1 //===-- Process.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <atomic> 10 #include <memory> 11 #include <mutex> 12 13 #include "llvm/Support/ScopedPrinter.h" 14 #include "llvm/Support/Threading.h" 15 16 #include "lldb/Breakpoint/BreakpointLocation.h" 17 #include "lldb/Breakpoint/StoppointCallbackContext.h" 18 #include "lldb/Core/Debugger.h" 19 #include "lldb/Core/Module.h" 20 #include "lldb/Core/ModuleSpec.h" 21 #include "lldb/Core/PluginManager.h" 22 #include "lldb/Core/StreamFile.h" 23 #include "lldb/Expression/DiagnosticManager.h" 24 #include "lldb/Expression/DynamicCheckerFunctions.h" 25 #include "lldb/Expression/UserExpression.h" 26 #include "lldb/Expression/UtilityFunction.h" 27 #include "lldb/Host/ConnectionFileDescriptor.h" 28 #include "lldb/Host/FileSystem.h" 29 #include "lldb/Host/Host.h" 30 #include "lldb/Host/HostInfo.h" 31 #include "lldb/Host/OptionParser.h" 32 #include "lldb/Host/Pipe.h" 33 #include "lldb/Host/Terminal.h" 34 #include "lldb/Host/ThreadLauncher.h" 35 #include "lldb/Interpreter/CommandInterpreter.h" 36 #include "lldb/Interpreter/OptionArgParser.h" 37 #include "lldb/Interpreter/OptionValueProperties.h" 38 #include "lldb/Symbol/Function.h" 39 #include "lldb/Symbol/Symbol.h" 40 #include "lldb/Target/ABI.h" 41 #include "lldb/Target/AssertFrameRecognizer.h" 42 #include "lldb/Target/DynamicLoader.h" 43 #include "lldb/Target/InstrumentationRuntime.h" 44 #include "lldb/Target/JITLoader.h" 45 #include "lldb/Target/JITLoaderList.h" 46 #include "lldb/Target/Language.h" 47 #include "lldb/Target/LanguageRuntime.h" 48 #include "lldb/Target/MemoryHistory.h" 49 #include "lldb/Target/MemoryRegionInfo.h" 50 #include "lldb/Target/OperatingSystem.h" 51 #include "lldb/Target/Platform.h" 52 #include "lldb/Target/Process.h" 53 #include "lldb/Target/RegisterContext.h" 54 #include "lldb/Target/StopInfo.h" 55 #include "lldb/Target/StructuredDataPlugin.h" 56 #include "lldb/Target/SystemRuntime.h" 57 #include "lldb/Target/Target.h" 58 #include "lldb/Target/TargetList.h" 59 #include "lldb/Target/Thread.h" 60 #include "lldb/Target/ThreadPlan.h" 61 #include "lldb/Target/ThreadPlanBase.h" 62 #include "lldb/Target/ThreadPlanCallFunction.h" 63 #include "lldb/Target/ThreadPlanStack.h" 64 #include "lldb/Target/UnixSignals.h" 65 #include "lldb/Utility/Event.h" 66 #include "lldb/Utility/Log.h" 67 #include "lldb/Utility/NameMatches.h" 68 #include "lldb/Utility/ProcessInfo.h" 69 #include "lldb/Utility/SelectHelper.h" 70 #include "lldb/Utility/State.h" 71 72 using namespace lldb; 73 using namespace lldb_private; 74 using namespace std::chrono; 75 76 // Comment out line below to disable memory caching, overriding the process 77 // setting target.process.disable-memory-cache 78 #define ENABLE_MEMORY_CACHING 79 80 #ifdef ENABLE_MEMORY_CACHING 81 #define DISABLE_MEM_CACHE_DEFAULT false 82 #else 83 #define DISABLE_MEM_CACHE_DEFAULT true 84 #endif 85 86 class ProcessOptionValueProperties 87 : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> { 88 public: 89 ProcessOptionValueProperties(ConstString name) : Cloneable(name) {} 90 91 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 92 bool will_modify, 93 uint32_t idx) const override { 94 // When getting the value for a key from the process options, we will 95 // always try and grab the setting from the current process if there is 96 // one. Else we just use the one from this instance. 97 if (exe_ctx) { 98 Process *process = exe_ctx->GetProcessPtr(); 99 if (process) { 100 ProcessOptionValueProperties *instance_properties = 101 static_cast<ProcessOptionValueProperties *>( 102 process->GetValueProperties().get()); 103 if (this != instance_properties) 104 return instance_properties->ProtectedGetPropertyAtIndex(idx); 105 } 106 } 107 return ProtectedGetPropertyAtIndex(idx); 108 } 109 }; 110 111 #define LLDB_PROPERTIES_process 112 #include "TargetProperties.inc" 113 114 enum { 115 #define LLDB_PROPERTIES_process 116 #include "TargetPropertiesEnum.inc" 117 ePropertyExperimental, 118 }; 119 120 #define LLDB_PROPERTIES_process_experimental 121 #include "TargetProperties.inc" 122 123 enum { 124 #define LLDB_PROPERTIES_process_experimental 125 #include "TargetPropertiesEnum.inc" 126 }; 127 128 class ProcessExperimentalOptionValueProperties 129 : public Cloneable<ProcessExperimentalOptionValueProperties, 130 OptionValueProperties> { 131 public: 132 ProcessExperimentalOptionValueProperties() 133 : Cloneable( 134 ConstString(Properties::GetExperimentalSettingsName())) {} 135 }; 136 137 ProcessExperimentalProperties::ProcessExperimentalProperties() 138 : Properties(OptionValuePropertiesSP( 139 new ProcessExperimentalOptionValueProperties())) { 140 m_collection_sp->Initialize(g_process_experimental_properties); 141 } 142 143 ProcessProperties::ProcessProperties(lldb_private::Process *process) 144 : Properties(), 145 m_process(process) // Can be nullptr for global ProcessProperties 146 { 147 if (process == nullptr) { 148 // Global process properties, set them up one time 149 m_collection_sp = 150 std::make_shared<ProcessOptionValueProperties>(ConstString("process")); 151 m_collection_sp->Initialize(g_process_properties); 152 m_collection_sp->AppendProperty( 153 ConstString("thread"), ConstString("Settings specific to threads."), 154 true, Thread::GetGlobalProperties()->GetValueProperties()); 155 } else { 156 m_collection_sp = 157 OptionValueProperties::CreateLocalCopy(*Process::GetGlobalProperties()); 158 m_collection_sp->SetValueChangedCallback( 159 ePropertyPythonOSPluginPath, 160 [this] { m_process->LoadOperatingSystemPlugin(true); }); 161 } 162 163 m_experimental_properties_up = 164 std::make_unique<ProcessExperimentalProperties>(); 165 m_collection_sp->AppendProperty( 166 ConstString(Properties::GetExperimentalSettingsName()), 167 ConstString("Experimental settings - setting these won't produce " 168 "errors if the setting is not present."), 169 true, m_experimental_properties_up->GetValueProperties()); 170 } 171 172 ProcessProperties::~ProcessProperties() = default; 173 174 bool ProcessProperties::GetDisableMemoryCache() const { 175 const uint32_t idx = ePropertyDisableMemCache; 176 return m_collection_sp->GetPropertyAtIndexAsBoolean( 177 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 178 } 179 180 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 181 const uint32_t idx = ePropertyMemCacheLineSize; 182 return m_collection_sp->GetPropertyAtIndexAsUInt64( 183 nullptr, idx, g_process_properties[idx].default_uint_value); 184 } 185 186 Args ProcessProperties::GetExtraStartupCommands() const { 187 Args args; 188 const uint32_t idx = ePropertyExtraStartCommand; 189 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 190 return args; 191 } 192 193 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 194 const uint32_t idx = ePropertyExtraStartCommand; 195 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 196 } 197 198 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 199 const uint32_t idx = ePropertyPythonOSPluginPath; 200 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 201 } 202 203 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 204 const uint32_t idx = ePropertyPythonOSPluginPath; 205 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 206 } 207 208 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 209 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 210 return m_collection_sp->GetPropertyAtIndexAsBoolean( 211 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 212 } 213 214 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 215 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 216 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 217 } 218 219 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 220 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 221 return m_collection_sp->GetPropertyAtIndexAsBoolean( 222 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 223 } 224 225 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 226 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 227 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 228 } 229 230 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 231 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 232 return m_collection_sp->GetPropertyAtIndexAsBoolean( 233 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 234 } 235 236 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 237 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 238 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 239 } 240 241 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const { 242 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 243 return m_collection_sp->GetPropertyAtIndexAsBoolean( 244 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 245 } 246 247 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) { 248 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 249 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, disable); 250 m_process->Flush(); 251 } 252 253 bool ProcessProperties::GetDetachKeepsStopped() const { 254 const uint32_t idx = ePropertyDetachKeepsStopped; 255 return m_collection_sp->GetPropertyAtIndexAsBoolean( 256 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 257 } 258 259 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 260 const uint32_t idx = ePropertyDetachKeepsStopped; 261 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 262 } 263 264 bool ProcessProperties::GetWarningsOptimization() const { 265 const uint32_t idx = ePropertyWarningOptimization; 266 return m_collection_sp->GetPropertyAtIndexAsBoolean( 267 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 268 } 269 270 bool ProcessProperties::GetWarningsUnsupportedLanguage() const { 271 const uint32_t idx = ePropertyWarningUnsupportedLanguage; 272 return m_collection_sp->GetPropertyAtIndexAsBoolean( 273 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 274 } 275 276 bool ProcessProperties::GetStopOnExec() const { 277 const uint32_t idx = ePropertyStopOnExec; 278 return m_collection_sp->GetPropertyAtIndexAsBoolean( 279 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 280 } 281 282 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { 283 const uint32_t idx = ePropertyUtilityExpressionTimeout; 284 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 285 nullptr, idx, g_process_properties[idx].default_uint_value); 286 return std::chrono::seconds(value); 287 } 288 289 bool ProcessProperties::GetSteppingRunsAllThreads() const { 290 const uint32_t idx = ePropertySteppingRunsAllThreads; 291 return m_collection_sp->GetPropertyAtIndexAsBoolean( 292 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 293 } 294 295 bool ProcessProperties::GetOSPluginReportsAllThreads() const { 296 const bool fail_value = true; 297 const Property *exp_property = 298 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 299 OptionValueProperties *exp_values = 300 exp_property->GetValue()->GetAsProperties(); 301 if (!exp_values) 302 return fail_value; 303 304 return exp_values->GetPropertyAtIndexAsBoolean( 305 nullptr, ePropertyOSPluginReportsAllThreads, fail_value); 306 } 307 308 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) { 309 const Property *exp_property = 310 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 311 OptionValueProperties *exp_values = 312 exp_property->GetValue()->GetAsProperties(); 313 if (exp_values) 314 exp_values->SetPropertyAtIndexAsBoolean( 315 nullptr, ePropertyOSPluginReportsAllThreads, does_report); 316 } 317 318 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 319 llvm::StringRef plugin_name, 320 ListenerSP listener_sp, 321 const FileSpec *crash_file_path, 322 bool can_connect) { 323 static uint32_t g_process_unique_id = 0; 324 325 ProcessSP process_sp; 326 ProcessCreateInstance create_callback = nullptr; 327 if (!plugin_name.empty()) { 328 ConstString const_plugin_name(plugin_name); 329 create_callback = 330 PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name); 331 if (create_callback) { 332 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 333 can_connect); 334 if (process_sp) { 335 if (process_sp->CanDebug(target_sp, true)) { 336 process_sp->m_process_unique_id = ++g_process_unique_id; 337 } else 338 process_sp.reset(); 339 } 340 } 341 } else { 342 for (uint32_t idx = 0; 343 (create_callback = 344 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 345 ++idx) { 346 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 347 can_connect); 348 if (process_sp) { 349 if (process_sp->CanDebug(target_sp, false)) { 350 process_sp->m_process_unique_id = ++g_process_unique_id; 351 break; 352 } else 353 process_sp.reset(); 354 } 355 } 356 } 357 return process_sp; 358 } 359 360 ConstString &Process::GetStaticBroadcasterClass() { 361 static ConstString class_name("lldb.process"); 362 return class_name; 363 } 364 365 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 366 : Process(target_sp, listener_sp, 367 UnixSignals::Create(HostInfo::GetArchitecture())) { 368 // This constructor just delegates to the full Process constructor, 369 // defaulting to using the Host's UnixSignals. 370 } 371 372 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 373 const UnixSignalsSP &unix_signals_sp) 374 : ProcessProperties(this), 375 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 376 Process::GetStaticBroadcasterClass().AsCString()), 377 m_target_wp(target_sp), m_public_state(eStateUnloaded), 378 m_private_state(eStateUnloaded), 379 m_private_state_broadcaster(nullptr, 380 "lldb.process.internal_state_broadcaster"), 381 m_private_state_control_broadcaster( 382 nullptr, "lldb.process.internal_state_control_broadcaster"), 383 m_private_state_listener_sp( 384 Listener::MakeListener("lldb.process.internal_state_listener")), 385 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 386 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 387 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 388 m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this), 389 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 390 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 391 m_breakpoint_site_list(), m_dynamic_checkers_up(), 392 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 393 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 394 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 395 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 396 m_memory_cache(*this), m_allocated_memory_cache(*this), 397 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), 398 m_private_run_lock(), m_finalizing(false), 399 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 400 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 401 m_can_interpret_function_calls(false), m_warnings_issued(), 402 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 403 CheckInWithManager(); 404 405 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 406 LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this)); 407 408 if (!m_unix_signals_sp) 409 m_unix_signals_sp = std::make_shared<UnixSignals>(); 410 411 SetEventName(eBroadcastBitStateChanged, "state-changed"); 412 SetEventName(eBroadcastBitInterrupt, "interrupt"); 413 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 414 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 415 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 416 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 417 418 m_private_state_control_broadcaster.SetEventName( 419 eBroadcastInternalStateControlStop, "control-stop"); 420 m_private_state_control_broadcaster.SetEventName( 421 eBroadcastInternalStateControlPause, "control-pause"); 422 m_private_state_control_broadcaster.SetEventName( 423 eBroadcastInternalStateControlResume, "control-resume"); 424 425 m_listener_sp->StartListeningForEvents( 426 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 427 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 428 eBroadcastBitProfileData | eBroadcastBitStructuredData); 429 430 m_private_state_listener_sp->StartListeningForEvents( 431 &m_private_state_broadcaster, 432 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 433 434 m_private_state_listener_sp->StartListeningForEvents( 435 &m_private_state_control_broadcaster, 436 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 437 eBroadcastInternalStateControlResume); 438 // We need something valid here, even if just the default UnixSignalsSP. 439 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 440 441 // Allow the platform to override the default cache line size 442 OptionValueSP value_sp = 443 m_collection_sp 444 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 445 ->GetValue(); 446 uint32_t platform_cache_line_size = 447 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 448 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 449 value_sp->SetUInt64Value(platform_cache_line_size); 450 451 RegisterAssertFrameRecognizer(this); 452 } 453 454 Process::~Process() { 455 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 456 LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this)); 457 StopPrivateStateThread(); 458 459 // ThreadList::Clear() will try to acquire this process's mutex, so 460 // explicitly clear the thread list here to ensure that the mutex is not 461 // destroyed before the thread list. 462 m_thread_list.Clear(); 463 } 464 465 const ProcessPropertiesSP &Process::GetGlobalProperties() { 466 // NOTE: intentional leak so we don't crash if global destructor chain gets 467 // called as other threads still use the result of this function 468 static ProcessPropertiesSP *g_settings_sp_ptr = 469 new ProcessPropertiesSP(new ProcessProperties(nullptr)); 470 return *g_settings_sp_ptr; 471 } 472 473 void Process::Finalize() { 474 if (m_finalizing.exchange(true)) 475 return; 476 477 // Destroy this process if needed 478 switch (GetPrivateState()) { 479 case eStateConnected: 480 case eStateAttaching: 481 case eStateLaunching: 482 case eStateStopped: 483 case eStateRunning: 484 case eStateStepping: 485 case eStateCrashed: 486 case eStateSuspended: 487 DestroyImpl(false); 488 break; 489 490 case eStateInvalid: 491 case eStateUnloaded: 492 case eStateDetached: 493 case eStateExited: 494 break; 495 } 496 497 // Clear our broadcaster before we proceed with destroying 498 Broadcaster::Clear(); 499 500 // Do any cleanup needed prior to being destructed... Subclasses that 501 // override this method should call this superclass method as well. 502 503 // We need to destroy the loader before the derived Process class gets 504 // destroyed since it is very likely that undoing the loader will require 505 // access to the real process. 506 m_dynamic_checkers_up.reset(); 507 m_abi_sp.reset(); 508 m_os_up.reset(); 509 m_system_runtime_up.reset(); 510 m_dyld_up.reset(); 511 m_jit_loaders_up.reset(); 512 m_thread_plans.Clear(); 513 m_thread_list_real.Destroy(); 514 m_thread_list.Destroy(); 515 m_extended_thread_list.Destroy(); 516 m_queue_list.Clear(); 517 m_queue_list_stop_id = 0; 518 std::vector<Notifications> empty_notifications; 519 m_notifications.swap(empty_notifications); 520 m_image_tokens.clear(); 521 m_memory_cache.Clear(); 522 m_allocated_memory_cache.Clear(); 523 { 524 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 525 m_language_runtimes.clear(); 526 } 527 m_instrumentation_runtimes.clear(); 528 m_next_event_action_up.reset(); 529 // Clear the last natural stop ID since it has a strong reference to this 530 // process 531 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 532 //#ifdef LLDB_CONFIGURATION_DEBUG 533 // StreamFile s(stdout, false); 534 // EventSP event_sp; 535 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 536 // { 537 // event_sp->Dump (&s); 538 // s.EOL(); 539 // } 540 //#endif 541 // We have to be very careful here as the m_private_state_listener might 542 // contain events that have ProcessSP values in them which can keep this 543 // process around forever. These events need to be cleared out. 544 m_private_state_listener_sp->Clear(); 545 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 546 m_public_run_lock.SetStopped(); 547 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 548 m_private_run_lock.SetStopped(); 549 m_structured_data_plugin_map.clear(); 550 } 551 552 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 553 m_notifications.push_back(callbacks); 554 if (callbacks.initialize != nullptr) 555 callbacks.initialize(callbacks.baton, this); 556 } 557 558 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 559 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 560 for (pos = m_notifications.begin(); pos != end; ++pos) { 561 if (pos->baton == callbacks.baton && 562 pos->initialize == callbacks.initialize && 563 pos->process_state_changed == callbacks.process_state_changed) { 564 m_notifications.erase(pos); 565 return true; 566 } 567 } 568 return false; 569 } 570 571 void Process::SynchronouslyNotifyStateChanged(StateType state) { 572 std::vector<Notifications>::iterator notification_pos, 573 notification_end = m_notifications.end(); 574 for (notification_pos = m_notifications.begin(); 575 notification_pos != notification_end; ++notification_pos) { 576 if (notification_pos->process_state_changed) 577 notification_pos->process_state_changed(notification_pos->baton, this, 578 state); 579 } 580 } 581 582 // FIXME: We need to do some work on events before the general Listener sees 583 // them. 584 // For instance if we are continuing from a breakpoint, we need to ensure that 585 // we do the little "insert real insn, step & stop" trick. But we can't do 586 // that when the event is delivered by the broadcaster - since that is done on 587 // the thread that is waiting for new events, so if we needed more than one 588 // event for our handling, we would stall. So instead we do it when we fetch 589 // the event off of the queue. 590 // 591 592 StateType Process::GetNextEvent(EventSP &event_sp) { 593 StateType state = eStateInvalid; 594 595 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 596 std::chrono::seconds(0)) && 597 event_sp) 598 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 599 600 return state; 601 } 602 603 void Process::SyncIOHandler(uint32_t iohandler_id, 604 const Timeout<std::micro> &timeout) { 605 // don't sync (potentially context switch) in case where there is no process 606 // IO 607 if (!m_process_input_reader) 608 return; 609 610 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 611 612 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 613 if (Result) { 614 LLDB_LOG( 615 log, 616 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 617 iohandler_id, *Result); 618 } else { 619 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 620 iohandler_id); 621 } 622 } 623 624 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 625 EventSP *event_sp_ptr, bool wait_always, 626 ListenerSP hijack_listener_sp, 627 Stream *stream, bool use_run_lock) { 628 // We can't just wait for a "stopped" event, because the stopped event may 629 // have restarted the target. We have to actually check each event, and in 630 // the case of a stopped event check the restarted flag on the event. 631 if (event_sp_ptr) 632 event_sp_ptr->reset(); 633 StateType state = GetState(); 634 // If we are exited or detached, we won't ever get back to any other valid 635 // state... 636 if (state == eStateDetached || state == eStateExited) 637 return state; 638 639 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 640 LLDB_LOG(log, "timeout = {0}", timeout); 641 642 if (!wait_always && StateIsStoppedState(state, true) && 643 StateIsStoppedState(GetPrivateState(), true)) { 644 LLDB_LOGF(log, 645 "Process::%s returning without waiting for events; process " 646 "private and public states are already 'stopped'.", 647 __FUNCTION__); 648 // We need to toggle the run lock as this won't get done in 649 // SetPublicState() if the process is hijacked. 650 if (hijack_listener_sp && use_run_lock) 651 m_public_run_lock.SetStopped(); 652 return state; 653 } 654 655 while (state != eStateInvalid) { 656 EventSP event_sp; 657 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 658 if (event_sp_ptr && event_sp) 659 *event_sp_ptr = event_sp; 660 661 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 662 Process::HandleProcessStateChangedEvent(event_sp, stream, 663 pop_process_io_handler); 664 665 switch (state) { 666 case eStateCrashed: 667 case eStateDetached: 668 case eStateExited: 669 case eStateUnloaded: 670 // We need to toggle the run lock as this won't get done in 671 // SetPublicState() if the process is hijacked. 672 if (hijack_listener_sp && use_run_lock) 673 m_public_run_lock.SetStopped(); 674 return state; 675 case eStateStopped: 676 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 677 continue; 678 else { 679 // We need to toggle the run lock as this won't get done in 680 // SetPublicState() if the process is hijacked. 681 if (hijack_listener_sp && use_run_lock) 682 m_public_run_lock.SetStopped(); 683 return state; 684 } 685 default: 686 continue; 687 } 688 } 689 return state; 690 } 691 692 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 693 Stream *stream, 694 bool &pop_process_io_handler) { 695 const bool handle_pop = pop_process_io_handler; 696 697 pop_process_io_handler = false; 698 ProcessSP process_sp = 699 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 700 701 if (!process_sp) 702 return false; 703 704 StateType event_state = 705 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 706 if (event_state == eStateInvalid) 707 return false; 708 709 switch (event_state) { 710 case eStateInvalid: 711 case eStateUnloaded: 712 case eStateAttaching: 713 case eStateLaunching: 714 case eStateStepping: 715 case eStateDetached: 716 if (stream) 717 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 718 StateAsCString(event_state)); 719 if (event_state == eStateDetached) 720 pop_process_io_handler = true; 721 break; 722 723 case eStateConnected: 724 case eStateRunning: 725 // Don't be chatty when we run... 726 break; 727 728 case eStateExited: 729 if (stream) 730 process_sp->GetStatus(*stream); 731 pop_process_io_handler = true; 732 break; 733 734 case eStateStopped: 735 case eStateCrashed: 736 case eStateSuspended: 737 // Make sure the program hasn't been auto-restarted: 738 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 739 if (stream) { 740 size_t num_reasons = 741 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 742 if (num_reasons > 0) { 743 // FIXME: Do we want to report this, or would that just be annoyingly 744 // chatty? 