1 //===-- Process.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <atomic>
10 #include <memory>
11 #include <mutex>
12 
13 #include "llvm/Support/ScopedPrinter.h"
14 #include "llvm/Support/Threading.h"
15 
16 #include "lldb/Breakpoint/BreakpointLocation.h"
17 #include "lldb/Breakpoint/StoppointCallbackContext.h"
18 #include "lldb/Core/Debugger.h"
19 #include "lldb/Core/Module.h"
20 #include "lldb/Core/ModuleSpec.h"
21 #include "lldb/Core/PluginManager.h"
22 #include "lldb/Core/StreamFile.h"
23 #include "lldb/Expression/DiagnosticManager.h"
24 #include "lldb/Expression/DynamicCheckerFunctions.h"
25 #include "lldb/Expression/UserExpression.h"
26 #include "lldb/Expression/UtilityFunction.h"
27 #include "lldb/Host/ConnectionFileDescriptor.h"
28 #include "lldb/Host/FileSystem.h"
29 #include "lldb/Host/Host.h"
30 #include "lldb/Host/HostInfo.h"
31 #include "lldb/Host/OptionParser.h"
32 #include "lldb/Host/Pipe.h"
33 #include "lldb/Host/Terminal.h"
34 #include "lldb/Host/ThreadLauncher.h"
35 #include "lldb/Interpreter/CommandInterpreter.h"
36 #include "lldb/Interpreter/OptionArgParser.h"
37 #include "lldb/Interpreter/OptionValueProperties.h"
38 #include "lldb/Symbol/Function.h"
39 #include "lldb/Symbol/Symbol.h"
40 #include "lldb/Target/ABI.h"
41 #include "lldb/Target/AssertFrameRecognizer.h"
42 #include "lldb/Target/DynamicLoader.h"
43 #include "lldb/Target/InstrumentationRuntime.h"
44 #include "lldb/Target/JITLoader.h"
45 #include "lldb/Target/JITLoaderList.h"
46 #include "lldb/Target/Language.h"
47 #include "lldb/Target/LanguageRuntime.h"
48 #include "lldb/Target/MemoryHistory.h"
49 #include "lldb/Target/MemoryRegionInfo.h"
50 #include "lldb/Target/OperatingSystem.h"
51 #include "lldb/Target/Platform.h"
52 #include "lldb/Target/Process.h"
53 #include "lldb/Target/RegisterContext.h"
54 #include "lldb/Target/StopInfo.h"
55 #include "lldb/Target/StructuredDataPlugin.h"
56 #include "lldb/Target/SystemRuntime.h"
57 #include "lldb/Target/Target.h"
58 #include "lldb/Target/TargetList.h"
59 #include "lldb/Target/Thread.h"
60 #include "lldb/Target/ThreadPlan.h"
61 #include "lldb/Target/ThreadPlanBase.h"
62 #include "lldb/Target/ThreadPlanCallFunction.h"
63 #include "lldb/Target/ThreadPlanStack.h"
64 #include "lldb/Target/UnixSignals.h"
65 #include "lldb/Utility/Event.h"
66 #include "lldb/Utility/Log.h"
67 #include "lldb/Utility/NameMatches.h"
68 #include "lldb/Utility/ProcessInfo.h"
69 #include "lldb/Utility/SelectHelper.h"
70 #include "lldb/Utility/State.h"
71 #include "lldb/Utility/Timer.h"
72 
73 using namespace lldb;
74 using namespace lldb_private;
75 using namespace std::chrono;
76 
77 // Comment out line below to disable memory caching, overriding the process
78 // setting target.process.disable-memory-cache
79 #define ENABLE_MEMORY_CACHING
80 
81 #ifdef ENABLE_MEMORY_CACHING
82 #define DISABLE_MEM_CACHE_DEFAULT false
83 #else
84 #define DISABLE_MEM_CACHE_DEFAULT true
85 #endif
86 
87 class ProcessOptionValueProperties
88     : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> {
89 public:
90   ProcessOptionValueProperties(ConstString name) : Cloneable(name) {}
91 
92   const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx,
93                                      bool will_modify,
94                                      uint32_t idx) const override {
95     // When getting the value for a key from the process options, we will
96     // always try and grab the setting from the current process if there is
97     // one. Else we just use the one from this instance.
98     if (exe_ctx) {
99       Process *process = exe_ctx->GetProcessPtr();
100       if (process) {
101         ProcessOptionValueProperties *instance_properties =
102             static_cast<ProcessOptionValueProperties *>(
103                 process->GetValueProperties().get());
104         if (this != instance_properties)
105           return instance_properties->ProtectedGetPropertyAtIndex(idx);
106       }
107     }
108     return ProtectedGetPropertyAtIndex(idx);
109   }
110 };
111 
112 #define LLDB_PROPERTIES_process
113 #include "TargetProperties.inc"
114 
115 enum {
116 #define LLDB_PROPERTIES_process
117 #include "TargetPropertiesEnum.inc"
118   ePropertyExperimental,
119 };
120 
121 #define LLDB_PROPERTIES_process_experimental
122 #include "TargetProperties.inc"
123 
124 enum {
125 #define LLDB_PROPERTIES_process_experimental
126 #include "TargetPropertiesEnum.inc"
127 };
128 
129 class ProcessExperimentalOptionValueProperties
130     : public Cloneable<ProcessExperimentalOptionValueProperties,
131                        OptionValueProperties> {
132 public:
133   ProcessExperimentalOptionValueProperties()
134       : Cloneable(
135             ConstString(Properties::GetExperimentalSettingsName())) {}
136 };
137 
138 ProcessExperimentalProperties::ProcessExperimentalProperties()
139     : Properties(OptionValuePropertiesSP(
140           new ProcessExperimentalOptionValueProperties())) {
141   m_collection_sp->Initialize(g_process_experimental_properties);
142 }
143 
144 ProcessProperties::ProcessProperties(lldb_private::Process *process)
145     : Properties(),
146       m_process(process) // Can be nullptr for global ProcessProperties
147 {
148   if (process == nullptr) {
149     // Global process properties, set them up one time
150     m_collection_sp =
151         std::make_shared<ProcessOptionValueProperties>(ConstString("process"));
152     m_collection_sp->Initialize(g_process_properties);
153     m_collection_sp->AppendProperty(
154         ConstString("thread"), ConstString("Settings specific to threads."),
155         true, Thread::GetGlobalProperties()->GetValueProperties());
156   } else {
157     m_collection_sp =
158         OptionValueProperties::CreateLocalCopy(*Process::GetGlobalProperties());
159     m_collection_sp->SetValueChangedCallback(
160         ePropertyPythonOSPluginPath,
161         [this] { m_process->LoadOperatingSystemPlugin(true); });
162   }
163 
164   m_experimental_properties_up =
165       std::make_unique<ProcessExperimentalProperties>();
166   m_collection_sp->AppendProperty(
167       ConstString(Properties::GetExperimentalSettingsName()),
168       ConstString("Experimental settings - setting these won't produce "
169                   "errors if the setting is not present."),
170       true, m_experimental_properties_up->GetValueProperties());
171 }
172 
173 ProcessProperties::~ProcessProperties() = default;
174 
175 bool ProcessProperties::GetDisableMemoryCache() const {
176   const uint32_t idx = ePropertyDisableMemCache;
177   return m_collection_sp->GetPropertyAtIndexAsBoolean(
178       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
179 }
180 
181 uint64_t ProcessProperties::GetMemoryCacheLineSize() const {
182   const uint32_t idx = ePropertyMemCacheLineSize;
183   return m_collection_sp->GetPropertyAtIndexAsUInt64(
184       nullptr, idx, g_process_properties[idx].default_uint_value);
185 }
186 
187 Args ProcessProperties::GetExtraStartupCommands() const {
188   Args args;
189   const uint32_t idx = ePropertyExtraStartCommand;
190   m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args);
191   return args;
192 }
193 
194 void ProcessProperties::SetExtraStartupCommands(const Args &args) {
195   const uint32_t idx = ePropertyExtraStartCommand;
196   m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args);
197 }
198 
199 FileSpec ProcessProperties::GetPythonOSPluginPath() const {
200   const uint32_t idx = ePropertyPythonOSPluginPath;
201   return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx);
202 }
203 
204 uint32_t ProcessProperties::GetVirtualAddressableBits() const {
205   const uint32_t idx = ePropertyVirtualAddressableBits;
206   return m_collection_sp->GetPropertyAtIndexAsUInt64(
207       nullptr, idx, g_process_properties[idx].default_uint_value);
208 }
209 
210 void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) {
211   const uint32_t idx = ePropertyVirtualAddressableBits;
212   m_collection_sp->SetPropertyAtIndexAsUInt64(nullptr, idx, bits);
213 }
214 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) {
215   const uint32_t idx = ePropertyPythonOSPluginPath;
216   m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file);
217 }
218 
219 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const {
220   const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
221   return m_collection_sp->GetPropertyAtIndexAsBoolean(
222       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
223 }
224 
225 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) {
226   const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
227   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore);
228 }
229 
230 bool ProcessProperties::GetUnwindOnErrorInExpressions() const {
231   const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
232   return m_collection_sp->GetPropertyAtIndexAsBoolean(
233       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
234 }
235 
236 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) {
237   const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
238   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore);
239 }
240 
241 bool ProcessProperties::GetStopOnSharedLibraryEvents() const {
242   const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
243   return m_collection_sp->GetPropertyAtIndexAsBoolean(
244       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
245 }
246 
247 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) {
248   const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
249   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop);
250 }
251 
252 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const {
253   const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
254   return m_collection_sp->GetPropertyAtIndexAsBoolean(
255       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
256 }
257 
258 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) {
259   const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
260   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, disable);
261   m_process->Flush();
262 }
263 
264 bool ProcessProperties::GetDetachKeepsStopped() const {
265   const uint32_t idx = ePropertyDetachKeepsStopped;
266   return m_collection_sp->GetPropertyAtIndexAsBoolean(
267       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
268 }
269 
270 void ProcessProperties::SetDetachKeepsStopped(bool stop) {
271   const uint32_t idx = ePropertyDetachKeepsStopped;
272   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop);
273 }
274 
275 bool ProcessProperties::GetWarningsOptimization() const {
276   const uint32_t idx = ePropertyWarningOptimization;
277   return m_collection_sp->GetPropertyAtIndexAsBoolean(
278       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
279 }
280 
281 bool ProcessProperties::GetWarningsUnsupportedLanguage() const {
282   const uint32_t idx = ePropertyWarningUnsupportedLanguage;
283   return m_collection_sp->GetPropertyAtIndexAsBoolean(
284       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
285 }
286 
287 bool ProcessProperties::GetStopOnExec() const {
288   const uint32_t idx = ePropertyStopOnExec;
289   return m_collection_sp->GetPropertyAtIndexAsBoolean(
290       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
291 }
292 
293 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const {
294   const uint32_t idx = ePropertyUtilityExpressionTimeout;
295   uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64(
296       nullptr, idx, g_process_properties[idx].default_uint_value);
297   return std::chrono::seconds(value);
298 }
299 
300 bool ProcessProperties::GetSteppingRunsAllThreads() const {
301   const uint32_t idx = ePropertySteppingRunsAllThreads;
302   return m_collection_sp->GetPropertyAtIndexAsBoolean(
303       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
304 }
305 
306 bool ProcessProperties::GetOSPluginReportsAllThreads() const {
307   const bool fail_value = true;
308   const Property *exp_property =
309       m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental);
310   OptionValueProperties *exp_values =
311       exp_property->GetValue()->GetAsProperties();
312   if (!exp_values)
313     return fail_value;
314 
315   return exp_values->GetPropertyAtIndexAsBoolean(
316       nullptr, ePropertyOSPluginReportsAllThreads, fail_value);
317 }
318 
319 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) {
320   const Property *exp_property =
321       m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental);
322   OptionValueProperties *exp_values =
323       exp_property->GetValue()->GetAsProperties();
324   if (exp_values)
325     exp_values->SetPropertyAtIndexAsBoolean(
326         nullptr, ePropertyOSPluginReportsAllThreads, does_report);
327 }
328 
329 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp,
330                               llvm::StringRef plugin_name,
331                               ListenerSP listener_sp,
332                               const FileSpec *crash_file_path,
333                               bool can_connect) {
334   static uint32_t g_process_unique_id = 0;
335 
336   ProcessSP process_sp;
337   ProcessCreateInstance create_callback = nullptr;
338   if (!plugin_name.empty()) {
339     ConstString const_plugin_name(plugin_name);
340     create_callback =
341         PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name);
342     if (create_callback) {
343       process_sp = create_callback(target_sp, listener_sp, crash_file_path,
344                                    can_connect);
345       if (process_sp) {
346         if (process_sp->CanDebug(target_sp, true)) {
347           process_sp->m_process_unique_id = ++g_process_unique_id;
348         } else
349           process_sp.reset();
350       }
351     }
352   } else {
353     for (uint32_t idx = 0;
354          (create_callback =
355               PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr;
356          ++idx) {
357       process_sp = create_callback(target_sp, listener_sp, crash_file_path,
358                                    can_connect);
359       if (process_sp) {
360         if (process_sp->CanDebug(target_sp, false)) {
361           process_sp->m_process_unique_id = ++g_process_unique_id;
362           break;
363         } else
364           process_sp.reset();
365       }
366     }
367   }
368   return process_sp;
369 }
370 
371 ConstString &Process::GetStaticBroadcasterClass() {
372   static ConstString class_name("lldb.process");
373   return class_name;
374 }
375 
376 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp)
377     : Process(target_sp, listener_sp,
378               UnixSignals::Create(HostInfo::GetArchitecture())) {
379   // This constructor just delegates to the full Process constructor,
380   // defaulting to using the Host's UnixSignals.
381 }
382 
383 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp,
384                  const UnixSignalsSP &unix_signals_sp)
385     : ProcessProperties(this),
386       Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()),
387                   Process::GetStaticBroadcasterClass().AsCString()),
388       m_target_wp(target_sp), m_public_state(eStateUnloaded),
389       m_private_state(eStateUnloaded),
390       m_private_state_broadcaster(nullptr,
391                                   "lldb.process.internal_state_broadcaster"),
392       m_private_state_control_broadcaster(
393           nullptr, "lldb.process.internal_state_control_broadcaster"),
394       m_private_state_listener_sp(
395           Listener::MakeListener("lldb.process.internal_state_listener")),
396       m_mod_id(), m_process_unique_id(0), m_thread_index_id(0),
397       m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(),
398       m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this),
399       m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this),
400       m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0),
401       m_notifications(), m_image_tokens(), m_listener_sp(listener_sp),
402       m_breakpoint_site_list(), m_dynamic_checkers_up(),
403       m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(),
404       m_stdio_communication("process.stdio"), m_stdio_communication_mutex(),
405       m_stdin_forward(false), m_stdout_data(), m_stderr_data(),
406       m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0),
407       m_memory_cache(*this), m_allocated_memory_cache(*this),
408       m_should_detach(false), m_next_event_action_up(), m_public_run_lock(),
409       m_private_run_lock(), m_finalizing(false),
410       m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false),
411       m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false),
412       m_can_interpret_function_calls(false), m_warnings_issued(),
413       m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) {
414   CheckInWithManager();
415 
416   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT));
417   LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this));
418 
419   if (!m_unix_signals_sp)
420     m_unix_signals_sp = std::make_shared<UnixSignals>();
421 
422   SetEventName(eBroadcastBitStateChanged, "state-changed");
423   SetEventName(eBroadcastBitInterrupt, "interrupt");
424   SetEventName(eBroadcastBitSTDOUT, "stdout-available");
425   SetEventName(eBroadcastBitSTDERR, "stderr-available");
426   SetEventName(eBroadcastBitProfileData, "profile-data-available");
427   SetEventName(eBroadcastBitStructuredData, "structured-data-available");
428 
429   m_private_state_control_broadcaster.SetEventName(
430       eBroadcastInternalStateControlStop, "control-stop");
431   m_private_state_control_broadcaster.SetEventName(
432       eBroadcastInternalStateControlPause, "control-pause");
433   m_private_state_control_broadcaster.SetEventName(
434       eBroadcastInternalStateControlResume, "control-resume");
435 
436   m_listener_sp->StartListeningForEvents(
437       this, eBroadcastBitStateChanged | eBroadcastBitInterrupt |
438                 eBroadcastBitSTDOUT | eBroadcastBitSTDERR |
439                 eBroadcastBitProfileData | eBroadcastBitStructuredData);
440 
441   m_private_state_listener_sp->StartListeningForEvents(
442       &m_private_state_broadcaster,
443       eBroadcastBitStateChanged | eBroadcastBitInterrupt);
444 
445   m_private_state_listener_sp->StartListeningForEvents(
446       &m_private_state_control_broadcaster,
447       eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause |
448           eBroadcastInternalStateControlResume);
449   // We need something valid here, even if just the default UnixSignalsSP.
450   assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization");
451 
452   // Allow the platform to override the default cache line size
453   OptionValueSP value_sp =
454       m_collection_sp
455           ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize)
456           ->GetValue();
457   uint32_t platform_cache_line_size =
458       target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize();
459   if (!value_sp->OptionWasSet() && platform_cache_line_size != 0)
460     value_sp->SetUInt64Value(platform_cache_line_size);
461 
462   RegisterAssertFrameRecognizer(this);
463 }
464 
465 Process::~Process() {
466   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT));
467   LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this));
468   StopPrivateStateThread();
469 
470   // ThreadList::Clear() will try to acquire this process's mutex, so
471   // explicitly clear the thread list here to ensure that the mutex is not
472   // destroyed before the thread list.
473   m_thread_list.Clear();
474 }
475 
476 const ProcessPropertiesSP &Process::GetGlobalProperties() {
477   // NOTE: intentional leak so we don't crash if global destructor chain gets
478   // called as other threads still use the result of this function
479   static ProcessPropertiesSP *g_settings_sp_ptr =
480       new ProcessPropertiesSP(new ProcessProperties(nullptr));
481   return *g_settings_sp_ptr;
482 }
483 
484 void Process::Finalize() {
485   if (m_finalizing.exchange(true))
486     return;
487 
488   // Destroy this process if needed
489   switch (GetPrivateState()) {
490   case eStateConnected:
491   case eStateAttaching:
492   case eStateLaunching:
493   case eStateStopped:
494   case eStateRunning:
495   case eStateStepping:
496   case eStateCrashed:
497   case eStateSuspended:
498     DestroyImpl(false);
499     break;
500 
501   case eStateInvalid:
502   case eStateUnloaded:
503   case eStateDetached:
504   case eStateExited:
505     break;
506   }
507 
508   // Clear our broadcaster before we proceed with destroying
509   Broadcaster::Clear();
510 
511   // Do any cleanup needed prior to being destructed... Subclasses that
512   // override this method should call this superclass method as well.
