1 //===-- Process.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <atomic> 10 #include <memory> 11 #include <mutex> 12 13 #include "llvm/Support/ScopedPrinter.h" 14 #include "llvm/Support/Threading.h" 15 16 #include "lldb/Breakpoint/BreakpointLocation.h" 17 #include "lldb/Breakpoint/StoppointCallbackContext.h" 18 #include "lldb/Core/Debugger.h" 19 #include "lldb/Core/Module.h" 20 #include "lldb/Core/ModuleSpec.h" 21 #include "lldb/Core/PluginManager.h" 22 #include "lldb/Core/StreamFile.h" 23 #include "lldb/Expression/DiagnosticManager.h" 24 #include "lldb/Expression/DynamicCheckerFunctions.h" 25 #include "lldb/Expression/UserExpression.h" 26 #include "lldb/Expression/UtilityFunction.h" 27 #include "lldb/Host/ConnectionFileDescriptor.h" 28 #include "lldb/Host/FileSystem.h" 29 #include "lldb/Host/Host.h" 30 #include "lldb/Host/HostInfo.h" 31 #include "lldb/Host/OptionParser.h" 32 #include "lldb/Host/Pipe.h" 33 #include "lldb/Host/Terminal.h" 34 #include "lldb/Host/ThreadLauncher.h" 35 #include "lldb/Interpreter/CommandInterpreter.h" 36 #include "lldb/Interpreter/OptionArgParser.h" 37 #include "lldb/Interpreter/OptionValueProperties.h" 38 #include "lldb/Symbol/Function.h" 39 #include "lldb/Symbol/Symbol.h" 40 #include "lldb/Target/ABI.h" 41 #include "lldb/Target/AssertFrameRecognizer.h" 42 #include "lldb/Target/DynamicLoader.h" 43 #include "lldb/Target/InstrumentationRuntime.h" 44 #include "lldb/Target/JITLoader.h" 45 #include "lldb/Target/JITLoaderList.h" 46 #include "lldb/Target/Language.h" 47 #include "lldb/Target/LanguageRuntime.h" 48 #include "lldb/Target/MemoryHistory.h" 49 #include "lldb/Target/MemoryRegionInfo.h" 50 #include "lldb/Target/OperatingSystem.h" 51 #include "lldb/Target/Platform.h" 52 #include "lldb/Target/Process.h" 53 #include "lldb/Target/RegisterContext.h" 54 #include "lldb/Target/StopInfo.h" 55 #include "lldb/Target/StructuredDataPlugin.h" 56 #include "lldb/Target/SystemRuntime.h" 57 #include "lldb/Target/Target.h" 58 #include "lldb/Target/TargetList.h" 59 #include "lldb/Target/Thread.h" 60 #include "lldb/Target/ThreadPlan.h" 61 #include "lldb/Target/ThreadPlanBase.h" 62 #include "lldb/Target/ThreadPlanCallFunction.h" 63 #include "lldb/Target/ThreadPlanStack.h" 64 #include "lldb/Target/UnixSignals.h" 65 #include "lldb/Utility/Event.h" 66 #include "lldb/Utility/Log.h" 67 #include "lldb/Utility/NameMatches.h" 68 #include "lldb/Utility/ProcessInfo.h" 69 #include "lldb/Utility/SelectHelper.h" 70 #include "lldb/Utility/State.h" 71 72 using namespace lldb; 73 using namespace lldb_private; 74 using namespace std::chrono; 75 76 // Comment out line below to disable memory caching, overriding the process 77 // setting target.process.disable-memory-cache 78 #define ENABLE_MEMORY_CACHING 79 80 #ifdef ENABLE_MEMORY_CACHING 81 #define DISABLE_MEM_CACHE_DEFAULT false 82 #else 83 #define DISABLE_MEM_CACHE_DEFAULT true 84 #endif 85 86 class ProcessOptionValueProperties : public OptionValueProperties { 87 public: 88 ProcessOptionValueProperties(ConstString name) 89 : OptionValueProperties(name) {} 90 91 // This constructor is used when creating ProcessOptionValueProperties when 92 // it is part of a new lldb_private::Process instance. It will copy all 93 // current global property values as needed 94 ProcessOptionValueProperties(ProcessProperties *global_properties) 95 : OptionValueProperties(*global_properties->GetValueProperties()) {} 96 97 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 98 bool will_modify, 99 uint32_t idx) const override { 100 // When getting the value for a key from the process options, we will 101 // always try and grab the setting from the current process if there is 102 // one. Else we just use the one from this instance. 103 if (exe_ctx) { 104 Process *process = exe_ctx->GetProcessPtr(); 105 if (process) { 106 ProcessOptionValueProperties *instance_properties = 107 static_cast<ProcessOptionValueProperties *>( 108 process->GetValueProperties().get()); 109 if (this != instance_properties) 110 return instance_properties->ProtectedGetPropertyAtIndex(idx); 111 } 112 } 113 return ProtectedGetPropertyAtIndex(idx); 114 } 115 }; 116 117 #define LLDB_PROPERTIES_process 118 #include "TargetProperties.inc" 119 120 enum { 121 #define LLDB_PROPERTIES_process 122 #include "TargetPropertiesEnum.inc" 123 ePropertyExperimental, 124 }; 125 126 #define LLDB_PROPERTIES_process_experimental 127 #include "TargetProperties.inc" 128 129 enum { 130 #define LLDB_PROPERTIES_process_experimental 131 #include "TargetPropertiesEnum.inc" 132 }; 133 134 class ProcessExperimentalOptionValueProperties : public OptionValueProperties { 135 public: 136 ProcessExperimentalOptionValueProperties() 137 : OptionValueProperties( 138 ConstString(Properties::GetExperimentalSettingsName())) {} 139 }; 140 141 ProcessExperimentalProperties::ProcessExperimentalProperties() 142 : Properties(OptionValuePropertiesSP( 143 new ProcessExperimentalOptionValueProperties())) { 144 m_collection_sp->Initialize(g_process_experimental_properties); 145 } 146 147 ProcessProperties::ProcessProperties(lldb_private::Process *process) 148 : Properties(), 149 m_process(process) // Can be nullptr for global ProcessProperties 150 { 151 if (process == nullptr) { 152 // Global process properties, set them up one time 153 m_collection_sp = 154 std::make_shared<ProcessOptionValueProperties>(ConstString("process")); 155 m_collection_sp->Initialize(g_process_properties); 156 m_collection_sp->AppendProperty( 157 ConstString("thread"), ConstString("Settings specific to threads."), 158 true, Thread::GetGlobalProperties()->GetValueProperties()); 159 } else { 160 m_collection_sp = std::make_shared<ProcessOptionValueProperties>( 161 Process::GetGlobalProperties().get()); 162 m_collection_sp->SetValueChangedCallback( 163 ePropertyPythonOSPluginPath, 164 [this] { m_process->LoadOperatingSystemPlugin(true); }); 165 } 166 167 m_experimental_properties_up = 168 std::make_unique<ProcessExperimentalProperties>(); 169 m_collection_sp->AppendProperty( 170 ConstString(Properties::GetExperimentalSettingsName()), 171 ConstString("Experimental settings - setting these won't produce " 172 "errors if the setting is not present."), 173 true, m_experimental_properties_up->GetValueProperties()); 174 } 175 176 ProcessProperties::~ProcessProperties() = default; 177 178 bool ProcessProperties::GetDisableMemoryCache() const { 179 const uint32_t idx = ePropertyDisableMemCache; 180 return m_collection_sp->GetPropertyAtIndexAsBoolean( 181 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 182 } 183 184 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 185 const uint32_t idx = ePropertyMemCacheLineSize; 186 return m_collection_sp->GetPropertyAtIndexAsUInt64( 187 nullptr, idx, g_process_properties[idx].default_uint_value); 188 } 189 190 Args ProcessProperties::GetExtraStartupCommands() const { 191 Args args; 192 const uint32_t idx = ePropertyExtraStartCommand; 193 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 194 return args; 195 } 196 197 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 198 const uint32_t idx = ePropertyExtraStartCommand; 199 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 200 } 201 202 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 203 const uint32_t idx = ePropertyPythonOSPluginPath; 204 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 205 } 206 207 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 208 const uint32_t idx = ePropertyPythonOSPluginPath; 209 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 210 } 211 212 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 213 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 214 return m_collection_sp->GetPropertyAtIndexAsBoolean( 215 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 216 } 217 218 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 219 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 220 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 221 } 222 223 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 224 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 225 return m_collection_sp->GetPropertyAtIndexAsBoolean( 226 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 227 } 228 229 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 230 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 231 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 232 } 233 234 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 235 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 236 return m_collection_sp->GetPropertyAtIndexAsBoolean( 237 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 238 } 239 240 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 241 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 242 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 243 } 244 245 bool ProcessProperties::GetDetachKeepsStopped() const { 246 const uint32_t idx = ePropertyDetachKeepsStopped; 247 return m_collection_sp->GetPropertyAtIndexAsBoolean( 248 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 249 } 250 251 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 252 const uint32_t idx = ePropertyDetachKeepsStopped; 253 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 254 } 255 256 bool ProcessProperties::GetWarningsOptimization() const { 257 const uint32_t idx = ePropertyWarningOptimization; 258 return m_collection_sp->GetPropertyAtIndexAsBoolean( 259 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 260 } 261 262 bool ProcessProperties::GetWarningsUnsupportedLanguage() const { 263 const uint32_t idx = ePropertyWarningUnsupportedLanguage; 264 return m_collection_sp->GetPropertyAtIndexAsBoolean( 265 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 266 } 267 268 bool ProcessProperties::GetStopOnExec() const { 269 const uint32_t idx = ePropertyStopOnExec; 270 return m_collection_sp->GetPropertyAtIndexAsBoolean( 271 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 272 } 273 274 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { 275 const uint32_t idx = ePropertyUtilityExpressionTimeout; 276 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 277 nullptr, idx, g_process_properties[idx].default_uint_value); 278 return std::chrono::seconds(value); 279 } 280 281 bool ProcessProperties::GetSteppingRunsAllThreads() const { 282 const uint32_t idx = ePropertySteppingRunsAllThreads; 283 return m_collection_sp->GetPropertyAtIndexAsBoolean( 284 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 285 } 286 287 bool ProcessProperties::GetOSPluginReportsAllThreads() const { 288 const bool fail_value = true; 289 const Property *exp_property = 290 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 291 OptionValueProperties *exp_values = 292 exp_property->GetValue()->GetAsProperties(); 293 if (!exp_values) 294 return fail_value; 295 296 return exp_values->GetPropertyAtIndexAsBoolean( 297 nullptr, ePropertyOSPluginReportsAllThreads, fail_value); 298 } 299 300 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) { 301 const Property *exp_property = 302 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 303 OptionValueProperties *exp_values = 304 exp_property->GetValue()->GetAsProperties(); 305 if (exp_values) 306 exp_values->SetPropertyAtIndexAsBoolean( 307 nullptr, ePropertyOSPluginReportsAllThreads, does_report); 308 } 309 310 Status ProcessLaunchCommandOptions::SetOptionValue( 311 uint32_t option_idx, llvm::StringRef option_arg, 312 ExecutionContext *execution_context) { 313 Status error; 314 const int short_option = m_getopt_table[option_idx].val; 315 316 switch (short_option) { 317 case 's': // Stop at program entry point 318 launch_info.GetFlags().Set(eLaunchFlagStopAtEntry); 319 break; 320 321 case 'i': // STDIN for read only 322 { 323 FileAction action; 324 if (action.Open(STDIN_FILENO, FileSpec(option_arg), true, false)) 325 launch_info.AppendFileAction(action); 326 break; 327 } 328 329 case 'o': // Open STDOUT for write only 330 { 331 FileAction action; 332 if (action.Open(STDOUT_FILENO, FileSpec(option_arg), false, true)) 333 launch_info.AppendFileAction(action); 334 break; 335 } 336 337 case 'e': // STDERR for write only 338 { 339 FileAction action; 340 if (action.Open(STDERR_FILENO, FileSpec(option_arg), false, true)) 341 launch_info.AppendFileAction(action); 342 break; 343 } 344 345 case 'p': // Process plug-in name 346 launch_info.SetProcessPluginName(option_arg); 347 break; 348 349 case 'n': // Disable STDIO 350 { 351 FileAction action; 352 const FileSpec dev_null(FileSystem::DEV_NULL); 353 if (action.Open(STDIN_FILENO, dev_null, true, false)) 354 launch_info.AppendFileAction(action); 355 if (action.Open(STDOUT_FILENO, dev_null, false, true)) 356 launch_info.AppendFileAction(action); 357 if (action.Open(STDERR_FILENO, dev_null, false, true)) 358 launch_info.AppendFileAction(action); 359 break; 360 } 361 362 case 'w': 363 launch_info.SetWorkingDirectory(FileSpec(option_arg)); 364 break; 365 366 case 't': // Open process in new terminal window 367 launch_info.GetFlags().Set(eLaunchFlagLaunchInTTY); 368 break; 369 370 case 'a': { 371 TargetSP target_sp = 372 execution_context ? execution_context->GetTargetSP() : TargetSP(); 373 PlatformSP platform_sp = 374 target_sp ? target_sp->GetPlatform() : PlatformSP(); 375 launch_info.GetArchitecture() = 376 Platform::GetAugmentedArchSpec(platform_sp.get(), option_arg); 377 } break; 378 379 case 'A': // Disable ASLR. 380 { 381 bool success; 382 const bool disable_aslr_arg = 383 OptionArgParser::ToBoolean(option_arg, true, &success); 384 if (success) 385 disable_aslr = disable_aslr_arg ? eLazyBoolYes : eLazyBoolNo; 386 else 387 error.SetErrorStringWithFormat( 388 "Invalid boolean value for disable-aslr option: '%s'", 389 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 390 break; 391 } 392 393 case 'X': // shell expand args. 394 { 395 bool success; 396 const bool expand_args = 397 OptionArgParser::ToBoolean(option_arg, true, &success); 398 if (success) 399 launch_info.SetShellExpandArguments(expand_args); 400 else 401 error.SetErrorStringWithFormat( 402 "Invalid boolean value for shell-expand-args option: '%s'", 403 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 404 break; 405 } 406 407 case 'c': 408 if (!option_arg.empty()) 409 launch_info.SetShell(FileSpec(option_arg)); 410 else 411 launch_info.SetShell(HostInfo::GetDefaultShell()); 412 break; 413 414 case 'v': 415 launch_info.GetEnvironment().insert(option_arg); 416 break; 417 418 default: 419 error.SetErrorStringWithFormat("unrecognized short option character '%c'", 420 short_option); 421 break; 422 } 423 return error; 424 } 425 426 static constexpr OptionDefinition g_process_launch_options[] = { 427 {LLDB_OPT_SET_ALL, false, "stop-at-entry", 's', OptionParser::eNoArgument, 428 nullptr, {}, 0, eArgTypeNone, 429 "Stop at the entry point of the program when launching a process."}, 430 {LLDB_OPT_SET_ALL, false, "disable-aslr", 'A', 431 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeBoolean, 432 "Set whether to disable address space layout randomization when launching " 433 "a process."}, 434 {LLDB_OPT_SET_ALL, false, "plugin", 'p', OptionParser::eRequiredArgument, 435 nullptr, {}, 0, eArgTypePlugin, 436 "Name of the process plugin you want to use."}, 437 {LLDB_OPT_SET_ALL, false, "working-dir", 'w', 438 OptionParser::eRequiredArgument, nullptr, {}, 0, 439 eArgTypeDirectoryName, 440 "Set the current working directory to <path> when running the inferior."}, 441 {LLDB_OPT_SET_ALL, false, "arch", 'a', OptionParser::eRequiredArgument, 442 nullptr, {}, 0, eArgTypeArchitecture, 443 "Set the architecture for the process to launch when ambiguous."}, 444 {LLDB_OPT_SET_ALL, false, "environment", 'v', 445 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeNone, 446 "Specify an environment variable name/value string (--environment " 447 "NAME=VALUE). Can be specified multiple times for subsequent environment " 448 "entries."}, 449 {LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3, false, "shell", 'c', 450 OptionParser::eOptionalArgument, nullptr, {}, 0, eArgTypeFilename, 451 "Run the process in a shell (not supported on all platforms)."}, 452 453 {LLDB_OPT_SET_1, false, "stdin", 'i', OptionParser::eRequiredArgument, 454 nullptr, {}, 0, eArgTypeFilename, 455 "Redirect stdin for the process to <filename>."}, 456 {LLDB_OPT_SET_1, false, "stdout", 'o', OptionParser::eRequiredArgument, 457 nullptr, {}, 0, eArgTypeFilename, 458 "Redirect stdout for the process to <filename>."}, 459 {LLDB_OPT_SET_1, false, "stderr", 'e', OptionParser::eRequiredArgument, 460 nullptr, {}, 0, eArgTypeFilename, 461 "Redirect stderr for the process to <filename>."}, 462 463 {LLDB_OPT_SET_2, false, "tty", 't', OptionParser::eNoArgument, nullptr, 464 {}, 0, eArgTypeNone, 465 "Start the process in a terminal (not supported on all platforms)."}, 466 467 {LLDB_OPT_SET_3, false, "no-stdio", 'n', OptionParser::eNoArgument, nullptr, 468 {}, 0, eArgTypeNone, 469 "Do not set up for terminal I/O to go to running process."}, 470 {LLDB_OPT_SET_4, false, "shell-expand-args", 'X', 471 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeBoolean, 472 "Set whether to shell expand arguments to the process when launching."}, 473 }; 474 475 llvm::ArrayRef<OptionDefinition> ProcessLaunchCommandOptions::GetDefinitions() { 476 return llvm::makeArrayRef(g_process_launch_options); 477 } 478 479 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 480 llvm::StringRef plugin_name, 481 ListenerSP listener_sp, 482 const FileSpec *crash_file_path) { 483 static uint32_t g_process_unique_id = 0; 484 485 ProcessSP process_sp; 486 ProcessCreateInstance create_callback = nullptr; 487 if (!plugin_name.empty()) { 488 ConstString const_plugin_name(plugin_name); 489 create_callback = 490 PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name); 491 if (create_callback) { 492 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 493 if (process_sp) { 494 if (process_sp->CanDebug(target_sp, true)) { 495 process_sp->m_process_unique_id = ++g_process_unique_id; 496 } else 497 process_sp.reset(); 498 } 499 } 500 } else { 501 for (uint32_t idx = 0; 502 (create_callback = 503 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 504 ++idx) { 505 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 506 if (process_sp) { 507 if (process_sp->CanDebug(target_sp, false)) { 508 process_sp->m_process_unique_id = ++g_process_unique_id; 509 break; 510 } else 511 process_sp.reset(); 512 } 513 } 514 } 515 return process_sp; 516 } 517 518 ConstString &Process::GetStaticBroadcasterClass() { 519 static ConstString class_name("lldb.process"); 520 return class_name; 521 } 522 523 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 524 : Process(target_sp, listener_sp, 525 UnixSignals::Create(HostInfo::GetArchitecture())) { 526 // This constructor just delegates to the full Process constructor, 527 // defaulting to using the Host's UnixSignals. 528 } 529 530 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 531 const UnixSignalsSP &unix_signals_sp) 532 : ProcessProperties(this), UserID(LLDB_INVALID_PROCESS_ID), 533 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 534 Process::GetStaticBroadcasterClass().AsCString()), 535 m_target_wp(target_sp), m_public_state(eStateUnloaded), 536 m_private_state(eStateUnloaded), 537 m_private_state_broadcaster(nullptr, 538 "lldb.process.internal_state_broadcaster"), 539 m_private_state_control_broadcaster( 540 nullptr, "lldb.process.internal_state_control_broadcaster"), 541 m_private_state_listener_sp( 542 Listener::MakeListener("lldb.process.internal_state_listener")), 543 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 544 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 545 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 546 m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this), 547 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 548 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 549 m_breakpoint_site_list(), m_dynamic_checkers_up(), 550 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 551 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 552 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 553 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 554 m_memory_cache(*this), m_allocated_memory_cache(*this), 555 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), 556 m_private_run_lock(), m_finalizing(false), m_finalize_called(false), 557 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 558 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 559 m_can_interpret_function_calls(false), m_warnings_issued(), 560 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 561 CheckInWithManager(); 562 563 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 564 LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this)); 565 566 if (!m_unix_signals_sp) 567 m_unix_signals_sp = std::make_shared<UnixSignals>(); 568 569 SetEventName(eBroadcastBitStateChanged, "state-changed"); 570 SetEventName(eBroadcastBitInterrupt, "interrupt"); 571 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 572 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 573 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 574 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 575 576 m_private_state_control_broadcaster.SetEventName( 577 eBroadcastInternalStateControlStop, "control-stop"); 578 m_private_state_control_broadcaster.SetEventName( 579 eBroadcastInternalStateControlPause, "control-pause"); 580 m_private_state_control_broadcaster.SetEventName( 581 eBroadcastInternalStateControlResume, "control-resume"); 582 583 m_listener_sp->StartListeningForEvents( 584 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 585 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 586 eBroadcastBitProfileData | eBroadcastBitStructuredData); 587 588 m_private_state_listener_sp->StartListeningForEvents( 589 &m_private_state_broadcaster, 590 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 591 592 m_private_state_listener_sp->StartListeningForEvents( 593 &m_private_state_control_broadcaster, 594 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 595 eBroadcastInternalStateControlResume); 596 // We need something valid here, even if just the default UnixSignalsSP. 597 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 598 599 // Allow the platform to override the default cache line size 600 OptionValueSP value_sp = 601 m_collection_sp 602 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 603 ->GetValue(); 604 uint32_t platform_cache_line_size = 605 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 606 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 607 value_sp->SetUInt64Value(platform_cache_line_size); 608 609 RegisterAssertFrameRecognizer(this); 610 } 611 612 Process::~Process() { 613 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 614 LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this)); 615 StopPrivateStateThread(); 616 617 // ThreadList::Clear() will try to acquire this process's mutex, so 618 // explicitly clear the thread list here to ensure that the mutex is not 619 // destroyed before the thread list. 620 m_thread_list.Clear(); 621 } 622 623 const ProcessPropertiesSP &Process::GetGlobalProperties() { 624 // NOTE: intentional leak so we don't crash if global destructor chain gets 625 // called as other threads still use the result of this function 626 static ProcessPropertiesSP *g_settings_sp_ptr = 627 new ProcessPropertiesSP(new ProcessProperties(nullptr)); 628 return *g_settings_sp_ptr; 629 } 630 631 void Process::Finalize() { 632 m_finalizing = true; 633 634 // Destroy this process if needed 635 switch (GetPrivateState()) { 636 case eStateConnected: 637 case eStateAttaching: 638 case eStateLaunching: 639 case eStateStopped: 640 case eStateRunning: 641 case eStateStepping: 642 case eStateCrashed: 643 case eStateSuspended: 644 Destroy(false); 645 break; 646 647 case eStateInvalid: 648 case eStateUnloaded: 649 case eStateDetached: 650 case eStateExited: 651 break; 652 } 653 654 // Clear our broadcaster before we proceed with destroying 655 Broadcaster::Clear(); 656 657 // Do any cleanup needed prior to being destructed... Subclasses that 658 // override this method should call this superclass method as well. 659 660 // We need to destroy the loader before the derived Process class gets 661 // destroyed since it is very likely that undoing the loader will require 662 // access to the real process. 663 m_dynamic_checkers_up.reset(); 664 m_abi_sp.reset(); 665 m_os_up.reset(); 666 m_system_runtime_up.reset(); 667 m_dyld_up.reset(); 668 m_jit_loaders_up.reset(); 669 m_thread_plans.Clear(); 670 m_thread_list_real.Destroy(); 671 m_thread_list.Destroy(); 672 m_extended_thread_list.Destroy(); 673 m_queue_list.Clear(); 674 m_queue_list_stop_id = 0; 675 std::vector<Notifications> empty_notifications; 676 m_notifications.swap(empty_notifications); 677 m_image_tokens.clear(); 678 m_memory_cache.Clear(); 679 m_allocated_memory_cache.Clear(); 680 { 681 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 682 m_language_runtimes.clear(); 683 } 684 m_instrumentation_runtimes.clear(); 685 m_next_event_action_up.reset(); 686 // Clear the last natural stop ID since it has a strong reference to this 687 // process 688 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 689 //#ifdef LLDB_CONFIGURATION_DEBUG 690 // StreamFile s(stdout, false); 691 // EventSP event_sp; 692 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 693 // { 694 // event_sp->Dump (&s); 695 // s.EOL(); 696 // } 697 //#endif 698 // We have to be very careful here as the m_private_state_listener might 699 // contain events that have ProcessSP values in them which can keep this 700 // process around forever. These events need to be cleared out. 701 m_private_state_listener_sp->Clear(); 702 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 703 m_public_run_lock.SetStopped(); 704 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 705 m_private_run_lock.SetStopped(); 706 m_structured_data_plugin_map.clear(); 707 m_finalize_called = true; 708 } 709 710 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 711 m_notifications.push_back(callbacks); 712 if (callbacks.initialize != nullptr) 713 callbacks.initialize(callbacks.baton, this); 714 } 715 716 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 717 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 718 for (pos = m_notifications.begin(); pos != end; ++pos) { 719 if (pos->baton == callbacks.baton && 720 pos->initialize == callbacks.initialize && 721 pos->process_state_changed == callbacks.process_state_changed) { 722 m_notifications.erase(pos); 723 return true; 724 } 725 } 726 return false; 727 } 728 729 void Process::SynchronouslyNotifyStateChanged(StateType state) { 730 std::vector<Notifications>::iterator notification_pos, 731 notification_end = m_notifications.end(); 732 for (notification_pos = m_notifications.begin(); 733 notification_pos != notification_end; ++notification_pos) { 734 if (notification_pos->process_state_changed) 735 notification_pos->process_state_changed(notification_pos->baton, this, 736 state); 737 } 738 } 739 740 // FIXME: We need to do some work on events before the general Listener sees 741 // them. 742 // For instance if we are continuing from a breakpoint, we need to ensure that 743 // we do the little "insert real insn, step & stop" trick. But we can't do 744 // that when the event is delivered by the broadcaster - since that is done on 745 // the thread that is waiting for new events, so if we needed more than one 746 // event for our handling, we would stall. So instead we do it when we fetch 747 // the event off of the queue. 