745 if (num_reasons == 1) { 746 const char *reason = 747 Process::ProcessEventData::GetRestartedReasonAtIndex( 748 event_sp.get(), 0); 749 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 750 process_sp->GetID(), 751 reason ? reason : "<UNKNOWN REASON>"); 752 } else { 753 stream->Printf("Process %" PRIu64 754 " stopped and restarted, reasons:\n", 755 process_sp->GetID()); 756 757 for (size_t i = 0; i < num_reasons; i++) { 758 const char *reason = 759 Process::ProcessEventData::GetRestartedReasonAtIndex( 760 event_sp.get(), i); 761 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 762 } 763 } 764 } 765 } 766 } else { 767 StopInfoSP curr_thread_stop_info_sp; 768 // Lock the thread list so it doesn't change on us, this is the scope for 769 // the locker: 770 { 771 ThreadList &thread_list = process_sp->GetThreadList(); 772 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 773 774 ThreadSP curr_thread(thread_list.GetSelectedThread()); 775 ThreadSP thread; 776 StopReason curr_thread_stop_reason = eStopReasonInvalid; 777 if (curr_thread) { 778 curr_thread_stop_reason = curr_thread->GetStopReason(); 779 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 780 } 781 if (!curr_thread || !curr_thread->IsValid() || 782 curr_thread_stop_reason == eStopReasonInvalid || 783 curr_thread_stop_reason == eStopReasonNone) { 784 // Prefer a thread that has just completed its plan over another 785 // thread as current thread. 786 ThreadSP plan_thread; 787 ThreadSP other_thread; 788 789 const size_t num_threads = thread_list.GetSize(); 790 size_t i; 791 for (i = 0; i < num_threads; ++i) { 792 thread = thread_list.GetThreadAtIndex(i); 793 StopReason thread_stop_reason = thread->GetStopReason(); 794 switch (thread_stop_reason) { 795 case eStopReasonInvalid: 796 case eStopReasonNone: 797 break; 798 799 case eStopReasonSignal: { 800 // Don't select a signal thread if we weren't going to stop at 801 // that signal. We have to have had another reason for stopping 802 // here, and the user doesn't want to see this thread. 803 uint64_t signo = thread->GetStopInfo()->GetValue(); 804 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 805 if (!other_thread) 806 other_thread = thread; 807 } 808 break; 809 } 810 case eStopReasonTrace: 811 case eStopReasonBreakpoint: 812 case eStopReasonWatchpoint: 813 case eStopReasonException: 814 case eStopReasonExec: 815 case eStopReasonThreadExiting: 816 case eStopReasonInstrumentation: 817 case eStopReasonProcessorTrace: 818 if (!other_thread) 819 other_thread = thread; 820 break; 821 case eStopReasonPlanComplete: 822 if (!plan_thread) 823 plan_thread = thread; 824 break; 825 } 826 } 827 if (plan_thread) 828 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 829 else if (other_thread) 830 thread_list.SetSelectedThreadByID(other_thread->GetID()); 831 else { 832 if (curr_thread && curr_thread->IsValid()) 833 thread = curr_thread; 834 else 835 thread = thread_list.GetThreadAtIndex(0); 836 837 if (thread) 838 thread_list.SetSelectedThreadByID(thread->GetID()); 839 } 840 } 841 } 842 // Drop the ThreadList mutex by here, since GetThreadStatus below might 843 // have to run code, e.g. for Data formatters, and if we hold the 844 // ThreadList mutex, then the process is going to have a hard time 845 // restarting the process. 846 if (stream) { 847 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 848 if (debugger.GetTargetList().GetSelectedTarget().get() == 849 &process_sp->GetTarget()) { 850 ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); 851 852 if (!thread_sp || !thread_sp->IsValid()) 853 return false; 854 855 const bool only_threads_with_stop_reason = true; 856 const uint32_t start_frame = thread_sp->GetSelectedFrameIndex(); 857 const uint32_t num_frames = 1; 858 const uint32_t num_frames_with_source = 1; 859 const bool stop_format = true; 860 861 process_sp->GetStatus(*stream); 862 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 863 start_frame, num_frames, 864 num_frames_with_source, 865 stop_format); 866 if (curr_thread_stop_info_sp) { 867 lldb::addr_t crashing_address; 868 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 869 curr_thread_stop_info_sp, &crashing_address); 870 if (valobj_sp) { 871 const ValueObject::GetExpressionPathFormat format = 872 ValueObject::GetExpressionPathFormat:: 873 eGetExpressionPathFormatHonorPointers; 874 stream->PutCString("Likely cause: "); 875 valobj_sp->GetExpressionPath(*stream, format); 876 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 877 } 878 } 879 } else { 880 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 881 process_sp->GetTarget().shared_from_this()); 882 if (target_idx != UINT32_MAX) 883 stream->Printf("Target %d: (", target_idx); 884 else 885 stream->Printf("Target <unknown index>: ("); 886 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 887 stream->Printf(") stopped.\n"); 888 } 889 } 890 891 // Pop the process IO handler 892 pop_process_io_handler = true; 893 } 894 break; 895 } 896 897 if (handle_pop && pop_process_io_handler) 898 process_sp->PopProcessIOHandler(); 899 900 return true; 901 } 902 903 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 904 if (listener_sp) { 905 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 906 eBroadcastBitInterrupt); 907 } else 908 return false; 909 } 910 911 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 912 913 StateType Process::GetStateChangedEvents(EventSP &event_sp, 914 const Timeout<std::micro> &timeout, 915 ListenerSP hijack_listener_sp) { 916 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 917 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 918 919 ListenerSP listener_sp = hijack_listener_sp; 920 if (!listener_sp) 921 listener_sp = m_listener_sp; 922 923 StateType state = eStateInvalid; 924 if (listener_sp->GetEventForBroadcasterWithType( 925 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 926 timeout)) { 927 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 928 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 929 else 930 LLDB_LOG(log, "got no event or was interrupted."); 931 } 932 933 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 934 return state; 935 } 936 937 Event *Process::PeekAtStateChangedEvents() { 938 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 939 940 LLDB_LOGF(log, "Process::%s...", __FUNCTION__); 941 942 Event *event_ptr; 943 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 944 this, eBroadcastBitStateChanged); 945 if (log) { 946 if (event_ptr) { 947 LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, 948 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 949 } else { 950 LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); 951 } 952 } 953 return event_ptr; 954 } 955 956 StateType 957 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 958 const Timeout<std::micro> &timeout) { 959 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 960 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 961 962 StateType state = eStateInvalid; 963 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 964 &m_private_state_broadcaster, 965 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 966 timeout)) 967 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 968 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 969 970 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 971 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 972 return state; 973 } 974 975 bool Process::GetEventsPrivate(EventSP &event_sp, 976 const Timeout<std::micro> &timeout, 977 bool control_only) { 978 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 979 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 980 981 if (control_only) 982 return m_private_state_listener_sp->GetEventForBroadcaster( 983 &m_private_state_control_broadcaster, event_sp, timeout); 984 else 985 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 986 } 987 988 bool Process::IsRunning() const { 989 return StateIsRunningState(m_public_state.GetValue()); 990 } 991 992 int Process::GetExitStatus() { 993 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 994 995 if (m_public_state.GetValue() == eStateExited) 996 return m_exit_status; 997 return -1; 998 } 999 1000 const char *Process::GetExitDescription() { 1001 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1002 1003 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1004 return m_exit_string.c_str(); 1005 return nullptr; 1006 } 1007 1008 bool Process::SetExitStatus(int status, const char *cstr) { 1009 // Use a mutex to protect setting the exit status. 1010 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1011 1012 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1013 LIBLLDB_LOG_PROCESS)); 1014 LLDB_LOGF( 1015 log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1016 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : ""); 1017 1018 // We were already in the exited state 1019 if (m_private_state.GetValue() == eStateExited) { 1020 LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because " 1021 "state was already set to eStateExited"); 1022 return false; 1023 } 1024 1025 m_exit_status = status; 1026 if (cstr) 1027 m_exit_string = cstr; 1028 else 1029 m_exit_string.clear(); 1030 1031 // Clear the last natural stop ID since it has a strong reference to this 1032 // process 1033 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1034 1035 SetPrivateState(eStateExited); 1036 1037 // Allow subclasses to do some cleanup 1038 DidExit(); 1039 1040 return true; 1041 } 1042 1043 bool Process::IsAlive() { 1044 switch (m_private_state.GetValue()) { 1045 case eStateConnected: 1046 case eStateAttaching: 1047 case eStateLaunching: 1048 case eStateStopped: 1049 case eStateRunning: 1050 case eStateStepping: 1051 case eStateCrashed: 1052 case eStateSuspended: 1053 return true; 1054 default: 1055 return false; 1056 } 1057 } 1058 1059 // This static callback can be used to watch for local child processes on the 1060 // current host. The child process exits, the process will be found in the 1061 // global target list (we want to be completely sure that the 1062 // lldb_private::Process doesn't go away before we can deliver the signal. 1063 bool Process::SetProcessExitStatus( 1064 lldb::pid_t pid, bool exited, 1065 int signo, // Zero for no signal 1066 int exit_status // Exit value of process if signal is zero 1067 ) { 1068 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 1069 LLDB_LOGF(log, 1070 "Process::SetProcessExitStatus (pid=%" PRIu64 1071 ", exited=%i, signal=%i, exit_status=%i)\n", 1072 pid, exited, signo, exit_status); 1073 1074 if (exited) { 1075 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1076 if (target_sp) { 1077 ProcessSP process_sp(target_sp->GetProcessSP()); 1078 if (process_sp) { 1079 const char *signal_cstr = nullptr; 1080 if (signo) 1081 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1082 1083 process_sp->SetExitStatus(exit_status, signal_cstr); 1084 } 1085 } 1086 return true; 1087 } 1088 return false; 1089 } 1090 1091 bool Process::UpdateThreadList(ThreadList &old_thread_list, 1092 ThreadList &new_thread_list) { 1093 m_thread_plans.ClearThreadCache(); 1094 return DoUpdateThreadList(old_thread_list, new_thread_list); 1095 } 1096 1097 void Process::UpdateThreadListIfNeeded() { 1098 const uint32_t stop_id = GetStopID(); 1099 if (m_thread_list.GetSize(false) == 0 || 1100 stop_id != m_thread_list.GetStopID()) { 1101 bool clear_unused_threads = true; 1102 const StateType state = GetPrivateState(); 1103 if (StateIsStoppedState(state, true)) { 1104 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1105 m_thread_list.SetStopID(stop_id); 1106 1107 // m_thread_list does have its own mutex, but we need to hold onto the 1108 // mutex between the call to UpdateThreadList(...) and the 1109 // os->UpdateThreadList(...) so it doesn't change on us 1110 ThreadList &old_thread_list = m_thread_list; 1111 ThreadList real_thread_list(this); 1112 ThreadList new_thread_list(this); 1113 // Always update the thread list with the protocol specific thread list, 1114 // but only update if "true" is returned 1115 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1116 // Don't call into the OperatingSystem to update the thread list if we 1117 // are shutting down, since that may call back into the SBAPI's, 1118 // requiring the API lock which is already held by whoever is shutting 1119 // us down, causing a deadlock. 1120 OperatingSystem *os = GetOperatingSystem(); 1121 if (os && !m_destroy_in_process) { 1122 // Clear any old backing threads where memory threads might have been 1123 // backed by actual threads from the lldb_private::Process subclass 1124 size_t num_old_threads = old_thread_list.GetSize(false); 1125 for (size_t i = 0; i < num_old_threads; ++i) 1126 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1127 // See if the OS plugin reports all threads. If it does, then 1128 // it is safe to clear unseen thread's plans here. Otherwise we 1129 // should preserve them in case they show up again: 1130 clear_unused_threads = GetOSPluginReportsAllThreads(); 1131 1132 // Turn off dynamic types to ensure we don't run any expressions. 1133 // Objective-C can run an expression to determine if a SBValue is a 1134 // dynamic type or not and we need to avoid this. OperatingSystem 1135 // plug-ins can't run expressions that require running code... 1136 1137 Target &target = GetTarget(); 1138 const lldb::DynamicValueType saved_prefer_dynamic = 1139 target.GetPreferDynamicValue(); 1140 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1141 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1142 1143 // Now let the OperatingSystem plug-in update the thread list 1144 1145 os->UpdateThreadList( 1146 old_thread_list, // Old list full of threads created by OS plug-in 1147 real_thread_list, // The actual thread list full of threads 1148 // created by each lldb_private::Process 1149 // subclass 1150 new_thread_list); // The new thread list that we will show to the 1151 // user that gets filled in 1152 1153 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1154 target.SetPreferDynamicValue(saved_prefer_dynamic); 1155 } else { 1156 // No OS plug-in, the new thread list is the same as the real thread 1157 // list. 1158 new_thread_list = real_thread_list; 1159 } 1160 1161 m_thread_list_real.Update(real_thread_list); 1162 m_thread_list.Update(new_thread_list); 1163 m_thread_list.SetStopID(stop_id); 1164 1165 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1166 // Clear any extended threads that we may have accumulated previously 1167 m_extended_thread_list.Clear(); 1168 m_extended_thread_stop_id = GetLastNaturalStopID(); 1169 1170 m_queue_list.Clear(); 1171 m_queue_list_stop_id = GetLastNaturalStopID(); 1172 } 1173 } 1174 // Now update the plan stack map. 1175 // If we do have an OS plugin, any absent real threads in the 1176 // m_thread_list have already been removed from the ThreadPlanStackMap. 1177 // So any remaining threads are OS Plugin threads, and those we want to 1178 // preserve in case they show up again. 1179 m_thread_plans.Update(m_thread_list, clear_unused_threads); 1180 } 1181 } 1182 } 1183 1184 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) { 1185 return m_thread_plans.Find(tid); 1186 } 1187 1188 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) { 1189 return m_thread_plans.PrunePlansForTID(tid); 1190 } 1191 1192 void Process::PruneThreadPlans() { 1193 m_thread_plans.Update(GetThreadList(), true, false); 1194 } 1195 1196 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid, 1197 lldb::DescriptionLevel desc_level, 1198 bool internal, bool condense_trivial, 1199 bool skip_unreported_plans) { 1200 return m_thread_plans.DumpPlansForTID( 1201 strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans); 1202 } 1203 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level, 1204 bool internal, bool condense_trivial, 1205 bool skip_unreported_plans) { 1206 m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial, 1207 skip_unreported_plans); 1208 } 1209 1210 void Process::UpdateQueueListIfNeeded() { 1211 if (m_system_runtime_up) { 1212 if (m_queue_list.GetSize() == 0 || 1213 m_queue_list_stop_id != GetLastNaturalStopID()) { 1214 const StateType state = GetPrivateState(); 1215 if (StateIsStoppedState(state, true)) { 1216 m_system_runtime_up->PopulateQueueList(m_queue_list); 1217 m_queue_list_stop_id = GetLastNaturalStopID(); 1218 } 1219 } 1220 } 1221 } 1222 1223 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1224 OperatingSystem *os = GetOperatingSystem(); 1225 if (os) 1226 return os->CreateThread(tid, context); 1227 return ThreadSP(); 1228 } 1229 1230 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1231 return AssignIndexIDToThread(thread_id); 1232 } 1233 1234 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1235 return (m_thread_id_to_index_id_map.find(thread_id) != 1236 m_thread_id_to_index_id_map.end()); 1237 } 1238 1239 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1240 uint32_t result = 0; 1241 std::map<uint64_t, uint32_t>::iterator iterator = 1242 m_thread_id_to_index_id_map.find(thread_id); 1243 if (iterator == m_thread_id_to_index_id_map.end()) { 1244 result = ++m_thread_index_id; 1245 m_thread_id_to_index_id_map[thread_id] = result; 1246 } else { 1247 result = iterator->second; 1248 } 1249 1250 return result; 1251 } 1252 1253 StateType Process::GetState() { 1254 return m_public_state.GetValue(); 1255 } 1256 1257 void Process::SetPublicState(StateType new_state, bool restarted) { 1258 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1259 LIBLLDB_LOG_PROCESS)); 1260 LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)", 1261 StateAsCString(new_state), restarted); 1262 const StateType old_state = m_public_state.GetValue(); 1263 m_public_state.SetValue(new_state); 1264 1265 // On the transition from Run to Stopped, we unlock the writer end of the run 1266 // lock. The lock gets locked in Resume, which is the public API to tell the 1267 // program to run. 1268 if (!StateChangedIsExternallyHijacked()) { 1269 if (new_state == eStateDetached) { 1270 LLDB_LOGF(log, 1271 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1272 StateAsCString(new_state)); 1273 m_public_run_lock.SetStopped(); 1274 } else { 1275 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1276 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1277 if ((old_state_is_stopped != new_state_is_stopped)) { 1278 if (new_state_is_stopped && !restarted) { 1279 LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock", 1280 StateAsCString(new_state)); 1281 m_public_run_lock.SetStopped(); 1282 } 1283 } 1284 } 1285 } 1286 } 1287 1288 Status Process::Resume() { 1289 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1290 LIBLLDB_LOG_PROCESS)); 1291 LLDB_LOGF(log, "Process::Resume -- locking run lock"); 1292 if (!m_public_run_lock.TrySetRunning()) { 1293 Status error("Resume request failed - process still running."); 1294 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1295 return error; 1296 } 1297 Status error = PrivateResume(); 1298 if (!error.Success()) { 1299 // Undo running state change 1300 m_public_run_lock.SetStopped(); 1301 } 1302 return error; 1303 } 1304 1305 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack"; 1306 1307 Status Process::ResumeSynchronous(Stream *stream) { 1308 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1309 LIBLLDB_LOG_PROCESS)); 1310 LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); 1311 if (!m_public_run_lock.TrySetRunning()) { 1312 Status error("Resume request failed - process still running."); 1313 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1314 return error; 1315 } 1316 1317 ListenerSP listener_sp( 1318 Listener::MakeListener(g_resume_sync_name)); 1319 HijackProcessEvents(listener_sp); 1320 1321 Status error = PrivateResume(); 1322 if (error.Success()) { 1323 StateType state = 1324 WaitForProcessToStop(llvm::None, nullptr, true, listener_sp, stream); 1325 const bool must_be_alive = 1326 false; // eStateExited is ok, so this must be false 1327 if (!StateIsStoppedState(state, must_be_alive)) 1328 error.SetErrorStringWithFormat( 1329 "process not in stopped state after synchronous resume: %s", 1330 StateAsCString(state)); 1331 } else { 1332 // Undo running state change 1333 m_public_run_lock.SetStopped(); 1334 } 1335 1336 // Undo the hijacking of process events... 1337 RestoreProcessEvents(); 1338 1339 return error; 1340 } 1341 1342 bool Process::StateChangedIsExternallyHijacked() { 1343 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1344 const char *hijacking_name = GetHijackingListenerName(); 1345 if (hijacking_name && 1346 strcmp(hijacking_name, g_resume_sync_name)) 1347 return true; 1348 } 1349 return false; 1350 } 1351 1352 bool Process::StateChangedIsHijackedForSynchronousResume() { 1353 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1354 const char *hijacking_name = GetHijackingListenerName(); 1355 if (hijacking_name && 1356 strcmp(hijacking_name, g_resume_sync_name) == 0) 1357 return true; 1358 } 1359 return false; 1360 } 1361 1362 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1363 1364 void Process::SetPrivateState(StateType new_state) { 1365 if (m_finalizing) 1366 return; 1367 1368 Log *log(lldb_private::GetLogIfAnyCategoriesSet( 1369 LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_UNWIND)); 1370 bool state_changed = false; 1371 1372 LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state)); 1373 1374 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1375 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1376 1377 const StateType old_state = m_private_state.GetValueNoLock(); 1378 state_changed = old_state != new_state; 1379 1380 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1381 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1382 if (old_state_is_stopped != new_state_is_stopped) { 1383 if (new_state_is_stopped) 1384 m_private_run_lock.SetStopped(); 1385 else 1386 m_private_run_lock.SetRunning(); 1387 } 1388 1389 if (state_changed) { 1390 m_private_state.SetValueNoLock(new_state); 1391 EventSP event_sp( 1392 new Event(eBroadcastBitStateChanged, 1393 new ProcessEventData(shared_from_this(), new_state))); 1394 if (StateIsStoppedState(new_state, false)) { 1395 // Note, this currently assumes that all threads in the list stop when 1396 // the process stops. In the future we will want to support a debugging 1397 // model where some threads continue to run while others are stopped. 1398 // When that happens we will either need a way for the thread list to 1399 // identify which threads are stopping or create a special thread list 1400 // containing only threads which actually stopped. 1401 // 1402 // The process plugin is responsible for managing the actual behavior of 1403 // the threads and should have stopped any threads that are going to stop 1404 // before we get here. 1405 m_thread_list.DidStop(); 1406 1407 m_mod_id.BumpStopID(); 1408 if (!m_mod_id.IsLastResumeForUserExpression()) 1409 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1410 m_memory_cache.Clear(); 1411 LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u", 1412 StateAsCString(new_state), m_mod_id.GetStopID()); 1413 } 1414 1415 m_private_state_broadcaster.BroadcastEvent(event_sp); 1416 } else { 1417 LLDB_LOGF(log, 1418 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1419 StateAsCString(new_state)); 1420 } 1421 } 1422 1423 void Process::SetRunningUserExpression(bool on) { 1424 m_mod_id.SetRunningUserExpression(on); 1425 } 1426 1427 void Process::SetRunningUtilityFunction(bool on) { 1428 m_mod_id.SetRunningUtilityFunction(on); 1429 } 1430 1431 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1432 1433 const lldb::ABISP &Process::GetABI() { 1434 if (!m_abi_sp) 1435 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1436 return m_abi_sp; 1437 } 1438 1439 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { 1440 std::vector<LanguageRuntime *> language_runtimes; 1441 1442 if (m_finalizing) 1443 return language_runtimes; 1444 1445 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1446 // Before we pass off a copy of the language runtimes, we must make sure that 1447 // our collection is properly populated. It's possible that some of the 1448 // language runtimes were not loaded yet, either because nobody requested it 1449 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so 1450 // hadn't been loaded). 