513 
514   // We need to destroy the loader before the derived Process class gets
515   // destroyed since it is very likely that undoing the loader will require
516   // access to the real process.
517   m_dynamic_checkers_up.reset();
518   m_abi_sp.reset();
519   m_os_up.reset();
520   m_system_runtime_up.reset();
521   m_dyld_up.reset();
522   m_jit_loaders_up.reset();
523   m_thread_plans.Clear();
524   m_thread_list_real.Destroy();
525   m_thread_list.Destroy();
526   m_extended_thread_list.Destroy();
527   m_queue_list.Clear();
528   m_queue_list_stop_id = 0;
529   std::vector<Notifications> empty_notifications;
530   m_notifications.swap(empty_notifications);
531   m_image_tokens.clear();
532   m_memory_cache.Clear();
533   m_allocated_memory_cache.Clear();
534   {
535     std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
536     m_language_runtimes.clear();
537   }
538   m_instrumentation_runtimes.clear();
539   m_next_event_action_up.reset();
540   // Clear the last natural stop ID since it has a strong reference to this
541   // process
542   m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
543   //#ifdef LLDB_CONFIGURATION_DEBUG
544   //    StreamFile s(stdout, false);
545   //    EventSP event_sp;
546   //    while (m_private_state_listener_sp->GetNextEvent(event_sp))
547   //    {
548   //        event_sp->Dump (&s);
549   //        s.EOL();
550   //    }
551   //#endif
552   // We have to be very careful here as the m_private_state_listener might
553   // contain events that have ProcessSP values in them which can keep this
554   // process around forever. These events need to be cleared out.
555   m_private_state_listener_sp->Clear();
556   m_public_run_lock.TrySetRunning(); // This will do nothing if already locked
557   m_public_run_lock.SetStopped();
558   m_private_run_lock.TrySetRunning(); // This will do nothing if already locked
559   m_private_run_lock.SetStopped();
560   m_structured_data_plugin_map.clear();
561 }
562 
563 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) {
564   m_notifications.push_back(callbacks);
565   if (callbacks.initialize != nullptr)
566     callbacks.initialize(callbacks.baton, this);
567 }
568 
569 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) {
570   std::vector<Notifications>::iterator pos, end = m_notifications.end();
571   for (pos = m_notifications.begin(); pos != end; ++pos) {
572     if (pos->baton == callbacks.baton &&
573         pos->initialize == callbacks.initialize &&
574         pos->process_state_changed == callbacks.process_state_changed) {
575       m_notifications.erase(pos);
576       return true;
577     }
578   }
579   return false;
580 }
581 
582 void Process::SynchronouslyNotifyStateChanged(StateType state) {
583   std::vector<Notifications>::iterator notification_pos,
584       notification_end = m_notifications.end();
585   for (notification_pos = m_notifications.begin();
586        notification_pos != notification_end; ++notification_pos) {
587     if (notification_pos->process_state_changed)
588       notification_pos->process_state_changed(notification_pos->baton, this,
589                                               state);
590   }
591 }
592 
593 // FIXME: We need to do some work on events before the general Listener sees
594 // them.
595 // For instance if we are continuing from a breakpoint, we need to ensure that
596 // we do the little "insert real insn, step & stop" trick.  But we can't do
597 // that when the event is delivered by the broadcaster - since that is done on
598 // the thread that is waiting for new events, so if we needed more than one
599 // event for our handling, we would stall.  So instead we do it when we fetch
600 // the event off of the queue.
601 //
602 
603 StateType Process::GetNextEvent(EventSP &event_sp) {
604   StateType state = eStateInvalid;
605 
606   if (m_listener_sp->GetEventForBroadcaster(this, event_sp,
607                                             std::chrono::seconds(0)) &&
608       event_sp)
609     state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
610 
611   return state;
612 }
613 
614 void Process::SyncIOHandler(uint32_t iohandler_id,
615                             const Timeout<std::micro> &timeout) {
616   // don't sync (potentially context switch) in case where there is no process
617   // IO
618   if (!m_process_input_reader)
619     return;
620 
621   auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout);
622 
623   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
624   if (Result) {
625     LLDB_LOG(
626         log,
627         "waited from m_iohandler_sync to change from {0}. New value is {1}.",
628         iohandler_id, *Result);
629   } else {
630     LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.",
631              iohandler_id);
632   }
633 }
634 
635 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout,
636                                         EventSP *event_sp_ptr, bool wait_always,
637                                         ListenerSP hijack_listener_sp,
638                                         Stream *stream, bool use_run_lock) {
639   // We can't just wait for a "stopped" event, because the stopped event may
640   // have restarted the target. We have to actually check each event, and in
641   // the case of a stopped event check the restarted flag on the event.
642   if (event_sp_ptr)
643     event_sp_ptr->reset();
644   StateType state = GetState();
645   // If we are exited or detached, we won't ever get back to any other valid
646   // state...
647   if (state == eStateDetached || state == eStateExited)
648     return state;
649 
650   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
651   LLDB_LOG(log, "timeout = {0}", timeout);
652 
653   if (!wait_always && StateIsStoppedState(state, true) &&
654       StateIsStoppedState(GetPrivateState(), true)) {
655     LLDB_LOGF(log,
656               "Process::%s returning without waiting for events; process "
657               "private and public states are already 'stopped'.",
658               __FUNCTION__);
659     // We need to toggle the run lock as this won't get done in
660     // SetPublicState() if the process is hijacked.
661     if (hijack_listener_sp && use_run_lock)
662       m_public_run_lock.SetStopped();
663     return state;
664   }
665 
666   while (state != eStateInvalid) {
667     EventSP event_sp;
668     state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp);
669     if (event_sp_ptr && event_sp)
670       *event_sp_ptr = event_sp;
671 
672     bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr);
673     Process::HandleProcessStateChangedEvent(event_sp, stream,
674                                             pop_process_io_handler);
675 
676     switch (state) {
677     case eStateCrashed:
678     case eStateDetached:
679     case eStateExited:
680     case eStateUnloaded:
681       // We need to toggle the run lock as this won't get done in
682       // SetPublicState() if the process is hijacked.
683       if (hijack_listener_sp && use_run_lock)
684         m_public_run_lock.SetStopped();
685       return state;
686     case eStateStopped:
687       if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get()))
688         continue;
689       else {
690         // We need to toggle the run lock as this won't get done in
691         // SetPublicState() if the process is hijacked.
692         if (hijack_listener_sp && use_run_lock)
693           m_public_run_lock.SetStopped();
694         return state;
695       }
696     default:
697       continue;
698     }
699   }
700   return state;
701 }
702 
703 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp,
704                                              Stream *stream,
705                                              bool &pop_process_io_handler) {
706   const bool handle_pop = pop_process_io_handler;
707 
708   pop_process_io_handler = false;
709   ProcessSP process_sp =
710       Process::ProcessEventData::GetProcessFromEvent(event_sp.get());
711 
712   if (!process_sp)
713     return false;
714 
715   StateType event_state =
716       Process::ProcessEventData::GetStateFromEvent(event_sp.get());
717   if (event_state == eStateInvalid)
718     return false;
719 
720   switch (event_state) {
721   case eStateInvalid:
722   case eStateUnloaded:
723   case eStateAttaching:
724   case eStateLaunching:
725   case eStateStepping:
726   case eStateDetached:
727     if (stream)
728       stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(),
729                      StateAsCString(event_state));
730     if (event_state == eStateDetached)
731       pop_process_io_handler = true;
732     break;
733 
734   case eStateConnected:
735   case eStateRunning:
736     // Don't be chatty when we run...
737     break;
738 
739   case eStateExited:
740     if (stream)
741       process_sp->GetStatus(*stream);
742     pop_process_io_handler = true;
743     break;
744 
745   case eStateStopped:
746   case eStateCrashed:
747   case eStateSuspended:
748     // Make sure the program hasn't been auto-restarted:
749     if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
750       if (stream) {
751         size_t num_reasons =
752             Process::ProcessEventData::GetNumRestartedReasons(event_sp.get());
753         if (num_reasons > 0) {
754           // FIXME: Do we want to report this, or would that just be annoyingly
755           // chatty?
756           if (num_reasons == 1) {
757             const char *reason =
758                 Process::ProcessEventData::GetRestartedReasonAtIndex(
759                     event_sp.get(), 0);
760             stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n",
761                            process_sp->GetID(),
762                            reason ? reason : "<UNKNOWN REASON>");
763           } else {
764             stream->Printf("Process %" PRIu64
765                            " stopped and restarted, reasons:\n",
766                            process_sp->GetID());
767 
768             for (size_t i = 0; i < num_reasons; i++) {
769               const char *reason =
770                   Process::ProcessEventData::GetRestartedReasonAtIndex(
771                       event_sp.get(), i);
772               stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>");
773             }
774           }
775         }
776       }
777     } else {
778       StopInfoSP curr_thread_stop_info_sp;
779       // Lock the thread list so it doesn't change on us, this is the scope for
780       // the locker:
781       {
782         ThreadList &thread_list = process_sp->GetThreadList();
783         std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex());
784 
785         ThreadSP curr_thread(thread_list.GetSelectedThread());
786         ThreadSP thread;
787         StopReason curr_thread_stop_reason = eStopReasonInvalid;
788         if (curr_thread) {
789           curr_thread_stop_reason = curr_thread->GetStopReason();
790           curr_thread_stop_info_sp = curr_thread->GetStopInfo();
791         }
792         if (!curr_thread || !curr_thread->IsValid() ||
793             curr_thread_stop_reason == eStopReasonInvalid ||
794             curr_thread_stop_reason == eStopReasonNone) {
795           // Prefer a thread that has just completed its plan over another
796           // thread as current thread.
797           ThreadSP plan_thread;
798           ThreadSP other_thread;
799 
800           const size_t num_threads = thread_list.GetSize();
801           size_t i;
802           for (i = 0; i < num_threads; ++i) {
803             thread = thread_list.GetThreadAtIndex(i);
804             StopReason thread_stop_reason = thread->GetStopReason();
805             switch (thread_stop_reason) {
806             case eStopReasonInvalid:
807             case eStopReasonNone:
808               break;
809 
810             case eStopReasonSignal: {
811               // Don't select a signal thread if we weren't going to stop at
812               // that signal.  We have to have had another reason for stopping
813               // here, and the user doesn't want to see this thread.
814               uint64_t signo = thread->GetStopInfo()->GetValue();
815               if (process_sp->GetUnixSignals()->GetShouldStop(signo)) {
816                 if (!other_thread)
817                   other_thread = thread;
818               }
819               break;
820             }
821             case eStopReasonTrace:
822             case eStopReasonBreakpoint:
823             case eStopReasonWatchpoint:
824             case eStopReasonException:
825             case eStopReasonExec:
826             case eStopReasonFork:
827             case eStopReasonVFork:
828             case eStopReasonVForkDone:
829             case eStopReasonThreadExiting:
830             case eStopReasonInstrumentation:
831             case eStopReasonProcessorTrace:
832               if (!other_thread)
833                 other_thread = thread;
834               break;
835             case eStopReasonPlanComplete:
836               if (!plan_thread)
837                 plan_thread = thread;
838               break;
839             }
840           }
841           if (plan_thread)
842             thread_list.SetSelectedThreadByID(plan_thread->GetID());
843           else if (other_thread)
844             thread_list.SetSelectedThreadByID(other_thread->GetID());
845           else {
846             if (curr_thread && curr_thread->IsValid())
847               thread = curr_thread;
848             else
849               thread = thread_list.GetThreadAtIndex(0);
850 
851             if (thread)
852               thread_list.SetSelectedThreadByID(thread->GetID());
853           }
854         }
855       }
856       // Drop the ThreadList mutex by here, since GetThreadStatus below might
857       // have to run code, e.g. for Data formatters, and if we hold the
858       // ThreadList mutex, then the process is going to have a hard time
859       // restarting the process.
860       if (stream) {
861         Debugger &debugger = process_sp->GetTarget().GetDebugger();
862         if (debugger.GetTargetList().GetSelectedTarget().get() ==
863             &process_sp->GetTarget()) {
864           ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread();
865 
866           if (!thread_sp || !thread_sp->IsValid())
867             return false;
868 
869           const bool only_threads_with_stop_reason = true;
870           const uint32_t start_frame = thread_sp->GetSelectedFrameIndex();
871           const uint32_t num_frames = 1;
872           const uint32_t num_frames_with_source = 1;
873           const bool stop_format = true;
874 
875           process_sp->GetStatus(*stream);
876           process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason,
877                                       start_frame, num_frames,
878                                       num_frames_with_source,
879                                       stop_format);
880           if (curr_thread_stop_info_sp) {
881             lldb::addr_t crashing_address;
882             ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference(
883                 curr_thread_stop_info_sp, &crashing_address);
884             if (valobj_sp) {
885               const ValueObject::GetExpressionPathFormat format =
886                   ValueObject::GetExpressionPathFormat::
887                       eGetExpressionPathFormatHonorPointers;
888               stream->PutCString("Likely cause: ");
889               valobj_sp->GetExpressionPath(*stream, format);
890               stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address);
891             }
892           }
893         } else {
894           uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget(
895               process_sp->GetTarget().shared_from_this());
896           if (target_idx != UINT32_MAX)
897             stream->Printf("Target %d: (", target_idx);
898           else
899             stream->Printf("Target <unknown index>: (");
900           process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief);
901           stream->Printf(") stopped.\n");
902         }
903       }
904 
905       // Pop the process IO handler
906       pop_process_io_handler = true;
907     }
908     break;
909   }
910 
911   if (handle_pop && pop_process_io_handler)
912     process_sp->PopProcessIOHandler();
913 
914   return true;
915 }
916 
917 bool Process::HijackProcessEvents(ListenerSP listener_sp) {
918   if (listener_sp) {
919     return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged |
920                                               eBroadcastBitInterrupt);
921   } else
922     return false;
923 }
924 
925 void Process::RestoreProcessEvents() { RestoreBroadcaster(); }
926 
927 StateType Process::GetStateChangedEvents(EventSP &event_sp,
928                                          const Timeout<std::micro> &timeout,
929                                          ListenerSP hijack_listener_sp) {
930   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
931   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
932 
933   ListenerSP listener_sp = hijack_listener_sp;
934   if (!listener_sp)
935     listener_sp = m_listener_sp;
936 
937   StateType state = eStateInvalid;
938   if (listener_sp->GetEventForBroadcasterWithType(
939           this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
940           timeout)) {
941     if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
942       state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
943     else
944       LLDB_LOG(log, "got no event or was interrupted.");
945   }
946 
947   LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state);
948   return state;
949 }
950 
951 Event *Process::PeekAtStateChangedEvents() {
952   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
953 
954   LLDB_LOGF(log, "Process::%s...", __FUNCTION__);
955 
956   Event *event_ptr;
957   event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType(
958       this, eBroadcastBitStateChanged);
959   if (log) {
960     if (event_ptr) {
961       LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__,
962                 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr)));
963     } else {
964       LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__);
965     }
966   }
967   return event_ptr;
968 }
969 
970 StateType
971 Process::GetStateChangedEventsPrivate(EventSP &event_sp,
972                                       const Timeout<std::micro> &timeout) {
973   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
974   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
975 
976   StateType state = eStateInvalid;
977   if (m_private_state_listener_sp->GetEventForBroadcasterWithType(
978           &m_private_state_broadcaster,
979           eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
980           timeout))
981     if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
982       state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
983 
984   LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout,
985            state == eStateInvalid ? "TIMEOUT" : StateAsCString(state));
986   return state;
987 }
988 
989 bool Process::GetEventsPrivate(EventSP &event_sp,
990                                const Timeout<std::micro> &timeout,
991                                bool control_only) {
992   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
993   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
994 
995   if (control_only)
996     return m_private_state_listener_sp->GetEventForBroadcaster(
997         &m_private_state_control_broadcaster, event_sp, timeout);
998   else
999     return m_private_state_listener_sp->GetEvent(event_sp, timeout);
1000 }
1001 
1002 bool Process::IsRunning() const {
1003   return StateIsRunningState(m_public_state.GetValue());
1004 }
1005 
1006 int Process::GetExitStatus() {
1007   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1008 
1009   if (m_public_state.GetValue() == eStateExited)
1010     return m_exit_status;
1011   return -1;
1012 }
1013 
1014 const char *Process::GetExitDescription() {
1015   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1016 
1017   if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty())
1018     return m_exit_string.c_str();
1019   return nullptr;
1020 }
1021 
1022 bool Process::SetExitStatus(int status, const char *cstr) {
1023   // Use a mutex to protect setting the exit status.
1024   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1025 
1026   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1027                                                   LIBLLDB_LOG_PROCESS));
1028   LLDB_LOGF(
1029       log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)",
1030       status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : "");
1031 
1032   // We were already in the exited state
1033   if (m_private_state.GetValue() == eStateExited) {
1034     LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because "
1035                    "state was already set to eStateExited");
1036     return false;
1037   }
1038 
1039   m_exit_status = status;
1040   if (cstr)
1041     m_exit_string = cstr;
1042   else
1043     m_exit_string.clear();
1044 
1045   // Clear the last natural stop ID since it has a strong reference to this
1046   // process
1047   m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
1048 
1049   SetPrivateState(eStateExited);
1050 
1051   // Allow subclasses to do some cleanup
1052   DidExit();
1053 
1054   return true;
1055 }
1056 
1057 bool Process::IsAlive() {
1058   switch (m_private_state.GetValue()) {
1059   case eStateConnected:
1060   case eStateAttaching:
1061   case eStateLaunching:
1062   case eStateStopped:
1063   case eStateRunning:
1064   case eStateStepping:
1065   case eStateCrashed:
1066   case eStateSuspended:
1067     return true;
1068   default:
1069     return false;
1070   }
1071 }
1072 
1073 // This static callback can be used to watch for local child processes on the
1074 // current host. The child process exits, the process will be found in the
1075 // global target list (we want to be completely sure that the
1076 // lldb_private::Process doesn't go away before we can deliver the signal.