748 // 749 750 StateType Process::GetNextEvent(EventSP &event_sp) { 751 StateType state = eStateInvalid; 752 753 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 754 std::chrono::seconds(0)) && 755 event_sp) 756 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 757 758 return state; 759 } 760 761 void Process::SyncIOHandler(uint32_t iohandler_id, 762 const Timeout<std::micro> &timeout) { 763 // don't sync (potentially context switch) in case where there is no process 764 // IO 765 if (!m_process_input_reader) 766 return; 767 768 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 769 770 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 771 if (Result) { 772 LLDB_LOG( 773 log, 774 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 775 iohandler_id, *Result); 776 } else { 777 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 778 iohandler_id); 779 } 780 } 781 782 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 783 EventSP *event_sp_ptr, bool wait_always, 784 ListenerSP hijack_listener_sp, 785 Stream *stream, bool use_run_lock) { 786 // We can't just wait for a "stopped" event, because the stopped event may 787 // have restarted the target. We have to actually check each event, and in 788 // the case of a stopped event check the restarted flag on the event. 789 if (event_sp_ptr) 790 event_sp_ptr->reset(); 791 StateType state = GetState(); 792 // If we are exited or detached, we won't ever get back to any other valid 793 // state... 794 if (state == eStateDetached || state == eStateExited) 795 return state; 796 797 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 798 LLDB_LOG(log, "timeout = {0}", timeout); 799 800 if (!wait_always && StateIsStoppedState(state, true) && 801 StateIsStoppedState(GetPrivateState(), true)) { 802 LLDB_LOGF(log, 803 "Process::%s returning without waiting for events; process " 804 "private and public states are already 'stopped'.", 805 __FUNCTION__); 806 // We need to toggle the run lock as this won't get done in 807 // SetPublicState() if the process is hijacked. 808 if (hijack_listener_sp && use_run_lock) 809 m_public_run_lock.SetStopped(); 810 return state; 811 } 812 813 while (state != eStateInvalid) { 814 EventSP event_sp; 815 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 816 if (event_sp_ptr && event_sp) 817 *event_sp_ptr = event_sp; 818 819 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 820 Process::HandleProcessStateChangedEvent(event_sp, stream, 821 pop_process_io_handler); 822 823 switch (state) { 824 case eStateCrashed: 825 case eStateDetached: 826 case eStateExited: 827 case eStateUnloaded: 828 // We need to toggle the run lock as this won't get done in 829 // SetPublicState() if the process is hijacked. 830 if (hijack_listener_sp && use_run_lock) 831 m_public_run_lock.SetStopped(); 832 return state; 833 case eStateStopped: 834 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 835 continue; 836 else { 837 // We need to toggle the run lock as this won't get done in 838 // SetPublicState() if the process is hijacked. 839 if (hijack_listener_sp && use_run_lock) 840 m_public_run_lock.SetStopped(); 841 return state; 842 } 843 default: 844 continue; 845 } 846 } 847 return state; 848 } 849 850 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 851 Stream *stream, 852 bool &pop_process_io_handler) { 853 const bool handle_pop = pop_process_io_handler; 854 855 pop_process_io_handler = false; 856 ProcessSP process_sp = 857 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 858 859 if (!process_sp) 860 return false; 861 862 StateType event_state = 863 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 864 if (event_state == eStateInvalid) 865 return false; 866 867 switch (event_state) { 868 case eStateInvalid: 869 case eStateUnloaded: 870 case eStateAttaching: 871 case eStateLaunching: 872 case eStateStepping: 873 case eStateDetached: 874 if (stream) 875 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 876 StateAsCString(event_state)); 877 if (event_state == eStateDetached) 878 pop_process_io_handler = true; 879 break; 880 881 case eStateConnected: 882 case eStateRunning: 883 // Don't be chatty when we run... 884 break; 885 886 case eStateExited: 887 if (stream) 888 process_sp->GetStatus(*stream); 889 pop_process_io_handler = true; 890 break; 891 892 case eStateStopped: 893 case eStateCrashed: 894 case eStateSuspended: 895 // Make sure the program hasn't been auto-restarted: 896 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 897 if (stream) { 898 size_t num_reasons = 899 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 900 if (num_reasons > 0) { 901 // FIXME: Do we want to report this, or would that just be annoyingly 902 // chatty? 903 if (num_reasons == 1) { 904 const char *reason = 905 Process::ProcessEventData::GetRestartedReasonAtIndex( 906 event_sp.get(), 0); 907 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 908 process_sp->GetID(), 909 reason ? reason : "<UNKNOWN REASON>"); 910 } else { 911 stream->Printf("Process %" PRIu64 912 " stopped and restarted, reasons:\n", 913 process_sp->GetID()); 914 915 for (size_t i = 0; i < num_reasons; i++) { 916 const char *reason = 917 Process::ProcessEventData::GetRestartedReasonAtIndex( 918 event_sp.get(), i); 919 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 920 } 921 } 922 } 923 } 924 } else { 925 StopInfoSP curr_thread_stop_info_sp; 926 // Lock the thread list so it doesn't change on us, this is the scope for 927 // the locker: 928 { 929 ThreadList &thread_list = process_sp->GetThreadList(); 930 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 931 932 ThreadSP curr_thread(thread_list.GetSelectedThread()); 933 ThreadSP thread; 934 StopReason curr_thread_stop_reason = eStopReasonInvalid; 935 if (curr_thread) { 936 curr_thread_stop_reason = curr_thread->GetStopReason(); 937 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 938 } 939 if (!curr_thread || !curr_thread->IsValid() || 940 curr_thread_stop_reason == eStopReasonInvalid || 941 curr_thread_stop_reason == eStopReasonNone) { 942 // Prefer a thread that has just completed its plan over another 943 // thread as current thread. 944 ThreadSP plan_thread; 945 ThreadSP other_thread; 946 947 const size_t num_threads = thread_list.GetSize(); 948 size_t i; 949 for (i = 0; i < num_threads; ++i) { 950 thread = thread_list.GetThreadAtIndex(i); 951 StopReason thread_stop_reason = thread->GetStopReason(); 952 switch (thread_stop_reason) { 953 case eStopReasonInvalid: 954 case eStopReasonNone: 955 break; 956 957 case eStopReasonSignal: { 958 // Don't select a signal thread if we weren't going to stop at 959 // that signal. We have to have had another reason for stopping 960 // here, and the user doesn't want to see this thread. 961 uint64_t signo = thread->GetStopInfo()->GetValue(); 962 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 963 if (!other_thread) 964 other_thread = thread; 965 } 966 break; 967 } 968 case eStopReasonTrace: 969 case eStopReasonBreakpoint: 970 case eStopReasonWatchpoint: 971 case eStopReasonException: 972 case eStopReasonExec: 973 case eStopReasonThreadExiting: 974 case eStopReasonInstrumentation: 975 if (!other_thread) 976 other_thread = thread; 977 break; 978 case eStopReasonPlanComplete: 979 if (!plan_thread) 980 plan_thread = thread; 981 break; 982 } 983 } 984 if (plan_thread) 985 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 986 else if (other_thread) 987 thread_list.SetSelectedThreadByID(other_thread->GetID()); 988 else { 989 if (curr_thread && curr_thread->IsValid()) 990 thread = curr_thread; 991 else 992 thread = thread_list.GetThreadAtIndex(0); 993 994 if (thread) 995 thread_list.SetSelectedThreadByID(thread->GetID()); 996 } 997 } 998 } 999 // Drop the ThreadList mutex by here, since GetThreadStatus below might 1000 // have to run code, e.g. for Data formatters, and if we hold the 1001 // ThreadList mutex, then the process is going to have a hard time 1002 // restarting the process. 1003 if (stream) { 1004 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 1005 if (debugger.GetTargetList().GetSelectedTarget().get() == 1006 &process_sp->GetTarget()) { 1007 ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); 1008 1009 if (!thread_sp || !thread_sp->IsValid()) 1010 return false; 1011 1012 const bool only_threads_with_stop_reason = true; 1013 const uint32_t start_frame = thread_sp->GetSelectedFrameIndex(); 1014 const uint32_t num_frames = 1; 1015 const uint32_t num_frames_with_source = 1; 1016 const bool stop_format = true; 1017 1018 process_sp->GetStatus(*stream); 1019 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 1020 start_frame, num_frames, 1021 num_frames_with_source, 1022 stop_format); 1023 if (curr_thread_stop_info_sp) { 1024 lldb::addr_t crashing_address; 1025 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 1026 curr_thread_stop_info_sp, &crashing_address); 1027 if (valobj_sp) { 1028 const ValueObject::GetExpressionPathFormat format = 1029 ValueObject::GetExpressionPathFormat:: 1030 eGetExpressionPathFormatHonorPointers; 1031 stream->PutCString("Likely cause: "); 1032 valobj_sp->GetExpressionPath(*stream, format); 1033 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 1034 } 1035 } 1036 } else { 1037 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 1038 process_sp->GetTarget().shared_from_this()); 1039 if (target_idx != UINT32_MAX) 1040 stream->Printf("Target %d: (", target_idx); 1041 else 1042 stream->Printf("Target <unknown index>: ("); 1043 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 1044 stream->Printf(") stopped.\n"); 1045 } 1046 } 1047 1048 // Pop the process IO handler 1049 pop_process_io_handler = true; 1050 } 1051 break; 1052 } 1053 1054 if (handle_pop && pop_process_io_handler) 1055 process_sp->PopProcessIOHandler(); 1056 1057 return true; 1058 } 1059 1060 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 1061 if (listener_sp) { 1062 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 1063 eBroadcastBitInterrupt); 1064 } else 1065 return false; 1066 } 1067 1068 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 1069 1070 StateType Process::GetStateChangedEvents(EventSP &event_sp, 1071 const Timeout<std::micro> &timeout, 1072 ListenerSP hijack_listener_sp) { 1073 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1074 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1075 1076 ListenerSP listener_sp = hijack_listener_sp; 1077 if (!listener_sp) 1078 listener_sp = m_listener_sp; 1079 1080 StateType state = eStateInvalid; 1081 if (listener_sp->GetEventForBroadcasterWithType( 1082 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1083 timeout)) { 1084 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1085 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1086 else 1087 LLDB_LOG(log, "got no event or was interrupted."); 1088 } 1089 1090 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 1091 return state; 1092 } 1093 1094 Event *Process::PeekAtStateChangedEvents() { 1095 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1096 1097 LLDB_LOGF(log, "Process::%s...", __FUNCTION__); 1098 1099 Event *event_ptr; 1100 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 1101 this, eBroadcastBitStateChanged); 1102 if (log) { 1103 if (event_ptr) { 1104 LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, 1105 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 1106 } else { 1107 LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); 1108 } 1109 } 1110 return event_ptr; 1111 } 1112 1113 StateType 1114 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 1115 const Timeout<std::micro> &timeout) { 1116 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1117 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1118 1119 StateType state = eStateInvalid; 1120 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1121 &m_private_state_broadcaster, 1122 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1123 timeout)) 1124 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1125 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1126 1127 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1128 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1129 return state; 1130 } 1131 1132 bool Process::GetEventsPrivate(EventSP &event_sp, 1133 const Timeout<std::micro> &timeout, 1134 bool control_only) { 1135 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1136 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1137 1138 if (control_only) 1139 return m_private_state_listener_sp->GetEventForBroadcaster( 1140 &m_private_state_control_broadcaster, event_sp, timeout); 1141 else 1142 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1143 } 1144 1145 bool Process::IsRunning() const { 1146 return StateIsRunningState(m_public_state.GetValue()); 1147 } 1148 1149 int Process::GetExitStatus() { 1150 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1151 1152 if (m_public_state.GetValue() == eStateExited) 1153 return m_exit_status; 1154 return -1; 1155 } 1156 1157 const char *Process::GetExitDescription() { 1158 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1159 1160 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1161 return m_exit_string.c_str(); 1162 return nullptr; 1163 } 1164 1165 bool Process::SetExitStatus(int status, const char *cstr) { 1166 // Use a mutex to protect setting the exit status. 1167 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1168 1169 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1170 LIBLLDB_LOG_PROCESS)); 1171 LLDB_LOGF( 1172 log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1173 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : ""); 1174 1175 // We were already in the exited state 1176 if (m_private_state.GetValue() == eStateExited) { 1177 LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because " 1178 "state was already set to eStateExited"); 1179 return false; 1180 } 1181 1182 m_exit_status = status; 1183 if (cstr) 1184 m_exit_string = cstr; 1185 else 1186 m_exit_string.clear(); 1187 1188 // Clear the last natural stop ID since it has a strong reference to this 1189 // process 1190 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1191 1192 SetPrivateState(eStateExited); 1193 1194 // Allow subclasses to do some cleanup 1195 DidExit(); 1196 1197 return true; 1198 } 1199 1200 bool Process::IsAlive() { 1201 switch (m_private_state.GetValue()) { 1202 case eStateConnected: 1203 case eStateAttaching: 1204 case eStateLaunching: 1205 case eStateStopped: 1206 case eStateRunning: 1207 case eStateStepping: 1208 case eStateCrashed: 1209 case eStateSuspended: 1210 return true; 1211 default: 1212 return false; 1213 } 1214 } 1215 1216 // This static callback can be used to watch for local child processes on the 1217 // current host. The child process exits, the process will be found in the 1218 // global target list (we want to be completely sure that the 1219 // lldb_private::Process doesn't go away before we can deliver the signal. 1220 bool Process::SetProcessExitStatus( 1221 lldb::pid_t pid, bool exited, 1222 int signo, // Zero for no signal 1223 int exit_status // Exit value of process if signal is zero 1224 ) { 1225 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 1226 LLDB_LOGF(log, 1227 "Process::SetProcessExitStatus (pid=%" PRIu64 1228 ", exited=%i, signal=%i, exit_status=%i)\n", 1229 pid, exited, signo, exit_status); 1230 1231 if (exited) { 1232 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1233 if (target_sp) { 1234 ProcessSP process_sp(target_sp->GetProcessSP()); 1235 if (process_sp) { 1236 const char *signal_cstr = nullptr; 1237 if (signo) 1238 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1239 1240 process_sp->SetExitStatus(exit_status, signal_cstr); 1241 } 1242 } 1243 return true; 1244 } 1245 return false; 1246 } 1247 1248 void Process::UpdateThreadListIfNeeded() { 1249 const uint32_t stop_id = GetStopID(); 1250 if (m_thread_list.GetSize(false) == 0 || 1251 stop_id != m_thread_list.GetStopID()) { 1252 bool clear_unused_threads = true; 1253 const StateType state = GetPrivateState(); 1254 if (StateIsStoppedState(state, true)) { 1255 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1256 m_thread_list.SetStopID(stop_id); 1257 1258 // m_thread_list does have its own mutex, but we need to hold onto the 1259 // mutex between the call to UpdateThreadList(...) and the 1260 // os->UpdateThreadList(...) so it doesn't change on us 1261 ThreadList &old_thread_list = m_thread_list; 1262 ThreadList real_thread_list(this); 1263 ThreadList new_thread_list(this); 1264 // Always update the thread list with the protocol specific thread list, 1265 // but only update if "true" is returned 1266 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1267 // Don't call into the OperatingSystem to update the thread list if we 1268 // are shutting down, since that may call back into the SBAPI's, 1269 // requiring the API lock which is already held by whoever is shutting 1270 // us down, causing a deadlock. 1271 OperatingSystem *os = GetOperatingSystem(); 1272 if (os && !m_destroy_in_process) { 1273 // Clear any old backing threads where memory threads might have been 1274 // backed by actual threads from the lldb_private::Process subclass 1275 size_t num_old_threads = old_thread_list.GetSize(false); 1276 for (size_t i = 0; i < num_old_threads; ++i) 1277 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1278 // See if the OS plugin reports all threads. If it does, then 1279 // it is safe to clear unseen thread's plans here. Otherwise we 1280 // should preserve them in case they show up again: 1281 clear_unused_threads = GetOSPluginReportsAllThreads(); 1282 1283 // Turn off dynamic types to ensure we don't run any expressions. 1284 // Objective-C can run an expression to determine if a SBValue is a 1285 // dynamic type or not and we need to avoid this. OperatingSystem 1286 // plug-ins can't run expressions that require running code... 1287 1288 Target &target = GetTarget(); 1289 const lldb::DynamicValueType saved_prefer_dynamic = 1290 target.GetPreferDynamicValue(); 1291 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1292 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1293 1294 // Now let the OperatingSystem plug-in update the thread list 1295 1296 os->UpdateThreadList( 1297 old_thread_list, // Old list full of threads created by OS plug-in 1298 real_thread_list, // The actual thread list full of threads 1299 // created by each lldb_private::Process 1300 // subclass 1301 new_thread_list); // The new thread list that we will show to the 1302 // user that gets filled in 1303 1304 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1305 target.SetPreferDynamicValue(saved_prefer_dynamic); 1306 } else { 1307 // No OS plug-in, the new thread list is the same as the real thread 1308 // list. 1309 new_thread_list = real_thread_list; 1310 } 1311 1312 m_thread_list_real.Update(real_thread_list); 1313 m_thread_list.Update(new_thread_list); 1314 m_thread_list.SetStopID(stop_id); 1315 1316 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1317 // Clear any extended threads that we may have accumulated previously 1318 m_extended_thread_list.Clear(); 1319 m_extended_thread_stop_id = GetLastNaturalStopID(); 1320 1321 m_queue_list.Clear(); 1322 m_queue_list_stop_id = GetLastNaturalStopID(); 1323 } 1324 } 1325 // Now update the plan stack map. 1326 // If we do have an OS plugin, any absent real threads in the 1327 // m_thread_list have already been removed from the ThreadPlanStackMap. 1328 // So any remaining threads are OS Plugin threads, and those we want to 1329 // preserve in case they show up again. 1330 m_thread_plans.Update(m_thread_list, clear_unused_threads); 1331 } 1332 } 1333 } 1334 1335 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) { 1336 return m_thread_plans.Find(tid); 1337 } 1338 1339 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) { 1340 return m_thread_plans.PrunePlansForTID(tid); 1341 } 1342 1343 void Process::PruneThreadPlans() { 1344 m_thread_plans.Update(GetThreadList(), true, false); 1345 } 1346 1347 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid, 1348 lldb::DescriptionLevel desc_level, 1349 bool internal, bool condense_trivial, 1350 bool skip_unreported_plans) { 1351 return m_thread_plans.DumpPlansForTID( 1352 strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans); 1353 } 1354 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level, 1355 bool internal, bool condense_trivial, 1356 bool skip_unreported_plans) { 1357 m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial, 1358 skip_unreported_plans); 1359 } 1360 1361 void Process::UpdateQueueListIfNeeded() { 1362 if (m_system_runtime_up) { 1363 if (m_queue_list.GetSize() == 0 || 1364 m_queue_list_stop_id != GetLastNaturalStopID()) { 1365 const StateType state = GetPrivateState(); 1366 if (StateIsStoppedState(state, true)) { 1367 m_system_runtime_up->PopulateQueueList(m_queue_list); 1368 m_queue_list_stop_id = GetLastNaturalStopID(); 1369 } 1370 } 1371 } 1372 } 1373 1374 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1375 OperatingSystem *os = GetOperatingSystem(); 1376 if (os) 1377 return os->CreateThread(tid, context); 1378 return ThreadSP(); 1379 } 1380 1381 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1382 return AssignIndexIDToThread(thread_id); 1383 } 1384 1385 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1386 return (m_thread_id_to_index_id_map.find(thread_id) != 1387 m_thread_id_to_index_id_map.end()); 1388 } 1389 1390 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1391 uint32_t result = 0; 1392 std::map<uint64_t, uint32_t>::iterator iterator = 1393 m_thread_id_to_index_id_map.find(thread_id); 1394 if (iterator == m_thread_id_to_index_id_map.end()) { 1395 result = ++m_thread_index_id; 1396 m_thread_id_to_index_id_map[thread_id] = result; 1397 } else { 1398 result = iterator->second; 1399 } 1400 1401 return result; 1402 } 1403 1404 StateType Process::GetState() { 1405 return m_public_state.GetValue(); 1406 } 1407 1408 void Process::SetPublicState(StateType new_state, bool restarted) { 1409 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1410 LIBLLDB_LOG_PROCESS)); 1411 LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)", 1412 StateAsCString(new_state), restarted); 1413 const StateType old_state = m_public_state.GetValue(); 1414 m_public_state.SetValue(new_state); 1415 1416 // On the transition from Run to Stopped, we unlock the writer end of the run 1417 // lock. The lock gets locked in Resume, which is the public API to tell the 1418 // program to run. 1419 if (!StateChangedIsExternallyHijacked()) { 1420 if (new_state == eStateDetached) { 1421 LLDB_LOGF(log, 1422 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1423 StateAsCString(new_state)); 1424 m_public_run_lock.SetStopped(); 1425 } else { 1426 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1427 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1428 if ((old_state_is_stopped != new_state_is_stopped)) { 1429 if (new_state_is_stopped && !restarted) { 1430 LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock", 1431 StateAsCString(new_state)); 1432 m_public_run_lock.SetStopped(); 1433 } 1434 } 1435 } 1436 } 1437 } 1438 1439 Status Process::Resume() { 1440 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1441 LIBLLDB_LOG_PROCESS)); 1442 LLDB_LOGF(log, "Process::Resume -- locking run lock"); 1443 if (!m_public_run_lock.TrySetRunning()) { 1444 Status error("Resume request failed - process still running."); 1445 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1446 return error; 1447 } 1448 Status error = PrivateResume(); 1449 if (!error.Success()) { 1450 // Undo running state change 1451 m_public_run_lock.SetStopped(); 1452 } 1453 return error; 1454 } 1455 1456 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack"; 1457 1458 Status Process::ResumeSynchronous(Stream *stream) { 1459 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1460 LIBLLDB_LOG_PROCESS)); 1461 LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); 1462 if (!m_public_run_lock.TrySetRunning()) { 1463 Status error("Resume request failed - process still running."); 1464 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1465 return error; 1466 } 1467 1468 ListenerSP listener_sp( 1469 Listener::MakeListener(g_resume_sync_name)); 1470 HijackProcessEvents(listener_sp); 1471 1472 Status error = PrivateResume(); 1473 if (error.Success()) { 1474 StateType state = 1475 WaitForProcessToStop(llvm::None, nullptr, true, listener_sp, stream); 1476 const bool must_be_alive = 1477 false; // eStateExited is ok, so this must be false 1478 if (!StateIsStoppedState(state, must_be_alive)) 1479 error.SetErrorStringWithFormat( 1480 "process not in stopped state after synchronous resume: %s", 1481 StateAsCString(state)); 1482 } else { 1483 // Undo running state change 1484 m_public_run_lock.SetStopped(); 1485 } 1486 1487 // Undo the hijacking of process events... 