_private_state_control_broadcaster, 527 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 528 eBroadcastInternalStateControlResume); 529 // We need something valid here, even if just the default UnixSignalsSP. 530 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 531 532 // Allow the platform to override the default cache line size 533 OptionValueSP value_sp = 534 m_collection_sp 535 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 536 ->GetValue(); 537 uint32_t platform_cache_line_size = 538 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 539 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 540 value_sp->SetUInt64Value(platform_cache_line_size); 541 } 542 543 Process::~Process() { 544 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 545 LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this)); 546 StopPrivateStateThread(); 547 548 // ThreadList::Clear() will try to acquire this process's mutex, so 549 // explicitly clear the thread list here to ensure that the mutex is not 550 // destroyed before the thread list. 551 m_thread_list.Clear(); 552 } 553 554 const ProcessPropertiesSP &Process::GetGlobalProperties() { 555 // NOTE: intentional leak so we don't crash if global destructor chain gets 556 // called as other threads still use the result of this function 557 static ProcessPropertiesSP *g_settings_sp_ptr = 558 new ProcessPropertiesSP(new ProcessProperties(nullptr)); 559 return *g_settings_sp_ptr; 560 } 561 562 void Process::Finalize() { 563 m_finalizing = true; 564 565 // Destroy this process if needed 566 switch (GetPrivateState()) { 567 case eStateConnected: 568 case eStateAttaching: 569 case eStateLaunching: 570 case eStateStopped: 571 case eStateRunning: 572 case eStateStepping: 573 case eStateCrashed: 574 case eStateSuspended: 575 Destroy(false); 576 break; 577 578 case eStateInvalid: 579 case eStateUnloaded: 580 case eStateDetached: 581 case eStateExited: 582 break; 583 } 584 585 // Clear our broadcaster before we proceed with destroying 586 Broadcaster::Clear(); 587 588 // Do any cleanup needed prior to being destructed... Subclasses that 589 // override this method should call this superclass method as well. 590 591 // We need to destroy the loader before the derived Process class gets 592 // destroyed since it is very likely that undoing the loader will require 593 // access to the real process. 594 m_dynamic_checkers_up.reset(); 595 m_abi_sp.reset(); 596 m_os_up.reset(); 597 m_system_runtime_up.reset(); 598 m_dyld_up.reset(); 599 m_jit_loaders_up.reset(); 600 m_thread_list_real.Destroy(); 601 m_thread_list.Destroy(); 602 m_extended_thread_list.Destroy(); 603 m_queue_list.Clear(); 604 m_queue_list_stop_id = 0; 605 std::vector<Notifications> empty_notifications; 606 m_notifications.swap(empty_notifications); 607 m_image_tokens.clear(); 608 m_memory_cache.Clear(); 609 m_allocated_memory_cache.Clear(); 610 { 611 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 612 m_language_runtimes.clear(); 613 } 614 m_instrumentation_runtimes.clear(); 615 m_next_event_action_up.reset(); 616 // Clear the last natural stop ID since it has a strong reference to this 617 // process 618 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 619 //#ifdef LLDB_CONFIGURATION_DEBUG 620 // StreamFile s(stdout, false); 621 // EventSP event_sp; 622 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 623 // { 624 // event_sp->Dump (&s); 625 // s.EOL(); 626 // } 627 //#endif 628 // We have to be very careful here as the m_private_state_listener might 629 // contain events that have ProcessSP values in them which can keep this 630 // process around forever. These events need to be cleared out. 631 m_private_state_listener_sp->Clear(); 632 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 633 m_public_run_lock.SetStopped(); 634 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 635 m_private_run_lock.SetStopped(); 636 m_structured_data_plugin_map.clear(); 637 m_finalize_called = true; 638 } 639 640 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 641 m_notifications.push_back(callbacks); 642 if (callbacks.initialize != nullptr) 643 callbacks.initialize(callbacks.baton, this); 644 } 645 646 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 647 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 648 for (pos = m_notifications.begin(); pos != end; ++pos) { 649 if (pos->baton == callbacks.baton && 650 pos->initialize == callbacks.initialize && 651 pos->process_state_changed == callbacks.process_state_changed) { 652 m_notifications.erase(pos); 653 return true; 654 } 655 } 656 return false; 657 } 658 659 void Process::SynchronouslyNotifyStateChanged(StateType state) { 660 std::vector<Notifications>::iterator notification_pos, 661 notification_end = m_notifications.end(); 662 for (notification_pos = m_notifications.begin(); 663 notification_pos != notification_end; ++notification_pos) { 664 if (notification_pos->process_state_changed) 665 notification_pos->process_state_changed(notification_pos->baton, this, 666 state); 667 } 668 } 669 670 // FIXME: We need to do some work on events before the general Listener sees 671 // them. 672 // For instance if we are continuing from a breakpoint, we need to ensure that 673 // we do the little "insert real insn, step & stop" trick. But we can't do 674 // that when the event is delivered by the broadcaster - since that is done on 675 // the thread that is waiting for new events, so if we needed more than one 676 // event for our handling, we would stall. So instead we do it when we fetch 677 // the event off of the queue. 678 // 679 680 StateType Process::GetNextEvent(EventSP &event_sp) { 681 StateType state = eStateInvalid; 682 683 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 684 std::chrono::seconds(0)) && 685 event_sp) 686 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 687 688 return state; 689 } 690 691 void Process::SyncIOHandler(uint32_t iohandler_id, 692 const Timeout<std::micro> &timeout) { 693 // don't sync (potentially context switch) in case where there is no process 694 // IO 695 if (!m_process_input_reader) 696 return; 697 698 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 699 700 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 701 if (Result) { 702 LLDB_LOG( 703 log, 704 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 705 iohandler_id, *Result); 706 } else { 707 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 708 iohandler_id); 709 } 710 } 711 712 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 713 EventSP *event_sp_ptr, bool wait_always, 714 ListenerSP hijack_listener_sp, 715 Stream *stream, bool use_run_lock) { 716 // We can't just wait for a "stopped" event, because the stopped event may 717 // have restarted the target. We have to actually check each event, and in 718 // the case of a stopped event check the restarted flag on the event. 719 if (event_sp_ptr) 720 event_sp_ptr->reset(); 721 StateType state = GetState(); 722 // If we are exited or detached, we won't ever get back to any other valid 723 // state... 724 if (state == eStateDetached || state == eStateExited) 725 return state; 726 727 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 728 LLDB_LOG(log, "timeout = {0}", timeout); 729 730 if (!wait_always && StateIsStoppedState(state, true) && 731 StateIsStoppedState(GetPrivateState(), true)) { 732 LLDB_LOGF(log, 733 "Process::%s returning without waiting for events; process " 734 "private and public states are already 'stopped'.", 735 __FUNCTION__); 736 // We need to toggle the run lock as this won't get done in 737 // SetPublicState() if the process is hijacked. 738 if (hijack_listener_sp && use_run_lock) 739 m_public_run_lock.SetStopped(); 740 return state; 741 } 742 743 while (state != eStateInvalid) { 744 EventSP event_sp; 745 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 746 if (event_sp_ptr && event_sp) 747 *event_sp_ptr = event_sp; 748 749 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 750 Process::HandleProcessStateChangedEvent(event_sp, stream, 751 pop_process_io_handler); 752 753 switch (state) { 754 case eStateCrashed: 755 case eStateDetached: 756 case eStateExited: 757 case eStateUnloaded: 758 // We need to toggle the run lock as this won't get done in 759 // SetPublicState() if the process is hijacked. 760 if (hijack_listener_sp && use_run_lock) 761 m_public_run_lock.SetStopped(); 762 return state; 763 case eStateStopped: 764 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 765 continue; 766 else { 767 // We need to toggle the run lock as this won't get done in 768 // SetPublicState() if the process is hijacked. 769 if (hijack_listener_sp && use_run_lock) 770 m_public_run_lock.SetStopped(); 771 return state; 772 } 773 default: 774 continue; 775 } 776 } 777 return state; 778 } 779 780 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 781 Stream *stream, 782 bool &pop_process_io_handler) { 783 const bool handle_pop = pop_process_io_handler; 784 785 pop_process_io_handler = false; 786 ProcessSP process_sp = 787 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 788 789 if (!process_sp) 790 return false; 791 792 StateType event_state = 793 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 794 if (event_state == eStateInvalid) 795 return false; 796 797 switch (event_state) { 798 case eStateInvalid: 799 case eStateUnloaded: 800 case eStateAttaching: 801 case eStateLaunching: 802 case eStateStepping: 803 case eStateDetached: 804 if (stream) 805 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 806 StateAsCString(event_state)); 807 if (event_state == eStateDetached) 808 pop_process_io_handler = true; 809 break; 810 811 case eStateConnected: 812 case eStateRunning: 813 // Don't be chatty when we run... 814 break; 815 816 case eStateExited: 817 if (stream) 818 process_sp->GetStatus(*stream); 819 pop_process_io_handler = true; 820 break; 821 822 case eStateStopped: 823 case eStateCrashed: 824 case eStateSuspended: 825 // Make sure the program hasn't been auto-restarted: 826 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 827 if (stream) { 828 size_t num_reasons = 829 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 830 if (num_reasons > 0) { 831 // FIXME: Do we want to report this, or would that just be annoyingly 832 // chatty? 833 if (num_reasons == 1) { 834 const char *reason = 835 Process::ProcessEventData::GetRestartedReasonAtIndex( 836 event_sp.get(), 0); 837 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 838 process_sp->GetID(), 839 reason ? reason : "<UNKNOWN REASON>"); 840 } else { 841 stream->Printf("Process %" PRIu64 842 " stopped and restarted, reasons:\n", 843 process_sp->GetID()); 844 845 for (size_t i = 0; i < num_reasons; i++) { 846 const char *reason = 847 Process::ProcessEventData::GetRestartedReasonAtIndex( 848 event_sp.get(), i); 849 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 850 } 851 } 852 } 853 } 854 } else { 855 StopInfoSP curr_thread_stop_info_sp; 856 // Lock the thread list so it doesn't change on us, this is the scope for 857 // the locker: 858 { 859 ThreadList &thread_list = process_sp->GetThreadList(); 860 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 861 862 ThreadSP curr_thread(thread_list.GetSelectedThread()); 863 ThreadSP thread; 864 StopReason curr_thread_stop_reason = eStopReasonInvalid; 865 if (curr_thread) { 866 curr_thread_stop_reason = curr_thread->GetStopReason(); 867 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 868 } 869 if (!curr_thread || !curr_thread->IsValid() || 870 curr_thread_stop_reason == eStopReasonInvalid || 871 curr_thread_stop_reason == eStopReasonNone) { 872 // Prefer a thread that has just completed its plan over another 873 // thread as current thread. 874 ThreadSP plan_thread; 875 ThreadSP other_thread; 876 877 const size_t num_threads = thread_list.GetSize(); 878 size_t i; 879 for (i = 0; i < num_threads; ++i) { 880 thread = thread_list.GetThreadAtIndex(i); 881 StopReason thread_stop_reason = thread->GetStopReason(); 882 switch (thread_stop_reason) { 883 case eStopReasonInvalid: 884 case eStopReasonNone: 885 break; 886 887 case eStopReasonSignal: { 888 // Don't select a signal thread if we weren't going to stop at 889 // that signal. We have to have had another reason for stopping 890 // here, and the user doesn't want to see this thread. 891 uint64_t signo = thread->GetStopInfo()->GetValue(); 892 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 893 if (!other_thread) 894 other_thread = thread; 895 } 896 break; 897 } 898 case eStopReasonTrace: 899 case eStopReasonBreakpoint: 900 case eStopReasonWatchpoint: 901 case eStopReasonException: 902 case eStopReasonExec: 903 case eStopReasonThreadExiting: 904 case eStopReasonInstrumentation: 905 if (!other_thread) 906 other_thread = thread; 907 break; 908 case eStopReasonPlanComplete: 909 if (!plan_thread) 910 plan_thread = thread; 911 break; 912 } 913 } 914 if (plan_thread) 915 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 916 else if (other_thread) 917 thread_list.SetSelectedThreadByID(other_thread->GetID()); 918 else { 919 if (curr_thread && curr_thread->IsValid()) 920 thread = curr_thread; 921 else 922 thread = thread_list.GetThreadAtIndex(0); 923 924 if (thread) 925 thread_list.SetSelectedThreadByID(thread->GetID()); 926 } 927 } 928 } 929 // Drop the ThreadList mutex by here, since GetThreadStatus below might 930 // have to run code, e.g. for Data formatters, and if we hold the 931 // ThreadList mutex, then the process is going to have a hard time 932 // restarting the process. 933 if (stream) { 934 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 935 if (debugger.GetTargetList().GetSelectedTarget().get() == 936 &process_sp->GetTarget()) { 937 const bool only_threads_with_stop_reason = true; 938 const uint32_t start_frame = 0; 939 const uint32_t num_frames = 1; 940 const uint32_t num_frames_with_source = 1; 941 const bool stop_format = true; 942 process_sp->GetStatus(*stream); 943 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 944 start_frame, num_frames, 945 num_frames_with_source, 946 stop_format); 947 if (curr_thread_stop_info_sp) { 948 lldb::addr_t crashing_address; 949 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 950 curr_thread_stop_info_sp, &crashing_address); 951 if (valobj_sp) { 952 const ValueObject::GetExpressionPathFormat format = 953 ValueObject::GetExpressionPathFormat:: 954 eGetExpressionPathFormatHonorPointers; 955 stream->PutCString("Likely cause: "); 956 valobj_sp->GetExpressionPath(*stream, format); 957 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 958 } 959 } 960 } else { 961 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 962 process_sp->GetTarget().shared_from_this()); 963 if (target_idx != UINT32_MAX) 964 stream->Printf("Target %d: (", target_idx); 965 else 966 stream->Printf("Target <unknown index>: ("); 967 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 968 stream->Printf(") stopped.\n"); 969 } 970 } 971 972 // Pop the process IO handler 973 pop_process_io_handler = true; 974 } 975 break; 976 } 977 978 if (handle_pop && pop_process_io_handler) 979 process_sp->PopProcessIOHandler(); 980 981 return true; 982 } 983 984 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 985 if (listener_sp) { 986 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 987 eBroadcastBitInterrupt); 988 } else 989 return false; 990 } 991 992 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 993 994 StateType Process::GetStateChangedEvents(EventSP &event_sp, 995 const Timeout<std::micro> &timeout, 996 ListenerSP hijack_listener_sp) { 997 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 998 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 999 1000 ListenerSP listener_sp = hijack_listener_sp; 1001 if (!listener_sp) 1002 listener_sp = m_listener_sp; 1003 1004 StateType state = eStateInvalid; 1005 if (listener_sp->GetEventForBroadcasterWithType( 1006 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1007 timeout)) { 1008 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1009 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1010 else 1011 LLDB_LOG(log, "got no event or was interrupted."); 1012 } 1013 1014 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 1015 return state; 1016 } 1017 1018 Event *Process::PeekAtStateChangedEvents() { 1019 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1020 1021 LLDB_LOGF(log, "Process::%s...", __FUNCTION__); 1022 1023 Event *event_ptr; 1024 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 1025 this, eBroadcastBitStateChanged); 1026 if (log) { 1027 if (event_ptr) { 1028 LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, 1029 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 1030 } else { 1031 LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); 1032 } 1033 } 1034 return event_ptr; 1035 } 1036 1037 StateType 1038 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 1039 const Timeout<std::micro> &timeout) { 1040 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1041 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1042 1043 StateType state = eStateInvalid; 1044 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1045 &m_private_state_broadcaster, 1046 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1047 timeout)) 1048 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1049 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1050 1051 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1052 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1053 return state; 1054 } 1055 1056 bool Process::GetEventsPrivate(EventSP &event_sp, 1057 const Timeout<std::micro> &timeout, 1058 bool control_only) { 1059 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1060 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1061 1062 if (control_only) 1063 return m_private_state_listener_sp->GetEventForBroadcaster( 1064 &m_private_state_control_broadcaster, event_sp, timeout); 1065 else 1066 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1067 } 1068 1069 bool Process::IsRunning() const { 1070 return StateIsRunningState(m_public_state.GetValue()); 1071 } 1072 1073 int Process::GetExitStatus() { 1074 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1075 1076 if (m_public_state.GetValue() == eStateExited) 1077 return m_exit_status; 1078 return -1; 1079 } 1080 1081 const char *Process::GetExitDescription() { 1082 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1083 1084 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1085 return m_exit_string.c_str(); 1086 return nullptr; 1087 } 1088 1089 bool Process::SetExitStatus(int status, const char *cstr) { 1090 // Use a mutex to protect setting the exit status. 1091 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1092 1093 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1094 LIBLLDB_LOG_PROCESS)); 1095 LLDB_LOGF( 1096 log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1097 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : ""); 1098 1099 // We were already in the exited state 1100 if (m_private_state.GetValue() == eStateExited) { 1101 LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because " 1102 "state was already set to eStateExited"); 1103 return false; 1104 } 1105 1106 m_exit_status = status; 1107 if (cstr) 1108 m_exit_string = cstr; 1109 else 1110 m_exit_string.clear(); 1111 1112 // Clear the last natural stop ID since it has a strong reference to this 1113 // process 1114 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1115 1116 SetPrivateState(eStateExited); 1117 1118 // Allow subclasses to do some cleanup 1119 DidExit(); 1120 1121 return true; 1122 } 1123 1124 bool Process::IsAlive() { 1125 switch (m_private_state.GetValue()) { 1126 case eStateConnected: 1127 case eStateAttaching: 1128 case eStateLaunching: 1129 case eStateStopped: 1130 case eStateRunning: 1131 case eStateStepping: 1132 case eStateCrashed: 1133 case eStateSuspended: 1134 return true; 1135 default: 1136 return false; 1137 } 1138 } 1139 1140 // This static callback can be used to watch for local child processes on the 1141 // current host. The child process exits, the process will be found in the 1142 // global target list (we want to be completely sure that the 1143 // lldb_private::Process doesn't go away before we can deliver the signal. 1144 bool Process::SetProcessExitStatus( 1145 lldb::pid_t pid, bool exited, 1146 int signo, // Zero for no signal 1147 int exit_status // Exit value of process if signal is zero 1148 ) { 1149 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 1150 LLDB_LOGF(log, 1151 "Process::SetProcessExitStatus (pid=%" PRIu64 1152 ", exited=%i, signal=%i, exit_status=%i)\n", 1153 pid, exited, signo, exit_status); 1154 1155 if (exited) { 1156 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1157 if (target_sp) { 1158 ProcessSP process_sp(target_sp->GetProcessSP()); 1159 if (process_sp) { 1160 const char *signal_cstr = nullptr; 1161 if (signo) 1162 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1163 1164 process_sp->SetExitStatus(exit_status, signal_cstr); 1165 } 1166 } 1167 return true; 1168 } 1169 return false; 1170 } 1171 1172 void Process::UpdateThreadListIfNeeded() { 1173 const uint32_t stop_id = GetStopID(); 1174 if (m_thread_list.GetSize(false) == 0 || 1175 stop_id != m_thread_list.GetStopID()) { 1176 const StateType state = GetPrivateState(); 1177 if (StateIsStoppedState(state, true)) { 1178 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1179 // m_thread_list does have its own mutex, but we need to hold onto the 1180 // mutex between the call to UpdateThreadList(...) and the 1181 // os->UpdateThreadList(...) so it doesn't change on us 1182 ThreadList &old_thread_list = m_thread_list; 1183 ThreadList real_thread_list(this); 1184 ThreadList new_thread_list(this); 1185 // Always update the thread list with the protocol specific thread list, 1186 // but only update if "true" is returned 1187 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1188 // Don't call into the OperatingSystem to update the thread list if we 1189 // are shutting down, since that may call back into the SBAPI's, 1190 // requiring the API lock which is already held by whoever is shutting 1191 // us down, causing a deadlock. 1192 OperatingSystem *os = GetOperatingSystem(); 1193 if (os && !m_destroy_in_process) { 1194 // Clear any old backing threads where memory threads might have been 1195 // backed by actual threads from the lldb_private::Process subclass 1196 size_t num_old_threads = old_thread_list.GetSize(false); 1197 for (size_t i = 0; i < num_old_threads; ++i) 1198 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1199 1200 // Turn off dynamic types to ensure we don't run any expressions. 