1451 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 1452 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 1453 language_runtimes.emplace_back(runtime); 1454 } 1455 1456 return language_runtimes; 1457 } 1458 1459 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { 1460 if (m_finalizing) 1461 return nullptr; 1462 1463 LanguageRuntime *runtime = nullptr; 1464 1465 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1466 LanguageRuntimeCollection::iterator pos; 1467 pos = m_language_runtimes.find(language); 1468 if (pos == m_language_runtimes.end() || !pos->second) { 1469 lldb::LanguageRuntimeSP runtime_sp( 1470 LanguageRuntime::FindPlugin(this, language)); 1471 1472 m_language_runtimes[language] = runtime_sp; 1473 runtime = runtime_sp.get(); 1474 } else 1475 runtime = pos->second.get(); 1476 1477 if (runtime) 1478 // It's possible that a language runtime can support multiple LanguageTypes, 1479 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, 1480 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the 1481 // primary language type and make sure that our runtime supports it. 1482 assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); 1483 1484 return runtime; 1485 } 1486 1487 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1488 if (m_finalizing) 1489 return false; 1490 1491 if (in_value.IsDynamic()) 1492 return false; 1493 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1494 1495 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1496 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1497 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1498 } 1499 1500 for (LanguageRuntime *runtime : GetLanguageRuntimes()) { 1501 if (runtime->CouldHaveDynamicValue(in_value)) 1502 return true; 1503 } 1504 1505 return false; 1506 } 1507 1508 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1509 m_dynamic_checkers_up.reset(dynamic_checkers); 1510 } 1511 1512 BreakpointSiteList &Process::GetBreakpointSiteList() { 1513 return m_breakpoint_site_list; 1514 } 1515 1516 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1517 return m_breakpoint_site_list; 1518 } 1519 1520 void Process::DisableAllBreakpointSites() { 1521 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1522 // bp_site->SetEnabled(true); 1523 DisableBreakpointSite(bp_site); 1524 }); 1525 } 1526 1527 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1528 Status error(DisableBreakpointSiteByID(break_id)); 1529 1530 if (error.Success()) 1531 m_breakpoint_site_list.Remove(break_id); 1532 1533 return error; 1534 } 1535 1536 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1537 Status error; 1538 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1539 if (bp_site_sp) { 1540 if (bp_site_sp->IsEnabled()) 1541 error = DisableBreakpointSite(bp_site_sp.get()); 1542 } else { 1543 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1544 break_id); 1545 } 1546 1547 return error; 1548 } 1549 1550 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1551 Status error; 1552 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1553 if (bp_site_sp) { 1554 if (!bp_site_sp->IsEnabled()) 1555 error = EnableBreakpointSite(bp_site_sp.get()); 1556 } else { 1557 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1558 break_id); 1559 } 1560 return error; 1561 } 1562 1563 lldb::break_id_t 1564 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1565 bool use_hardware) { 1566 addr_t load_addr = LLDB_INVALID_ADDRESS; 1567 1568 bool show_error = true; 1569 switch (GetState()) { 1570 case eStateInvalid: 1571 case eStateUnloaded: 1572 case eStateConnected: 1573 case eStateAttaching: 1574 case eStateLaunching: 1575 case eStateDetached: 1576 case eStateExited: 1577 show_error = false; 1578 break; 1579 1580 case eStateStopped: 1581 case eStateRunning: 1582 case eStateStepping: 1583 case eStateCrashed: 1584 case eStateSuspended: 1585 show_error = IsAlive(); 1586 break; 1587 } 1588 1589 // Reset the IsIndirect flag here, in case the location changes from pointing 1590 // to a indirect symbol to a regular symbol. 1591 owner->SetIsIndirect(false); 1592 1593 if (owner->ShouldResolveIndirectFunctions()) { 1594 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1595 if (symbol && symbol->IsIndirect()) { 1596 Status error; 1597 Address symbol_address = symbol->GetAddress(); 1598 load_addr = ResolveIndirectFunction(&symbol_address, error); 1599 if (!error.Success() && show_error) { 1600 GetTarget().GetDebugger().GetErrorStream().Printf( 1601 "warning: failed to resolve indirect function at 0x%" PRIx64 1602 " for breakpoint %i.%i: %s\n", 1603 symbol->GetLoadAddress(&GetTarget()), 1604 owner->GetBreakpoint().GetID(), owner->GetID(), 1605 error.AsCString() ? error.AsCString() : "unknown error"); 1606 return LLDB_INVALID_BREAK_ID; 1607 } 1608 Address resolved_address(load_addr); 1609 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1610 owner->SetIsIndirect(true); 1611 } else 1612 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1613 } else 1614 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1615 1616 if (load_addr != LLDB_INVALID_ADDRESS) { 1617 BreakpointSiteSP bp_site_sp; 1618 1619 // Look up this breakpoint site. If it exists, then add this new owner, 1620 // otherwise create a new breakpoint site and add it. 1621 1622 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1623 1624 if (bp_site_sp) { 1625 bp_site_sp->AddOwner(owner); 1626 owner->SetBreakpointSite(bp_site_sp); 1627 return bp_site_sp->GetID(); 1628 } else { 1629 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1630 load_addr, use_hardware)); 1631 if (bp_site_sp) { 1632 Status error = EnableBreakpointSite(bp_site_sp.get()); 1633 if (error.Success()) { 1634 owner->SetBreakpointSite(bp_site_sp); 1635 return m_breakpoint_site_list.Add(bp_site_sp); 1636 } else { 1637 if (show_error || use_hardware) { 1638 // Report error for setting breakpoint... 1639 GetTarget().GetDebugger().GetErrorStream().Printf( 1640 "warning: failed to set breakpoint site at 0x%" PRIx64 1641 " for breakpoint %i.%i: %s\n", 1642 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1643 error.AsCString() ? error.AsCString() : "unknown error"); 1644 } 1645 } 1646 } 1647 } 1648 } 1649 // We failed to enable the breakpoint 1650 return LLDB_INVALID_BREAK_ID; 1651 } 1652 1653 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1654 lldb::user_id_t owner_loc_id, 1655 BreakpointSiteSP &bp_site_sp) { 1656 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1657 if (num_owners == 0) { 1658 // Don't try to disable the site if we don't have a live process anymore. 1659 if (IsAlive()) 1660 DisableBreakpointSite(bp_site_sp.get()); 1661 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1662 } 1663 } 1664 1665 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1666 uint8_t *buf) const { 1667 size_t bytes_removed = 0; 1668 BreakpointSiteList bp_sites_in_range; 1669 1670 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1671 bp_sites_in_range)) { 1672 bp_sites_in_range.ForEach([bp_addr, size, 1673 buf](BreakpointSite *bp_site) -> void { 1674 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1675 addr_t intersect_addr; 1676 size_t intersect_size; 1677 size_t opcode_offset; 1678 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1679 &intersect_size, &opcode_offset)) { 1680 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1681 assert(bp_addr < intersect_addr + intersect_size && 1682 intersect_addr + intersect_size <= bp_addr + size); 1683 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1684 size_t buf_offset = intersect_addr - bp_addr; 1685 ::memcpy(buf + buf_offset, 1686 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1687 intersect_size); 1688 } 1689 } 1690 }); 1691 } 1692 return bytes_removed; 1693 } 1694 1695 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1696 PlatformSP platform_sp(GetTarget().GetPlatform()); 1697 if (platform_sp) 1698 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1699 return 0; 1700 } 1701 1702 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1703 Status error; 1704 assert(bp_site != nullptr); 1705 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1706 const addr_t bp_addr = bp_site->GetLoadAddress(); 1707 LLDB_LOGF( 1708 log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1709 bp_site->GetID(), (uint64_t)bp_addr); 1710 if (bp_site->IsEnabled()) { 1711 LLDB_LOGF( 1712 log, 1713 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1714 " -- already enabled", 1715 bp_site->GetID(), (uint64_t)bp_addr); 1716 return error; 1717 } 1718 1719 if (bp_addr == LLDB_INVALID_ADDRESS) { 1720 error.SetErrorString("BreakpointSite contains an invalid load address."); 1721 return error; 1722 } 1723 // Ask the lldb::Process subclass to fill in the correct software breakpoint 1724 // trap for the breakpoint site 1725 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 1726 1727 if (bp_opcode_size == 0) { 1728 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 1729 "returned zero, unable to get breakpoint " 1730 "trap for address 0x%" PRIx64, 1731 bp_addr); 1732 } else { 1733 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 1734 1735 if (bp_opcode_bytes == nullptr) { 1736 error.SetErrorString( 1737 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 1738 return error; 1739 } 1740 1741 // Save the original opcode by reading it 1742 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 1743 error) == bp_opcode_size) { 1744 // Write a software breakpoint in place of the original opcode 1745 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 1746 bp_opcode_size) { 1747 uint8_t verify_bp_opcode_bytes[64]; 1748 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 1749 error) == bp_opcode_size) { 1750 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 1751 bp_opcode_size) == 0) { 1752 bp_site->SetEnabled(true); 1753 bp_site->SetType(BreakpointSite::eSoftware); 1754 LLDB_LOGF(log, 1755 "Process::EnableSoftwareBreakpoint (site_id = %d) " 1756 "addr = 0x%" PRIx64 " -- SUCCESS", 1757 bp_site->GetID(), (uint64_t)bp_addr); 1758 } else 1759 error.SetErrorString( 1760 "failed to verify the breakpoint trap in memory."); 1761 } else 1762 error.SetErrorString( 1763 "Unable to read memory to verify breakpoint trap."); 1764 } else 1765 error.SetErrorString("Unable to write breakpoint trap to memory."); 1766 } else 1767 error.SetErrorString("Unable to read memory at breakpoint address."); 1768 } 1769 if (log && error.Fail()) 1770 LLDB_LOGF( 1771 log, 1772 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1773 " -- FAILED: %s", 1774 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1775 return error; 1776 } 1777 1778 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 1779 Status error; 1780 assert(bp_site != nullptr); 1781 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1782 addr_t bp_addr = bp_site->GetLoadAddress(); 1783 lldb::user_id_t breakID = bp_site->GetID(); 1784 LLDB_LOGF(log, 1785 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 1786 ") addr = 0x%" PRIx64, 1787 breakID, (uint64_t)bp_addr); 1788 1789 if (bp_site->IsHardware()) { 1790 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 1791 } else if (bp_site->IsEnabled()) { 1792 const size_t break_op_size = bp_site->GetByteSize(); 1793 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 1794 if (break_op_size > 0) { 1795 // Clear a software breakpoint instruction 1796 uint8_t curr_break_op[8]; 1797 assert(break_op_size <= sizeof(curr_break_op)); 1798 bool break_op_found = false; 1799 1800 // Read the breakpoint opcode 1801 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 1802 break_op_size) { 1803 bool verify = false; 1804 // Make sure the breakpoint opcode exists at this address 1805 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 1806 break_op_found = true; 1807 // We found a valid breakpoint opcode at this address, now restore 1808 // the saved opcode. 1809 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 1810 break_op_size, error) == break_op_size) { 1811 verify = true; 1812 } else 1813 error.SetErrorString( 1814 "Memory write failed when restoring original opcode."); 1815 } else { 1816 error.SetErrorString( 1817 "Original breakpoint trap is no longer in memory."); 1818 // Set verify to true and so we can check if the original opcode has 1819 // already been restored 1820 verify = true; 1821 } 1822 1823 if (verify) { 1824 uint8_t verify_opcode[8]; 1825 assert(break_op_size < sizeof(verify_opcode)); 1826 // Verify that our original opcode made it back to the inferior 1827 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 1828 break_op_size) { 1829 // compare the memory we just read with the original opcode 1830 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 1831 break_op_size) == 0) { 1832 // SUCCESS 1833 bp_site->SetEnabled(false); 1834 LLDB_LOGF(log, 1835 "Process::DisableSoftwareBreakpoint (site_id = %d) " 1836 "addr = 0x%" PRIx64 " -- SUCCESS", 1837 bp_site->GetID(), (uint64_t)bp_addr); 1838 return error; 1839 } else { 1840 if (break_op_found) 1841 error.SetErrorString("Failed to restore original opcode."); 1842 } 1843 } else 1844 error.SetErrorString("Failed to read memory to verify that " 1845 "breakpoint trap was restored."); 1846 } 1847 } else 1848 error.SetErrorString( 1849 "Unable to read memory that should contain the breakpoint trap."); 1850 } 1851 } else { 1852 LLDB_LOGF( 1853 log, 1854 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1855 " -- already disabled", 1856 bp_site->GetID(), (uint64_t)bp_addr); 1857 return error; 1858 } 1859 1860 LLDB_LOGF( 1861 log, 1862 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1863 " -- FAILED: %s", 1864 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1865 return error; 1866 } 1867 1868 // Uncomment to verify memory caching works after making changes to caching 1869 // code 1870 //#define VERIFY_MEMORY_READS 1871 1872 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 1873 error.Clear(); 1874 if (!GetDisableMemoryCache()) { 1875 #if defined(VERIFY_MEMORY_READS) 1876 // Memory caching is enabled, with debug verification 1877 1878 if (buf && size) { 1879 // Uncomment the line below to make sure memory caching is working. 1880 // I ran this through the test suite and got no assertions, so I am 1881 // pretty confident this is working well. If any changes are made to 1882 // memory caching, uncomment the line below and test your changes! 1883 1884 // Verify all memory reads by using the cache first, then redundantly 1885 // reading the same memory from the inferior and comparing to make sure 1886 // everything is exactly the same. 1887 std::string verify_buf(size, '\0'); 1888 assert(verify_buf.size() == size); 1889 const size_t cache_bytes_read = 1890 m_memory_cache.Read(this, addr, buf, size, error); 1891 Status verify_error; 1892 const size_t verify_bytes_read = 1893 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 1894 verify_buf.size(), verify_error); 1895 assert(cache_bytes_read == verify_bytes_read); 1896 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 1897 assert(verify_error.Success() == error.Success()); 1898 return cache_bytes_read; 1899 } 1900 return 0; 1901 #else // !defined(VERIFY_MEMORY_READS) 1902 // Memory caching is enabled, without debug verification 1903 1904 return m_memory_cache.Read(addr, buf, size, error); 1905 #endif // defined (VERIFY_MEMORY_READS) 1906 } else { 1907 // Memory caching is disabled 1908 1909 return ReadMemoryFromInferior(addr, buf, size, error); 1910 } 1911 } 1912 1913 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 1914 Status &error) { 1915 char buf[256]; 1916 out_str.clear(); 1917 addr_t curr_addr = addr; 1918 while (true) { 1919 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 1920 if (length == 0) 1921 break; 1922 out_str.append(buf, length); 1923 // If we got "length - 1" bytes, we didn't get the whole C string, we need 1924 // to read some more characters 1925 if (length == sizeof(buf) - 1) 1926 curr_addr += length; 1927 else 1928 break; 1929 } 1930 return out_str.size(); 1931 } 1932 1933 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes, 1934 Status &error, size_t type_width) { 1935 size_t total_bytes_read = 0; 1936 if (dst && max_bytes && type_width && max_bytes >= type_width) { 1937 // Ensure a null terminator independent of the number of bytes that is 1938 // read. 1939 memset(dst, 0, max_bytes); 1940 size_t bytes_left = max_bytes - type_width; 1941 1942 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 1943 assert(sizeof(terminator) >= type_width && "Attempting to validate a " 1944 "string with more than 4 bytes " 1945 "per character!"); 1946 1947 addr_t curr_addr = addr; 1948 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 1949 char *curr_dst = dst; 1950 1951 error.Clear(); 1952 while (bytes_left > 0 && error.Success()) { 1953 addr_t cache_line_bytes_left = 1954 cache_line_size - (curr_addr % cache_line_size); 1955 addr_t bytes_to_read = 1956 std::min<addr_t>(bytes_left, cache_line_bytes_left); 1957 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 1958 1959 if (bytes_read == 0) 1960 break; 1961 1962 // Search for a null terminator of correct size and alignment in 1963 // bytes_read 1964 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 1965 for (size_t i = aligned_start; 1966 i + type_width <= total_bytes_read + bytes_read; i += type_width) 1967 if (::memcmp(&dst[i], terminator, type_width) == 0) { 1968 error.Clear(); 1969 return i; 1970 } 1971 1972 total_bytes_read += bytes_read; 1973 curr_dst += bytes_read; 1974 curr_addr += bytes_read; 1975 bytes_left -= bytes_read; 1976 } 1977 } else { 1978 if (max_bytes) 1979 error.SetErrorString("invalid arguments"); 1980 } 1981 return total_bytes_read; 1982 } 1983 1984 // Deprecated in favor of ReadStringFromMemory which has wchar support and 1985 // correct code to find null terminators. 1986 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 1987 size_t dst_max_len, 1988 Status &result_error) { 1989 size_t total_cstr_len = 0; 1990 if (dst && dst_max_len) { 1991 result_error.Clear(); 1992 // NULL out everything just to be safe 1993 memset(dst, 0, dst_max_len); 1994 Status error; 1995 addr_t curr_addr = addr; 1996 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 1997 size_t bytes_left = dst_max_len - 1; 1998 char *curr_dst = dst; 1999 2000 while (bytes_left > 0) { 2001 addr_t cache_line_bytes_left = 2002 cache_line_size - (curr_addr % cache_line_size); 2003 addr_t bytes_to_read = 2004 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2005 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2006 2007 if (bytes_read == 0) { 2008 result_error = error; 2009 dst[total_cstr_len] = '\0'; 2010 break; 2011 } 2012 const size_t len = strlen(curr_dst); 2013 2014 total_cstr_len += len; 2015 2016 if (len < bytes_to_read) 2017 break; 2018 2019 curr_dst += bytes_read; 2020 curr_addr += bytes_read; 2021 bytes_left -= bytes_read; 2022 } 2023 } else { 2024 if (dst == nullptr) 2025 result_error.SetErrorString("invalid arguments"); 2026 else 2027 result_error.Clear(); 2028 } 2029 return total_cstr_len; 2030 } 2031 2032 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2033 Status &error) { 2034 if (buf == nullptr || size == 0) 2035 return 0; 2036 2037 size_t bytes_read = 0; 2038 uint8_t *bytes = (uint8_t *)buf; 2039 2040 while (bytes_read < size) { 2041 const size_t curr_size = size - bytes_read; 2042 const size_t curr_bytes_read = 2043 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2044 bytes_read += curr_bytes_read; 2045 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2046 break; 2047 } 2048 2049 // Replace any software breakpoint opcodes that fall into this range back 2050 // into "buf" before we return 2051 if (bytes_read > 0) 2052 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2053 return bytes_read; 2054 } 2055 2056 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2057 size_t integer_byte_size, 2058 uint64_t fail_value, 2059 Status &error) { 2060 Scalar scalar; 2061 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2062 error)) 2063 return scalar.ULongLong(fail_value); 2064 return fail_value; 2065 } 2066 2067 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2068 size_t integer_byte_size, 2069 int64_t fail_value, 2070 Status &error) { 2071 Scalar scalar; 2072 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2073 error)) 2074 return scalar.SLongLong(fail_value); 2075 return fail_value; 2076 } 2077 2078 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2079 Scalar scalar; 2080 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2081 error)) 2082 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2083 return LLDB_INVALID_ADDRESS; 2084 } 2085 2086 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2087 Status &error) { 2088 Scalar scalar; 2089 const uint32_t addr_byte_size = GetAddressByteSize(); 2090 if (addr_byte_size <= 4) 2091 scalar = (uint32_t)ptr_value; 2092 else 2093 scalar = ptr_value; 2094 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2095 addr_byte_size; 2096 } 2097 2098 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2099 Status &error) { 2100 size_t bytes_written = 0; 2101 const uint8_t *bytes = (const uint8_t *)buf; 2102 2103 while (bytes_written < size) { 2104 const size_t curr_size = size - bytes_written; 2105 const size_t curr_bytes_written = DoWriteMemory( 2106 addr + bytes_written, bytes + bytes_written, curr_size, error); 2107 bytes_written += curr_bytes_written; 2108 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2109 break; 2110 } 2111 return bytes_written; 2112 } 2113 2114 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2115 Status &error) { 2116 #if defined(ENABLE_MEMORY_CACHING) 2117 m_memory_cache.Flush(addr, size); 2118 #endif 2119 2120 if (buf == nullptr || size == 0) 2121 return 0; 2122 2123 m_mod_id.BumpMemoryID(); 2124 2125 // We need to write any data that would go where any current software traps 2126 // (enabled software breakpoints) any software traps (breakpoints) that we 2127 // may have placed in our tasks memory. 2128 2129 BreakpointSiteList bp_sites_in_range; 2130 if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range)) 2131 return WriteMemoryPrivate(addr, buf, size, error); 2132 2133 // No breakpoint sites overlap 2134 if (bp_sites_in_range.IsEmpty()) 2135 return WriteMemoryPrivate(addr, buf, size, error); 2136 2137 const uint8_t *ubuf = (const uint8_t *)buf; 2138 uint64_t bytes_written = 0; 2139 2140 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2141 &error](BreakpointSite *bp) -> void { 2142 if (error.Fail()) 2143 return; 2144 2145 if (bp->GetType() != BreakpointSite::eSoftware) 2146 return; 2147 2148 addr_t intersect_addr; 2149 size_t intersect_size; 2150 size_t opcode_offset; 2151 const bool intersects = bp->IntersectsRange( 2152 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2153 UNUSED_IF_ASSERT_DISABLED(intersects); 2154 assert(intersects); 2155 assert(addr <= intersect_addr && intersect_addr < addr + size); 2156 assert(addr < intersect_addr + intersect_size && 2157 intersect_addr + intersect_size <= addr + size); 2158 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2159 2160 // Check for bytes before this breakpoint 2161 const addr_t curr_addr = addr + bytes_written; 2162 if (intersect_addr > curr_addr) { 2163 // There are some bytes before this breakpoint that we need to just 2164 // write to memory 2165 size_t curr_size = intersect_addr - curr_addr; 2166 size_t curr_bytes_written = 2167 WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error); 2168 bytes_written += curr_bytes_written; 2169 if (curr_bytes_written != curr_size) { 2170 // We weren't able to write all of the requested bytes, we are 2171 // done looping and will return the number of bytes that we have 2172 // written so far. 2173 if (error.Success()) 2174 error.SetErrorToGenericError(); 2175 } 2176 } 2177 // Now write any bytes that would cover up any software breakpoints 2178 // directly into the breakpoint opcode buffer 2179 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, 2180 intersect_size); 2181 bytes_written += intersect_size; 2182 }); 2183 2184 // Write any remaining bytes after the last breakpoint if we have any left 2185 if (bytes_written < size) 2186 bytes_written += 2187 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2188 size - bytes_written, error); 2189 2190 return bytes_written; 2191 } 2192 2193 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2194 size_t byte_size, Status &error) { 2195 if (byte_size == UINT32_MAX) 2196 byte_size = scalar.GetByteSize(); 2197 if (byte_size > 0) { 2198 uint8_t buf[32]; 2199 const size_t mem_size = 2200 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2201 if (mem_size > 0) 2202 return WriteMemory(addr, buf, mem_size, error); 2203 else 2204 error.SetErrorString("failed to get scalar as memory data"); 2205 } else { 2206 error.SetErrorString("invalid scalar value"); 2207 } 2208 return 0; 2209 } 2210 2211 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2212 bool is_signed, Scalar &scalar, 2213 Status &error) { 2214 uint64_t uval = 0; 2215 if (byte_size == 0) { 2216 error.SetErrorString("byte size is zero"); 2217 } else if (byte_size & (byte_size - 1)) { 2218 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2219 byte_size); 2220 } else if (byte_size <= sizeof(uval)) { 2221 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2222 if (bytes_read == byte_size) { 2223 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2224 GetAddressByteSize()); 2225 lldb::offset_t offset = 0; 2226 if (byte_size <= 4) 2227 scalar = data.GetMaxU32(&offset, byte_size); 2228 else 2229 scalar = data.GetMaxU64(&offset, byte_size); 2230 if (is_signed) 2231 scalar.SignExtend(byte_size * 8); 2232 return bytes_read; 2233 } 2234 } else { 2235 error.SetErrorStringWithFormat( 2236 "byte size of %u is too large for integer scalar type", byte_size); 2237 } 2238 return 0; 2239 } 2240 2241 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2242 Status error; 2243 for (const auto &Entry : entries) { 2244 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2245 error); 2246 if (!error.Success()) 2247 break; 2248 } 2249 return error; 2250 } 2251 2252 #define USE_ALLOCATE_MEMORY_CACHE 1 2253 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2254 Status &error) { 2255 if (GetPrivateState() != eStateStopped) { 2256 error.SetErrorToGenericError(); 2257 return LLDB_INVALID_ADDRESS; 2258 } 2259 2260 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2261 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2262 #else 