1488 RestoreProcessEvents(); 1489 1490 return error; 1491 } 1492 1493 bool Process::StateChangedIsExternallyHijacked() { 1494 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1495 const char *hijacking_name = GetHijackingListenerName(); 1496 if (hijacking_name && 1497 strcmp(hijacking_name, g_resume_sync_name)) 1498 return true; 1499 } 1500 return false; 1501 } 1502 1503 bool Process::StateChangedIsHijackedForSynchronousResume() { 1504 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1505 const char *hijacking_name = GetHijackingListenerName(); 1506 if (hijacking_name && 1507 strcmp(hijacking_name, g_resume_sync_name) == 0) 1508 return true; 1509 } 1510 return false; 1511 } 1512 1513 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1514 1515 void Process::SetPrivateState(StateType new_state) { 1516 if (m_finalize_called) 1517 return; 1518 1519 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1520 LIBLLDB_LOG_PROCESS)); 1521 bool state_changed = false; 1522 1523 LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state)); 1524 1525 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1526 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1527 1528 const StateType old_state = m_private_state.GetValueNoLock(); 1529 state_changed = old_state != new_state; 1530 1531 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1532 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1533 if (old_state_is_stopped != new_state_is_stopped) { 1534 if (new_state_is_stopped) 1535 m_private_run_lock.SetStopped(); 1536 else 1537 m_private_run_lock.SetRunning(); 1538 } 1539 1540 if (state_changed) { 1541 m_private_state.SetValueNoLock(new_state); 1542 EventSP event_sp( 1543 new Event(eBroadcastBitStateChanged, 1544 new ProcessEventData(shared_from_this(), new_state))); 1545 if (StateIsStoppedState(new_state, false)) { 1546 // Note, this currently assumes that all threads in the list stop when 1547 // the process stops. In the future we will want to support a debugging 1548 // model where some threads continue to run while others are stopped. 1549 // When that happens we will either need a way for the thread list to 1550 // identify which threads are stopping or create a special thread list 1551 // containing only threads which actually stopped. 1552 // 1553 // The process plugin is responsible for managing the actual behavior of 1554 // the threads and should have stopped any threads that are going to stop 1555 // before we get here. 1556 m_thread_list.DidStop(); 1557 1558 m_mod_id.BumpStopID(); 1559 if (!m_mod_id.IsLastResumeForUserExpression()) 1560 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1561 m_memory_cache.Clear(); 1562 LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u", 1563 StateAsCString(new_state), m_mod_id.GetStopID()); 1564 } 1565 1566 // Use our target to get a shared pointer to ourselves... 1567 if (m_finalize_called && !PrivateStateThreadIsValid()) 1568 BroadcastEvent(event_sp); 1569 else 1570 m_private_state_broadcaster.BroadcastEvent(event_sp); 1571 } else { 1572 LLDB_LOGF(log, 1573 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1574 StateAsCString(new_state)); 1575 } 1576 } 1577 1578 void Process::SetRunningUserExpression(bool on) { 1579 m_mod_id.SetRunningUserExpression(on); 1580 } 1581 1582 void Process::SetRunningUtilityFunction(bool on) { 1583 m_mod_id.SetRunningUtilityFunction(on); 1584 } 1585 1586 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1587 1588 const lldb::ABISP &Process::GetABI() { 1589 if (!m_abi_sp) 1590 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1591 return m_abi_sp; 1592 } 1593 1594 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { 1595 std::vector<LanguageRuntime *> language_runtimes; 1596 1597 if (m_finalizing) 1598 return language_runtimes; 1599 1600 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1601 // Before we pass off a copy of the language runtimes, we must make sure that 1602 // our collection is properly populated. It's possible that some of the 1603 // language runtimes were not loaded yet, either because nobody requested it 1604 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so 1605 // hadn't been loaded). 1606 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 1607 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 1608 language_runtimes.emplace_back(runtime); 1609 } 1610 1611 return language_runtimes; 1612 } 1613 1614 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { 1615 if (m_finalizing) 1616 return nullptr; 1617 1618 LanguageRuntime *runtime = nullptr; 1619 1620 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1621 LanguageRuntimeCollection::iterator pos; 1622 pos = m_language_runtimes.find(language); 1623 if (pos == m_language_runtimes.end() || !pos->second) { 1624 lldb::LanguageRuntimeSP runtime_sp( 1625 LanguageRuntime::FindPlugin(this, language)); 1626 1627 m_language_runtimes[language] = runtime_sp; 1628 runtime = runtime_sp.get(); 1629 } else 1630 runtime = pos->second.get(); 1631 1632 if (runtime) 1633 // It's possible that a language runtime can support multiple LanguageTypes, 1634 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, 1635 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the 1636 // primary language type and make sure that our runtime supports it. 1637 assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); 1638 1639 return runtime; 1640 } 1641 1642 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1643 if (m_finalizing) 1644 return false; 1645 1646 if (in_value.IsDynamic()) 1647 return false; 1648 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1649 1650 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1651 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1652 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1653 } 1654 1655 for (LanguageRuntime *runtime : GetLanguageRuntimes()) { 1656 if (runtime->CouldHaveDynamicValue(in_value)) 1657 return true; 1658 } 1659 1660 return false; 1661 } 1662 1663 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1664 m_dynamic_checkers_up.reset(dynamic_checkers); 1665 } 1666 1667 BreakpointSiteList &Process::GetBreakpointSiteList() { 1668 return m_breakpoint_site_list; 1669 } 1670 1671 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1672 return m_breakpoint_site_list; 1673 } 1674 1675 void Process::DisableAllBreakpointSites() { 1676 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1677 // bp_site->SetEnabled(true); 1678 DisableBreakpointSite(bp_site); 1679 }); 1680 } 1681 1682 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1683 Status error(DisableBreakpointSiteByID(break_id)); 1684 1685 if (error.Success()) 1686 m_breakpoint_site_list.Remove(break_id); 1687 1688 return error; 1689 } 1690 1691 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1692 Status error; 1693 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1694 if (bp_site_sp) { 1695 if (bp_site_sp->IsEnabled()) 1696 error = DisableBreakpointSite(bp_site_sp.get()); 1697 } else { 1698 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1699 break_id); 1700 } 1701 1702 return error; 1703 } 1704 1705 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1706 Status error; 1707 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1708 if (bp_site_sp) { 1709 if (!bp_site_sp->IsEnabled()) 1710 error = EnableBreakpointSite(bp_site_sp.get()); 1711 } else { 1712 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1713 break_id); 1714 } 1715 return error; 1716 } 1717 1718 lldb::break_id_t 1719 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1720 bool use_hardware) { 1721 addr_t load_addr = LLDB_INVALID_ADDRESS; 1722 1723 bool show_error = true; 1724 switch (GetState()) { 1725 case eStateInvalid: 1726 case eStateUnloaded: 1727 case eStateConnected: 1728 case eStateAttaching: 1729 case eStateLaunching: 1730 case eStateDetached: 1731 case eStateExited: 1732 show_error = false; 1733 break; 1734 1735 case eStateStopped: 1736 case eStateRunning: 1737 case eStateStepping: 1738 case eStateCrashed: 1739 case eStateSuspended: 1740 show_error = IsAlive(); 1741 break; 1742 } 1743 1744 // Reset the IsIndirect flag here, in case the location changes from pointing 1745 // to a indirect symbol to a regular symbol. 1746 owner->SetIsIndirect(false); 1747 1748 if (owner->ShouldResolveIndirectFunctions()) { 1749 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1750 if (symbol && symbol->IsIndirect()) { 1751 Status error; 1752 Address symbol_address = symbol->GetAddress(); 1753 load_addr = ResolveIndirectFunction(&symbol_address, error); 1754 if (!error.Success() && show_error) { 1755 GetTarget().GetDebugger().GetErrorStream().Printf( 1756 "warning: failed to resolve indirect function at 0x%" PRIx64 1757 " for breakpoint %i.%i: %s\n", 1758 symbol->GetLoadAddress(&GetTarget()), 1759 owner->GetBreakpoint().GetID(), owner->GetID(), 1760 error.AsCString() ? error.AsCString() : "unknown error"); 1761 return LLDB_INVALID_BREAK_ID; 1762 } 1763 Address resolved_address(load_addr); 1764 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1765 owner->SetIsIndirect(true); 1766 } else 1767 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1768 } else 1769 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1770 1771 if (load_addr != LLDB_INVALID_ADDRESS) { 1772 BreakpointSiteSP bp_site_sp; 1773 1774 // Look up this breakpoint site. If it exists, then add this new owner, 1775 // otherwise create a new breakpoint site and add it. 1776 1777 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1778 1779 if (bp_site_sp) { 1780 bp_site_sp->AddOwner(owner); 1781 owner->SetBreakpointSite(bp_site_sp); 1782 return bp_site_sp->GetID(); 1783 } else { 1784 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1785 load_addr, use_hardware)); 1786 if (bp_site_sp) { 1787 Status error = EnableBreakpointSite(bp_site_sp.get()); 1788 if (error.Success()) { 1789 owner->SetBreakpointSite(bp_site_sp); 1790 return m_breakpoint_site_list.Add(bp_site_sp); 1791 } else { 1792 if (show_error || use_hardware) { 1793 // Report error for setting breakpoint... 1794 GetTarget().GetDebugger().GetErrorStream().Printf( 1795 "warning: failed to set breakpoint site at 0x%" PRIx64 1796 " for breakpoint %i.%i: %s\n", 1797 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1798 error.AsCString() ? error.AsCString() : "unknown error"); 1799 } 1800 } 1801 } 1802 } 1803 } 1804 // We failed to enable the breakpoint 1805 return LLDB_INVALID_BREAK_ID; 1806 } 1807 1808 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1809 lldb::user_id_t owner_loc_id, 1810 BreakpointSiteSP &bp_site_sp) { 1811 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1812 if (num_owners == 0) { 1813 // Don't try to disable the site if we don't have a live process anymore. 1814 if (IsAlive()) 1815 DisableBreakpointSite(bp_site_sp.get()); 1816 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1817 } 1818 } 1819 1820 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1821 uint8_t *buf) const { 1822 size_t bytes_removed = 0; 1823 BreakpointSiteList bp_sites_in_range; 1824 1825 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1826 bp_sites_in_range)) { 1827 bp_sites_in_range.ForEach([bp_addr, size, 1828 buf](BreakpointSite *bp_site) -> void { 1829 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1830 addr_t intersect_addr; 1831 size_t intersect_size; 1832 size_t opcode_offset; 1833 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1834 &intersect_size, &opcode_offset)) { 1835 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1836 assert(bp_addr < intersect_addr + intersect_size && 1837 intersect_addr + intersect_size <= bp_addr + size); 1838 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1839 size_t buf_offset = intersect_addr - bp_addr; 1840 ::memcpy(buf + buf_offset, 1841 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1842 intersect_size); 1843 } 1844 } 1845 }); 1846 } 1847 return bytes_removed; 1848 } 1849 1850 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1851 PlatformSP platform_sp(GetTarget().GetPlatform()); 1852 if (platform_sp) 1853 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1854 return 0; 1855 } 1856 1857 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1858 Status error; 1859 assert(bp_site != nullptr); 1860 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1861 const addr_t bp_addr = bp_site->GetLoadAddress(); 1862 LLDB_LOGF( 1863 log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1864 bp_site->GetID(), (uint64_t)bp_addr); 1865 if (bp_site->IsEnabled()) { 1866 LLDB_LOGF( 1867 log, 1868 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1869 " -- already enabled", 1870 bp_site->GetID(), (uint64_t)bp_addr); 1871 return error; 1872 } 1873 1874 if (bp_addr == LLDB_INVALID_ADDRESS) { 1875 error.SetErrorString("BreakpointSite contains an invalid load address."); 1876 return error; 1877 } 1878 // Ask the lldb::Process subclass to fill in the correct software breakpoint 1879 // trap for the breakpoint site 1880 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 1881 1882 if (bp_opcode_size == 0) { 1883 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 1884 "returned zero, unable to get breakpoint " 1885 "trap for address 0x%" PRIx64, 1886 bp_addr); 1887 } else { 1888 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 1889 1890 if (bp_opcode_bytes == nullptr) { 1891 error.SetErrorString( 1892 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 1893 return error; 1894 } 1895 1896 // Save the original opcode by reading it 1897 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 1898 error) == bp_opcode_size) { 1899 // Write a software breakpoint in place of the original opcode 1900 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 1901 bp_opcode_size) { 1902 uint8_t verify_bp_opcode_bytes[64]; 1903 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 1904 error) == bp_opcode_size) { 1905 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 1906 bp_opcode_size) == 0) { 1907 bp_site->SetEnabled(true); 1908 bp_site->SetType(BreakpointSite::eSoftware); 1909 LLDB_LOGF(log, 1910 "Process::EnableSoftwareBreakpoint (site_id = %d) " 1911 "addr = 0x%" PRIx64 " -- SUCCESS", 1912 bp_site->GetID(), (uint64_t)bp_addr); 1913 } else 1914 error.SetErrorString( 1915 "failed to verify the breakpoint trap in memory."); 1916 } else 1917 error.SetErrorString( 1918 "Unable to read memory to verify breakpoint trap."); 1919 } else 1920 error.SetErrorString("Unable to write breakpoint trap to memory."); 1921 } else 1922 error.SetErrorString("Unable to read memory at breakpoint address."); 1923 } 1924 if (log && error.Fail()) 1925 LLDB_LOGF( 1926 log, 1927 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1928 " -- FAILED: %s", 1929 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1930 return error; 1931 } 1932 1933 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 1934 Status error; 1935 assert(bp_site != nullptr); 1936 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1937 addr_t bp_addr = bp_site->GetLoadAddress(); 1938 lldb::user_id_t breakID = bp_site->GetID(); 1939 LLDB_LOGF(log, 1940 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 1941 ") addr = 0x%" PRIx64, 1942 breakID, (uint64_t)bp_addr); 1943 1944 if (bp_site->IsHardware()) { 1945 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 1946 } else if (bp_site->IsEnabled()) { 1947 const size_t break_op_size = bp_site->GetByteSize(); 1948 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 1949 if (break_op_size > 0) { 1950 // Clear a software breakpoint instruction 1951 uint8_t curr_break_op[8]; 1952 assert(break_op_size <= sizeof(curr_break_op)); 1953 bool break_op_found = false; 1954 1955 // Read the breakpoint opcode 1956 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 1957 break_op_size) { 1958 bool verify = false; 1959 // Make sure the breakpoint opcode exists at this address 1960 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 1961 break_op_found = true; 1962 // We found a valid breakpoint opcode at this address, now restore 1963 // the saved opcode. 1964 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 1965 break_op_size, error) == break_op_size) { 1966 verify = true; 1967 } else 1968 error.SetErrorString( 1969 "Memory write failed when restoring original opcode."); 1970 } else { 1971 error.SetErrorString( 1972 "Original breakpoint trap is no longer in memory."); 1973 // Set verify to true and so we can check if the original opcode has 1974 // already been restored 1975 verify = true; 1976 } 1977 1978 if (verify) { 1979 uint8_t verify_opcode[8]; 1980 assert(break_op_size < sizeof(verify_opcode)); 1981 // Verify that our original opcode made it back to the inferior 1982 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 1983 break_op_size) { 1984 // compare the memory we just read with the original opcode 1985 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 1986 break_op_size) == 0) { 1987 // SUCCESS 1988 bp_site->SetEnabled(false); 1989 LLDB_LOGF(log, 1990 "Process::DisableSoftwareBreakpoint (site_id = %d) " 1991 "addr = 0x%" PRIx64 " -- SUCCESS", 1992 bp_site->GetID(), (uint64_t)bp_addr); 1993 return error; 1994 } else { 1995 if (break_op_found) 1996 error.SetErrorString("Failed to restore original opcode."); 1997 } 1998 } else 1999 error.SetErrorString("Failed to read memory to verify that " 2000 "breakpoint trap was restored."); 2001 } 2002 } else 2003 error.SetErrorString( 2004 "Unable to read memory that should contain the breakpoint trap."); 2005 } 2006 } else { 2007 LLDB_LOGF( 2008 log, 2009 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2010 " -- already disabled", 2011 bp_site->GetID(), (uint64_t)bp_addr); 2012 return error; 2013 } 2014 2015 LLDB_LOGF( 2016 log, 2017 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2018 " -- FAILED: %s", 2019 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 2020 return error; 2021 } 2022 2023 // Uncomment to verify memory caching works after making changes to caching 2024 // code 2025 //#define VERIFY_MEMORY_READS 2026 2027 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 2028 error.Clear(); 2029 if (!GetDisableMemoryCache()) { 2030 #if defined(VERIFY_MEMORY_READS) 2031 // Memory caching is enabled, with debug verification 2032 2033 if (buf && size) { 2034 // Uncomment the line below to make sure memory caching is working. 2035 // I ran this through the test suite and got no assertions, so I am 2036 // pretty confident this is working well. If any changes are made to 2037 // memory caching, uncomment the line below and test your changes! 2038 2039 // Verify all memory reads by using the cache first, then redundantly 2040 // reading the same memory from the inferior and comparing to make sure 2041 // everything is exactly the same. 2042 std::string verify_buf(size, '\0'); 2043 assert(verify_buf.size() == size); 2044 const size_t cache_bytes_read = 2045 m_memory_cache.Read(this, addr, buf, size, error); 2046 Status verify_error; 2047 const size_t verify_bytes_read = 2048 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 2049 verify_buf.size(), verify_error); 2050 assert(cache_bytes_read == verify_bytes_read); 2051 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 2052 assert(verify_error.Success() == error.Success()); 2053 return cache_bytes_read; 2054 } 2055 return 0; 2056 #else // !defined(VERIFY_MEMORY_READS) 2057 // Memory caching is enabled, without debug verification 2058 2059 return m_memory_cache.Read(addr, buf, size, error); 2060 #endif // defined (VERIFY_MEMORY_READS) 2061 } else { 2062 // Memory caching is disabled 2063 2064 return ReadMemoryFromInferior(addr, buf, size, error); 2065 } 2066 } 2067 2068 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 2069 Status &error) { 2070 char buf[256]; 2071 out_str.clear(); 2072 addr_t curr_addr = addr; 2073 while (true) { 2074 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 2075 if (length == 0) 2076 break; 2077 out_str.append(buf, length); 2078 // If we got "length - 1" bytes, we didn't get the whole C string, we need 2079 // to read some more characters 2080 if (length == sizeof(buf) - 1) 2081 curr_addr += length; 2082 else 2083 break; 2084 } 2085 return out_str.size(); 2086 } 2087 2088 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes, 2089 Status &error, size_t type_width) { 2090 size_t total_bytes_read = 0; 2091 if (dst && max_bytes && type_width && max_bytes >= type_width) { 2092 // Ensure a null terminator independent of the number of bytes that is 2093 // read. 2094 memset(dst, 0, max_bytes); 2095 size_t bytes_left = max_bytes - type_width; 2096 2097 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 2098 assert(sizeof(terminator) >= type_width && "Attempting to validate a " 2099 "string with more than 4 bytes " 2100 "per character!"); 2101 2102 addr_t curr_addr = addr; 2103 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2104 char *curr_dst = dst; 2105 2106 error.Clear(); 2107 while (bytes_left > 0 && error.Success()) { 2108 addr_t cache_line_bytes_left = 2109 cache_line_size - (curr_addr % cache_line_size); 2110 addr_t bytes_to_read = 2111 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2112 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2113 2114 if (bytes_read == 0) 2115 break; 2116 2117 // Search for a null terminator of correct size and alignment in 2118 // bytes_read 2119 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 2120 for (size_t i = aligned_start; 2121 i + type_width <= total_bytes_read + bytes_read; i += type_width) 2122 if (::memcmp(&dst[i], terminator, type_width) == 0) { 2123 error.Clear(); 2124 return i; 2125 } 2126 2127 total_bytes_read += bytes_read; 2128 curr_dst += bytes_read; 2129 curr_addr += bytes_read; 2130 bytes_left -= bytes_read; 2131 } 2132 } else { 2133 if (max_bytes) 2134 error.SetErrorString("invalid arguments"); 2135 } 2136 return total_bytes_read; 2137 } 2138 2139 // Deprecated in favor of ReadStringFromMemory which has wchar support and 2140 // correct code to find null terminators. 2141 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 2142 size_t dst_max_len, 2143 Status &result_error) { 2144 size_t total_cstr_len = 0; 2145 if (dst && dst_max_len) { 2146 result_error.Clear(); 2147 // NULL out everything just to be safe 2148 memset(dst, 0, dst_max_len); 2149 Status error; 2150 addr_t curr_addr = addr; 2151 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2152 size_t bytes_left = dst_max_len - 1; 2153 char *curr_dst = dst; 2154 2155 while (bytes_left > 0) { 2156 addr_t cache_line_bytes_left = 2157 cache_line_size - (curr_addr % cache_line_size); 2158 addr_t bytes_to_read = 2159 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2160 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2161 2162 if (bytes_read == 0) { 2163 result_error = error; 2164 dst[total_cstr_len] = '\0'; 2165 break; 2166 } 2167 const size_t len = strlen(curr_dst); 2168 2169 total_cstr_len += len; 2170 2171 if (len < bytes_to_read) 2172 break; 2173 2174 curr_dst += bytes_read; 2175 curr_addr += bytes_read; 2176 bytes_left -= bytes_read; 2177 } 2178 } else { 2179 if (dst == nullptr) 2180 result_error.SetErrorString("invalid arguments"); 2181 else 2182 result_error.Clear(); 2183 } 2184 return total_cstr_len; 2185 } 2186 2187 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2188 Status &error) { 2189 if (buf == nullptr || size == 0) 2190 return 0; 2191 2192 size_t bytes_read = 0; 2193 uint8_t *bytes = (uint8_t *)buf; 2194 2195 while (bytes_read < size) { 2196 const size_t curr_size = size - bytes_read; 2197 const size_t curr_bytes_read = 2198 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2199 bytes_read += curr_bytes_read; 2200 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2201 break; 2202 } 2203 2204 // Replace any software breakpoint opcodes that fall into this range back 2205 // into "buf" before we return 2206 if (bytes_read > 0) 2207 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2208 return bytes_read; 2209 } 2210 2211 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2212 size_t integer_byte_size, 2213 uint64_t fail_value, 2214 Status &error) { 2215 Scalar scalar; 2216 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2217 error)) 2218 return scalar.ULongLong(fail_value); 2219 return fail_value; 2220 } 2221 2222 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2223 size_t integer_byte_size, 2224 int64_t fail_value, 2225 Status &error) { 2226 Scalar scalar; 2227 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2228 error)) 2229 return scalar.SLongLong(fail_value); 2230 return fail_value; 2231 } 2232 2233 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2234 Scalar scalar; 2235 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2236 error)) 2237 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2238 return LLDB_INVALID_ADDRESS; 2239 } 2240 2241 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2242 Status &error) { 2243 Scalar scalar; 2244 const uint32_t addr_byte_size = GetAddressByteSize(); 2245 if (addr_byte_size <= 4) 2246 scalar = (uint32_t)ptr_value; 2247 else 2248 scalar = ptr_value; 2249 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2250 addr_byte_size; 2251 } 2252 2253 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2254 Status &error) { 2255 size_t bytes_written = 0; 2256 const uint8_t *bytes = (const uint8_t *)buf; 2257 2258 while (bytes_written < size) { 2259 const size_t curr_size = size - bytes_written; 2260 const size_t curr_bytes_written = DoWriteMemory( 2261 addr + bytes_written, bytes + bytes_written, curr_size, error); 2262 bytes_written += curr_bytes_written; 2263 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2264 break; 2265 } 2266 return bytes_written; 2267 } 2268 2269 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2270 Status &error) { 2271 #if defined(ENABLE_MEMORY_CACHING) 2272 m_memory_cache.Flush(addr, size); 2273 #endif 2274 2275 if (buf == nullptr || size == 0) 2276 return 0; 2277 2278 m_mod_id.BumpMemoryID(); 2279 2280 // We need to write any data that would go where any current software traps 2281 // (enabled software breakpoints) any software traps (breakpoints) that we 2282 // may have placed in our tasks memory. 