1201 // Objective-C can run an expression to determine if a SBValue is a 1202 // dynamic type or not and we need to avoid this. OperatingSystem 1203 // plug-ins can't run expressions that require running code... 1204 1205 Target &target = GetTarget(); 1206 const lldb::DynamicValueType saved_prefer_dynamic = 1207 target.GetPreferDynamicValue(); 1208 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1209 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1210 1211 // Now let the OperatingSystem plug-in update the thread list 1212 1213 os->UpdateThreadList( 1214 old_thread_list, // Old list full of threads created by OS plug-in 1215 real_thread_list, // The actual thread list full of threads 1216 // created by each lldb_private::Process 1217 // subclass 1218 new_thread_list); // The new thread list that we will show to the 1219 // user that gets filled in 1220 1221 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1222 target.SetPreferDynamicValue(saved_prefer_dynamic); 1223 } else { 1224 // No OS plug-in, the new thread list is the same as the real thread 1225 // list 1226 new_thread_list = real_thread_list; 1227 } 1228 1229 m_thread_list_real.Update(real_thread_list); 1230 m_thread_list.Update(new_thread_list); 1231 m_thread_list.SetStopID(stop_id); 1232 1233 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1234 // Clear any extended threads that we may have accumulated previously 1235 m_extended_thread_list.Clear(); 1236 m_extended_thread_stop_id = GetLastNaturalStopID(); 1237 1238 m_queue_list.Clear(); 1239 m_queue_list_stop_id = GetLastNaturalStopID(); 1240 } 1241 } 1242 } 1243 } 1244 } 1245 1246 void Process::UpdateQueueListIfNeeded() { 1247 if (m_system_runtime_up) { 1248 if (m_queue_list.GetSize() == 0 || 1249 m_queue_list_stop_id != GetLastNaturalStopID()) { 1250 const StateType state = GetPrivateState(); 1251 if (StateIsStoppedState(state, true)) { 1252 m_system_runtime_up->PopulateQueueList(m_queue_list); 1253 m_queue_list_stop_id = GetLastNaturalStopID(); 1254 } 1255 } 1256 } 1257 } 1258 1259 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1260 OperatingSystem *os = GetOperatingSystem(); 1261 if (os) 1262 return os->CreateThread(tid, context); 1263 return ThreadSP(); 1264 } 1265 1266 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1267 return AssignIndexIDToThread(thread_id); 1268 } 1269 1270 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1271 return (m_thread_id_to_index_id_map.find(thread_id) != 1272 m_thread_id_to_index_id_map.end()); 1273 } 1274 1275 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1276 uint32_t result = 0; 1277 std::map<uint64_t, uint32_t>::iterator iterator = 1278 m_thread_id_to_index_id_map.find(thread_id); 1279 if (iterator == m_thread_id_to_index_id_map.end()) { 1280 result = ++m_thread_index_id; 1281 m_thread_id_to_index_id_map[thread_id] = result; 1282 } else { 1283 result = iterator->second; 1284 } 1285 1286 return result; 1287 } 1288 1289 StateType Process::GetState() { 1290 return m_public_state.GetValue(); 1291 } 1292 1293 void Process::SetPublicState(StateType new_state, bool restarted) { 1294 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1295 LIBLLDB_LOG_PROCESS)); 1296 LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)", 1297 StateAsCString(new_state), restarted); 1298 const StateType old_state = m_public_state.GetValue(); 1299 m_public_state.SetValue(new_state); 1300 1301 // On the transition from Run to Stopped, we unlock the writer end of the run 1302 // lock. The lock gets locked in Resume, which is the public API to tell the 1303 // program to run. 1304 if (!StateChangedIsExternallyHijacked()) { 1305 if (new_state == eStateDetached) { 1306 LLDB_LOGF(log, 1307 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1308 StateAsCString(new_state)); 1309 m_public_run_lock.SetStopped(); 1310 } else { 1311 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1312 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1313 if ((old_state_is_stopped != new_state_is_stopped)) { 1314 if (new_state_is_stopped && !restarted) { 1315 LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock", 1316 StateAsCString(new_state)); 1317 m_public_run_lock.SetStopped(); 1318 } 1319 } 1320 } 1321 } 1322 } 1323 1324 Status Process::Resume() { 1325 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1326 LIBLLDB_LOG_PROCESS)); 1327 LLDB_LOGF(log, "Process::Resume -- locking run lock"); 1328 if (!m_public_run_lock.TrySetRunning()) { 1329 Status error("Resume request failed - process still running."); 1330 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1331 return error; 1332 } 1333 Status error = PrivateResume(); 1334 if (!error.Success()) { 1335 // Undo running state change 1336 m_public_run_lock.SetStopped(); 1337 } 1338 return error; 1339 } 1340 1341 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack"; 1342 1343 Status Process::ResumeSynchronous(Stream *stream) { 1344 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1345 LIBLLDB_LOG_PROCESS)); 1346 LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); 1347 if (!m_public_run_lock.TrySetRunning()) { 1348 Status error("Resume request failed - process still running."); 1349 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1350 return error; 1351 } 1352 1353 ListenerSP listener_sp( 1354 Listener::MakeListener(g_resume_sync_name)); 1355 HijackProcessEvents(listener_sp); 1356 1357 Status error = PrivateResume(); 1358 if (error.Success()) { 1359 StateType state = 1360 WaitForProcessToStop(llvm::None, nullptr, true, listener_sp, stream); 1361 const bool must_be_alive = 1362 false; // eStateExited is ok, so this must be false 1363 if (!StateIsStoppedState(state, must_be_alive)) 1364 error.SetErrorStringWithFormat( 1365 "process not in stopped state after synchronous resume: %s", 1366 StateAsCString(state)); 1367 } else { 1368 // Undo running state change 1369 m_public_run_lock.SetStopped(); 1370 } 1371 1372 // Undo the hijacking of process events... 1373 RestoreProcessEvents(); 1374 1375 return error; 1376 } 1377 1378 bool Process::StateChangedIsExternallyHijacked() { 1379 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1380 const char *hijacking_name = GetHijackingListenerName(); 1381 if (hijacking_name && 1382 strcmp(hijacking_name, g_resume_sync_name)) 1383 return true; 1384 } 1385 return false; 1386 } 1387 1388 bool Process::StateChangedIsHijackedForSynchronousResume() { 1389 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1390 const char *hijacking_name = GetHijackingListenerName(); 1391 if (hijacking_name && 1392 strcmp(hijacking_name, g_resume_sync_name) == 0) 1393 return true; 1394 } 1395 return false; 1396 } 1397 1398 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1399 1400 void Process::SetPrivateState(StateType new_state) { 1401 if (m_finalize_called) 1402 return; 1403 1404 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1405 LIBLLDB_LOG_PROCESS)); 1406 bool state_changed = false; 1407 1408 LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state)); 1409 1410 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1411 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1412 1413 const StateType old_state = m_private_state.GetValueNoLock(); 1414 state_changed = old_state != new_state; 1415 1416 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1417 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1418 if (old_state_is_stopped != new_state_is_stopped) { 1419 if (new_state_is_stopped) 1420 m_private_run_lock.SetStopped(); 1421 else 1422 m_private_run_lock.SetRunning(); 1423 } 1424 1425 if (state_changed) { 1426 m_private_state.SetValueNoLock(new_state); 1427 EventSP event_sp( 1428 new Event(eBroadcastBitStateChanged, 1429 new ProcessEventData(shared_from_this(), new_state))); 1430 if (StateIsStoppedState(new_state, false)) { 1431 // Note, this currently assumes that all threads in the list stop when 1432 // the process stops. In the future we will want to support a debugging 1433 // model where some threads continue to run while others are stopped. 1434 // When that happens we will either need a way for the thread list to 1435 // identify which threads are stopping or create a special thread list 1436 // containing only threads which actually stopped. 1437 // 1438 // The process plugin is responsible for managing the actual behavior of 1439 // the threads and should have stopped any threads that are going to stop 1440 // before we get here. 1441 m_thread_list.DidStop(); 1442 1443 m_mod_id.BumpStopID(); 1444 if (!m_mod_id.IsLastResumeForUserExpression()) 1445 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1446 m_memory_cache.Clear(); 1447 LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u", 1448 StateAsCString(new_state), m_mod_id.GetStopID()); 1449 } 1450 1451 // Use our target to get a shared pointer to ourselves... 1452 if (m_finalize_called && !PrivateStateThreadIsValid()) 1453 BroadcastEvent(event_sp); 1454 else 1455 m_private_state_broadcaster.BroadcastEvent(event_sp); 1456 } else { 1457 LLDB_LOGF(log, 1458 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1459 StateAsCString(new_state)); 1460 } 1461 } 1462 1463 void Process::SetRunningUserExpression(bool on) { 1464 m_mod_id.SetRunningUserExpression(on); 1465 } 1466 1467 void Process::SetRunningUtilityFunction(bool on) { 1468 m_mod_id.SetRunningUtilityFunction(on); 1469 } 1470 1471 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1472 1473 const lldb::ABISP &Process::GetABI() { 1474 if (!m_abi_sp) 1475 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1476 return m_abi_sp; 1477 } 1478 1479 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { 1480 std::vector<LanguageRuntime *> language_runtimes; 1481 1482 if (m_finalizing) 1483 return language_runtimes; 1484 1485 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1486 // Before we pass off a copy of the language runtimes, we must make sure that 1487 // our collection is properly populated. It's possible that some of the 1488 // language runtimes were not loaded yet, either because nobody requested it 1489 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so 1490 // hadn't been loaded). 1491 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 1492 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 1493 language_runtimes.emplace_back(runtime); 1494 } 1495 1496 return language_runtimes; 1497 } 1498 1499 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { 1500 if (m_finalizing) 1501 return nullptr; 1502 1503 LanguageRuntime *runtime = nullptr; 1504 1505 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1506 LanguageRuntimeCollection::iterator pos; 1507 pos = m_language_runtimes.find(language); 1508 if (pos == m_language_runtimes.end() || !pos->second) { 1509 lldb::LanguageRuntimeSP runtime_sp( 1510 LanguageRuntime::FindPlugin(this, language)); 1511 1512 m_language_runtimes[language] = runtime_sp; 1513 runtime = runtime_sp.get(); 1514 } else 1515 runtime = pos->second.get(); 1516 1517 if (runtime) 1518 // It's possible that a language runtime can support multiple LanguageTypes, 1519 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, 1520 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the 1521 // primary language type and make sure that our runtime supports it. 1522 assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); 1523 1524 return runtime; 1525 } 1526 1527 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1528 if (m_finalizing) 1529 return false; 1530 1531 if (in_value.IsDynamic()) 1532 return false; 1533 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1534 1535 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1536 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1537 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1538 } 1539 1540 for (LanguageRuntime *runtime : GetLanguageRuntimes()) { 1541 if (runtime->CouldHaveDynamicValue(in_value)) 1542 return true; 1543 } 1544 1545 return false; 1546 } 1547 1548 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1549 m_dynamic_checkers_up.reset(dynamic_checkers); 1550 } 1551 1552 BreakpointSiteList &Process::GetBreakpointSiteList() { 1553 return m_breakpoint_site_list; 1554 } 1555 1556 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1557 return m_breakpoint_site_list; 1558 } 1559 1560 void Process::DisableAllBreakpointSites() { 1561 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1562 // bp_site->SetEnabled(true); 1563 DisableBreakpointSite(bp_site); 1564 }); 1565 } 1566 1567 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1568 Status error(DisableBreakpointSiteByID(break_id)); 1569 1570 if (error.Success()) 1571 m_breakpoint_site_list.Remove(break_id); 1572 1573 return error; 1574 } 1575 1576 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1577 Status error; 1578 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1579 if (bp_site_sp) { 1580 if (bp_site_sp->IsEnabled()) 1581 error = DisableBreakpointSite(bp_site_sp.get()); 1582 } else { 1583 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1584 break_id); 1585 } 1586 1587 return error; 1588 } 1589 1590 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1591 Status error; 1592 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1593 if (bp_site_sp) { 1594 if (!bp_site_sp->IsEnabled()) 1595 error = EnableBreakpointSite(bp_site_sp.get()); 1596 } else { 1597 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1598 break_id); 1599 } 1600 return error; 1601 } 1602 1603 lldb::break_id_t 1604 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1605 bool use_hardware) { 1606 addr_t load_addr = LLDB_INVALID_ADDRESS; 1607 1608 bool show_error = true; 1609 switch (GetState()) { 1610 case eStateInvalid: 1611 case eStateUnloaded: 1612 case eStateConnected: 1613 case eStateAttaching: 1614 case eStateLaunching: 1615 case eStateDetached: 1616 case eStateExited: 1617 show_error = false; 1618 break; 1619 1620 case eStateStopped: 1621 case eStateRunning: 1622 case eStateStepping: 1623 case eStateCrashed: 1624 case eStateSuspended: 1625 show_error = IsAlive(); 1626 break; 1627 } 1628 1629 // Reset the IsIndirect flag here, in case the location changes from pointing 1630 // to a indirect symbol to a regular symbol. 1631 owner->SetIsIndirect(false); 1632 1633 if (owner->ShouldResolveIndirectFunctions()) { 1634 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1635 if (symbol && symbol->IsIndirect()) { 1636 Status error; 1637 Address symbol_address = symbol->GetAddress(); 1638 load_addr = ResolveIndirectFunction(&symbol_address, error); 1639 if (!error.Success() && show_error) { 1640 GetTarget().GetDebugger().GetErrorStream().Printf( 1641 "warning: failed to resolve indirect function at 0x%" PRIx64 1642 " for breakpoint %i.%i: %s\n", 1643 symbol->GetLoadAddress(&GetTarget()), 1644 owner->GetBreakpoint().GetID(), owner->GetID(), 1645 error.AsCString() ? error.AsCString() : "unknown error"); 1646 return LLDB_INVALID_BREAK_ID; 1647 } 1648 Address resolved_address(load_addr); 1649 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1650 owner->SetIsIndirect(true); 1651 } else 1652 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1653 } else 1654 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1655 1656 if (load_addr != LLDB_INVALID_ADDRESS) { 1657 BreakpointSiteSP bp_site_sp; 1658 1659 // Look up this breakpoint site. If it exists, then add this new owner, 1660 // otherwise create a new breakpoint site and add it. 1661 1662 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1663 1664 if (bp_site_sp) { 1665 bp_site_sp->AddOwner(owner); 1666 owner->SetBreakpointSite(bp_site_sp); 1667 return bp_site_sp->GetID(); 1668 } else { 1669 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1670 load_addr, use_hardware)); 1671 if (bp_site_sp) { 1672 Status error = EnableBreakpointSite(bp_site_sp.get()); 1673 if (error.Success()) { 1674 owner->SetBreakpointSite(bp_site_sp); 1675 return m_breakpoint_site_list.Add(bp_site_sp); 1676 } else { 1677 if (show_error || use_hardware) { 1678 // Report error for setting breakpoint... 1679 GetTarget().GetDebugger().GetErrorStream().Printf( 1680 "warning: failed to set breakpoint site at 0x%" PRIx64 1681 " for breakpoint %i.%i: %s\n", 1682 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1683 error.AsCString() ? error.AsCString() : "unknown error"); 1684 } 1685 } 1686 } 1687 } 1688 } 1689 // We failed to enable the breakpoint 1690 return LLDB_INVALID_BREAK_ID; 1691 } 1692 1693 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1694 lldb::user_id_t owner_loc_id, 1695 BreakpointSiteSP &bp_site_sp) { 1696 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1697 if (num_owners == 0) { 1698 // Don't try to disable the site if we don't have a live process anymore. 1699 if (IsAlive()) 1700 DisableBreakpointSite(bp_site_sp.get()); 1701 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1702 } 1703 } 1704 1705 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1706 uint8_t *buf) const { 1707 size_t bytes_removed = 0; 1708 BreakpointSiteList bp_sites_in_range; 1709 1710 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1711 bp_sites_in_range)) { 1712 bp_sites_in_range.ForEach([bp_addr, size, 1713 buf](BreakpointSite *bp_site) -> void { 1714 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1715 addr_t intersect_addr; 1716 size_t intersect_size; 1717 size_t opcode_offset; 1718 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1719 &intersect_size, &opcode_offset)) { 1720 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1721 assert(bp_addr < intersect_addr + intersect_size && 1722 intersect_addr + intersect_size <= bp_addr + size); 1723 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1724 size_t buf_offset = intersect_addr - bp_addr; 1725 ::memcpy(buf + buf_offset, 1726 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1727 intersect_size); 1728 } 1729 } 1730 }); 1731 } 1732 return bytes_removed; 1733 } 1734 1735 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1736 PlatformSP platform_sp(GetTarget().GetPlatform()); 1737 if (platform_sp) 1738 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1739 return 0; 1740 } 1741 1742 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1743 Status error; 1744 assert(bp_site != nullptr); 1745 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1746 const addr_t bp_addr = bp_site->GetLoadAddress(); 1747 LLDB_LOGF( 1748 log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1749 bp_site->GetID(), (uint64_t)bp_addr); 1750 if (bp_site->IsEnabled()) { 1751 LLDB_LOGF( 1752 log, 1753 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1754 " -- already enabled", 1755 bp_site->GetID(), (uint64_t)bp_addr); 1756 return error; 1757 } 1758 1759 if (bp_addr == LLDB_INVALID_ADDRESS) { 1760 error.SetErrorString("BreakpointSite contains an invalid load address."); 1761 return error; 1762 } 1763 // Ask the lldb::Process subclass to fill in the correct software breakpoint 1764 // trap for the breakpoint site 1765 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 1766 1767 if (bp_opcode_size == 0) { 1768 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 1769 "returned zero, unable to get breakpoint " 1770 "trap for address 0x%" PRIx64, 1771 bp_addr); 1772 } else { 1773 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 1774 1775 if (bp_opcode_bytes == nullptr) { 1776 error.SetErrorString( 1777 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 1778 return error; 1779 } 1780 1781 // Save the original opcode by reading it 1782 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 1783 error) == bp_opcode_size) { 1784 // Write a software breakpoint in place of the original opcode 1785 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 1786 bp_opcode_size) { 1787 uint8_t verify_bp_opcode_bytes[64]; 1788 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 1789 error) == bp_opcode_size) { 1790 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 1791 bp_opcode_size) == 0) { 1792 bp_site->SetEnabled(true); 1793 bp_site->SetType(BreakpointSite::eSoftware); 1794 LLDB_LOGF(log, 1795 "Process::EnableSoftwareBreakpoint (site_id = %d) " 1796 "addr = 0x%" PRIx64 " -- SUCCESS", 1797 bp_site->GetID(), (uint64_t)bp_addr); 1798 } else 1799 error.SetErrorString( 1800 "failed to verify the breakpoint trap in memory."); 1801 } else 1802 error.SetErrorString( 1803 "Unable to read memory to verify breakpoint trap."); 1804 } else 1805 error.SetErrorString("Unable to write breakpoint trap to memory."); 1806 } else 1807 error.SetErrorString("Unable to read memory at breakpoint address."); 1808 } 1809 if (log && error.Fail()) 1810 LLDB_LOGF( 1811 log, 1812 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1813 " -- FAILED: %s", 1814 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1815 return error; 1816 } 1817 1818 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 1819 Status error; 1820 assert(bp_site != nullptr); 1821 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1822 addr_t bp_addr = bp_site->GetLoadAddress(); 1823 lldb::user_id_t breakID = bp_site->GetID(); 1824 LLDB_LOGF(log, 1825 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 1826 ") addr = 0x%" PRIx64, 1827 breakID, (uint64_t)bp_addr); 1828 1829 if (bp_site->IsHardware()) { 1830 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 1831 } else if (bp_site->IsEnabled()) { 1832 const size_t break_op_size = bp_site->GetByteSize(); 1833 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 1834 if (break_op_size > 0) { 1835 // Clear a software breakpoint instruction 1836 uint8_t curr_break_op[8]; 1837 assert(break_op_size <= sizeof(curr_break_op)); 1838 bool break_op_found = false; 1839 1840 // Read the breakpoint opcode 1841 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 1842 break_op_size) { 1843 bool verify = false; 1844 // Make sure the breakpoint opcode exists at this address 1845 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 1846 break_op_found = true; 1847 // We found a valid breakpoint opcode at this address, now restore 1848 // the saved opcode. 1849 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 1850 break_op_size, error) == break_op_size) { 1851 verify = true; 1852 } else 1853 error.SetErrorString( 1854 "Memory write failed when restoring original opcode."); 1855 } else { 1856 error.SetErrorString( 1857 "Original breakpoint trap is no longer in memory."); 1858 // Set verify to true and so we can check if the original opcode has 1859 // already been restored 1860 verify = true; 1861 } 1862 1863 if (verify) { 1864 uint8_t verify_opcode[8]; 1865 assert(break_op_size < sizeof(verify_opcode)); 1866 // Verify that our original opcode made it back to the inferior 1867 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 1868 break_op_size) { 1869 // compare the memory we just read with the original opcode 1870 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 1871 break_op_size) == 0) { 1872 // SUCCESS 1873 bp_site->SetEnabled(false); 1874 LLDB_LOGF(log, 1875 "Process::DisableSoftwareBreakpoint (site_id = %d) " 1876 "addr = 0x%" PRIx64 " -- SUCCESS", 1877 bp_site->GetID(), (uint64_t)bp_addr); 1878 return error; 1879 } else { 1880 if (break_op_found) 1881 error.SetErrorString("Failed to restore original opcode."); 1882 } 1883 } else 1884 error.SetErrorString("Failed to read memory to verify that " 1885 "breakpoint trap was restored."); 1886 } 1887 } else 1888 error.SetErrorString( 1889 "Unable to read memory that should contain the breakpoint trap."); 1890 } 1891 } else { 1892 LLDB_LOGF( 1893 log, 1894 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1895 " -- already disabled", 1896 bp_site->GetID(), (uint64_t)bp_addr); 1897 return error; 1898 } 1899 1900 LLDB_LOGF( 1901 log, 1902 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1903 " -- FAILED: %s", 1904 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1905 return error; 1906 } 1907 1908 // Uncomment to verify memory caching works after making changes to caching 1909 // code 1910 //#define VERIFY_MEMORY_READS 1911 1912 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 1913 error.Clear(); 1914 if (!GetDisableMemoryCache()) { 1915 #if defined(VERIFY_MEMORY_READS) 1916 // Memory caching is enabled, with debug verification 1917 1918 if (buf && size) { 1919 // Uncomment the line below to make sure memory caching is working. 