1077 bool Process::SetProcessExitStatus(
1078     lldb::pid_t pid, bool exited,
1079     int signo,      // Zero for no signal
1080     int exit_status // Exit value of process if signal is zero
1081     ) {
1082   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
1083   LLDB_LOGF(log,
1084             "Process::SetProcessExitStatus (pid=%" PRIu64
1085             ", exited=%i, signal=%i, exit_status=%i)\n",
1086             pid, exited, signo, exit_status);
1087 
1088   if (exited) {
1089     TargetSP target_sp(Debugger::FindTargetWithProcessID(pid));
1090     if (target_sp) {
1091       ProcessSP process_sp(target_sp->GetProcessSP());
1092       if (process_sp) {
1093         const char *signal_cstr = nullptr;
1094         if (signo)
1095           signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo);
1096 
1097         process_sp->SetExitStatus(exit_status, signal_cstr);
1098       }
1099     }
1100     return true;
1101   }
1102   return false;
1103 }
1104 
1105 bool Process::UpdateThreadList(ThreadList &old_thread_list,
1106                                ThreadList &new_thread_list) {
1107   m_thread_plans.ClearThreadCache();
1108   return DoUpdateThreadList(old_thread_list, new_thread_list);
1109 }
1110 
1111 void Process::UpdateThreadListIfNeeded() {
1112   const uint32_t stop_id = GetStopID();
1113   if (m_thread_list.GetSize(false) == 0 ||
1114       stop_id != m_thread_list.GetStopID()) {
1115     bool clear_unused_threads = true;
1116     const StateType state = GetPrivateState();
1117     if (StateIsStoppedState(state, true)) {
1118       std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex());
1119       m_thread_list.SetStopID(stop_id);
1120 
1121       // m_thread_list does have its own mutex, but we need to hold onto the
1122       // mutex between the call to UpdateThreadList(...) and the
1123       // os->UpdateThreadList(...) so it doesn't change on us
1124       ThreadList &old_thread_list = m_thread_list;
1125       ThreadList real_thread_list(this);
1126       ThreadList new_thread_list(this);
1127       // Always update the thread list with the protocol specific thread list,
1128       // but only update if "true" is returned
1129       if (UpdateThreadList(m_thread_list_real, real_thread_list)) {
1130         // Don't call into the OperatingSystem to update the thread list if we
1131         // are shutting down, since that may call back into the SBAPI's,
1132         // requiring the API lock which is already held by whoever is shutting
1133         // us down, causing a deadlock.
1134         OperatingSystem *os = GetOperatingSystem();
1135         if (os && !m_destroy_in_process) {
1136           // Clear any old backing threads where memory threads might have been
1137           // backed by actual threads from the lldb_private::Process subclass
1138           size_t num_old_threads = old_thread_list.GetSize(false);
1139           for (size_t i = 0; i < num_old_threads; ++i)
1140             old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread();
1141           // See if the OS plugin reports all threads.  If it does, then
1142           // it is safe to clear unseen thread's plans here.  Otherwise we
1143           // should preserve them in case they show up again:
1144           clear_unused_threads = GetOSPluginReportsAllThreads();
1145 
1146           // Turn off dynamic types to ensure we don't run any expressions.
1147           // Objective-C can run an expression to determine if a SBValue is a
1148           // dynamic type or not and we need to avoid this. OperatingSystem
1149           // plug-ins can't run expressions that require running code...
1150 
1151           Target &target = GetTarget();
1152           const lldb::DynamicValueType saved_prefer_dynamic =
1153               target.GetPreferDynamicValue();
1154           if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1155             target.SetPreferDynamicValue(lldb::eNoDynamicValues);
1156 
1157           // Now let the OperatingSystem plug-in update the thread list
1158 
1159           os->UpdateThreadList(
1160               old_thread_list, // Old list full of threads created by OS plug-in
1161               real_thread_list, // The actual thread list full of threads
1162                                 // created by each lldb_private::Process
1163                                 // subclass
1164               new_thread_list); // The new thread list that we will show to the
1165                                 // user that gets filled in
1166 
1167           if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1168             target.SetPreferDynamicValue(saved_prefer_dynamic);
1169         } else {
1170           // No OS plug-in, the new thread list is the same as the real thread
1171           // list.
1172           new_thread_list = real_thread_list;
1173         }
1174 
1175         m_thread_list_real.Update(real_thread_list);
1176         m_thread_list.Update(new_thread_list);
1177         m_thread_list.SetStopID(stop_id);
1178 
1179         if (GetLastNaturalStopID() != m_extended_thread_stop_id) {
1180           // Clear any extended threads that we may have accumulated previously
1181           m_extended_thread_list.Clear();
1182           m_extended_thread_stop_id = GetLastNaturalStopID();
1183 
1184           m_queue_list.Clear();
1185           m_queue_list_stop_id = GetLastNaturalStopID();
1186         }
1187       }
1188       // Now update the plan stack map.
1189       // If we do have an OS plugin, any absent real threads in the
1190       // m_thread_list have already been removed from the ThreadPlanStackMap.
1191       // So any remaining threads are OS Plugin threads, and those we want to
1192       // preserve in case they show up again.
1193       m_thread_plans.Update(m_thread_list, clear_unused_threads);
1194     }
1195   }
1196 }
1197 
1198 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) {
1199   return m_thread_plans.Find(tid);
1200 }
1201 
1202 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) {
1203   return m_thread_plans.PrunePlansForTID(tid);
1204 }
1205 
1206 void Process::PruneThreadPlans() {
1207   m_thread_plans.Update(GetThreadList(), true, false);
1208 }
1209 
1210 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid,
1211                                     lldb::DescriptionLevel desc_level,
1212                                     bool internal, bool condense_trivial,
1213                                     bool skip_unreported_plans) {
1214   return m_thread_plans.DumpPlansForTID(
1215       strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans);
1216 }
1217 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level,
1218                               bool internal, bool condense_trivial,
1219                               bool skip_unreported_plans) {
1220   m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial,
1221                            skip_unreported_plans);
1222 }
1223 
1224 void Process::UpdateQueueListIfNeeded() {
1225   if (m_system_runtime_up) {
1226     if (m_queue_list.GetSize() == 0 ||
1227         m_queue_list_stop_id != GetLastNaturalStopID()) {
1228       const StateType state = GetPrivateState();
1229       if (StateIsStoppedState(state, true)) {
1230         m_system_runtime_up->PopulateQueueList(m_queue_list);
1231         m_queue_list_stop_id = GetLastNaturalStopID();
1232       }
1233     }
1234   }
1235 }
1236 
1237 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) {
1238   OperatingSystem *os = GetOperatingSystem();
1239   if (os)
1240     return os->CreateThread(tid, context);
1241   return ThreadSP();
1242 }
1243 
1244 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) {
1245   return AssignIndexIDToThread(thread_id);
1246 }
1247 
1248 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) {
1249   return (m_thread_id_to_index_id_map.find(thread_id) !=
1250           m_thread_id_to_index_id_map.end());
1251 }
1252 
1253 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) {
1254   uint32_t result = 0;
1255   std::map<uint64_t, uint32_t>::iterator iterator =
1256       m_thread_id_to_index_id_map.find(thread_id);
1257   if (iterator == m_thread_id_to_index_id_map.end()) {
1258     result = ++m_thread_index_id;
1259     m_thread_id_to_index_id_map[thread_id] = result;
1260   } else {
1261     result = iterator->second;
1262   }
1263 
1264   return result;
1265 }
1266 
1267 StateType Process::GetState() {
1268   return m_public_state.GetValue();
1269 }
1270 
1271 void Process::SetPublicState(StateType new_state, bool restarted) {
1272   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1273                                                   LIBLLDB_LOG_PROCESS));
1274   LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)",
1275             StateAsCString(new_state), restarted);
1276   const StateType old_state = m_public_state.GetValue();
1277   m_public_state.SetValue(new_state);
1278 
1279   // On the transition from Run to Stopped, we unlock the writer end of the run
1280   // lock.  The lock gets locked in Resume, which is the public API to tell the
1281   // program to run.
1282   if (!StateChangedIsExternallyHijacked()) {
1283     if (new_state == eStateDetached) {
1284       LLDB_LOGF(log,
1285                 "Process::SetPublicState (%s) -- unlocking run lock for detach",
1286                 StateAsCString(new_state));
1287       m_public_run_lock.SetStopped();
1288     } else {
1289       const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1290       const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1291       if ((old_state_is_stopped != new_state_is_stopped)) {
1292         if (new_state_is_stopped && !restarted) {
1293           LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock",
1294                     StateAsCString(new_state));
1295           m_public_run_lock.SetStopped();
1296         }
1297       }
1298     }
1299   }
1300 }
1301 
1302 Status Process::Resume() {
1303   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1304                                                   LIBLLDB_LOG_PROCESS));
1305   LLDB_LOGF(log, "Process::Resume -- locking run lock");
1306   if (!m_public_run_lock.TrySetRunning()) {
1307     Status error("Resume request failed - process still running.");
1308     LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1309     return error;
1310   }
1311   Status error = PrivateResume();
1312   if (!error.Success()) {
1313     // Undo running state change
1314     m_public_run_lock.SetStopped();
1315   }
1316   return error;
1317 }
1318 
1319 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack";
1320 
1321 Status Process::ResumeSynchronous(Stream *stream) {
1322   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE |
1323                                                   LIBLLDB_LOG_PROCESS));
1324   LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock");
1325   if (!m_public_run_lock.TrySetRunning()) {
1326     Status error("Resume request failed - process still running.");
1327     LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1328     return error;
1329   }
1330 
1331   ListenerSP listener_sp(
1332       Listener::MakeListener(g_resume_sync_name));
1333   HijackProcessEvents(listener_sp);
1334 
1335   Status error = PrivateResume();
1336   if (error.Success()) {
1337     StateType state =
1338         WaitForProcessToStop(llvm::None, nullptr, true, listener_sp, stream);
1339     const bool must_be_alive =
1340         false; // eStateExited is ok, so this must be false
1341     if (!StateIsStoppedState(state, must_be_alive))
1342       error.SetErrorStringWithFormat(
1343           "process not in stopped state after synchronous resume: %s",
1344           StateAsCString(state));
1345   } else {
1346     // Undo running state change
1347     m_public_run_lock.SetStopped();
1348   }
1349 
1350   // Undo the hijacking of process events...
1351   RestoreProcessEvents();
1352 
1353   return error;
1354 }
1355 
1356 bool Process::StateChangedIsExternallyHijacked() {
1357   if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1358     const char *hijacking_name = GetHijackingListenerName();
1359     if (hijacking_name &&
1360         strcmp(hijacking_name, g_resume_sync_name))
1361       return true;
1362   }
1363   return false;
1364 }
1365 
1366 bool Process::StateChangedIsHijackedForSynchronousResume() {
1367   if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1368     const char *hijacking_name = GetHijackingListenerName();
1369     if (hijacking_name &&
1370         strcmp(hijacking_name, g_resume_sync_name) == 0)
1371       return true;
1372   }
1373   return false;
1374 }
1375 
1376 StateType Process::GetPrivateState() { return m_private_state.GetValue(); }
1377 
1378 void Process::SetPrivateState(StateType new_state) {
1379   if (m_finalizing)
1380     return;
1381 
1382   Log *log(lldb_private::GetLogIfAnyCategoriesSet(
1383       LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_UNWIND));
1384   bool state_changed = false;
1385 
1386   LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state));
1387 
1388   std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex());
1389   std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex());
1390 
1391   const StateType old_state = m_private_state.GetValueNoLock();
1392   state_changed = old_state != new_state;
1393 
1394   const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1395   const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1396   if (old_state_is_stopped != new_state_is_stopped) {
1397     if (new_state_is_stopped)
1398       m_private_run_lock.SetStopped();
1399     else
1400       m_private_run_lock.SetRunning();
1401   }
1402 
1403   if (state_changed) {
1404     m_private_state.SetValueNoLock(new_state);
1405     EventSP event_sp(
1406         new Event(eBroadcastBitStateChanged,
1407                   new ProcessEventData(shared_from_this(), new_state)));
1408     if (StateIsStoppedState(new_state, false)) {
1409       // Note, this currently assumes that all threads in the list stop when
1410       // the process stops.  In the future we will want to support a debugging
1411       // model where some threads continue to run while others are stopped.
1412       // When that happens we will either need a way for the thread list to
1413       // identify which threads are stopping or create a special thread list
1414       // containing only threads which actually stopped.
1415       //
1416       // The process plugin is responsible for managing the actual behavior of
1417       // the threads and should have stopped any threads that are going to stop
1418       // before we get here.
1419       m_thread_list.DidStop();
1420 
1421       m_mod_id.BumpStopID();
1422       if (!m_mod_id.IsLastResumeForUserExpression())
1423         m_mod_id.SetStopEventForLastNaturalStopID(event_sp);
1424       m_memory_cache.Clear();
1425       LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u",
1426                 StateAsCString(new_state), m_mod_id.GetStopID());
1427     }
1428 
1429     m_private_state_broadcaster.BroadcastEvent(event_sp);
1430   } else {
1431     LLDB_LOGF(log,
1432               "Process::SetPrivateState (%s) state didn't change. Ignoring...",
1433               StateAsCString(new_state));
1434   }
1435 }
1436 
1437 void Process::SetRunningUserExpression(bool on) {
1438   m_mod_id.SetRunningUserExpression(on);
1439 }
1440 
1441 void Process::SetRunningUtilityFunction(bool on) {
1442   m_mod_id.SetRunningUtilityFunction(on);
1443 }
1444 
1445 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; }
1446 
1447 const lldb::ABISP &Process::GetABI() {
1448   if (!m_abi_sp)
1449     m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture());
1450   return m_abi_sp;
1451 }
1452 
1453 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() {
1454   std::vector<LanguageRuntime *> language_runtimes;
1455 
1456   if (m_finalizing)
1457     return language_runtimes;
1458 
1459   std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1460   // Before we pass off a copy of the language runtimes, we must make sure that
1461   // our collection is properly populated. It's possible that some of the
1462   // language runtimes were not loaded yet, either because nobody requested it
1463   // yet or the proper condition for loading wasn't yet met (e.g. libc++.so
1464   // hadn't been loaded).
1465   for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
1466     if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
1467       language_runtimes.emplace_back(runtime);
1468   }
1469 
1470   return language_runtimes;
1471 }
1472 
1473 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) {
1474   if (m_finalizing)
1475     return nullptr;
1476 
1477   LanguageRuntime *runtime = nullptr;
1478 
1479   std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1480   LanguageRuntimeCollection::iterator pos;
1481   pos = m_language_runtimes.find(language);
1482   if (pos == m_language_runtimes.end() || !pos->second) {
1483     lldb::LanguageRuntimeSP runtime_sp(
1484         LanguageRuntime::FindPlugin(this, language));
1485 
1486     m_language_runtimes[language] = runtime_sp;
1487     runtime = runtime_sp.get();
1488   } else
1489     runtime = pos->second.get();
1490 
1491   if (runtime)
1492     // It's possible that a language runtime can support multiple LanguageTypes,
1493     // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus,
1494     // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the
1495     // primary language type and make sure that our runtime supports it.
1496     assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language));
1497 
1498   return runtime;
1499 }
1500 
1501 bool Process::IsPossibleDynamicValue(ValueObject &in_value) {
1502   if (m_finalizing)
1503     return false;
1504 
1505   if (in_value.IsDynamic())
1506     return false;
1507   LanguageType known_type = in_value.GetObjectRuntimeLanguage();
1508 
1509   if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) {
1510     LanguageRuntime *runtime = GetLanguageRuntime(known_type);
1511     return runtime ? runtime->CouldHaveDynamicValue(in_value) : false;
1512   }
1513 
1514   for (LanguageRuntime *runtime : GetLanguageRuntimes()) {
1515     if (runtime->CouldHaveDynamicValue(in_value))
1516       return true;
1517   }
1518 
1519   return false;
1520 }
1521 
1522 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) {
1523   m_dynamic_checkers_up.reset(dynamic_checkers);
1524 }
1525 
1526 BreakpointSiteList &Process::GetBreakpointSiteList() {
1527   return m_breakpoint_site_list;
1528 }
1529 
1530 const BreakpointSiteList &Process::GetBreakpointSiteList() const {
1531   return m_breakpoint_site_list;
1532 }
1533 
1534 void Process::DisableAllBreakpointSites() {
1535   m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void {
1536     //        bp_site->SetEnabled(true);
1537     DisableBreakpointSite(bp_site);
1538   });
1539 }
1540 
1541 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) {
1542   Status error(DisableBreakpointSiteByID(break_id));
1543 
1544   if (error.Success())
1545     m_breakpoint_site_list.Remove(break_id);
1546 
1547   return error;
1548 }
1549 
1550 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) {
1551   Status error;
1552   BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1553   if (bp_site_sp) {
1554     if (bp_site_sp->IsEnabled())
1555       error = DisableBreakpointSite(bp_site_sp.get());
1556   } else {
1557     error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1558                                    break_id);
1559   }
1560 
1561   return error;
1562 }
1563 
1564 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) {
1565   Status error;
1566   BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1567   if (bp_site_sp) {
1568     if (!bp_site_sp->IsEnabled())
1569       error = EnableBreakpointSite(bp_site_sp.get());
1570   } else {
1571     error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1572                                    break_id);
1573   }
1574   return error;
1575 }
1576 
1577 lldb::break_id_t
1578 Process::CreateBreakpointSite(const BreakpointLocationSP &owner,
1579                               bool use_hardware) {
1580   addr_t load_addr = LLDB_INVALID_ADDRESS;
1581 
1582   bool show_error = true;
1583   switch (GetState()) {
1584   case eStateInvalid:
1585   case eStateUnloaded:
1586   case eStateConnected:
1587   case eStateAttaching:
1588   case eStateLaunching:
1589   case eStateDetached:
1590   case eStateExited:
1591     show_error = false;
1592     break;
1593 
1594   case eStateStopped:
1595   case eStateRunning:
1596   case eStateStepping:
1597   case eStateCrashed:
1598   case eStateSuspended:
1599     show_error = IsAlive();
1600     break;
1601   }
1602 
1603   // Reset the IsIndirect flag here, in case the location changes from pointing
1604   // to a indirect symbol to a regular symbol.
1605   owner->SetIsIndirect(false);
1606 
1607   if (owner->ShouldResolveIndirectFunctions()) {
1608     Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol();
1609     if (symbol && symbol->IsIndirect()) {
1610       Status error;
1611       Address symbol_address = symbol->GetAddress();
1612       load_addr = ResolveIndirectFunction(&symbol_address, error);
1613       if (!error.Success() && show_error) {
1614         GetTarget().GetDebugger().GetErrorStream().Printf(
1615             "warning: failed to resolve indirect function at 0x%" PRIx64
1616             " for breakpoint %i.%i: %s\n",
1617             symbol->GetLoadAddress(&GetTarget()),
1618             owner->GetBreakpoint().GetID(), owner->GetID(),
1619             error.AsCString() ? error.AsCString() : "unknown error");
1620         return LLDB_INVALID_BREAK_ID;
1621       }
1622       Address resolved_address(load_addr);
1623       load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget());
1624       owner->SetIsIndirect(true);
1625     } else
1626       load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1627   } else
1628     load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1629 
1630   if (load_addr != LLDB_INVALID_ADDRESS) {
1631     BreakpointSiteSP bp_site_sp;
1632 
1633     // Look up this breakpoint site.  If it exists, then add this new owner,
1634     // otherwise create a new breakpoint site and add it.