2263 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2264 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2265 LLDB_LOGF(log, 2266 "Process::AllocateMemory(size=%" PRIu64 2267 ", permissions=%s) => 0x%16.16" PRIx64 2268 " (m_stop_id = %u m_memory_id = %u)", 2269 (uint64_t)size, GetPermissionsAsCString(permissions), 2270 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2271 m_mod_id.GetMemoryID()); 2272 return allocated_addr; 2273 #endif 2274 } 2275 2276 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2277 Status &error) { 2278 addr_t return_addr = AllocateMemory(size, permissions, error); 2279 if (error.Success()) { 2280 std::string buffer(size, 0); 2281 WriteMemory(return_addr, buffer.c_str(), size, error); 2282 } 2283 return return_addr; 2284 } 2285 2286 bool Process::CanJIT() { 2287 if (m_can_jit == eCanJITDontKnow) { 2288 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2289 Status err; 2290 2291 uint64_t allocated_memory = AllocateMemory( 2292 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2293 err); 2294 2295 if (err.Success()) { 2296 m_can_jit = eCanJITYes; 2297 LLDB_LOGF(log, 2298 "Process::%s pid %" PRIu64 2299 " allocation test passed, CanJIT () is true", 2300 __FUNCTION__, GetID()); 2301 } else { 2302 m_can_jit = eCanJITNo; 2303 LLDB_LOGF(log, 2304 "Process::%s pid %" PRIu64 2305 " allocation test failed, CanJIT () is false: %s", 2306 __FUNCTION__, GetID(), err.AsCString()); 2307 } 2308 2309 DeallocateMemory(allocated_memory); 2310 } 2311 2312 return m_can_jit == eCanJITYes; 2313 } 2314 2315 void Process::SetCanJIT(bool can_jit) { 2316 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2317 } 2318 2319 void Process::SetCanRunCode(bool can_run_code) { 2320 SetCanJIT(can_run_code); 2321 m_can_interpret_function_calls = can_run_code; 2322 } 2323 2324 Status Process::DeallocateMemory(addr_t ptr) { 2325 Status error; 2326 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2327 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2328 error.SetErrorStringWithFormat( 2329 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2330 } 2331 #else 2332 error = DoDeallocateMemory(ptr); 2333 2334 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2335 LLDB_LOGF(log, 2336 "Process::DeallocateMemory(addr=0x%16.16" PRIx64 2337 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2338 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2339 m_mod_id.GetMemoryID()); 2340 #endif 2341 return error; 2342 } 2343 2344 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2345 lldb::addr_t header_addr, 2346 size_t size_to_read) { 2347 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2348 if (log) { 2349 LLDB_LOGF(log, 2350 "Process::ReadModuleFromMemory reading %s binary from memory", 2351 file_spec.GetPath().c_str()); 2352 } 2353 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2354 if (module_sp) { 2355 Status error; 2356 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2357 shared_from_this(), header_addr, error, size_to_read); 2358 if (objfile) 2359 return module_sp; 2360 } 2361 return ModuleSP(); 2362 } 2363 2364 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2365 uint32_t &permissions) { 2366 MemoryRegionInfo range_info; 2367 permissions = 0; 2368 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2369 if (!error.Success()) 2370 return false; 2371 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2372 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2373 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2374 return false; 2375 } 2376 2377 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2378 permissions |= lldb::ePermissionsReadable; 2379 2380 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2381 permissions |= lldb::ePermissionsWritable; 2382 2383 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2384 permissions |= lldb::ePermissionsExecutable; 2385 2386 return true; 2387 } 2388 2389 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2390 Status error; 2391 error.SetErrorString("watchpoints are not supported"); 2392 return error; 2393 } 2394 2395 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2396 Status error; 2397 error.SetErrorString("watchpoints are not supported"); 2398 return error; 2399 } 2400 2401 StateType 2402 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2403 const Timeout<std::micro> &timeout) { 2404 StateType state; 2405 2406 while (true) { 2407 event_sp.reset(); 2408 state = GetStateChangedEventsPrivate(event_sp, timeout); 2409 2410 if (StateIsStoppedState(state, false)) 2411 break; 2412 2413 // If state is invalid, then we timed out 2414 if (state == eStateInvalid) 2415 break; 2416 2417 if (event_sp) 2418 HandlePrivateEvent(event_sp); 2419 } 2420 return state; 2421 } 2422 2423 void Process::LoadOperatingSystemPlugin(bool flush) { 2424 if (flush) 2425 m_thread_list.Clear(); 2426 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); 2427 if (flush) 2428 Flush(); 2429 } 2430 2431 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2432 Status error; 2433 m_abi_sp.reset(); 2434 m_dyld_up.reset(); 2435 m_jit_loaders_up.reset(); 2436 m_system_runtime_up.reset(); 2437 m_os_up.reset(); 2438 m_process_input_reader.reset(); 2439 2440 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2441 if (!exe_module) { 2442 error.SetErrorString("executable module does not exist"); 2443 return error; 2444 } 2445 2446 char local_exec_file_path[PATH_MAX]; 2447 char platform_exec_file_path[PATH_MAX]; 2448 exe_module->GetFileSpec().GetPath(local_exec_file_path, 2449 sizeof(local_exec_file_path)); 2450 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, 2451 sizeof(platform_exec_file_path)); 2452 if (FileSystem::Instance().Exists(exe_module->GetFileSpec())) { 2453 // Install anything that might need to be installed prior to launching. 2454 // For host systems, this will do nothing, but if we are connected to a 2455 // remote platform it will install any needed binaries 2456 error = GetTarget().Install(&launch_info); 2457 if (error.Fail()) 2458 return error; 2459 2460 if (PrivateStateThreadIsValid()) 2461 PausePrivateStateThread(); 2462 2463 error = WillLaunch(exe_module); 2464 if (error.Success()) { 2465 const bool restarted = false; 2466 SetPublicState(eStateLaunching, restarted); 2467 m_should_detach = false; 2468 2469 if (m_public_run_lock.TrySetRunning()) { 2470 // Now launch using these arguments. 2471 error = DoLaunch(exe_module, launch_info); 2472 } else { 2473 // This shouldn't happen 2474 error.SetErrorString("failed to acquire process run lock"); 2475 } 2476 2477 if (error.Fail()) { 2478 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2479 SetID(LLDB_INVALID_PROCESS_ID); 2480 const char *error_string = error.AsCString(); 2481 if (error_string == nullptr) 2482 error_string = "launch failed"; 2483 SetExitStatus(-1, error_string); 2484 } 2485 } else { 2486 EventSP event_sp; 2487 2488 // Now wait for the process to launch and return control to us, and then 2489 // call DidLaunch: 2490 StateType state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2491 2492 if (state == eStateInvalid || !event_sp) { 2493 // We were able to launch the process, but we failed to catch the 2494 // initial stop. 2495 error.SetErrorString("failed to catch stop after launch"); 2496 SetExitStatus(0, "failed to catch stop after launch"); 2497 Destroy(false); 2498 } else if (state == eStateStopped || state == eStateCrashed) { 2499 DidLaunch(); 2500 2501 DynamicLoader *dyld = GetDynamicLoader(); 2502 if (dyld) 2503 dyld->DidLaunch(); 2504 2505 GetJITLoaders().DidLaunch(); 2506 2507 SystemRuntime *system_runtime = GetSystemRuntime(); 2508 if (system_runtime) 2509 system_runtime->DidLaunch(); 2510 2511 if (!m_os_up) 2512 LoadOperatingSystemPlugin(false); 2513 2514 // We successfully launched the process and stopped, now it the 2515 // right time to set up signal filters before resuming. 2516 UpdateAutomaticSignalFiltering(); 2517 2518 // Note, the stop event was consumed above, but not handled. This 2519 // was done to give DidLaunch a chance to run. The target is either 2520 // stopped or crashed. Directly set the state. This is done to 2521 // prevent a stop message with a bunch of spurious output on thread 2522 // status, as well as not pop a ProcessIOHandler. 2523 SetPublicState(state, false); 2524 2525 if (PrivateStateThreadIsValid()) 2526 ResumePrivateStateThread(); 2527 else 2528 StartPrivateStateThread(); 2529 2530 // Target was stopped at entry as was intended. Need to notify the 2531 // listeners about it. 2532 if (state == eStateStopped && 2533 launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2534 HandlePrivateEvent(event_sp); 2535 } else if (state == eStateExited) { 2536 // We exited while trying to launch somehow. Don't call DidLaunch 2537 // as that's not likely to work, and return an invalid pid. 2538 HandlePrivateEvent(event_sp); 2539 } 2540 } 2541 } 2542 } else { 2543 error.SetErrorStringWithFormat("file doesn't exist: '%s'", 2544 local_exec_file_path); 2545 } 2546 2547 return error; 2548 } 2549 2550 Status Process::LoadCore() { 2551 Status error = DoLoadCore(); 2552 if (error.Success()) { 2553 ListenerSP listener_sp( 2554 Listener::MakeListener("lldb.process.load_core_listener")); 2555 HijackProcessEvents(listener_sp); 2556 2557 if (PrivateStateThreadIsValid()) 2558 ResumePrivateStateThread(); 2559 else 2560 StartPrivateStateThread(); 2561 2562 DynamicLoader *dyld = GetDynamicLoader(); 2563 if (dyld) 2564 dyld->DidAttach(); 2565 2566 GetJITLoaders().DidAttach(); 2567 2568 SystemRuntime *system_runtime = GetSystemRuntime(); 2569 if (system_runtime) 2570 system_runtime->DidAttach(); 2571 2572 if (!m_os_up) 2573 LoadOperatingSystemPlugin(false); 2574 2575 // We successfully loaded a core file, now pretend we stopped so we can 2576 // show all of the threads in the core file and explore the crashed state. 2577 SetPrivateState(eStateStopped); 2578 2579 // Wait for a stopped event since we just posted one above... 2580 lldb::EventSP event_sp; 2581 StateType state = 2582 WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp); 2583 2584 if (!StateIsStoppedState(state, false)) { 2585 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2586 LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", 2587 StateAsCString(state)); 2588 error.SetErrorString( 2589 "Did not get stopped event after loading the core file."); 2590 } 2591 RestoreProcessEvents(); 2592 } 2593 return error; 2594 } 2595 2596 DynamicLoader *Process::GetDynamicLoader() { 2597 if (!m_dyld_up) 2598 m_dyld_up.reset(DynamicLoader::FindPlugin(this, nullptr)); 2599 return m_dyld_up.get(); 2600 } 2601 2602 DataExtractor Process::GetAuxvData() { return DataExtractor(); } 2603 2604 JITLoaderList &Process::GetJITLoaders() { 2605 if (!m_jit_loaders_up) { 2606 m_jit_loaders_up = std::make_unique<JITLoaderList>(); 2607 JITLoader::LoadPlugins(this, *m_jit_loaders_up); 2608 } 2609 return *m_jit_loaders_up; 2610 } 2611 2612 SystemRuntime *Process::GetSystemRuntime() { 2613 if (!m_system_runtime_up) 2614 m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); 2615 return m_system_runtime_up.get(); 2616 } 2617 2618 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2619 uint32_t exec_count) 2620 : NextEventAction(process), m_exec_count(exec_count) { 2621 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2622 LLDB_LOGF( 2623 log, 2624 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2625 __FUNCTION__, static_cast<void *>(process), exec_count); 2626 } 2627 2628 Process::NextEventAction::EventActionResult 2629 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2630 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2631 2632 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2633 LLDB_LOGF(log, 2634 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2635 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2636 2637 switch (state) { 2638 case eStateAttaching: 2639 return eEventActionSuccess; 2640 2641 case eStateRunning: 2642 case eStateConnected: 2643 return eEventActionRetry; 2644 2645 case eStateStopped: 2646 case eStateCrashed: 2647 // During attach, prior to sending the eStateStopped event, 2648 // lldb_private::Process subclasses must set the new process ID. 2649 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2650 // We don't want these events to be reported, so go set the 2651 // ShouldReportStop here: 2652 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2653 2654 if (m_exec_count > 0) { 2655 --m_exec_count; 2656 2657 LLDB_LOGF(log, 2658 "Process::AttachCompletionHandler::%s state %s: reduced " 2659 "remaining exec count to %" PRIu32 ", requesting resume", 2660 __FUNCTION__, StateAsCString(state), m_exec_count); 2661 2662 RequestResume(); 2663 return eEventActionRetry; 2664 } else { 2665 LLDB_LOGF(log, 2666 "Process::AttachCompletionHandler::%s state %s: no more " 2667 "execs expected to start, continuing with attach", 2668 __FUNCTION__, StateAsCString(state)); 2669 2670 m_process->CompleteAttach(); 2671 return eEventActionSuccess; 2672 } 2673 break; 2674 2675 default: 2676 case eStateExited: 2677 case eStateInvalid: 2678 break; 2679 } 2680 2681 m_exit_string.assign("No valid Process"); 2682 return eEventActionExit; 2683 } 2684 2685 Process::NextEventAction::EventActionResult 2686 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2687 return eEventActionSuccess; 2688 } 2689 2690 const char *Process::AttachCompletionHandler::GetExitString() { 2691 return m_exit_string.c_str(); 2692 } 2693 2694 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2695 if (m_listener_sp) 2696 return m_listener_sp; 2697 else 2698 return debugger.GetListener(); 2699 } 2700 2701 Status Process::Attach(ProcessAttachInfo &attach_info) { 2702 m_abi_sp.reset(); 2703 m_process_input_reader.reset(); 2704 m_dyld_up.reset(); 2705 m_jit_loaders_up.reset(); 2706 m_system_runtime_up.reset(); 2707 m_os_up.reset(); 2708 2709 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2710 Status error; 2711 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2712 char process_name[PATH_MAX]; 2713 2714 if (attach_info.GetExecutableFile().GetPath(process_name, 2715 sizeof(process_name))) { 2716 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2717 2718 if (wait_for_launch) { 2719 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2720 if (error.Success()) { 2721 if (m_public_run_lock.TrySetRunning()) { 2722 m_should_detach = true; 2723 const bool restarted = false; 2724 SetPublicState(eStateAttaching, restarted); 2725 // Now attach using these arguments. 2726 error = DoAttachToProcessWithName(process_name, attach_info); 2727 } else { 2728 // This shouldn't happen 2729 error.SetErrorString("failed to acquire process run lock"); 2730 } 2731 2732 if (error.Fail()) { 2733 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2734 SetID(LLDB_INVALID_PROCESS_ID); 2735 if (error.AsCString() == nullptr) 2736 error.SetErrorString("attach failed"); 2737 2738 SetExitStatus(-1, error.AsCString()); 2739 } 2740 } else { 2741 SetNextEventAction(new Process::AttachCompletionHandler( 2742 this, attach_info.GetResumeCount())); 2743 StartPrivateStateThread(); 2744 } 2745 return error; 2746 } 2747 } else { 2748 ProcessInstanceInfoList process_infos; 2749 PlatformSP platform_sp(GetTarget().GetPlatform()); 2750 2751 if (platform_sp) { 2752 ProcessInstanceInfoMatch match_info; 2753 match_info.GetProcessInfo() = attach_info; 2754 match_info.SetNameMatchType(NameMatch::Equals); 2755 platform_sp->FindProcesses(match_info, process_infos); 2756 const uint32_t num_matches = process_infos.size(); 2757 if (num_matches == 1) { 2758 attach_pid = process_infos[0].GetProcessID(); 2759 // Fall through and attach using the above process ID 2760 } else { 2761 match_info.GetProcessInfo().GetExecutableFile().GetPath( 2762 process_name, sizeof(process_name)); 2763 if (num_matches > 1) { 2764 StreamString s; 2765 ProcessInstanceInfo::DumpTableHeader(s, true, false); 2766 for (size_t i = 0; i < num_matches; i++) { 2767 process_infos[i].DumpAsTableRow( 2768 s, platform_sp->GetUserIDResolver(), true, false); 2769 } 2770 error.SetErrorStringWithFormat( 2771 "more than one process named %s:\n%s", process_name, 2772 s.GetData()); 2773 } else 2774 error.SetErrorStringWithFormat( 2775 "could not find a process named %s", process_name); 2776 } 2777 } else { 2778 error.SetErrorString( 2779 "invalid platform, can't find processes by name"); 2780 return error; 2781 } 2782 } 2783 } else { 2784 error.SetErrorString("invalid process name"); 2785 } 2786 } 2787 2788 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 2789 error = WillAttachToProcessWithID(attach_pid); 2790 if (error.Success()) { 2791 2792 if (m_public_run_lock.TrySetRunning()) { 2793 // Now attach using these arguments. 2794 m_should_detach = true; 2795 const bool restarted = false; 2796 SetPublicState(eStateAttaching, restarted); 2797 error = DoAttachToProcessWithID(attach_pid, attach_info); 2798 } else { 2799 // This shouldn't happen 2800 error.SetErrorString("failed to acquire process run lock"); 2801 } 2802 2803 if (error.Success()) { 2804 SetNextEventAction(new Process::AttachCompletionHandler( 2805 this, attach_info.GetResumeCount())); 2806 StartPrivateStateThread(); 2807 } else { 2808 if (GetID() != LLDB_INVALID_PROCESS_ID) 2809 SetID(LLDB_INVALID_PROCESS_ID); 2810 2811 const char *error_string = error.AsCString(); 2812 if (error_string == nullptr) 2813 error_string = "attach failed"; 2814 2815 SetExitStatus(-1, error_string); 2816 } 2817 } 2818 } 2819 return error; 2820 } 2821 2822 void Process::CompleteAttach() { 2823 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 2824 LIBLLDB_LOG_TARGET)); 2825 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 2826 2827 // Let the process subclass figure out at much as it can about the process 2828 // before we go looking for a dynamic loader plug-in. 2829 ArchSpec process_arch; 2830 DidAttach(process_arch); 2831 2832 if (process_arch.IsValid()) { 2833 GetTarget().SetArchitecture(process_arch); 2834 if (log) { 2835 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 2836 LLDB_LOGF(log, 2837 "Process::%s replacing process architecture with DidAttach() " 2838 "architecture: %s", 2839 __FUNCTION__, triple_str ? triple_str : "<null>"); 2840 } 2841 } 2842 2843 // We just attached. If we have a platform, ask it for the process 2844 // architecture, and if it isn't the same as the one we've already set, 2845 // switch architectures. 2846 PlatformSP platform_sp(GetTarget().GetPlatform()); 2847 assert(platform_sp); 2848 if (platform_sp) { 2849 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2850 if (target_arch.IsValid() && 2851 !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) { 2852 ArchSpec platform_arch; 2853 platform_sp = 2854 platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch); 2855 if (platform_sp) { 2856 GetTarget().SetPlatform(platform_sp); 2857 GetTarget().SetArchitecture(platform_arch); 2858 LLDB_LOGF(log, 2859 "Process::%s switching platform to %s and architecture " 2860 "to %s based on info from attach", 2861 __FUNCTION__, platform_sp->GetName().AsCString(""), 2862 platform_arch.GetTriple().getTriple().c_str()); 2863 } 2864 } else if (!process_arch.IsValid()) { 2865 ProcessInstanceInfo process_info; 2866 GetProcessInfo(process_info); 2867 const ArchSpec &process_arch = process_info.GetArchitecture(); 2868 if (process_arch.IsValid() && 2869 !GetTarget().GetArchitecture().IsExactMatch(process_arch)) { 2870 GetTarget().SetArchitecture(process_arch); 2871 LLDB_LOGF(log, 2872 "Process::%s switching architecture to %s based on info " 2873 "the platform retrieved for pid %" PRIu64, 2874 __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), 2875 GetID()); 2876 } 2877 } 2878 } 2879 2880 // We have completed the attach, now it is time to find the dynamic loader 2881 // plug-in 2882 DynamicLoader *dyld = GetDynamicLoader(); 2883 if (dyld) { 2884 dyld->DidAttach(); 2885 if (log) { 2886 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2887 LLDB_LOGF(log, 2888 "Process::%s after DynamicLoader::DidAttach(), target " 2889 "executable is %s (using %s plugin)", 2890 __FUNCTION__, 2891 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2892 : "<none>", 2893 dyld->GetPluginName().AsCString("<unnamed>")); 2894 } 2895 } 2896 2897 GetJITLoaders().DidAttach(); 2898 2899 SystemRuntime *system_runtime = GetSystemRuntime(); 2900 if (system_runtime) { 2901 system_runtime->DidAttach(); 2902 if (log) { 2903 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2904 LLDB_LOGF(log, 2905 "Process::%s after SystemRuntime::DidAttach(), target " 2906 "executable is %s (using %s plugin)", 2907 __FUNCTION__, 2908 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2909 : "<none>", 2910 system_runtime->GetPluginName().AsCString("<unnamed>")); 2911 } 2912 } 2913 2914 if (!m_os_up) { 2915 LoadOperatingSystemPlugin(false); 2916 if (m_os_up) { 2917 // Somebody might have gotten threads before now, but we need to force the 2918 // update after we've loaded the OperatingSystem plugin or it won't get a 2919 // chance to process the threads. 2920 m_thread_list.Clear(); 2921 UpdateThreadListIfNeeded(); 2922 } 2923 } 2924 // Figure out which one is the executable, and set that in our target: 2925 ModuleSP new_executable_module_sp; 2926 for (ModuleSP module_sp : GetTarget().GetImages().Modules()) { 2927 if (module_sp && module_sp->IsExecutable()) { 2928 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 2929 new_executable_module_sp = module_sp; 2930 break; 2931 } 2932 } 2933 if (new_executable_module_sp) { 2934 GetTarget().SetExecutableModule(new_executable_module_sp, 2935 eLoadDependentsNo); 2936 if (log) { 2937 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2938 LLDB_LOGF( 2939 log, 2940 "Process::%s after looping through modules, target executable is %s", 2941 __FUNCTION__, 2942 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2943 : "<none>"); 2944 } 2945 } 2946 } 2947 2948 Status Process::ConnectRemote(llvm::StringRef remote_url) { 2949 m_abi_sp.reset(); 2950 m_process_input_reader.reset(); 2951 2952 // Find the process and its architecture. Make sure it matches the 2953 // architecture of the current Target, and if not adjust it. 2954 2955 Status error(DoConnectRemote(remote_url)); 2956 if (error.Success()) { 2957 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2958 EventSP event_sp; 2959 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 2960 2961 if (state == eStateStopped || state == eStateCrashed) { 2962 // If we attached and actually have a process on the other end, then 2963 // this ended up being the equivalent of an attach. 2964 CompleteAttach(); 2965 2966 // This delays passing the stopped event to listeners till 2967 // CompleteAttach gets a chance to complete... 2968 HandlePrivateEvent(event_sp); 2969 } 2970 } 2971 2972 if (PrivateStateThreadIsValid()) 2973 ResumePrivateStateThread(); 2974 else 2975 StartPrivateStateThread(); 2976 } 2977 return error; 2978 } 2979 2980 Status Process::PrivateResume() { 2981 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 2982 LIBLLDB_LOG_STEP)); 2983 LLDB_LOGF(log, 2984 "Process::PrivateResume() m_stop_id = %u, public state: %s " 2985 "private state: %s", 2986 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 2987 StateAsCString(m_private_state.GetValue())); 2988 2989 // If signals handing status changed we might want to update our signal 2990 // filters before resuming. 2991 UpdateAutomaticSignalFiltering(); 2992 2993 Status error(WillResume()); 2994 // Tell the process it is about to resume before the thread list 2995 if (error.Success()) { 2996 // Now let the thread list know we are about to resume so it can let all of 2997 // our threads know that they are about to be resumed. Threads will each be 2998 // called with Thread::WillResume(StateType) where StateType contains the 2999 // state that they are supposed to have when the process is resumed 3000 // (suspended/running/stepping). Threads should also check their resume 3001 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3002 // start back up with a signal. 3003 if (m_thread_list.WillResume()) { 3004 // Last thing, do the PreResumeActions. 3005 if (!RunPreResumeActions()) { 3006 error.SetErrorString( 3007 "Process::PrivateResume PreResumeActions failed, not resuming."); 3008 } else { 3009 m_mod_id.BumpResumeID(); 3010 error = DoResume(); 3011 if (error.Success()) { 3012 DidResume(); 3013 m_thread_list.DidResume(); 3014 LLDB_LOGF(log, "Process thinks the process has resumed."); 3015 } else { 3016 LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); 3017 return error; 3018 } 3019 } 3020 } else { 3021 // Somebody wanted to run without running (e.g. we were faking a step 3022 // from one frame of a set of inlined frames that share the same PC to 3023 // another.) So generate a continue & a stopped event, and let the world 3024 // handle them. 3025 LLDB_LOGF(log, 3026 "Process::PrivateResume() asked to simulate a start & stop."); 3027 3028 SetPrivateState(eStateRunning); 3029 SetPrivateState(eStateStopped); 3030 } 3031 } else 3032 LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", 3033 error.AsCString("<unknown error>")); 3034 return error; 3035 } 3036 3037 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3038 if (!StateIsRunningState(m_public_state.GetValue())) 3039 return Status("Process is not running."); 3040 3041 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3042 // case it was already set and some thread plan logic calls halt on its own. 3043 m_clear_thread_plans_on_stop |= clear_thread_plans; 3044 3045 ListenerSP halt_listener_sp( 3046 Listener::MakeListener("lldb.process.halt_listener")); 3047 HijackProcessEvents(halt_listener_sp); 3048 3049 EventSP event_sp; 3050 3051 SendAsyncInterrupt(); 3052 3053 if (m_public_state.GetValue() == eStateAttaching) { 3054 // Don't hijack and eat the eStateExited as the code that was doing the 3055 // attach will be waiting for this event... 