1920 // I ran this through the test suite and got no assertions, so I am 1921 // pretty confident this is working well. If any changes are made to 1922 // memory caching, uncomment the line below and test your changes! 1923 1924 // Verify all memory reads by using the cache first, then redundantly 1925 // reading the same memory from the inferior and comparing to make sure 1926 // everything is exactly the same. 1927 std::string verify_buf(size, '\0'); 1928 assert(verify_buf.size() == size); 1929 const size_t cache_bytes_read = 1930 m_memory_cache.Read(this, addr, buf, size, error); 1931 Status verify_error; 1932 const size_t verify_bytes_read = 1933 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 1934 verify_buf.size(), verify_error); 1935 assert(cache_bytes_read == verify_bytes_read); 1936 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 1937 assert(verify_error.Success() == error.Success()); 1938 return cache_bytes_read; 1939 } 1940 return 0; 1941 #else // !defined(VERIFY_MEMORY_READS) 1942 // Memory caching is enabled, without debug verification 1943 1944 return m_memory_cache.Read(addr, buf, size, error); 1945 #endif // defined (VERIFY_MEMORY_READS) 1946 } else { 1947 // Memory caching is disabled 1948 1949 return ReadMemoryFromInferior(addr, buf, size, error); 1950 } 1951 } 1952 1953 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 1954 Status &error) { 1955 char buf[256]; 1956 out_str.clear(); 1957 addr_t curr_addr = addr; 1958 while (true) { 1959 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 1960 if (length == 0) 1961 break; 1962 out_str.append(buf, length); 1963 // If we got "length - 1" bytes, we didn't get the whole C string, we need 1964 // to read some more characters 1965 if (length == sizeof(buf) - 1) 1966 curr_addr += length; 1967 else 1968 break; 1969 } 1970 return out_str.size(); 1971 } 1972 1973 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes, 1974 Status &error, size_t type_width) { 1975 size_t total_bytes_read = 0; 1976 if (dst && max_bytes && type_width && max_bytes >= type_width) { 1977 // Ensure a null terminator independent of the number of bytes that is 1978 // read. 1979 memset(dst, 0, max_bytes); 1980 size_t bytes_left = max_bytes - type_width; 1981 1982 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 1983 assert(sizeof(terminator) >= type_width && "Attempting to validate a " 1984 "string with more than 4 bytes " 1985 "per character!"); 1986 1987 addr_t curr_addr = addr; 1988 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 1989 char *curr_dst = dst; 1990 1991 error.Clear(); 1992 while (bytes_left > 0 && error.Success()) { 1993 addr_t cache_line_bytes_left = 1994 cache_line_size - (curr_addr % cache_line_size); 1995 addr_t bytes_to_read = 1996 std::min<addr_t>(bytes_left, cache_line_bytes_left); 1997 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 1998 1999 if (bytes_read == 0) 2000 break; 2001 2002 // Search for a null terminator of correct size and alignment in 2003 // bytes_read 2004 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 2005 for (size_t i = aligned_start; 2006 i + type_width <= total_bytes_read + bytes_read; i += type_width) 2007 if (::memcmp(&dst[i], terminator, type_width) == 0) { 2008 error.Clear(); 2009 return i; 2010 } 2011 2012 total_bytes_read += bytes_read; 2013 curr_dst += bytes_read; 2014 curr_addr += bytes_read; 2015 bytes_left -= bytes_read; 2016 } 2017 } else { 2018 if (max_bytes) 2019 error.SetErrorString("invalid arguments"); 2020 } 2021 return total_bytes_read; 2022 } 2023 2024 // Deprecated in favor of ReadStringFromMemory which has wchar support and 2025 // correct code to find null terminators. 2026 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 2027 size_t dst_max_len, 2028 Status &result_error) { 2029 size_t total_cstr_len = 0; 2030 if (dst && dst_max_len) { 2031 result_error.Clear(); 2032 // NULL out everything just to be safe 2033 memset(dst, 0, dst_max_len); 2034 Status error; 2035 addr_t curr_addr = addr; 2036 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2037 size_t bytes_left = dst_max_len - 1; 2038 char *curr_dst = dst; 2039 2040 while (bytes_left > 0) { 2041 addr_t cache_line_bytes_left = 2042 cache_line_size - (curr_addr % cache_line_size); 2043 addr_t bytes_to_read = 2044 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2045 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2046 2047 if (bytes_read == 0) { 2048 result_error = error; 2049 dst[total_cstr_len] = '\0'; 2050 break; 2051 } 2052 const size_t len = strlen(curr_dst); 2053 2054 total_cstr_len += len; 2055 2056 if (len < bytes_to_read) 2057 break; 2058 2059 curr_dst += bytes_read; 2060 curr_addr += bytes_read; 2061 bytes_left -= bytes_read; 2062 } 2063 } else { 2064 if (dst == nullptr) 2065 result_error.SetErrorString("invalid arguments"); 2066 else 2067 result_error.Clear(); 2068 } 2069 return total_cstr_len; 2070 } 2071 2072 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2073 Status &error) { 2074 if (buf == nullptr || size == 0) 2075 return 0; 2076 2077 size_t bytes_read = 0; 2078 uint8_t *bytes = (uint8_t *)buf; 2079 2080 while (bytes_read < size) { 2081 const size_t curr_size = size - bytes_read; 2082 const size_t curr_bytes_read = 2083 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2084 bytes_read += curr_bytes_read; 2085 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2086 break; 2087 } 2088 2089 // Replace any software breakpoint opcodes that fall into this range back 2090 // into "buf" before we return 2091 if (bytes_read > 0) 2092 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2093 return bytes_read; 2094 } 2095 2096 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2097 size_t integer_byte_size, 2098 uint64_t fail_value, 2099 Status &error) { 2100 Scalar scalar; 2101 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2102 error)) 2103 return scalar.ULongLong(fail_value); 2104 return fail_value; 2105 } 2106 2107 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2108 size_t integer_byte_size, 2109 int64_t fail_value, 2110 Status &error) { 2111 Scalar scalar; 2112 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2113 error)) 2114 return scalar.SLongLong(fail_value); 2115 return fail_value; 2116 } 2117 2118 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2119 Scalar scalar; 2120 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2121 error)) 2122 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2123 return LLDB_INVALID_ADDRESS; 2124 } 2125 2126 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2127 Status &error) { 2128 Scalar scalar; 2129 const uint32_t addr_byte_size = GetAddressByteSize(); 2130 if (addr_byte_size <= 4) 2131 scalar = (uint32_t)ptr_value; 2132 else 2133 scalar = ptr_value; 2134 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2135 addr_byte_size; 2136 } 2137 2138 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2139 Status &error) { 2140 size_t bytes_written = 0; 2141 const uint8_t *bytes = (const uint8_t *)buf; 2142 2143 while (bytes_written < size) { 2144 const size_t curr_size = size - bytes_written; 2145 const size_t curr_bytes_written = DoWriteMemory( 2146 addr + bytes_written, bytes + bytes_written, curr_size, error); 2147 bytes_written += curr_bytes_written; 2148 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2149 break; 2150 } 2151 return bytes_written; 2152 } 2153 2154 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2155 Status &error) { 2156 #if defined(ENABLE_MEMORY_CACHING) 2157 m_memory_cache.Flush(addr, size); 2158 #endif 2159 2160 if (buf == nullptr || size == 0) 2161 return 0; 2162 2163 m_mod_id.BumpMemoryID(); 2164 2165 // We need to write any data that would go where any current software traps 2166 // (enabled software breakpoints) any software traps (breakpoints) that we 2167 // may have placed in our tasks memory. 2168 2169 BreakpointSiteList bp_sites_in_range; 2170 if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range)) 2171 return WriteMemoryPrivate(addr, buf, size, error); 2172 2173 // No breakpoint sites overlap 2174 if (bp_sites_in_range.IsEmpty()) 2175 return WriteMemoryPrivate(addr, buf, size, error); 2176 2177 const uint8_t *ubuf = (const uint8_t *)buf; 2178 uint64_t bytes_written = 0; 2179 2180 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2181 &error](BreakpointSite *bp) -> void { 2182 if (error.Fail()) 2183 return; 2184 2185 addr_t intersect_addr; 2186 size_t intersect_size; 2187 size_t opcode_offset; 2188 const bool intersects = bp->IntersectsRange( 2189 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2190 UNUSED_IF_ASSERT_DISABLED(intersects); 2191 assert(intersects); 2192 assert(addr <= intersect_addr && intersect_addr < addr + size); 2193 assert(addr < intersect_addr + intersect_size && 2194 intersect_addr + intersect_size <= addr + size); 2195 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2196 2197 // Check for bytes before this breakpoint 2198 const addr_t curr_addr = addr + bytes_written; 2199 if (intersect_addr > curr_addr) { 2200 // There are some bytes before this breakpoint that we need to just 2201 // write to memory 2202 size_t curr_size = intersect_addr - curr_addr; 2203 size_t curr_bytes_written = 2204 WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error); 2205 bytes_written += curr_bytes_written; 2206 if (curr_bytes_written != curr_size) { 2207 // We weren't able to write all of the requested bytes, we are 2208 // done looping and will return the number of bytes that we have 2209 // written so far. 2210 if (error.Success()) 2211 error.SetErrorToGenericError(); 2212 } 2213 } 2214 // Now write any bytes that would cover up any software breakpoints 2215 // directly into the breakpoint opcode buffer 2216 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, 2217 intersect_size); 2218 bytes_written += intersect_size; 2219 }); 2220 2221 // Write any remaining bytes after the last breakpoint if we have any left 2222 if (bytes_written < size) 2223 bytes_written += 2224 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2225 size - bytes_written, error); 2226 2227 return bytes_written; 2228 } 2229 2230 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2231 size_t byte_size, Status &error) { 2232 if (byte_size == UINT32_MAX) 2233 byte_size = scalar.GetByteSize(); 2234 if (byte_size > 0) { 2235 uint8_t buf[32]; 2236 const size_t mem_size = 2237 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2238 if (mem_size > 0) 2239 return WriteMemory(addr, buf, mem_size, error); 2240 else 2241 error.SetErrorString("failed to get scalar as memory data"); 2242 } else { 2243 error.SetErrorString("invalid scalar value"); 2244 } 2245 return 0; 2246 } 2247 2248 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2249 bool is_signed, Scalar &scalar, 2250 Status &error) { 2251 uint64_t uval = 0; 2252 if (byte_size == 0) { 2253 error.SetErrorString("byte size is zero"); 2254 } else if (byte_size & (byte_size - 1)) { 2255 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2256 byte_size); 2257 } else if (byte_size <= sizeof(uval)) { 2258 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2259 if (bytes_read == byte_size) { 2260 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2261 GetAddressByteSize()); 2262 lldb::offset_t offset = 0; 2263 if (byte_size <= 4) 2264 scalar = data.GetMaxU32(&offset, byte_size); 2265 else 2266 scalar = data.GetMaxU64(&offset, byte_size); 2267 if (is_signed) 2268 scalar.SignExtend(byte_size * 8); 2269 return bytes_read; 2270 } 2271 } else { 2272 error.SetErrorStringWithFormat( 2273 "byte size of %u is too large for integer scalar type", byte_size); 2274 } 2275 return 0; 2276 } 2277 2278 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2279 Status error; 2280 for (const auto &Entry : entries) { 2281 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2282 error); 2283 if (!error.Success()) 2284 break; 2285 } 2286 return error; 2287 } 2288 2289 #define USE_ALLOCATE_MEMORY_CACHE 1 2290 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2291 Status &error) { 2292 if (GetPrivateState() != eStateStopped) { 2293 error.SetErrorToGenericError(); 2294 return LLDB_INVALID_ADDRESS; 2295 } 2296 2297 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2298 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2299 #else 2300 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2301 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2302 LLDB_LOGF(log, 2303 "Process::AllocateMemory(size=%" PRIu64 2304 ", permissions=%s) => 0x%16.16" PRIx64 2305 " (m_stop_id = %u m_memory_id = %u)", 2306 (uint64_t)size, GetPermissionsAsCString(permissions), 2307 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2308 m_mod_id.GetMemoryID()); 2309 return allocated_addr; 2310 #endif 2311 } 2312 2313 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2314 Status &error) { 2315 addr_t return_addr = AllocateMemory(size, permissions, error); 2316 if (error.Success()) { 2317 std::string buffer(size, 0); 2318 WriteMemory(return_addr, buffer.c_str(), size, error); 2319 } 2320 return return_addr; 2321 } 2322 2323 bool Process::CanJIT() { 2324 if (m_can_jit == eCanJITDontKnow) { 2325 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2326 Status err; 2327 2328 uint64_t allocated_memory = AllocateMemory( 2329 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2330 err); 2331 2332 if (err.Success()) { 2333 m_can_jit = eCanJITYes; 2334 LLDB_LOGF(log, 2335 "Process::%s pid %" PRIu64 2336 " allocation test passed, CanJIT () is true", 2337 __FUNCTION__, GetID()); 2338 } else { 2339 m_can_jit = eCanJITNo; 2340 LLDB_LOGF(log, 2341 "Process::%s pid %" PRIu64 2342 " allocation test failed, CanJIT () is false: %s", 2343 __FUNCTION__, GetID(), err.AsCString()); 2344 } 2345 2346 DeallocateMemory(allocated_memory); 2347 } 2348 2349 return m_can_jit == eCanJITYes; 2350 } 2351 2352 void Process::SetCanJIT(bool can_jit) { 2353 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2354 } 2355 2356 void Process::SetCanRunCode(bool can_run_code) { 2357 SetCanJIT(can_run_code); 2358 m_can_interpret_function_calls = can_run_code; 2359 } 2360 2361 Status Process::DeallocateMemory(addr_t ptr) { 2362 Status error; 2363 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2364 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2365 error.SetErrorStringWithFormat( 2366 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2367 } 2368 #else 2369 error = DoDeallocateMemory(ptr); 2370 2371 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2372 LLDB_LOGF(log, 2373 "Process::DeallocateMemory(addr=0x%16.16" PRIx64 2374 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2375 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2376 m_mod_id.GetMemoryID()); 2377 #endif 2378 return error; 2379 } 2380 2381 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2382 lldb::addr_t header_addr, 2383 size_t size_to_read) { 2384 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2385 if (log) { 2386 LLDB_LOGF(log, 2387 "Process::ReadModuleFromMemory reading %s binary from memory", 2388 file_spec.GetPath().c_str()); 2389 } 2390 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2391 if (module_sp) { 2392 Status error; 2393 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2394 shared_from_this(), header_addr, error, size_to_read); 2395 if (objfile) 2396 return module_sp; 2397 } 2398 return ModuleSP(); 2399 } 2400 2401 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2402 uint32_t &permissions) { 2403 MemoryRegionInfo range_info; 2404 permissions = 0; 2405 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2406 if (!error.Success()) 2407 return false; 2408 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2409 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2410 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2411 return false; 2412 } 2413 2414 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2415 permissions |= lldb::ePermissionsReadable; 2416 2417 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2418 permissions |= lldb::ePermissionsWritable; 2419 2420 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2421 permissions |= lldb::ePermissionsExecutable; 2422 2423 return true; 2424 } 2425 2426 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2427 Status error; 2428 error.SetErrorString("watchpoints are not supported"); 2429 return error; 2430 } 2431 2432 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2433 Status error; 2434 error.SetErrorString("watchpoints are not supported"); 2435 return error; 2436 } 2437 2438 StateType 2439 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2440 const Timeout<std::micro> &timeout) { 2441 StateType state; 2442 2443 while (true) { 2444 event_sp.reset(); 2445 state = GetStateChangedEventsPrivate(event_sp, timeout); 2446 2447 if (StateIsStoppedState(state, false)) 2448 break; 2449 2450 // If state is invalid, then we timed out 2451 if (state == eStateInvalid) 2452 break; 2453 2454 if (event_sp) 2455 HandlePrivateEvent(event_sp); 2456 } 2457 return state; 2458 } 2459 2460 void Process::LoadOperatingSystemPlugin(bool flush) { 2461 if (flush) 2462 m_thread_list.Clear(); 2463 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); 2464 if (flush) 2465 Flush(); 2466 } 2467 2468 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2469 Status error; 2470 m_abi_sp.reset(); 2471 m_dyld_up.reset(); 2472 m_jit_loaders_up.reset(); 2473 m_system_runtime_up.reset(); 2474 m_os_up.reset(); 2475 m_process_input_reader.reset(); 2476 2477 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2478 if (!exe_module) { 2479 error.SetErrorString("executable module does not exist"); 2480 return error; 2481 } 2482 2483 char local_exec_file_path[PATH_MAX]; 2484 char platform_exec_file_path[PATH_MAX]; 2485 exe_module->GetFileSpec().GetPath(local_exec_file_path, 2486 sizeof(local_exec_file_path)); 2487 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, 2488 sizeof(platform_exec_file_path)); 2489 if (FileSystem::Instance().Exists(exe_module->GetFileSpec())) { 2490 // Install anything that might need to be installed prior to launching. 2491 // For host systems, this will do nothing, but if we are connected to a 2492 // remote platform it will install any needed binaries 2493 error = GetTarget().Install(&launch_info); 2494 if (error.Fail()) 2495 return error; 2496 2497 if (PrivateStateThreadIsValid()) 2498 PausePrivateStateThread(); 2499 2500 error = WillLaunch(exe_module); 2501 if (error.Success()) { 2502 const bool restarted = false; 2503 SetPublicState(eStateLaunching, restarted); 2504 m_should_detach = false; 2505 2506 if (m_public_run_lock.TrySetRunning()) { 2507 // Now launch using these arguments. 2508 error = DoLaunch(exe_module, launch_info); 2509 } else { 2510 // This shouldn't happen 2511 error.SetErrorString("failed to acquire process run lock"); 2512 } 2513 2514 if (error.Fail()) { 2515 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2516 SetID(LLDB_INVALID_PROCESS_ID); 2517 const char *error_string = error.AsCString(); 2518 if (error_string == nullptr) 2519 error_string = "launch failed"; 2520 SetExitStatus(-1, error_string); 2521 } 2522 } else { 2523 EventSP event_sp; 2524 2525 // Now wait for the process to launch and return control to us, and then 2526 // call DidLaunch: 2527 StateType state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2528 2529 if (state == eStateInvalid || !event_sp) { 2530 // We were able to launch the process, but we failed to catch the 2531 // initial stop. 2532 error.SetErrorString("failed to catch stop after launch"); 2533 SetExitStatus(0, "failed to catch stop after launch"); 2534 Destroy(false); 2535 } else if (state == eStateStopped || state == eStateCrashed) { 2536 DidLaunch(); 2537 2538 DynamicLoader *dyld = GetDynamicLoader(); 2539 if (dyld) 2540 dyld->DidLaunch(); 2541 2542 GetJITLoaders().DidLaunch(); 2543 2544 SystemRuntime *system_runtime = GetSystemRuntime(); 2545 if (system_runtime) 2546 system_runtime->DidLaunch(); 2547 2548 if (!m_os_up) 2549 LoadOperatingSystemPlugin(false); 2550 2551 // We successfully launched the process and stopped, now it the 2552 // right time to set up signal filters before resuming. 2553 UpdateAutomaticSignalFiltering(); 2554 2555 // Note, the stop event was consumed above, but not handled. This 2556 // was done to give DidLaunch a chance to run. The target is either 2557 // stopped or crashed. Directly set the state. This is done to 2558 // prevent a stop message with a bunch of spurious output on thread 2559 // status, as well as not pop a ProcessIOHandler. 2560 SetPublicState(state, false); 2561 2562 if (PrivateStateThreadIsValid()) 2563 ResumePrivateStateThread(); 2564 else 2565 StartPrivateStateThread(); 2566 2567 // Target was stopped at entry as was intended. Need to notify the 2568 // listeners about it. 2569 if (state == eStateStopped && 2570 launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2571 HandlePrivateEvent(event_sp); 2572 } else if (state == eStateExited) { 2573 // We exited while trying to launch somehow. Don't call DidLaunch 2574 // as that's not likely to work, and return an invalid pid. 2575 HandlePrivateEvent(event_sp); 2576 } 2577 } 2578 } 2579 } else { 2580 error.SetErrorStringWithFormat("file doesn't exist: '%s'", 2581 local_exec_file_path); 2582 } 2583 2584 return error; 2585 } 2586 2587 Status Process::LoadCore() { 2588 Status error = DoLoadCore(); 2589 if (error.Success()) { 2590 ListenerSP listener_sp( 2591 Listener::MakeListener("lldb.process.load_core_listener")); 2592 HijackProcessEvents(listener_sp); 2593 2594 if (PrivateStateThreadIsValid()) 2595 ResumePrivateStateThread(); 2596 else 2597 StartPrivateStateThread(); 2598 2599 DynamicLoader *dyld = GetDynamicLoader(); 2600 if (dyld) 2601 dyld->DidAttach(); 2602 2603 GetJITLoaders().DidAttach(); 2604 2605 SystemRuntime *system_runtime = GetSystemRuntime(); 2606 if (system_runtime) 2607 system_runtime->DidAttach(); 2608 2609 if (!m_os_up) 2610 LoadOperatingSystemPlugin(false); 2611 2612 // We successfully loaded a core file, now pretend we stopped so we can 2613 // show all of the threads in the core file and explore the crashed state. 2614 SetPrivateState(eStateStopped); 2615 2616 // Wait for a stopped event since we just posted one above... 