1635 
1636     bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr);
1637 
1638     if (bp_site_sp) {
1639       bp_site_sp->AddOwner(owner);
1640       owner->SetBreakpointSite(bp_site_sp);
1641       return bp_site_sp->GetID();
1642     } else {
1643       bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner,
1644                                           load_addr, use_hardware));
1645       if (bp_site_sp) {
1646         Status error = EnableBreakpointSite(bp_site_sp.get());
1647         if (error.Success()) {
1648           owner->SetBreakpointSite(bp_site_sp);
1649           return m_breakpoint_site_list.Add(bp_site_sp);
1650         } else {
1651           if (show_error || use_hardware) {
1652             // Report error for setting breakpoint...
1653             GetTarget().GetDebugger().GetErrorStream().Printf(
1654                 "warning: failed to set breakpoint site at 0x%" PRIx64
1655                 " for breakpoint %i.%i: %s\n",
1656                 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(),
1657                 error.AsCString() ? error.AsCString() : "unknown error");
1658           }
1659         }
1660       }
1661     }
1662   }
1663   // We failed to enable the breakpoint
1664   return LLDB_INVALID_BREAK_ID;
1665 }
1666 
1667 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id,
1668                                             lldb::user_id_t owner_loc_id,
1669                                             BreakpointSiteSP &bp_site_sp) {
1670   uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id);
1671   if (num_owners == 0) {
1672     // Don't try to disable the site if we don't have a live process anymore.
1673     if (IsAlive())
1674       DisableBreakpointSite(bp_site_sp.get());
1675     m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress());
1676   }
1677 }
1678 
1679 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size,
1680                                                   uint8_t *buf) const {
1681   size_t bytes_removed = 0;
1682   BreakpointSiteList bp_sites_in_range;
1683 
1684   if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size,
1685                                          bp_sites_in_range)) {
1686     bp_sites_in_range.ForEach([bp_addr, size,
1687                                buf](BreakpointSite *bp_site) -> void {
1688       if (bp_site->GetType() == BreakpointSite::eSoftware) {
1689         addr_t intersect_addr;
1690         size_t intersect_size;
1691         size_t opcode_offset;
1692         if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr,
1693                                      &intersect_size, &opcode_offset)) {
1694           assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size);
1695           assert(bp_addr < intersect_addr + intersect_size &&
1696                  intersect_addr + intersect_size <= bp_addr + size);
1697           assert(opcode_offset + intersect_size <= bp_site->GetByteSize());
1698           size_t buf_offset = intersect_addr - bp_addr;
1699           ::memcpy(buf + buf_offset,
1700                    bp_site->GetSavedOpcodeBytes() + opcode_offset,
1701                    intersect_size);
1702         }
1703       }
1704     });
1705   }
1706   return bytes_removed;
1707 }
1708 
1709 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) {
1710   PlatformSP platform_sp(GetTarget().GetPlatform());
1711   if (platform_sp)
1712     return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site);
1713   return 0;
1714 }
1715 
1716 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) {
1717   Status error;
1718   assert(bp_site != nullptr);
1719   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
1720   const addr_t bp_addr = bp_site->GetLoadAddress();
1721   LLDB_LOGF(
1722       log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64,
1723       bp_site->GetID(), (uint64_t)bp_addr);
1724   if (bp_site->IsEnabled()) {
1725     LLDB_LOGF(
1726         log,
1727         "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1728         " -- already enabled",
1729         bp_site->GetID(), (uint64_t)bp_addr);
1730     return error;
1731   }
1732 
1733   if (bp_addr == LLDB_INVALID_ADDRESS) {
1734     error.SetErrorString("BreakpointSite contains an invalid load address.");
1735     return error;
1736   }
1737   // Ask the lldb::Process subclass to fill in the correct software breakpoint
1738   // trap for the breakpoint site
1739   const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site);
1740 
1741   if (bp_opcode_size == 0) {
1742     error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() "
1743                                    "returned zero, unable to get breakpoint "
1744                                    "trap for address 0x%" PRIx64,
1745                                    bp_addr);
1746   } else {
1747     const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes();
1748 
1749     if (bp_opcode_bytes == nullptr) {
1750       error.SetErrorString(
1751           "BreakpointSite doesn't contain a valid breakpoint trap opcode.");
1752       return error;
1753     }
1754 
1755     // Save the original opcode by reading it
1756     if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size,
1757                      error) == bp_opcode_size) {
1758       // Write a software breakpoint in place of the original opcode
1759       if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) ==
1760           bp_opcode_size) {
1761         uint8_t verify_bp_opcode_bytes[64];
1762         if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size,
1763                          error) == bp_opcode_size) {
1764           if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes,
1765                        bp_opcode_size) == 0) {
1766             bp_site->SetEnabled(true);
1767             bp_site->SetType(BreakpointSite::eSoftware);
1768             LLDB_LOGF(log,
1769                       "Process::EnableSoftwareBreakpoint (site_id = %d) "
1770                       "addr = 0x%" PRIx64 " -- SUCCESS",
1771                       bp_site->GetID(), (uint64_t)bp_addr);
1772           } else
1773             error.SetErrorString(
1774                 "failed to verify the breakpoint trap in memory.");
1775         } else
1776           error.SetErrorString(
1777               "Unable to read memory to verify breakpoint trap.");
1778       } else
1779         error.SetErrorString("Unable to write breakpoint trap to memory.");
1780     } else
1781       error.SetErrorString("Unable to read memory at breakpoint address.");
1782   }
1783   if (log && error.Fail())
1784     LLDB_LOGF(
1785         log,
1786         "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1787         " -- FAILED: %s",
1788         bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1789   return error;
1790 }
1791 
1792 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) {
1793   Status error;
1794   assert(bp_site != nullptr);
1795   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS));
1796   addr_t bp_addr = bp_site->GetLoadAddress();
1797   lldb::user_id_t breakID = bp_site->GetID();
1798   LLDB_LOGF(log,
1799             "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64
1800             ") addr = 0x%" PRIx64,
1801             breakID, (uint64_t)bp_addr);
1802 
1803   if (bp_site->IsHardware()) {
1804     error.SetErrorString("Breakpoint site is a hardware breakpoint.");
1805   } else if (bp_site->IsEnabled()) {
1806     const size_t break_op_size = bp_site->GetByteSize();
1807     const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes();
1808     if (break_op_size > 0) {
1809       // Clear a software breakpoint instruction
1810       uint8_t curr_break_op[8];
1811       assert(break_op_size <= sizeof(curr_break_op));
1812       bool break_op_found = false;
1813 
1814       // Read the breakpoint opcode
1815       if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) ==
1816           break_op_size) {
1817         bool verify = false;
1818         // Make sure the breakpoint opcode exists at this address
1819         if (::memcmp(curr_break_op, break_op, break_op_size) == 0) {
1820           break_op_found = true;
1821           // We found a valid breakpoint opcode at this address, now restore
1822           // the saved opcode.
1823           if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(),
1824                             break_op_size, error) == break_op_size) {
1825             verify = true;
1826           } else
1827             error.SetErrorString(
1828                 "Memory write failed when restoring original opcode.");
1829         } else {
1830           error.SetErrorString(
1831               "Original breakpoint trap is no longer in memory.");
1832           // Set verify to true and so we can check if the original opcode has
1833           // already been restored
1834           verify = true;
1835         }
1836 
1837         if (verify) {
1838           uint8_t verify_opcode[8];
1839           assert(break_op_size < sizeof(verify_opcode));
1840           // Verify that our original opcode made it back to the inferior
1841           if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) ==
1842               break_op_size) {
1843             // compare the memory we just read with the original opcode
1844             if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode,
1845                          break_op_size) == 0) {
1846               // SUCCESS
1847               bp_site->SetEnabled(false);
1848               LLDB_LOGF(log,
1849                         "Process::DisableSoftwareBreakpoint (site_id = %d) "
1850                         "addr = 0x%" PRIx64 " -- SUCCESS",
1851                         bp_site->GetID(), (uint64_t)bp_addr);
1852               return error;
1853             } else {
1854               if (break_op_found)
1855                 error.SetErrorString("Failed to restore original opcode.");
1856             }
1857           } else
1858             error.SetErrorString("Failed to read memory to verify that "
1859                                  "breakpoint trap was restored.");
1860         }
1861       } else
1862         error.SetErrorString(
1863             "Unable to read memory that should contain the breakpoint trap.");
1864     }
1865   } else {
1866     LLDB_LOGF(
1867         log,
1868         "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1869         " -- already disabled",
1870         bp_site->GetID(), (uint64_t)bp_addr);
1871     return error;
1872   }
1873 
1874   LLDB_LOGF(
1875       log,
1876       "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1877       " -- FAILED: %s",
1878       bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1879   return error;
1880 }
1881 
1882 // Uncomment to verify memory caching works after making changes to caching
1883 // code
1884 //#define VERIFY_MEMORY_READS
1885 
1886 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) {
1887   error.Clear();
1888   if (!GetDisableMemoryCache()) {
1889 #if defined(VERIFY_MEMORY_READS)
1890     // Memory caching is enabled, with debug verification
1891 
1892     if (buf && size) {
1893       // Uncomment the line below to make sure memory caching is working.
1894       // I ran this through the test suite and got no assertions, so I am
1895       // pretty confident this is working well. If any changes are made to
1896       // memory caching, uncomment the line below and test your changes!
1897 
1898       // Verify all memory reads by using the cache first, then redundantly
1899       // reading the same memory from the inferior and comparing to make sure
1900       // everything is exactly the same.
1901       std::string verify_buf(size, '\0');
1902       assert(verify_buf.size() == size);
1903       const size_t cache_bytes_read =
1904           m_memory_cache.Read(this, addr, buf, size, error);
1905       Status verify_error;
1906       const size_t verify_bytes_read =
1907           ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()),
1908                                  verify_buf.size(), verify_error);
1909       assert(cache_bytes_read == verify_bytes_read);
1910       assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0);
1911       assert(verify_error.Success() == error.Success());
1912       return cache_bytes_read;
1913     }
1914     return 0;
1915 #else  // !defined(VERIFY_MEMORY_READS)
1916     // Memory caching is enabled, without debug verification
1917 
1918     return m_memory_cache.Read(addr, buf, size, error);
1919 #endif // defined (VERIFY_MEMORY_READS)
1920   } else {
1921     // Memory caching is disabled
1922 
1923     return ReadMemoryFromInferior(addr, buf, size, error);
1924   }
1925 }
1926 
1927 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str,
1928                                       Status &error) {
1929   char buf[256];
1930   out_str.clear();
1931   addr_t curr_addr = addr;
1932   while (true) {
1933     size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error);
1934     if (length == 0)
1935       break;
1936     out_str.append(buf, length);
1937     // If we got "length - 1" bytes, we didn't get the whole C string, we need
1938     // to read some more characters
1939     if (length == sizeof(buf) - 1)
1940       curr_addr += length;
1941     else
1942       break;
1943   }
1944   return out_str.size();
1945 }
1946 
1947 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes,
1948                                      Status &error, size_t type_width) {
1949   size_t total_bytes_read = 0;
1950   if (dst && max_bytes && type_width && max_bytes >= type_width) {
1951     // Ensure a null terminator independent of the number of bytes that is
1952     // read.
1953     memset(dst, 0, max_bytes);
1954     size_t bytes_left = max_bytes - type_width;
1955 
1956     const char terminator[4] = {'\0', '\0', '\0', '\0'};
1957     assert(sizeof(terminator) >= type_width && "Attempting to validate a "
1958                                                "string with more than 4 bytes "
1959                                                "per character!");
1960 
1961     addr_t curr_addr = addr;
1962     const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
1963     char *curr_dst = dst;
1964 
1965     error.Clear();
1966     while (bytes_left > 0 && error.Success()) {
1967       addr_t cache_line_bytes_left =
1968           cache_line_size - (curr_addr % cache_line_size);
1969       addr_t bytes_to_read =
1970           std::min<addr_t>(bytes_left, cache_line_bytes_left);
1971       size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
1972 
1973       if (bytes_read == 0)
1974         break;
1975 
1976       // Search for a null terminator of correct size and alignment in
1977       // bytes_read
1978       size_t aligned_start = total_bytes_read - total_bytes_read % type_width;
1979       for (size_t i = aligned_start;
1980            i + type_width <= total_bytes_read + bytes_read; i += type_width)
1981         if (::memcmp(&dst[i], terminator, type_width) == 0) {
1982           error.Clear();
1983           return i;
1984         }
1985 
1986       total_bytes_read += bytes_read;
1987       curr_dst += bytes_read;
1988       curr_addr += bytes_read;
1989       bytes_left -= bytes_read;
1990     }
1991   } else {
1992     if (max_bytes)
1993       error.SetErrorString("invalid arguments");
1994   }
1995   return total_bytes_read;
1996 }
1997 
1998 // Deprecated in favor of ReadStringFromMemory which has wchar support and
1999 // correct code to find null terminators.
2000 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst,
2001                                       size_t dst_max_len,
2002                                       Status &result_error) {
2003   size_t total_cstr_len = 0;
2004   if (dst && dst_max_len) {
2005     result_error.Clear();
2006     // NULL out everything just to be safe
2007     memset(dst, 0, dst_max_len);
2008     Status error;
2009     addr_t curr_addr = addr;
2010     const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
2011     size_t bytes_left = dst_max_len - 1;
2012     char *curr_dst = dst;
2013 
2014     while (bytes_left > 0) {
2015       addr_t cache_line_bytes_left =
2016           cache_line_size - (curr_addr % cache_line_size);
2017       addr_t bytes_to_read =
2018           std::min<addr_t>(bytes_left, cache_line_bytes_left);
2019       size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
2020 
2021       if (bytes_read == 0) {
2022         result_error = error;
2023         dst[total_cstr_len] = '\0';
2024         break;
2025       }
2026       const size_t len = strlen(curr_dst);
2027 
2028       total_cstr_len += len;
2029 
2030       if (len < bytes_to_read)
2031         break;
2032 
2033       curr_dst += bytes_read;
2034       curr_addr += bytes_read;
2035       bytes_left -= bytes_read;
2036     }
2037   } else {
2038     if (dst == nullptr)
2039       result_error.SetErrorString("invalid arguments");
2040     else
2041       result_error.Clear();
2042   }
2043   return total_cstr_len;
2044 }
2045 
2046 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size,
2047                                        Status &error) {
2048   LLDB_SCOPED_TIMER();
2049 
2050   if (buf == nullptr || size == 0)
2051     return 0;
2052 
2053   size_t bytes_read = 0;
2054   uint8_t *bytes = (uint8_t *)buf;
2055 
2056   while (bytes_read < size) {
2057     const size_t curr_size = size - bytes_read;
2058     const size_t curr_bytes_read =
2059         DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error);
2060     bytes_read += curr_bytes_read;
2061     if (curr_bytes_read == curr_size || curr_bytes_read == 0)
2062       break;
2063   }
2064 
2065   // Replace any software breakpoint opcodes that fall into this range back
2066   // into "buf" before we return
2067   if (bytes_read > 0)
2068     RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf);
2069   return bytes_read;
2070 }
2071 
2072 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr,
2073                                                 size_t integer_byte_size,
2074                                                 uint64_t fail_value,
2075                                                 Status &error) {
2076   Scalar scalar;
2077   if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar,
2078                                   error))
2079     return scalar.ULongLong(fail_value);
2080   return fail_value;
2081 }
2082 
2083 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr,
2084                                              size_t integer_byte_size,
2085                                              int64_t fail_value,
2086                                              Status &error) {
2087   Scalar scalar;
2088   if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar,
2089                                   error))
2090     return scalar.SLongLong(fail_value);
2091   return fail_value;
2092 }
2093 
2094 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) {
2095   Scalar scalar;
2096   if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar,
2097                                   error))
2098     return scalar.ULongLong(LLDB_INVALID_ADDRESS);
2099   return LLDB_INVALID_ADDRESS;
2100 }
2101 
2102 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value,
2103                                    Status &error) {
2104   Scalar scalar;
2105   const uint32_t addr_byte_size = GetAddressByteSize();
2106   if (addr_byte_size <= 4)
2107     scalar = (uint32_t)ptr_value;
2108   else
2109     scalar = ptr_value;
2110   return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) ==
2111          addr_byte_size;
2112 }
2113 
2114 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size,
2115                                    Status &error) {
2116   size_t bytes_written = 0;
2117   const uint8_t *bytes = (const uint8_t *)buf;
2118 
2119   while (bytes_written < size) {
2120     const size_t curr_size = size - bytes_written;
2121     const size_t curr_bytes_written = DoWriteMemory(
2122         addr + bytes_written, bytes + bytes_written, curr_size, error);
2123     bytes_written += curr_bytes_written;
2124     if (curr_bytes_written == curr_size || curr_bytes_written == 0)
2125       break;
2126   }
2127   return bytes_written;
2128 }
2129 
2130 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size,
2131                             Status &error) {
2132 #if defined(ENABLE_MEMORY_CACHING)
2133   m_memory_cache.Flush(addr, size);
2134 #endif
2135 
2136   if (buf == nullptr || size == 0)
2137     return 0;
2138 
2139   m_mod_id.BumpMemoryID();
2140 
2141   // We need to write any data that would go where any current software traps
2142   // (enabled software breakpoints) any software traps (breakpoints) that we
2143   // may have placed in our tasks memory.