3056 RestoreProcessEvents(); 3057 SetExitStatus(SIGKILL, "Cancelled async attach."); 3058 Destroy(false); 3059 return Status(); 3060 } 3061 3062 // Wait for 10 second for the process to stop. 3063 StateType state = WaitForProcessToStop( 3064 seconds(10), &event_sp, true, halt_listener_sp, nullptr, use_run_lock); 3065 RestoreProcessEvents(); 3066 3067 if (state == eStateInvalid || !event_sp) { 3068 // We timed out and didn't get a stop event... 3069 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3070 } 3071 3072 BroadcastEvent(event_sp); 3073 3074 return Status(); 3075 } 3076 3077 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3078 Status error; 3079 3080 // Check both the public & private states here. If we're hung evaluating an 3081 // expression, for instance, then the public state will be stopped, but we 3082 // still need to interrupt. 3083 if (m_public_state.GetValue() == eStateRunning || 3084 m_private_state.GetValue() == eStateRunning) { 3085 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3086 LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); 3087 3088 ListenerSP listener_sp( 3089 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3090 HijackProcessEvents(listener_sp); 3091 3092 SendAsyncInterrupt(); 3093 3094 // Consume the interrupt event. 3095 StateType state = 3096 WaitForProcessToStop(seconds(10), &exit_event_sp, true, listener_sp); 3097 3098 RestoreProcessEvents(); 3099 3100 // If the process exited while we were waiting for it to stop, put the 3101 // exited event into the shared pointer passed in and return. Our caller 3102 // doesn't need to do anything else, since they don't have a process 3103 // anymore... 3104 3105 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3106 LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", 3107 __FUNCTION__); 3108 return error; 3109 } else 3110 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3111 3112 if (state != eStateStopped) { 3113 LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, 3114 StateAsCString(state)); 3115 // If we really couldn't stop the process then we should just error out 3116 // here, but if the lower levels just bobbled sending the event and we 3117 // really are stopped, then continue on. 3118 StateType private_state = m_private_state.GetValue(); 3119 if (private_state != eStateStopped) { 3120 return Status( 3121 "Attempt to stop the target in order to detach timed out. " 3122 "State = %s", 3123 StateAsCString(GetState())); 3124 } 3125 } 3126 } 3127 return error; 3128 } 3129 3130 Status Process::Detach(bool keep_stopped) { 3131 EventSP exit_event_sp; 3132 Status error; 3133 m_destroy_in_process = true; 3134 3135 error = WillDetach(); 3136 3137 if (error.Success()) { 3138 if (DetachRequiresHalt()) { 3139 error = StopForDestroyOrDetach(exit_event_sp); 3140 if (!error.Success()) { 3141 m_destroy_in_process = false; 3142 return error; 3143 } else if (exit_event_sp) { 3144 // We shouldn't need to do anything else here. There's no process left 3145 // to detach from... 3146 StopPrivateStateThread(); 3147 m_destroy_in_process = false; 3148 return error; 3149 } 3150 } 3151 3152 m_thread_list.DiscardThreadPlans(); 3153 DisableAllBreakpointSites(); 3154 3155 error = DoDetach(keep_stopped); 3156 if (error.Success()) { 3157 DidDetach(); 3158 StopPrivateStateThread(); 3159 } else { 3160 return error; 3161 } 3162 } 3163 m_destroy_in_process = false; 3164 3165 // If we exited when we were waiting for a process to stop, then forward the 3166 // event here so we don't lose the event 3167 if (exit_event_sp) { 3168 // Directly broadcast our exited event because we shut down our private 3169 // state thread above 3170 BroadcastEvent(exit_event_sp); 3171 } 3172 3173 // If we have been interrupted (to kill us) in the middle of running, we may 3174 // not end up propagating the last events through the event system, in which 3175 // case we might strand the write lock. Unlock it here so when we do to tear 3176 // down the process we don't get an error destroying the lock. 3177 3178 m_public_run_lock.SetStopped(); 3179 return error; 3180 } 3181 3182 Status Process::Destroy(bool force_kill) { 3183 // If we've already called Process::Finalize then there's nothing useful to 3184 // be done here. Finalize has actually called Destroy already. 3185 if (m_finalizing) 3186 return {}; 3187 return DestroyImpl(force_kill); 3188 } 3189 3190 Status Process::DestroyImpl(bool force_kill) { 3191 // Tell ourselves we are in the process of destroying the process, so that we 3192 // don't do any unnecessary work that might hinder the destruction. Remember 3193 // to set this back to false when we are done. That way if the attempt 3194 // failed and the process stays around for some reason it won't be in a 3195 // confused state. 3196 3197 if (force_kill) 3198 m_should_detach = false; 3199 3200 if (GetShouldDetach()) { 3201 // FIXME: This will have to be a process setting: 3202 bool keep_stopped = false; 3203 Detach(keep_stopped); 3204 } 3205 3206 m_destroy_in_process = true; 3207 3208 Status error(WillDestroy()); 3209 if (error.Success()) { 3210 EventSP exit_event_sp; 3211 if (DestroyRequiresHalt()) { 3212 error = StopForDestroyOrDetach(exit_event_sp); 3213 } 3214 3215 if (m_public_state.GetValue() != eStateRunning) { 3216 // Ditch all thread plans, and remove all our breakpoints: in case we 3217 // have to restart the target to kill it, we don't want it hitting a 3218 // breakpoint... Only do this if we've stopped, however, since if we 3219 // didn't manage to halt it above, then we're not going to have much luck 3220 // doing this now. 3221 m_thread_list.DiscardThreadPlans(); 3222 DisableAllBreakpointSites(); 3223 } 3224 3225 error = DoDestroy(); 3226 if (error.Success()) { 3227 DidDestroy(); 3228 StopPrivateStateThread(); 3229 } 3230 m_stdio_communication.StopReadThread(); 3231 m_stdio_communication.Disconnect(); 3232 m_stdin_forward = false; 3233 3234 if (m_process_input_reader) { 3235 m_process_input_reader->SetIsDone(true); 3236 m_process_input_reader->Cancel(); 3237 m_process_input_reader.reset(); 3238 } 3239 3240 // If we exited when we were waiting for a process to stop, then forward 3241 // the event here so we don't lose the event 3242 if (exit_event_sp) { 3243 // Directly broadcast our exited event because we shut down our private 3244 // state thread above 3245 BroadcastEvent(exit_event_sp); 3246 } 3247 3248 // If we have been interrupted (to kill us) in the middle of running, we 3249 // may not end up propagating the last events through the event system, in 3250 // which case we might strand the write lock. Unlock it here so when we do 3251 // to tear down the process we don't get an error destroying the lock. 3252 m_public_run_lock.SetStopped(); 3253 } 3254 3255 m_destroy_in_process = false; 3256 3257 return error; 3258 } 3259 3260 Status Process::Signal(int signal) { 3261 Status error(WillSignal()); 3262 if (error.Success()) { 3263 error = DoSignal(signal); 3264 if (error.Success()) 3265 DidSignal(); 3266 } 3267 return error; 3268 } 3269 3270 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3271 assert(signals_sp && "null signals_sp"); 3272 m_unix_signals_sp = signals_sp; 3273 } 3274 3275 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3276 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3277 return m_unix_signals_sp; 3278 } 3279 3280 lldb::ByteOrder Process::GetByteOrder() const { 3281 return GetTarget().GetArchitecture().GetByteOrder(); 3282 } 3283 3284 uint32_t Process::GetAddressByteSize() const { 3285 return GetTarget().GetArchitecture().GetAddressByteSize(); 3286 } 3287 3288 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3289 const StateType state = 3290 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3291 bool return_value = true; 3292 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | 3293 LIBLLDB_LOG_PROCESS)); 3294 3295 switch (state) { 3296 case eStateDetached: 3297 case eStateExited: 3298 case eStateUnloaded: 3299 m_stdio_communication.SynchronizeWithReadThread(); 3300 m_stdio_communication.StopReadThread(); 3301 m_stdio_communication.Disconnect(); 3302 m_stdin_forward = false; 3303 3304 LLVM_FALLTHROUGH; 3305 case eStateConnected: 3306 case eStateAttaching: 3307 case eStateLaunching: 3308 // These events indicate changes in the state of the debugging session, 3309 // always report them. 3310 return_value = true; 3311 break; 3312 case eStateInvalid: 3313 // We stopped for no apparent reason, don't report it. 3314 return_value = false; 3315 break; 3316 case eStateRunning: 3317 case eStateStepping: 3318 // If we've started the target running, we handle the cases where we are 3319 // already running and where there is a transition from stopped to running 3320 // differently. running -> running: Automatically suppress extra running 3321 // events stopped -> running: Report except when there is one or more no 3322 // votes 3323 // and no yes votes. 3324 SynchronouslyNotifyStateChanged(state); 3325 if (m_force_next_event_delivery) 3326 return_value = true; 3327 else { 3328 switch (m_last_broadcast_state) { 3329 case eStateRunning: 3330 case eStateStepping: 3331 // We always suppress multiple runnings with no PUBLIC stop in between. 3332 return_value = false; 3333 break; 3334 default: 3335 // TODO: make this work correctly. For now always report 3336 // run if we aren't running so we don't miss any running events. If I 3337 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3338 // and hit the breakpoints on multiple threads, then somehow during the 3339 // stepping over of all breakpoints no run gets reported. 3340 3341 // This is a transition from stop to run. 3342 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3343 case eVoteYes: 3344 case eVoteNoOpinion: 3345 return_value = true; 3346 break; 3347 case eVoteNo: 3348 return_value = false; 3349 break; 3350 } 3351 break; 3352 } 3353 } 3354 break; 3355 case eStateStopped: 3356 case eStateCrashed: 3357 case eStateSuspended: 3358 // We've stopped. First see if we're going to restart the target. If we 3359 // are going to stop, then we always broadcast the event. If we aren't 3360 // going to stop, let the thread plans decide if we're going to report this 3361 // event. If no thread has an opinion, we don't report it. 3362 3363 m_stdio_communication.SynchronizeWithReadThread(); 3364 RefreshStateAfterStop(); 3365 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3366 LLDB_LOGF(log, 3367 "Process::ShouldBroadcastEvent (%p) stopped due to an " 3368 "interrupt, state: %s", 3369 static_cast<void *>(event_ptr), StateAsCString(state)); 3370 // Even though we know we are going to stop, we should let the threads 3371 // have a look at the stop, so they can properly set their state. 3372 m_thread_list.ShouldStop(event_ptr); 3373 return_value = true; 3374 } else { 3375 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3376 bool should_resume = false; 3377 3378 // It makes no sense to ask "ShouldStop" if we've already been 3379 // restarted... Asking the thread list is also not likely to go well, 3380 // since we are running again. So in that case just report the event. 3381 3382 if (!was_restarted) 3383 should_resume = !m_thread_list.ShouldStop(event_ptr); 3384 3385 if (was_restarted || should_resume || m_resume_requested) { 3386 Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3387 LLDB_LOGF(log, 3388 "Process::ShouldBroadcastEvent: should_resume: %i state: " 3389 "%s was_restarted: %i report_stop_vote: %d.", 3390 should_resume, StateAsCString(state), was_restarted, 3391 report_stop_vote); 3392 3393 switch (report_stop_vote) { 3394 case eVoteYes: 3395 return_value = true; 3396 break; 3397 case eVoteNoOpinion: 3398 case eVoteNo: 3399 return_value = false; 3400 break; 3401 } 3402 3403 if (!was_restarted) { 3404 LLDB_LOGF(log, 3405 "Process::ShouldBroadcastEvent (%p) Restarting process " 3406 "from state: %s", 3407 static_cast<void *>(event_ptr), StateAsCString(state)); 3408 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3409 PrivateResume(); 3410 } 3411 } else { 3412 return_value = true; 3413 SynchronouslyNotifyStateChanged(state); 3414 } 3415 } 3416 break; 3417 } 3418 3419 // Forcing the next event delivery is a one shot deal. So reset it here. 3420 m_force_next_event_delivery = false; 3421 3422 // We do some coalescing of events (for instance two consecutive running 3423 // events get coalesced.) But we only coalesce against events we actually 3424 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3425 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3426 // done, because the PublicState reflects the last event pulled off the 3427 // queue, and there may be several events stacked up on the queue unserviced. 3428 // So the PublicState may not reflect the last broadcasted event yet. 3429 // m_last_broadcast_state gets updated here. 3430 3431 if (return_value) 3432 m_last_broadcast_state = state; 3433 3434 LLDB_LOGF(log, 3435 "Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3436 "broadcast state: %s - %s", 3437 static_cast<void *>(event_ptr), StateAsCString(state), 3438 StateAsCString(m_last_broadcast_state), 3439 return_value ? "YES" : "NO"); 3440 return return_value; 3441 } 3442 3443 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3444 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 3445 3446 bool already_running = PrivateStateThreadIsValid(); 3447 LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, 3448 already_running ? " already running" 3449 : " starting private state thread"); 3450 3451 if (!is_secondary_thread && already_running) 3452 return true; 3453 3454 // Create a thread that watches our internal state and controls which events 3455 // make it to clients (into the DCProcess event queue). 3456 char thread_name[1024]; 3457 uint32_t max_len = llvm::get_max_thread_name_length(); 3458 if (max_len > 0 && max_len <= 30) { 3459 // On platforms with abbreviated thread name lengths, choose thread names 3460 // that fit within the limit. 3461 if (already_running) 3462 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3463 else 3464 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3465 } else { 3466 if (already_running) 3467 snprintf(thread_name, sizeof(thread_name), 3468 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3469 GetID()); 3470 else 3471 snprintf(thread_name, sizeof(thread_name), 3472 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3473 } 3474 3475 // Create the private state thread, and start it running. 3476 PrivateStateThreadArgs *args_ptr = 3477 new PrivateStateThreadArgs(this, is_secondary_thread); 3478 llvm::Expected<HostThread> private_state_thread = 3479 ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, 3480 (void *)args_ptr, 8 * 1024 * 1024); 3481 if (!private_state_thread) { 3482 LLDB_LOG(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST), 3483 "failed to launch host thread: {}", 3484 llvm::toString(private_state_thread.takeError())); 3485 return false; 3486 } 3487 3488 assert(private_state_thread->IsJoinable()); 3489 m_private_state_thread = *private_state_thread; 3490 ResumePrivateStateThread(); 3491 return true; 3492 } 3493 3494 void Process::PausePrivateStateThread() { 3495 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3496 } 3497 3498 void Process::ResumePrivateStateThread() { 3499 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3500 } 3501 3502 void Process::StopPrivateStateThread() { 3503 if (m_private_state_thread.IsJoinable()) 3504 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3505 else { 3506 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3507 LLDB_LOGF( 3508 log, 3509 "Went to stop the private state thread, but it was already invalid."); 3510 } 3511 } 3512 3513 void Process::ControlPrivateStateThread(uint32_t signal) { 3514 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3515 3516 assert(signal == eBroadcastInternalStateControlStop || 3517 signal == eBroadcastInternalStateControlPause || 3518 signal == eBroadcastInternalStateControlResume); 3519 3520 LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); 3521 3522 // Signal the private state thread 3523 if (m_private_state_thread.IsJoinable()) { 3524 // Broadcast the event. 3525 // It is important to do this outside of the if below, because it's 3526 // possible that the thread state is invalid but that the thread is waiting 3527 // on a control event instead of simply being on its way out (this should 3528 // not happen, but it apparently can). 3529 LLDB_LOGF(log, "Sending control event of type: %d.", signal); 3530 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3531 m_private_state_control_broadcaster.BroadcastEvent(signal, 3532 event_receipt_sp); 3533 3534 // Wait for the event receipt or for the private state thread to exit 3535 bool receipt_received = false; 3536 if (PrivateStateThreadIsValid()) { 3537 while (!receipt_received) { 3538 // Check for a receipt for n seconds and then check if the private 3539 // state thread is still around. 3540 receipt_received = 3541 event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout()); 3542 if (!receipt_received) { 3543 // Check if the private state thread is still around. If it isn't 3544 // then we are done waiting 3545 if (!PrivateStateThreadIsValid()) 3546 break; // Private state thread exited or is exiting, we are done 3547 } 3548 } 3549 } 3550 3551 if (signal == eBroadcastInternalStateControlStop) { 3552 thread_result_t result = {}; 3553 m_private_state_thread.Join(&result); 3554 m_private_state_thread.Reset(); 3555 } 3556 } else { 3557 LLDB_LOGF( 3558 log, 3559 "Private state thread already dead, no need to signal it to stop."); 3560 } 3561 } 3562 3563 void Process::SendAsyncInterrupt() { 3564 if (PrivateStateThreadIsValid()) 3565 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3566 nullptr); 3567 else 3568 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3569 } 3570 3571 void Process::HandlePrivateEvent(EventSP &event_sp) { 3572 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3573 m_resume_requested = false; 3574 3575 const StateType new_state = 3576 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3577 3578 // First check to see if anybody wants a shot at this event: 3579 if (m_next_event_action_up) { 3580 NextEventAction::EventActionResult action_result = 3581 m_next_event_action_up->PerformAction(event_sp); 3582 LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); 3583 3584 switch (action_result) { 3585 case NextEventAction::eEventActionSuccess: 3586 SetNextEventAction(nullptr); 3587 break; 3588 3589 case NextEventAction::eEventActionRetry: 3590 break; 3591 3592 case NextEventAction::eEventActionExit: 3593 // Handle Exiting Here. If we already got an exited event, we should 3594 // just propagate it. Otherwise, swallow this event, and set our state 3595 // to exit so the next event will kill us. 3596 if (new_state != eStateExited) { 3597 // FIXME: should cons up an exited event, and discard this one. 3598 SetExitStatus(0, m_next_event_action_up->GetExitString()); 3599 SetNextEventAction(nullptr); 3600 return; 3601 } 3602 SetNextEventAction(nullptr); 3603 break; 3604 } 3605 } 3606 3607 // See if we should broadcast this state to external clients? 3608 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3609 3610 if (should_broadcast) { 3611 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3612 if (log) { 3613 LLDB_LOGF(log, 3614 "Process::%s (pid = %" PRIu64 3615 ") broadcasting new state %s (old state %s) to %s", 3616 __FUNCTION__, GetID(), StateAsCString(new_state), 3617 StateAsCString(GetState()), 3618 is_hijacked ? "hijacked" : "public"); 3619 } 3620 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3621 if (StateIsRunningState(new_state)) { 3622 // Only push the input handler if we aren't fowarding events, as this 3623 // means the curses GUI is in use... Or don't push it if we are launching 3624 // since it will come up stopped. 3625 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3626 new_state != eStateLaunching && new_state != eStateAttaching) { 3627 PushProcessIOHandler(); 3628 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3629 eBroadcastAlways); 3630 LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", 3631 __FUNCTION__, m_iohandler_sync.GetValue()); 3632 } 3633 } else if (StateIsStoppedState(new_state, false)) { 3634 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3635 // If the lldb_private::Debugger is handling the events, we don't want 3636 // to pop the process IOHandler here, we want to do it when we receive 3637 // the stopped event so we can carefully control when the process 3638 // IOHandler is popped because when we stop we want to display some 3639 // text stating how and why we stopped, then maybe some 3640 // process/thread/frame info, and then we want the "(lldb) " prompt to 3641 // show up. If we pop the process IOHandler here, then we will cause 3642 // the command interpreter to become the top IOHandler after the 3643 // process pops off and it will update its prompt right away... See the 3644 // Debugger.cpp file where it calls the function as 3645 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3646 // Otherwise we end up getting overlapping "(lldb) " prompts and 3647 // garbled output. 3648 // 3649 // If we aren't handling the events in the debugger (which is indicated 3650 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3651 // we are hijacked, then we always pop the process IO handler manually. 3652 // Hijacking happens when the internal process state thread is running 3653 // thread plans, or when commands want to run in synchronous mode and 3654 // they call "process->WaitForProcessToStop()". An example of something 3655 // that will hijack the events is a simple expression: 3656 // 3657 // (lldb) expr (int)puts("hello") 3658 // 3659 // This will cause the internal process state thread to resume and halt 3660 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3661 // events) and we do need the IO handler to be pushed and popped 3662 // correctly. 3663 3664 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3665 PopProcessIOHandler(); 3666 } 3667 } 3668 3669 BroadcastEvent(event_sp); 3670 } else { 3671 if (log) { 3672 LLDB_LOGF( 3673 log, 3674 "Process::%s (pid = %" PRIu64 3675 ") suppressing state %s (old state %s): should_broadcast == false", 3676 __FUNCTION__, GetID(), StateAsCString(new_state), 3677 StateAsCString(GetState())); 3678 } 3679 } 3680 } 3681 3682 Status Process::HaltPrivate() { 3683 EventSP event_sp; 3684 Status error(WillHalt()); 3685 if (error.Fail()) 3686 return error; 3687 3688 // Ask the process subclass to actually halt our process 3689 bool caused_stop; 3690 error = DoHalt(caused_stop); 3691 3692 DidHalt(); 3693 return error; 3694 } 3695 3696 thread_result_t Process::PrivateStateThread(void *arg) { 3697 std::unique_ptr<PrivateStateThreadArgs> args_up( 3698 static_cast<PrivateStateThreadArgs *>(arg)); 3699 thread_result_t result = 3700 args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 3701 return result; 3702 } 3703 3704 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3705 bool control_only = true; 3706 3707 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3708 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3709 __FUNCTION__, static_cast<void *>(this), GetID()); 3710 3711 bool exit_now = false; 3712 bool interrupt_requested = false; 3713 while (!exit_now) { 3714 EventSP event_sp; 3715 GetEventsPrivate(event_sp, llvm::None, control_only); 3716 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3717 LLDB_LOGF(log, 3718 "Process::%s (arg = %p, pid = %" PRIu64 3719 ") got a control event: %d", 3720 __FUNCTION__, static_cast<void *>(this), GetID(), 3721 event_sp->GetType()); 3722 3723 switch (event_sp->GetType()) { 3724 case eBroadcastInternalStateControlStop: 3725 exit_now = true; 3726 break; // doing any internal state management below 3727 3728 case eBroadcastInternalStateControlPause: 3729 control_only = true; 3730 break; 3731 3732 case eBroadcastInternalStateControlResume: 3733 control_only = false; 3734 break; 3735 } 3736 3737 continue; 3738 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 3739 if (m_public_state.GetValue() == eStateAttaching) { 3740 LLDB_LOGF(log, 3741 "Process::%s (arg = %p, pid = %" PRIu64 3742 ") woke up with an interrupt while attaching - " 3743 "forwarding interrupt.", 3744 __FUNCTION__, static_cast<void *>(this), GetID()); 3745 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 3746 } else if (StateIsRunningState(m_last_broadcast_state)) { 3747 LLDB_LOGF(log, 3748 "Process::%s (arg = %p, pid = %" PRIu64 3749 ") woke up with an interrupt - Halting.", 3750 __FUNCTION__, static_cast<void *>(this), GetID()); 3751 Status error = HaltPrivate(); 3752 if (error.Fail() && log) 3753 LLDB_LOGF(log, 3754 "Process::%s (arg = %p, pid = %" PRIu64 3755 ") failed to halt the process: %s", 3756 __FUNCTION__, static_cast<void *>(this), GetID(), 3757 error.AsCString()); 3758 // Halt should generate a stopped event. Make a note of the fact that 3759 // we were doing the interrupt, so we can set the interrupted flag 3760 // after we receive the event. We deliberately set this to true even if 3761 // HaltPrivate failed, so that we can interrupt on the next natural 3762 // stop. 3763 interrupt_requested = true; 3764 } else { 3765 // This can happen when someone (e.g. Process::Halt) sees that we are 3766 // running and sends an interrupt request, but the process actually 3767 // stops before we receive it. In that case, we can just ignore the 3768 // request. We use m_last_broadcast_state, because the Stopped event 3769 // may not have been popped of the event queue yet, which is when the 3770 // public state gets updated. 