2617 lldb::EventSP event_sp; 2618 StateType state = 2619 WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp); 2620 2621 if (!StateIsStoppedState(state, false)) { 2622 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2623 LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", 2624 StateAsCString(state)); 2625 error.SetErrorString( 2626 "Did not get stopped event after loading the core file."); 2627 } 2628 RestoreProcessEvents(); 2629 } 2630 return error; 2631 } 2632 2633 DynamicLoader *Process::GetDynamicLoader() { 2634 if (!m_dyld_up) 2635 m_dyld_up.reset(DynamicLoader::FindPlugin(this, nullptr)); 2636 return m_dyld_up.get(); 2637 } 2638 2639 DataExtractor Process::GetAuxvData() { return DataExtractor(); } 2640 2641 JITLoaderList &Process::GetJITLoaders() { 2642 if (!m_jit_loaders_up) { 2643 m_jit_loaders_up.reset(new JITLoaderList()); 2644 JITLoader::LoadPlugins(this, *m_jit_loaders_up); 2645 } 2646 return *m_jit_loaders_up; 2647 } 2648 2649 SystemRuntime *Process::GetSystemRuntime() { 2650 if (!m_system_runtime_up) 2651 m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); 2652 return m_system_runtime_up.get(); 2653 } 2654 2655 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2656 uint32_t exec_count) 2657 : NextEventAction(process), m_exec_count(exec_count) { 2658 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2659 LLDB_LOGF( 2660 log, 2661 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2662 __FUNCTION__, static_cast<void *>(process), exec_count); 2663 } 2664 2665 Process::NextEventAction::EventActionResult 2666 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2667 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2668 2669 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2670 LLDB_LOGF(log, 2671 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2672 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2673 2674 switch (state) { 2675 case eStateAttaching: 2676 return eEventActionSuccess; 2677 2678 case eStateRunning: 2679 case eStateConnected: 2680 return eEventActionRetry; 2681 2682 case eStateStopped: 2683 case eStateCrashed: 2684 // During attach, prior to sending the eStateStopped event, 2685 // lldb_private::Process subclasses must set the new process ID. 2686 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2687 // We don't want these events to be reported, so go set the 2688 // ShouldReportStop here: 2689 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2690 2691 if (m_exec_count > 0) { 2692 --m_exec_count; 2693 2694 LLDB_LOGF(log, 2695 "Process::AttachCompletionHandler::%s state %s: reduced " 2696 "remaining exec count to %" PRIu32 ", requesting resume", 2697 __FUNCTION__, StateAsCString(state), m_exec_count); 2698 2699 RequestResume(); 2700 return eEventActionRetry; 2701 } else { 2702 LLDB_LOGF(log, 2703 "Process::AttachCompletionHandler::%s state %s: no more " 2704 "execs expected to start, continuing with attach", 2705 __FUNCTION__, StateAsCString(state)); 2706 2707 m_process->CompleteAttach(); 2708 return eEventActionSuccess; 2709 } 2710 break; 2711 2712 default: 2713 case eStateExited: 2714 case eStateInvalid: 2715 break; 2716 } 2717 2718 m_exit_string.assign("No valid Process"); 2719 return eEventActionExit; 2720 } 2721 2722 Process::NextEventAction::EventActionResult 2723 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2724 return eEventActionSuccess; 2725 } 2726 2727 const char *Process::AttachCompletionHandler::GetExitString() { 2728 return m_exit_string.c_str(); 2729 } 2730 2731 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2732 if (m_listener_sp) 2733 return m_listener_sp; 2734 else 2735 return debugger.GetListener(); 2736 } 2737 2738 Status Process::Attach(ProcessAttachInfo &attach_info) { 2739 m_abi_sp.reset(); 2740 m_process_input_reader.reset(); 2741 m_dyld_up.reset(); 2742 m_jit_loaders_up.reset(); 2743 m_system_runtime_up.reset(); 2744 m_os_up.reset(); 2745 2746 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2747 Status error; 2748 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2749 char process_name[PATH_MAX]; 2750 2751 if (attach_info.GetExecutableFile().GetPath(process_name, 2752 sizeof(process_name))) { 2753 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2754 2755 if (wait_for_launch) { 2756 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2757 if (error.Success()) { 2758 if (m_public_run_lock.TrySetRunning()) { 2759 m_should_detach = true; 2760 const bool restarted = false; 2761 SetPublicState(eStateAttaching, restarted); 2762 // Now attach using these arguments. 2763 error = DoAttachToProcessWithName(process_name, attach_info); 2764 } else { 2765 // This shouldn't happen 2766 error.SetErrorString("failed to acquire process run lock"); 2767 } 2768 2769 if (error.Fail()) { 2770 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2771 SetID(LLDB_INVALID_PROCESS_ID); 2772 if (error.AsCString() == nullptr) 2773 error.SetErrorString("attach failed"); 2774 2775 SetExitStatus(-1, error.AsCString()); 2776 } 2777 } else { 2778 SetNextEventAction(new Process::AttachCompletionHandler( 2779 this, attach_info.GetResumeCount())); 2780 StartPrivateStateThread(); 2781 } 2782 return error; 2783 } 2784 } else { 2785 ProcessInstanceInfoList process_infos; 2786 PlatformSP platform_sp(GetTarget().GetPlatform()); 2787 2788 if (platform_sp) { 2789 ProcessInstanceInfoMatch match_info; 2790 match_info.GetProcessInfo() = attach_info; 2791 match_info.SetNameMatchType(NameMatch::Equals); 2792 platform_sp->FindProcesses(match_info, process_infos); 2793 const uint32_t num_matches = process_infos.GetSize(); 2794 if (num_matches == 1) { 2795 attach_pid = process_infos.GetProcessIDAtIndex(0); 2796 // Fall through and attach using the above process ID 2797 } else { 2798 match_info.GetProcessInfo().GetExecutableFile().GetPath( 2799 process_name, sizeof(process_name)); 2800 if (num_matches > 1) { 2801 StreamString s; 2802 ProcessInstanceInfo::DumpTableHeader(s, true, false); 2803 for (size_t i = 0; i < num_matches; i++) { 2804 process_infos.GetProcessInfoAtIndex(i).DumpAsTableRow( 2805 s, platform_sp->GetUserIDResolver(), true, false); 2806 } 2807 error.SetErrorStringWithFormat( 2808 "more than one process named %s:\n%s", process_name, 2809 s.GetData()); 2810 } else 2811 error.SetErrorStringWithFormat( 2812 "could not find a process named %s", process_name); 2813 } 2814 } else { 2815 error.SetErrorString( 2816 "invalid platform, can't find processes by name"); 2817 return error; 2818 } 2819 } 2820 } else { 2821 error.SetErrorString("invalid process name"); 2822 } 2823 } 2824 2825 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 2826 error = WillAttachToProcessWithID(attach_pid); 2827 if (error.Success()) { 2828 2829 if (m_public_run_lock.TrySetRunning()) { 2830 // Now attach using these arguments. 2831 m_should_detach = true; 2832 const bool restarted = false; 2833 SetPublicState(eStateAttaching, restarted); 2834 error = DoAttachToProcessWithID(attach_pid, attach_info); 2835 } else { 2836 // This shouldn't happen 2837 error.SetErrorString("failed to acquire process run lock"); 2838 } 2839 2840 if (error.Success()) { 2841 SetNextEventAction(new Process::AttachCompletionHandler( 2842 this, attach_info.GetResumeCount())); 2843 StartPrivateStateThread(); 2844 } else { 2845 if (GetID() != LLDB_INVALID_PROCESS_ID) 2846 SetID(LLDB_INVALID_PROCESS_ID); 2847 2848 const char *error_string = error.AsCString(); 2849 if (error_string == nullptr) 2850 error_string = "attach failed"; 2851 2852 SetExitStatus(-1, error_string); 2853 } 2854 } 2855 } 2856 return error; 2857 } 2858 2859 void Process::CompleteAttach() { 2860 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 2861 LIBLLDB_LOG_TARGET)); 2862 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 2863 2864 // Let the process subclass figure out at much as it can about the process 2865 // before we go looking for a dynamic loader plug-in. 2866 ArchSpec process_arch; 2867 DidAttach(process_arch); 2868 2869 if (process_arch.IsValid()) { 2870 GetTarget().SetArchitecture(process_arch); 2871 if (log) { 2872 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 2873 LLDB_LOGF(log, 2874 "Process::%s replacing process architecture with DidAttach() " 2875 "architecture: %s", 2876 __FUNCTION__, triple_str ? triple_str : "<null>"); 2877 } 2878 } 2879 2880 // We just attached. If we have a platform, ask it for the process 2881 // architecture, and if it isn't the same as the one we've already set, 2882 // switch architectures. 2883 PlatformSP platform_sp(GetTarget().GetPlatform()); 2884 assert(platform_sp); 2885 if (platform_sp) { 2886 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2887 if (target_arch.IsValid() && 2888 !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) { 2889 ArchSpec platform_arch; 2890 platform_sp = 2891 platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch); 2892 if (platform_sp) { 2893 GetTarget().SetPlatform(platform_sp); 2894 GetTarget().SetArchitecture(platform_arch); 2895 LLDB_LOGF(log, 2896 "Process::%s switching platform to %s and architecture " 2897 "to %s based on info from attach", 2898 __FUNCTION__, platform_sp->GetName().AsCString(""), 2899 platform_arch.GetTriple().getTriple().c_str()); 2900 } 2901 } else if (!process_arch.IsValid()) { 2902 ProcessInstanceInfo process_info; 2903 GetProcessInfo(process_info); 2904 const ArchSpec &process_arch = process_info.GetArchitecture(); 2905 if (process_arch.IsValid() && 2906 !GetTarget().GetArchitecture().IsExactMatch(process_arch)) { 2907 GetTarget().SetArchitecture(process_arch); 2908 LLDB_LOGF(log, 2909 "Process::%s switching architecture to %s based on info " 2910 "the platform retrieved for pid %" PRIu64, 2911 __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), 2912 GetID()); 2913 } 2914 } 2915 } 2916 2917 // We have completed the attach, now it is time to find the dynamic loader 2918 // plug-in 2919 DynamicLoader *dyld = GetDynamicLoader(); 2920 if (dyld) { 2921 dyld->DidAttach(); 2922 if (log) { 2923 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2924 LLDB_LOGF(log, 2925 "Process::%s after DynamicLoader::DidAttach(), target " 2926 "executable is %s (using %s plugin)", 2927 __FUNCTION__, 2928 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2929 : "<none>", 2930 dyld->GetPluginName().AsCString("<unnamed>")); 2931 } 2932 } 2933 2934 GetJITLoaders().DidAttach(); 2935 2936 SystemRuntime *system_runtime = GetSystemRuntime(); 2937 if (system_runtime) { 2938 system_runtime->DidAttach(); 2939 if (log) { 2940 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2941 LLDB_LOGF(log, 2942 "Process::%s after SystemRuntime::DidAttach(), target " 2943 "executable is %s (using %s plugin)", 2944 __FUNCTION__, 2945 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2946 : "<none>", 2947 system_runtime->GetPluginName().AsCString("<unnamed>")); 2948 } 2949 } 2950 2951 if (!m_os_up) { 2952 LoadOperatingSystemPlugin(false); 2953 if (m_os_up) { 2954 // Somebody might have gotten threads before now, but we need to force the 2955 // update after we've loaded the OperatingSystem plugin or it won't get a 2956 // chance to process the threads. 2957 m_thread_list.Clear(); 2958 UpdateThreadListIfNeeded(); 2959 } 2960 } 2961 // Figure out which one is the executable, and set that in our target: 2962 const ModuleList &target_modules = GetTarget().GetImages(); 2963 std::lock_guard<std::recursive_mutex> guard(target_modules.GetMutex()); 2964 size_t num_modules = target_modules.GetSize(); 2965 ModuleSP new_executable_module_sp; 2966 2967 for (size_t i = 0; i < num_modules; i++) { 2968 ModuleSP module_sp(target_modules.GetModuleAtIndexUnlocked(i)); 2969 if (module_sp && module_sp->IsExecutable()) { 2970 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 2971 new_executable_module_sp = module_sp; 2972 break; 2973 } 2974 } 2975 if (new_executable_module_sp) { 2976 GetTarget().SetExecutableModule(new_executable_module_sp, 2977 eLoadDependentsNo); 2978 if (log) { 2979 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2980 LLDB_LOGF( 2981 log, 2982 "Process::%s after looping through modules, target executable is %s", 2983 __FUNCTION__, 2984 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2985 : "<none>"); 2986 } 2987 } 2988 } 2989 2990 Status Process::ConnectRemote(Stream *strm, llvm::StringRef remote_url) { 2991 m_abi_sp.reset(); 2992 m_process_input_reader.reset(); 2993 2994 // Find the process and its architecture. Make sure it matches the 2995 // architecture of the current Target, and if not adjust it. 2996 2997 Status error(DoConnectRemote(strm, remote_url)); 2998 if (error.Success()) { 2999 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3000 EventSP event_sp; 3001 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 3002 3003 if (state == eStateStopped || state == eStateCrashed) { 3004 // If we attached and actually have a process on the other end, then 3005 // this ended up being the equivalent of an attach. 3006 CompleteAttach(); 3007 3008 // This delays passing the stopped event to listeners till 3009 // CompleteAttach gets a chance to complete... 3010 HandlePrivateEvent(event_sp); 3011 } 3012 } 3013 3014 if (PrivateStateThreadIsValid()) 3015 ResumePrivateStateThread(); 3016 else 3017 StartPrivateStateThread(); 3018 } 3019 return error; 3020 } 3021 3022 Status Process::PrivateResume() { 3023 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3024 LIBLLDB_LOG_STEP)); 3025 LLDB_LOGF(log, 3026 "Process::PrivateResume() m_stop_id = %u, public state: %s " 3027 "private state: %s", 3028 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3029 StateAsCString(m_private_state.GetValue())); 3030 3031 // If signals handing status changed we might want to update our signal 3032 // filters before resuming. 3033 UpdateAutomaticSignalFiltering(); 3034 3035 Status error(WillResume()); 3036 // Tell the process it is about to resume before the thread list 3037 if (error.Success()) { 3038 // Now let the thread list know we are about to resume so it can let all of 3039 // our threads know that they are about to be resumed. Threads will each be 3040 // called with Thread::WillResume(StateType) where StateType contains the 3041 // state that they are supposed to have when the process is resumed 3042 // (suspended/running/stepping). Threads should also check their resume 3043 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3044 // start back up with a signal. 3045 if (m_thread_list.WillResume()) { 3046 // Last thing, do the PreResumeActions. 3047 if (!RunPreResumeActions()) { 3048 error.SetErrorStringWithFormat( 3049 "Process::PrivateResume PreResumeActions failed, not resuming."); 3050 } else { 3051 m_mod_id.BumpResumeID(); 3052 error = DoResume(); 3053 if (error.Success()) { 3054 DidResume(); 3055 m_thread_list.DidResume(); 3056 LLDB_LOGF(log, "Process thinks the process has resumed."); 3057 } else { 3058 LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); 3059 return error; 3060 } 3061 } 3062 } else { 3063 // Somebody wanted to run without running (e.g. we were faking a step 3064 // from one frame of a set of inlined frames that share the same PC to 3065 // another.) So generate a continue & a stopped event, and let the world 3066 // handle them. 3067 LLDB_LOGF(log, 3068 "Process::PrivateResume() asked to simulate a start & stop."); 3069 3070 SetPrivateState(eStateRunning); 3071 SetPrivateState(eStateStopped); 3072 } 3073 } else 3074 LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", 3075 error.AsCString("<unknown error>")); 3076 return error; 3077 } 3078 3079 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3080 if (!StateIsRunningState(m_public_state.GetValue())) 3081 return Status("Process is not running."); 3082 3083 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3084 // case it was already set and some thread plan logic calls halt on its own. 3085 m_clear_thread_plans_on_stop |= clear_thread_plans; 3086 3087 ListenerSP halt_listener_sp( 3088 Listener::MakeListener("lldb.process.halt_listener")); 3089 HijackProcessEvents(halt_listener_sp); 3090 3091 EventSP event_sp; 3092 3093 SendAsyncInterrupt(); 3094 3095 if (m_public_state.GetValue() == eStateAttaching) { 3096 // Don't hijack and eat the eStateExited as the code that was doing the 3097 // attach will be waiting for this event... 3098 RestoreProcessEvents(); 3099 SetExitStatus(SIGKILL, "Cancelled async attach."); 3100 Destroy(false); 3101 return Status(); 3102 } 3103 3104 // Wait for 10 second for the process to stop. 3105 StateType state = WaitForProcessToStop( 3106 seconds(10), &event_sp, true, halt_listener_sp, nullptr, use_run_lock); 3107 RestoreProcessEvents(); 3108 3109 if (state == eStateInvalid || !event_sp) { 3110 // We timed out and didn't get a stop event... 3111 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3112 } 3113 3114 BroadcastEvent(event_sp); 3115 3116 return Status(); 3117 } 3118 3119 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3120 Status error; 3121 3122 // Check both the public & private states here. If we're hung evaluating an 3123 // expression, for instance, then the public state will be stopped, but we 3124 // still need to interrupt. 3125 if (m_public_state.GetValue() == eStateRunning || 3126 m_private_state.GetValue() == eStateRunning) { 3127 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3128 LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); 3129 3130 ListenerSP listener_sp( 3131 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3132 HijackProcessEvents(listener_sp); 3133 3134 SendAsyncInterrupt(); 3135 3136 // Consume the interrupt event. 3137 StateType state = 3138 WaitForProcessToStop(seconds(10), &exit_event_sp, true, listener_sp); 3139 3140 RestoreProcessEvents(); 3141 3142 // If the process exited while we were waiting for it to stop, put the 3143 // exited event into the shared pointer passed in and return. Our caller 3144 // doesn't need to do anything else, since they don't have a process 3145 // anymore... 3146 3147 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3148 LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", 3149 __FUNCTION__); 3150 return error; 3151 } else 3152 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3153 3154 if (state != eStateStopped) { 3155 LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, 3156 StateAsCString(state)); 3157 // If we really couldn't stop the process then we should just error out 3158 // here, but if the lower levels just bobbled sending the event and we 3159 // really are stopped, then continue on. 3160 StateType private_state = m_private_state.GetValue(); 3161 if (private_state != eStateStopped) { 3162 return Status( 3163 "Attempt to stop the target in order to detach timed out. " 3164 "State = %s", 3165 StateAsCString(GetState())); 3166 } 3167 } 3168 } 3169 return error; 3170 } 3171 3172 Status Process::Detach(bool keep_stopped) { 3173 EventSP exit_event_sp; 3174 Status error; 3175 m_destroy_in_process = true; 3176 3177 error = WillDetach(); 3178 3179 if (error.Success()) { 3180 if (DetachRequiresHalt()) { 3181 error = StopForDestroyOrDetach(exit_event_sp); 3182 if (!error.Success()) { 3183 m_destroy_in_process = false; 3184 return error; 3185 } else if (exit_event_sp) { 3186 // We shouldn't need to do anything else here. There's no process left 3187 // to detach from... 3188 StopPrivateStateThread(); 3189 m_destroy_in_process = false; 3190 return error; 3191 } 3192 } 3193 3194 m_thread_list.DiscardThreadPlans(); 3195 DisableAllBreakpointSites(); 3196 3197 error = DoDetach(keep_stopped); 3198 if (error.Success()) { 3199 DidDetach(); 3200 StopPrivateStateThread(); 3201 } else { 3202 return error; 3203 } 3204 } 3205 m_destroy_in_process = false; 3206 3207 // If we exited when we were waiting for a process to stop, then forward the 3208 // event here so we don't lose the event 3209 if (exit_event_sp) { 3210 // Directly broadcast our exited event because we shut down our private 3211 // state thread above 3212 BroadcastEvent(exit_event_sp); 3213 } 3214 3215 // If we have been interrupted (to kill us) in the middle of running, we may 3216 // not end up propagating the last events through the event system, in which 3217 // case we might strand the write lock. Unlock it here so when we do to tear 3218 // down the process we don't get an error destroying the lock. 3219 3220 m_public_run_lock.SetStopped(); 3221 return error; 3222 } 3223 3224 Status Process::Destroy(bool force_kill) { 3225 3226 // Tell ourselves we are in the process of destroying the process, so that we 3227 // don't do any unnecessary work that might hinder the destruction. Remember 3228 // to set this back to false when we are done. That way if the attempt 3229 // failed and the process stays around for some reason it won't be in a 3230 // confused state. 3231 3232 if (force_kill) 3233 m_should_detach = false; 3234 3235 if (GetShouldDetach()) { 3236 // FIXME: This will have to be a process setting: 3237 bool keep_stopped = false; 3238 Detach(keep_stopped); 3239 } 3240 3241 m_destroy_in_process = true; 3242 3243 Status error(WillDestroy()); 3244 if (error.Success()) { 3245 EventSP exit_event_sp; 3246 if (DestroyRequiresHalt()) { 3247 error = StopForDestroyOrDetach(exit_event_sp); 3248 } 3249 3250 if (m_public_state.GetValue() != eStateRunning) { 3251 // Ditch all thread plans, and remove all our breakpoints: in case we 3252 // have to restart the target to kill it, we don't want it hitting a 3253 // breakpoint... Only do this if we've stopped, however, since if we 3254 // didn't manage to halt it above, then we're not going to have much luck 3255 // doing this now. 3256 m_thread_list.DiscardThreadPlans(); 3257 DisableAllBreakpointSites(); 3258 } 3259 3260 error = DoDestroy(); 3261 if (error.Success()) { 3262 DidDestroy(); 3263 StopPrivateStateThread(); 3264 } 3265 m_stdio_communication.Disconnect(); 3266 m_stdio_communication.StopReadThread(); 3267 m_stdin_forward = false; 3268 3269 if (m_process_input_reader) { 3270 m_process_input_reader->SetIsDone(true); 3271 m_process_input_reader->Cancel(); 3272 m_process_input_reader.reset(); 3273 } 3274 3275 // If we exited when we were waiting for a process to stop, then forward 3276 // the event here so we don't lose the event 3277 if (exit_event_sp) { 3278 // Directly broadcast our exited event because we shut down our private 3279 // state thread above 3280 BroadcastEvent(exit_event_sp); 3281 } 3282 3283 // If we have been interrupted (to kill us) in the middle of running, we 3284 // may not end up propagating the last events through the event system, in 3285 // which case we might strand the write lock. Unlock it here so when we do 3286 // to tear down the process we don't get an error destroying the lock. 3287 m_public_run_lock.SetStopped(); 3288 } 3289 3290 m_destroy_in_process = false; 3291 3292 return error; 3293 } 3294 3295 Status Process::Signal(int signal) { 3296 Status error(WillSignal()); 3297 if (error.Success()) { 3298 error = DoSignal(signal); 3299 if (error.Success()) 3300 DidSignal(); 3301 } 3302 return error; 3303 } 3304 3305 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3306 assert(signals_sp && "null signals_sp"); 3307 m_unix_signals_sp = signals_sp; 3308 } 3309 3310 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3311 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3312 return m_unix_signals_sp; 3313 } 3314 3315 lldb::ByteOrder Process::GetByteOrder() const { 3316 return GetTarget().GetArchitecture().GetByteOrder(); 3317 } 3318 3319 uint32_t Process::GetAddressByteSize() const { 3320 return GetTarget().GetArchitecture().GetAddressByteSize(); 3321 } 3322 3323 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3324 const StateType state = 3325 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3326 bool return_value = true; 3327 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | 3328 LIBLLDB_LOG_PROCESS)); 3329 3330 switch (state) { 3331 case eStateDetached: 3332 case eStateExited: 3333 case eStateUnloaded: 3334 m_stdio_communication.SynchronizeWithReadThread(); 3335 m_stdio_communication.Disconnect(); 3336 m_stdio_communication.StopReadThread(); 3337 m_stdin_forward = false; 3338 3339 LLVM_FALLTHROUGH; 3340 case eStateConnected: 3341 case eStateAttaching: 3342 case eStateLaunching: 3343 // These events indicate changes in the state of the debugging session, 3344 // always report them. 3345 return_value = true; 3346 break; 3347 case eStateInvalid: 3348 // We stopped for no apparent reason, don't report it. 3349 return_value = false; 3350 break; 3351 case eStateRunning: 3352 case eStateStepping: 3353 // If we've started the target running, we handle the cases where we are 3354 // already running and where there is a transition from stopped to running 3355 // differently. running -> running: Automatically suppress extra running 3356 // events stopped -> running: Report except when there is one or more no 3357 // votes 3358 // and no yes votes. 