2144 
2145   BreakpointSiteList bp_sites_in_range;
2146   if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range))
2147     return WriteMemoryPrivate(addr, buf, size, error);
2148 
2149   // No breakpoint sites overlap
2150   if (bp_sites_in_range.IsEmpty())
2151     return WriteMemoryPrivate(addr, buf, size, error);
2152 
2153   const uint8_t *ubuf = (const uint8_t *)buf;
2154   uint64_t bytes_written = 0;
2155 
2156   bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf,
2157                              &error](BreakpointSite *bp) -> void {
2158     if (error.Fail())
2159       return;
2160 
2161     if (bp->GetType() != BreakpointSite::eSoftware)
2162       return;
2163 
2164     addr_t intersect_addr;
2165     size_t intersect_size;
2166     size_t opcode_offset;
2167     const bool intersects = bp->IntersectsRange(
2168         addr, size, &intersect_addr, &intersect_size, &opcode_offset);
2169     UNUSED_IF_ASSERT_DISABLED(intersects);
2170     assert(intersects);
2171     assert(addr <= intersect_addr && intersect_addr < addr + size);
2172     assert(addr < intersect_addr + intersect_size &&
2173            intersect_addr + intersect_size <= addr + size);
2174     assert(opcode_offset + intersect_size <= bp->GetByteSize());
2175 
2176     // Check for bytes before this breakpoint
2177     const addr_t curr_addr = addr + bytes_written;
2178     if (intersect_addr > curr_addr) {
2179       // There are some bytes before this breakpoint that we need to just
2180       // write to memory
2181       size_t curr_size = intersect_addr - curr_addr;
2182       size_t curr_bytes_written =
2183           WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error);
2184       bytes_written += curr_bytes_written;
2185       if (curr_bytes_written != curr_size) {
2186         // We weren't able to write all of the requested bytes, we are
2187         // done looping and will return the number of bytes that we have
2188         // written so far.
2189         if (error.Success())
2190           error.SetErrorToGenericError();
2191       }
2192     }
2193     // Now write any bytes that would cover up any software breakpoints
2194     // directly into the breakpoint opcode buffer
2195     ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written,
2196              intersect_size);
2197     bytes_written += intersect_size;
2198   });
2199 
2200   // Write any remaining bytes after the last breakpoint if we have any left
2201   if (bytes_written < size)
2202     bytes_written +=
2203         WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written,
2204                            size - bytes_written, error);
2205 
2206   return bytes_written;
2207 }
2208 
2209 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar,
2210                                     size_t byte_size, Status &error) {
2211   if (byte_size == UINT32_MAX)
2212     byte_size = scalar.GetByteSize();
2213   if (byte_size > 0) {
2214     uint8_t buf[32];
2215     const size_t mem_size =
2216         scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error);
2217     if (mem_size > 0)
2218       return WriteMemory(addr, buf, mem_size, error);
2219     else
2220       error.SetErrorString("failed to get scalar as memory data");
2221   } else {
2222     error.SetErrorString("invalid scalar value");
2223   }
2224   return 0;
2225 }
2226 
2227 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size,
2228                                             bool is_signed, Scalar &scalar,
2229                                             Status &error) {
2230   uint64_t uval = 0;
2231   if (byte_size == 0) {
2232     error.SetErrorString("byte size is zero");
2233   } else if (byte_size & (byte_size - 1)) {
2234     error.SetErrorStringWithFormat("byte size %u is not a power of 2",
2235                                    byte_size);
2236   } else if (byte_size <= sizeof(uval)) {
2237     const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error);
2238     if (bytes_read == byte_size) {
2239       DataExtractor data(&uval, sizeof(uval), GetByteOrder(),
2240                          GetAddressByteSize());
2241       lldb::offset_t offset = 0;
2242       if (byte_size <= 4)
2243         scalar = data.GetMaxU32(&offset, byte_size);
2244       else
2245         scalar = data.GetMaxU64(&offset, byte_size);
2246       if (is_signed)
2247         scalar.SignExtend(byte_size * 8);
2248       return bytes_read;
2249     }
2250   } else {
2251     error.SetErrorStringWithFormat(
2252         "byte size of %u is too large for integer scalar type", byte_size);
2253   }
2254   return 0;
2255 }
2256 
2257 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) {
2258   Status error;
2259   for (const auto &Entry : entries) {
2260     WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(),
2261                 error);
2262     if (!error.Success())
2263       break;
2264   }
2265   return error;
2266 }
2267 
2268 #define USE_ALLOCATE_MEMORY_CACHE 1
2269 addr_t Process::AllocateMemory(size_t size, uint32_t permissions,
2270                                Status &error) {
2271   if (GetPrivateState() != eStateStopped) {
2272     error.SetErrorToGenericError();
2273     return LLDB_INVALID_ADDRESS;
2274   }
2275 
2276 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2277   return m_allocated_memory_cache.AllocateMemory(size, permissions, error);
2278 #else
2279   addr_t allocated_addr = DoAllocateMemory(size, permissions, error);
2280   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2281   LLDB_LOGF(log,
2282             "Process::AllocateMemory(size=%" PRIu64
2283             ", permissions=%s) => 0x%16.16" PRIx64
2284             " (m_stop_id = %u m_memory_id = %u)",
2285             (uint64_t)size, GetPermissionsAsCString(permissions),
2286             (uint64_t)allocated_addr, m_mod_id.GetStopID(),
2287             m_mod_id.GetMemoryID());
2288   return allocated_addr;
2289 #endif
2290 }
2291 
2292 addr_t Process::CallocateMemory(size_t size, uint32_t permissions,
2293                                 Status &error) {
2294   addr_t return_addr = AllocateMemory(size, permissions, error);
2295   if (error.Success()) {
2296     std::string buffer(size, 0);
2297     WriteMemory(return_addr, buffer.c_str(), size, error);
2298   }
2299   return return_addr;
2300 }
2301 
2302 bool Process::CanJIT() {
2303   if (m_can_jit == eCanJITDontKnow) {
2304     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2305     Status err;
2306 
2307     uint64_t allocated_memory = AllocateMemory(
2308         8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable,
2309         err);
2310 
2311     if (err.Success()) {
2312       m_can_jit = eCanJITYes;
2313       LLDB_LOGF(log,
2314                 "Process::%s pid %" PRIu64
2315                 " allocation test passed, CanJIT () is true",
2316                 __FUNCTION__, GetID());
2317     } else {
2318       m_can_jit = eCanJITNo;
2319       LLDB_LOGF(log,
2320                 "Process::%s pid %" PRIu64
2321                 " allocation test failed, CanJIT () is false: %s",
2322                 __FUNCTION__, GetID(), err.AsCString());
2323     }
2324 
2325     DeallocateMemory(allocated_memory);
2326   }
2327 
2328   return m_can_jit == eCanJITYes;
2329 }
2330 
2331 void Process::SetCanJIT(bool can_jit) {
2332   m_can_jit = (can_jit ? eCanJITYes : eCanJITNo);
2333 }
2334 
2335 void Process::SetCanRunCode(bool can_run_code) {
2336   SetCanJIT(can_run_code);
2337   m_can_interpret_function_calls = can_run_code;
2338 }
2339 
2340 Status Process::DeallocateMemory(addr_t ptr) {
2341   Status error;
2342 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2343   if (!m_allocated_memory_cache.DeallocateMemory(ptr)) {
2344     error.SetErrorStringWithFormat(
2345         "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr);
2346   }
2347 #else
2348   error = DoDeallocateMemory(ptr);
2349 
2350   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2351   LLDB_LOGF(log,
2352             "Process::DeallocateMemory(addr=0x%16.16" PRIx64
2353             ") => err = %s (m_stop_id = %u, m_memory_id = %u)",
2354             ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(),
2355             m_mod_id.GetMemoryID());
2356 #endif
2357   return error;
2358 }
2359 
2360 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec,
2361                                        lldb::addr_t header_addr,
2362                                        size_t size_to_read) {
2363   Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST);
2364   if (log) {
2365     LLDB_LOGF(log,
2366               "Process::ReadModuleFromMemory reading %s binary from memory",
2367               file_spec.GetPath().c_str());
2368   }
2369   ModuleSP module_sp(new Module(file_spec, ArchSpec()));
2370   if (module_sp) {
2371     Status error;
2372     ObjectFile *objfile = module_sp->GetMemoryObjectFile(
2373         shared_from_this(), header_addr, error, size_to_read);
2374     if (objfile)
2375       return module_sp;
2376   }
2377   return ModuleSP();
2378 }
2379 
2380 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr,
2381                                         uint32_t &permissions) {
2382   MemoryRegionInfo range_info;
2383   permissions = 0;
2384   Status error(GetMemoryRegionInfo(load_addr, range_info));
2385   if (!error.Success())
2386     return false;
2387   if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow ||
2388       range_info.GetWritable() == MemoryRegionInfo::eDontKnow ||
2389       range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) {
2390     return false;
2391   }
2392 
2393   if (range_info.GetReadable() == MemoryRegionInfo::eYes)
2394     permissions |= lldb::ePermissionsReadable;
2395 
2396   if (range_info.GetWritable() == MemoryRegionInfo::eYes)
2397     permissions |= lldb::ePermissionsWritable;
2398 
2399   if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
2400     permissions |= lldb::ePermissionsExecutable;
2401 
2402   return true;
2403 }
2404 
2405 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) {
2406   Status error;
2407   error.SetErrorString("watchpoints are not supported");
2408   return error;
2409 }
2410 
2411 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) {
2412   Status error;
2413   error.SetErrorString("watchpoints are not supported");
2414   return error;
2415 }
2416 
2417 StateType
2418 Process::WaitForProcessStopPrivate(EventSP &event_sp,
2419                                    const Timeout<std::micro> &timeout) {
2420   StateType state;
2421 
2422   while (true) {
2423     event_sp.reset();
2424     state = GetStateChangedEventsPrivate(event_sp, timeout);
2425 
2426     if (StateIsStoppedState(state, false))
2427       break;
2428 
2429     // If state is invalid, then we timed out
2430     if (state == eStateInvalid)
2431       break;
2432 
2433     if (event_sp)
2434       HandlePrivateEvent(event_sp);
2435   }
2436   return state;
2437 }
2438 
2439 void Process::LoadOperatingSystemPlugin(bool flush) {
2440   if (flush)
2441     m_thread_list.Clear();
2442   m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr));
2443   if (flush)
2444     Flush();
2445 }
2446 
2447 Status Process::Launch(ProcessLaunchInfo &launch_info) {
2448   Status error;
2449   m_abi_sp.reset();
2450   m_dyld_up.reset();
2451   m_jit_loaders_up.reset();
2452   m_system_runtime_up.reset();
2453   m_os_up.reset();
2454   m_process_input_reader.reset();
2455 
2456   Module *exe_module = GetTarget().GetExecutableModulePointer();
2457   if (!exe_module) {
2458     error.SetErrorString("executable module does not exist");
2459     return error;
2460   }
2461 
2462   char local_exec_file_path[PATH_MAX];
2463   char platform_exec_file_path[PATH_MAX];
2464   exe_module->GetFileSpec().GetPath(local_exec_file_path,
2465                                     sizeof(local_exec_file_path));
2466   exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path,
2467                                             sizeof(platform_exec_file_path));
2468   if (FileSystem::Instance().Exists(exe_module->GetFileSpec())) {
2469     // Install anything that might need to be installed prior to launching.
2470     // For host systems, this will do nothing, but if we are connected to a
2471     // remote platform it will install any needed binaries
2472     error = GetTarget().Install(&launch_info);
2473     if (error.Fail())
2474       return error;
2475 
2476     if (PrivateStateThreadIsValid())
2477       PausePrivateStateThread();
2478 
2479     error = WillLaunch(exe_module);
2480     if (error.Success()) {
2481       const bool restarted = false;
2482       SetPublicState(eStateLaunching, restarted);
2483       m_should_detach = false;
2484 
2485       if (m_public_run_lock.TrySetRunning()) {
2486         // Now launch using these arguments.
2487         error = DoLaunch(exe_module, launch_info);
2488       } else {
2489         // This shouldn't happen
2490         error.SetErrorString("failed to acquire process run lock");
2491       }
2492 
2493       if (error.Fail()) {
2494         if (GetID() != LLDB_INVALID_PROCESS_ID) {
2495           SetID(LLDB_INVALID_PROCESS_ID);
2496           const char *error_string = error.AsCString();
2497           if (error_string == nullptr)
2498             error_string = "launch failed";
2499           SetExitStatus(-1, error_string);
2500         }
2501       } else {
2502         EventSP event_sp;
2503 
2504         // Now wait for the process to launch and return control to us, and then
2505         // call DidLaunch:
2506         StateType state = WaitForProcessStopPrivate(event_sp, seconds(10));
2507 
2508         if (state == eStateInvalid || !event_sp) {
2509           // We were able to launch the process, but we failed to catch the
2510           // initial stop.
2511           error.SetErrorString("failed to catch stop after launch");
2512           SetExitStatus(0, "failed to catch stop after launch");
2513           Destroy(false);
2514         } else if (state == eStateStopped || state == eStateCrashed) {
2515           DidLaunch();
2516 
2517           DynamicLoader *dyld = GetDynamicLoader();
2518           if (dyld)
2519             dyld->DidLaunch();
2520 
2521           GetJITLoaders().DidLaunch();
2522 
2523           SystemRuntime *system_runtime = GetSystemRuntime();
2524           if (system_runtime)
2525             system_runtime->DidLaunch();
2526 
2527           if (!m_os_up)
2528             LoadOperatingSystemPlugin(false);
2529 
2530           // We successfully launched the process and stopped, now it the
2531           // right time to set up signal filters before resuming.
2532           UpdateAutomaticSignalFiltering();
2533 
2534           // Note, the stop event was consumed above, but not handled. This
2535           // was done to give DidLaunch a chance to run. The target is either
2536           // stopped or crashed. Directly set the state.  This is done to
2537           // prevent a stop message with a bunch of spurious output on thread
2538           // status, as well as not pop a ProcessIOHandler.
2539           SetPublicState(state, false);
2540 
2541           if (PrivateStateThreadIsValid())
2542             ResumePrivateStateThread();
2543           else
2544             StartPrivateStateThread();
2545 
2546           // Target was stopped at entry as was intended. Need to notify the
2547           // listeners about it.
2548           if (state == eStateStopped &&
2549               launch_info.GetFlags().Test(eLaunchFlagStopAtEntry))
2550             HandlePrivateEvent(event_sp);
2551         } else if (state == eStateExited) {
2552           // We exited while trying to launch somehow.  Don't call DidLaunch
2553           // as that's not likely to work, and return an invalid pid.
2554           HandlePrivateEvent(event_sp);
2555         }
2556       }
2557     }
2558   } else {
2559     error.SetErrorStringWithFormat("file doesn't exist: '%s'",
2560                                    local_exec_file_path);
2561   }
2562 
2563   return error;
2564 }
2565 
2566 Status Process::LoadCore() {
2567   Status error = DoLoadCore();
2568   if (error.Success()) {
2569     ListenerSP listener_sp(
2570         Listener::MakeListener("lldb.process.load_core_listener"));
2571     HijackProcessEvents(listener_sp);
2572 
2573     if (PrivateStateThreadIsValid())
2574       ResumePrivateStateThread();
2575     else
2576       StartPrivateStateThread();
2577 
2578     DynamicLoader *dyld = GetDynamicLoader();
2579     if (dyld)
2580       dyld->DidAttach();
2581 
2582     GetJITLoaders().DidAttach();
2583 
2584     SystemRuntime *system_runtime = GetSystemRuntime();
2585     if (system_runtime)
2586       system_runtime->DidAttach();
2587 
2588     if (!m_os_up)
2589       LoadOperatingSystemPlugin(false);
2590 
2591     // We successfully loaded a core file, now pretend we stopped so we can
2592     // show all of the threads in the core file and explore the crashed state.
2593     SetPrivateState(eStateStopped);
2594 
2595     // Wait for a stopped event since we just posted one above...
2596     lldb::EventSP event_sp;
2597     StateType state =
2598         WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp);
2599 
2600     if (!StateIsStoppedState(state, false)) {
2601       Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2602       LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s",
2603                 StateAsCString(state));
2604       error.SetErrorString(
2605           "Did not get stopped event after loading the core file.");
2606     }
2607     RestoreProcessEvents();
2608   }
2609   return error;
2610 }
2611 
2612 DynamicLoader *Process::GetDynamicLoader() {
2613   if (!m_dyld_up)
2614     m_dyld_up.reset(DynamicLoader::FindPlugin(this, nullptr));
2615   return m_dyld_up.get();
2616 }
2617 
2618 DataExtractor Process::GetAuxvData() { return DataExtractor(); }
2619 
2620 JITLoaderList &Process::GetJITLoaders() {
2621   if (!m_jit_loaders_up) {
2622     m_jit_loaders_up = std::make_unique<JITLoaderList>();
2623     JITLoader::LoadPlugins(this, *m_jit_loaders_up);
2624   }
2625   return *m_jit_loaders_up;
2626 }
2627 
2628 SystemRuntime *Process::GetSystemRuntime() {
2629   if (!m_system_runtime_up)
2630     m_system_runtime_up.reset(SystemRuntime::FindPlugin(this));
2631   return m_system_runtime_up.get();
2632 }
2633 
2634 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process,
2635                                                           uint32_t exec_count)
2636     : NextEventAction(process), m_exec_count(exec_count) {
2637   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2638   LLDB_LOGF(
2639       log,
2640       "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32,
2641       __FUNCTION__, static_cast<void *>(process), exec_count);
2642 }
2643 
2644 Process::NextEventAction::EventActionResult
2645 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) {
2646   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2647 
2648   StateType state = ProcessEventData::GetStateFromEvent(event_sp.get());
2649   LLDB_LOGF(log,
2650             "Process::AttachCompletionHandler::%s called with state %s (%d)",
2651             __FUNCTION__, StateAsCString(state), static_cast<int>(state));
2652 
2653   switch (state) {
2654   case eStateAttaching:
2655     return eEventActionSuccess;
2656 
2657   case eStateRunning:
2658   case eStateConnected:
2659     return eEventActionRetry;
2660 
2661   case eStateStopped:
2662   case eStateCrashed:
2663     // During attach, prior to sending the eStateStopped event,
2664     // lldb_private::Process subclasses must set the new process ID.