2283 2284 BreakpointSiteList bp_sites_in_range; 2285 if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range)) 2286 return WriteMemoryPrivate(addr, buf, size, error); 2287 2288 // No breakpoint sites overlap 2289 if (bp_sites_in_range.IsEmpty()) 2290 return WriteMemoryPrivate(addr, buf, size, error); 2291 2292 const uint8_t *ubuf = (const uint8_t *)buf; 2293 uint64_t bytes_written = 0; 2294 2295 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2296 &error](BreakpointSite *bp) -> void { 2297 if (error.Fail()) 2298 return; 2299 2300 if (bp->GetType() != BreakpointSite::eSoftware) 2301 return; 2302 2303 addr_t intersect_addr; 2304 size_t intersect_size; 2305 size_t opcode_offset; 2306 const bool intersects = bp->IntersectsRange( 2307 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2308 UNUSED_IF_ASSERT_DISABLED(intersects); 2309 assert(intersects); 2310 assert(addr <= intersect_addr && intersect_addr < addr + size); 2311 assert(addr < intersect_addr + intersect_size && 2312 intersect_addr + intersect_size <= addr + size); 2313 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2314 2315 // Check for bytes before this breakpoint 2316 const addr_t curr_addr = addr + bytes_written; 2317 if (intersect_addr > curr_addr) { 2318 // There are some bytes before this breakpoint that we need to just 2319 // write to memory 2320 size_t curr_size = intersect_addr - curr_addr; 2321 size_t curr_bytes_written = 2322 WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error); 2323 bytes_written += curr_bytes_written; 2324 if (curr_bytes_written != curr_size) { 2325 // We weren't able to write all of the requested bytes, we are 2326 // done looping and will return the number of bytes that we have 2327 // written so far. 2328 if (error.Success()) 2329 error.SetErrorToGenericError(); 2330 } 2331 } 2332 // Now write any bytes that would cover up any software breakpoints 2333 // directly into the breakpoint opcode buffer 2334 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, 2335 intersect_size); 2336 bytes_written += intersect_size; 2337 }); 2338 2339 // Write any remaining bytes after the last breakpoint if we have any left 2340 if (bytes_written < size) 2341 bytes_written += 2342 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2343 size - bytes_written, error); 2344 2345 return bytes_written; 2346 } 2347 2348 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2349 size_t byte_size, Status &error) { 2350 if (byte_size == UINT32_MAX) 2351 byte_size = scalar.GetByteSize(); 2352 if (byte_size > 0) { 2353 uint8_t buf[32]; 2354 const size_t mem_size = 2355 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2356 if (mem_size > 0) 2357 return WriteMemory(addr, buf, mem_size, error); 2358 else 2359 error.SetErrorString("failed to get scalar as memory data"); 2360 } else { 2361 error.SetErrorString("invalid scalar value"); 2362 } 2363 return 0; 2364 } 2365 2366 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2367 bool is_signed, Scalar &scalar, 2368 Status &error) { 2369 uint64_t uval = 0; 2370 if (byte_size == 0) { 2371 error.SetErrorString("byte size is zero"); 2372 } else if (byte_size & (byte_size - 1)) { 2373 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2374 byte_size); 2375 } else if (byte_size <= sizeof(uval)) { 2376 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2377 if (bytes_read == byte_size) { 2378 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2379 GetAddressByteSize()); 2380 lldb::offset_t offset = 0; 2381 if (byte_size <= 4) 2382 scalar = data.GetMaxU32(&offset, byte_size); 2383 else 2384 scalar = data.GetMaxU64(&offset, byte_size); 2385 if (is_signed) 2386 scalar.SignExtend(byte_size * 8); 2387 return bytes_read; 2388 } 2389 } else { 2390 error.SetErrorStringWithFormat( 2391 "byte size of %u is too large for integer scalar type", byte_size); 2392 } 2393 return 0; 2394 } 2395 2396 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2397 Status error; 2398 for (const auto &Entry : entries) { 2399 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2400 error); 2401 if (!error.Success()) 2402 break; 2403 } 2404 return error; 2405 } 2406 2407 #define USE_ALLOCATE_MEMORY_CACHE 1 2408 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2409 Status &error) { 2410 if (GetPrivateState() != eStateStopped) { 2411 error.SetErrorToGenericError(); 2412 return LLDB_INVALID_ADDRESS; 2413 } 2414 2415 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2416 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2417 #else 2418 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2419 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2420 LLDB_LOGF(log, 2421 "Process::AllocateMemory(size=%" PRIu64 2422 ", permissions=%s) => 0x%16.16" PRIx64 2423 " (m_stop_id = %u m_memory_id = %u)", 2424 (uint64_t)size, GetPermissionsAsCString(permissions), 2425 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2426 m_mod_id.GetMemoryID()); 2427 return allocated_addr; 2428 #endif 2429 } 2430 2431 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2432 Status &error) { 2433 addr_t return_addr = AllocateMemory(size, permissions, error); 2434 if (error.Success()) { 2435 std::string buffer(size, 0); 2436 WriteMemory(return_addr, buffer.c_str(), size, error); 2437 } 2438 return return_addr; 2439 } 2440 2441 bool Process::CanJIT() { 2442 if (m_can_jit == eCanJITDontKnow) { 2443 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2444 Status err; 2445 2446 uint64_t allocated_memory = AllocateMemory( 2447 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2448 err); 2449 2450 if (err.Success()) { 2451 m_can_jit = eCanJITYes; 2452 LLDB_LOGF(log, 2453 "Process::%s pid %" PRIu64 2454 " allocation test passed, CanJIT () is true", 2455 __FUNCTION__, GetID()); 2456 } else { 2457 m_can_jit = eCanJITNo; 2458 LLDB_LOGF(log, 2459 "Process::%s pid %" PRIu64 2460 " allocation test failed, CanJIT () is false: %s", 2461 __FUNCTION__, GetID(), err.AsCString()); 2462 } 2463 2464 DeallocateMemory(allocated_memory); 2465 } 2466 2467 return m_can_jit == eCanJITYes; 2468 } 2469 2470 void Process::SetCanJIT(bool can_jit) { 2471 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2472 } 2473 2474 void Process::SetCanRunCode(bool can_run_code) { 2475 SetCanJIT(can_run_code); 2476 m_can_interpret_function_calls = can_run_code; 2477 } 2478 2479 Status Process::DeallocateMemory(addr_t ptr) { 2480 Status error; 2481 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2482 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2483 error.SetErrorStringWithFormat( 2484 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2485 } 2486 #else 2487 error = DoDeallocateMemory(ptr); 2488 2489 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2490 LLDB_LOGF(log, 2491 "Process::DeallocateMemory(addr=0x%16.16" PRIx64 2492 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2493 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2494 m_mod_id.GetMemoryID()); 2495 #endif 2496 return error; 2497 } 2498 2499 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2500 lldb::addr_t header_addr, 2501 size_t size_to_read) { 2502 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2503 if (log) { 2504 LLDB_LOGF(log, 2505 "Process::ReadModuleFromMemory reading %s binary from memory", 2506 file_spec.GetPath().c_str()); 2507 } 2508 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2509 if (module_sp) { 2510 Status error; 2511 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2512 shared_from_this(), header_addr, error, size_to_read); 2513 if (objfile) 2514 return module_sp; 2515 } 2516 return ModuleSP(); 2517 } 2518 2519 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2520 uint32_t &permissions) { 2521 MemoryRegionInfo range_info; 2522 permissions = 0; 2523 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2524 if (!error.Success()) 2525 return false; 2526 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2527 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2528 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2529 return false; 2530 } 2531 2532 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2533 permissions |= lldb::ePermissionsReadable; 2534 2535 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2536 permissions |= lldb::ePermissionsWritable; 2537 2538 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2539 permissions |= lldb::ePermissionsExecutable; 2540 2541 return true; 2542 } 2543 2544 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2545 Status error; 2546 error.SetErrorString("watchpoints are not supported"); 2547 return error; 2548 } 2549 2550 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2551 Status error; 2552 error.SetErrorString("watchpoints are not supported"); 2553 return error; 2554 } 2555 2556 StateType 2557 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2558 const Timeout<std::micro> &timeout) { 2559 StateType state; 2560 2561 while (true) { 2562 event_sp.reset(); 2563 state = GetStateChangedEventsPrivate(event_sp, timeout); 2564 2565 if (StateIsStoppedState(state, false)) 2566 break; 2567 2568 // If state is invalid, then we timed out 2569 if (state == eStateInvalid) 2570 break; 2571 2572 if (event_sp) 2573 HandlePrivateEvent(event_sp); 2574 } 2575 return state; 2576 } 2577 2578 void Process::LoadOperatingSystemPlugin(bool flush) { 2579 if (flush) 2580 m_thread_list.Clear(); 2581 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); 2582 if (flush) 2583 Flush(); 2584 } 2585 2586 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2587 Status error; 2588 m_abi_sp.reset(); 2589 m_dyld_up.reset(); 2590 m_jit_loaders_up.reset(); 2591 m_system_runtime_up.reset(); 2592 m_os_up.reset(); 2593 m_process_input_reader.reset(); 2594 2595 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2596 if (!exe_module) { 2597 error.SetErrorString("executable module does not exist"); 2598 return error; 2599 } 2600 2601 char local_exec_file_path[PATH_MAX]; 2602 char platform_exec_file_path[PATH_MAX]; 2603 exe_module->GetFileSpec().GetPath(local_exec_file_path, 2604 sizeof(local_exec_file_path)); 2605 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, 2606 sizeof(platform_exec_file_path)); 2607 if (FileSystem::Instance().Exists(exe_module->GetFileSpec())) { 2608 // Install anything that might need to be installed prior to launching. 2609 // For host systems, this will do nothing, but if we are connected to a 2610 // remote platform it will install any needed binaries 2611 error = GetTarget().Install(&launch_info); 2612 if (error.Fail()) 2613 return error; 2614 2615 if (PrivateStateThreadIsValid()) 2616 PausePrivateStateThread(); 2617 2618 error = WillLaunch(exe_module); 2619 if (error.Success()) { 2620 const bool restarted = false; 2621 SetPublicState(eStateLaunching, restarted); 2622 m_should_detach = false; 2623 2624 if (m_public_run_lock.TrySetRunning()) { 2625 // Now launch using these arguments. 2626 error = DoLaunch(exe_module, launch_info); 2627 } else { 2628 // This shouldn't happen 2629 error.SetErrorString("failed to acquire process run lock"); 2630 } 2631 2632 if (error.Fail()) { 2633 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2634 SetID(LLDB_INVALID_PROCESS_ID); 2635 const char *error_string = error.AsCString(); 2636 if (error_string == nullptr) 2637 error_string = "launch failed"; 2638 SetExitStatus(-1, error_string); 2639 } 2640 } else { 2641 EventSP event_sp; 2642 2643 // Now wait for the process to launch and return control to us, and then 2644 // call DidLaunch: 2645 StateType state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2646 2647 if (state == eStateInvalid || !event_sp) { 2648 // We were able to launch the process, but we failed to catch the 2649 // initial stop. 2650 error.SetErrorString("failed to catch stop after launch"); 2651 SetExitStatus(0, "failed to catch stop after launch"); 2652 Destroy(false); 2653 } else if (state == eStateStopped || state == eStateCrashed) { 2654 DidLaunch(); 2655 2656 DynamicLoader *dyld = GetDynamicLoader(); 2657 if (dyld) 2658 dyld->DidLaunch(); 2659 2660 GetJITLoaders().DidLaunch(); 2661 2662 SystemRuntime *system_runtime = GetSystemRuntime(); 2663 if (system_runtime) 2664 system_runtime->DidLaunch(); 2665 2666 if (!m_os_up) 2667 LoadOperatingSystemPlugin(false); 2668 2669 // We successfully launched the process and stopped, now it the 2670 // right time to set up signal filters before resuming. 2671 UpdateAutomaticSignalFiltering(); 2672 2673 // Note, the stop event was consumed above, but not handled. This 2674 // was done to give DidLaunch a chance to run. The target is either 2675 // stopped or crashed. Directly set the state. This is done to 2676 // prevent a stop message with a bunch of spurious output on thread 2677 // status, as well as not pop a ProcessIOHandler. 2678 SetPublicState(state, false); 2679 2680 if (PrivateStateThreadIsValid()) 2681 ResumePrivateStateThread(); 2682 else 2683 StartPrivateStateThread(); 2684 2685 // Target was stopped at entry as was intended. Need to notify the 2686 // listeners about it. 2687 if (state == eStateStopped && 2688 launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2689 HandlePrivateEvent(event_sp); 2690 } else if (state == eStateExited) { 2691 // We exited while trying to launch somehow. Don't call DidLaunch 2692 // as that's not likely to work, and return an invalid pid. 2693 HandlePrivateEvent(event_sp); 2694 } 2695 } 2696 } 2697 } else { 2698 error.SetErrorStringWithFormat("file doesn't exist: '%s'", 2699 local_exec_file_path); 2700 } 2701 2702 return error; 2703 } 2704 2705 Status Process::LoadCore() { 2706 Status error = DoLoadCore(); 2707 if (error.Success()) { 2708 ListenerSP listener_sp( 2709 Listener::MakeListener("lldb.process.load_core_listener")); 2710 HijackProcessEvents(listener_sp); 2711 2712 if (PrivateStateThreadIsValid()) 2713 ResumePrivateStateThread(); 2714 else 2715 StartPrivateStateThread(); 2716 2717 DynamicLoader *dyld = GetDynamicLoader(); 2718 if (dyld) 2719 dyld->DidAttach(); 2720 2721 GetJITLoaders().DidAttach(); 2722 2723 SystemRuntime *system_runtime = GetSystemRuntime(); 2724 if (system_runtime) 2725 system_runtime->DidAttach(); 2726 2727 if (!m_os_up) 2728 LoadOperatingSystemPlugin(false); 2729 2730 // We successfully loaded a core file, now pretend we stopped so we can 2731 // show all of the threads in the core file and explore the crashed state. 2732 SetPrivateState(eStateStopped); 2733 2734 // Wait for a stopped event since we just posted one above... 2735 lldb::EventSP event_sp; 2736 StateType state = 2737 WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp); 2738 2739 if (!StateIsStoppedState(state, false)) { 2740 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2741 LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", 2742 StateAsCString(state)); 2743 error.SetErrorString( 2744 "Did not get stopped event after loading the core file."); 2745 } 2746 RestoreProcessEvents(); 2747 } 2748 return error; 2749 } 2750 2751 DynamicLoader *Process::GetDynamicLoader() { 2752 if (!m_dyld_up) 2753 m_dyld_up.reset(DynamicLoader::FindPlugin(this, nullptr)); 2754 return m_dyld_up.get(); 2755 } 2756 2757 DataExtractor Process::GetAuxvData() { return DataExtractor(); } 2758 2759 JITLoaderList &Process::GetJITLoaders() { 2760 if (!m_jit_loaders_up) { 2761 m_jit_loaders_up = std::make_unique<JITLoaderList>(); 2762 JITLoader::LoadPlugins(this, *m_jit_loaders_up); 2763 } 2764 return *m_jit_loaders_up; 2765 } 2766 2767 SystemRuntime *Process::GetSystemRuntime() { 2768 if (!m_system_runtime_up) 2769 m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); 2770 return m_system_runtime_up.get(); 2771 } 2772 2773 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2774 uint32_t exec_count) 2775 : NextEventAction(process), m_exec_count(exec_count) { 2776 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2777 LLDB_LOGF( 2778 log, 2779 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2780 __FUNCTION__, static_cast<void *>(process), exec_count); 2781 } 2782 2783 Process::NextEventAction::EventActionResult 2784 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2785 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2786 2787 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2788 LLDB_LOGF(log, 2789 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2790 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2791 2792 switch (state) { 2793 case eStateAttaching: 2794 return eEventActionSuccess; 2795 2796 case eStateRunning: 2797 case eStateConnected: 2798 return eEventActionRetry; 2799 2800 case eStateStopped: 2801 case eStateCrashed: 2802 // During attach, prior to sending the eStateStopped event, 2803 // lldb_private::Process subclasses must set the new process ID. 2804 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2805 // We don't want these events to be reported, so go set the 2806 // ShouldReportStop here: 2807 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2808 2809 if (m_exec_count > 0) { 2810 --m_exec_count; 2811 2812 LLDB_LOGF(log, 2813 "Process::AttachCompletionHandler::%s state %s: reduced " 2814 "remaining exec count to %" PRIu32 ", requesting resume", 2815 __FUNCTION__, StateAsCString(state), m_exec_count); 2816 2817 RequestResume(); 2818 return eEventActionRetry; 2819 } else { 2820 LLDB_LOGF(log, 2821 "Process::AttachCompletionHandler::%s state %s: no more " 2822 "execs expected to start, continuing with attach", 2823 __FUNCTION__, StateAsCString(state)); 2824 2825 m_process->CompleteAttach(); 2826 return eEventActionSuccess; 2827 } 2828 break; 2829 2830 default: 2831 case eStateExited: 2832 case eStateInvalid: 2833 break; 2834 } 2835 2836 m_exit_string.assign("No valid Process"); 2837 return eEventActionExit; 2838 } 2839 2840 Process::NextEventAction::EventActionResult 2841 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2842 return eEventActionSuccess; 2843 } 2844 2845 const char *Process::AttachCompletionHandler::GetExitString() { 2846 return m_exit_string.c_str(); 2847 } 2848 2849 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2850 if (m_listener_sp) 2851 return m_listener_sp; 2852 else 2853 return debugger.GetListener(); 2854 } 2855 2856 Status Process::Attach(ProcessAttachInfo &attach_info) { 2857 m_abi_sp.reset(); 2858 m_process_input_reader.reset(); 2859 m_dyld_up.reset(); 2860 m_jit_loaders_up.reset(); 2861 m_system_runtime_up.reset(); 2862 m_os_up.reset(); 2863 2864 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2865 Status error; 2866 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2867 char process_name[PATH_MAX]; 2868 2869 if (attach_info.GetExecutableFile().GetPath(process_name, 2870 sizeof(process_name))) { 2871 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2872 2873 if (wait_for_launch) { 2874 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2875 if (error.Success()) { 2876 if (m_public_run_lock.TrySetRunning()) { 2877 m_should_detach = true; 2878 const bool restarted = false; 2879 SetPublicState(eStateAttaching, restarted); 2880 // Now attach using these arguments. 2881 error = DoAttachToProcessWithName(process_name, attach_info); 2882 } else { 2883 // This shouldn't happen 2884 error.SetErrorString("failed to acquire process run lock"); 2885 } 2886 2887 if (error.Fail()) { 2888 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2889 SetID(LLDB_INVALID_PROCESS_ID); 2890 if (error.AsCString() == nullptr) 2891 error.SetErrorString("attach failed"); 2892 2893 SetExitStatus(-1, error.AsCString()); 2894 } 2895 } else { 2896 SetNextEventAction(new Process::AttachCompletionHandler( 2897 this, attach_info.GetResumeCount())); 2898 StartPrivateStateThread(); 2899 } 2900 return error; 2901 } 2902 } else { 2903 ProcessInstanceInfoList process_infos; 2904 PlatformSP platform_sp(GetTarget().GetPlatform()); 2905 2906 if (platform_sp) { 2907 ProcessInstanceInfoMatch match_info; 2908 match_info.GetProcessInfo() = attach_info; 2909 match_info.SetNameMatchType(NameMatch::Equals); 2910 platform_sp->FindProcesses(match_info, process_infos); 2911 const uint32_t num_matches = process_infos.size(); 2912 if (num_matches == 1) { 2913 attach_pid = process_infos[0].GetProcessID(); 2914 // Fall through and attach using the above process ID 2915 } else { 2916 match_info.GetProcessInfo().GetExecutableFile().GetPath( 2917 process_name, sizeof(process_name)); 2918 if (num_matches > 1) { 2919 StreamString s; 2920 ProcessInstanceInfo::DumpTableHeader(s, true, false); 2921 for (size_t i = 0; i < num_matches; i++) { 2922 process_infos[i].DumpAsTableRow( 2923 s, platform_sp->GetUserIDResolver(), true, false); 2924 } 2925 error.SetErrorStringWithFormat( 2926 "more than one process named %s:\n%s", process_name, 2927 s.GetData()); 2928 } else 2929 error.SetErrorStringWithFormat( 2930 "could not find a process named %s", process_name); 2931 } 2932 } else { 2933 error.SetErrorString( 2934 "invalid platform, can't find processes by name"); 2935 return error; 2936 } 2937 } 2938 } else { 2939 error.SetErrorString("invalid process name"); 2940 } 2941 } 2942 2943 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 2944 error = WillAttachToProcessWithID(attach_pid); 2945 if (error.Success()) { 2946 2947 if (m_public_run_lock.TrySetRunning()) { 2948 // Now attach using these arguments. 2949 m_should_detach = true; 2950 const bool restarted = false; 2951 SetPublicState(eStateAttaching, restarted); 2952 error = DoAttachToProcessWithID(attach_pid, attach_info); 2953 } else { 2954 // This shouldn't happen 2955 error.SetErrorString("failed to acquire process run lock"); 2956 } 2957 2958 if (error.Success()) { 2959 SetNextEventAction(new Process::AttachCompletionHandler( 2960 this, attach_info.GetResumeCount())); 2961 StartPrivateStateThread(); 2962 } else { 2963 if (GetID() != LLDB_INVALID_PROCESS_ID) 2964 SetID(LLDB_INVALID_PROCESS_ID); 2965 2966 const char *error_string = error.AsCString(); 2967 if (error_string == nullptr) 2968 error_string = "attach failed"; 2969 2970 SetExitStatus(-1, error_string); 2971 } 2972 } 2973 } 2974 return error; 2975 } 2976 2977 void Process::CompleteAttach() { 2978 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 2979 LIBLLDB_LOG_TARGET)); 2980 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 2981 2982 // Let the process subclass figure out at much as it can about the process 2983 // before we go looking for a dynamic loader plug-in. 2984 ArchSpec process_arch; 2985 DidAttach(process_arch); 2986 2987 if (process_arch.IsValid()) { 2988 GetTarget().SetArchitecture(process_arch); 2989 if (log) { 2990 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 2991 LLDB_LOGF(log, 2992 "Process::%s replacing process architecture with DidAttach() " 2993 "architecture: %s", 2994 __FUNCTION__, triple_str ? triple_str : "<null>"); 2995 } 2996 } 2997 2998 // We just attached. If we have a platform, ask it for the process 2999 // architecture, and if it isn't the same as the one we've already set, 3000 // switch architectures. 3001 PlatformSP platform_sp(GetTarget().GetPlatform()); 3002 assert(platform_sp); 3003 if (platform_sp) { 3004 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 3005 if (target_arch.IsValid() && 3006 !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) { 3007 ArchSpec platform_arch; 3008 platform_sp = 3009 platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch); 3010 if (platform_sp) { 3011 GetTarget().SetPlatform(platform_sp); 3012 GetTarget().SetArchitecture(platform_arch); 3013 LLDB_LOGF(log, 3014 "Process::%s switching platform to %s and architecture " 3015 "to %s based on info from attach", 3016 __FUNCTION__, platform_sp->GetName().AsCString(""), 3017 platform_arch.GetTriple().getTriple().c_str()); 3018 } 3019 } else if (!process_arch.IsValid()) { 3020 ProcessInstanceInfo process_info; 3021 GetProcessInfo(process_info); 3022 const ArchSpec &process_arch = process_info.GetArchitecture(); 3023 if (process_arch.IsValid() && 3024 !GetTarget().GetArchitecture().IsExactMatch(process_arch)) { 3025 GetTarget().SetArchitecture(process_arch); 3026 LLDB_LOGF(log, 3027 "Process::%s switching architecture to %s based on info " 3028 "the platform retrieved for pid %" PRIu64, 3029 __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), 3030 GetID()); 3031 } 3032 } 3033 } 3034 3035 // We have completed the attach, now it is time to find the dynamic loader 3036 // plug-in 3037 DynamicLoader *dyld = GetDynamicLoader(); 3038 if (dyld) { 3039 dyld->DidAttach(); 3040 if (log) { 3041 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3042 LLDB_LOGF(log, 3043 "Process::%s after DynamicLoader::DidAttach(), target " 3044 "executable is %s (using %s plugin)", 3045 __FUNCTION__, 3046 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3047 : "<none>", 3048 dyld->GetPluginName().AsCString("<unnamed>")); 3049 } 3050 } 3051 3052 GetJITLoaders().DidAttach(); 3053 3054 SystemRuntime *system_runtime = GetSystemRuntime(); 3055 if (system_runtime) { 3056 system_runtime->DidAttach(); 3057 if (log) { 3058 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3059 LLDB_LOGF(log, 3060 "Process::%s after SystemRuntime::DidAttach(), target " 3061 "executable is %s (using %s plugin)", 3062 __FUNCTION__, 3063 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3064 : "<none>", 3065 system_runtime->GetPluginName().AsCString("<unnamed>")); 3066 } 3067 } 3068 3069 if (!m_os_up) { 3070 LoadOperatingSystemPlugin(false); 3071 if (m_os_up) { 3072 // Somebody might have gotten threads before now, but we need to force the 3073 // update after we've loaded the OperatingSystem plugin or it won't get a 3074 // chance to process the threads. 3075 m_thread_list.Clear(); 3076 UpdateThreadListIfNeeded(); 3077 } 3078 } 3079 // Figure out which one is the executable, and set that in our target: 3080 const ModuleList &target_modules = GetTarget().GetImages(); 3081 std::lock_guard<std::recursive_mutex> guard(target_modules.GetMutex()); 3082 size_t num_modules = target_modules.GetSize(); 3083 ModuleSP new_executable_module_sp; 3084 3085 for (size_t i = 0; i < num_modules; i++) { 3086 ModuleSP module_sp(target_modules.GetModuleAtIndexUnlocked(i)); 3087 if (module_sp && module_sp->IsExecutable()) { 3088 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 3089 new_executable_module_sp = module_sp; 3090 break; 3091 } 3092 } 3093 if (new_executable_module_sp) { 3094 GetTarget().SetExecutableModule(new_executable_module_sp, 3095 eLoadDependentsNo); 3096 if (log) { 3097 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3098 LLDB_LOGF( 3099 log, 3100 "Process::%s after looping through modules, target executable is %s", 3101 __FUNCTION__, 3102 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3103 : "<none>"); 3104 } 3105 } 3106 } 3107 3108 Status Process::ConnectRemote(llvm::StringRef remote_url) { 3109 m_abi_sp.reset(); 3110 m_process_input_reader.reset(); 3111 3112 // Find the process and its architecture. Make sure it matches the 3113 // architecture of the current Target, and if not adjust it. 3114 3115 Status error(DoConnectRemote(remote_url)); 3116 if (error.Success()) { 3117 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3118 EventSP event_sp; 3119 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 3120 3121 if (state == eStateStopped || state == eStateCrashed) { 3122 // If we attached and actually have a process on the other end, then 3123 // this ended up being the equivalent of an attach. 