3359 SynchronouslyNotifyStateChanged(state); 3360 if (m_force_next_event_delivery) 3361 return_value = true; 3362 else { 3363 switch (m_last_broadcast_state) { 3364 case eStateRunning: 3365 case eStateStepping: 3366 // We always suppress multiple runnings with no PUBLIC stop in between. 3367 return_value = false; 3368 break; 3369 default: 3370 // TODO: make this work correctly. For now always report 3371 // run if we aren't running so we don't miss any running events. If I 3372 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3373 // and hit the breakpoints on multiple threads, then somehow during the 3374 // stepping over of all breakpoints no run gets reported. 3375 3376 // This is a transition from stop to run. 3377 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3378 case eVoteYes: 3379 case eVoteNoOpinion: 3380 return_value = true; 3381 break; 3382 case eVoteNo: 3383 return_value = false; 3384 break; 3385 } 3386 break; 3387 } 3388 } 3389 break; 3390 case eStateStopped: 3391 case eStateCrashed: 3392 case eStateSuspended: 3393 // We've stopped. First see if we're going to restart the target. If we 3394 // are going to stop, then we always broadcast the event. If we aren't 3395 // going to stop, let the thread plans decide if we're going to report this 3396 // event. If no thread has an opinion, we don't report it. 3397 3398 m_stdio_communication.SynchronizeWithReadThread(); 3399 RefreshStateAfterStop(); 3400 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3401 LLDB_LOGF(log, 3402 "Process::ShouldBroadcastEvent (%p) stopped due to an " 3403 "interrupt, state: %s", 3404 static_cast<void *>(event_ptr), StateAsCString(state)); 3405 // Even though we know we are going to stop, we should let the threads 3406 // have a look at the stop, so they can properly set their state. 3407 m_thread_list.ShouldStop(event_ptr); 3408 return_value = true; 3409 } else { 3410 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3411 bool should_resume = false; 3412 3413 // It makes no sense to ask "ShouldStop" if we've already been 3414 // restarted... Asking the thread list is also not likely to go well, 3415 // since we are running again. So in that case just report the event. 3416 3417 if (!was_restarted) 3418 should_resume = !m_thread_list.ShouldStop(event_ptr); 3419 3420 if (was_restarted || should_resume || m_resume_requested) { 3421 Vote stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3422 LLDB_LOGF(log, 3423 "Process::ShouldBroadcastEvent: should_resume: %i state: " 3424 "%s was_restarted: %i stop_vote: %d.", 3425 should_resume, StateAsCString(state), was_restarted, 3426 stop_vote); 3427 3428 switch (stop_vote) { 3429 case eVoteYes: 3430 return_value = true; 3431 break; 3432 case eVoteNoOpinion: 3433 case eVoteNo: 3434 return_value = false; 3435 break; 3436 } 3437 3438 if (!was_restarted) { 3439 LLDB_LOGF(log, 3440 "Process::ShouldBroadcastEvent (%p) Restarting process " 3441 "from state: %s", 3442 static_cast<void *>(event_ptr), StateAsCString(state)); 3443 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3444 PrivateResume(); 3445 } 3446 } else { 3447 return_value = true; 3448 SynchronouslyNotifyStateChanged(state); 3449 } 3450 } 3451 break; 3452 } 3453 3454 // Forcing the next event delivery is a one shot deal. So reset it here. 3455 m_force_next_event_delivery = false; 3456 3457 // We do some coalescing of events (for instance two consecutive running 3458 // events get coalesced.) But we only coalesce against events we actually 3459 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3460 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3461 // done, because the PublicState reflects the last event pulled off the 3462 // queue, and there may be several events stacked up on the queue unserviced. 3463 // So the PublicState may not reflect the last broadcasted event yet. 3464 // m_last_broadcast_state gets updated here. 3465 3466 if (return_value) 3467 m_last_broadcast_state = state; 3468 3469 LLDB_LOGF(log, 3470 "Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3471 "broadcast state: %s - %s", 3472 static_cast<void *>(event_ptr), StateAsCString(state), 3473 StateAsCString(m_last_broadcast_state), 3474 return_value ? "YES" : "NO"); 3475 return return_value; 3476 } 3477 3478 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3479 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 3480 3481 bool already_running = PrivateStateThreadIsValid(); 3482 LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, 3483 already_running ? " already running" 3484 : " starting private state thread"); 3485 3486 if (!is_secondary_thread && already_running) 3487 return true; 3488 3489 // Create a thread that watches our internal state and controls which events 3490 // make it to clients (into the DCProcess event queue). 3491 char thread_name[1024]; 3492 uint32_t max_len = llvm::get_max_thread_name_length(); 3493 if (max_len > 0 && max_len <= 30) { 3494 // On platforms with abbreviated thread name lengths, choose thread names 3495 // that fit within the limit. 3496 if (already_running) 3497 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3498 else 3499 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3500 } else { 3501 if (already_running) 3502 snprintf(thread_name, sizeof(thread_name), 3503 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3504 GetID()); 3505 else 3506 snprintf(thread_name, sizeof(thread_name), 3507 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3508 } 3509 3510 // Create the private state thread, and start it running. 3511 PrivateStateThreadArgs *args_ptr = 3512 new PrivateStateThreadArgs(this, is_secondary_thread); 3513 llvm::Expected<HostThread> private_state_thread = 3514 ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, 3515 (void *)args_ptr, 8 * 1024 * 1024); 3516 if (!private_state_thread) { 3517 LLDB_LOG(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST), 3518 "failed to launch host thread: {}", 3519 llvm::toString(private_state_thread.takeError())); 3520 return false; 3521 } 3522 3523 assert(private_state_thread->IsJoinable()); 3524 m_private_state_thread = *private_state_thread; 3525 ResumePrivateStateThread(); 3526 return true; 3527 } 3528 3529 void Process::PausePrivateStateThread() { 3530 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3531 } 3532 3533 void Process::ResumePrivateStateThread() { 3534 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3535 } 3536 3537 void Process::StopPrivateStateThread() { 3538 if (m_private_state_thread.IsJoinable()) 3539 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3540 else { 3541 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3542 LLDB_LOGF( 3543 log, 3544 "Went to stop the private state thread, but it was already invalid."); 3545 } 3546 } 3547 3548 void Process::ControlPrivateStateThread(uint32_t signal) { 3549 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3550 3551 assert(signal == eBroadcastInternalStateControlStop || 3552 signal == eBroadcastInternalStateControlPause || 3553 signal == eBroadcastInternalStateControlResume); 3554 3555 LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); 3556 3557 // Signal the private state thread 3558 if (m_private_state_thread.IsJoinable()) { 3559 // Broadcast the event. 3560 // It is important to do this outside of the if below, because it's 3561 // possible that the thread state is invalid but that the thread is waiting 3562 // on a control event instead of simply being on its way out (this should 3563 // not happen, but it apparently can). 3564 LLDB_LOGF(log, "Sending control event of type: %d.", signal); 3565 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3566 m_private_state_control_broadcaster.BroadcastEvent(signal, 3567 event_receipt_sp); 3568 3569 // Wait for the event receipt or for the private state thread to exit 3570 bool receipt_received = false; 3571 if (PrivateStateThreadIsValid()) { 3572 while (!receipt_received) { 3573 // Check for a receipt for n seconds and then check if the private 3574 // state thread is still around. 3575 receipt_received = 3576 event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout()); 3577 if (!receipt_received) { 3578 // Check if the private state thread is still around. If it isn't 3579 // then we are done waiting 3580 if (!PrivateStateThreadIsValid()) 3581 break; // Private state thread exited or is exiting, we are done 3582 } 3583 } 3584 } 3585 3586 if (signal == eBroadcastInternalStateControlStop) { 3587 thread_result_t result = {}; 3588 m_private_state_thread.Join(&result); 3589 m_private_state_thread.Reset(); 3590 } 3591 } else { 3592 LLDB_LOGF( 3593 log, 3594 "Private state thread already dead, no need to signal it to stop."); 3595 } 3596 } 3597 3598 void Process::SendAsyncInterrupt() { 3599 if (PrivateStateThreadIsValid()) 3600 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3601 nullptr); 3602 else 3603 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3604 } 3605 3606 void Process::HandlePrivateEvent(EventSP &event_sp) { 3607 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3608 m_resume_requested = false; 3609 3610 const StateType new_state = 3611 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3612 3613 // First check to see if anybody wants a shot at this event: 3614 if (m_next_event_action_up) { 3615 NextEventAction::EventActionResult action_result = 3616 m_next_event_action_up->PerformAction(event_sp); 3617 LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); 3618 3619 switch (action_result) { 3620 case NextEventAction::eEventActionSuccess: 3621 SetNextEventAction(nullptr); 3622 break; 3623 3624 case NextEventAction::eEventActionRetry: 3625 break; 3626 3627 case NextEventAction::eEventActionExit: 3628 // Handle Exiting Here. If we already got an exited event, we should 3629 // just propagate it. Otherwise, swallow this event, and set our state 3630 // to exit so the next event will kill us. 3631 if (new_state != eStateExited) { 3632 // FIXME: should cons up an exited event, and discard this one. 3633 SetExitStatus(0, m_next_event_action_up->GetExitString()); 3634 SetNextEventAction(nullptr); 3635 return; 3636 } 3637 SetNextEventAction(nullptr); 3638 break; 3639 } 3640 } 3641 3642 // See if we should broadcast this state to external clients? 3643 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3644 3645 if (should_broadcast) { 3646 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3647 if (log) { 3648 LLDB_LOGF(log, 3649 "Process::%s (pid = %" PRIu64 3650 ") broadcasting new state %s (old state %s) to %s", 3651 __FUNCTION__, GetID(), StateAsCString(new_state), 3652 StateAsCString(GetState()), 3653 is_hijacked ? "hijacked" : "public"); 3654 } 3655 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3656 if (StateIsRunningState(new_state)) { 3657 // Only push the input handler if we aren't fowarding events, as this 3658 // means the curses GUI is in use... Or don't push it if we are launching 3659 // since it will come up stopped. 3660 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3661 new_state != eStateLaunching && new_state != eStateAttaching) { 3662 PushProcessIOHandler(); 3663 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3664 eBroadcastAlways); 3665 LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", 3666 __FUNCTION__, m_iohandler_sync.GetValue()); 3667 } 3668 } else if (StateIsStoppedState(new_state, false)) { 3669 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3670 // If the lldb_private::Debugger is handling the events, we don't want 3671 // to pop the process IOHandler here, we want to do it when we receive 3672 // the stopped event so we can carefully control when the process 3673 // IOHandler is popped because when we stop we want to display some 3674 // text stating how and why we stopped, then maybe some 3675 // process/thread/frame info, and then we want the "(lldb) " prompt to 3676 // show up. If we pop the process IOHandler here, then we will cause 3677 // the command interpreter to become the top IOHandler after the 3678 // process pops off and it will update its prompt right away... See the 3679 // Debugger.cpp file where it calls the function as 3680 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3681 // Otherwise we end up getting overlapping "(lldb) " prompts and 3682 // garbled output. 3683 // 3684 // If we aren't handling the events in the debugger (which is indicated 3685 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3686 // we are hijacked, then we always pop the process IO handler manually. 3687 // Hijacking happens when the internal process state thread is running 3688 // thread plans, or when commands want to run in synchronous mode and 3689 // they call "process->WaitForProcessToStop()". An example of something 3690 // that will hijack the events is a simple expression: 3691 // 3692 // (lldb) expr (int)puts("hello") 3693 // 3694 // This will cause the internal process state thread to resume and halt 3695 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3696 // events) and we do need the IO handler to be pushed and popped 3697 // correctly. 3698 3699 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3700 PopProcessIOHandler(); 3701 } 3702 } 3703 3704 BroadcastEvent(event_sp); 3705 } else { 3706 if (log) { 3707 LLDB_LOGF( 3708 log, 3709 "Process::%s (pid = %" PRIu64 3710 ") suppressing state %s (old state %s): should_broadcast == false", 3711 __FUNCTION__, GetID(), StateAsCString(new_state), 3712 StateAsCString(GetState())); 3713 } 3714 } 3715 } 3716 3717 Status Process::HaltPrivate() { 3718 EventSP event_sp; 3719 Status error(WillHalt()); 3720 if (error.Fail()) 3721 return error; 3722 3723 // Ask the process subclass to actually halt our process 3724 bool caused_stop; 3725 error = DoHalt(caused_stop); 3726 3727 DidHalt(); 3728 return error; 3729 } 3730 3731 thread_result_t Process::PrivateStateThread(void *arg) { 3732 std::unique_ptr<PrivateStateThreadArgs> args_up( 3733 static_cast<PrivateStateThreadArgs *>(arg)); 3734 thread_result_t result = 3735 args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 3736 return result; 3737 } 3738 3739 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3740 bool control_only = true; 3741 3742 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3743 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3744 __FUNCTION__, static_cast<void *>(this), GetID()); 3745 3746 bool exit_now = false; 3747 bool interrupt_requested = false; 3748 while (!exit_now) { 3749 EventSP event_sp; 3750 GetEventsPrivate(event_sp, llvm::None, control_only); 3751 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3752 LLDB_LOGF(log, 3753 "Process::%s (arg = %p, pid = %" PRIu64 3754 ") got a control event: %d", 3755 __FUNCTION__, static_cast<void *>(this), GetID(), 3756 event_sp->GetType()); 3757 3758 switch (event_sp->GetType()) { 3759 case eBroadcastInternalStateControlStop: 3760 exit_now = true; 3761 break; // doing any internal state management below 3762 3763 case eBroadcastInternalStateControlPause: 3764 control_only = true; 3765 break; 3766 3767 case eBroadcastInternalStateControlResume: 3768 control_only = false; 3769 break; 3770 } 3771 3772 continue; 3773 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 3774 if (m_public_state.GetValue() == eStateAttaching) { 3775 LLDB_LOGF(log, 3776 "Process::%s (arg = %p, pid = %" PRIu64 3777 ") woke up with an interrupt while attaching - " 3778 "forwarding interrupt.", 3779 __FUNCTION__, static_cast<void *>(this), GetID()); 3780 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 3781 } else if (StateIsRunningState(m_last_broadcast_state)) { 3782 LLDB_LOGF(log, 3783 "Process::%s (arg = %p, pid = %" PRIu64 3784 ") woke up with an interrupt - Halting.", 3785 __FUNCTION__, static_cast<void *>(this), GetID()); 3786 Status error = HaltPrivate(); 3787 if (error.Fail() && log) 3788 LLDB_LOGF(log, 3789 "Process::%s (arg = %p, pid = %" PRIu64 3790 ") failed to halt the process: %s", 3791 __FUNCTION__, static_cast<void *>(this), GetID(), 3792 error.AsCString()); 3793 // Halt should generate a stopped event. Make a note of the fact that 3794 // we were doing the interrupt, so we can set the interrupted flag 3795 // after we receive the event. We deliberately set this to true even if 3796 // HaltPrivate failed, so that we can interrupt on the next natural 3797 // stop. 3798 interrupt_requested = true; 3799 } else { 3800 // This can happen when someone (e.g. Process::Halt) sees that we are 3801 // running and sends an interrupt request, but the process actually 3802 // stops before we receive it. In that case, we can just ignore the 3803 // request. We use m_last_broadcast_state, because the Stopped event 3804 // may not have been popped of the event queue yet, which is when the 3805 // public state gets updated. 3806 LLDB_LOGF(log, 3807 "Process::%s ignoring interrupt as we have already stopped.", 3808 __FUNCTION__); 3809 } 3810 continue; 3811 } 3812 3813 const StateType internal_state = 3814 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3815 3816 if (internal_state != eStateInvalid) { 3817 if (m_clear_thread_plans_on_stop && 3818 StateIsStoppedState(internal_state, true)) { 3819 m_clear_thread_plans_on_stop = false; 3820 m_thread_list.DiscardThreadPlans(); 3821 } 3822 3823 if (interrupt_requested) { 3824 if (StateIsStoppedState(internal_state, true)) { 3825 // We requested the interrupt, so mark this as such in the stop event 3826 // so clients can tell an interrupted process from a natural stop 3827 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 3828 interrupt_requested = false; 3829 } else if (log) { 3830 LLDB_LOGF(log, 3831 "Process::%s interrupt_requested, but a non-stopped " 3832 "state '%s' received.", 3833 __FUNCTION__, StateAsCString(internal_state)); 3834 } 3835 } 3836 3837 HandlePrivateEvent(event_sp); 3838 } 3839 3840 if (internal_state == eStateInvalid || internal_state == eStateExited || 3841 internal_state == eStateDetached) { 3842 LLDB_LOGF(log, 3843 "Process::%s (arg = %p, pid = %" PRIu64 3844 ") about to exit with internal state %s...", 3845 __FUNCTION__, static_cast<void *>(this), GetID(), 3846 StateAsCString(internal_state)); 3847 3848 break; 3849 } 3850 } 3851 3852 // Verify log is still enabled before attempting to write to it... 3853 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 3854 __FUNCTION__, static_cast<void *>(this), GetID()); 3855 3856 // If we are a secondary thread, then the primary thread we are working for 3857 // will have already acquired the public_run_lock, and isn't done with what 3858 // it was doing yet, so don't try to change it on the way out. 3859 if (!is_secondary_thread) 3860 m_public_run_lock.SetStopped(); 3861 return {}; 3862 } 3863 3864 // Process Event Data 3865 3866 Process::ProcessEventData::ProcessEventData() 3867 : EventData(), m_process_wp(), m_state(eStateInvalid), m_restarted(false), 3868 m_update_state(0), m_interrupted(false) {} 3869 3870 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 3871 StateType state) 3872 : EventData(), m_process_wp(), m_state(state), m_restarted(false), 3873 m_update_state(0), m_interrupted(false) { 3874 if (process_sp) 3875 m_process_wp = process_sp; 3876 } 3877 3878 Process::ProcessEventData::~ProcessEventData() = default; 3879 3880 ConstString Process::ProcessEventData::GetFlavorString() { 3881 static ConstString g_flavor("Process::ProcessEventData"); 3882 return g_flavor; 3883 } 3884 3885 ConstString Process::ProcessEventData::GetFlavor() const { 3886 return ProcessEventData::GetFlavorString(); 3887 } 3888 3889 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 3890 ProcessSP process_sp(m_process_wp.lock()); 3891 3892 if (!process_sp) 3893 return; 3894 3895 // This function gets called twice for each event, once when the event gets 3896 // pulled off of the private process event queue, and then any number of 3897 // times, first when it gets pulled off of the public event queue, then other 3898 // times when we're pretending that this is where we stopped at the end of 3899 // expression evaluation. m_update_state is used to distinguish these three 3900 // cases; it is 0 when we're just pulling it off for private handling, and > 3901 // 1 for expression evaluation, and we don't want to do the breakpoint 3902 // command handling then. 3903 if (m_update_state != 1) 3904 return; 3905 3906 process_sp->SetPublicState( 3907 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 3908 3909 if (m_state == eStateStopped && !m_restarted) { 3910 // Let process subclasses know we are about to do a public stop and do 3911 // anything they might need to in order to speed up register and memory 3912 // accesses. 3913 process_sp->WillPublicStop(); 3914 } 3915 3916 // If this is a halt event, even if the halt stopped with some reason other 3917 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 3918 // the halt request came through) don't do the StopInfo actions, as they may 3919 // end up restarting the process. 3920 if (m_interrupted) 3921 return; 3922 3923 // If we're stopped and haven't restarted, then do the StopInfo actions here: 3924 if (m_state == eStateStopped && !m_restarted) { 3925 ThreadList &curr_thread_list = process_sp->GetThreadList(); 3926 uint32_t num_threads = curr_thread_list.GetSize(); 3927 uint32_t idx; 3928 3929 // The actions might change one of the thread's stop_info's opinions about 3930 // whether we should stop the process, so we need to query that as we go. 3931 3932 // One other complication here, is that we try to catch any case where the 3933 // target has run (except for expressions) and immediately exit, but if we 3934 // get that wrong (which is possible) then the thread list might have 3935 // changed, and that would cause our iteration here to crash. We could 3936 // make a copy of the thread list, but we'd really like to also know if it 3937 // has changed at all, so we make up a vector of the thread ID's and check 3938 // what we get back against this list & bag out if anything differs. 3939 std::vector<uint32_t> thread_index_array(num_threads); 3940 for (idx = 0; idx < num_threads; ++idx) 3941 thread_index_array[idx] = 3942 curr_thread_list.GetThreadAtIndex(idx)->GetIndexID(); 3943 3944 // Use this to track whether we should continue from here. We will only 3945 // continue the target running if no thread says we should stop. Of course 3946 // if some thread's PerformAction actually sets the target running, then it 3947 // doesn't matter what the other threads say... 3948 3949 bool still_should_stop = false; 3950 3951 // Sometimes - for instance if we have a bug in the stub we are talking to, 3952 // we stop but no thread has a valid stop reason. In that case we should 3953 // just stop, because we have no way of telling what the right thing to do 3954 // is, and it's better to let the user decide than continue behind their 3955 // backs. 