2665     assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID);
2666     // We don't want these events to be reported, so go set the
2667     // ShouldReportStop here:
2668     m_process->GetThreadList().SetShouldReportStop(eVoteNo);
2669 
2670     if (m_exec_count > 0) {
2671       --m_exec_count;
2672 
2673       LLDB_LOGF(log,
2674                 "Process::AttachCompletionHandler::%s state %s: reduced "
2675                 "remaining exec count to %" PRIu32 ", requesting resume",
2676                 __FUNCTION__, StateAsCString(state), m_exec_count);
2677 
2678       RequestResume();
2679       return eEventActionRetry;
2680     } else {
2681       LLDB_LOGF(log,
2682                 "Process::AttachCompletionHandler::%s state %s: no more "
2683                 "execs expected to start, continuing with attach",
2684                 __FUNCTION__, StateAsCString(state));
2685 
2686       m_process->CompleteAttach();
2687       return eEventActionSuccess;
2688     }
2689     break;
2690 
2691   default:
2692   case eStateExited:
2693   case eStateInvalid:
2694     break;
2695   }
2696 
2697   m_exit_string.assign("No valid Process");
2698   return eEventActionExit;
2699 }
2700 
2701 Process::NextEventAction::EventActionResult
2702 Process::AttachCompletionHandler::HandleBeingInterrupted() {
2703   return eEventActionSuccess;
2704 }
2705 
2706 const char *Process::AttachCompletionHandler::GetExitString() {
2707   return m_exit_string.c_str();
2708 }
2709 
2710 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) {
2711   if (m_listener_sp)
2712     return m_listener_sp;
2713   else
2714     return debugger.GetListener();
2715 }
2716 
2717 Status Process::Attach(ProcessAttachInfo &attach_info) {
2718   m_abi_sp.reset();
2719   m_process_input_reader.reset();
2720   m_dyld_up.reset();
2721   m_jit_loaders_up.reset();
2722   m_system_runtime_up.reset();
2723   m_os_up.reset();
2724 
2725   lldb::pid_t attach_pid = attach_info.GetProcessID();
2726   Status error;
2727   if (attach_pid == LLDB_INVALID_PROCESS_ID) {
2728     char process_name[PATH_MAX];
2729 
2730     if (attach_info.GetExecutableFile().GetPath(process_name,
2731                                                 sizeof(process_name))) {
2732       const bool wait_for_launch = attach_info.GetWaitForLaunch();
2733 
2734       if (wait_for_launch) {
2735         error = WillAttachToProcessWithName(process_name, wait_for_launch);
2736         if (error.Success()) {
2737           if (m_public_run_lock.TrySetRunning()) {
2738             m_should_detach = true;
2739             const bool restarted = false;
2740             SetPublicState(eStateAttaching, restarted);
2741             // Now attach using these arguments.
2742             error = DoAttachToProcessWithName(process_name, attach_info);
2743           } else {
2744             // This shouldn't happen
2745             error.SetErrorString("failed to acquire process run lock");
2746           }
2747 
2748           if (error.Fail()) {
2749             if (GetID() != LLDB_INVALID_PROCESS_ID) {
2750               SetID(LLDB_INVALID_PROCESS_ID);
2751               if (error.AsCString() == nullptr)
2752                 error.SetErrorString("attach failed");
2753 
2754               SetExitStatus(-1, error.AsCString());
2755             }
2756           } else {
2757             SetNextEventAction(new Process::AttachCompletionHandler(
2758                 this, attach_info.GetResumeCount()));
2759             StartPrivateStateThread();
2760           }
2761           return error;
2762         }
2763       } else {
2764         ProcessInstanceInfoList process_infos;
2765         PlatformSP platform_sp(GetTarget().GetPlatform());
2766 
2767         if (platform_sp) {
2768           ProcessInstanceInfoMatch match_info;
2769           match_info.GetProcessInfo() = attach_info;
2770           match_info.SetNameMatchType(NameMatch::Equals);
2771           platform_sp->FindProcesses(match_info, process_infos);
2772           const uint32_t num_matches = process_infos.size();
2773           if (num_matches == 1) {
2774             attach_pid = process_infos[0].GetProcessID();
2775             // Fall through and attach using the above process ID
2776           } else {
2777             match_info.GetProcessInfo().GetExecutableFile().GetPath(
2778                 process_name, sizeof(process_name));
2779             if (num_matches > 1) {
2780               StreamString s;
2781               ProcessInstanceInfo::DumpTableHeader(s, true, false);
2782               for (size_t i = 0; i < num_matches; i++) {
2783                 process_infos[i].DumpAsTableRow(
2784                     s, platform_sp->GetUserIDResolver(), true, false);
2785               }
2786               error.SetErrorStringWithFormat(
2787                   "more than one process named %s:\n%s", process_name,
2788                   s.GetData());
2789             } else
2790               error.SetErrorStringWithFormat(
2791                   "could not find a process named %s", process_name);
2792           }
2793         } else {
2794           error.SetErrorString(
2795               "invalid platform, can't find processes by name");
2796           return error;
2797         }
2798       }
2799     } else {
2800       error.SetErrorString("invalid process name");
2801     }
2802   }
2803 
2804   if (attach_pid != LLDB_INVALID_PROCESS_ID) {
2805     error = WillAttachToProcessWithID(attach_pid);
2806     if (error.Success()) {
2807 
2808       if (m_public_run_lock.TrySetRunning()) {
2809         // Now attach using these arguments.
2810         m_should_detach = true;
2811         const bool restarted = false;
2812         SetPublicState(eStateAttaching, restarted);
2813         error = DoAttachToProcessWithID(attach_pid, attach_info);
2814       } else {
2815         // This shouldn't happen
2816         error.SetErrorString("failed to acquire process run lock");
2817       }
2818 
2819       if (error.Success()) {
2820         SetNextEventAction(new Process::AttachCompletionHandler(
2821             this, attach_info.GetResumeCount()));
2822         StartPrivateStateThread();
2823       } else {
2824         if (GetID() != LLDB_INVALID_PROCESS_ID)
2825           SetID(LLDB_INVALID_PROCESS_ID);
2826 
2827         const char *error_string = error.AsCString();
2828         if (error_string == nullptr)
2829           error_string = "attach failed";
2830 
2831         SetExitStatus(-1, error_string);
2832       }
2833     }
2834   }
2835   return error;
2836 }
2837 
2838 void Process::CompleteAttach() {
2839   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS |
2840                                                   LIBLLDB_LOG_TARGET));
2841   LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
2842 
2843   // Let the process subclass figure out at much as it can about the process
2844   // before we go looking for a dynamic loader plug-in.
2845   ArchSpec process_arch;
2846   DidAttach(process_arch);
2847 
2848   if (process_arch.IsValid()) {
2849     GetTarget().SetArchitecture(process_arch);
2850     if (log) {
2851       const char *triple_str = process_arch.GetTriple().getTriple().c_str();
2852       LLDB_LOGF(log,
2853                 "Process::%s replacing process architecture with DidAttach() "
2854                 "architecture: %s",
2855                 __FUNCTION__, triple_str ? triple_str : "<null>");
2856     }
2857   }
2858 
2859   // We just attached.  If we have a platform, ask it for the process
2860   // architecture, and if it isn't the same as the one we've already set,
2861   // switch architectures.
2862   PlatformSP platform_sp(GetTarget().GetPlatform());
2863   assert(platform_sp);
2864   if (platform_sp) {
2865     const ArchSpec &target_arch = GetTarget().GetArchitecture();
2866     if (target_arch.IsValid() &&
2867         !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) {
2868       ArchSpec platform_arch;
2869       platform_sp =
2870           platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch);
2871       if (platform_sp) {
2872         GetTarget().SetPlatform(platform_sp);
2873         GetTarget().SetArchitecture(platform_arch);
2874         LLDB_LOGF(log,
2875                   "Process::%s switching platform to %s and architecture "
2876                   "to %s based on info from attach",
2877                   __FUNCTION__, platform_sp->GetName().AsCString(""),
2878                   platform_arch.GetTriple().getTriple().c_str());
2879       }
2880     } else if (!process_arch.IsValid()) {
2881       ProcessInstanceInfo process_info;
2882       GetProcessInfo(process_info);
2883       const ArchSpec &process_arch = process_info.GetArchitecture();
2884       const ArchSpec &target_arch = GetTarget().GetArchitecture();
2885       if (process_arch.IsValid() &&
2886           target_arch.IsCompatibleMatch(process_arch) &&
2887           !target_arch.IsExactMatch(process_arch)) {
2888         GetTarget().SetArchitecture(process_arch);
2889         LLDB_LOGF(log,
2890                   "Process::%s switching architecture to %s based on info "
2891                   "the platform retrieved for pid %" PRIu64,
2892                   __FUNCTION__, process_arch.GetTriple().getTriple().c_str(),
2893                   GetID());
2894       }
2895     }
2896   }
2897 
2898   // We have completed the attach, now it is time to find the dynamic loader
2899   // plug-in
2900   DynamicLoader *dyld = GetDynamicLoader();
2901   if (dyld) {
2902     dyld->DidAttach();
2903     if (log) {
2904       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2905       LLDB_LOGF(log,
2906                 "Process::%s after DynamicLoader::DidAttach(), target "
2907                 "executable is %s (using %s plugin)",
2908                 __FUNCTION__,
2909                 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
2910                               : "<none>",
2911                 dyld->GetPluginName().AsCString("<unnamed>"));
2912     }
2913   }
2914 
2915   GetJITLoaders().DidAttach();
2916 
2917   SystemRuntime *system_runtime = GetSystemRuntime();
2918   if (system_runtime) {
2919     system_runtime->DidAttach();
2920     if (log) {
2921       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2922       LLDB_LOGF(log,
2923                 "Process::%s after SystemRuntime::DidAttach(), target "
2924                 "executable is %s (using %s plugin)",
2925                 __FUNCTION__,
2926                 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
2927                               : "<none>",
2928                 system_runtime->GetPluginName().AsCString("<unnamed>"));
2929     }
2930   }
2931 
2932   if (!m_os_up) {
2933     LoadOperatingSystemPlugin(false);
2934     if (m_os_up) {
2935       // Somebody might have gotten threads before now, but we need to force the
2936       // update after we've loaded the OperatingSystem plugin or it won't get a
2937       // chance to process the threads.
2938       m_thread_list.Clear();
2939       UpdateThreadListIfNeeded();
2940     }
2941   }
2942   // Figure out which one is the executable, and set that in our target:
2943   ModuleSP new_executable_module_sp;
2944   for (ModuleSP module_sp : GetTarget().GetImages().Modules()) {
2945     if (module_sp && module_sp->IsExecutable()) {
2946       if (GetTarget().GetExecutableModulePointer() != module_sp.get())
2947         new_executable_module_sp = module_sp;
2948       break;
2949     }
2950   }
2951   if (new_executable_module_sp) {
2952     GetTarget().SetExecutableModule(new_executable_module_sp,
2953                                     eLoadDependentsNo);
2954     if (log) {
2955       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2956       LLDB_LOGF(
2957           log,
2958           "Process::%s after looping through modules, target executable is %s",
2959           __FUNCTION__,
2960           exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
2961                         : "<none>");
2962     }
2963   }
2964 }
2965 
2966 Status Process::ConnectRemote(llvm::StringRef remote_url) {
2967   m_abi_sp.reset();
2968   m_process_input_reader.reset();
2969 
2970   // Find the process and its architecture.  Make sure it matches the
2971   // architecture of the current Target, and if not adjust it.
2972 
2973   Status error(DoConnectRemote(remote_url));
2974   if (error.Success()) {
2975     if (GetID() != LLDB_INVALID_PROCESS_ID) {
2976       EventSP event_sp;
2977       StateType state = WaitForProcessStopPrivate(event_sp, llvm::None);
2978 
2979       if (state == eStateStopped || state == eStateCrashed) {
2980         // If we attached and actually have a process on the other end, then
2981         // this ended up being the equivalent of an attach.
2982         CompleteAttach();
2983 
2984         // This delays passing the stopped event to listeners till
2985         // CompleteAttach gets a chance to complete...
2986         HandlePrivateEvent(event_sp);
2987       }
2988     }
2989 
2990     if (PrivateStateThreadIsValid())
2991       ResumePrivateStateThread();
2992     else
2993       StartPrivateStateThread();
2994   }
2995   return error;
2996 }
2997 
2998 Status Process::PrivateResume() {
2999   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS |
3000                                                   LIBLLDB_LOG_STEP));
3001   LLDB_LOGF(log,
3002             "Process::PrivateResume() m_stop_id = %u, public state: %s "
3003             "private state: %s",
3004             m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()),
3005             StateAsCString(m_private_state.GetValue()));
3006 
3007   // If signals handing status changed we might want to update our signal
3008   // filters before resuming.
3009   UpdateAutomaticSignalFiltering();
3010 
3011   Status error(WillResume());
3012   // Tell the process it is about to resume before the thread list
3013   if (error.Success()) {
3014     // Now let the thread list know we are about to resume so it can let all of
3015     // our threads know that they are about to be resumed. Threads will each be
3016     // called with Thread::WillResume(StateType) where StateType contains the
3017     // state that they are supposed to have when the process is resumed
3018     // (suspended/running/stepping). Threads should also check their resume
3019     // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to
3020     // start back up with a signal.
3021     if (m_thread_list.WillResume()) {
3022       // Last thing, do the PreResumeActions.
3023       if (!RunPreResumeActions()) {
3024         error.SetErrorString(
3025             "Process::PrivateResume PreResumeActions failed, not resuming.");
3026       } else {
3027         m_mod_id.BumpResumeID();
3028         error = DoResume();
3029         if (error.Success()) {
3030           DidResume();
3031           m_thread_list.DidResume();
3032           LLDB_LOGF(log, "Process thinks the process has resumed.");
3033         } else {
3034           LLDB_LOGF(log, "Process::PrivateResume() DoResume failed.");
3035           return error;
3036         }
3037       }
3038     } else {
3039       // Somebody wanted to run without running (e.g. we were faking a step
3040       // from one frame of a set of inlined frames that share the same PC to
3041       // another.)  So generate a continue & a stopped event, and let the world
3042       // handle them.
3043       LLDB_LOGF(log,
3044                 "Process::PrivateResume() asked to simulate a start & stop.");
3045 
3046       SetPrivateState(eStateRunning);
3047       SetPrivateState(eStateStopped);
3048     }
3049   } else
3050     LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".",
3051               error.AsCString("<unknown error>"));
3052   return error;
3053 }
3054 
3055 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) {
3056   if (!StateIsRunningState(m_public_state.GetValue()))
3057     return Status("Process is not running.");
3058 
3059   // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in
3060   // case it was already set and some thread plan logic calls halt on its own.
3061   m_clear_thread_plans_on_stop |= clear_thread_plans;
3062 
3063   ListenerSP halt_listener_sp(
3064       Listener::MakeListener("lldb.process.halt_listener"));
3065   HijackProcessEvents(halt_listener_sp);
3066 
3067   EventSP event_sp;
3068 
3069   SendAsyncInterrupt();
3070 
3071   if (m_public_state.GetValue() == eStateAttaching) {
3072     // Don't hijack and eat the eStateExited as the code that was doing the
3073     // attach will be waiting for this event...
3074     RestoreProcessEvents();
3075     SetExitStatus(SIGKILL, "Cancelled async attach.");
3076     Destroy(false);
3077     return Status();
3078   }
3079 
3080   // Wait for 10 second for the process to stop.
3081   StateType state = WaitForProcessToStop(
3082       seconds(10), &event_sp, true, halt_listener_sp, nullptr, use_run_lock);
3083   RestoreProcessEvents();
3084 
3085   if (state == eStateInvalid || !event_sp) {
3086     // We timed out and didn't get a stop event...
3087     return Status("Halt timed out. State = %s", StateAsCString(GetState()));
3088   }
3089 
3090   BroadcastEvent(event_sp);
3091 
3092   return Status();
3093 }
3094 
3095 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) {
3096   Status error;
3097 
3098   // Check both the public & private states here.  If we're hung evaluating an
3099   // expression, for instance, then the public state will be stopped, but we
3100   // still need to interrupt.
3101   if (m_public_state.GetValue() == eStateRunning ||
3102       m_private_state.GetValue() == eStateRunning) {
3103     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3104     LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__);
3105 
3106     ListenerSP listener_sp(
3107         Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack"));
3108     HijackProcessEvents(listener_sp);
3109 
3110     SendAsyncInterrupt();
3111 
3112     // Consume the interrupt event.
3113     StateType state =
3114         WaitForProcessToStop(seconds(10), &exit_event_sp, true, listener_sp);
3115 
3116     RestoreProcessEvents();
3117 
3118     // If the process exited while we were waiting for it to stop, put the
3119     // exited event into the shared pointer passed in and return.  Our caller
3120     // doesn't need to do anything else, since they don't have a process
3121     // anymore...
3122 
3123     if (state == eStateExited || m_private_state.GetValue() == eStateExited) {
3124       LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.",
3125                 __FUNCTION__);
3126       return error;
3127     } else
3128       exit_event_sp.reset(); // It is ok to consume any non-exit stop events
3129 
3130     if (state != eStateStopped) {
3131       LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__,
3132                 StateAsCString(state));
3133       // If we really couldn't stop the process then we should just error out
3134       // here, but if the lower levels just bobbled sending the event and we
3135       // really are stopped, then continue on.
3136       StateType private_state = m_private_state.GetValue();
3137       if (private_state != eStateStopped) {
3138         return Status(
3139             "Attempt to stop the target in order to detach timed out. "
3140             "State = %s",
3141             StateAsCString(GetState()));
3142       }
3143     }
3144   }
3145   return error;
3146 }
3147 
3148 Status Process::Detach(bool keep_stopped) {
3149   EventSP exit_event_sp;
3150   Status error;
3151   m_destroy_in_process = true;
3152 
3153   error = WillDetach();
3154 
3155   if (error.Success()) {
3156     if (DetachRequiresHalt()) {
3157       error = StopForDestroyOrDetach(exit_event_sp);
3158       if (!error.Success()) {
3159         m_destroy_in_process = false;
3160         return error;
3161       } else if (exit_event_sp) {
3162         // We shouldn't need to do anything else here.  There's no process left
3163         // to detach from...
3164         StopPrivateStateThread();
3165         m_destroy_in_process = false;
3166         return error;
3167       }
3168     }
3169 
3170     m_thread_list.DiscardThreadPlans();
3171     DisableAllBreakpointSites();
3172 
3173     error = DoDetach(keep_stopped);
3174     if (error.Success()) {
3175       DidDetach();
3176       StopPrivateStateThread();
3177     } else {
3178       return error;
3179     }
3180   }
3181   m_destroy_in_process = false;
3182 
3183   // If we exited when we were waiting for a process to stop, then forward the
3184   // event here so we don't lose the event
3185   if (exit_event_sp) {
3186     // Directly broadcast our exited event because we shut down our private
3187     // state thread above
3188     BroadcastEvent(exit_event_sp);
3189   }
3190 
3191   // If we have been interrupted (to kill us) in the middle of running, we may
3192   // not end up propagating the last events through the event system, in which
3193   // case we might strand the write lock.  Unlock it here so when we do to tear
3194   // down the process we don't get an error destroying the lock.
3195 
3196   m_public_run_lock.SetStopped();
3197   return error;
3198 }
3199 
3200 Status Process::Destroy(bool force_kill) {
3201   // If we've already called Process::Finalize then there's nothing useful to
3202   // be done here.  Finalize has actually called Destroy already.
3203   if (m_finalizing)
3204     return {};
3205   return DestroyImpl(force_kill);
3206 }
3207 
3208 Status Process::DestroyImpl(bool force_kill) {
3209   // Tell ourselves we are in the process of destroying the process, so that we
3210   // don't do any unnecessary work that might hinder the destruction.  Remember
3211   // to set this back to false when we are done.  That way if the attempt
3212   // failed and the process stays around for some reason it won't be in a
3213   // confused state.