3771 LLDB_LOGF(log, 3772 "Process::%s ignoring interrupt as we have already stopped.", 3773 __FUNCTION__); 3774 } 3775 continue; 3776 } 3777 3778 const StateType internal_state = 3779 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3780 3781 if (internal_state != eStateInvalid) { 3782 if (m_clear_thread_plans_on_stop && 3783 StateIsStoppedState(internal_state, true)) { 3784 m_clear_thread_plans_on_stop = false; 3785 m_thread_list.DiscardThreadPlans(); 3786 } 3787 3788 if (interrupt_requested) { 3789 if (StateIsStoppedState(internal_state, true)) { 3790 // We requested the interrupt, so mark this as such in the stop event 3791 // so clients can tell an interrupted process from a natural stop 3792 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 3793 interrupt_requested = false; 3794 } else if (log) { 3795 LLDB_LOGF(log, 3796 "Process::%s interrupt_requested, but a non-stopped " 3797 "state '%s' received.", 3798 __FUNCTION__, StateAsCString(internal_state)); 3799 } 3800 } 3801 3802 HandlePrivateEvent(event_sp); 3803 } 3804 3805 if (internal_state == eStateInvalid || internal_state == eStateExited || 3806 internal_state == eStateDetached) { 3807 LLDB_LOGF(log, 3808 "Process::%s (arg = %p, pid = %" PRIu64 3809 ") about to exit with internal state %s...", 3810 __FUNCTION__, static_cast<void *>(this), GetID(), 3811 StateAsCString(internal_state)); 3812 3813 break; 3814 } 3815 } 3816 3817 // Verify log is still enabled before attempting to write to it... 3818 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 3819 __FUNCTION__, static_cast<void *>(this), GetID()); 3820 3821 // If we are a secondary thread, then the primary thread we are working for 3822 // will have already acquired the public_run_lock, and isn't done with what 3823 // it was doing yet, so don't try to change it on the way out. 3824 if (!is_secondary_thread) 3825 m_public_run_lock.SetStopped(); 3826 return {}; 3827 } 3828 3829 // Process Event Data 3830 3831 Process::ProcessEventData::ProcessEventData() 3832 : EventData(), m_process_wp(), m_state(eStateInvalid), m_restarted(false), 3833 m_update_state(0), m_interrupted(false) {} 3834 3835 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 3836 StateType state) 3837 : EventData(), m_process_wp(), m_state(state), m_restarted(false), 3838 m_update_state(0), m_interrupted(false) { 3839 if (process_sp) 3840 m_process_wp = process_sp; 3841 } 3842 3843 Process::ProcessEventData::~ProcessEventData() = default; 3844 3845 ConstString Process::ProcessEventData::GetFlavorString() { 3846 static ConstString g_flavor("Process::ProcessEventData"); 3847 return g_flavor; 3848 } 3849 3850 ConstString Process::ProcessEventData::GetFlavor() const { 3851 return ProcessEventData::GetFlavorString(); 3852 } 3853 3854 bool Process::ProcessEventData::ShouldStop(Event *event_ptr, 3855 bool &found_valid_stopinfo) { 3856 found_valid_stopinfo = false; 3857 3858 ProcessSP process_sp(m_process_wp.lock()); 3859 if (!process_sp) 3860 return false; 3861 3862 ThreadList &curr_thread_list = process_sp->GetThreadList(); 3863 uint32_t num_threads = curr_thread_list.GetSize(); 3864 uint32_t idx; 3865 3866 // The actions might change one of the thread's stop_info's opinions about 3867 // whether we should stop the process, so we need to query that as we go. 3868 3869 // One other complication here, is that we try to catch any case where the 3870 // target has run (except for expressions) and immediately exit, but if we 3871 // get that wrong (which is possible) then the thread list might have 3872 // changed, and that would cause our iteration here to crash. We could 3873 // make a copy of the thread list, but we'd really like to also know if it 3874 // has changed at all, so we make up a vector of the thread ID's and check 3875 // what we get back against this list & bag out if anything differs. 3876 ThreadList not_suspended_thread_list(process_sp.get()); 3877 std::vector<uint32_t> thread_index_array(num_threads); 3878 uint32_t not_suspended_idx = 0; 3879 for (idx = 0; idx < num_threads; ++idx) { 3880 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 3881 3882 /* 3883 Filter out all suspended threads, they could not be the reason 3884 of stop and no need to perform any actions on them. 3885 */ 3886 if (thread_sp->GetResumeState() != eStateSuspended) { 3887 not_suspended_thread_list.AddThread(thread_sp); 3888 thread_index_array[not_suspended_idx] = thread_sp->GetIndexID(); 3889 not_suspended_idx++; 3890 } 3891 } 3892 3893 // Use this to track whether we should continue from here. We will only 3894 // continue the target running if no thread says we should stop. Of course 3895 // if some thread's PerformAction actually sets the target running, then it 3896 // doesn't matter what the other threads say... 3897 3898 bool still_should_stop = false; 3899 3900 // Sometimes - for instance if we have a bug in the stub we are talking to, 3901 // we stop but no thread has a valid stop reason. In that case we should 3902 // just stop, because we have no way of telling what the right thing to do 3903 // is, and it's better to let the user decide than continue behind their 3904 // backs. 3905 3906 for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) { 3907 curr_thread_list = process_sp->GetThreadList(); 3908 if (curr_thread_list.GetSize() != num_threads) { 3909 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 3910 LIBLLDB_LOG_PROCESS)); 3911 LLDB_LOGF( 3912 log, 3913 "Number of threads changed from %u to %u while processing event.", 3914 num_threads, curr_thread_list.GetSize()); 3915 break; 3916 } 3917 3918 lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx); 3919 3920 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 3921 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 3922 LIBLLDB_LOG_PROCESS)); 3923 LLDB_LOGF(log, 3924 "The thread at position %u changed from %u to %u while " 3925 "processing event.", 3926 idx, thread_index_array[idx], thread_sp->GetIndexID()); 3927 break; 3928 } 3929 3930 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 3931 if (stop_info_sp && stop_info_sp->IsValid()) { 3932 found_valid_stopinfo = true; 3933 bool this_thread_wants_to_stop; 3934 if (stop_info_sp->GetOverrideShouldStop()) { 3935 this_thread_wants_to_stop = 3936 stop_info_sp->GetOverriddenShouldStopValue(); 3937 } else { 3938 stop_info_sp->PerformAction(event_ptr); 3939 // The stop action might restart the target. If it does, then we 3940 // want to mark that in the event so that whoever is receiving it 3941 // will know to wait for the running event and reflect that state 3942 // appropriately. We also need to stop processing actions, since they 3943 // aren't expecting the target to be running. 3944 3945 // FIXME: we might have run. 3946 if (stop_info_sp->HasTargetRunSinceMe()) { 3947 SetRestarted(true); 3948 break; 3949 } 3950 3951 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 3952 } 3953 3954 if (!still_should_stop) 3955 still_should_stop = this_thread_wants_to_stop; 3956 } 3957 } 3958 3959 return still_should_stop; 3960 } 3961 3962 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 3963 ProcessSP process_sp(m_process_wp.lock()); 3964 3965 if (!process_sp) 3966 return; 3967 3968 // This function gets called twice for each event, once when the event gets 3969 // pulled off of the private process event queue, and then any number of 3970 // times, first when it gets pulled off of the public event queue, then other 3971 // times when we're pretending that this is where we stopped at the end of 3972 // expression evaluation. m_update_state is used to distinguish these three 3973 // cases; it is 0 when we're just pulling it off for private handling, and > 3974 // 1 for expression evaluation, and we don't want to do the breakpoint 3975 // command handling then. 3976 if (m_update_state != 1) 3977 return; 3978 3979 process_sp->SetPublicState( 3980 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 3981 3982 if (m_state == eStateStopped && !m_restarted) { 3983 // Let process subclasses know we are about to do a public stop and do 3984 // anything they might need to in order to speed up register and memory 3985 // accesses. 3986 process_sp->WillPublicStop(); 3987 } 3988 3989 // If this is a halt event, even if the halt stopped with some reason other 3990 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 3991 // the halt request came through) don't do the StopInfo actions, as they may 3992 // end up restarting the process. 3993 if (m_interrupted) 3994 return; 3995 3996 // If we're not stopped or have restarted, then skip the StopInfo actions: 3997 if (m_state != eStateStopped || m_restarted) { 3998 return; 3999 } 4000 4001 bool does_anybody_have_an_opinion = false; 4002 bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion); 4003 4004 if (GetRestarted()) { 4005 return; 4006 } 4007 4008 if (!still_should_stop && does_anybody_have_an_opinion) { 4009 // We've been asked to continue, so do that here. 4010 SetRestarted(true); 4011 // Use the public resume method here, since this is just extending a 4012 // public resume. 4013 process_sp->PrivateResume(); 4014 } else { 4015 bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) && 4016 !process_sp->StateChangedIsHijackedForSynchronousResume(); 4017 4018 if (!hijacked) { 4019 // If we didn't restart, run the Stop Hooks here. 4020 // Don't do that if state changed events aren't hooked up to the 4021 // public (or SyncResume) broadcasters. StopHooks are just for 4022 // real public stops. They might also restart the target, 4023 // so watch for that. 4024 if (process_sp->GetTarget().RunStopHooks()) 4025 SetRestarted(true); 4026 } 4027 } 4028 } 4029 4030 void Process::ProcessEventData::Dump(Stream *s) const { 4031 ProcessSP process_sp(m_process_wp.lock()); 4032 4033 if (process_sp) 4034 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4035 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4036 else 4037 s->PutCString(" process = NULL, "); 4038 4039 s->Printf("state = %s", StateAsCString(GetState())); 4040 } 4041 4042 const Process::ProcessEventData * 4043 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4044 if (event_ptr) { 4045 const EventData *event_data = event_ptr->GetData(); 4046 if (event_data && 4047 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4048 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4049 } 4050 return nullptr; 4051 } 4052 4053 ProcessSP 4054 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4055 ProcessSP process_sp; 4056 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4057 if (data) 4058 process_sp = data->GetProcessSP(); 4059 return process_sp; 4060 } 4061 4062 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4063 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4064 if (data == nullptr) 4065 return eStateInvalid; 4066 else 4067 return data->GetState(); 4068 } 4069 4070 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4071 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4072 if (data == nullptr) 4073 return false; 4074 else 4075 return data->GetRestarted(); 4076 } 4077 4078 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4079 bool new_value) { 4080 ProcessEventData *data = 4081 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4082 if (data != nullptr) 4083 data->SetRestarted(new_value); 4084 } 4085 4086 size_t 4087 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4088 ProcessEventData *data = 4089 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4090 if (data != nullptr) 4091 return data->GetNumRestartedReasons(); 4092 else 4093 return 0; 4094 } 4095 4096 const char * 4097 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4098 size_t idx) { 4099 ProcessEventData *data = 4100 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4101 if (data != nullptr) 4102 return data->GetRestartedReasonAtIndex(idx); 4103 else 4104 return nullptr; 4105 } 4106 4107 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4108 const char *reason) { 4109 ProcessEventData *data = 4110 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4111 if (data != nullptr) 4112 data->AddRestartedReason(reason); 4113 } 4114 4115 bool Process::ProcessEventData::GetInterruptedFromEvent( 4116 const Event *event_ptr) { 4117 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4118 if (data == nullptr) 4119 return false; 4120 else 4121 return data->GetInterrupted(); 4122 } 4123 4124 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4125 bool new_value) { 4126 ProcessEventData *data = 4127 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4128 if (data != nullptr) 4129 data->SetInterrupted(new_value); 4130 } 4131 4132 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4133 ProcessEventData *data = 4134 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4135 if (data) { 4136 data->SetUpdateStateOnRemoval(); 4137 return true; 4138 } 4139 return false; 4140 } 4141 4142 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4143 4144 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4145 exe_ctx.SetTargetPtr(&GetTarget()); 4146 exe_ctx.SetProcessPtr(this); 4147 exe_ctx.SetThreadPtr(nullptr); 4148 exe_ctx.SetFramePtr(nullptr); 4149 } 4150 4151 // uint32_t 4152 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4153 // std::vector<lldb::pid_t> &pids) 4154 //{ 4155 // return 0; 4156 //} 4157 // 4158 // ArchSpec 4159 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4160 //{ 4161 // return Host::GetArchSpecForExistingProcess (pid); 4162 //} 4163 // 4164 // ArchSpec 4165 // Process::GetArchSpecForExistingProcess (const char *process_name) 4166 //{ 4167 // return Host::GetArchSpecForExistingProcess (process_name); 4168 //} 4169 4170 void Process::AppendSTDOUT(const char *s, size_t len) { 4171 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4172 m_stdout_data.append(s, len); 4173 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4174 new ProcessEventData(shared_from_this(), GetState())); 4175 } 4176 4177 void Process::AppendSTDERR(const char *s, size_t len) { 4178 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4179 m_stderr_data.append(s, len); 4180 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4181 new ProcessEventData(shared_from_this(), GetState())); 4182 } 4183 4184 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4185 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4186 m_profile_data.push_back(one_profile_data); 4187 BroadcastEventIfUnique(eBroadcastBitProfileData, 4188 new ProcessEventData(shared_from_this(), GetState())); 4189 } 4190 4191 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4192 const StructuredDataPluginSP &plugin_sp) { 4193 BroadcastEvent( 4194 eBroadcastBitStructuredData, 4195 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4196 } 4197 4198 StructuredDataPluginSP 4199 Process::GetStructuredDataPlugin(ConstString type_name) const { 4200 auto find_it = m_structured_data_plugin_map.find(type_name); 4201 if (find_it != m_structured_data_plugin_map.end()) 4202 return find_it->second; 4203 else 4204 return StructuredDataPluginSP(); 4205 } 4206 4207 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4208 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4209 if (m_profile_data.empty()) 4210 return 0; 4211 4212 std::string &one_profile_data = m_profile_data.front(); 4213 size_t bytes_available = one_profile_data.size(); 4214 if (bytes_available > 0) { 4215 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4216 LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4217 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4218 if (bytes_available > buf_size) { 4219 memcpy(buf, one_profile_data.c_str(), buf_size); 4220 one_profile_data.erase(0, buf_size); 4221 bytes_available = buf_size; 4222 } else { 4223 memcpy(buf, one_profile_data.c_str(), bytes_available); 4224 m_profile_data.erase(m_profile_data.begin()); 4225 } 4226 } 4227 return bytes_available; 4228 } 4229 4230 // Process STDIO 4231 4232 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4233 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4234 size_t bytes_available = m_stdout_data.size(); 4235 if (bytes_available > 0) { 4236 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4237 LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4238 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4239 if (bytes_available > buf_size) { 4240 memcpy(buf, m_stdout_data.c_str(), buf_size); 4241 m_stdout_data.erase(0, buf_size); 4242 bytes_available = buf_size; 4243 } else { 4244 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4245 m_stdout_data.clear(); 4246 } 4247 } 4248 return bytes_available; 4249 } 4250 4251 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4252 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4253 size_t bytes_available = m_stderr_data.size(); 4254 if (bytes_available > 0) { 4255 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4256 LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4257 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4258 if (bytes_available > buf_size) { 4259 memcpy(buf, m_stderr_data.c_str(), buf_size); 4260 m_stderr_data.erase(0, buf_size); 4261 bytes_available = buf_size; 4262 } else { 4263 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4264 m_stderr_data.clear(); 4265 } 4266 } 4267 return bytes_available; 4268 } 4269 4270 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4271 size_t src_len) { 4272 Process *process = (Process *)baton; 4273 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4274 } 4275 4276 class IOHandlerProcessSTDIO : public IOHandler { 4277 public: 4278 IOHandlerProcessSTDIO(Process *process, int write_fd) 4279 : IOHandler(process->GetTarget().GetDebugger(), 4280 IOHandler::Type::ProcessIO), 4281 m_process(process), 4282 m_read_file(GetInputFD(), File::eOpenOptionRead, false), 4283 m_write_file(write_fd, File::eOpenOptionWrite, false) { 4284 m_pipe.CreateNew(false); 4285 } 4286 4287 ~IOHandlerProcessSTDIO() override = default; 4288 4289 // Each IOHandler gets to run until it is done. It should read data from the 4290 // "in" and place output into "out" and "err and return when done. 4291 void Run() override { 4292 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4293 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4294 SetIsDone(true); 4295 return; 4296 } 4297 4298 SetIsDone(false); 4299 const int read_fd = m_read_file.GetDescriptor(); 4300 TerminalState terminal_state; 4301 terminal_state.Save(read_fd, false); 4302 Terminal terminal(read_fd); 4303 terminal.SetCanonical(false); 4304 terminal.SetEcho(false); 4305 // FD_ZERO, FD_SET are not supported on windows 4306 #ifndef _WIN32 4307 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4308 m_is_running = true; 4309 while (!GetIsDone()) { 4310 SelectHelper select_helper; 4311 select_helper.FDSetRead(read_fd); 4312 select_helper.FDSetRead(pipe_read_fd); 4313 Status error = select_helper.Select(); 4314 4315 if (error.Fail()) { 4316 SetIsDone(true); 4317 } else { 4318 char ch = 0; 4319 size_t n; 4320 if (select_helper.FDIsSetRead(read_fd)) { 4321 n = 1; 4322 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4323 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4324 SetIsDone(true); 4325 } else 4326 SetIsDone(true); 4327 } 4328 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4329 size_t bytes_read; 4330 // Consume the interrupt byte 4331 Status error = m_pipe.Read(&ch, 1, bytes_read); 4332 if (error.Success()) { 4333 switch (ch) { 4334 case 'q': 4335 SetIsDone(true); 4336 break; 4337 case 'i': 4338 if (StateIsRunningState(m_process->GetState())) 4339 m_process->SendAsyncInterrupt(); 4340 break; 4341 } 4342 } 4343 } 4344 } 4345 } 4346 m_is_running = false; 4347 #endif 4348 terminal_state.Restore(); 4349 } 4350 4351 void Cancel() override { 4352 SetIsDone(true); 4353 // Only write to our pipe to cancel if we are in 4354 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4355 // is being run from the command interpreter: 4356 // 4357 // (lldb) step_process_thousands_of_times 4358 // 4359 // In this case the command interpreter will be in the middle of handling 4360 // the command and if the process pushes and pops the IOHandler thousands 4361 // of times, we can end up writing to m_pipe without ever consuming the 4362 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4363 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4364 if (m_is_running) { 4365 char ch = 'q'; // Send 'q' for quit 4366 size_t bytes_written = 0; 4367 m_pipe.Write(&ch, 1, bytes_written); 4368 } 4369 } 4370 4371 bool Interrupt() override { 4372 // Do only things that are safe to do in an interrupt context (like in a 4373 // SIGINT handler), like write 1 byte to a file descriptor. This will 4374 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4375 // that was written to the pipe and then call 4376 // m_process->SendAsyncInterrupt() from a much safer location in code. 4377 if (m_active) { 4378 char ch = 'i'; // Send 'i' for interrupt 4379 size_t bytes_written = 0; 4380 Status result = m_pipe.Write(&ch, 1, bytes_written); 4381 return result.Success(); 4382 } else { 4383 // This IOHandler might be pushed on the stack, but not being run 4384 // currently so do the right thing if we aren't actively watching for 4385 // STDIN by sending the interrupt to the process. Otherwise the write to 4386 // the pipe above would do nothing. This can happen when the command 4387 // interpreter is running and gets a "expression ...". It will be on the 4388 // IOHandler thread and sending the input is complete to the delegate 4389 // which will cause the expression to run, which will push the process IO 4390 // handler, but not run it. 4391 4392 if (StateIsRunningState(m_process->GetState())) { 4393 m_process->SendAsyncInterrupt(); 4394 return true; 4395 } 4396 } 4397 return false; 4398 } 4399 4400 void GotEOF() override {} 4401 4402 protected: 4403 Process *m_process; 4404 NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB 4405 NativeFile m_write_file; // Write to this file (usually the master pty for 4406 // getting io to debuggee) 4407 Pipe m_pipe; 4408 std::atomic<bool> m_is_running{false}; 4409 }; 4410 4411 void Process::SetSTDIOFileDescriptor(int fd) { 4412 // First set up the Read Thread for reading/handling process I/O 4413 m_stdio_communication.SetConnection( 4414 std::make_unique<ConnectionFileDescriptor>(fd, true)); 4415 if (m_stdio_communication.IsConnected()) { 4416 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4417 STDIOReadThreadBytesReceived, this); 4418 m_stdio_communication.StartReadThread(); 4419 4420 // Now read thread is set up, set up input reader. 4421 4422 if (!m_process_input_reader) 4423 m_process_input_reader = 4424 std::make_shared<IOHandlerProcessSTDIO>(this, fd); 4425 } 4426 } 4427 4428 bool Process::ProcessIOHandlerIsActive() { 4429 IOHandlerSP io_handler_sp(m_process_input_reader); 4430 if (io_handler_sp) 4431 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4432 return false; 4433 } 4434 bool Process::PushProcessIOHandler() { 4435 IOHandlerSP io_handler_sp(m_process_input_reader); 4436 if (io_handler_sp) { 4437 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4438 LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); 4439 4440 io_handler_sp->SetIsDone(false); 4441 // If we evaluate an utility function, then we don't cancel the current 4442 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the 4443 // existing IOHandler that potentially provides the user interface (e.g. 4444 // the IOHandler for Editline). 4445 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); 4446 GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp, 4447 cancel_top_handler); 4448 return true; 4449 } 4450 return false; 4451 } 4452 4453 bool Process::PopProcessIOHandler() { 4454 IOHandlerSP io_handler_sp(m_process_input_reader); 4455 if (io_handler_sp) 4456 return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp); 4457 return false; 4458 } 4459 4460 // The process needs to know about installed plug-ins 4461 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4462 4463 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4464 4465 namespace { 4466 // RestorePlanState is used to record the "is private", "is master" and "okay 4467 // to discard" fields of the plan we are running, and reset it on Clean or on 4468 // destruction. It will only reset the state once, so you can call Clean and 4469 // then monkey with the state and it won't get reset on you again. 4470 4471 class RestorePlanState { 4472 public: 4473 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4474 : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) { 4475 if (m_thread_plan_sp) { 4476 m_private = m_thread_plan_sp->GetPrivate(); 4477 m_is_master = m_thread_plan_sp->IsMasterPlan(); 4478 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4479 } 4480 } 4481 4482 ~RestorePlanState() { Clean(); } 4483 4484 void Clean() { 4485 if (!m_already_reset && m_thread_plan_sp) { 4486 m_already_reset = true; 4487 m_thread_plan_sp->SetPrivate(m_private); 4488 m_thread_plan_sp->SetIsMasterPlan(m_is_master); 4489 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4490 } 4491 } 4492 4493 private: 4494 lldb::ThreadPlanSP m_thread_plan_sp; 4495 bool m_already_reset; 4496 bool m_private; 4497 bool m_is_master; 4498 bool m_okay_to_discard; 4499 }; 4500 } // anonymous namespace 4501 4502 static microseconds 4503 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4504 const milliseconds default_one_thread_timeout(250); 4505 4506 // If the overall wait is forever, then we don't need to worry about it. 4507 if (!options.GetTimeout()) { 4508 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4509 : default_one_thread_timeout; 4510 } 4511 4512 // If the one thread timeout is set, use it. 4513 if (options.GetOneThreadTimeout()) 4514 return *options.GetOneThreadTimeout(); 4515 4516 // Otherwise use half the total timeout, bounded by the 4517 // default_one_thread_timeout. 