3956 3957 bool does_anybody_have_an_opinion = false; 3958 3959 for (idx = 0; idx < num_threads; ++idx) { 3960 curr_thread_list = process_sp->GetThreadList(); 3961 if (curr_thread_list.GetSize() != num_threads) { 3962 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 3963 LIBLLDB_LOG_PROCESS)); 3964 LLDB_LOGF( 3965 log, 3966 "Number of threads changed from %u to %u while processing event.", 3967 num_threads, curr_thread_list.GetSize()); 3968 break; 3969 } 3970 3971 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 3972 3973 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 3974 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 3975 LIBLLDB_LOG_PROCESS)); 3976 LLDB_LOGF(log, 3977 "The thread at position %u changed from %u to %u while " 3978 "processing event.", 3979 idx, thread_index_array[idx], thread_sp->GetIndexID()); 3980 break; 3981 } 3982 3983 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 3984 if (stop_info_sp && stop_info_sp->IsValid()) { 3985 does_anybody_have_an_opinion = true; 3986 bool this_thread_wants_to_stop; 3987 if (stop_info_sp->GetOverrideShouldStop()) { 3988 this_thread_wants_to_stop = 3989 stop_info_sp->GetOverriddenShouldStopValue(); 3990 } else { 3991 stop_info_sp->PerformAction(event_ptr); 3992 // The stop action might restart the target. If it does, then we 3993 // want to mark that in the event so that whoever is receiving it 3994 // will know to wait for the running event and reflect that state 3995 // appropriately. We also need to stop processing actions, since they 3996 // aren't expecting the target to be running. 3997 3998 // FIXME: we might have run. 3999 if (stop_info_sp->HasTargetRunSinceMe()) { 4000 SetRestarted(true); 4001 break; 4002 } 4003 4004 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4005 } 4006 4007 if (!still_should_stop) 4008 still_should_stop = this_thread_wants_to_stop; 4009 } 4010 } 4011 4012 if (!GetRestarted()) { 4013 if (!still_should_stop && does_anybody_have_an_opinion) { 4014 // We've been asked to continue, so do that here. 4015 SetRestarted(true); 4016 // Use the public resume method here, since this is just extending a 4017 // public resume. 4018 process_sp->PrivateResume(); 4019 } else { 4020 bool hijacked = 4021 process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) && 4022 !process_sp->StateChangedIsHijackedForSynchronousResume(); 4023 4024 if (!hijacked) { 4025 // If we didn't restart, run the Stop Hooks here. 4026 // Don't do that if state changed events aren't hooked up to the 4027 // public (or SyncResume) broadcasters. StopHooks are just for 4028 // real public stops. They might also restart the target, 4029 // so watch for that. 4030 process_sp->GetTarget().RunStopHooks(); 4031 if (process_sp->GetPrivateState() == eStateRunning) 4032 SetRestarted(true); 4033 } 4034 } 4035 } 4036 } 4037 } 4038 4039 void Process::ProcessEventData::Dump(Stream *s) const { 4040 ProcessSP process_sp(m_process_wp.lock()); 4041 4042 if (process_sp) 4043 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4044 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4045 else 4046 s->PutCString(" process = NULL, "); 4047 4048 s->Printf("state = %s", StateAsCString(GetState())); 4049 } 4050 4051 const Process::ProcessEventData * 4052 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4053 if (event_ptr) { 4054 const EventData *event_data = event_ptr->GetData(); 4055 if (event_data && 4056 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4057 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4058 } 4059 return nullptr; 4060 } 4061 4062 ProcessSP 4063 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4064 ProcessSP process_sp; 4065 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4066 if (data) 4067 process_sp = data->GetProcessSP(); 4068 return process_sp; 4069 } 4070 4071 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4072 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4073 if (data == nullptr) 4074 return eStateInvalid; 4075 else 4076 return data->GetState(); 4077 } 4078 4079 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4080 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4081 if (data == nullptr) 4082 return false; 4083 else 4084 return data->GetRestarted(); 4085 } 4086 4087 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4088 bool new_value) { 4089 ProcessEventData *data = 4090 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4091 if (data != nullptr) 4092 data->SetRestarted(new_value); 4093 } 4094 4095 size_t 4096 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4097 ProcessEventData *data = 4098 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4099 if (data != nullptr) 4100 return data->GetNumRestartedReasons(); 4101 else 4102 return 0; 4103 } 4104 4105 const char * 4106 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4107 size_t idx) { 4108 ProcessEventData *data = 4109 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4110 if (data != nullptr) 4111 return data->GetRestartedReasonAtIndex(idx); 4112 else 4113 return nullptr; 4114 } 4115 4116 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4117 const char *reason) { 4118 ProcessEventData *data = 4119 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4120 if (data != nullptr) 4121 data->AddRestartedReason(reason); 4122 } 4123 4124 bool Process::ProcessEventData::GetInterruptedFromEvent( 4125 const Event *event_ptr) { 4126 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4127 if (data == nullptr) 4128 return false; 4129 else 4130 return data->GetInterrupted(); 4131 } 4132 4133 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4134 bool new_value) { 4135 ProcessEventData *data = 4136 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4137 if (data != nullptr) 4138 data->SetInterrupted(new_value); 4139 } 4140 4141 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4142 ProcessEventData *data = 4143 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4144 if (data) { 4145 data->SetUpdateStateOnRemoval(); 4146 return true; 4147 } 4148 return false; 4149 } 4150 4151 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4152 4153 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4154 exe_ctx.SetTargetPtr(&GetTarget()); 4155 exe_ctx.SetProcessPtr(this); 4156 exe_ctx.SetThreadPtr(nullptr); 4157 exe_ctx.SetFramePtr(nullptr); 4158 } 4159 4160 // uint32_t 4161 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4162 // std::vector<lldb::pid_t> &pids) 4163 //{ 4164 // return 0; 4165 //} 4166 // 4167 // ArchSpec 4168 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4169 //{ 4170 // return Host::GetArchSpecForExistingProcess (pid); 4171 //} 4172 // 4173 // ArchSpec 4174 // Process::GetArchSpecForExistingProcess (const char *process_name) 4175 //{ 4176 // return Host::GetArchSpecForExistingProcess (process_name); 4177 //} 4178 4179 void Process::AppendSTDOUT(const char *s, size_t len) { 4180 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4181 m_stdout_data.append(s, len); 4182 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4183 new ProcessEventData(shared_from_this(), GetState())); 4184 } 4185 4186 void Process::AppendSTDERR(const char *s, size_t len) { 4187 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4188 m_stderr_data.append(s, len); 4189 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4190 new ProcessEventData(shared_from_this(), GetState())); 4191 } 4192 4193 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4194 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4195 m_profile_data.push_back(one_profile_data); 4196 BroadcastEventIfUnique(eBroadcastBitProfileData, 4197 new ProcessEventData(shared_from_this(), GetState())); 4198 } 4199 4200 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4201 const StructuredDataPluginSP &plugin_sp) { 4202 BroadcastEvent( 4203 eBroadcastBitStructuredData, 4204 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4205 } 4206 4207 StructuredDataPluginSP 4208 Process::GetStructuredDataPlugin(ConstString type_name) const { 4209 auto find_it = m_structured_data_plugin_map.find(type_name); 4210 if (find_it != m_structured_data_plugin_map.end()) 4211 return find_it->second; 4212 else 4213 return StructuredDataPluginSP(); 4214 } 4215 4216 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4217 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4218 if (m_profile_data.empty()) 4219 return 0; 4220 4221 std::string &one_profile_data = m_profile_data.front(); 4222 size_t bytes_available = one_profile_data.size(); 4223 if (bytes_available > 0) { 4224 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4225 LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4226 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4227 if (bytes_available > buf_size) { 4228 memcpy(buf, one_profile_data.c_str(), buf_size); 4229 one_profile_data.erase(0, buf_size); 4230 bytes_available = buf_size; 4231 } else { 4232 memcpy(buf, one_profile_data.c_str(), bytes_available); 4233 m_profile_data.erase(m_profile_data.begin()); 4234 } 4235 } 4236 return bytes_available; 4237 } 4238 4239 // Process STDIO 4240 4241 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4242 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4243 size_t bytes_available = m_stdout_data.size(); 4244 if (bytes_available > 0) { 4245 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4246 LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4247 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4248 if (bytes_available > buf_size) { 4249 memcpy(buf, m_stdout_data.c_str(), buf_size); 4250 m_stdout_data.erase(0, buf_size); 4251 bytes_available = buf_size; 4252 } else { 4253 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4254 m_stdout_data.clear(); 4255 } 4256 } 4257 return bytes_available; 4258 } 4259 4260 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4261 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4262 size_t bytes_available = m_stderr_data.size(); 4263 if (bytes_available > 0) { 4264 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4265 LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4266 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4267 if (bytes_available > buf_size) { 4268 memcpy(buf, m_stderr_data.c_str(), buf_size); 4269 m_stderr_data.erase(0, buf_size); 4270 bytes_available = buf_size; 4271 } else { 4272 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4273 m_stderr_data.clear(); 4274 } 4275 } 4276 return bytes_available; 4277 } 4278 4279 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4280 size_t src_len) { 4281 Process *process = (Process *)baton; 4282 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4283 } 4284 4285 class IOHandlerProcessSTDIO : public IOHandler { 4286 public: 4287 IOHandlerProcessSTDIO(Process *process, int write_fd) 4288 : IOHandler(process->GetTarget().GetDebugger(), 4289 IOHandler::Type::ProcessIO), 4290 m_process(process), 4291 m_read_file(GetInputFD(), File::eOpenOptionRead, false), 4292 m_write_file(write_fd, File::eOpenOptionWrite, false) { 4293 m_pipe.CreateNew(false); 4294 } 4295 4296 ~IOHandlerProcessSTDIO() override = default; 4297 4298 // Each IOHandler gets to run until it is done. It should read data from the 4299 // "in" and place output into "out" and "err and return when done. 4300 void Run() override { 4301 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4302 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4303 SetIsDone(true); 4304 return; 4305 } 4306 4307 SetIsDone(false); 4308 const int read_fd = m_read_file.GetDescriptor(); 4309 TerminalState terminal_state; 4310 terminal_state.Save(read_fd, false); 4311 Terminal terminal(read_fd); 4312 terminal.SetCanonical(false); 4313 terminal.SetEcho(false); 4314 // FD_ZERO, FD_SET are not supported on windows 4315 #ifndef _WIN32 4316 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4317 m_is_running = true; 4318 while (!GetIsDone()) { 4319 SelectHelper select_helper; 4320 select_helper.FDSetRead(read_fd); 4321 select_helper.FDSetRead(pipe_read_fd); 4322 Status error = select_helper.Select(); 4323 4324 if (error.Fail()) { 4325 SetIsDone(true); 4326 } else { 4327 char ch = 0; 4328 size_t n; 4329 if (select_helper.FDIsSetRead(read_fd)) { 4330 n = 1; 4331 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4332 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4333 SetIsDone(true); 4334 } else 4335 SetIsDone(true); 4336 } 4337 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4338 size_t bytes_read; 4339 // Consume the interrupt byte 4340 Status error = m_pipe.Read(&ch, 1, bytes_read); 4341 if (error.Success()) { 4342 switch (ch) { 4343 case 'q': 4344 SetIsDone(true); 4345 break; 4346 case 'i': 4347 if (StateIsRunningState(m_process->GetState())) 4348 m_process->SendAsyncInterrupt(); 4349 break; 4350 } 4351 } 4352 } 4353 } 4354 } 4355 m_is_running = false; 4356 #endif 4357 terminal_state.Restore(); 4358 } 4359 4360 void Cancel() override { 4361 SetIsDone(true); 4362 // Only write to our pipe to cancel if we are in 4363 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4364 // is being run from the command interpreter: 4365 // 4366 // (lldb) step_process_thousands_of_times 4367 // 4368 // In this case the command interpreter will be in the middle of handling 4369 // the command and if the process pushes and pops the IOHandler thousands 4370 // of times, we can end up writing to m_pipe without ever consuming the 4371 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4372 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4373 if (m_is_running) { 4374 char ch = 'q'; // Send 'q' for quit 4375 size_t bytes_written = 0; 4376 m_pipe.Write(&ch, 1, bytes_written); 4377 } 4378 } 4379 4380 bool Interrupt() override { 4381 // Do only things that are safe to do in an interrupt context (like in a 4382 // SIGINT handler), like write 1 byte to a file descriptor. This will 4383 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4384 // that was written to the pipe and then call 4385 // m_process->SendAsyncInterrupt() from a much safer location in code. 4386 if (m_active) { 4387 char ch = 'i'; // Send 'i' for interrupt 4388 size_t bytes_written = 0; 4389 Status result = m_pipe.Write(&ch, 1, bytes_written); 4390 return result.Success(); 4391 } else { 4392 // This IOHandler might be pushed on the stack, but not being run 4393 // currently so do the right thing if we aren't actively watching for 4394 // STDIN by sending the interrupt to the process. Otherwise the write to 4395 // the pipe above would do nothing. This can happen when the command 4396 // interpreter is running and gets a "expression ...". It will be on the 4397 // IOHandler thread and sending the input is complete to the delegate 4398 // which will cause the expression to run, which will push the process IO 4399 // handler, but not run it. 4400 4401 if (StateIsRunningState(m_process->GetState())) { 4402 m_process->SendAsyncInterrupt(); 4403 return true; 4404 } 4405 } 4406 return false; 4407 } 4408 4409 void GotEOF() override {} 4410 4411 protected: 4412 Process *m_process; 4413 NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB 4414 NativeFile m_write_file; // Write to this file (usually the master pty for 4415 // getting io to debuggee) 4416 Pipe m_pipe; 4417 std::atomic<bool> m_is_running{false}; 4418 }; 4419 4420 void Process::SetSTDIOFileDescriptor(int fd) { 4421 // First set up the Read Thread for reading/handling process I/O 4422 4423 std::unique_ptr<ConnectionFileDescriptor> conn_up( 4424 new ConnectionFileDescriptor(fd, true)); 4425 4426 if (conn_up) { 4427 m_stdio_communication.SetConnection(conn_up.release()); 4428 if (m_stdio_communication.IsConnected()) { 4429 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4430 STDIOReadThreadBytesReceived, this); 4431 m_stdio_communication.StartReadThread(); 4432 4433 // Now read thread is set up, set up input reader. 4434 4435 if (!m_process_input_reader) 4436 m_process_input_reader = 4437 std::make_shared<IOHandlerProcessSTDIO>(this, fd); 4438 } 4439 } 4440 } 4441 4442 bool Process::ProcessIOHandlerIsActive() { 4443 IOHandlerSP io_handler_sp(m_process_input_reader); 4444 if (io_handler_sp) 4445 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4446 return false; 4447 } 4448 bool Process::PushProcessIOHandler() { 4449 IOHandlerSP io_handler_sp(m_process_input_reader); 4450 if (io_handler_sp) { 4451 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4452 LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); 4453 4454 io_handler_sp->SetIsDone(false); 4455 // If we evaluate an utility function, then we don't cancel the current 4456 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the 4457 // existing IOHandler that potentially provides the user interface (e.g. 4458 // the IOHandler for Editline). 4459 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); 4460 GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp, 4461 cancel_top_handler); 4462 return true; 4463 } 4464 return false; 4465 } 4466 4467 bool Process::PopProcessIOHandler() { 4468 IOHandlerSP io_handler_sp(m_process_input_reader); 4469 if (io_handler_sp) 4470 return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp); 4471 return false; 4472 } 4473 4474 // The process needs to know about installed plug-ins 4475 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4476 4477 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4478 4479 namespace { 4480 // RestorePlanState is used to record the "is private", "is master" and "okay 4481 // to discard" fields of the plan we are running, and reset it on Clean or on 4482 // destruction. It will only reset the state once, so you can call Clean and 4483 // then monkey with the state and it won't get reset on you again. 4484 4485 class RestorePlanState { 4486 public: 4487 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4488 : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) { 4489 if (m_thread_plan_sp) { 4490 m_private = m_thread_plan_sp->GetPrivate(); 4491 m_is_master = m_thread_plan_sp->IsMasterPlan(); 4492 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4493 } 4494 } 4495 4496 ~RestorePlanState() { Clean(); } 4497 4498 void Clean() { 4499 if (!m_already_reset && m_thread_plan_sp) { 4500 m_already_reset = true; 4501 m_thread_plan_sp->SetPrivate(m_private); 4502 m_thread_plan_sp->SetIsMasterPlan(m_is_master); 4503 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4504 } 4505 } 4506 4507 private: 4508 lldb::ThreadPlanSP m_thread_plan_sp; 4509 bool m_already_reset; 4510 bool m_private; 4511 bool m_is_master; 4512 bool m_okay_to_discard; 4513 }; 4514 } // anonymous namespace 4515 4516 static microseconds 4517 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4518 const milliseconds default_one_thread_timeout(250); 4519 4520 // If the overall wait is forever, then we don't need to worry about it. 4521 if (!options.GetTimeout()) { 4522 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4523 : default_one_thread_timeout; 4524 } 4525 4526 // If the one thread timeout is set, use it. 4527 if (options.GetOneThreadTimeout()) 4528 return *options.GetOneThreadTimeout(); 4529 4530 // Otherwise use half the total timeout, bounded by the 4531 // default_one_thread_timeout. 4532 return std::min<microseconds>(default_one_thread_timeout, 4533 *options.GetTimeout() / 2); 4534 } 4535 4536 static Timeout<std::micro> 4537 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4538 bool before_first_timeout) { 4539 // If we are going to run all threads the whole time, or if we are only going 4540 // to run one thread, we can just return the overall timeout. 4541 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4542 return options.GetTimeout(); 4543 4544 if (before_first_timeout) 4545 return GetOneThreadExpressionTimeout(options); 4546 4547 if (!options.GetTimeout()) 4548 return llvm::None; 4549 else 4550 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4551 } 4552 4553 static llvm::Optional<ExpressionResults> 4554 HandleStoppedEvent(Thread &thread, const ThreadPlanSP &thread_plan_sp, 4555 RestorePlanState &restorer, const EventSP &event_sp, 4556 EventSP &event_to_broadcast_sp, 4557 const EvaluateExpressionOptions &options, bool handle_interrupts) { 4558 Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS); 4559 4560 ThreadPlanSP plan = thread.GetCompletedPlan(); 4561 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4562 LLDB_LOG(log, "execution completed successfully"); 4563 4564 // Restore the plan state so it will get reported as intended when we are 4565 // done. 4566 restorer.Clean(); 4567 return eExpressionCompleted; 4568 } 4569 4570 StopInfoSP stop_info_sp = thread.GetStopInfo(); 4571 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4572 stop_info_sp->ShouldNotify(event_sp.get())) { 4573 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4574 if (!options.DoesIgnoreBreakpoints()) { 4575 // Restore the plan state and then force Private to false. We are going 4576 // to stop because of this plan so we need it to become a public plan or 4577 // it won't report correctly when we continue to its termination later 4578 // on. 4579 restorer.Clean(); 4580 thread_plan_sp->SetPrivate(false); 4581 event_to_broadcast_sp = event_sp; 4582 } 4583 return eExpressionHitBreakpoint; 4584 } 4585 4586 if (!handle_interrupts && 4587 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4588 return llvm::None; 4589 4590 LLDB_LOG(log, "thread plan did not successfully complete"); 4591 if (!options.DoesUnwindOnError()) 4592 event_to_broadcast_sp = event_sp; 4593 return eExpressionInterrupted; 4594 } 4595 4596 ExpressionResults 4597 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4598 lldb::ThreadPlanSP &thread_plan_sp, 4599 const EvaluateExpressionOptions &options, 4600 DiagnosticManager &diagnostic_manager) { 4601 ExpressionResults return_value = eExpressionSetupError; 4602 4603 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4604 4605 if (!thread_plan_sp) { 4606 diagnostic_manager.PutString( 4607 eDiagnosticSeverityError, 4608 "RunThreadPlan called with empty thread plan."); 4609 return eExpressionSetupError; 4610 } 4611 4612 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4613 diagnostic_manager.PutString( 4614 eDiagnosticSeverityError, 4615 "RunThreadPlan called with an invalid thread plan."); 4616 return eExpressionSetupError; 4617 } 4618 4619 if (exe_ctx.GetProcessPtr() != this) { 4620 diagnostic_manager.PutString(eDiagnosticSeverityError, 4621 "RunThreadPlan called on wrong process."); 4622 return eExpressionSetupError; 4623 } 4624 4625 Thread *thread = exe_ctx.GetThreadPtr(); 4626 if (thread == nullptr) { 4627 diagnostic_manager.PutString(eDiagnosticSeverityError, 4628 "RunThreadPlan called with invalid thread."); 4629 return eExpressionSetupError; 4630 } 4631 4632 // We need to change some of the thread plan attributes for the thread plan 4633 // runner. This will restore them when we are done: 4634 4635 RestorePlanState thread_plan_restorer(thread_plan_sp); 4636 4637 // We rely on the thread plan we are running returning "PlanCompleted" if 4638 // when it successfully completes. For that to be true the plan can't be 4639 // private - since private plans suppress themselves in the GetCompletedPlan 4640 // call. 4641 4642 thread_plan_sp->SetPrivate(false); 4643 4644 // The plans run with RunThreadPlan also need to be terminal master plans or 4645 // when they are done we will end up asking the plan above us whether we 4646 // should stop, which may give the wrong answer. 