3214 
3215   if (force_kill)
3216     m_should_detach = false;
3217 
3218   if (GetShouldDetach()) {
3219     // FIXME: This will have to be a process setting:
3220     bool keep_stopped = false;
3221     Detach(keep_stopped);
3222   }
3223 
3224   m_destroy_in_process = true;
3225 
3226   Status error(WillDestroy());
3227   if (error.Success()) {
3228     EventSP exit_event_sp;
3229     if (DestroyRequiresHalt()) {
3230       error = StopForDestroyOrDetach(exit_event_sp);
3231     }
3232 
3233     if (m_public_state.GetValue() != eStateRunning) {
3234       // Ditch all thread plans, and remove all our breakpoints: in case we
3235       // have to restart the target to kill it, we don't want it hitting a
3236       // breakpoint... Only do this if we've stopped, however, since if we
3237       // didn't manage to halt it above, then we're not going to have much luck
3238       // doing this now.
3239       m_thread_list.DiscardThreadPlans();
3240       DisableAllBreakpointSites();
3241     }
3242 
3243     error = DoDestroy();
3244     if (error.Success()) {
3245       DidDestroy();
3246       StopPrivateStateThread();
3247     }
3248     m_stdio_communication.StopReadThread();
3249     m_stdio_communication.Disconnect();
3250     m_stdin_forward = false;
3251 
3252     if (m_process_input_reader) {
3253       m_process_input_reader->SetIsDone(true);
3254       m_process_input_reader->Cancel();
3255       m_process_input_reader.reset();
3256     }
3257 
3258     // If we exited when we were waiting for a process to stop, then forward
3259     // the event here so we don't lose the event
3260     if (exit_event_sp) {
3261       // Directly broadcast our exited event because we shut down our private
3262       // state thread above
3263       BroadcastEvent(exit_event_sp);
3264     }
3265 
3266     // If we have been interrupted (to kill us) in the middle of running, we
3267     // may not end up propagating the last events through the event system, in
3268     // which case we might strand the write lock.  Unlock it here so when we do
3269     // to tear down the process we don't get an error destroying the lock.
3270     m_public_run_lock.SetStopped();
3271   }
3272 
3273   m_destroy_in_process = false;
3274 
3275   return error;
3276 }
3277 
3278 Status Process::Signal(int signal) {
3279   Status error(WillSignal());
3280   if (error.Success()) {
3281     error = DoSignal(signal);
3282     if (error.Success())
3283       DidSignal();
3284   }
3285   return error;
3286 }
3287 
3288 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) {
3289   assert(signals_sp && "null signals_sp");
3290   m_unix_signals_sp = signals_sp;
3291 }
3292 
3293 const lldb::UnixSignalsSP &Process::GetUnixSignals() {
3294   assert(m_unix_signals_sp && "null m_unix_signals_sp");
3295   return m_unix_signals_sp;
3296 }
3297 
3298 lldb::ByteOrder Process::GetByteOrder() const {
3299   return GetTarget().GetArchitecture().GetByteOrder();
3300 }
3301 
3302 uint32_t Process::GetAddressByteSize() const {
3303   return GetTarget().GetArchitecture().GetAddressByteSize();
3304 }
3305 
3306 bool Process::ShouldBroadcastEvent(Event *event_ptr) {
3307   const StateType state =
3308       Process::ProcessEventData::GetStateFromEvent(event_ptr);
3309   bool return_value = true;
3310   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS |
3311                                                   LIBLLDB_LOG_PROCESS));
3312 
3313   switch (state) {
3314   case eStateDetached:
3315   case eStateExited:
3316   case eStateUnloaded:
3317     m_stdio_communication.SynchronizeWithReadThread();
3318     m_stdio_communication.StopReadThread();
3319     m_stdio_communication.Disconnect();
3320     m_stdin_forward = false;
3321 
3322     LLVM_FALLTHROUGH;
3323   case eStateConnected:
3324   case eStateAttaching:
3325   case eStateLaunching:
3326     // These events indicate changes in the state of the debugging session,
3327     // always report them.
3328     return_value = true;
3329     break;
3330   case eStateInvalid:
3331     // We stopped for no apparent reason, don't report it.
3332     return_value = false;
3333     break;
3334   case eStateRunning:
3335   case eStateStepping:
3336     // If we've started the target running, we handle the cases where we are
3337     // already running and where there is a transition from stopped to running
3338     // differently. running -> running: Automatically suppress extra running
3339     // events stopped -> running: Report except when there is one or more no
3340     // votes
3341     //     and no yes votes.
3342     SynchronouslyNotifyStateChanged(state);
3343     if (m_force_next_event_delivery)
3344       return_value = true;
3345     else {
3346       switch (m_last_broadcast_state) {
3347       case eStateRunning:
3348       case eStateStepping:
3349         // We always suppress multiple runnings with no PUBLIC stop in between.
3350         return_value = false;
3351         break;
3352       default:
3353         // TODO: make this work correctly. For now always report
3354         // run if we aren't running so we don't miss any running events. If I
3355         // run the lldb/test/thread/a.out file and break at main.cpp:58, run
3356         // and hit the breakpoints on multiple threads, then somehow during the
3357         // stepping over of all breakpoints no run gets reported.
3358 
3359         // This is a transition from stop to run.
3360         switch (m_thread_list.ShouldReportRun(event_ptr)) {
3361         case eVoteYes:
3362         case eVoteNoOpinion:
3363           return_value = true;
3364           break;
3365         case eVoteNo:
3366           return_value = false;
3367           break;
3368         }
3369         break;
3370       }
3371     }
3372     break;
3373   case eStateStopped:
3374   case eStateCrashed:
3375   case eStateSuspended:
3376     // We've stopped.  First see if we're going to restart the target. If we
3377     // are going to stop, then we always broadcast the event. If we aren't
3378     // going to stop, let the thread plans decide if we're going to report this
3379     // event. If no thread has an opinion, we don't report it.
3380 
3381     m_stdio_communication.SynchronizeWithReadThread();
3382     RefreshStateAfterStop();
3383     if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) {
3384       LLDB_LOGF(log,
3385                 "Process::ShouldBroadcastEvent (%p) stopped due to an "
3386                 "interrupt, state: %s",
3387                 static_cast<void *>(event_ptr), StateAsCString(state));
3388       // Even though we know we are going to stop, we should let the threads
3389       // have a look at the stop, so they can properly set their state.
3390       m_thread_list.ShouldStop(event_ptr);
3391       return_value = true;
3392     } else {
3393       bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr);
3394       bool should_resume = false;
3395 
3396       // It makes no sense to ask "ShouldStop" if we've already been
3397       // restarted... Asking the thread list is also not likely to go well,
3398       // since we are running again. So in that case just report the event.
3399 
3400       if (!was_restarted)
3401         should_resume = !m_thread_list.ShouldStop(event_ptr);
3402 
3403       if (was_restarted || should_resume || m_resume_requested) {
3404         Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr);
3405         LLDB_LOGF(log,
3406                   "Process::ShouldBroadcastEvent: should_resume: %i state: "
3407                   "%s was_restarted: %i report_stop_vote: %d.",
3408                   should_resume, StateAsCString(state), was_restarted,
3409                   report_stop_vote);
3410 
3411         switch (report_stop_vote) {
3412         case eVoteYes:
3413           return_value = true;
3414           break;
3415         case eVoteNoOpinion:
3416         case eVoteNo:
3417           return_value = false;
3418           break;
3419         }
3420 
3421         if (!was_restarted) {
3422           LLDB_LOGF(log,
3423                     "Process::ShouldBroadcastEvent (%p) Restarting process "
3424                     "from state: %s",
3425                     static_cast<void *>(event_ptr), StateAsCString(state));
3426           ProcessEventData::SetRestartedInEvent(event_ptr, true);
3427           PrivateResume();
3428         }
3429       } else {
3430         return_value = true;
3431         SynchronouslyNotifyStateChanged(state);
3432       }
3433     }
3434     break;
3435   }
3436 
3437   // Forcing the next event delivery is a one shot deal.  So reset it here.
3438   m_force_next_event_delivery = false;
3439 
3440   // We do some coalescing of events (for instance two consecutive running
3441   // events get coalesced.) But we only coalesce against events we actually
3442   // broadcast.  So we use m_last_broadcast_state to track that.  NB - you
3443   // can't use "m_public_state.GetValue()" for that purpose, as was originally
3444   // done, because the PublicState reflects the last event pulled off the
3445   // queue, and there may be several events stacked up on the queue unserviced.
3446   // So the PublicState may not reflect the last broadcasted event yet.
3447   // m_last_broadcast_state gets updated here.
3448 
3449   if (return_value)
3450     m_last_broadcast_state = state;
3451 
3452   LLDB_LOGF(log,
3453             "Process::ShouldBroadcastEvent (%p) => new state: %s, last "
3454             "broadcast state: %s - %s",
3455             static_cast<void *>(event_ptr), StateAsCString(state),
3456             StateAsCString(m_last_broadcast_state),
3457             return_value ? "YES" : "NO");
3458   return return_value;
3459 }
3460 
3461 bool Process::StartPrivateStateThread(bool is_secondary_thread) {
3462   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS));
3463 
3464   bool already_running = PrivateStateThreadIsValid();
3465   LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__,
3466             already_running ? " already running"
3467                             : " starting private state thread");
3468 
3469   if (!is_secondary_thread && already_running)
3470     return true;
3471 
3472   // Create a thread that watches our internal state and controls which events
3473   // make it to clients (into the DCProcess event queue).
3474   char thread_name[1024];
3475   uint32_t max_len = llvm::get_max_thread_name_length();
3476   if (max_len > 0 && max_len <= 30) {
3477     // On platforms with abbreviated thread name lengths, choose thread names
3478     // that fit within the limit.
3479     if (already_running)
3480       snprintf(thread_name, sizeof(thread_name), "intern-state-OV");
3481     else
3482       snprintf(thread_name, sizeof(thread_name), "intern-state");
3483   } else {
3484     if (already_running)
3485       snprintf(thread_name, sizeof(thread_name),
3486                "<lldb.process.internal-state-override(pid=%" PRIu64 ")>",
3487                GetID());
3488     else
3489       snprintf(thread_name, sizeof(thread_name),
3490                "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID());
3491   }
3492 
3493   // Create the private state thread, and start it running.
3494   PrivateStateThreadArgs *args_ptr =
3495       new PrivateStateThreadArgs(this, is_secondary_thread);
3496   llvm::Expected<HostThread> private_state_thread =
3497       ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread,
3498                                    (void *)args_ptr, 8 * 1024 * 1024);
3499   if (!private_state_thread) {
3500     LLDB_LOG(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST),
3501              "failed to launch host thread: {}",
3502              llvm::toString(private_state_thread.takeError()));
3503     return false;
3504   }
3505 
3506   assert(private_state_thread->IsJoinable());
3507   m_private_state_thread = *private_state_thread;
3508   ResumePrivateStateThread();
3509   return true;
3510 }
3511 
3512 void Process::PausePrivateStateThread() {
3513   ControlPrivateStateThread(eBroadcastInternalStateControlPause);
3514 }
3515 
3516 void Process::ResumePrivateStateThread() {
3517   ControlPrivateStateThread(eBroadcastInternalStateControlResume);
3518 }
3519 
3520 void Process::StopPrivateStateThread() {
3521   if (m_private_state_thread.IsJoinable())
3522     ControlPrivateStateThread(eBroadcastInternalStateControlStop);
3523   else {
3524     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3525     LLDB_LOGF(
3526         log,
3527         "Went to stop the private state thread, but it was already invalid.");
3528   }
3529 }
3530 
3531 void Process::ControlPrivateStateThread(uint32_t signal) {
3532   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3533 
3534   assert(signal == eBroadcastInternalStateControlStop ||
3535          signal == eBroadcastInternalStateControlPause ||
3536          signal == eBroadcastInternalStateControlResume);
3537 
3538   LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal);
3539 
3540   // Signal the private state thread
3541   if (m_private_state_thread.IsJoinable()) {
3542     // Broadcast the event.
3543     // It is important to do this outside of the if below, because it's
3544     // possible that the thread state is invalid but that the thread is waiting
3545     // on a control event instead of simply being on its way out (this should
3546     // not happen, but it apparently can).
3547     LLDB_LOGF(log, "Sending control event of type: %d.", signal);
3548     std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt());
3549     m_private_state_control_broadcaster.BroadcastEvent(signal,
3550                                                        event_receipt_sp);
3551 
3552     // Wait for the event receipt or for the private state thread to exit
3553     bool receipt_received = false;
3554     if (PrivateStateThreadIsValid()) {
3555       while (!receipt_received) {
3556         // Check for a receipt for n seconds and then check if the private
3557         // state thread is still around.
3558         receipt_received =
3559           event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout());
3560         if (!receipt_received) {
3561           // Check if the private state thread is still around. If it isn't
3562           // then we are done waiting
3563           if (!PrivateStateThreadIsValid())
3564             break; // Private state thread exited or is exiting, we are done
3565         }
3566       }
3567     }
3568 
3569     if (signal == eBroadcastInternalStateControlStop) {
3570       thread_result_t result = {};
3571       m_private_state_thread.Join(&result);
3572       m_private_state_thread.Reset();
3573     }
3574   } else {
3575     LLDB_LOGF(
3576         log,
3577         "Private state thread already dead, no need to signal it to stop.");
3578   }
3579 }
3580 
3581 void Process::SendAsyncInterrupt() {
3582   if (PrivateStateThreadIsValid())
3583     m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt,
3584                                                nullptr);
3585   else
3586     BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr);
3587 }
3588 
3589 void Process::HandlePrivateEvent(EventSP &event_sp) {
3590   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3591   m_resume_requested = false;
3592 
3593   const StateType new_state =
3594       Process::ProcessEventData::GetStateFromEvent(event_sp.get());
3595 
3596   // First check to see if anybody wants a shot at this event:
3597   if (m_next_event_action_up) {
3598     NextEventAction::EventActionResult action_result =
3599         m_next_event_action_up->PerformAction(event_sp);
3600     LLDB_LOGF(log, "Ran next event action, result was %d.", action_result);
3601 
3602     switch (action_result) {
3603     case NextEventAction::eEventActionSuccess:
3604       SetNextEventAction(nullptr);
3605       break;
3606 
3607     case NextEventAction::eEventActionRetry:
3608       break;
3609 
3610     case NextEventAction::eEventActionExit:
3611       // Handle Exiting Here.  If we already got an exited event, we should
3612       // just propagate it.  Otherwise, swallow this event, and set our state
3613       // to exit so the next event will kill us.
3614       if (new_state != eStateExited) {
3615         // FIXME: should cons up an exited event, and discard this one.
3616         SetExitStatus(0, m_next_event_action_up->GetExitString());
3617         SetNextEventAction(nullptr);
3618         return;
3619       }
3620       SetNextEventAction(nullptr);
3621       break;
3622     }
3623   }
3624 
3625   // See if we should broadcast this state to external clients?
3626   const bool should_broadcast = ShouldBroadcastEvent(event_sp.get());
3627 
3628   if (should_broadcast) {
3629     const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged);
3630     if (log) {
3631       LLDB_LOGF(log,
3632                 "Process::%s (pid = %" PRIu64
3633                 ") broadcasting new state %s (old state %s) to %s",
3634                 __FUNCTION__, GetID(), StateAsCString(new_state),
3635                 StateAsCString(GetState()),
3636                 is_hijacked ? "hijacked" : "public");
3637     }
3638     Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get());
3639     if (StateIsRunningState(new_state)) {
3640       // Only push the input handler if we aren't fowarding events, as this
3641       // means the curses GUI is in use... Or don't push it if we are launching
3642       // since it will come up stopped.
3643       if (!GetTarget().GetDebugger().IsForwardingEvents() &&
3644           new_state != eStateLaunching && new_state != eStateAttaching) {
3645         PushProcessIOHandler();
3646         m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1,
3647                                   eBroadcastAlways);
3648         LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d",
3649                   __FUNCTION__, m_iohandler_sync.GetValue());
3650       }
3651     } else if (StateIsStoppedState(new_state, false)) {
3652       if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
3653         // If the lldb_private::Debugger is handling the events, we don't want
3654         // to pop the process IOHandler here, we want to do it when we receive
3655         // the stopped event so we can carefully control when the process
3656         // IOHandler is popped because when we stop we want to display some
3657         // text stating how and why we stopped, then maybe some
3658         // process/thread/frame info, and then we want the "(lldb) " prompt to
3659         // show up. If we pop the process IOHandler here, then we will cause
3660         // the command interpreter to become the top IOHandler after the
3661         // process pops off and it will update its prompt right away... See the
3662         // Debugger.cpp file where it calls the function as
3663         // "process_sp->PopProcessIOHandler()" to see where I am talking about.
3664         // Otherwise we end up getting overlapping "(lldb) " prompts and
3665         // garbled output.
3666         //
3667         // If we aren't handling the events in the debugger (which is indicated
3668         // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or
3669         // we are hijacked, then we always pop the process IO handler manually.
3670         // Hijacking happens when the internal process state thread is running
3671         // thread plans, or when commands want to run in synchronous mode and
3672         // they call "process->WaitForProcessToStop()". An example of something
3673         // that will hijack the events is a simple expression:
3674         //
3675         //  (lldb) expr (int)puts("hello")
3676         //
3677         // This will cause the internal process state thread to resume and halt
3678         // the process (and _it_ will hijack the eBroadcastBitStateChanged
3679         // events) and we do need the IO handler to be pushed and popped
3680         // correctly.