3124 CompleteAttach(); 3125 3126 // This delays passing the stopped event to listeners till 3127 // CompleteAttach gets a chance to complete... 3128 HandlePrivateEvent(event_sp); 3129 } 3130 } 3131 3132 if (PrivateStateThreadIsValid()) 3133 ResumePrivateStateThread(); 3134 else 3135 StartPrivateStateThread(); 3136 } 3137 return error; 3138 } 3139 3140 Status Process::PrivateResume() { 3141 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3142 LIBLLDB_LOG_STEP)); 3143 LLDB_LOGF(log, 3144 "Process::PrivateResume() m_stop_id = %u, public state: %s " 3145 "private state: %s", 3146 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3147 StateAsCString(m_private_state.GetValue())); 3148 3149 // If signals handing status changed we might want to update our signal 3150 // filters before resuming. 3151 UpdateAutomaticSignalFiltering(); 3152 3153 Status error(WillResume()); 3154 // Tell the process it is about to resume before the thread list 3155 if (error.Success()) { 3156 // Now let the thread list know we are about to resume so it can let all of 3157 // our threads know that they are about to be resumed. Threads will each be 3158 // called with Thread::WillResume(StateType) where StateType contains the 3159 // state that they are supposed to have when the process is resumed 3160 // (suspended/running/stepping). Threads should also check their resume 3161 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3162 // start back up with a signal. 3163 if (m_thread_list.WillResume()) { 3164 // Last thing, do the PreResumeActions. 3165 if (!RunPreResumeActions()) { 3166 error.SetErrorString( 3167 "Process::PrivateResume PreResumeActions failed, not resuming."); 3168 } else { 3169 m_mod_id.BumpResumeID(); 3170 error = DoResume(); 3171 if (error.Success()) { 3172 DidResume(); 3173 m_thread_list.DidResume(); 3174 LLDB_LOGF(log, "Process thinks the process has resumed."); 3175 } else { 3176 LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); 3177 return error; 3178 } 3179 } 3180 } else { 3181 // Somebody wanted to run without running (e.g. we were faking a step 3182 // from one frame of a set of inlined frames that share the same PC to 3183 // another.) So generate a continue & a stopped event, and let the world 3184 // handle them. 3185 LLDB_LOGF(log, 3186 "Process::PrivateResume() asked to simulate a start & stop."); 3187 3188 SetPrivateState(eStateRunning); 3189 SetPrivateState(eStateStopped); 3190 } 3191 } else 3192 LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", 3193 error.AsCString("<unknown error>")); 3194 return error; 3195 } 3196 3197 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3198 if (!StateIsRunningState(m_public_state.GetValue())) 3199 return Status("Process is not running."); 3200 3201 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3202 // case it was already set and some thread plan logic calls halt on its own. 3203 m_clear_thread_plans_on_stop |= clear_thread_plans; 3204 3205 ListenerSP halt_listener_sp( 3206 Listener::MakeListener("lldb.process.halt_listener")); 3207 HijackProcessEvents(halt_listener_sp); 3208 3209 EventSP event_sp; 3210 3211 SendAsyncInterrupt(); 3212 3213 if (m_public_state.GetValue() == eStateAttaching) { 3214 // Don't hijack and eat the eStateExited as the code that was doing the 3215 // attach will be waiting for this event... 3216 RestoreProcessEvents(); 3217 SetExitStatus(SIGKILL, "Cancelled async attach."); 3218 Destroy(false); 3219 return Status(); 3220 } 3221 3222 // Wait for 10 second for the process to stop. 3223 StateType state = WaitForProcessToStop( 3224 seconds(10), &event_sp, true, halt_listener_sp, nullptr, use_run_lock); 3225 RestoreProcessEvents(); 3226 3227 if (state == eStateInvalid || !event_sp) { 3228 // We timed out and didn't get a stop event... 3229 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3230 } 3231 3232 BroadcastEvent(event_sp); 3233 3234 return Status(); 3235 } 3236 3237 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3238 Status error; 3239 3240 // Check both the public & private states here. If we're hung evaluating an 3241 // expression, for instance, then the public state will be stopped, but we 3242 // still need to interrupt. 3243 if (m_public_state.GetValue() == eStateRunning || 3244 m_private_state.GetValue() == eStateRunning) { 3245 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3246 LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); 3247 3248 ListenerSP listener_sp( 3249 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3250 HijackProcessEvents(listener_sp); 3251 3252 SendAsyncInterrupt(); 3253 3254 // Consume the interrupt event. 3255 StateType state = 3256 WaitForProcessToStop(seconds(10), &exit_event_sp, true, listener_sp); 3257 3258 RestoreProcessEvents(); 3259 3260 // If the process exited while we were waiting for it to stop, put the 3261 // exited event into the shared pointer passed in and return. Our caller 3262 // doesn't need to do anything else, since they don't have a process 3263 // anymore... 3264 3265 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3266 LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", 3267 __FUNCTION__); 3268 return error; 3269 } else 3270 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3271 3272 if (state != eStateStopped) { 3273 LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, 3274 StateAsCString(state)); 3275 // If we really couldn't stop the process then we should just error out 3276 // here, but if the lower levels just bobbled sending the event and we 3277 // really are stopped, then continue on. 3278 StateType private_state = m_private_state.GetValue(); 3279 if (private_state != eStateStopped) { 3280 return Status( 3281 "Attempt to stop the target in order to detach timed out. " 3282 "State = %s", 3283 StateAsCString(GetState())); 3284 } 3285 } 3286 } 3287 return error; 3288 } 3289 3290 Status Process::Detach(bool keep_stopped) { 3291 EventSP exit_event_sp; 3292 Status error; 3293 m_destroy_in_process = true; 3294 3295 error = WillDetach(); 3296 3297 if (error.Success()) { 3298 if (DetachRequiresHalt()) { 3299 error = StopForDestroyOrDetach(exit_event_sp); 3300 if (!error.Success()) { 3301 m_destroy_in_process = false; 3302 return error; 3303 } else if (exit_event_sp) { 3304 // We shouldn't need to do anything else here. There's no process left 3305 // to detach from... 3306 StopPrivateStateThread(); 3307 m_destroy_in_process = false; 3308 return error; 3309 } 3310 } 3311 3312 m_thread_list.DiscardThreadPlans(); 3313 DisableAllBreakpointSites(); 3314 3315 error = DoDetach(keep_stopped); 3316 if (error.Success()) { 3317 DidDetach(); 3318 StopPrivateStateThread(); 3319 } else { 3320 return error; 3321 } 3322 } 3323 m_destroy_in_process = false; 3324 3325 // If we exited when we were waiting for a process to stop, then forward the 3326 // event here so we don't lose the event 3327 if (exit_event_sp) { 3328 // Directly broadcast our exited event because we shut down our private 3329 // state thread above 3330 BroadcastEvent(exit_event_sp); 3331 } 3332 3333 // If we have been interrupted (to kill us) in the middle of running, we may 3334 // not end up propagating the last events through the event system, in which 3335 // case we might strand the write lock. Unlock it here so when we do to tear 3336 // down the process we don't get an error destroying the lock. 3337 3338 m_public_run_lock.SetStopped(); 3339 return error; 3340 } 3341 3342 Status Process::Destroy(bool force_kill) { 3343 // If we've already called Process::Finalize then there's nothing useful to 3344 // be done here. Finalize has actually called Destroy already. 3345 if (m_finalize_called) 3346 return {}; 3347 3348 // Tell ourselves we are in the process of destroying the process, so that we 3349 // don't do any unnecessary work that might hinder the destruction. Remember 3350 // to set this back to false when we are done. That way if the attempt 3351 // failed and the process stays around for some reason it won't be in a 3352 // confused state. 3353 3354 if (force_kill) 3355 m_should_detach = false; 3356 3357 if (GetShouldDetach()) { 3358 // FIXME: This will have to be a process setting: 3359 bool keep_stopped = false; 3360 Detach(keep_stopped); 3361 } 3362 3363 m_destroy_in_process = true; 3364 3365 Status error(WillDestroy()); 3366 if (error.Success()) { 3367 EventSP exit_event_sp; 3368 if (DestroyRequiresHalt()) { 3369 error = StopForDestroyOrDetach(exit_event_sp); 3370 } 3371 3372 if (m_public_state.GetValue() != eStateRunning) { 3373 // Ditch all thread plans, and remove all our breakpoints: in case we 3374 // have to restart the target to kill it, we don't want it hitting a 3375 // breakpoint... Only do this if we've stopped, however, since if we 3376 // didn't manage to halt it above, then we're not going to have much luck 3377 // doing this now. 3378 m_thread_list.DiscardThreadPlans(); 3379 DisableAllBreakpointSites(); 3380 } 3381 3382 error = DoDestroy(); 3383 if (error.Success()) { 3384 DidDestroy(); 3385 StopPrivateStateThread(); 3386 } 3387 m_stdio_communication.StopReadThread(); 3388 m_stdio_communication.Disconnect(); 3389 m_stdin_forward = false; 3390 3391 if (m_process_input_reader) { 3392 m_process_input_reader->SetIsDone(true); 3393 m_process_input_reader->Cancel(); 3394 m_process_input_reader.reset(); 3395 } 3396 3397 // If we exited when we were waiting for a process to stop, then forward 3398 // the event here so we don't lose the event 3399 if (exit_event_sp) { 3400 // Directly broadcast our exited event because we shut down our private 3401 // state thread above 3402 BroadcastEvent(exit_event_sp); 3403 } 3404 3405 // If we have been interrupted (to kill us) in the middle of running, we 3406 // may not end up propagating the last events through the event system, in 3407 // which case we might strand the write lock. Unlock it here so when we do 3408 // to tear down the process we don't get an error destroying the lock. 3409 m_public_run_lock.SetStopped(); 3410 } 3411 3412 m_destroy_in_process = false; 3413 3414 return error; 3415 } 3416 3417 Status Process::Signal(int signal) { 3418 Status error(WillSignal()); 3419 if (error.Success()) { 3420 error = DoSignal(signal); 3421 if (error.Success()) 3422 DidSignal(); 3423 } 3424 return error; 3425 } 3426 3427 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3428 assert(signals_sp && "null signals_sp"); 3429 m_unix_signals_sp = signals_sp; 3430 } 3431 3432 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3433 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3434 return m_unix_signals_sp; 3435 } 3436 3437 lldb::ByteOrder Process::GetByteOrder() const { 3438 return GetTarget().GetArchitecture().GetByteOrder(); 3439 } 3440 3441 uint32_t Process::GetAddressByteSize() const { 3442 return GetTarget().GetArchitecture().GetAddressByteSize(); 3443 } 3444 3445 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3446 const StateType state = 3447 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3448 bool return_value = true; 3449 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | 3450 LIBLLDB_LOG_PROCESS)); 3451 3452 switch (state) { 3453 case eStateDetached: 3454 case eStateExited: 3455 case eStateUnloaded: 3456 m_stdio_communication.SynchronizeWithReadThread(); 3457 m_stdio_communication.StopReadThread(); 3458 m_stdio_communication.Disconnect(); 3459 m_stdin_forward = false; 3460 3461 LLVM_FALLTHROUGH; 3462 case eStateConnected: 3463 case eStateAttaching: 3464 case eStateLaunching: 3465 // These events indicate changes in the state of the debugging session, 3466 // always report them. 3467 return_value = true; 3468 break; 3469 case eStateInvalid: 3470 // We stopped for no apparent reason, don't report it. 3471 return_value = false; 3472 break; 3473 case eStateRunning: 3474 case eStateStepping: 3475 // If we've started the target running, we handle the cases where we are 3476 // already running and where there is a transition from stopped to running 3477 // differently. running -> running: Automatically suppress extra running 3478 // events stopped -> running: Report except when there is one or more no 3479 // votes 3480 // and no yes votes. 3481 SynchronouslyNotifyStateChanged(state); 3482 if (m_force_next_event_delivery) 3483 return_value = true; 3484 else { 3485 switch (m_last_broadcast_state) { 3486 case eStateRunning: 3487 case eStateStepping: 3488 // We always suppress multiple runnings with no PUBLIC stop in between. 3489 return_value = false; 3490 break; 3491 default: 3492 // TODO: make this work correctly. For now always report 3493 // run if we aren't running so we don't miss any running events. If I 3494 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3495 // and hit the breakpoints on multiple threads, then somehow during the 3496 // stepping over of all breakpoints no run gets reported. 3497 3498 // This is a transition from stop to run. 3499 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3500 case eVoteYes: 3501 case eVoteNoOpinion: 3502 return_value = true; 3503 break; 3504 case eVoteNo: 3505 return_value = false; 3506 break; 3507 } 3508 break; 3509 } 3510 } 3511 break; 3512 case eStateStopped: 3513 case eStateCrashed: 3514 case eStateSuspended: 3515 // We've stopped. First see if we're going to restart the target. If we 3516 // are going to stop, then we always broadcast the event. If we aren't 3517 // going to stop, let the thread plans decide if we're going to report this 3518 // event. If no thread has an opinion, we don't report it. 3519 3520 m_stdio_communication.SynchronizeWithReadThread(); 3521 RefreshStateAfterStop(); 3522 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3523 LLDB_LOGF(log, 3524 "Process::ShouldBroadcastEvent (%p) stopped due to an " 3525 "interrupt, state: %s", 3526 static_cast<void *>(event_ptr), StateAsCString(state)); 3527 // Even though we know we are going to stop, we should let the threads 3528 // have a look at the stop, so they can properly set their state. 3529 m_thread_list.ShouldStop(event_ptr); 3530 return_value = true; 3531 } else { 3532 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3533 bool should_resume = false; 3534 3535 // It makes no sense to ask "ShouldStop" if we've already been 3536 // restarted... Asking the thread list is also not likely to go well, 3537 // since we are running again. So in that case just report the event. 3538 3539 if (!was_restarted) 3540 should_resume = !m_thread_list.ShouldStop(event_ptr); 3541 3542 if (was_restarted || should_resume || m_resume_requested) { 3543 Vote stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3544 LLDB_LOGF(log, 3545 "Process::ShouldBroadcastEvent: should_resume: %i state: " 3546 "%s was_restarted: %i stop_vote: %d.", 3547 should_resume, StateAsCString(state), was_restarted, 3548 stop_vote); 3549 3550 switch (stop_vote) { 3551 case eVoteYes: 3552 return_value = true; 3553 break; 3554 case eVoteNoOpinion: 3555 case eVoteNo: 3556 return_value = false; 3557 break; 3558 } 3559 3560 if (!was_restarted) { 3561 LLDB_LOGF(log, 3562 "Process::ShouldBroadcastEvent (%p) Restarting process " 3563 "from state: %s", 3564 static_cast<void *>(event_ptr), StateAsCString(state)); 3565 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3566 PrivateResume(); 3567 } 3568 } else { 3569 return_value = true; 3570 SynchronouslyNotifyStateChanged(state); 3571 } 3572 } 3573 break; 3574 } 3575 3576 // Forcing the next event delivery is a one shot deal. So reset it here. 3577 m_force_next_event_delivery = false; 3578 3579 // We do some coalescing of events (for instance two consecutive running 3580 // events get coalesced.) But we only coalesce against events we actually 3581 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3582 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3583 // done, because the PublicState reflects the last event pulled off the 3584 // queue, and there may be several events stacked up on the queue unserviced. 3585 // So the PublicState may not reflect the last broadcasted event yet. 3586 // m_last_broadcast_state gets updated here. 3587 3588 if (return_value) 3589 m_last_broadcast_state = state; 3590 3591 LLDB_LOGF(log, 3592 "Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3593 "broadcast state: %s - %s", 3594 static_cast<void *>(event_ptr), StateAsCString(state), 3595 StateAsCString(m_last_broadcast_state), 3596 return_value ? "YES" : "NO"); 3597 return return_value; 3598 } 3599 3600 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3601 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 3602 3603 bool already_running = PrivateStateThreadIsValid(); 3604 LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, 3605 already_running ? " already running" 3606 : " starting private state thread"); 3607 3608 if (!is_secondary_thread && already_running) 3609 return true; 3610 3611 // Create a thread that watches our internal state and controls which events 3612 // make it to clients (into the DCProcess event queue). 3613 char thread_name[1024]; 3614 uint32_t max_len = llvm::get_max_thread_name_length(); 3615 if (max_len > 0 && max_len <= 30) { 3616 // On platforms with abbreviated thread name lengths, choose thread names 3617 // that fit within the limit. 3618 if (already_running) 3619 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3620 else 3621 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3622 } else { 3623 if (already_running) 3624 snprintf(thread_name, sizeof(thread_name), 3625 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3626 GetID()); 3627 else 3628 snprintf(thread_name, sizeof(thread_name), 3629 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3630 } 3631 3632 // Create the private state thread, and start it running. 3633 PrivateStateThreadArgs *args_ptr = 3634 new PrivateStateThreadArgs(this, is_secondary_thread); 3635 llvm::Expected<HostThread> private_state_thread = 3636 ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, 3637 (void *)args_ptr, 8 * 1024 * 1024); 3638 if (!private_state_thread) { 3639 LLDB_LOG(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST), 3640 "failed to launch host thread: {}", 3641 llvm::toString(private_state_thread.takeError())); 3642 return false; 3643 } 3644 3645 assert(private_state_thread->IsJoinable()); 3646 m_private_state_thread = *private_state_thread; 3647 ResumePrivateStateThread(); 3648 return true; 3649 } 3650 3651 void Process::PausePrivateStateThread() { 3652 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3653 } 3654 3655 void Process::ResumePrivateStateThread() { 3656 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3657 } 3658 3659 void Process::StopPrivateStateThread() { 3660 if (m_private_state_thread.IsJoinable()) 3661 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3662 else { 3663 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3664 LLDB_LOGF( 3665 log, 3666 "Went to stop the private state thread, but it was already invalid."); 3667 } 3668 } 3669 3670 void Process::ControlPrivateStateThread(uint32_t signal) { 3671 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3672 3673 assert(signal == eBroadcastInternalStateControlStop || 3674 signal == eBroadcastInternalStateControlPause || 3675 signal == eBroadcastInternalStateControlResume); 3676 3677 LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); 3678 3679 // Signal the private state thread 3680 if (m_private_state_thread.IsJoinable()) { 3681 // Broadcast the event. 3682 // It is important to do this outside of the if below, because it's 3683 // possible that the thread state is invalid but that the thread is waiting 3684 // on a control event instead of simply being on its way out (this should 3685 // not happen, but it apparently can). 3686 LLDB_LOGF(log, "Sending control event of type: %d.", signal); 3687 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3688 m_private_state_control_broadcaster.BroadcastEvent(signal, 3689 event_receipt_sp); 3690 3691 // Wait for the event receipt or for the private state thread to exit 3692 bool receipt_received = false; 3693 if (PrivateStateThreadIsValid()) { 3694 while (!receipt_received) { 3695 // Check for a receipt for n seconds and then check if the private 3696 // state thread is still around. 3697 receipt_received = 3698 event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout()); 3699 if (!receipt_received) { 3700 // Check if the private state thread is still around. If it isn't 3701 // then we are done waiting 3702 if (!PrivateStateThreadIsValid()) 3703 break; // Private state thread exited or is exiting, we are done 3704 } 3705 } 3706 } 3707 3708 if (signal == eBroadcastInternalStateControlStop) { 3709 thread_result_t result = {}; 3710 m_private_state_thread.Join(&result); 3711 m_private_state_thread.Reset(); 3712 } 3713 } else { 3714 LLDB_LOGF( 3715 log, 3716 "Private state thread already dead, no need to signal it to stop."); 3717 } 3718 } 3719 3720 void Process::SendAsyncInterrupt() { 3721 if (PrivateStateThreadIsValid()) 3722 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3723 nullptr); 3724 else 3725 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3726 } 3727 3728 void Process::HandlePrivateEvent(EventSP &event_sp) { 3729 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3730 m_resume_requested = false; 3731 3732 const StateType new_state = 3733 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3734 3735 // First check to see if anybody wants a shot at this event: 3736 if (m_next_event_action_up) { 3737 NextEventAction::EventActionResult action_result = 3738 m_next_event_action_up->PerformAction(event_sp); 3739 LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); 3740 3741 switch (action_result) { 3742 case NextEventAction::eEventActionSuccess: 3743 SetNextEventAction(nullptr); 3744 break; 3745 3746 case NextEventAction::eEventActionRetry: 3747 break; 3748 3749 case NextEventAction::eEventActionExit: 3750 // Handle Exiting Here. If we already got an exited event, we should 3751 // just propagate it. Otherwise, swallow this event, and set our state 3752 // to exit so the next event will kill us. 3753 if (new_state != eStateExited) { 3754 // FIXME: should cons up an exited event, and discard this one. 3755 SetExitStatus(0, m_next_event_action_up->GetExitString()); 3756 SetNextEventAction(nullptr); 3757 return; 3758 } 3759 SetNextEventAction(nullptr); 3760 break; 3761 } 3762 } 3763 3764 // See if we should broadcast this state to external clients? 3765 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3766 3767 if (should_broadcast) { 3768 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3769 if (log) { 3770 LLDB_LOGF(log, 3771 "Process::%s (pid = %" PRIu64 3772 ") broadcasting new state %s (old state %s) to %s", 3773 __FUNCTION__, GetID(), StateAsCString(new_state), 3774 StateAsCString(GetState()), 3775 is_hijacked ? "hijacked" : "public"); 3776 } 3777 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3778 if (StateIsRunningState(new_state)) { 3779 // Only push the input handler if we aren't fowarding events, as this 3780 // means the curses GUI is in use... Or don't push it if we are launching 3781 // since it will come up stopped. 3782 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3783 new_state != eStateLaunching && new_state != eStateAttaching) { 3784 PushProcessIOHandler(); 3785 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3786 eBroadcastAlways); 3787 LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", 3788 __FUNCTION__, m_iohandler_sync.GetValue()); 3789 } 3790 } else if (StateIsStoppedState(new_state, false)) { 3791 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3792 // If the lldb_private::Debugger is handling the events, we don't want 3793 // to pop the process IOHandler here, we want to do it when we receive 3794 // the stopped event so we can carefully control when the process 3795 // IOHandler is popped because when we stop we want to display some 3796 // text stating how and why we stopped, then maybe some 3797 // process/thread/frame info, and then we want the "(lldb) " prompt to 3798 // show up. If we pop the process IOHandler here, then we will cause 3799 // the command interpreter to become the top IOHandler after the 3800 // process pops off and it will update its prompt right away... See the 3801 // Debugger.cpp file where it calls the function as 3802 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3803 // Otherwise we end up getting overlapping "(lldb) " prompts and 3804 // garbled output. 3805 // 3806 // If we aren't handling the events in the debugger (which is indicated 3807 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3808 // we are hijacked, then we always pop the process IO handler manually. 3809 // Hijacking happens when the internal process state thread is running 3810 // thread plans, or when commands want to run in synchronous mode and 3811 // they call "process->WaitForProcessToStop()". An example of something 3812 // that will hijack the events is a simple expression: 3813 // 3814 // (lldb) expr (int)puts("hello") 3815 // 3816 // This will cause the internal process state thread to resume and halt 3817 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3818 // events) and we do need the IO handler to be pushed and popped 3819 // correctly. 