4647 4648 thread_plan_sp->SetIsMasterPlan(true); 4649 thread_plan_sp->SetOkayToDiscard(false); 4650 4651 // If we are running some utility expression for LLDB, we now have to mark 4652 // this in the ProcesModID of this process. This RAII takes care of marking 4653 // and reverting the mark it once we are done running the expression. 4654 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); 4655 4656 if (m_private_state.GetValue() != eStateStopped) { 4657 diagnostic_manager.PutString( 4658 eDiagnosticSeverityError, 4659 "RunThreadPlan called while the private state was not stopped."); 4660 return eExpressionSetupError; 4661 } 4662 4663 // Save the thread & frame from the exe_ctx for restoration after we run 4664 const uint32_t thread_idx_id = thread->GetIndexID(); 4665 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4666 if (!selected_frame_sp) { 4667 thread->SetSelectedFrame(nullptr); 4668 selected_frame_sp = thread->GetSelectedFrame(); 4669 if (!selected_frame_sp) { 4670 diagnostic_manager.Printf( 4671 eDiagnosticSeverityError, 4672 "RunThreadPlan called without a selected frame on thread %d", 4673 thread_idx_id); 4674 return eExpressionSetupError; 4675 } 4676 } 4677 4678 // Make sure the timeout values make sense. The one thread timeout needs to 4679 // be smaller than the overall timeout. 4680 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4681 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4682 diagnostic_manager.PutString(eDiagnosticSeverityError, 4683 "RunThreadPlan called with one thread " 4684 "timeout greater than total timeout"); 4685 return eExpressionSetupError; 4686 } 4687 4688 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4689 4690 // N.B. Running the target may unset the currently selected thread and frame. 4691 // We don't want to do that either, so we should arrange to reset them as 4692 // well. 4693 4694 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4695 4696 uint32_t selected_tid; 4697 StackID selected_stack_id; 4698 if (selected_thread_sp) { 4699 selected_tid = selected_thread_sp->GetIndexID(); 4700 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4701 } else { 4702 selected_tid = LLDB_INVALID_THREAD_ID; 4703 } 4704 4705 HostThread backup_private_state_thread; 4706 lldb::StateType old_state = eStateInvalid; 4707 lldb::ThreadPlanSP stopper_base_plan_sp; 4708 4709 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4710 LIBLLDB_LOG_PROCESS)); 4711 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4712 // Yikes, we are running on the private state thread! So we can't wait for 4713 // public events on this thread, since we are the thread that is generating 4714 // public events. The simplest thing to do is to spin up a temporary thread 4715 // to handle private state thread events while we are fielding public 4716 // events here. 4717 LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " 4718 "another state thread to handle the events."); 4719 4720 backup_private_state_thread = m_private_state_thread; 4721 4722 // One other bit of business: we want to run just this thread plan and 4723 // anything it pushes, and then stop, returning control here. But in the 4724 // normal course of things, the plan above us on the stack would be given a 4725 // shot at the stop event before deciding to stop, and we don't want that. 4726 // So we insert a "stopper" base plan on the stack before the plan we want 4727 // to run. Since base plans always stop and return control to the user, 4728 // that will do just what we want. 4729 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4730 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4731 // Have to make sure our public state is stopped, since otherwise the 4732 // reporting logic below doesn't work correctly. 4733 old_state = m_public_state.GetValue(); 4734 m_public_state.SetValueNoLock(eStateStopped); 4735 4736 // Now spin up the private state thread: 4737 StartPrivateStateThread(true); 4738 } 4739 4740 thread->QueueThreadPlan( 4741 thread_plan_sp, false); // This used to pass "true" does that make sense? 4742 4743 if (options.GetDebug()) { 4744 // In this case, we aren't actually going to run, we just want to stop 4745 // right away. Flush this thread so we will refetch the stacks and show the 4746 // correct backtrace. 4747 // FIXME: To make this prettier we should invent some stop reason for this, 4748 // but that 4749 // is only cosmetic, and this functionality is only of use to lldb 4750 // developers who can live with not pretty... 4751 thread->Flush(); 4752 return eExpressionStoppedForDebug; 4753 } 4754 4755 ListenerSP listener_sp( 4756 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4757 4758 lldb::EventSP event_to_broadcast_sp; 4759 4760 { 4761 // This process event hijacker Hijacks the Public events and its destructor 4762 // makes sure that the process events get restored on exit to the function. 4763 // 4764 // If the event needs to propagate beyond the hijacker (e.g., the process 4765 // exits during execution), then the event is put into 4766 // event_to_broadcast_sp for rebroadcasting. 4767 4768 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 4769 4770 if (log) { 4771 StreamString s; 4772 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 4773 LLDB_LOGF(log, 4774 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 4775 " to run thread plan \"%s\".", 4776 thread->GetIndexID(), thread->GetID(), s.GetData()); 4777 } 4778 4779 bool got_event; 4780 lldb::EventSP event_sp; 4781 lldb::StateType stop_state = lldb::eStateInvalid; 4782 4783 bool before_first_timeout = true; // This is set to false the first time 4784 // that we have to halt the target. 4785 bool do_resume = true; 4786 bool handle_running_event = true; 4787 4788 // This is just for accounting: 4789 uint32_t num_resumes = 0; 4790 4791 // If we are going to run all threads the whole time, or if we are only 4792 // going to run one thread, then we don't need the first timeout. So we 4793 // pretend we are after the first timeout already. 4794 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4795 before_first_timeout = false; 4796 4797 LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", 4798 options.GetStopOthers(), options.GetTryAllThreads(), 4799 before_first_timeout); 4800 4801 // This isn't going to work if there are unfetched events on the queue. Are 4802 // there cases where we might want to run the remaining events here, and 4803 // then try to call the function? That's probably being too tricky for our 4804 // own good. 4805 4806 Event *other_events = listener_sp->PeekAtNextEvent(); 4807 if (other_events != nullptr) { 4808 diagnostic_manager.PutString( 4809 eDiagnosticSeverityError, 4810 "RunThreadPlan called with pending events on the queue."); 4811 return eExpressionSetupError; 4812 } 4813 4814 // We also need to make sure that the next event is delivered. We might be 4815 // calling a function as part of a thread plan, in which case the last 4816 // delivered event could be the running event, and we don't want event 4817 // coalescing to cause us to lose OUR running event... 4818 ForceNextEventDelivery(); 4819 4820 // This while loop must exit out the bottom, there's cleanup that we need to do 4821 // when we are done. So don't call return anywhere within it. 4822 4823 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4824 // It's pretty much impossible to write test cases for things like: One 4825 // thread timeout expires, I go to halt, but the process already stopped on 4826 // the function call stop breakpoint. Turning on this define will make us 4827 // not fetch the first event till after the halt. So if you run a quick 4828 // function, it will have completed, and the completion event will be 4829 // waiting, when you interrupt for halt. The expression evaluation should 4830 // still succeed. 4831 bool miss_first_event = true; 4832 #endif 4833 while (true) { 4834 // We usually want to resume the process if we get to the top of the 4835 // loop. The only exception is if we get two running events with no 4836 // intervening stop, which can happen, we will just wait for then next 4837 // stop event. 4838 LLDB_LOGF(log, 4839 "Top of while loop: do_resume: %i handle_running_event: %i " 4840 "before_first_timeout: %i.", 4841 do_resume, handle_running_event, before_first_timeout); 4842 4843 if (do_resume || handle_running_event) { 4844 // Do the initial resume and wait for the running event before going 4845 // further. 4846 4847 if (do_resume) { 4848 num_resumes++; 4849 Status resume_error = PrivateResume(); 4850 if (!resume_error.Success()) { 4851 diagnostic_manager.Printf( 4852 eDiagnosticSeverityError, 4853 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 4854 resume_error.AsCString()); 4855 return_value = eExpressionSetupError; 4856 break; 4857 } 4858 } 4859 4860 got_event = 4861 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 4862 if (!got_event) { 4863 LLDB_LOGF(log, 4864 "Process::RunThreadPlan(): didn't get any event after " 4865 "resume %" PRIu32 ", exiting.", 4866 num_resumes); 4867 4868 diagnostic_manager.Printf(eDiagnosticSeverityError, 4869 "didn't get any event after resume %" PRIu32 4870 ", exiting.", 4871 num_resumes); 4872 return_value = eExpressionSetupError; 4873 break; 4874 } 4875 4876 stop_state = 4877 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4878 4879 if (stop_state != eStateRunning) { 4880 bool restarted = false; 4881 4882 if (stop_state == eStateStopped) { 4883 restarted = Process::ProcessEventData::GetRestartedFromEvent( 4884 event_sp.get()); 4885 LLDB_LOGF( 4886 log, 4887 "Process::RunThreadPlan(): didn't get running event after " 4888 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 4889 "handle_running_event: %i).", 4890 num_resumes, StateAsCString(stop_state), restarted, do_resume, 4891 handle_running_event); 4892 } 4893 4894 if (restarted) { 4895 // This is probably an overabundance of caution, I don't think I 4896 // should ever get a stopped & restarted event here. But if I do, 4897 // the best thing is to Halt and then get out of here. 4898 const bool clear_thread_plans = false; 4899 const bool use_run_lock = false; 4900 Halt(clear_thread_plans, use_run_lock); 4901 } 4902 4903 diagnostic_manager.Printf( 4904 eDiagnosticSeverityError, 4905 "didn't get running event after initial resume, got %s instead.", 4906 StateAsCString(stop_state)); 4907 return_value = eExpressionSetupError; 4908 break; 4909 } 4910 4911 if (log) 4912 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 4913 // We need to call the function synchronously, so spin waiting for it 4914 // to return. If we get interrupted while executing, we're going to 4915 // lose our context, and won't be able to gather the result at this 4916 // point. We set the timeout AFTER the resume, since the resume takes 4917 // some time and we don't want to charge that to the timeout. 4918 } else { 4919 if (log) 4920 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 4921 } 4922 4923 do_resume = true; 4924 handle_running_event = true; 4925 4926 // Now wait for the process to stop again: 4927 event_sp.reset(); 4928 4929 Timeout<std::micro> timeout = 4930 GetExpressionTimeout(options, before_first_timeout); 4931 if (log) { 4932 if (timeout) { 4933 auto now = system_clock::now(); 4934 LLDB_LOGF(log, 4935 "Process::RunThreadPlan(): about to wait - now is %s - " 4936 "endpoint is %s", 4937 llvm::to_string(now).c_str(), 4938 llvm::to_string(now + *timeout).c_str()); 4939 } else { 4940 LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); 4941 } 4942 } 4943 4944 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4945 // See comment above... 4946 if (miss_first_event) { 4947 std::this_thread::sleep_for(std::chrono::milliseconds(1)); 4948 miss_first_event = false; 4949 got_event = false; 4950 } else 4951 #endif 4952 got_event = listener_sp->GetEvent(event_sp, timeout); 4953 4954 if (got_event) { 4955 if (event_sp) { 4956 bool keep_going = false; 4957 if (event_sp->GetType() == eBroadcastBitInterrupt) { 4958 const bool clear_thread_plans = false; 4959 const bool use_run_lock = false; 4960 Halt(clear_thread_plans, use_run_lock); 4961 return_value = eExpressionInterrupted; 4962 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 4963 "execution halted by user interrupt."); 4964 LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " 4965 "eBroadcastBitInterrupted, exiting."); 4966 break; 4967 } else { 4968 stop_state = 4969 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4970 LLDB_LOGF(log, 4971 "Process::RunThreadPlan(): in while loop, got event: %s.", 4972 StateAsCString(stop_state)); 4973 4974 switch (stop_state) { 4975 case lldb::eStateStopped: { 4976 // We stopped, figure out what we are going to do now. 4977 ThreadSP thread_sp = 4978 GetThreadList().FindThreadByIndexID(thread_idx_id); 4979 if (!thread_sp) { 4980 // Ooh, our thread has vanished. Unlikely that this was 4981 // successful execution... 4982 LLDB_LOGF(log, 4983 "Process::RunThreadPlan(): execution completed " 4984 "but our thread (index-id=%u) has vanished.", 4985 thread_idx_id); 4986 return_value = eExpressionInterrupted; 4987 } else if (Process::ProcessEventData::GetRestartedFromEvent( 4988 event_sp.get())) { 4989 // If we were restarted, we just need to go back up to fetch 4990 // another event. 4991 if (log) { 4992 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " 4993 "restart, so we'll continue waiting."); 4994 } 4995 keep_going = true; 4996 do_resume = false; 4997 handle_running_event = true; 4998 } else { 4999 const bool handle_interrupts = true; 5000 return_value = *HandleStoppedEvent( 5001 *thread, thread_plan_sp, thread_plan_restorer, event_sp, 5002 event_to_broadcast_sp, options, handle_interrupts); 5003 } 5004 } break; 5005 5006 case lldb::eStateRunning: 5007 // This shouldn't really happen, but sometimes we do get two 5008 // running events without an intervening stop, and in that case 5009 // we should just go back to waiting for the stop. 5010 do_resume = false; 5011 keep_going = true; 5012 handle_running_event = false; 5013 break; 5014 5015 default: 5016 LLDB_LOGF(log, 5017 "Process::RunThreadPlan(): execution stopped with " 5018 "unexpected state: %s.", 5019 StateAsCString(stop_state)); 5020 5021 if (stop_state == eStateExited) 5022 event_to_broadcast_sp = event_sp; 5023 5024 diagnostic_manager.PutString( 5025 eDiagnosticSeverityError, 5026 "execution stopped with unexpected state."); 5027 return_value = eExpressionInterrupted; 5028 break; 5029 } 5030 } 5031 5032 if (keep_going) 5033 continue; 5034 else 5035 break; 5036 } else { 5037 if (log) 5038 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5039 "the event pointer was null. How odd..."); 5040 return_value = eExpressionInterrupted; 5041 break; 5042 } 5043 } else { 5044 // If we didn't get an event that means we've timed out... We will 5045 // interrupt the process here. Depending on what we were asked to do 5046 // we will either exit, or try with all threads running for the same 5047 // timeout. 5048 5049 if (log) { 5050 if (options.GetTryAllThreads()) { 5051 if (before_first_timeout) { 5052 LLDB_LOG(log, 5053 "Running function with one thread timeout timed out."); 5054 } else 5055 LLDB_LOG(log, "Restarting function with all threads enabled and " 5056 "timeout: {0} timed out, abandoning execution.", 5057 timeout); 5058 } else 5059 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5060 "abandoning execution.", 5061 timeout); 5062 } 5063 5064 // It is possible that between the time we issued the Halt, and we get 5065 // around to calling Halt the target could have stopped. That's fine, 5066 // Halt will figure that out and send the appropriate Stopped event. 5067 // BUT it is also possible that we stopped & restarted (e.g. hit a 5068 // signal with "stop" set to false.) In 5069 // that case, we'll get the stopped & restarted event, and we should go 5070 // back to waiting for the Halt's stopped event. That's what this 5071 // while loop does. 5072 5073 bool back_to_top = true; 5074 uint32_t try_halt_again = 0; 5075 bool do_halt = true; 5076 const uint32_t num_retries = 5; 5077 while (try_halt_again < num_retries) { 5078 Status halt_error; 5079 if (do_halt) { 5080 LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); 5081 const bool clear_thread_plans = false; 5082 const bool use_run_lock = false; 5083 Halt(clear_thread_plans, use_run_lock); 5084 } 5085 if (halt_error.Success()) { 5086 if (log) 5087 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5088 5089 got_event = 5090 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5091 5092 if (got_event) { 5093 stop_state = 5094 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5095 if (log) { 5096 LLDB_LOGF(log, 5097 "Process::RunThreadPlan(): Stopped with event: %s", 5098 StateAsCString(stop_state)); 5099 if (stop_state == lldb::eStateStopped && 5100 Process::ProcessEventData::GetInterruptedFromEvent( 5101 event_sp.get())) 5102 log->PutCString(" Event was the Halt interruption event."); 5103 } 5104 5105 if (stop_state == lldb::eStateStopped) { 5106 if (Process::ProcessEventData::GetRestartedFromEvent( 5107 event_sp.get())) { 5108 if (log) 5109 log->PutCString("Process::RunThreadPlan(): Went to halt " 5110 "but got a restarted event, there must be " 5111 "an un-restarted stopped event so try " 5112 "again... " 5113 "Exiting wait loop."); 5114 try_halt_again++; 5115 do_halt = false; 5116 continue; 5117 } 5118 5119 // Between the time we initiated the Halt and the time we 5120 // delivered it, the process could have already finished its 5121 // job. Check that here: 5122 const bool handle_interrupts = false; 5123 if (auto result = HandleStoppedEvent( 5124 *thread, thread_plan_sp, thread_plan_restorer, event_sp, 5125 event_to_broadcast_sp, options, handle_interrupts)) { 5126 return_value = *result; 5127 back_to_top = false; 5128 break; 5129 } 5130 5131 if (!options.GetTryAllThreads()) { 5132 if (log) 5133 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5134 "was false, we stopped so now we're " 5135 "quitting."); 5136 return_value = eExpressionInterrupted; 5137 back_to_top = false; 5138 break; 5139 } 5140 5141 if (before_first_timeout) { 5142 // Set all the other threads to run, and return to the top of 5143 // the loop, which will continue; 5144 before_first_timeout = false; 5145 thread_plan_sp->SetStopOthers(false); 5146 if (log) 5147 log->PutCString( 5148 "Process::RunThreadPlan(): about to resume."); 5149 5150 back_to_top = true; 5151 break; 5152 } else { 5153 // Running all threads failed, so return Interrupted. 5154 if (log) 5155 log->PutCString("Process::RunThreadPlan(): running all " 5156 "threads timed out."); 5157 return_value = eExpressionInterrupted; 5158 back_to_top = false; 5159 break; 5160 } 5161 } 5162 } else { 5163 if (log) 5164 log->PutCString("Process::RunThreadPlan(): halt said it " 5165 "succeeded, but I got no event. " 5166 "I'm getting out of here passing Interrupted."); 5167 return_value = eExpressionInterrupted; 5168 back_to_top = false; 5169 break; 5170 } 5171 } else { 5172 try_halt_again++; 5173 continue; 5174 } 5175 } 5176 5177 if (!back_to_top || try_halt_again > num_retries) 5178 break; 5179 else 5180 continue; 5181 } 5182 } // END WAIT LOOP 5183 5184 // If we had to start up a temporary private state thread to run this 5185 // thread plan, shut it down now. 5186 if (backup_private_state_thread.IsJoinable()) { 5187 StopPrivateStateThread(); 5188 Status error; 5189 m_private_state_thread = backup_private_state_thread; 5190 if (stopper_base_plan_sp) { 5191 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5192 } 5193 if (old_state != eStateInvalid) 5194 m_public_state.SetValueNoLock(old_state); 5195 } 5196 5197 if (return_value != eExpressionCompleted && log) { 5198 // Print a backtrace into the log so we can figure out where we are: 5199 StreamString s; 5200 s.PutCString("Thread state after unsuccessful completion: \n"); 5201 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5202 log->PutString(s.GetString()); 5203 } 5204 // Restore the thread state if we are going to discard the plan execution. 5205 // There are three cases where this could happen: 1) The execution 5206 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5207 // was true 3) We got some other error, and discard_on_error was true 5208 bool should_unwind = (return_value == eExpressionInterrupted && 5209 options.DoesUnwindOnError()) || 5210 (return_value == eExpressionHitBreakpoint && 5211 options.DoesIgnoreBreakpoints()); 5212 5213 if (return_value == eExpressionCompleted || should_unwind) { 5214 thread_plan_sp->RestoreThreadState(); 5215 } 5216 5217 // Now do some processing on the results of the run: 5218 if (return_value == eExpressionInterrupted || 5219 return_value == eExpressionHitBreakpoint) { 5220 if (log) { 5221 StreamString s; 5222 if (event_sp) 5223 event_sp->Dump(&s); 5224 else { 5225 log->PutCString("Process::RunThreadPlan(): Stop event that " 5226 "interrupted us is NULL."); 5227 } 5228 5229 StreamString ts; 5230 5231 const char *event_explanation = nullptr; 5232 5233 do { 5234 if (!event_sp) { 5235 event_explanation = "<no event>"; 5236 break; 5237 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5238 event_explanation = "<user interrupt>"; 5239 break; 5240 } else { 5241 const Process::ProcessEventData *event_data = 5242 Process::ProcessEventData::GetEventDataFromEvent( 5243 event_sp.get()); 5244 5245 if (!event_data) { 5246 event_explanation = "<no event data>"; 5247 break; 5248 } 5249 5250 Process *process = event_data->GetProcessSP().get(); 5251 5252 if (!process) { 5253 event_explanation = "<no process>"; 5254 break; 5255 } 5256 5257 ThreadList &thread_list = process->GetThreadList(); 5258 5259 uint32_t num_threads = thread_list.GetSize(); 5260 uint32_t thread_index; 5261 5262 ts.Printf("<%u threads> ", num_threads); 5263 5264 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5265 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5266 5267 if (!thread) { 5268 ts.Printf("<?