4518 return std::min<microseconds>(default_one_thread_timeout, 4519 *options.GetTimeout() / 2); 4520 } 4521 4522 static Timeout<std::micro> 4523 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4524 bool before_first_timeout) { 4525 // If we are going to run all threads the whole time, or if we are only going 4526 // to run one thread, we can just return the overall timeout. 4527 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4528 return options.GetTimeout(); 4529 4530 if (before_first_timeout) 4531 return GetOneThreadExpressionTimeout(options); 4532 4533 if (!options.GetTimeout()) 4534 return llvm::None; 4535 else 4536 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4537 } 4538 4539 static llvm::Optional<ExpressionResults> 4540 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp, 4541 RestorePlanState &restorer, const EventSP &event_sp, 4542 EventSP &event_to_broadcast_sp, 4543 const EvaluateExpressionOptions &options, 4544 bool handle_interrupts) { 4545 Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS); 4546 4547 ThreadSP thread_sp = thread_plan_sp->GetTarget() 4548 .GetProcessSP() 4549 ->GetThreadList() 4550 .FindThreadByID(thread_id); 4551 if (!thread_sp) { 4552 LLDB_LOG(log, 4553 "The thread on which we were running the " 4554 "expression: tid = {0}, exited while " 4555 "the expression was running.", 4556 thread_id); 4557 return eExpressionThreadVanished; 4558 } 4559 4560 ThreadPlanSP plan = thread_sp->GetCompletedPlan(); 4561 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4562 LLDB_LOG(log, "execution completed successfully"); 4563 4564 // Restore the plan state so it will get reported as intended when we are 4565 // done. 4566 restorer.Clean(); 4567 return eExpressionCompleted; 4568 } 4569 4570 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4571 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4572 stop_info_sp->ShouldNotify(event_sp.get())) { 4573 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4574 if (!options.DoesIgnoreBreakpoints()) { 4575 // Restore the plan state and then force Private to false. We are going 4576 // to stop because of this plan so we need it to become a public plan or 4577 // it won't report correctly when we continue to its termination later 4578 // on. 4579 restorer.Clean(); 4580 thread_plan_sp->SetPrivate(false); 4581 event_to_broadcast_sp = event_sp; 4582 } 4583 return eExpressionHitBreakpoint; 4584 } 4585 4586 if (!handle_interrupts && 4587 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4588 return llvm::None; 4589 4590 LLDB_LOG(log, "thread plan did not successfully complete"); 4591 if (!options.DoesUnwindOnError()) 4592 event_to_broadcast_sp = event_sp; 4593 return eExpressionInterrupted; 4594 } 4595 4596 ExpressionResults 4597 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4598 lldb::ThreadPlanSP &thread_plan_sp, 4599 const EvaluateExpressionOptions &options, 4600 DiagnosticManager &diagnostic_manager) { 4601 ExpressionResults return_value = eExpressionSetupError; 4602 4603 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4604 4605 if (!thread_plan_sp) { 4606 diagnostic_manager.PutString( 4607 eDiagnosticSeverityError, 4608 "RunThreadPlan called with empty thread plan."); 4609 return eExpressionSetupError; 4610 } 4611 4612 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4613 diagnostic_manager.PutString( 4614 eDiagnosticSeverityError, 4615 "RunThreadPlan called with an invalid thread plan."); 4616 return eExpressionSetupError; 4617 } 4618 4619 if (exe_ctx.GetProcessPtr() != this) { 4620 diagnostic_manager.PutString(eDiagnosticSeverityError, 4621 "RunThreadPlan called on wrong process."); 4622 return eExpressionSetupError; 4623 } 4624 4625 Thread *thread = exe_ctx.GetThreadPtr(); 4626 if (thread == nullptr) { 4627 diagnostic_manager.PutString(eDiagnosticSeverityError, 4628 "RunThreadPlan called with invalid thread."); 4629 return eExpressionSetupError; 4630 } 4631 4632 // Record the thread's id so we can tell when a thread we were using 4633 // to run the expression exits during the expression evaluation. 4634 lldb::tid_t expr_thread_id = thread->GetID(); 4635 4636 // We need to change some of the thread plan attributes for the thread plan 4637 // runner. This will restore them when we are done: 4638 4639 RestorePlanState thread_plan_restorer(thread_plan_sp); 4640 4641 // We rely on the thread plan we are running returning "PlanCompleted" if 4642 // when it successfully completes. For that to be true the plan can't be 4643 // private - since private plans suppress themselves in the GetCompletedPlan 4644 // call. 4645 4646 thread_plan_sp->SetPrivate(false); 4647 4648 // The plans run with RunThreadPlan also need to be terminal master plans or 4649 // when they are done we will end up asking the plan above us whether we 4650 // should stop, which may give the wrong answer. 4651 4652 thread_plan_sp->SetIsMasterPlan(true); 4653 thread_plan_sp->SetOkayToDiscard(false); 4654 4655 // If we are running some utility expression for LLDB, we now have to mark 4656 // this in the ProcesModID of this process. This RAII takes care of marking 4657 // and reverting the mark it once we are done running the expression. 4658 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); 4659 4660 if (m_private_state.GetValue() != eStateStopped) { 4661 diagnostic_manager.PutString( 4662 eDiagnosticSeverityError, 4663 "RunThreadPlan called while the private state was not stopped."); 4664 return eExpressionSetupError; 4665 } 4666 4667 // Save the thread & frame from the exe_ctx for restoration after we run 4668 const uint32_t thread_idx_id = thread->GetIndexID(); 4669 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4670 if (!selected_frame_sp) { 4671 thread->SetSelectedFrame(nullptr); 4672 selected_frame_sp = thread->GetSelectedFrame(); 4673 if (!selected_frame_sp) { 4674 diagnostic_manager.Printf( 4675 eDiagnosticSeverityError, 4676 "RunThreadPlan called without a selected frame on thread %d", 4677 thread_idx_id); 4678 return eExpressionSetupError; 4679 } 4680 } 4681 4682 // Make sure the timeout values make sense. The one thread timeout needs to 4683 // be smaller than the overall timeout. 4684 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4685 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4686 diagnostic_manager.PutString(eDiagnosticSeverityError, 4687 "RunThreadPlan called with one thread " 4688 "timeout greater than total timeout"); 4689 return eExpressionSetupError; 4690 } 4691 4692 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4693 4694 // N.B. Running the target may unset the currently selected thread and frame. 4695 // We don't want to do that either, so we should arrange to reset them as 4696 // well. 4697 4698 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4699 4700 uint32_t selected_tid; 4701 StackID selected_stack_id; 4702 if (selected_thread_sp) { 4703 selected_tid = selected_thread_sp->GetIndexID(); 4704 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4705 } else { 4706 selected_tid = LLDB_INVALID_THREAD_ID; 4707 } 4708 4709 HostThread backup_private_state_thread; 4710 lldb::StateType old_state = eStateInvalid; 4711 lldb::ThreadPlanSP stopper_base_plan_sp; 4712 4713 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4714 LIBLLDB_LOG_PROCESS)); 4715 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4716 // Yikes, we are running on the private state thread! So we can't wait for 4717 // public events on this thread, since we are the thread that is generating 4718 // public events. The simplest thing to do is to spin up a temporary thread 4719 // to handle private state thread events while we are fielding public 4720 // events here. 4721 LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " 4722 "another state thread to handle the events."); 4723 4724 backup_private_state_thread = m_private_state_thread; 4725 4726 // One other bit of business: we want to run just this thread plan and 4727 // anything it pushes, and then stop, returning control here. But in the 4728 // normal course of things, the plan above us on the stack would be given a 4729 // shot at the stop event before deciding to stop, and we don't want that. 4730 // So we insert a "stopper" base plan on the stack before the plan we want 4731 // to run. Since base plans always stop and return control to the user, 4732 // that will do just what we want. 4733 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4734 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4735 // Have to make sure our public state is stopped, since otherwise the 4736 // reporting logic below doesn't work correctly. 4737 old_state = m_public_state.GetValue(); 4738 m_public_state.SetValueNoLock(eStateStopped); 4739 4740 // Now spin up the private state thread: 4741 StartPrivateStateThread(true); 4742 } 4743 4744 thread->QueueThreadPlan( 4745 thread_plan_sp, false); // This used to pass "true" does that make sense? 4746 4747 if (options.GetDebug()) { 4748 // In this case, we aren't actually going to run, we just want to stop 4749 // right away. Flush this thread so we will refetch the stacks and show the 4750 // correct backtrace. 4751 // FIXME: To make this prettier we should invent some stop reason for this, 4752 // but that 4753 // is only cosmetic, and this functionality is only of use to lldb 4754 // developers who can live with not pretty... 4755 thread->Flush(); 4756 return eExpressionStoppedForDebug; 4757 } 4758 4759 ListenerSP listener_sp( 4760 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4761 4762 lldb::EventSP event_to_broadcast_sp; 4763 4764 { 4765 // This process event hijacker Hijacks the Public events and its destructor 4766 // makes sure that the process events get restored on exit to the function. 4767 // 4768 // If the event needs to propagate beyond the hijacker (e.g., the process 4769 // exits during execution), then the event is put into 4770 // event_to_broadcast_sp for rebroadcasting. 4771 4772 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 4773 4774 if (log) { 4775 StreamString s; 4776 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 4777 LLDB_LOGF(log, 4778 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 4779 " to run thread plan \"%s\".", 4780 thread_idx_id, expr_thread_id, s.GetData()); 4781 } 4782 4783 bool got_event; 4784 lldb::EventSP event_sp; 4785 lldb::StateType stop_state = lldb::eStateInvalid; 4786 4787 bool before_first_timeout = true; // This is set to false the first time 4788 // that we have to halt the target. 4789 bool do_resume = true; 4790 bool handle_running_event = true; 4791 4792 // This is just for accounting: 4793 uint32_t num_resumes = 0; 4794 4795 // If we are going to run all threads the whole time, or if we are only 4796 // going to run one thread, then we don't need the first timeout. So we 4797 // pretend we are after the first timeout already. 4798 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4799 before_first_timeout = false; 4800 4801 LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", 4802 options.GetStopOthers(), options.GetTryAllThreads(), 4803 before_first_timeout); 4804 4805 // This isn't going to work if there are unfetched events on the queue. Are 4806 // there cases where we might want to run the remaining events here, and 4807 // then try to call the function? That's probably being too tricky for our 4808 // own good. 4809 4810 Event *other_events = listener_sp->PeekAtNextEvent(); 4811 if (other_events != nullptr) { 4812 diagnostic_manager.PutString( 4813 eDiagnosticSeverityError, 4814 "RunThreadPlan called with pending events on the queue."); 4815 return eExpressionSetupError; 4816 } 4817 4818 // We also need to make sure that the next event is delivered. We might be 4819 // calling a function as part of a thread plan, in which case the last 4820 // delivered event could be the running event, and we don't want event 4821 // coalescing to cause us to lose OUR running event... 4822 ForceNextEventDelivery(); 4823 4824 // This while loop must exit out the bottom, there's cleanup that we need to do 4825 // when we are done. So don't call return anywhere within it. 4826 4827 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4828 // It's pretty much impossible to write test cases for things like: One 4829 // thread timeout expires, I go to halt, but the process already stopped on 4830 // the function call stop breakpoint. Turning on this define will make us 4831 // not fetch the first event till after the halt. So if you run a quick 4832 // function, it will have completed, and the completion event will be 4833 // waiting, when you interrupt for halt. The expression evaluation should 4834 // still succeed. 4835 bool miss_first_event = true; 4836 #endif 4837 while (true) { 4838 // We usually want to resume the process if we get to the top of the 4839 // loop. The only exception is if we get two running events with no 4840 // intervening stop, which can happen, we will just wait for then next 4841 // stop event. 4842 LLDB_LOGF(log, 4843 "Top of while loop: do_resume: %i handle_running_event: %i " 4844 "before_first_timeout: %i.", 4845 do_resume, handle_running_event, before_first_timeout); 4846 4847 if (do_resume || handle_running_event) { 4848 // Do the initial resume and wait for the running event before going 4849 // further. 4850 4851 if (do_resume) { 4852 num_resumes++; 4853 Status resume_error = PrivateResume(); 4854 if (!resume_error.Success()) { 4855 diagnostic_manager.Printf( 4856 eDiagnosticSeverityError, 4857 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 4858 resume_error.AsCString()); 4859 return_value = eExpressionSetupError; 4860 break; 4861 } 4862 } 4863 4864 got_event = 4865 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 4866 if (!got_event) { 4867 LLDB_LOGF(log, 4868 "Process::RunThreadPlan(): didn't get any event after " 4869 "resume %" PRIu32 ", exiting.", 4870 num_resumes); 4871 4872 diagnostic_manager.Printf(eDiagnosticSeverityError, 4873 "didn't get any event after resume %" PRIu32 4874 ", exiting.", 4875 num_resumes); 4876 return_value = eExpressionSetupError; 4877 break; 4878 } 4879 4880 stop_state = 4881 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4882 4883 if (stop_state != eStateRunning) { 4884 bool restarted = false; 4885 4886 if (stop_state == eStateStopped) { 4887 restarted = Process::ProcessEventData::GetRestartedFromEvent( 4888 event_sp.get()); 4889 LLDB_LOGF( 4890 log, 4891 "Process::RunThreadPlan(): didn't get running event after " 4892 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 4893 "handle_running_event: %i).", 4894 num_resumes, StateAsCString(stop_state), restarted, do_resume, 4895 handle_running_event); 4896 } 4897 4898 if (restarted) { 4899 // This is probably an overabundance of caution, I don't think I 4900 // should ever get a stopped & restarted event here. But if I do, 4901 // the best thing is to Halt and then get out of here. 4902 const bool clear_thread_plans = false; 4903 const bool use_run_lock = false; 4904 Halt(clear_thread_plans, use_run_lock); 4905 } 4906 4907 diagnostic_manager.Printf( 4908 eDiagnosticSeverityError, 4909 "didn't get running event after initial resume, got %s instead.", 4910 StateAsCString(stop_state)); 4911 return_value = eExpressionSetupError; 4912 break; 4913 } 4914 4915 if (log) 4916 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 4917 // We need to call the function synchronously, so spin waiting for it 4918 // to return. If we get interrupted while executing, we're going to 4919 // lose our context, and won't be able to gather the result at this 4920 // point. We set the timeout AFTER the resume, since the resume takes 4921 // some time and we don't want to charge that to the timeout. 4922 } else { 4923 if (log) 4924 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 4925 } 4926 4927 do_resume = true; 4928 handle_running_event = true; 4929 4930 // Now wait for the process to stop again: 4931 event_sp.reset(); 4932 4933 Timeout<std::micro> timeout = 4934 GetExpressionTimeout(options, before_first_timeout); 4935 if (log) { 4936 if (timeout) { 4937 auto now = system_clock::now(); 4938 LLDB_LOGF(log, 4939 "Process::RunThreadPlan(): about to wait - now is %s - " 4940 "endpoint is %s", 4941 llvm::to_string(now).c_str(), 4942 llvm::to_string(now + *timeout).c_str()); 4943 } else { 4944 LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); 4945 } 4946 } 4947 4948 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4949 // See comment above... 4950 if (miss_first_event) { 4951 std::this_thread::sleep_for(std::chrono::milliseconds(1)); 4952 miss_first_event = false; 4953 got_event = false; 4954 } else 4955 #endif 4956 got_event = listener_sp->GetEvent(event_sp, timeout); 4957 4958 if (got_event) { 4959 if (event_sp) { 4960 bool keep_going = false; 4961 if (event_sp->GetType() == eBroadcastBitInterrupt) { 4962 const bool clear_thread_plans = false; 4963 const bool use_run_lock = false; 4964 Halt(clear_thread_plans, use_run_lock); 4965 return_value = eExpressionInterrupted; 4966 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 4967 "execution halted by user interrupt."); 4968 LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " 4969 "eBroadcastBitInterrupted, exiting."); 4970 break; 4971 } else { 4972 stop_state = 4973 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4974 LLDB_LOGF(log, 4975 "Process::RunThreadPlan(): in while loop, got event: %s.", 4976 StateAsCString(stop_state)); 4977 4978 switch (stop_state) { 4979 case lldb::eStateStopped: { 4980 if (Process::ProcessEventData::GetRestartedFromEvent( 4981 event_sp.get())) { 4982 // If we were restarted, we just need to go back up to fetch 4983 // another event. 4984 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " 4985 "restart, so we'll continue waiting."); 4986 keep_going = true; 4987 do_resume = false; 4988 handle_running_event = true; 4989 } else { 4990 const bool handle_interrupts = true; 4991 return_value = *HandleStoppedEvent( 4992 expr_thread_id, thread_plan_sp, thread_plan_restorer, 4993 event_sp, event_to_broadcast_sp, options, 4994 handle_interrupts); 4995 if (return_value == eExpressionThreadVanished) 4996 keep_going = false; 4997 } 4998 } break; 4999 5000 case lldb::eStateRunning: 5001 // This shouldn't really happen, but sometimes we do get two 5002 // running events without an intervening stop, and in that case 5003 // we should just go back to waiting for the stop. 5004 do_resume = false; 5005 keep_going = true; 5006 handle_running_event = false; 5007 break; 5008 5009 default: 5010 LLDB_LOGF(log, 5011 "Process::RunThreadPlan(): execution stopped with " 5012 "unexpected state: %s.", 5013 StateAsCString(stop_state)); 5014 5015 if (stop_state == eStateExited) 5016 event_to_broadcast_sp = event_sp; 5017 5018 diagnostic_manager.PutString( 5019 eDiagnosticSeverityError, 5020 "execution stopped with unexpected state."); 5021 return_value = eExpressionInterrupted; 5022 break; 5023 } 5024 } 5025 5026 if (keep_going) 5027 continue; 5028 else 5029 break; 5030 } else { 5031 if (log) 5032 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5033 "the event pointer was null. How odd..."); 5034 return_value = eExpressionInterrupted; 5035 break; 5036 } 5037 } else { 5038 // If we didn't get an event that means we've timed out... We will 5039 // interrupt the process here. Depending on what we were asked to do 5040 // we will either exit, or try with all threads running for the same 5041 // timeout. 5042 5043 if (log) { 5044 if (options.GetTryAllThreads()) { 5045 if (before_first_timeout) { 5046 LLDB_LOG(log, 5047 "Running function with one thread timeout timed out."); 5048 } else 5049 LLDB_LOG(log, "Restarting function with all threads enabled and " 5050 "timeout: {0} timed out, abandoning execution.", 5051 timeout); 5052 } else 5053 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5054 "abandoning execution.", 5055 timeout); 5056 } 5057 5058 // It is possible that between the time we issued the Halt, and we get 5059 // around to calling Halt the target could have stopped. That's fine, 5060 // Halt will figure that out and send the appropriate Stopped event. 5061 // BUT it is also possible that we stopped & restarted (e.g. hit a 5062 // signal with "stop" set to false.) In 5063 // that case, we'll get the stopped & restarted event, and we should go 5064 // back to waiting for the Halt's stopped event. That's what this 5065 // while loop does. 5066 5067 bool back_to_top = true; 5068 uint32_t try_halt_again = 0; 5069 bool do_halt = true; 5070 const uint32_t num_retries = 5; 5071 while (try_halt_again < num_retries) { 5072 Status halt_error; 5073 if (do_halt) { 5074 LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); 5075 const bool clear_thread_plans = false; 5076 const bool use_run_lock = false; 5077 Halt(clear_thread_plans, use_run_lock); 5078 } 5079 if (halt_error.Success()) { 5080 if (log) 5081 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5082 5083 got_event = 5084 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5085 5086 if (got_event) { 5087 stop_state = 5088 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5089 if (log) { 5090 LLDB_LOGF(log, 5091 "Process::RunThreadPlan(): Stopped with event: %s", 5092 StateAsCString(stop_state)); 5093 if (stop_state == lldb::eStateStopped && 5094 Process::ProcessEventData::GetInterruptedFromEvent( 5095 event_sp.get())) 5096 log->PutCString(" Event was the Halt interruption event."); 5097 } 5098 5099 if (stop_state == lldb::eStateStopped) { 5100 if (Process::ProcessEventData::GetRestartedFromEvent( 5101 event_sp.get())) { 5102 if (log) 5103 log->PutCString("Process::RunThreadPlan(): Went to halt " 5104 "but got a restarted event, there must be " 5105 "an un-restarted stopped event so try " 5106 "again... " 5107 "Exiting wait loop."); 5108 try_halt_again++; 5109 do_halt = false; 5110 continue; 5111 } 5112 5113 // Between the time we initiated the Halt and the time we 5114 // delivered it, the process could have already finished its 5115 // job. Check that here: 5116 const bool handle_interrupts = false; 5117 if (auto result = HandleStoppedEvent( 5118 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5119 event_sp, event_to_broadcast_sp, options, 5120 handle_interrupts)) { 5121 return_value = *result; 5122 back_to_top = false; 5123 break; 5124 } 5125 5126 if (!options.GetTryAllThreads()) { 5127 if (log) 5128 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5129 "was false, we stopped so now we're " 5130 "quitting."); 5131 return_value = eExpressionInterrupted; 5132 back_to_top = false; 5133 break; 5134 } 5135 5136 if (before_first_timeout) { 5137 // Set all the other threads to run, and return to the top of 5138 // the loop, which will continue; 5139 before_first_timeout = false; 5140 thread_plan_sp->SetStopOthers(false); 5141 if (log) 5142 log->PutCString( 5143 "Process::RunThreadPlan(): about to resume."); 5144 5145 back_to_top = true; 5146 break; 5147 } else { 5148 // Running all threads failed, so return Interrupted. 5149 if (log) 5150 log->PutCString("Process::RunThreadPlan(): running all " 5151 "threads timed out."); 5152 return_value = eExpressionInterrupted; 5153 back_to_top = false; 5154 break; 5155 } 5156 } 5157 } else { 5158 if (log) 5159 log->PutCString("Process::RunThreadPlan(): halt said it " 5160 "succeeded, but I got no event. " 5161 "I'm getting out of here passing Interrupted."); 5162 return_value = eExpressionInterrupted; 5163 back_to_top = false; 5164 break; 5165 } 5166 } else { 5167 try_halt_again++; 5168 continue; 5169 } 5170 } 5171 5172 if (!back_to_top || try_halt_again > num_retries) 5173 break; 5174 else 5175 continue; 5176 } 5177 } // END WAIT LOOP 5178 5179 // If we had to start up a temporary private state thread to run this 5180 // thread plan, shut it down now. 5181 if (backup_private_state_thread.IsJoinable()) { 5182 StopPrivateStateThread(); 5183 Status error; 5184 m_private_state_thread = backup_private_state_thread; 5185 if (stopper_base_plan_sp) { 5186 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5187 } 5188 if (old_state != eStateInvalid) 5189 m_public_state.SetValueNoLock(old_state); 5190 } 5191 5192 // If our thread went away on us, we need to get out of here without 5193 // doing any more work. We don't have to clean up the thread plan, that 5194 // will have happened when the Thread was destroyed. 5195 if (return_value == eExpressionThreadVanished) { 5196 return return_value; 5197 } 5198 5199 if (return_value != eExpressionCompleted && log) { 5200 // Print a backtrace into the log so we can figure out where we are: 5201 StreamString s; 5202 s.PutCString("Thread state after unsuccessful completion: \n"); 5203 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5204 log->PutString(s.GetString()); 5205 } 5206 // Restore the thread state if we are going to discard the plan execution. 