3820 3821 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3822 PopProcessIOHandler(); 3823 } 3824 } 3825 3826 BroadcastEvent(event_sp); 3827 } else { 3828 if (log) { 3829 LLDB_LOGF( 3830 log, 3831 "Process::%s (pid = %" PRIu64 3832 ") suppressing state %s (old state %s): should_broadcast == false", 3833 __FUNCTION__, GetID(), StateAsCString(new_state), 3834 StateAsCString(GetState())); 3835 } 3836 } 3837 } 3838 3839 Status Process::HaltPrivate() { 3840 EventSP event_sp; 3841 Status error(WillHalt()); 3842 if (error.Fail()) 3843 return error; 3844 3845 // Ask the process subclass to actually halt our process 3846 bool caused_stop; 3847 error = DoHalt(caused_stop); 3848 3849 DidHalt(); 3850 return error; 3851 } 3852 3853 thread_result_t Process::PrivateStateThread(void *arg) { 3854 std::unique_ptr<PrivateStateThreadArgs> args_up( 3855 static_cast<PrivateStateThreadArgs *>(arg)); 3856 thread_result_t result = 3857 args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 3858 return result; 3859 } 3860 3861 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3862 bool control_only = true; 3863 3864 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3865 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3866 __FUNCTION__, static_cast<void *>(this), GetID()); 3867 3868 bool exit_now = false; 3869 bool interrupt_requested = false; 3870 while (!exit_now) { 3871 EventSP event_sp; 3872 GetEventsPrivate(event_sp, llvm::None, control_only); 3873 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3874 LLDB_LOGF(log, 3875 "Process::%s (arg = %p, pid = %" PRIu64 3876 ") got a control event: %d", 3877 __FUNCTION__, static_cast<void *>(this), GetID(), 3878 event_sp->GetType()); 3879 3880 switch (event_sp->GetType()) { 3881 case eBroadcastInternalStateControlStop: 3882 exit_now = true; 3883 break; // doing any internal state management below 3884 3885 case eBroadcastInternalStateControlPause: 3886 control_only = true; 3887 break; 3888 3889 case eBroadcastInternalStateControlResume: 3890 control_only = false; 3891 break; 3892 } 3893 3894 continue; 3895 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 3896 if (m_public_state.GetValue() == eStateAttaching) { 3897 LLDB_LOGF(log, 3898 "Process::%s (arg = %p, pid = %" PRIu64 3899 ") woke up with an interrupt while attaching - " 3900 "forwarding interrupt.", 3901 __FUNCTION__, static_cast<void *>(this), GetID()); 3902 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 3903 } else if (StateIsRunningState(m_last_broadcast_state)) { 3904 LLDB_LOGF(log, 3905 "Process::%s (arg = %p, pid = %" PRIu64 3906 ") woke up with an interrupt - Halting.", 3907 __FUNCTION__, static_cast<void *>(this), GetID()); 3908 Status error = HaltPrivate(); 3909 if (error.Fail() && log) 3910 LLDB_LOGF(log, 3911 "Process::%s (arg = %p, pid = %" PRIu64 3912 ") failed to halt the process: %s", 3913 __FUNCTION__, static_cast<void *>(this), GetID(), 3914 error.AsCString()); 3915 // Halt should generate a stopped event. Make a note of the fact that 3916 // we were doing the interrupt, so we can set the interrupted flag 3917 // after we receive the event. We deliberately set this to true even if 3918 // HaltPrivate failed, so that we can interrupt on the next natural 3919 // stop. 3920 interrupt_requested = true; 3921 } else { 3922 // This can happen when someone (e.g. Process::Halt) sees that we are 3923 // running and sends an interrupt request, but the process actually 3924 // stops before we receive it. In that case, we can just ignore the 3925 // request. We use m_last_broadcast_state, because the Stopped event 3926 // may not have been popped of the event queue yet, which is when the 3927 // public state gets updated. 3928 LLDB_LOGF(log, 3929 "Process::%s ignoring interrupt as we have already stopped.", 3930 __FUNCTION__); 3931 } 3932 continue; 3933 } 3934 3935 const StateType internal_state = 3936 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3937 3938 if (internal_state != eStateInvalid) { 3939 if (m_clear_thread_plans_on_stop && 3940 StateIsStoppedState(internal_state, true)) { 3941 m_clear_thread_plans_on_stop = false; 3942 m_thread_list.DiscardThreadPlans(); 3943 } 3944 3945 if (interrupt_requested) { 3946 if (StateIsStoppedState(internal_state, true)) { 3947 // We requested the interrupt, so mark this as such in the stop event 3948 // so clients can tell an interrupted process from a natural stop 3949 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 3950 interrupt_requested = false; 3951 } else if (log) { 3952 LLDB_LOGF(log, 3953 "Process::%s interrupt_requested, but a non-stopped " 3954 "state '%s' received.", 3955 __FUNCTION__, StateAsCString(internal_state)); 3956 } 3957 } 3958 3959 HandlePrivateEvent(event_sp); 3960 } 3961 3962 if (internal_state == eStateInvalid || internal_state == eStateExited || 3963 internal_state == eStateDetached) { 3964 LLDB_LOGF(log, 3965 "Process::%s (arg = %p, pid = %" PRIu64 3966 ") about to exit with internal state %s...", 3967 __FUNCTION__, static_cast<void *>(this), GetID(), 3968 StateAsCString(internal_state)); 3969 3970 break; 3971 } 3972 } 3973 3974 // Verify log is still enabled before attempting to write to it... 3975 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 3976 __FUNCTION__, static_cast<void *>(this), GetID()); 3977 3978 // If we are a secondary thread, then the primary thread we are working for 3979 // will have already acquired the public_run_lock, and isn't done with what 3980 // it was doing yet, so don't try to change it on the way out. 3981 if (!is_secondary_thread) 3982 m_public_run_lock.SetStopped(); 3983 return {}; 3984 } 3985 3986 // Process Event Data 3987 3988 Process::ProcessEventData::ProcessEventData() 3989 : EventData(), m_process_wp(), m_state(eStateInvalid), m_restarted(false), 3990 m_update_state(0), m_interrupted(false) {} 3991 3992 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 3993 StateType state) 3994 : EventData(), m_process_wp(), m_state(state), m_restarted(false), 3995 m_update_state(0), m_interrupted(false) { 3996 if (process_sp) 3997 m_process_wp = process_sp; 3998 } 3999 4000 Process::ProcessEventData::~ProcessEventData() = default; 4001 4002 ConstString Process::ProcessEventData::GetFlavorString() { 4003 static ConstString g_flavor("Process::ProcessEventData"); 4004 return g_flavor; 4005 } 4006 4007 ConstString Process::ProcessEventData::GetFlavor() const { 4008 return ProcessEventData::GetFlavorString(); 4009 } 4010 4011 bool Process::ProcessEventData::ShouldStop(Event *event_ptr, 4012 bool &found_valid_stopinfo) { 4013 found_valid_stopinfo = false; 4014 4015 ProcessSP process_sp(m_process_wp.lock()); 4016 if (!process_sp) 4017 return false; 4018 4019 ThreadList &curr_thread_list = process_sp->GetThreadList(); 4020 uint32_t num_threads = curr_thread_list.GetSize(); 4021 uint32_t idx; 4022 4023 // The actions might change one of the thread's stop_info's opinions about 4024 // whether we should stop the process, so we need to query that as we go. 4025 4026 // One other complication here, is that we try to catch any case where the 4027 // target has run (except for expressions) and immediately exit, but if we 4028 // get that wrong (which is possible) then the thread list might have 4029 // changed, and that would cause our iteration here to crash. We could 4030 // make a copy of the thread list, but we'd really like to also know if it 4031 // has changed at all, so we make up a vector of the thread ID's and check 4032 // what we get back against this list & bag out if anything differs. 4033 ThreadList not_suspended_thread_list(process_sp.get()); 4034 std::vector<uint32_t> thread_index_array(num_threads); 4035 uint32_t not_suspended_idx = 0; 4036 for (idx = 0; idx < num_threads; ++idx) { 4037 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 4038 4039 /* 4040 Filter out all suspended threads, they could not be the reason 4041 of stop and no need to perform any actions on them. 4042 */ 4043 if (thread_sp->GetResumeState() != eStateSuspended) { 4044 not_suspended_thread_list.AddThread(thread_sp); 4045 thread_index_array[not_suspended_idx] = thread_sp->GetIndexID(); 4046 not_suspended_idx++; 4047 } 4048 } 4049 4050 // Use this to track whether we should continue from here. We will only 4051 // continue the target running if no thread says we should stop. Of course 4052 // if some thread's PerformAction actually sets the target running, then it 4053 // doesn't matter what the other threads say... 4054 4055 bool still_should_stop = false; 4056 4057 // Sometimes - for instance if we have a bug in the stub we are talking to, 4058 // we stop but no thread has a valid stop reason. In that case we should 4059 // just stop, because we have no way of telling what the right thing to do 4060 // is, and it's better to let the user decide than continue behind their 4061 // backs. 4062 4063 for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) { 4064 curr_thread_list = process_sp->GetThreadList(); 4065 if (curr_thread_list.GetSize() != num_threads) { 4066 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4067 LIBLLDB_LOG_PROCESS)); 4068 LLDB_LOGF( 4069 log, 4070 "Number of threads changed from %u to %u while processing event.", 4071 num_threads, curr_thread_list.GetSize()); 4072 break; 4073 } 4074 4075 lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx); 4076 4077 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 4078 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4079 LIBLLDB_LOG_PROCESS)); 4080 LLDB_LOGF(log, 4081 "The thread at position %u changed from %u to %u while " 4082 "processing event.", 4083 idx, thread_index_array[idx], thread_sp->GetIndexID()); 4084 break; 4085 } 4086 4087 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4088 if (stop_info_sp && stop_info_sp->IsValid()) { 4089 found_valid_stopinfo = true; 4090 bool this_thread_wants_to_stop; 4091 if (stop_info_sp->GetOverrideShouldStop()) { 4092 this_thread_wants_to_stop = 4093 stop_info_sp->GetOverriddenShouldStopValue(); 4094 } else { 4095 stop_info_sp->PerformAction(event_ptr); 4096 // The stop action might restart the target. If it does, then we 4097 // want to mark that in the event so that whoever is receiving it 4098 // will know to wait for the running event and reflect that state 4099 // appropriately. We also need to stop processing actions, since they 4100 // aren't expecting the target to be running. 4101 4102 // FIXME: we might have run. 4103 if (stop_info_sp->HasTargetRunSinceMe()) { 4104 SetRestarted(true); 4105 break; 4106 } 4107 4108 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4109 } 4110 4111 if (!still_should_stop) 4112 still_should_stop = this_thread_wants_to_stop; 4113 } 4114 } 4115 4116 return still_should_stop; 4117 } 4118 4119 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 4120 ProcessSP process_sp(m_process_wp.lock()); 4121 4122 if (!process_sp) 4123 return; 4124 4125 // This function gets called twice for each event, once when the event gets 4126 // pulled off of the private process event queue, and then any number of 4127 // times, first when it gets pulled off of the public event queue, then other 4128 // times when we're pretending that this is where we stopped at the end of 4129 // expression evaluation. m_update_state is used to distinguish these three 4130 // cases; it is 0 when we're just pulling it off for private handling, and > 4131 // 1 for expression evaluation, and we don't want to do the breakpoint 4132 // command handling then. 4133 if (m_update_state != 1) 4134 return; 4135 4136 process_sp->SetPublicState( 4137 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4138 4139 if (m_state == eStateStopped && !m_restarted) { 4140 // Let process subclasses know we are about to do a public stop and do 4141 // anything they might need to in order to speed up register and memory 4142 // accesses. 4143 process_sp->WillPublicStop(); 4144 } 4145 4146 // If this is a halt event, even if the halt stopped with some reason other 4147 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 4148 // the halt request came through) don't do the StopInfo actions, as they may 4149 // end up restarting the process. 4150 if (m_interrupted) 4151 return; 4152 4153 // If we're not stopped or have restarted, then skip the StopInfo actions: 4154 if (m_state != eStateStopped || m_restarted) { 4155 return; 4156 } 4157 4158 bool does_anybody_have_an_opinion = false; 4159 bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion); 4160 4161 if (GetRestarted()) { 4162 return; 4163 } 4164 4165 if (!still_should_stop && does_anybody_have_an_opinion) { 4166 // We've been asked to continue, so do that here. 4167 SetRestarted(true); 4168 // Use the public resume method here, since this is just extending a 4169 // public resume. 4170 process_sp->PrivateResume(); 4171 } else { 4172 bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) && 4173 !process_sp->StateChangedIsHijackedForSynchronousResume(); 4174 4175 if (!hijacked) { 4176 // If we didn't restart, run the Stop Hooks here. 4177 // Don't do that if state changed events aren't hooked up to the 4178 // public (or SyncResume) broadcasters. StopHooks are just for 4179 // real public stops. They might also restart the target, 4180 // so watch for that. 4181 process_sp->GetTarget().RunStopHooks(); 4182 if (process_sp->GetPrivateState() == eStateRunning) 4183 SetRestarted(true); 4184 } 4185 } 4186 } 4187 4188 void Process::ProcessEventData::Dump(Stream *s) const { 4189 ProcessSP process_sp(m_process_wp.lock()); 4190 4191 if (process_sp) 4192 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4193 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4194 else 4195 s->PutCString(" process = NULL, "); 4196 4197 s->Printf("state = %s", StateAsCString(GetState())); 4198 } 4199 4200 const Process::ProcessEventData * 4201 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4202 if (event_ptr) { 4203 const EventData *event_data = event_ptr->GetData(); 4204 if (event_data && 4205 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4206 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4207 } 4208 return nullptr; 4209 } 4210 4211 ProcessSP 4212 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4213 ProcessSP process_sp; 4214 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4215 if (data) 4216 process_sp = data->GetProcessSP(); 4217 return process_sp; 4218 } 4219 4220 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4221 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4222 if (data == nullptr) 4223 return eStateInvalid; 4224 else 4225 return data->GetState(); 4226 } 4227 4228 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4229 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4230 if (data == nullptr) 4231 return false; 4232 else 4233 return data->GetRestarted(); 4234 } 4235 4236 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4237 bool new_value) { 4238 ProcessEventData *data = 4239 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4240 if (data != nullptr) 4241 data->SetRestarted(new_value); 4242 } 4243 4244 size_t 4245 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4246 ProcessEventData *data = 4247 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4248 if (data != nullptr) 4249 return data->GetNumRestartedReasons(); 4250 else 4251 return 0; 4252 } 4253 4254 const char * 4255 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4256 size_t idx) { 4257 ProcessEventData *data = 4258 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4259 if (data != nullptr) 4260 return data->GetRestartedReasonAtIndex(idx); 4261 else 4262 return nullptr; 4263 } 4264 4265 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4266 const char *reason) { 4267 ProcessEventData *data = 4268 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4269 if (data != nullptr) 4270 data->AddRestartedReason(reason); 4271 } 4272 4273 bool Process::ProcessEventData::GetInterruptedFromEvent( 4274 const Event *event_ptr) { 4275 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4276 if (data == nullptr) 4277 return false; 4278 else 4279 return data->GetInterrupted(); 4280 } 4281 4282 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4283 bool new_value) { 4284 ProcessEventData *data = 4285 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4286 if (data != nullptr) 4287 data->SetInterrupted(new_value); 4288 } 4289 4290 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4291 ProcessEventData *data = 4292 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4293 if (data) { 4294 data->SetUpdateStateOnRemoval(); 4295 return true; 4296 } 4297 return false; 4298 } 4299 4300 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4301 4302 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4303 exe_ctx.SetTargetPtr(&GetTarget()); 4304 exe_ctx.SetProcessPtr(this); 4305 exe_ctx.SetThreadPtr(nullptr); 4306 exe_ctx.SetFramePtr(nullptr); 4307 } 4308 4309 // uint32_t 4310 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4311 // std::vector<lldb::pid_t> &pids) 4312 //{ 4313 // return 0; 4314 //} 4315 // 4316 // ArchSpec 4317 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4318 //{ 4319 // return Host::GetArchSpecForExistingProcess (pid); 4320 //} 4321 // 4322 // ArchSpec 4323 // Process::GetArchSpecForExistingProcess (const char *process_name) 4324 //{ 4325 // return Host::GetArchSpecForExistingProcess (process_name); 4326 //} 4327 4328 void Process::AppendSTDOUT(const char *s, size_t len) { 4329 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4330 m_stdout_data.append(s, len); 4331 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4332 new ProcessEventData(shared_from_this(), GetState())); 4333 } 4334 4335 void Process::AppendSTDERR(const char *s, size_t len) { 4336 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4337 m_stderr_data.append(s, len); 4338 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4339 new ProcessEventData(shared_from_this(), GetState())); 4340 } 4341 4342 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4343 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4344 m_profile_data.push_back(one_profile_data); 4345 BroadcastEventIfUnique(eBroadcastBitProfileData, 4346 new ProcessEventData(shared_from_this(), GetState())); 4347 } 4348 4349 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4350 const StructuredDataPluginSP &plugin_sp) { 4351 BroadcastEvent( 4352 eBroadcastBitStructuredData, 4353 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4354 } 4355 4356 StructuredDataPluginSP 4357 Process::GetStructuredDataPlugin(ConstString type_name) const { 4358 auto find_it = m_structured_data_plugin_map.find(type_name); 4359 if (find_it != m_structured_data_plugin_map.end()) 4360 return find_it->second; 4361 else 4362 return StructuredDataPluginSP(); 4363 } 4364 4365 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4366 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4367 if (m_profile_data.empty()) 4368 return 0; 4369 4370 std::string &one_profile_data = m_profile_data.front(); 4371 size_t bytes_available = one_profile_data.size(); 4372 if (bytes_available > 0) { 4373 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4374 LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4375 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4376 if (bytes_available > buf_size) { 4377 memcpy(buf, one_profile_data.c_str(), buf_size); 4378 one_profile_data.erase(0, buf_size); 4379 bytes_available = buf_size; 4380 } else { 4381 memcpy(buf, one_profile_data.c_str(), bytes_available); 4382 m_profile_data.erase(m_profile_data.begin()); 4383 } 4384 } 4385 return bytes_available; 4386 } 4387 4388 // Process STDIO 4389 4390 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4391 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4392 size_t bytes_available = m_stdout_data.size(); 4393 if (bytes_available > 0) { 4394 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4395 LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4396 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4397 if (bytes_available > buf_size) { 4398 memcpy(buf, m_stdout_data.c_str(), buf_size); 4399 m_stdout_data.erase(0, buf_size); 4400 bytes_available = buf_size; 4401 } else { 4402 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4403 m_stdout_data.clear(); 4404 } 4405 } 4406 return bytes_available; 4407 } 4408 4409 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4410 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4411 size_t bytes_available = m_stderr_data.size(); 4412 if (bytes_available > 0) { 4413 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4414 LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4415 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4416 if (bytes_available > buf_size) { 4417 memcpy(buf, m_stderr_data.c_str(), buf_size); 4418 m_stderr_data.erase(0, buf_size); 4419 bytes_available = buf_size; 4420 } else { 4421 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4422 m_stderr_data.clear(); 4423 } 4424 } 4425 return bytes_available; 4426 } 4427 4428 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4429 size_t src_len) { 4430 Process *process = (Process *)baton; 4431 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4432 } 4433 4434 class IOHandlerProcessSTDIO : public IOHandler { 4435 public: 4436 IOHandlerProcessSTDIO(Process *process, int write_fd) 4437 : IOHandler(process->GetTarget().GetDebugger(), 4438 IOHandler::Type::ProcessIO), 4439 m_process(process), 4440 m_read_file(GetInputFD(), File::eOpenOptionRead, false), 4441 m_write_file(write_fd, File::eOpenOptionWrite, false) { 4442 m_pipe.CreateNew(false); 4443 } 4444 4445 ~IOHandlerProcessSTDIO() override = default; 4446 4447 // Each IOHandler gets to run until it is done. It should read data from the 4448 // "in" and place output into "out" and "err and return when done. 4449 void Run() override { 4450 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4451 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4452 SetIsDone(true); 4453 return; 4454 } 4455 4456 SetIsDone(false); 4457 const int read_fd = m_read_file.GetDescriptor(); 4458 TerminalState terminal_state; 4459 terminal_state.Save(read_fd, false); 4460 Terminal terminal(read_fd); 4461 terminal.SetCanonical(false); 4462 terminal.SetEcho(false); 4463 // FD_ZERO, FD_SET are not supported on windows 4464 #ifndef _WIN32 4465 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4466 m_is_running = true; 4467 while (!GetIsDone()) { 4468 SelectHelper select_helper; 4469 select_helper.FDSetRead(read_fd); 4470 select_helper.FDSetRead(pipe_read_fd); 4471 Status error = select_helper.Select(); 4472 4473 if (error.Fail()) { 4474 SetIsDone(true); 4475 } else { 4476 char ch = 0; 4477 size_t n; 4478 if (select_helper.FDIsSetRead(read_fd)) { 4479 n = 1; 4480 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4481 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4482 SetIsDone(true); 4483 } else 4484 SetIsDone(true); 4485 } 4486 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4487 size_t bytes_read; 4488 // Consume the interrupt byte 4489 Status error = m_pipe.Read(&ch, 1, bytes_read); 4490 if (error.Success()) { 4491 switch (ch) { 4492 case 'q': 4493 SetIsDone(true); 4494 break; 4495 case 'i': 4496 if (StateIsRunningState(m_process->GetState())) 4497 m_process->SendAsyncInterrupt(); 4498 break; 4499 } 4500 } 4501 } 4502 } 4503 } 4504 m_is_running = false; 4505 #endif 4506 terminal_state.Restore(); 4507 } 4508 4509 void Cancel() override { 4510 SetIsDone(true); 4511 // Only write to our pipe to cancel if we are in 4512 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4513 // is being run from the command interpreter: 4514 // 4515 // (lldb) step_process_thousands_of_times 4516 // 4517 // In this case the command interpreter will be in the middle of handling 4518 // the command and if the process pushes and pops the IOHandler thousands 4519 // of times, we can end up writing to m_pipe without ever consuming the 4520 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4521 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4522 if (m_is_running) { 4523 char ch = 'q'; // Send 'q' for quit 4524 size_t bytes_written = 0; 4525 m_pipe.Write(&ch, 1, bytes_written); 4526 } 4527 } 4528 4529 bool Interrupt() override { 4530 // Do only things that are safe to do in an interrupt context (like in a 4531 // SIGINT handler), like write 1 byte to a file descriptor. This will 4532 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4533 // that was written to the pipe and then call 4534 // m_process->SendAsyncInterrupt() from a much safer location in code. 4535 if (m_active) { 4536 char ch = 'i'; // Send 'i' for interrupt 4537 size_t bytes_written = 0; 4538 Status result = m_pipe.Write(&ch, 1, bytes_written); 4539 return result.Success(); 4540 } else { 4541 // This IOHandler might be pushed on the stack, but not being run 4542 // currently so do the right thing if we aren't actively watching for 4543 // STDIN by sending the interrupt to the process. Otherwise the write to 4544 // the pipe above would do nothing. This can happen when the command 4545 // interpreter is running and gets a "expression ...". It will be on the 4546 // IOHandler thread and sending the input is complete to the delegate 4547 // which will cause the expression to run, which will push the process IO 4548 // handler, but not run it. 4549 4550 if (StateIsRunningState(m_process->GetState())) { 4551 m_process->SendAsyncInterrupt(); 4552 return true; 4553 } 4554 } 4555 return false; 4556 } 4557 4558 void GotEOF() override {} 4559 4560 protected: 4561 Process *m_process; 4562 NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB 4563 NativeFile m_write_file; // Write to this file (usually the master pty for 4564 // getting io to debuggee) 4565 Pipe m_pipe; 4566 std::atomic<bool> m_is_running{false}; 4567 }; 4568 4569 void Process::SetSTDIOFileDescriptor(int fd) { 4570 // First set up the Read Thread for reading/handling process I/O 4571 m_stdio_communication.SetConnection( 4572 std::make_unique<ConnectionFileDescriptor>(fd, true)); 4573 if (m_stdio_communication.IsConnected()) { 4574 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4575 STDIOReadThreadBytesReceived, this); 4576 m_stdio_communication.StartReadThread(); 4577 4578 // Now read thread is set up, set up input reader. 4579 4580 if (!m_process_input_reader) 4581 m_process_input_reader = 4582 std::make_shared<IOHandlerProcessSTDIO>(this, fd); 4583 } 4584 } 4585 4586 bool Process::ProcessIOHandlerIsActive() { 4587 IOHandlerSP io_handler_sp(m_process_input_reader); 4588 if (io_handler_sp) 4589 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4590 return false; 4591 } 4592 bool Process::PushProcessIOHandler() { 4593 IOHandlerSP io_handler_sp(m_process_input_reader); 4594 if (io_handler_sp) { 4595 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4596 LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); 4597 4598 io_handler_sp->SetIsDone(false); 4599 // If we evaluate an utility function, then we don't cancel the current 4600 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the 4601 // existing IOHandler that potentially provides the user interface (e.g. 4602 // the IOHandler for Editline). 4603 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); 4604 GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp, 4605 cancel_top_handler); 4606 return true; 4607 } 4608 return false; 4609 } 4610 4611 bool Process::PopProcessIOHandler() { 4612 IOHandlerSP io_handler_sp(m_process_input_reader); 4613 if (io_handler_sp) 4614 return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp); 4615 return false; 4616 } 4617 4618 // The process needs to know about installed plug-ins 4619 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4620 4621 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4622 4623 namespace { 4624 // RestorePlanState is used to record the "is private", "is master" and "okay 4625 // to discard" fields of the plan we are running, and reset it on Clean or on 4626 // destruction. It will only reset the state once, so you can call Clean and 4627 // then monkey with the state and it won't get reset on you again. 