> "); 5269 continue; 5270 } 5271 5272 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5273 RegisterContext *register_context = 5274 thread->GetRegisterContext().get(); 5275 5276 if (register_context) 5277 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5278 else 5279 ts.Printf("[ip unknown] "); 5280 5281 // Show the private stop info here, the public stop info will be 5282 // from the last natural stop. 5283 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5284 if (stop_info_sp) { 5285 const char *stop_desc = stop_info_sp->GetDescription(); 5286 if (stop_desc) 5287 ts.PutCString(stop_desc); 5288 } 5289 ts.Printf(">"); 5290 } 5291 5292 event_explanation = ts.GetData(); 5293 } 5294 } while (false); 5295 5296 if (event_explanation) 5297 LLDB_LOGF(log, 5298 "Process::RunThreadPlan(): execution interrupted: %s %s", 5299 s.GetData(), event_explanation); 5300 else 5301 LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", 5302 s.GetData()); 5303 } 5304 5305 if (should_unwind) { 5306 LLDB_LOGF(log, 5307 "Process::RunThreadPlan: ExecutionInterrupted - " 5308 "discarding thread plans up to %p.", 5309 static_cast<void *>(thread_plan_sp.get())); 5310 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5311 } else { 5312 LLDB_LOGF(log, 5313 "Process::RunThreadPlan: ExecutionInterrupted - for " 5314 "plan: %p not discarding.", 5315 static_cast<void *>(thread_plan_sp.get())); 5316 } 5317 } else if (return_value == eExpressionSetupError) { 5318 if (log) 5319 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5320 5321 if (options.DoesUnwindOnError()) { 5322 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5323 } 5324 } else { 5325 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5326 if (log) 5327 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5328 return_value = eExpressionCompleted; 5329 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5330 if (log) 5331 log->PutCString( 5332 "Process::RunThreadPlan(): thread plan was discarded"); 5333 return_value = eExpressionDiscarded; 5334 } else { 5335 if (log) 5336 log->PutCString( 5337 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5338 if (options.DoesUnwindOnError() && thread_plan_sp) { 5339 if (log) 5340 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5341 "'cause unwind_on_error is set."); 5342 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5343 } 5344 } 5345 } 5346 5347 // Thread we ran the function in may have gone away because we ran the 5348 // target Check that it's still there, and if it is put it back in the 5349 // context. Also restore the frame in the context if it is still present. 5350 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5351 if (thread) { 5352 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5353 } 5354 5355 // Also restore the current process'es selected frame & thread, since this 5356 // function calling may be done behind the user's back. 5357 5358 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5359 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5360 selected_stack_id.IsValid()) { 5361 // We were able to restore the selected thread, now restore the frame: 5362 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5363 StackFrameSP old_frame_sp = 5364 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5365 selected_stack_id); 5366 if (old_frame_sp) 5367 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5368 old_frame_sp.get()); 5369 } 5370 } 5371 } 5372 5373 // If the process exited during the run of the thread plan, notify everyone. 5374 5375 if (event_to_broadcast_sp) { 5376 if (log) 5377 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5378 BroadcastEvent(event_to_broadcast_sp); 5379 } 5380 5381 return return_value; 5382 } 5383 5384 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5385 const char *result_name; 5386 5387 switch (result) { 5388 case eExpressionCompleted: 5389 result_name = "eExpressionCompleted"; 5390 break; 5391 case eExpressionDiscarded: 5392 result_name = "eExpressionDiscarded"; 5393 break; 5394 case eExpressionInterrupted: 5395 result_name = "eExpressionInterrupted"; 5396 break; 5397 case eExpressionHitBreakpoint: 5398 result_name = "eExpressionHitBreakpoint"; 5399 break; 5400 case eExpressionSetupError: 5401 result_name = "eExpressionSetupError"; 5402 break; 5403 case eExpressionParseError: 5404 result_name = "eExpressionParseError"; 5405 break; 5406 case eExpressionResultUnavailable: 5407 result_name = "eExpressionResultUnavailable"; 5408 break; 5409 case eExpressionTimedOut: 5410 result_name = "eExpressionTimedOut"; 5411 break; 5412 case eExpressionStoppedForDebug: 5413 result_name = "eExpressionStoppedForDebug"; 5414 break; 5415 } 5416 return result_name; 5417 } 5418 5419 void Process::GetStatus(Stream &strm) { 5420 const StateType state = GetState(); 5421 if (StateIsStoppedState(state, false)) { 5422 if (state == eStateExited) { 5423 int exit_status = GetExitStatus(); 5424 const char *exit_description = GetExitDescription(); 5425 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5426 GetID(), exit_status, exit_status, 5427 exit_description ? exit_description : ""); 5428 } else { 5429 if (state == eStateConnected) 5430 strm.Printf("Connected to remote target.\n"); 5431 else 5432 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5433 } 5434 } else { 5435 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5436 } 5437 } 5438 5439 size_t Process::GetThreadStatus(Stream &strm, 5440 bool only_threads_with_stop_reason, 5441 uint32_t start_frame, uint32_t num_frames, 5442 uint32_t num_frames_with_source, 5443 bool stop_format) { 5444 size_t num_thread_infos_dumped = 0; 5445 5446 // You can't hold the thread list lock while calling Thread::GetStatus. That 5447 // very well might run code (e.g. if we need it to get return values or 5448 // arguments.) For that to work the process has to be able to acquire it. 5449 // So instead copy the thread ID's, and look them up one by one: 5450 5451 uint32_t num_threads; 5452 std::vector<lldb::tid_t> thread_id_array; 5453 // Scope for thread list locker; 5454 { 5455 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5456 ThreadList &curr_thread_list = GetThreadList(); 5457 num_threads = curr_thread_list.GetSize(); 5458 uint32_t idx; 5459 thread_id_array.resize(num_threads); 5460 for (idx = 0; idx < num_threads; ++idx) 5461 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5462 } 5463 5464 for (uint32_t i = 0; i < num_threads; i++) { 5465 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5466 if (thread_sp) { 5467 if (only_threads_with_stop_reason) { 5468 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5469 if (!stop_info_sp || !stop_info_sp->IsValid()) 5470 continue; 5471 } 5472 thread_sp->GetStatus(strm, start_frame, num_frames, 5473 num_frames_with_source, 5474 stop_format); 5475 ++num_thread_infos_dumped; 5476 } else { 5477 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5478 LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 5479 " vanished while running Thread::GetStatus."); 5480 } 5481 } 5482 return num_thread_infos_dumped; 5483 } 5484 5485 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5486 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5487 } 5488 5489 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5490 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5491 region.GetByteSize()); 5492 } 5493 5494 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5495 void *baton) { 5496 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5497 } 5498 5499 bool Process::RunPreResumeActions() { 5500 bool result = true; 5501 while (!m_pre_resume_actions.empty()) { 5502 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5503 m_pre_resume_actions.pop_back(); 5504 bool this_result = action.callback(action.baton); 5505 if (result) 5506 result = this_result; 5507 } 5508 return result; 5509 } 5510 5511 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5512 5513 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5514 { 5515 PreResumeCallbackAndBaton element(callback, baton); 5516 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5517 if (found_iter != m_pre_resume_actions.end()) 5518 { 5519 m_pre_resume_actions.erase(found_iter); 5520 } 5521 } 5522 5523 ProcessRunLock &Process::GetRunLock() { 5524 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5525 return m_private_run_lock; 5526 else 5527 return m_public_run_lock; 5528 } 5529 5530 bool Process::CurrentThreadIsPrivateStateThread() 5531 { 5532 return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); 5533 } 5534 5535 5536 void Process::Flush() { 5537 m_thread_list.Flush(); 5538 m_extended_thread_list.Flush(); 5539 m_extended_thread_stop_id = 0; 5540 m_queue_list.Clear(); 5541 m_queue_list_stop_id = 0; 5542 } 5543 5544 void Process::DidExec() { 5545 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 5546 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 5547 5548 Target &target = GetTarget(); 5549 target.CleanupProcess(); 5550 target.ClearModules(false); 5551 m_dynamic_checkers_up.reset(); 5552 m_abi_sp.reset(); 5553 m_system_runtime_up.reset(); 5554 m_os_up.reset(); 5555 m_dyld_up.reset(); 5556 m_jit_loaders_up.reset(); 5557 m_image_tokens.clear(); 5558 m_allocated_memory_cache.Clear(); 5559 { 5560 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5561 m_language_runtimes.clear(); 5562 } 5563 m_instrumentation_runtimes.clear(); 5564 m_thread_list.DiscardThreadPlans(); 5565 m_memory_cache.Clear(true); 5566 DoDidExec(); 5567 CompleteAttach(); 5568 // Flush the process (threads and all stack frames) after running 5569 // CompleteAttach() in case the dynamic loader loaded things in new 5570 // locations. 5571 Flush(); 5572 5573 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5574 // let the target know so it can do any cleanup it needs to. 5575 target.DidExec(); 5576 } 5577 5578 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5579 if (address == nullptr) { 5580 error.SetErrorString("Invalid address argument"); 5581 return LLDB_INVALID_ADDRESS; 5582 } 5583 5584 addr_t function_addr = LLDB_INVALID_ADDRESS; 5585 5586 addr_t addr = address->GetLoadAddress(&GetTarget()); 5587 std::map<addr_t, addr_t>::const_iterator iter = 5588 m_resolved_indirect_addresses.find(addr); 5589 if (iter != m_resolved_indirect_addresses.end()) { 5590 function_addr = (*iter).second; 5591 } else { 5592 if (!CallVoidArgVoidPtrReturn(address, function_addr)) { 5593 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5594 error.SetErrorStringWithFormat( 5595 "Unable to call resolver for indirect function %s", 5596 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5597 function_addr = LLDB_INVALID_ADDRESS; 5598 } else { 5599 m_resolved_indirect_addresses.insert( 5600 std::pair<addr_t, addr_t>(addr, function_addr)); 5601 } 5602 } 5603 return function_addr; 5604 } 5605 5606 void Process::ModulesDidLoad(ModuleList &module_list) { 5607 SystemRuntime *sys_runtime = GetSystemRuntime(); 5608 if (sys_runtime) { 5609 sys_runtime->ModulesDidLoad(module_list); 5610 } 5611 5612 GetJITLoaders().ModulesDidLoad(module_list); 5613 5614 // Give runtimes a chance to be created. 5615 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5616 m_instrumentation_runtimes); 5617 5618 // Tell runtimes about new modules. 5619 for (auto pos = m_instrumentation_runtimes.begin(); 5620 pos != m_instrumentation_runtimes.end(); ++pos) { 5621 InstrumentationRuntimeSP runtime = pos->second; 5622 runtime->ModulesDidLoad(module_list); 5623 } 5624 5625 // Let any language runtimes we have already created know about the modules 5626 // that loaded. 5627 5628 // Iterate over a copy of this language runtime list in case the language 5629 // runtime ModulesDidLoad somehow causes the language runtime to be 5630 // unloaded. 5631 { 5632 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5633 LanguageRuntimeCollection language_runtimes(m_language_runtimes); 5634 for (const auto &pair : language_runtimes) { 5635 // We must check language_runtime_sp to make sure it is not nullptr as we 5636 // might cache the fact that we didn't have a language runtime for a 5637 // language. 5638 LanguageRuntimeSP language_runtime_sp = pair.second; 5639 if (language_runtime_sp) 5640 language_runtime_sp->ModulesDidLoad(module_list); 5641 } 5642 } 5643 5644 // If we don't have an operating system plug-in, try to load one since 5645 // loading shared libraries might cause a new one to try and load 5646 if (!m_os_up) 5647 LoadOperatingSystemPlugin(false); 5648 5649 // Give structured-data plugins a chance to see the modified modules. 5650 for (auto pair : m_structured_data_plugin_map) { 5651 if (pair.second) 5652 pair.second->ModulesDidLoad(*this, module_list); 5653 } 5654 } 5655 5656 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5657 const char *fmt, ...) { 5658 bool print_warning = true; 5659 5660 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5661 if (!stream_sp) 5662 return; 5663 if (warning_type == eWarningsOptimization && !GetWarningsOptimization()) { 5664 return; 5665 } 5666 5667 if (repeat_key != nullptr) { 5668 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5669 if (it == m_warnings_issued.end()) { 5670 m_warnings_issued[warning_type] = WarningsPointerSet(); 5671 m_warnings_issued[warning_type].insert(repeat_key); 5672 } else { 5673 if (it->second.find(repeat_key) != it->second.end()) { 5674 print_warning = false; 5675 } else { 5676 it->second.insert(repeat_key); 5677 } 5678 } 5679 } 5680 5681 if (print_warning) { 5682 va_list args; 5683 va_start(args, fmt); 5684 stream_sp->PrintfVarArg(fmt, args); 5685 va_end(args); 5686 } 5687 } 5688 5689 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5690 if (GetWarningsOptimization() && sc.module_sp && 5691 !sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5692 sc.function->GetIsOptimized()) { 5693 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5694 "%s was compiled with optimization - stepping may behave " 5695 "oddly; variables may not be available.\n", 5696 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5697 } 5698 } 5699 5700 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5701 info.Clear(); 5702 5703 PlatformSP platform_sp = GetTarget().GetPlatform(); 5704 if (!platform_sp) 5705 return false; 5706 5707 return platform_sp->GetProcessInfo(GetID(), info); 5708 } 5709 5710 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5711 ThreadCollectionSP threads; 5712 5713 const MemoryHistorySP &memory_history = 5714 MemoryHistory::FindPlugin(shared_from_this()); 5715 5716 if (!memory_history) { 5717 return threads; 5718 } 5719 5720 threads = std::make_shared<ThreadCollection>( 5721 memory_history->GetHistoryThreads(addr)); 5722 5723 return threads; 5724 } 5725 5726 InstrumentationRuntimeSP 5727 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5728 InstrumentationRuntimeCollection::iterator pos; 5729 pos = m_instrumentation_runtimes.find(type); 5730 if (pos == m_instrumentation_runtimes.end()) { 5731 return InstrumentationRuntimeSP(); 5732 } else 5733 return (*pos).second; 5734 } 5735 5736 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5737 const ArchSpec &arch, ModuleSpec &module_spec) { 5738 module_spec.Clear(); 5739 return false; 5740 } 5741 5742 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5743 m_image_tokens.push_back(image_ptr); 5744 return m_image_tokens.size() - 1; 5745 } 5746 5747 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5748 if (token < m_image_tokens.size()) 5749 return m_image_tokens[token]; 5750 return LLDB_INVALID_IMAGE_TOKEN; 5751 } 5752 5753 void Process::ResetImageToken(size_t token) { 5754 if (token < m_image_tokens.size()) 5755 m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN; 5756 } 5757 5758 Address 5759 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5760 AddressRange range_bounds) { 5761 Target &target = GetTarget(); 5762 DisassemblerSP disassembler_sp; 5763 InstructionList *insn_list = nullptr; 5764 5765 Address retval = default_stop_addr; 5766 5767 if (!target.GetUseFastStepping()) 5768 return retval; 5769 if (!default_stop_addr.IsValid()) 5770 return retval; 5771 5772 ExecutionContext exe_ctx(this); 5773 const char *plugin_name = nullptr; 5774 const char *flavor = nullptr; 5775 const bool prefer_file_cache = true; 5776 disassembler_sp = Disassembler::DisassembleRange( 5777 target.GetArchitecture(), plugin_name, flavor, exe_ctx, range_bounds, 5778 prefer_file_cache); 5779 if (disassembler_sp) 5780 insn_list = &disassembler_sp->GetInstructionList(); 5781 5782 if (insn_list == nullptr) { 5783 return retval; 5784 } 5785 5786 size_t insn_offset = 5787 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 5788 if (insn_offset == UINT32_MAX) { 5789 return retval; 5790 } 5791 5792 uint32_t branch_index = 5793 insn_list->GetIndexOfNextBranchInstruction(insn_offset, target, 5794 false /* ignore_calls*/, 5795 nullptr); 5796 if (branch_index == UINT32_MAX) { 5797 return retval; 5798 } 5799 5800 if (branch_index > insn_offset) { 5801 Address next_branch_insn_address = 5802 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 5803 if (next_branch_insn_address.IsValid() && 5804 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 5805 retval = next_branch_insn_address; 5806 } 5807 } 5808 5809 return retval; 5810 } 5811 5812 Status 5813 Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { 5814 5815 Status error; 5816 5817 lldb::addr_t range_end = 0; 5818 5819 region_list.clear(); 5820 do { 5821 lldb_private::MemoryRegionInfo region_info; 5822 error = GetMemoryRegionInfo(range_end, region_info); 5823 // GetMemoryRegionInfo should only return an error if it is unimplemented. 5824 if (error.Fail()) { 5825 region_list.clear(); 5826 break; 5827 } 5828 5829 range_end = region_info.GetRange().GetRangeEnd(); 5830 if (region_info.GetMapped() == MemoryRegionInfo::eYes) { 5831 region_list.push_back(std::move(region_info)); 5832 } 5833 } while (range_end != LLDB_INVALID_ADDRESS); 5834 5835 return error; 5836 } 5837 5838 Status 5839 Process::ConfigureStructuredData(ConstString type_name, 5840 const StructuredData::ObjectSP &config_sp) { 5841 // If you get this, the Process-derived class needs to implement a method to 5842 // enable an already-reported asynchronous structured data feature. See 5843 // ProcessGDBRemote for an example implementation over gdb-remote. 5844 return Status("unimplemented"); 5845 } 5846 5847 void Process::MapSupportedStructuredDataPlugins( 5848 const StructuredData::Array &supported_type_names) { 5849 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5850 5851 // Bail out early if there are no type names to map. 5852 if (supported_type_names.GetSize() == 0) { 5853 LLDB_LOGF(log, "Process::%s(): no structured data types supported", 5854 __FUNCTION__); 5855 return; 5856 } 5857 5858 // Convert StructuredData type names to ConstString instances. 5859 std::set<ConstString> const_type_names; 5860 5861 LLDB_LOGF(log, 5862 "Process::%s(): the process supports the following async " 5863 "structured data types:", 5864 __FUNCTION__); 5865 5866 supported_type_names.ForEach( 5867 [&const_type_names, &log](StructuredData::Object *object) { 5868 if (!object) { 5869 // Invalid - shouldn't be null objects in the array. 5870 return false; 5871 } 5872 5873 auto type_name = object->GetAsString(); 5874 if (!type_name) { 5875 // Invalid format - all type names should be strings. 5876 return false; 5877 } 5878 5879 const_type_names.insert(ConstString(type_name->GetValue())); 5880 LLDB_LOG(log, "- {0}", type_name->GetValue()); 5881 return true; 5882 }); 5883 5884 // For each StructuredDataPlugin, if the plugin handles any of the types in 5885 // the supported_type_names, map that type name to that plugin. Stop when 5886 // we've consumed all the type names. 5887 // FIXME: should we return an error if there are type names nobody 5888 // supports? 5889 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 5890 auto create_instance = 5891 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 5892 plugin_index); 5893 if (!create_instance) 5894 break; 5895 5896 // Create the plugin. 5897 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 5898 if (!plugin_sp) { 5899 // This plugin doesn't think it can work with the process. Move on to the 5900 // next. 5901 continue; 5902 } 5903 5904 // For any of the remaining type names, map any that this plugin supports. 5905 std::vector<ConstString> names_to_remove; 5906 for (auto &type_name : const_type_names) { 5907 if (plugin_sp->SupportsStructuredDataType(type_name)) { 5908 m_structured_data_plugin_map.insert( 5909 std::make_pair(type_name, plugin_sp)); 5910 names_to_remove.push_back(type_name); 5911 LLDB_LOGF(log, 5912 "Process::%s(): using plugin %s for type name " 5913 "%s", 5914 __FUNCTION__, plugin_sp->GetPluginName().GetCString(), 5915 type_name.GetCString()); 5916 } 5917 } 5918 5919 // Remove the type names that were consumed by this plugin. 5920 for (auto &type_name : names_to_remove) 5921 const_type_names.erase(type_name); 5922 } 5923 } 5924 5925 bool Process::RouteAsyncStructuredData( 5926 const StructuredData::ObjectSP object_sp) { 5927 // Nothing to do if there's no data. 5928 if (!object_sp) 5929 return false; 5930 5931 // The contract is this must be a dictionary, so we can look up the routing 5932 // key via the top-level 'type' string value within the dictionary. 5933 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 5934 if (!dictionary) 5935 return false; 5936 5937 // Grab the async structured type name (i.e. the feature/plugin name). 5938 ConstString type_name; 5939 if (!dictionary->GetValueForKeyAsString("type", type_name)) 5940 return false; 5941 5942 // Check if there's a plugin registered for this type name. 5943 auto find_it = m_structured_data_plugin_map.find(type_name); 5944 if (find_it == m_structured_data_plugin_map.end()) { 5945 // We don't have a mapping for this structured data type. 5946 return false; 5947 } 5948 5949 // Route the structured data to the plugin. 5950 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 5951 return true; 5952 } 5953 5954 Status Process::UpdateAutomaticSignalFiltering() { 5955 // Default implementation does nothign. 5956 // No automatic signal filtering to speak of. 5957 return Status(); 5958 } 5959 5960 UtilityFunction *Process::GetLoadImageUtilityFunction( 5961 Platform *platform, 5962 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 5963 if (platform != GetTarget().GetPlatform().get()) 5964 return nullptr; 5965 llvm::call_once(m_dlopen_utility_func_flag_once, 5966 [&] { m_dlopen_utility_func_up = factory(); }); 5967 return m_dlopen_utility_func_up.get(); 5968 } 5969 5970 bool Process::CallVoidArgVoidPtrReturn(const Address *address, 5971 addr_t &returned_func, 5972 bool trap_exceptions) { 5973 Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); 5974 if (thread == nullptr || address == nullptr) 5975 return false; 5976 5977 EvaluateExpressionOptions options; 5978 options.SetStopOthers(true); 5979 options.SetUnwindOnError(true); 5980 options.SetIgnoreBreakpoints(true); 5981 options.SetTryAllThreads(true); 5982 options.SetDebug(false); 5983 options.SetTimeout(GetUtilityExpressionTimeout()); 5984 options.SetTrapExceptions(trap_exceptions); 5985 5986 auto type_system_or_err = 5987 GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC); 5988 if (!type_system_or_err) { 5989 llvm::consumeError(type_system_or_err.takeError()); 5990 return false; 5991 } 5992 CompilerType void_ptr_type = 5993 type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType(); 5994 lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( 5995 *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); 5996 if (call_plan_sp) { 5997 DiagnosticManager diagnostics; 5998 5999 StackFrame *frame = thread->GetStackFrameAtIndex(0).get(); 6000 if (frame) { 6001 ExecutionContext exe_ctx; 6002 frame->CalculateExecutionContext(exe_ctx); 6003 ExpressionResults result = 6004 RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics); 6005 if (result == eExpressionCompleted) { 6006 returned_func = 6007 call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( 6008 LLDB_INVALID_ADDRESS); 6009 6010 if (GetAddressByteSize() == 4) { 6011 if (returned_func == UINT32_MAX) 6012 return false; 6013 } else if (GetAddressByteSize() == 8) { 6014 if (returned_func == UINT64_MAX) 6015 return false; 6016 } 6017 return true; 6018 } 6019 } 6020 } 6021 6022 return false; 6023 } 6024