5207 // There are three cases where this could happen: 1) The execution 5208 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5209 // was true 3) We got some other error, and discard_on_error was true 5210 bool should_unwind = (return_value == eExpressionInterrupted && 5211 options.DoesUnwindOnError()) || 5212 (return_value == eExpressionHitBreakpoint && 5213 options.DoesIgnoreBreakpoints()); 5214 5215 if (return_value == eExpressionCompleted || should_unwind) { 5216 thread_plan_sp->RestoreThreadState(); 5217 } 5218 5219 // Now do some processing on the results of the run: 5220 if (return_value == eExpressionInterrupted || 5221 return_value == eExpressionHitBreakpoint) { 5222 if (log) { 5223 StreamString s; 5224 if (event_sp) 5225 event_sp->Dump(&s); 5226 else { 5227 log->PutCString("Process::RunThreadPlan(): Stop event that " 5228 "interrupted us is NULL."); 5229 } 5230 5231 StreamString ts; 5232 5233 const char *event_explanation = nullptr; 5234 5235 do { 5236 if (!event_sp) { 5237 event_explanation = "<no event>"; 5238 break; 5239 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5240 event_explanation = "<user interrupt>"; 5241 break; 5242 } else { 5243 const Process::ProcessEventData *event_data = 5244 Process::ProcessEventData::GetEventDataFromEvent( 5245 event_sp.get()); 5246 5247 if (!event_data) { 5248 event_explanation = "<no event data>"; 5249 break; 5250 } 5251 5252 Process *process = event_data->GetProcessSP().get(); 5253 5254 if (!process) { 5255 event_explanation = "<no process>"; 5256 break; 5257 } 5258 5259 ThreadList &thread_list = process->GetThreadList(); 5260 5261 uint32_t num_threads = thread_list.GetSize(); 5262 uint32_t thread_index; 5263 5264 ts.Printf("<%u threads> ", num_threads); 5265 5266 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5267 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5268 5269 if (!thread) { 5270 ts.Printf("<?> "); 5271 continue; 5272 } 5273 5274 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5275 RegisterContext *register_context = 5276 thread->GetRegisterContext().get(); 5277 5278 if (register_context) 5279 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5280 else 5281 ts.Printf("[ip unknown] "); 5282 5283 // Show the private stop info here, the public stop info will be 5284 // from the last natural stop. 5285 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5286 if (stop_info_sp) { 5287 const char *stop_desc = stop_info_sp->GetDescription(); 5288 if (stop_desc) 5289 ts.PutCString(stop_desc); 5290 } 5291 ts.Printf(">"); 5292 } 5293 5294 event_explanation = ts.GetData(); 5295 } 5296 } while (false); 5297 5298 if (event_explanation) 5299 LLDB_LOGF(log, 5300 "Process::RunThreadPlan(): execution interrupted: %s %s", 5301 s.GetData(), event_explanation); 5302 else 5303 LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", 5304 s.GetData()); 5305 } 5306 5307 if (should_unwind) { 5308 LLDB_LOGF(log, 5309 "Process::RunThreadPlan: ExecutionInterrupted - " 5310 "discarding thread plans up to %p.", 5311 static_cast<void *>(thread_plan_sp.get())); 5312 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5313 } else { 5314 LLDB_LOGF(log, 5315 "Process::RunThreadPlan: ExecutionInterrupted - for " 5316 "plan: %p not discarding.", 5317 static_cast<void *>(thread_plan_sp.get())); 5318 } 5319 } else if (return_value == eExpressionSetupError) { 5320 if (log) 5321 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5322 5323 if (options.DoesUnwindOnError()) { 5324 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5325 } 5326 } else { 5327 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5328 if (log) 5329 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5330 return_value = eExpressionCompleted; 5331 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5332 if (log) 5333 log->PutCString( 5334 "Process::RunThreadPlan(): thread plan was discarded"); 5335 return_value = eExpressionDiscarded; 5336 } else { 5337 if (log) 5338 log->PutCString( 5339 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5340 if (options.DoesUnwindOnError() && thread_plan_sp) { 5341 if (log) 5342 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5343 "'cause unwind_on_error is set."); 5344 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5345 } 5346 } 5347 } 5348 5349 // Thread we ran the function in may have gone away because we ran the 5350 // target Check that it's still there, and if it is put it back in the 5351 // context. Also restore the frame in the context if it is still present. 5352 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5353 if (thread) { 5354 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5355 } 5356 5357 // Also restore the current process'es selected frame & thread, since this 5358 // function calling may be done behind the user's back. 5359 5360 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5361 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5362 selected_stack_id.IsValid()) { 5363 // We were able to restore the selected thread, now restore the frame: 5364 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5365 StackFrameSP old_frame_sp = 5366 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5367 selected_stack_id); 5368 if (old_frame_sp) 5369 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5370 old_frame_sp.get()); 5371 } 5372 } 5373 } 5374 5375 // If the process exited during the run of the thread plan, notify everyone. 5376 5377 if (event_to_broadcast_sp) { 5378 if (log) 5379 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5380 BroadcastEvent(event_to_broadcast_sp); 5381 } 5382 5383 return return_value; 5384 } 5385 5386 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5387 const char *result_name = "<unknown>"; 5388 5389 switch (result) { 5390 case eExpressionCompleted: 5391 result_name = "eExpressionCompleted"; 5392 break; 5393 case eExpressionDiscarded: 5394 result_name = "eExpressionDiscarded"; 5395 break; 5396 case eExpressionInterrupted: 5397 result_name = "eExpressionInterrupted"; 5398 break; 5399 case eExpressionHitBreakpoint: 5400 result_name = "eExpressionHitBreakpoint"; 5401 break; 5402 case eExpressionSetupError: 5403 result_name = "eExpressionSetupError"; 5404 break; 5405 case eExpressionParseError: 5406 result_name = "eExpressionParseError"; 5407 break; 5408 case eExpressionResultUnavailable: 5409 result_name = "eExpressionResultUnavailable"; 5410 break; 5411 case eExpressionTimedOut: 5412 result_name = "eExpressionTimedOut"; 5413 break; 5414 case eExpressionStoppedForDebug: 5415 result_name = "eExpressionStoppedForDebug"; 5416 break; 5417 case eExpressionThreadVanished: 5418 result_name = "eExpressionThreadVanished"; 5419 } 5420 return result_name; 5421 } 5422 5423 void Process::GetStatus(Stream &strm) { 5424 const StateType state = GetState(); 5425 if (StateIsStoppedState(state, false)) { 5426 if (state == eStateExited) { 5427 int exit_status = GetExitStatus(); 5428 const char *exit_description = GetExitDescription(); 5429 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5430 GetID(), exit_status, exit_status, 5431 exit_description ? exit_description : ""); 5432 } else { 5433 if (state == eStateConnected) 5434 strm.Printf("Connected to remote target.\n"); 5435 else 5436 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5437 } 5438 } else { 5439 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5440 } 5441 } 5442 5443 size_t Process::GetThreadStatus(Stream &strm, 5444 bool only_threads_with_stop_reason, 5445 uint32_t start_frame, uint32_t num_frames, 5446 uint32_t num_frames_with_source, 5447 bool stop_format) { 5448 size_t num_thread_infos_dumped = 0; 5449 5450 // You can't hold the thread list lock while calling Thread::GetStatus. That 5451 // very well might run code (e.g. if we need it to get return values or 5452 // arguments.) For that to work the process has to be able to acquire it. 5453 // So instead copy the thread ID's, and look them up one by one: 5454 5455 uint32_t num_threads; 5456 std::vector<lldb::tid_t> thread_id_array; 5457 // Scope for thread list locker; 5458 { 5459 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5460 ThreadList &curr_thread_list = GetThreadList(); 5461 num_threads = curr_thread_list.GetSize(); 5462 uint32_t idx; 5463 thread_id_array.resize(num_threads); 5464 for (idx = 0; idx < num_threads; ++idx) 5465 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5466 } 5467 5468 for (uint32_t i = 0; i < num_threads; i++) { 5469 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5470 if (thread_sp) { 5471 if (only_threads_with_stop_reason) { 5472 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5473 if (!stop_info_sp || !stop_info_sp->IsValid()) 5474 continue; 5475 } 5476 thread_sp->GetStatus(strm, start_frame, num_frames, 5477 num_frames_with_source, 5478 stop_format); 5479 ++num_thread_infos_dumped; 5480 } else { 5481 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5482 LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 5483 " vanished while running Thread::GetStatus."); 5484 } 5485 } 5486 return num_thread_infos_dumped; 5487 } 5488 5489 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5490 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5491 } 5492 5493 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5494 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5495 region.GetByteSize()); 5496 } 5497 5498 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5499 void *baton) { 5500 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5501 } 5502 5503 bool Process::RunPreResumeActions() { 5504 bool result = true; 5505 while (!m_pre_resume_actions.empty()) { 5506 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5507 m_pre_resume_actions.pop_back(); 5508 bool this_result = action.callback(action.baton); 5509 if (result) 5510 result = this_result; 5511 } 5512 return result; 5513 } 5514 5515 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5516 5517 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5518 { 5519 PreResumeCallbackAndBaton element(callback, baton); 5520 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5521 if (found_iter != m_pre_resume_actions.end()) 5522 { 5523 m_pre_resume_actions.erase(found_iter); 5524 } 5525 } 5526 5527 ProcessRunLock &Process::GetRunLock() { 5528 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5529 return m_private_run_lock; 5530 else 5531 return m_public_run_lock; 5532 } 5533 5534 bool Process::CurrentThreadIsPrivateStateThread() 5535 { 5536 return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); 5537 } 5538 5539 5540 void Process::Flush() { 5541 m_thread_list.Flush(); 5542 m_extended_thread_list.Flush(); 5543 m_extended_thread_stop_id = 0; 5544 m_queue_list.Clear(); 5545 m_queue_list_stop_id = 0; 5546 } 5547 5548 void Process::DidExec() { 5549 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 5550 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 5551 5552 Target &target = GetTarget(); 5553 target.CleanupProcess(); 5554 target.ClearModules(false); 5555 m_dynamic_checkers_up.reset(); 5556 m_abi_sp.reset(); 5557 m_system_runtime_up.reset(); 5558 m_os_up.reset(); 5559 m_dyld_up.reset(); 5560 m_jit_loaders_up.reset(); 5561 m_image_tokens.clear(); 5562 m_allocated_memory_cache.Clear(); 5563 { 5564 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5565 m_language_runtimes.clear(); 5566 } 5567 m_instrumentation_runtimes.clear(); 5568 m_thread_list.DiscardThreadPlans(); 5569 m_memory_cache.Clear(true); 5570 DoDidExec(); 5571 CompleteAttach(); 5572 // Flush the process (threads and all stack frames) after running 5573 // CompleteAttach() in case the dynamic loader loaded things in new 5574 // locations. 5575 Flush(); 5576 5577 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5578 // let the target know so it can do any cleanup it needs to. 5579 target.DidExec(); 5580 } 5581 5582 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5583 if (address == nullptr) { 5584 error.SetErrorString("Invalid address argument"); 5585 return LLDB_INVALID_ADDRESS; 5586 } 5587 5588 addr_t function_addr = LLDB_INVALID_ADDRESS; 5589 5590 addr_t addr = address->GetLoadAddress(&GetTarget()); 5591 std::map<addr_t, addr_t>::const_iterator iter = 5592 m_resolved_indirect_addresses.find(addr); 5593 if (iter != m_resolved_indirect_addresses.end()) { 5594 function_addr = (*iter).second; 5595 } else { 5596 if (!CallVoidArgVoidPtrReturn(address, function_addr)) { 5597 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5598 error.SetErrorStringWithFormat( 5599 "Unable to call resolver for indirect function %s", 5600 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5601 function_addr = LLDB_INVALID_ADDRESS; 5602 } else { 5603 m_resolved_indirect_addresses.insert( 5604 std::pair<addr_t, addr_t>(addr, function_addr)); 5605 } 5606 } 5607 return function_addr; 5608 } 5609 5610 void Process::ModulesDidLoad(ModuleList &module_list) { 5611 // Inform the system runtime of the modified modules. 5612 SystemRuntime *sys_runtime = GetSystemRuntime(); 5613 if (sys_runtime) 5614 sys_runtime->ModulesDidLoad(module_list); 5615 5616 GetJITLoaders().ModulesDidLoad(module_list); 5617 5618 // Give the instrumentation runtimes a chance to be created before informing 5619 // them of the modified modules. 5620 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5621 m_instrumentation_runtimes); 5622 for (auto &runtime : m_instrumentation_runtimes) 5623 runtime.second->ModulesDidLoad(module_list); 5624 5625 // Give the language runtimes a chance to be created before informing them of 5626 // the modified modules. 5627 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 5628 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 5629 runtime->ModulesDidLoad(module_list); 5630 } 5631 5632 // If we don't have an operating system plug-in, try to load one since 5633 // loading shared libraries might cause a new one to try and load 5634 if (!m_os_up) 5635 LoadOperatingSystemPlugin(false); 5636 5637 // Inform the structured-data plugins of the modified modules. 5638 for (auto pair : m_structured_data_plugin_map) { 5639 if (pair.second) 5640 pair.second->ModulesDidLoad(*this, module_list); 5641 } 5642 } 5643 5644 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5645 const char *fmt, ...) { 5646 bool print_warning = true; 5647 5648 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5649 if (!stream_sp) 5650 return; 5651 5652 if (repeat_key != nullptr) { 5653 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5654 if (it == m_warnings_issued.end()) { 5655 m_warnings_issued[warning_type] = WarningsPointerSet(); 5656 m_warnings_issued[warning_type].insert(repeat_key); 5657 } else { 5658 if (it->second.find(repeat_key) != it->second.end()) { 5659 print_warning = false; 5660 } else { 5661 it->second.insert(repeat_key); 5662 } 5663 } 5664 } 5665 5666 if (print_warning) { 5667 va_list args; 5668 va_start(args, fmt); 5669 stream_sp->PrintfVarArg(fmt, args); 5670 va_end(args); 5671 } 5672 } 5673 5674 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5675 if (!GetWarningsOptimization()) 5676 return; 5677 if (!sc.module_sp) 5678 return; 5679 if (!sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5680 sc.function->GetIsOptimized()) { 5681 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5682 "%s was compiled with optimization - stepping may behave " 5683 "oddly; variables may not be available.\n", 5684 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5685 } 5686 } 5687 5688 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) { 5689 if (!GetWarningsUnsupportedLanguage()) 5690 return; 5691 if (!sc.module_sp) 5692 return; 5693 LanguageType language = sc.GetLanguage(); 5694 if (language == eLanguageTypeUnknown) 5695 return; 5696 LanguageSet plugins = 5697 PluginManager::GetAllTypeSystemSupportedLanguagesForTypes(); 5698 if (!plugins[language]) { 5699 PrintWarning(Process::Warnings::eWarningsUnsupportedLanguage, 5700 sc.module_sp.get(), 5701 "This version of LLDB has no plugin for the %s language. " 5702 "Inspection of frame variables will be limited.\n", 5703 Language::GetNameForLanguageType(language)); 5704 } 5705 } 5706 5707 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5708 info.Clear(); 5709 5710 PlatformSP platform_sp = GetTarget().GetPlatform(); 5711 if (!platform_sp) 5712 return false; 5713 5714 return platform_sp->GetProcessInfo(GetID(), info); 5715 } 5716 5717 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5718 ThreadCollectionSP threads; 5719 5720 const MemoryHistorySP &memory_history = 5721 MemoryHistory::FindPlugin(shared_from_this()); 5722 5723 if (!memory_history) { 5724 return threads; 5725 } 5726 5727 threads = std::make_shared<ThreadCollection>( 5728 memory_history->GetHistoryThreads(addr)); 5729 5730 return threads; 5731 } 5732 5733 InstrumentationRuntimeSP 5734 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5735 InstrumentationRuntimeCollection::iterator pos; 5736 pos = m_instrumentation_runtimes.find(type); 5737 if (pos == m_instrumentation_runtimes.end()) { 5738 return InstrumentationRuntimeSP(); 5739 } else 5740 return (*pos).second; 5741 } 5742 5743 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5744 const ArchSpec &arch, ModuleSpec &module_spec) { 5745 module_spec.Clear(); 5746 return false; 5747 } 5748 5749 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5750 m_image_tokens.push_back(image_ptr); 5751 return m_image_tokens.size() - 1; 5752 } 5753 5754 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5755 if (token < m_image_tokens.size()) 5756 return m_image_tokens[token]; 5757 return LLDB_INVALID_ADDRESS; 5758 } 5759 5760 void Process::ResetImageToken(size_t token) { 5761 if (token < m_image_tokens.size()) 5762 m_image_tokens[token] = LLDB_INVALID_ADDRESS; 5763 } 5764 5765 Address 5766 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5767 AddressRange range_bounds) { 5768 Target &target = GetTarget(); 5769 DisassemblerSP disassembler_sp; 5770 InstructionList *insn_list = nullptr; 5771 5772 Address retval = default_stop_addr; 5773 5774 if (!target.GetUseFastStepping()) 5775 return retval; 5776 if (!default_stop_addr.IsValid()) 5777 return retval; 5778 5779 const char *plugin_name = nullptr; 5780 const char *flavor = nullptr; 5781 const bool prefer_file_cache = true; 5782 disassembler_sp = Disassembler::DisassembleRange( 5783 target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds, 5784 prefer_file_cache); 5785 if (disassembler_sp) 5786 insn_list = &disassembler_sp->GetInstructionList(); 5787 5788 if (insn_list == nullptr) { 5789 return retval; 5790 } 5791 5792 size_t insn_offset = 5793 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 5794 if (insn_offset == UINT32_MAX) { 5795 return retval; 5796 } 5797 5798 uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction( 5799 insn_offset, false /* ignore_calls*/, nullptr); 5800 if (branch_index == UINT32_MAX) { 5801 return retval; 5802 } 5803 5804 if (branch_index > insn_offset) { 5805 Address next_branch_insn_address = 5806 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 5807 if (next_branch_insn_address.IsValid() && 5808 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 5809 retval = next_branch_insn_address; 5810 } 5811 } 5812 5813 return retval; 5814 } 5815 5816 Status 5817 Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { 5818 5819 Status error; 5820 5821 lldb::addr_t range_end = 0; 5822 5823 region_list.clear(); 5824 do { 5825 lldb_private::MemoryRegionInfo region_info; 5826 error = GetMemoryRegionInfo(range_end, region_info); 5827 // GetMemoryRegionInfo should only return an error if it is unimplemented. 5828 if (error.Fail()) { 5829 region_list.clear(); 5830 break; 5831 } 5832 5833 range_end = region_info.GetRange().GetRangeEnd(); 5834 if (region_info.GetMapped() == MemoryRegionInfo::eYes) { 5835 region_list.push_back(std::move(region_info)); 5836 } 5837 } while (range_end != LLDB_INVALID_ADDRESS); 5838 5839 return error; 5840 } 5841 5842 Status 5843 Process::ConfigureStructuredData(ConstString type_name, 5844 const StructuredData::ObjectSP &config_sp) { 5845 // If you get this, the Process-derived class needs to implement a method to 5846 // enable an already-reported asynchronous structured data feature. See 5847 // ProcessGDBRemote for an example implementation over gdb-remote. 5848 return Status("unimplemented"); 5849 } 5850 5851 void Process::MapSupportedStructuredDataPlugins( 5852 const StructuredData::Array &supported_type_names) { 5853 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5854 5855 // Bail out early if there are no type names to map. 5856 if (supported_type_names.GetSize() == 0) { 5857 LLDB_LOGF(log, "Process::%s(): no structured data types supported", 5858 __FUNCTION__); 5859 return; 5860 } 5861 5862 // Convert StructuredData type names to ConstString instances. 5863 std::set<ConstString> const_type_names; 5864 5865 LLDB_LOGF(log, 5866 "Process::%s(): the process supports the following async " 5867 "structured data types:", 5868 __FUNCTION__); 5869 5870 supported_type_names.ForEach( 5871 [&const_type_names, &log](StructuredData::Object *object) { 5872 if (!object) { 5873 // Invalid - shouldn't be null objects in the array. 5874 return false; 5875 } 5876 5877 auto type_name = object->GetAsString(); 5878 if (!type_name) { 5879 // Invalid format - all type names should be strings. 5880 return false; 5881 } 5882 5883 const_type_names.insert(ConstString(type_name->GetValue())); 5884 LLDB_LOG(log, "- {0}", type_name->GetValue()); 5885 return true; 5886 }); 5887 5888 // For each StructuredDataPlugin, if the plugin handles any of the types in 5889 // the supported_type_names, map that type name to that plugin. Stop when 5890 // we've consumed all the type names. 5891 // FIXME: should we return an error if there are type names nobody 5892 // supports? 5893 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 5894 auto create_instance = 5895 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 5896 plugin_index); 5897 if (!create_instance) 5898 break; 5899 5900 // Create the plugin. 5901 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 5902 if (!plugin_sp) { 5903 // This plugin doesn't think it can work with the process. Move on to the 5904 // next. 5905 continue; 5906 } 5907 5908 // For any of the remaining type names, map any that this plugin supports. 5909 std::vector<ConstString> names_to_remove; 5910 for (auto &type_name : const_type_names) { 5911 if (plugin_sp->SupportsStructuredDataType(type_name)) { 5912 m_structured_data_plugin_map.insert( 5913 std::make_pair(type_name, plugin_sp)); 5914 names_to_remove.push_back(type_name); 5915 LLDB_LOGF(log, 5916 "Process::%s(): using plugin %s for type name " 5917 "%s", 5918 __FUNCTION__, plugin_sp->GetPluginName().GetCString(), 5919 type_name.GetCString()); 5920 } 5921 } 5922 5923 // Remove the type names that were consumed by this plugin. 5924 for (auto &type_name : names_to_remove) 5925 const_type_names.erase(type_name); 5926 } 5927 } 5928 5929 bool Process::RouteAsyncStructuredData( 5930 const StructuredData::ObjectSP object_sp) { 5931 // Nothing to do if there's no data. 5932 if (!object_sp) 5933 return false; 5934 5935 // The contract is this must be a dictionary, so we can look up the routing 5936 // key via the top-level 'type' string value within the dictionary. 5937 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 5938 if (!dictionary) 5939 return false; 5940 5941 // Grab the async structured type name (i.e. the feature/plugin name). 5942 ConstString type_name; 5943 if (!dictionary->GetValueForKeyAsString("type", type_name)) 5944 return false; 5945 5946 // Check if there's a plugin registered for this type name. 5947 auto find_it = m_structured_data_plugin_map.find(type_name); 5948 if (find_it == m_structured_data_plugin_map.end()) { 5949 // We don't have a mapping for this structured data type. 5950 return false; 5951 } 5952 5953 // Route the structured data to the plugin. 5954 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 5955 return true; 5956 } 5957 5958 Status Process::UpdateAutomaticSignalFiltering() { 5959 // Default implementation does nothign. 5960 // No automatic signal filtering to speak of. 5961 return Status(); 5962 } 5963 5964 UtilityFunction *Process::GetLoadImageUtilityFunction( 5965 Platform *platform, 5966 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 5967 if (platform != GetTarget().GetPlatform().get()) 5968 return nullptr; 5969 llvm::call_once(m_dlopen_utility_func_flag_once, 5970 [&] { m_dlopen_utility_func_up = factory(); }); 5971 return m_dlopen_utility_func_up.get(); 5972 } 5973 5974 llvm::Expected<TraceSupportedResponse> Process::TraceSupported() { 5975 if (!IsLiveDebugSession()) 5976 return llvm::createStringError(llvm::inconvertibleErrorCode(), 5977 "Can't trace a non-live process."); 5978 return llvm::make_error<UnimplementedError>(); 5979 } 5980 5981 bool Process::CallVoidArgVoidPtrReturn(const Address *address, 5982 addr_t &returned_func, 5983 bool trap_exceptions) { 5984 Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); 5985 if (thread == nullptr || address == nullptr) 5986 return false; 5987 5988 EvaluateExpressionOptions options; 5989 options.SetStopOthers(true); 5990 options.SetUnwindOnError(true); 5991 options.SetIgnoreBreakpoints(true); 5992 options.SetTryAllThreads(true); 5993 options.SetDebug(false); 5994 options.SetTimeout(GetUtilityExpressionTimeout()); 5995 options.SetTrapExceptions(trap_exceptions); 5996 5997 auto type_system_or_err = 5998 GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC); 5999 if (!type_system_or_err) { 6000 llvm::consumeError(type_system_or_err.takeError()); 6001 return false; 6002 } 6003 CompilerType void_ptr_type = 6004 type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType(); 6005 lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( 6006 *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); 6007 if (call_plan_sp) { 6008 DiagnosticManager diagnostics; 6009 6010 StackFrame *frame = thread->GetStackFrameAtIndex(0).get(); 6011 if (frame) { 6012 ExecutionContext exe_ctx; 6013 frame->CalculateExecutionContext(exe_ctx); 6014 ExpressionResults result = 6015 RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics); 6016 if (result == eExpressionCompleted) { 6017 returned_func = 6018 call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( 6019 LLDB_INVALID_ADDRESS); 6020 6021 if (GetAddressByteSize() == 4) { 6022 if (returned_func == UINT32_MAX) 6023 return false; 6024 } else if (GetAddressByteSize() == 8) { 6025 if (returned_func == UINT64_MAX) 6026 return false; 6027 } 6028 return true; 6029 } 6030 } 6031 } 6032 6033 return false; 6034 } 6035