4628 4629 class RestorePlanState { 4630 public: 4631 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4632 : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) { 4633 if (m_thread_plan_sp) { 4634 m_private = m_thread_plan_sp->GetPrivate(); 4635 m_is_master = m_thread_plan_sp->IsMasterPlan(); 4636 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4637 } 4638 } 4639 4640 ~RestorePlanState() { Clean(); } 4641 4642 void Clean() { 4643 if (!m_already_reset && m_thread_plan_sp) { 4644 m_already_reset = true; 4645 m_thread_plan_sp->SetPrivate(m_private); 4646 m_thread_plan_sp->SetIsMasterPlan(m_is_master); 4647 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4648 } 4649 } 4650 4651 private: 4652 lldb::ThreadPlanSP m_thread_plan_sp; 4653 bool m_already_reset; 4654 bool m_private; 4655 bool m_is_master; 4656 bool m_okay_to_discard; 4657 }; 4658 } // anonymous namespace 4659 4660 static microseconds 4661 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4662 const milliseconds default_one_thread_timeout(250); 4663 4664 // If the overall wait is forever, then we don't need to worry about it. 4665 if (!options.GetTimeout()) { 4666 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4667 : default_one_thread_timeout; 4668 } 4669 4670 // If the one thread timeout is set, use it. 4671 if (options.GetOneThreadTimeout()) 4672 return *options.GetOneThreadTimeout(); 4673 4674 // Otherwise use half the total timeout, bounded by the 4675 // default_one_thread_timeout. 4676 return std::min<microseconds>(default_one_thread_timeout, 4677 *options.GetTimeout() / 2); 4678 } 4679 4680 static Timeout<std::micro> 4681 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4682 bool before_first_timeout) { 4683 // If we are going to run all threads the whole time, or if we are only going 4684 // to run one thread, we can just return the overall timeout. 4685 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4686 return options.GetTimeout(); 4687 4688 if (before_first_timeout) 4689 return GetOneThreadExpressionTimeout(options); 4690 4691 if (!options.GetTimeout()) 4692 return llvm::None; 4693 else 4694 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4695 } 4696 4697 static llvm::Optional<ExpressionResults> 4698 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp, 4699 RestorePlanState &restorer, const EventSP &event_sp, 4700 EventSP &event_to_broadcast_sp, 4701 const EvaluateExpressionOptions &options, 4702 bool handle_interrupts) { 4703 Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS); 4704 4705 ThreadSP thread_sp = thread_plan_sp->GetTarget() 4706 .GetProcessSP() 4707 ->GetThreadList() 4708 .FindThreadByID(thread_id); 4709 if (!thread_sp) { 4710 LLDB_LOG(log, 4711 "The thread on which we were running the " 4712 "expression: tid = {0}, exited while " 4713 "the expression was running.", 4714 thread_id); 4715 return eExpressionThreadVanished; 4716 } 4717 4718 ThreadPlanSP plan = thread_sp->GetCompletedPlan(); 4719 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4720 LLDB_LOG(log, "execution completed successfully"); 4721 4722 // Restore the plan state so it will get reported as intended when we are 4723 // done. 4724 restorer.Clean(); 4725 return eExpressionCompleted; 4726 } 4727 4728 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4729 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4730 stop_info_sp->ShouldNotify(event_sp.get())) { 4731 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4732 if (!options.DoesIgnoreBreakpoints()) { 4733 // Restore the plan state and then force Private to false. We are going 4734 // to stop because of this plan so we need it to become a public plan or 4735 // it won't report correctly when we continue to its termination later 4736 // on. 4737 restorer.Clean(); 4738 thread_plan_sp->SetPrivate(false); 4739 event_to_broadcast_sp = event_sp; 4740 } 4741 return eExpressionHitBreakpoint; 4742 } 4743 4744 if (!handle_interrupts && 4745 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4746 return llvm::None; 4747 4748 LLDB_LOG(log, "thread plan did not successfully complete"); 4749 if (!options.DoesUnwindOnError()) 4750 event_to_broadcast_sp = event_sp; 4751 return eExpressionInterrupted; 4752 } 4753 4754 ExpressionResults 4755 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4756 lldb::ThreadPlanSP &thread_plan_sp, 4757 const EvaluateExpressionOptions &options, 4758 DiagnosticManager &diagnostic_manager) { 4759 ExpressionResults return_value = eExpressionSetupError; 4760 4761 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4762 4763 if (!thread_plan_sp) { 4764 diagnostic_manager.PutString( 4765 eDiagnosticSeverityError, 4766 "RunThreadPlan called with empty thread plan."); 4767 return eExpressionSetupError; 4768 } 4769 4770 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4771 diagnostic_manager.PutString( 4772 eDiagnosticSeverityError, 4773 "RunThreadPlan called with an invalid thread plan."); 4774 return eExpressionSetupError; 4775 } 4776 4777 if (exe_ctx.GetProcessPtr() != this) { 4778 diagnostic_manager.PutString(eDiagnosticSeverityError, 4779 "RunThreadPlan called on wrong process."); 4780 return eExpressionSetupError; 4781 } 4782 4783 Thread *thread = exe_ctx.GetThreadPtr(); 4784 if (thread == nullptr) { 4785 diagnostic_manager.PutString(eDiagnosticSeverityError, 4786 "RunThreadPlan called with invalid thread."); 4787 return eExpressionSetupError; 4788 } 4789 4790 // Record the thread's id so we can tell when a thread we were using 4791 // to run the expression exits during the expression evaluation. 4792 lldb::tid_t expr_thread_id = thread->GetID(); 4793 4794 // We need to change some of the thread plan attributes for the thread plan 4795 // runner. This will restore them when we are done: 4796 4797 RestorePlanState thread_plan_restorer(thread_plan_sp); 4798 4799 // We rely on the thread plan we are running returning "PlanCompleted" if 4800 // when it successfully completes. For that to be true the plan can't be 4801 // private - since private plans suppress themselves in the GetCompletedPlan 4802 // call. 4803 4804 thread_plan_sp->SetPrivate(false); 4805 4806 // The plans run with RunThreadPlan also need to be terminal master plans or 4807 // when they are done we will end up asking the plan above us whether we 4808 // should stop, which may give the wrong answer. 4809 4810 thread_plan_sp->SetIsMasterPlan(true); 4811 thread_plan_sp->SetOkayToDiscard(false); 4812 4813 // If we are running some utility expression for LLDB, we now have to mark 4814 // this in the ProcesModID of this process. This RAII takes care of marking 4815 // and reverting the mark it once we are done running the expression. 4816 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); 4817 4818 if (m_private_state.GetValue() != eStateStopped) { 4819 diagnostic_manager.PutString( 4820 eDiagnosticSeverityError, 4821 "RunThreadPlan called while the private state was not stopped."); 4822 return eExpressionSetupError; 4823 } 4824 4825 // Save the thread & frame from the exe_ctx for restoration after we run 4826 const uint32_t thread_idx_id = thread->GetIndexID(); 4827 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4828 if (!selected_frame_sp) { 4829 thread->SetSelectedFrame(nullptr); 4830 selected_frame_sp = thread->GetSelectedFrame(); 4831 if (!selected_frame_sp) { 4832 diagnostic_manager.Printf( 4833 eDiagnosticSeverityError, 4834 "RunThreadPlan called without a selected frame on thread %d", 4835 thread_idx_id); 4836 return eExpressionSetupError; 4837 } 4838 } 4839 4840 // Make sure the timeout values make sense. The one thread timeout needs to 4841 // be smaller than the overall timeout. 4842 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4843 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4844 diagnostic_manager.PutString(eDiagnosticSeverityError, 4845 "RunThreadPlan called with one thread " 4846 "timeout greater than total timeout"); 4847 return eExpressionSetupError; 4848 } 4849 4850 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4851 4852 // N.B. Running the target may unset the currently selected thread and frame. 4853 // We don't want to do that either, so we should arrange to reset them as 4854 // well. 4855 4856 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4857 4858 uint32_t selected_tid; 4859 StackID selected_stack_id; 4860 if (selected_thread_sp) { 4861 selected_tid = selected_thread_sp->GetIndexID(); 4862 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4863 } else { 4864 selected_tid = LLDB_INVALID_THREAD_ID; 4865 } 4866 4867 HostThread backup_private_state_thread; 4868 lldb::StateType old_state = eStateInvalid; 4869 lldb::ThreadPlanSP stopper_base_plan_sp; 4870 4871 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4872 LIBLLDB_LOG_PROCESS)); 4873 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4874 // Yikes, we are running on the private state thread! So we can't wait for 4875 // public events on this thread, since we are the thread that is generating 4876 // public events. The simplest thing to do is to spin up a temporary thread 4877 // to handle private state thread events while we are fielding public 4878 // events here. 4879 LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " 4880 "another state thread to handle the events."); 4881 4882 backup_private_state_thread = m_private_state_thread; 4883 4884 // One other bit of business: we want to run just this thread plan and 4885 // anything it pushes, and then stop, returning control here. But in the 4886 // normal course of things, the plan above us on the stack would be given a 4887 // shot at the stop event before deciding to stop, and we don't want that. 4888 // So we insert a "stopper" base plan on the stack before the plan we want 4889 // to run. Since base plans always stop and return control to the user, 4890 // that will do just what we want. 4891 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4892 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4893 // Have to make sure our public state is stopped, since otherwise the 4894 // reporting logic below doesn't work correctly. 4895 old_state = m_public_state.GetValue(); 4896 m_public_state.SetValueNoLock(eStateStopped); 4897 4898 // Now spin up the private state thread: 4899 StartPrivateStateThread(true); 4900 } 4901 4902 thread->QueueThreadPlan( 4903 thread_plan_sp, false); // This used to pass "true" does that make sense? 4904 4905 if (options.GetDebug()) { 4906 // In this case, we aren't actually going to run, we just want to stop 4907 // right away. Flush this thread so we will refetch the stacks and show the 4908 // correct backtrace. 4909 // FIXME: To make this prettier we should invent some stop reason for this, 4910 // but that 4911 // is only cosmetic, and this functionality is only of use to lldb 4912 // developers who can live with not pretty... 4913 thread->Flush(); 4914 return eExpressionStoppedForDebug; 4915 } 4916 4917 ListenerSP listener_sp( 4918 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4919 4920 lldb::EventSP event_to_broadcast_sp; 4921 4922 { 4923 // This process event hijacker Hijacks the Public events and its destructor 4924 // makes sure that the process events get restored on exit to the function. 4925 // 4926 // If the event needs to propagate beyond the hijacker (e.g., the process 4927 // exits during execution), then the event is put into 4928 // event_to_broadcast_sp for rebroadcasting. 4929 4930 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 4931 4932 if (log) { 4933 StreamString s; 4934 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 4935 LLDB_LOGF(log, 4936 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 4937 " to run thread plan \"%s\".", 4938 thread_idx_id, expr_thread_id, s.GetData()); 4939 } 4940 4941 bool got_event; 4942 lldb::EventSP event_sp; 4943 lldb::StateType stop_state = lldb::eStateInvalid; 4944 4945 bool before_first_timeout = true; // This is set to false the first time 4946 // that we have to halt the target. 4947 bool do_resume = true; 4948 bool handle_running_event = true; 4949 4950 // This is just for accounting: 4951 uint32_t num_resumes = 0; 4952 4953 // If we are going to run all threads the whole time, or if we are only 4954 // going to run one thread, then we don't need the first timeout. So we 4955 // pretend we are after the first timeout already. 4956 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4957 before_first_timeout = false; 4958 4959 LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", 4960 options.GetStopOthers(), options.GetTryAllThreads(), 4961 before_first_timeout); 4962 4963 // This isn't going to work if there are unfetched events on the queue. Are 4964 // there cases where we might want to run the remaining events here, and 4965 // then try to call the function? That's probably being too tricky for our 4966 // own good. 4967 4968 Event *other_events = listener_sp->PeekAtNextEvent(); 4969 if (other_events != nullptr) { 4970 diagnostic_manager.PutString( 4971 eDiagnosticSeverityError, 4972 "RunThreadPlan called with pending events on the queue."); 4973 return eExpressionSetupError; 4974 } 4975 4976 // We also need to make sure that the next event is delivered. We might be 4977 // calling a function as part of a thread plan, in which case the last 4978 // delivered event could be the running event, and we don't want event 4979 // coalescing to cause us to lose OUR running event... 4980 ForceNextEventDelivery(); 4981 4982 // This while loop must exit out the bottom, there's cleanup that we need to do 4983 // when we are done. So don't call return anywhere within it. 4984 4985 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4986 // It's pretty much impossible to write test cases for things like: One 4987 // thread timeout expires, I go to halt, but the process already stopped on 4988 // the function call stop breakpoint. Turning on this define will make us 4989 // not fetch the first event till after the halt. So if you run a quick 4990 // function, it will have completed, and the completion event will be 4991 // waiting, when you interrupt for halt. The expression evaluation should 4992 // still succeed. 4993 bool miss_first_event = true; 4994 #endif 4995 while (true) { 4996 // We usually want to resume the process if we get to the top of the 4997 // loop. The only exception is if we get two running events with no 4998 // intervening stop, which can happen, we will just wait for then next 4999 // stop event. 5000 LLDB_LOGF(log, 5001 "Top of while loop: do_resume: %i handle_running_event: %i " 5002 "before_first_timeout: %i.", 5003 do_resume, handle_running_event, before_first_timeout); 5004 5005 if (do_resume || handle_running_event) { 5006 // Do the initial resume and wait for the running event before going 5007 // further. 5008 5009 if (do_resume) { 5010 num_resumes++; 5011 Status resume_error = PrivateResume(); 5012 if (!resume_error.Success()) { 5013 diagnostic_manager.Printf( 5014 eDiagnosticSeverityError, 5015 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 5016 resume_error.AsCString()); 5017 return_value = eExpressionSetupError; 5018 break; 5019 } 5020 } 5021 5022 got_event = 5023 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5024 if (!got_event) { 5025 LLDB_LOGF(log, 5026 "Process::RunThreadPlan(): didn't get any event after " 5027 "resume %" PRIu32 ", exiting.", 5028 num_resumes); 5029 5030 diagnostic_manager.Printf(eDiagnosticSeverityError, 5031 "didn't get any event after resume %" PRIu32 5032 ", exiting.", 5033 num_resumes); 5034 return_value = eExpressionSetupError; 5035 break; 5036 } 5037 5038 stop_state = 5039 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5040 5041 if (stop_state != eStateRunning) { 5042 bool restarted = false; 5043 5044 if (stop_state == eStateStopped) { 5045 restarted = Process::ProcessEventData::GetRestartedFromEvent( 5046 event_sp.get()); 5047 LLDB_LOGF( 5048 log, 5049 "Process::RunThreadPlan(): didn't get running event after " 5050 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 5051 "handle_running_event: %i).", 5052 num_resumes, StateAsCString(stop_state), restarted, do_resume, 5053 handle_running_event); 5054 } 5055 5056 if (restarted) { 5057 // This is probably an overabundance of caution, I don't think I 5058 // should ever get a stopped & restarted event here. But if I do, 5059 // the best thing is to Halt and then get out of here. 5060 const bool clear_thread_plans = false; 5061 const bool use_run_lock = false; 5062 Halt(clear_thread_plans, use_run_lock); 5063 } 5064 5065 diagnostic_manager.Printf( 5066 eDiagnosticSeverityError, 5067 "didn't get running event after initial resume, got %s instead.", 5068 StateAsCString(stop_state)); 5069 return_value = eExpressionSetupError; 5070 break; 5071 } 5072 5073 if (log) 5074 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 5075 // We need to call the function synchronously, so spin waiting for it 5076 // to return. If we get interrupted while executing, we're going to 5077 // lose our context, and won't be able to gather the result at this 5078 // point. We set the timeout AFTER the resume, since the resume takes 5079 // some time and we don't want to charge that to the timeout. 5080 } else { 5081 if (log) 5082 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 5083 } 5084 5085 do_resume = true; 5086 handle_running_event = true; 5087 5088 // Now wait for the process to stop again: 5089 event_sp.reset(); 5090 5091 Timeout<std::micro> timeout = 5092 GetExpressionTimeout(options, before_first_timeout); 5093 if (log) { 5094 if (timeout) { 5095 auto now = system_clock::now(); 5096 LLDB_LOGF(log, 5097 "Process::RunThreadPlan(): about to wait - now is %s - " 5098 "endpoint is %s", 5099 llvm::to_string(now).c_str(), 5100 llvm::to_string(now + *timeout).c_str()); 5101 } else { 5102 LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); 5103 } 5104 } 5105 5106 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5107 // See comment above... 5108 if (miss_first_event) { 5109 std::this_thread::sleep_for(std::chrono::milliseconds(1)); 5110 miss_first_event = false; 5111 got_event = false; 5112 } else 5113 #endif 5114 got_event = listener_sp->GetEvent(event_sp, timeout); 5115 5116 if (got_event) { 5117 if (event_sp) { 5118 bool keep_going = false; 5119 if (event_sp->GetType() == eBroadcastBitInterrupt) { 5120 const bool clear_thread_plans = false; 5121 const bool use_run_lock = false; 5122 Halt(clear_thread_plans, use_run_lock); 5123 return_value = eExpressionInterrupted; 5124 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 5125 "execution halted by user interrupt."); 5126 LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " 5127 "eBroadcastBitInterrupted, exiting."); 5128 break; 5129 } else { 5130 stop_state = 5131 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5132 LLDB_LOGF(log, 5133 "Process::RunThreadPlan(): in while loop, got event: %s.", 5134 StateAsCString(stop_state)); 5135 5136 switch (stop_state) { 5137 case lldb::eStateStopped: { 5138 if (Process::ProcessEventData::GetRestartedFromEvent( 5139 event_sp.get())) { 5140 // If we were restarted, we just need to go back up to fetch 5141 // another event. 5142 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " 5143 "restart, so we'll continue waiting."); 5144 keep_going = true; 5145 do_resume = false; 5146 handle_running_event = true; 5147 } else { 5148 const bool handle_interrupts = true; 5149 return_value = *HandleStoppedEvent( 5150 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5151 event_sp, event_to_broadcast_sp, options, 5152 handle_interrupts); 5153 if (return_value == eExpressionThreadVanished) 5154 keep_going = false; 5155 } 5156 } break; 5157 5158 case lldb::eStateRunning: 5159 // This shouldn't really happen, but sometimes we do get two 5160 // running events without an intervening stop, and in that case 5161 // we should just go back to waiting for the stop. 5162 do_resume = false; 5163 keep_going = true; 5164 handle_running_event = false; 5165 break; 5166 5167 default: 5168 LLDB_LOGF(log, 5169 "Process::RunThreadPlan(): execution stopped with " 5170 "unexpected state: %s.", 5171 StateAsCString(stop_state)); 5172 5173 if (stop_state == eStateExited) 5174 event_to_broadcast_sp = event_sp; 5175 5176 diagnostic_manager.PutString( 5177 eDiagnosticSeverityError, 5178 "execution stopped with unexpected state."); 5179 return_value = eExpressionInterrupted; 5180 break; 5181 } 5182 } 5183 5184 if (keep_going) 5185 continue; 5186 else 5187 break; 5188 } else { 5189 if (log) 5190 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5191 "the event pointer was null. How odd..."); 5192 return_value = eExpressionInterrupted; 5193 break; 5194 } 5195 } else { 5196 // If we didn't get an event that means we've timed out... We will 5197 // interrupt the process here. Depending on what we were asked to do 5198 // we will either exit, or try with all threads running for the same 5199 // timeout. 5200 5201 if (log) { 5202 if (options.GetTryAllThreads()) { 5203 if (before_first_timeout) { 5204 LLDB_LOG(log, 5205 "Running function with one thread timeout timed out."); 5206 } else 5207 LLDB_LOG(log, "Restarting function with all threads enabled and " 5208 "timeout: {0} timed out, abandoning execution.", 5209 timeout); 5210 } else 5211 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5212 "abandoning execution.", 5213 timeout); 5214 } 5215 5216 // It is possible that between the time we issued the Halt, and we get 5217 // around to calling Halt the target could have stopped. That's fine, 5218 // Halt will figure that out and send the appropriate Stopped event. 5219 // BUT it is also possible that we stopped & restarted (e.g. hit a 5220 // signal with "stop" set to false.) In 5221 // that case, we'll get the stopped & restarted event, and we should go 5222 // back to waiting for the Halt's stopped event. That's what this 5223 // while loop does. 5224 5225 bool back_to_top = true; 5226 uint32_t try_halt_again = 0; 5227 bool do_halt = true; 5228 const uint32_t num_retries = 5; 5229 while (try_halt_again < num_retries) { 5230 Status halt_error; 5231 if (do_halt) { 5232 LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); 5233 const bool clear_thread_plans = false; 5234 const bool use_run_lock = false; 5235 Halt(clear_thread_plans, use_run_lock); 5236 } 5237 if (halt_error.Success()) { 5238 if (log) 5239 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5240 5241 got_event = 5242 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5243 5244 if (got_event) { 5245 stop_state = 5246 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5247 if (log) { 5248 LLDB_LOGF(log, 5249 "Process::RunThreadPlan(): Stopped with event: %s", 5250 StateAsCString(stop_state)); 5251 if (stop_state == lldb::eStateStopped && 5252 Process::ProcessEventData::GetInterruptedFromEvent( 5253 event_sp.get())) 5254 log->PutCString(" Event was the Halt interruption event."); 5255 } 5256 5257 if (stop_state == lldb::eStateStopped) { 5258 if (Process::ProcessEventData::GetRestartedFromEvent( 5259 event_sp.get())) { 5260 if (log) 5261 log->PutCString("Process::RunThreadPlan(): Went to halt " 5262 "but got a restarted event, there must be " 5263 "an un-restarted stopped event so try " 5264 "again... " 5265 "Exiting wait loop."); 5266 try_halt_again++; 5267 do_halt = false; 5268 continue; 5269 } 5270 5271 // Between the time we initiated the Halt and the time we 5272 // delivered it, the process could have already finished its 5273 // job. Check that here: 5274 const bool handle_interrupts = false; 5275 if (auto result = HandleStoppedEvent( 5276 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5277 event_sp, event_to_broadcast_sp, options, 5278 handle_interrupts)) { 5279 return_value = *result; 5280 back_to_top = false; 5281 break; 5282 } 5283 5284 if (!options.GetTryAllThreads()) { 5285 if (log) 5286 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5287 "was false, we stopped so now we're " 5288 "quitting."); 5289 return_value = eExpressionInterrupted; 5290 back_to_top = false; 5291 break; 5292 } 5293 5294 if (before_first_timeout) { 5295 // Set all the other threads to run, and return to the top of 5296 // the loop, which will continue; 5297 before_first_timeout = false; 5298 thread_plan_sp->SetStopOthers(false); 5299 if (log) 5300 log->PutCString( 5301 "Process::RunThreadPlan(): about to resume."); 5302 5303 back_to_top = true; 5304 break; 5305 } else { 5306 // Running all threads failed, so return Interrupted. 5307 if (log) 5308 log->PutCString("Process::RunThreadPlan(): running all " 5309 "threads timed out."); 5310 return_value = eExpressionInterrupted; 5311 back_to_top = false; 5312 break; 5313 } 5314 } 5315 } else { 5316 if (log) 5317 log->PutCString("Process::RunThreadPlan(): halt said it " 5318 "succeeded, but I got no event. " 5319 "I'm getting out of here passing Interrupted."); 5320 return_value = eExpressionInterrupted; 5321 back_to_top = false; 5322 break; 5323 } 5324 } else { 5325 try_halt_again++; 5326 continue; 5327 } 5328 } 5329 5330 if (!back_to_top || try_halt_again > num_retries) 5331 break; 5332 else 5333 continue; 5334 } 5335 } // END WAIT LOOP 5336 5337 // If we had to start up a temporary private state thread to run this 5338 // thread plan, shut it down now. 5339 if (backup_private_state_thread.IsJoinable()) { 5340 StopPrivateStateThread(); 5341 Status error; 5342 m_private_state_thread = backup_private_state_thread; 5343 if (stopper_base_plan_sp) { 5344 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5345 } 5346 if (old_state != eStateInvalid) 5347 m_public_state.SetValueNoLock(old_state); 5348 } 5349 5350 // If our thread went away on us, we need to get out of here without 5351 // doing any more work. We don't have to clean up the thread plan, that 5352 // will have happened when the Thread was destroyed. 5353 if (return_value == eExpressionThreadVanished) { 5354 return return_value; 5355 } 5356 5357 if (return_value != eExpressionCompleted && log) { 5358 // Print a backtrace into the log so we can figure out where we are: 5359 StreamString s; 5360 s.PutCString("Thread state after unsuccessful completion: \n"); 5361 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5362 log->PutString(s.GetString()); 5363 } 5364 // Restore the thread state if we are going to discard the plan execution. 5365 // There are three cases where this could happen: 1) The execution 5366 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5367 // was true 3) We got some other error, and discard_on_error was true 5368 bool should_unwind = (return_value == eExpressionInterrupted && 5369 options.DoesUnwindOnError()) || 5370 (return_value == eExpressionHitBreakpoint && 5371 options.DoesIgnoreBreakpoints()); 5372 5373 if (return_value == eExpressionCompleted || should_unwind) { 5374 thread_plan_sp->RestoreThreadState(); 5375 } 5376 5377 // Now do some processing on the results of the run: 5378 if (return_value == eExpressionInterrupted || 5379 return_value == eExpressionHitBreakpoint) { 5380 if (log) { 5381 StreamString s; 5382 if (event_sp) 5383 event_sp->Dump(&s); 5384 else { 5385 log->PutCString("Process::RunThreadPlan(): Stop event that " 5386 "interrupted us is NULL."); 5387 } 5388 5389 StreamString ts; 5390 5391 const char *event_explanation = nullptr; 5392 5393 do { 5394 if (!event_sp) { 5395 event_explanation = "<no event>"; 5396 break; 5397 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5398 event_explanation = "<user interrupt>"; 5399 break; 5400 } else { 5401 const Process::ProcessEventData *event_data = 5402 Process::ProcessEventData::GetEventDataFromEvent( 5403 event_sp.get()); 5404 5405 if (!event_data) { 5406 event_explanation = "<no event data>"; 5407 break; 5408 } 5409 5410 Process *process = event_data->GetProcessSP().get(); 5411 5412 if (!process) { 5413 event_explanation = "<no process>"; 5414 break; 5415 } 5416 5417 ThreadList &thread_list = process->GetThreadList(); 5418 5419 uint32_t num_threads = thread_list.GetSize(); 5420 uint32_t thread_index; 5421 5422 ts.Printf("<%u threads> ", num_threads); 5423 5424 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5425 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5426 5427 if (!thread) { 5428 ts.Printf("<?> "); 5429 continue; 5430 } 5431 5432 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5433 RegisterContext *register_context = 5434 thread->GetRegisterContext().get(); 5435 5436 if (register_context) 5437 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5438 else 5439 ts.Printf("[ip unknown] "); 5440 5441 // Show the private stop info here, the public stop info will be 5442 // from the last natural stop. 5443 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5444 if (stop_info_sp) { 5445 const char *stop_desc = stop_info_sp->GetDescription(); 5446 if (stop_desc) 5447 ts.PutCString(stop_desc); 5448 } 5449 ts.Printf(">"); 5450 } 5451 5452 event_explanation = ts.GetData(); 5453 } 5454 } while (false); 5455 5456 if (event_explanation) 5457 LLDB_LOGF(log, 5458 "Process::RunThreadPlan(): execution interrupted: %s %s", 5459 s.GetData(), event_explanation); 5460 else 5461 LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", 5462 s.GetData()); 5463 } 5464 5465 if (should_unwind) { 5466 LLDB_LOGF(log, 5467 "Process::RunThreadPlan: ExecutionInterrupted - " 5468 "discarding thread plans up to %p.", 5469 static_cast<void *>(thread_plan_sp.get())); 5470 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5471 } else { 5472 LLDB_LOGF(log, 5473 "Process::RunThreadPlan: ExecutionInterrupted - for " 5474 "plan: %p not discarding.", 5475 static_cast<void *>(thread_plan_sp.get())); 5476 } 5477 } else if (return_value == eExpressionSetupError) { 5478 if (log) 5479 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5480 5481 if (options.DoesUnwindOnError()) { 5482 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5483 } 5484 } else { 5485 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5486 if (log) 5487 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5488 return_value = eExpressionCompleted; 5489 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5490 if (log) 5491 log->PutCString( 5492 "Process::RunThreadPlan(): thread plan was discarded"); 5493 return_value = eExpressionDiscarded; 5494 } else { 5495 if (log) 5496 log->PutCString( 5497 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5498 if (options.DoesUnwindOnError() && thread_plan_sp) { 5499 if (log) 5500 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5501 "'cause unwind_on_error is set."); 5502 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5503 } 5504 } 5505 } 5506 5507 // Thread we ran the function in may have gone away because we ran the 5508 // target Check that it's still there, and if it is put it back in the 5509 // context. Also restore the frame in the context if it is still present. 5510 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5511 if (thread) { 5512 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5513 } 5514 5515 // Also restore the current process'es selected frame & thread, since this 5516 // function calling may be done behind the user's back. 5517 5518 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5519 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5520 selected_stack_id.IsValid()) { 5521 // We were able to restore the selected thread, now restore the frame: 5522 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5523 StackFrameSP old_frame_sp = 5524 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5525 selected_stack_id); 5526 if (old_frame_sp) 5527 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5528 old_frame_sp.get()); 5529 } 5530 } 5531 } 5532 5533 // If the process exited during the run of the thread plan, notify everyone. 5534 5535 if (event_to_broadcast_sp) { 5536 if (log) 5537 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5538 BroadcastEvent(event_to_broadcast_sp); 5539 } 5540 5541 return return_value; 5542 } 5543 5544 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5545 const char *result_name = "<unknown>"; 5546 5547 switch (result) { 5548 case eExpressionCompleted: 5549 result_name = "eExpressionCompleted"; 5550 break; 5551 case eExpressionDiscarded: 5552 result_name = "eExpressionDiscarded"; 5553 break; 5554 case eExpressionInterrupted: 5555 result_name = "eExpressionInterrupted"; 5556 break; 5557 case eExpressionHitBreakpoint: 5558 result_name = "eExpressionHitBreakpoint"; 5559 break; 5560 case eExpressionSetupError: 5561 result_name = "eExpressionSetupError"; 5562 break; 5563 case eExpressionParseError: 5564 result_name = "eExpressionParseError"; 5565 break; 5566 case eExpressionResultUnavailable: 5567 result_name = "eExpressionResultUnavailable"; 5568 break; 5569 case eExpressionTimedOut: 5570 result_name = "eExpressionTimedOut"; 5571 break; 5572 case eExpressionStoppedForDebug: 5573 result_name = "eExpressionStoppedForDebug"; 5574 break; 5575 case eExpressionThreadVanished: 5576 result_name = "eExpressionThreadVanished"; 5577 } 5578 return result_name; 5579 } 5580 5581 void Process::GetStatus(Stream &strm) { 5582 const StateType state = GetState(); 5583 if (StateIsStoppedState(state, false)) { 5584 if (state == eStateExited) { 5585 int exit_status = GetExitStatus(); 5586 const char *exit_description = GetExitDescription(); 5587 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5588 GetID(), exit_status, exit_status, 5589 exit_description ? exit_description : ""); 5590 } else { 5591 if (state == eStateConnected) 5592 strm.Printf("Connected to remote target.\n"); 5593 else 5594 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5595 } 5596 } else { 5597 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5598 } 5599 } 5600 5601 size_t Process::GetThreadStatus(Stream &strm, 5602 bool only_threads_with_stop_reason, 5603 uint32_t start_frame, uint32_t num_frames, 5604 uint32_t num_frames_with_source, 5605 bool stop_format) { 5606 size_t num_thread_infos_dumped = 0; 5607 5608 // You can't hold the thread list lock while calling Thread::GetStatus. That 5609 // very well might run code (e.g. if we need it to get return values or 5610 // arguments.) For that to work the process has to be able to acquire it. 5611 // So instead copy the thread ID's, and look them up one by one: 5612 5613 uint32_t num_threads; 5614 std::vector<lldb::tid_t> thread_id_array; 5615 // Scope for thread list locker; 5616 { 5617 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5618 ThreadList &curr_thread_list = GetThreadList(); 5619 num_threads = curr_thread_list.GetSize(); 5620 uint32_t idx; 5621 thread_id_array.resize(num_threads); 5622 for (idx = 0; idx < num_threads; ++idx) 5623 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5624 } 5625 5626 for (uint32_t i = 0; i < num_threads; i++) { 5627 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5628 if (thread_sp) { 5629 if (only_threads_with_stop_reason) { 5630 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5631 if (!stop_info_sp || !stop_info_sp->IsValid()) 5632 continue; 5633 } 5634 thread_sp->GetStatus(strm, start_frame, num_frames, 5635 num_frames_with_source, 5636 stop_format); 5637 ++num_thread_infos_dumped; 5638 } else { 5639 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5640 LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 5641 " vanished while running Thread::GetStatus."); 5642 } 5643 } 5644 return num_thread_infos_dumped; 5645 } 5646 5647 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5648 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5649 } 5650 5651 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5652 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5653 region.GetByteSize()); 5654 } 5655 5656 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5657 void *baton) { 5658 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5659 } 5660 5661 bool Process::RunPreResumeActions() { 5662 bool result = true; 5663 while (!m_pre_resume_actions.empty()) { 5664 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5665 m_pre_resume_actions.pop_back(); 5666 bool this_result = action.callback(action.baton); 5667 if (result) 5668 result = this_result; 5669 } 5670 return result; 5671 } 5672 5673 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5674 5675 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5676 { 5677 PreResumeCallbackAndBaton element(callback, baton); 5678 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5679 if (found_iter != m_pre_resume_actions.end()) 5680 { 5681 m_pre_resume_actions.erase(found_iter); 5682 } 5683 } 5684 5685 ProcessRunLock &Process::GetRunLock() { 5686 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5687 return m_private_run_lock; 5688 else 5689 return m_public_run_lock; 5690 } 5691 5692 bool Process::CurrentThreadIsPrivateStateThread() 5693 { 5694 return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); 5695 } 5696 5697 5698 void Process::Flush() { 5699 m_thread_list.Flush(); 5700 m_extended_thread_list.Flush(); 5701 m_extended_thread_stop_id = 0; 5702 m_queue_list.Clear(); 5703 m_queue_list_stop_id = 0; 5704 } 5705 5706 void Process::DidExec() { 5707 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 5708 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 5709 5710 Target &target = GetTarget(); 5711 target.CleanupProcess(); 5712 target.ClearModules(false); 5713 m_dynamic_checkers_up.reset(); 5714 m_abi_sp.reset(); 5715 m_system_runtime_up.reset(); 5716 m_os_up.reset(); 5717 m_dyld_up.reset(); 5718 m_jit_loaders_up.reset(); 5719 m_image_tokens.clear(); 5720 m_allocated_memory_cache.Clear(); 5721 { 5722 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5723 m_language_runtimes.clear(); 5724 } 5725 m_instrumentation_runtimes.clear(); 5726 m_thread_list.DiscardThreadPlans(); 5727 m_memory_cache.Clear(true); 5728 DoDidExec(); 5729 CompleteAttach(); 5730 // Flush the process (threads and all stack frames) after running 5731 // CompleteAttach() in case the dynamic loader loaded things in new 5732 // locations. 5733 Flush(); 5734 5735 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5736 // let the target know so it can do any cleanup it needs to. 5737 target.DidExec(); 5738 } 5739 5740 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5741 if (address == nullptr) { 5742 error.SetErrorString("Invalid address argument"); 5743 return LLDB_INVALID_ADDRESS; 5744 } 5745 5746 addr_t function_addr = LLDB_INVALID_ADDRESS; 5747 5748 addr_t addr = address->GetLoadAddress(&GetTarget()); 5749 std::map<addr_t, addr_t>::const_iterator iter = 5750 m_resolved_indirect_addresses.find(addr); 5751 if (iter != m_resolved_indirect_addresses.end()) { 5752 function_addr = (*iter).second; 5753 } else { 5754 if (!CallVoidArgVoidPtrReturn(address, function_addr)) { 5755 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5756 error.SetErrorStringWithFormat( 5757 "Unable to call resolver for indirect function %s", 5758 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5759 function_addr = LLDB_INVALID_ADDRESS; 5760 } else { 5761 m_resolved_indirect_addresses.insert( 5762 std::pair<addr_t, addr_t>(addr, function_addr)); 5763 } 5764 } 5765 return function_addr; 5766 } 5767 5768 void Process::ModulesDidLoad(ModuleList &module_list) { 5769 // Inform the system runtime of the modified modules. 5770 SystemRuntime *sys_runtime = GetSystemRuntime(); 5771 if (sys_runtime) 5772 sys_runtime->ModulesDidLoad(module_list); 5773 5774 GetJITLoaders().ModulesDidLoad(module_list); 5775 5776 // Give the instrumentation runtimes a chance to be created before informing 5777 // them of the modified modules. 5778 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5779 m_instrumentation_runtimes); 5780 for (auto &runtime : m_instrumentation_runtimes) 5781 runtime.second->ModulesDidLoad(module_list); 5782 5783 // Give the language runtimes a chance to be created before informing them of 5784 // the modified modules. 5785 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 5786 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 5787 runtime->ModulesDidLoad(module_list); 5788 } 5789 5790 // If we don't have an operating system plug-in, try to load one since 5791 // loading shared libraries might cause a new one to try and load 5792 if (!m_os_up) 5793 LoadOperatingSystemPlugin(false); 5794 5795 // Inform the structured-data plugins of the modified modules. 5796 for (auto pair : m_structured_data_plugin_map) { 5797 if (pair.second) 5798 pair.second->ModulesDidLoad(*this, module_list); 5799 } 5800 } 5801 5802 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5803 const char *fmt, ...) { 5804 bool print_warning = true; 5805 5806 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5807 if (!stream_sp) 5808 return; 5809 5810 if (repeat_key != nullptr) { 5811 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5812 if (it == m_warnings_issued.end()) { 5813 m_warnings_issued[warning_type] = WarningsPointerSet(); 5814 m_warnings_issued[warning_type].insert(repeat_key); 5815 } else { 5816 if (it->second.find(repeat_key) != it->second.end()) { 5817 print_warning = false; 5818 } else { 5819 it->second.insert(repeat_key); 5820 } 5821 } 5822 } 5823 5824 if (print_warning) { 5825 va_list args; 5826 va_start(args, fmt); 5827 stream_sp->PrintfVarArg(fmt, args); 5828 va_end(args); 5829 } 5830 } 5831 5832 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5833 if (!GetWarningsOptimization()) 5834 return; 5835 if (!sc.module_sp) 5836 return; 5837 if (!sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5838 sc.function->GetIsOptimized()) { 5839 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5840 "%s was compiled with optimization - stepping may behave " 5841 "oddly; variables may not be available.\n", 5842 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5843 } 5844 } 5845 5846 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) { 5847 if (!GetWarningsUnsupportedLanguage()) 5848 return; 5849 if (!sc.module_sp) 5850 return; 5851 LanguageType language = sc.GetLanguage(); 5852 if (language == eLanguageTypeUnknown) 5853 return; 5854 auto type_system_or_err = sc.module_sp->GetTypeSystemForLanguage(language); 5855 if (auto err = type_system_or_err.takeError()) { 5856 llvm::consumeError(std::move(err)); 5857 PrintWarning(Process::Warnings::eWarningsUnsupportedLanguage, 5858 sc.module_sp.get(), 5859 "This version of LLDB has no plugin for the %s language. " 5860 "Inspection of frame variables will be limited.\n", 5861 Language::GetNameForLanguageType(language)); 5862 } 5863 } 5864 5865 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5866 info.Clear(); 5867 5868 PlatformSP platform_sp = GetTarget().GetPlatform(); 5869 if (!platform_sp) 5870 return false; 5871 5872 return platform_sp->GetProcessInfo(GetID(), info); 5873 } 5874 5875 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5876 ThreadCollectionSP threads; 5877 5878 const MemoryHistorySP &memory_history = 5879 MemoryHistory::FindPlugin(shared_from_this()); 5880 5881 if (!memory_history) { 5882 return threads; 5883 } 5884 5885 threads = std::make_shared<ThreadCollection>( 5886 memory_history->GetHistoryThreads(addr)); 5887 5888 return threads; 5889 } 5890 5891 InstrumentationRuntimeSP 5892 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5893 InstrumentationRuntimeCollection::iterator pos; 5894 pos = m_instrumentation_runtimes.find(type); 5895 if (pos == m_instrumentation_runtimes.end()) { 5896 return InstrumentationRuntimeSP(); 5897 } else 5898 return (*pos).second; 5899 } 5900 5901 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5902 const ArchSpec &arch, ModuleSpec &module_spec) { 5903 module_spec.Clear(); 5904 return false; 5905 } 5906 5907 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5908 m_image_tokens.push_back(image_ptr); 5909 return m_image_tokens.size() - 1; 5910 } 5911 5912 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5913 if (token < m_image_tokens.size()) 5914 return m_image_tokens[token]; 5915 return LLDB_INVALID_ADDRESS; 5916 } 5917 5918 void Process::ResetImageToken(size_t token) { 5919 if (token < m_image_tokens.size()) 5920 m_image_tokens[token] = LLDB_INVALID_ADDRESS; 5921 } 5922 5923 Address 5924 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5925 AddressRange range_bounds) { 5926 Target &target = GetTarget(); 5927 DisassemblerSP disassembler_sp; 5928 InstructionList *insn_list = nullptr; 5929 5930 Address retval = default_stop_addr; 5931 5932 if (!target.GetUseFastStepping()) 5933 return retval; 5934 if (!default_stop_addr.IsValid()) 5935 return retval; 5936 5937 const char *plugin_name = nullptr; 5938 const char *flavor = nullptr; 5939 const bool prefer_file_cache = true; 5940 disassembler_sp = Disassembler::DisassembleRange( 5941 target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds, 5942 prefer_file_cache); 5943 if (disassembler_sp) 5944 insn_list = &disassembler_sp->GetInstructionList(); 5945 5946 if (insn_list == nullptr) { 5947 return retval; 5948 } 5949 5950 size_t insn_offset = 5951 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 5952 if (insn_offset == UINT32_MAX) { 5953 return retval; 5954 } 5955 5956 uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction( 5957 insn_offset, false /* ignore_calls*/, nullptr); 5958 if (branch_index == UINT32_MAX) { 5959 return retval; 5960 } 5961 5962 if (branch_index > insn_offset) { 5963 Address next_branch_insn_address = 5964 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 5965 if (next_branch_insn_address.IsValid() && 5966 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 5967 retval = next_branch_insn_address; 5968 } 5969 } 5970 5971 return retval; 5972 } 5973 5974 Status 5975 Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { 5976 5977 Status error; 5978 5979 lldb::addr_t range_end = 0; 5980 5981 region_list.clear(); 5982 do { 5983 lldb_private::MemoryRegionInfo region_info; 5984 error = GetMemoryRegionInfo(range_end, region_info); 5985 // GetMemoryRegionInfo should only return an error if it is unimplemented. 5986 if (error.Fail()) { 5987 region_list.clear(); 5988 break; 5989 } 5990 5991 range_end = region_info.GetRange().GetRangeEnd(); 5992 if (region_info.GetMapped() == MemoryRegionInfo::eYes) { 5993 region_list.push_back(std::move(region_info)); 5994 } 5995 } while (range_end != LLDB_INVALID_ADDRESS); 5996 5997 return error; 5998 } 5999 6000 Status 6001 Process::ConfigureStructuredData(ConstString type_name, 6002 const StructuredData::ObjectSP &config_sp) { 6003 // If you get this, the Process-derived class needs to implement a method to 6004 // enable an already-reported asynchronous structured data feature. See 6005 // ProcessGDBRemote for an example implementation over gdb-remote. 6006 return Status("unimplemented"); 6007 } 6008 6009 void Process::MapSupportedStructuredDataPlugins( 6010 const StructuredData::Array &supported_type_names) { 6011 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 6012 6013 // Bail out early if there are no type names to map. 6014 if (supported_type_names.GetSize() == 0) { 6015 LLDB_LOGF(log, "Process::%s(): no structured data types supported", 6016 __FUNCTION__); 6017 return; 6018 } 6019 6020 // Convert StructuredData type names to ConstString instances. 6021 std::set<ConstString> const_type_names; 6022 6023 LLDB_LOGF(log, 6024 "Process::%s(): the process supports the following async " 6025 "structured data types:", 6026 __FUNCTION__); 6027 6028 supported_type_names.ForEach( 6029 [&const_type_names, &log](StructuredData::Object *object) { 6030 if (!object) { 6031 // Invalid - shouldn't be null objects in the array. 6032 return false; 6033 } 6034 6035 auto type_name = object->GetAsString(); 6036 if (!type_name) { 6037 // Invalid format - all type names should be strings. 6038 return false; 6039 } 6040 6041 const_type_names.insert(ConstString(type_name->GetValue())); 6042 LLDB_LOG(log, "- {0}", type_name->GetValue()); 6043 return true; 6044 }); 6045 6046 // For each StructuredDataPlugin, if the plugin handles any of the types in 6047 // the supported_type_names, map that type name to that plugin. Stop when 6048 // we've consumed all the type names. 6049 // FIXME: should we return an error if there are type names nobody 6050 // supports? 6051 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 6052 auto create_instance = 6053 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 6054 plugin_index); 6055 if (!create_instance) 6056 break; 6057 6058 // Create the plugin. 6059 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 6060 if (!plugin_sp) { 6061 // This plugin doesn't think it can work with the process. Move on to the 6062 // next. 6063 continue; 6064 } 6065 6066 // For any of the remaining type names, map any that this plugin supports. 6067 std::vector<ConstString> names_to_remove; 6068 for (auto &type_name : const_type_names) { 6069 if (plugin_sp->SupportsStructuredDataType(type_name)) { 6070 m_structured_data_plugin_map.insert( 6071 std::make_pair(type_name, plugin_sp)); 6072 names_to_remove.push_back(type_name); 6073 LLDB_LOGF(log, 6074 "Process::%s(): using plugin %s for type name " 6075 "%s", 6076 __FUNCTION__, plugin_sp->GetPluginName().GetCString(), 6077 type_name.GetCString()); 6078 } 6079 } 6080 6081 // Remove the type names that were consumed by this plugin. 6082 for (auto &type_name : names_to_remove) 6083 const_type_names.erase(type_name); 6084 } 6085 } 6086 6087 bool Process::RouteAsyncStructuredData( 6088 const StructuredData::ObjectSP object_sp) { 6089 // Nothing to do if there's no data. 6090 if (!object_sp) 6091 return false; 6092 6093 // The contract is this must be a dictionary, so we can look up the routing 6094 // key via the top-level 'type' string value within the dictionary. 6095 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 6096 if (!dictionary) 6097 return false; 6098 6099 // Grab the async structured type name (i.e. the feature/plugin name). 6100 ConstString type_name; 6101 if (!dictionary->GetValueForKeyAsString("type", type_name)) 6102 return false; 6103 6104 // Check if there's a plugin registered for this type name. 6105 auto find_it = m_structured_data_plugin_map.find(type_name); 6106 if (find_it == m_structured_data_plugin_map.end()) { 6107 // We don't have a mapping for this structured data type. 6108 return false; 6109 } 6110 6111 // Route the structured data to the plugin. 6112 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 6113 return true; 6114 } 6115 6116 Status Process::UpdateAutomaticSignalFiltering() { 6117 // Default implementation does nothign. 6118 // No automatic signal filtering to speak of. 6119 return Status(); 6120 } 6121 6122 UtilityFunction *Process::GetLoadImageUtilityFunction( 6123 Platform *platform, 6124 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 6125 if (platform != GetTarget().GetPlatform().get()) 6126 return nullptr; 6127 llvm::call_once(m_dlopen_utility_func_flag_once, 6128 [&] { m_dlopen_utility_func_up = factory(); }); 6129 return m_dlopen_utility_func_up.get(); 6130 } 6131 6132 bool Process::CallVoidArgVoidPtrReturn(const Address *address, 6133 addr_t &returned_func, 6134 bool trap_exceptions) { 6135 Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); 6136 if (thread == nullptr || address == nullptr) 6137 return false; 6138 6139 EvaluateExpressionOptions options; 6140 options.SetStopOthers(true); 6141 options.SetUnwindOnError(true); 6142 options.SetIgnoreBreakpoints(true); 6143 options.SetTryAllThreads(true); 6144 options.SetDebug(false); 6145 options.SetTimeout(GetUtilityExpressionTimeout()); 6146 options.SetTrapExceptions(trap_exceptions); 6147 6148 auto type_system_or_err = 6149 GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC); 6150 if (!type_system_or_err) { 6151 llvm::consumeError(type_system_or_err.takeError()); 6152 return false; 6153 } 6154 CompilerType void_ptr_type = 6155 type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType(); 6156 lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( 6157 *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); 6158 if (call_plan_sp) { 6159 DiagnosticManager diagnostics; 6160 6161 StackFrame *frame = thread->GetStackFrameAtIndex(0).get(); 6162 if (frame) { 6163 ExecutionContext exe_ctx; 6164 frame->CalculateExecutionContext(exe_ctx); 6165 ExpressionResults result = 6166 RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics); 6167 if (result == eExpressionCompleted) { 6168 returned_func = 6169 call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( 6170 LLDB_INVALID_ADDRESS); 6171 6172 if (GetAddressByteSize() == 4) { 6173 if (returned_func == UINT32_MAX) 6174 return false; 6175 } else if (GetAddressByteSize() == 8) { 6176 if (returned_func == UINT64_MAX) 6177 return false; 6178 } 6179 return true; 6180 } 6181 } 6182 } 6183 6184 return false; 6185 } 6186