3681 
3682         if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents())
3683           PopProcessIOHandler();
3684       }
3685     }
3686 
3687     BroadcastEvent(event_sp);
3688   } else {
3689     if (log) {
3690       LLDB_LOGF(
3691           log,
3692           "Process::%s (pid = %" PRIu64
3693           ") suppressing state %s (old state %s): should_broadcast == false",
3694           __FUNCTION__, GetID(), StateAsCString(new_state),
3695           StateAsCString(GetState()));
3696     }
3697   }
3698 }
3699 
3700 Status Process::HaltPrivate() {
3701   EventSP event_sp;
3702   Status error(WillHalt());
3703   if (error.Fail())
3704     return error;
3705 
3706   // Ask the process subclass to actually halt our process
3707   bool caused_stop;
3708   error = DoHalt(caused_stop);
3709 
3710   DidHalt();
3711   return error;
3712 }
3713 
3714 thread_result_t Process::PrivateStateThread(void *arg) {
3715   std::unique_ptr<PrivateStateThreadArgs> args_up(
3716       static_cast<PrivateStateThreadArgs *>(arg));
3717   thread_result_t result =
3718       args_up->process->RunPrivateStateThread(args_up->is_secondary_thread);
3719   return result;
3720 }
3721 
3722 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) {
3723   bool control_only = true;
3724 
3725   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
3726   LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...",
3727             __FUNCTION__, static_cast<void *>(this), GetID());
3728 
3729   bool exit_now = false;
3730   bool interrupt_requested = false;
3731   while (!exit_now) {
3732     EventSP event_sp;
3733     GetEventsPrivate(event_sp, llvm::None, control_only);
3734     if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) {
3735       LLDB_LOGF(log,
3736                 "Process::%s (arg = %p, pid = %" PRIu64
3737                 ") got a control event: %d",
3738                 __FUNCTION__, static_cast<void *>(this), GetID(),
3739                 event_sp->GetType());
3740 
3741       switch (event_sp->GetType()) {
3742       case eBroadcastInternalStateControlStop:
3743         exit_now = true;
3744         break; // doing any internal state management below
3745 
3746       case eBroadcastInternalStateControlPause:
3747         control_only = true;
3748         break;
3749 
3750       case eBroadcastInternalStateControlResume:
3751         control_only = false;
3752         break;
3753       }
3754 
3755       continue;
3756     } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
3757       if (m_public_state.GetValue() == eStateAttaching) {
3758         LLDB_LOGF(log,
3759                   "Process::%s (arg = %p, pid = %" PRIu64
3760                   ") woke up with an interrupt while attaching - "
3761                   "forwarding interrupt.",
3762                   __FUNCTION__, static_cast<void *>(this), GetID());
3763         BroadcastEvent(eBroadcastBitInterrupt, nullptr);
3764       } else if (StateIsRunningState(m_last_broadcast_state)) {
3765         LLDB_LOGF(log,
3766                   "Process::%s (arg = %p, pid = %" PRIu64
3767                   ") woke up with an interrupt - Halting.",
3768                   __FUNCTION__, static_cast<void *>(this), GetID());
3769         Status error = HaltPrivate();
3770         if (error.Fail() && log)
3771           LLDB_LOGF(log,
3772                     "Process::%s (arg = %p, pid = %" PRIu64
3773                     ") failed to halt the process: %s",
3774                     __FUNCTION__, static_cast<void *>(this), GetID(),
3775                     error.AsCString());
3776         // Halt should generate a stopped event. Make a note of the fact that
3777         // we were doing the interrupt, so we can set the interrupted flag
3778         // after we receive the event. We deliberately set this to true even if
3779         // HaltPrivate failed, so that we can interrupt on the next natural
3780         // stop.
3781         interrupt_requested = true;
3782       } else {
3783         // This can happen when someone (e.g. Process::Halt) sees that we are
3784         // running and sends an interrupt request, but the process actually
3785         // stops before we receive it. In that case, we can just ignore the
3786         // request. We use m_last_broadcast_state, because the Stopped event
3787         // may not have been popped of the event queue yet, which is when the
3788         // public state gets updated.
3789         LLDB_LOGF(log,
3790                   "Process::%s ignoring interrupt as we have already stopped.",
3791                   __FUNCTION__);
3792       }
3793       continue;
3794     }
3795 
3796     const StateType internal_state =
3797         Process::ProcessEventData::GetStateFromEvent(event_sp.get());
3798 
3799     if (internal_state != eStateInvalid) {
3800       if (m_clear_thread_plans_on_stop &&
3801           StateIsStoppedState(internal_state, true)) {
3802         m_clear_thread_plans_on_stop = false;
3803         m_thread_list.DiscardThreadPlans();
3804       }
3805 
3806       if (interrupt_requested) {
3807         if (StateIsStoppedState(internal_state, true)) {
3808           // We requested the interrupt, so mark this as such in the stop event
3809           // so clients can tell an interrupted process from a natural stop
3810           ProcessEventData::SetInterruptedInEvent(event_sp.get(), true);
3811           interrupt_requested = false;
3812         } else if (log) {
3813           LLDB_LOGF(log,
3814                     "Process::%s interrupt_requested, but a non-stopped "
3815                     "state '%s' received.",
3816                     __FUNCTION__, StateAsCString(internal_state));
3817         }
3818       }
3819 
3820       HandlePrivateEvent(event_sp);
3821     }
3822 
3823     if (internal_state == eStateInvalid || internal_state == eStateExited ||
3824         internal_state == eStateDetached) {
3825       LLDB_LOGF(log,
3826                 "Process::%s (arg = %p, pid = %" PRIu64
3827                 ") about to exit with internal state %s...",
3828                 __FUNCTION__, static_cast<void *>(this), GetID(),
3829                 StateAsCString(internal_state));
3830 
3831       break;
3832     }
3833   }
3834 
3835   // Verify log is still enabled before attempting to write to it...
3836   LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...",
3837             __FUNCTION__, static_cast<void *>(this), GetID());
3838 
3839   // If we are a secondary thread, then the primary thread we are working for
3840   // will have already acquired the public_run_lock, and isn't done with what
3841   // it was doing yet, so don't try to change it on the way out.
3842   if (!is_secondary_thread)
3843     m_public_run_lock.SetStopped();
3844   return {};
3845 }
3846 
3847 // Process Event Data
3848 
3849 Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {}
3850 
3851 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp,
3852                                             StateType state)
3853     : EventData(), m_process_wp(), m_state(state), m_restarted(false),
3854       m_update_state(0), m_interrupted(false) {
3855   if (process_sp)
3856     m_process_wp = process_sp;
3857 }
3858 
3859 Process::ProcessEventData::~ProcessEventData() = default;
3860 
3861 ConstString Process::ProcessEventData::GetFlavorString() {
3862   static ConstString g_flavor("Process::ProcessEventData");
3863   return g_flavor;
3864 }
3865 
3866 ConstString Process::ProcessEventData::GetFlavor() const {
3867   return ProcessEventData::GetFlavorString();
3868 }
3869 
3870 bool Process::ProcessEventData::ShouldStop(Event *event_ptr,
3871                                            bool &found_valid_stopinfo) {
3872   found_valid_stopinfo = false;
3873 
3874   ProcessSP process_sp(m_process_wp.lock());
3875   if (!process_sp)
3876     return false;
3877 
3878   ThreadList &curr_thread_list = process_sp->GetThreadList();
3879   uint32_t num_threads = curr_thread_list.GetSize();
3880   uint32_t idx;
3881 
3882   // The actions might change one of the thread's stop_info's opinions about
3883   // whether we should stop the process, so we need to query that as we go.
3884 
3885   // One other complication here, is that we try to catch any case where the
3886   // target has run (except for expressions) and immediately exit, but if we
3887   // get that wrong (which is possible) then the thread list might have
3888   // changed, and that would cause our iteration here to crash.  We could
3889   // make a copy of the thread list, but we'd really like to also know if it
3890   // has changed at all, so we make up a vector of the thread ID's and check
3891   // what we get back against this list & bag out if anything differs.
3892   ThreadList not_suspended_thread_list(process_sp.get());
3893   std::vector<uint32_t> thread_index_array(num_threads);
3894   uint32_t not_suspended_idx = 0;
3895   for (idx = 0; idx < num_threads; ++idx) {
3896     lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx);
3897 
3898     /*
3899      Filter out all suspended threads, they could not be the reason
3900      of stop and no need to perform any actions on them.
3901      */
3902     if (thread_sp->GetResumeState() != eStateSuspended) {
3903       not_suspended_thread_list.AddThread(thread_sp);
3904       thread_index_array[not_suspended_idx] = thread_sp->GetIndexID();
3905       not_suspended_idx++;
3906     }
3907   }
3908 
3909   // Use this to track whether we should continue from here.  We will only
3910   // continue the target running if no thread says we should stop.  Of course
3911   // if some thread's PerformAction actually sets the target running, then it
3912   // doesn't matter what the other threads say...
3913 
3914   bool still_should_stop = false;
3915 
3916   // Sometimes - for instance if we have a bug in the stub we are talking to,
3917   // we stop but no thread has a valid stop reason.  In that case we should
3918   // just stop, because we have no way of telling what the right thing to do
3919   // is, and it's better to let the user decide than continue behind their
3920   // backs.
3921 
3922   for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) {
3923     curr_thread_list = process_sp->GetThreadList();
3924     if (curr_thread_list.GetSize() != num_threads) {
3925       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP |
3926                                                       LIBLLDB_LOG_PROCESS));
3927       LLDB_LOGF(
3928           log,
3929           "Number of threads changed from %u to %u while processing event.",
3930           num_threads, curr_thread_list.GetSize());
3931       break;
3932     }
3933 
3934     lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx);
3935 
3936     if (thread_sp->GetIndexID() != thread_index_array[idx]) {
3937       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP |
3938                                                       LIBLLDB_LOG_PROCESS));
3939       LLDB_LOGF(log,
3940                 "The thread at position %u changed from %u to %u while "
3941                 "processing event.",
3942                 idx, thread_index_array[idx], thread_sp->GetIndexID());
3943       break;
3944     }
3945 
3946     StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
3947     if (stop_info_sp && stop_info_sp->IsValid()) {
3948       found_valid_stopinfo = true;
3949       bool this_thread_wants_to_stop;
3950       if (stop_info_sp->GetOverrideShouldStop()) {
3951         this_thread_wants_to_stop =
3952             stop_info_sp->GetOverriddenShouldStopValue();
3953       } else {
3954         stop_info_sp->PerformAction(event_ptr);
3955         // The stop action might restart the target.  If it does, then we
3956         // want to mark that in the event so that whoever is receiving it
3957         // will know to wait for the running event and reflect that state
3958         // appropriately. We also need to stop processing actions, since they
3959         // aren't expecting the target to be running.
3960 
3961         // FIXME: we might have run.
3962         if (stop_info_sp->HasTargetRunSinceMe()) {
3963           SetRestarted(true);
3964           break;
3965         }
3966 
3967         this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr);
3968       }
3969 
3970       if (!still_should_stop)
3971         still_should_stop = this_thread_wants_to_stop;
3972     }
3973   }
3974 
3975   return still_should_stop;
3976 }
3977 
3978 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) {
3979   ProcessSP process_sp(m_process_wp.lock());
3980 
3981   if (!process_sp)
3982     return;
3983 
3984   // This function gets called twice for each event, once when the event gets
3985   // pulled off of the private process event queue, and then any number of
3986   // times, first when it gets pulled off of the public event queue, then other
3987   // times when we're pretending that this is where we stopped at the end of
3988   // expression evaluation.  m_update_state is used to distinguish these three
3989   // cases; it is 0 when we're just pulling it off for private handling, and >
3990   // 1 for expression evaluation, and we don't want to do the breakpoint
3991   // command handling then.
3992   if (m_update_state != 1)
3993     return;
3994 
3995   process_sp->SetPublicState(
3996       m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr));
3997 
3998   if (m_state == eStateStopped && !m_restarted) {
3999     // Let process subclasses know we are about to do a public stop and do
4000     // anything they might need to in order to speed up register and memory
4001     // accesses.
4002     process_sp->WillPublicStop();
4003   }
4004 
4005   // If this is a halt event, even if the halt stopped with some reason other
4006   // than a plain interrupt (e.g. we had already stopped for a breakpoint when
4007   // the halt request came through) don't do the StopInfo actions, as they may
4008   // end up restarting the process.
4009   if (m_interrupted)
4010     return;
4011 
4012   // If we're not stopped or have restarted, then skip the StopInfo actions:
4013   if (m_state != eStateStopped || m_restarted) {
4014     return;
4015   }
4016 
4017   bool does_anybody_have_an_opinion = false;
4018   bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion);
4019 
4020   if (GetRestarted()) {
4021     return;
4022   }
4023 
4024   if (!still_should_stop && does_anybody_have_an_opinion) {
4025     // We've been asked to continue, so do that here.
4026     SetRestarted(true);
4027     // Use the public resume method here, since this is just extending a
4028     // public resume.
4029     process_sp->PrivateResume();
4030   } else {
4031     bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) &&
4032                     !process_sp->StateChangedIsHijackedForSynchronousResume();
4033 
4034     if (!hijacked) {
4035       // If we didn't restart, run the Stop Hooks here.
4036       // Don't do that if state changed events aren't hooked up to the
4037       // public (or SyncResume) broadcasters.  StopHooks are just for
4038       // real public stops.  They might also restart the target,
4039       // so watch for that.
4040       if (process_sp->GetTarget().RunStopHooks())
4041         SetRestarted(true);
4042     }
4043   }
4044 }
4045 
4046 void Process::ProcessEventData::Dump(Stream *s) const {
4047   ProcessSP process_sp(m_process_wp.lock());
4048 
4049   if (process_sp)
4050     s->Printf(" process = %p (pid = %" PRIu64 "), ",
4051               static_cast<void *>(process_sp.get()), process_sp->GetID());
4052   else
4053     s->PutCString(" process = NULL, ");
4054 
4055   s->Printf("state = %s", StateAsCString(GetState()));
4056 }
4057 
4058 const Process::ProcessEventData *
4059 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) {
4060   if (event_ptr) {
4061     const EventData *event_data = event_ptr->GetData();
4062     if (event_data &&
4063         event_data->GetFlavor() == ProcessEventData::GetFlavorString())
4064       return static_cast<const ProcessEventData *>(event_ptr->GetData());
4065   }
4066   return nullptr;
4067 }
4068 
4069 ProcessSP
4070 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) {
4071   ProcessSP process_sp;
4072   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4073   if (data)
4074     process_sp = data->GetProcessSP();
4075   return process_sp;
4076 }
4077 
4078 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) {
4079   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4080   if (data == nullptr)
4081     return eStateInvalid;
4082   else
4083     return data->GetState();
4084 }
4085 
4086 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) {
4087   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4088   if (data == nullptr)
4089     return false;
4090   else
4091     return data->GetRestarted();
4092 }
4093 
4094 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr,
4095                                                     bool new_value) {
4096   ProcessEventData *data =
4097       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4098   if (data != nullptr)
4099     data->SetRestarted(new_value);
4100 }
4101 
4102 size_t
4103 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) {
4104   ProcessEventData *data =
4105       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4106   if (data != nullptr)
4107     return data->GetNumRestartedReasons();
4108   else
4109     return 0;
4110 }
4111 
4112 const char *
4113 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr,
4114                                                      size_t idx) {
4115   ProcessEventData *data =
4116       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4117   if (data != nullptr)
4118     return data->GetRestartedReasonAtIndex(idx);
4119   else
4120     return nullptr;
4121 }
4122 
4123 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr,
4124                                                    const char *reason) {
4125   ProcessEventData *data =
4126       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4127   if (data != nullptr)
4128     data->AddRestartedReason(reason);
4129 }
4130 
4131 bool Process::ProcessEventData::GetInterruptedFromEvent(
4132     const Event *event_ptr) {
4133   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4134   if (data == nullptr)
4135     return false;
4136   else
4137     return data->GetInterrupted();
4138 }
4139 
4140 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr,
4141                                                       bool new_value) {
4142   ProcessEventData *data =
4143       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4144   if (data != nullptr)
4145     data->SetInterrupted(new_value);
4146 }
4147 
4148 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) {
4149   ProcessEventData *data =
4150       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4151   if (data) {
4152     data->SetUpdateStateOnRemoval();
4153     return true;
4154   }
4155   return false;
4156 }
4157 
4158 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); }
4159 
4160 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) {
4161   exe_ctx.SetTargetPtr(&GetTarget());
4162   exe_ctx.SetProcessPtr(this);
4163   exe_ctx.SetThreadPtr(nullptr);
4164   exe_ctx.SetFramePtr(nullptr);
4165 }
4166 
4167 // uint32_t
4168 // Process::ListProcessesMatchingName (const char *name, StringList &matches,
4169 // std::vector<lldb::pid_t> &pids)
4170 //{
4171 //    return 0;
4172 //}
4173 //
4174 // ArchSpec
4175 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid)
4176 //{
4177 //    return Host::GetArchSpecForExistingProcess (pid);
4178 //}
4179 //
4180 // ArchSpec
4181 // Process::GetArchSpecForExistingProcess (const char *process_name)
4182 //{
4183 //    return Host::GetArchSpecForExistingProcess (process_name);
4184 //}
4185 
4186 void Process::AppendSTDOUT(const char *s, size_t len) {
4187   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4188   m_stdout_data.append(s, len);
4189   BroadcastEventIfUnique(eBroadcastBitSTDOUT,
4190                          new ProcessEventData(shared_from_this(), GetState()));
4191 }
4192 
4193 void Process::AppendSTDERR(const char *s, size_t len) {
4194   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4195   m_stderr_data.append(s, len);
4196   BroadcastEventIfUnique(eBroadcastBitSTDERR,
4197                          new ProcessEventData(shared_from_this(), GetState()));
4198 }
4199 
4200 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) {
4201   std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4202   m_profile_data.push_back(one_profile_data);
4203   BroadcastEventIfUnique(eBroadcastBitProfileData,
4204                          new ProcessEventData(shared_from_this(), GetState()));
4205 }
4206 
4207 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp,
4208                                       const StructuredDataPluginSP &plugin_sp) {
4209   BroadcastEvent(
4210       eBroadcastBitStructuredData,
4211       new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp));
4212 }
4213 
4214 StructuredDataPluginSP
4215 Process::GetStructuredDataPlugin(ConstString type_name) const {
4216   auto find_it = m_structured_data_plugin_map.find(type_name);
4217   if (find_it != m_structured_data_plugin_map.end())
4218     return find_it->second;
4219   else
4220     return StructuredDataPluginSP();
4221 }
4222 
4223 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) {
4224   std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4225   if (m_profile_data.empty())
4226     return 0;
4227 
4228   std::string &one_profile_data = m_profile_data.front();
4229   size_t bytes_available = one_profile_data.size();
4230   if (bytes_available > 0) {
4231     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4232     LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")",
4233               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4234     if (bytes_available > buf_size) {
4235       memcpy(buf, one_profile_data.c_str(), buf_size);
4236       one_profile_data.erase(0, buf_size);
4237       bytes_available = buf_size;
4238     } else {
4239       memcpy(buf, one_profile_data.c_str(), bytes_available);
4240       m_profile_data.erase(m_profile_data.begin());
4241     }
4242   }
4243   return bytes_available;
4244 }
4245 
4246 // Process STDIO
4247 
4248 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) {
4249   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4250   size_t bytes_available = m_stdout_data.size();
4251   if (bytes_available > 0) {
4252     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4253     LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")",
4254               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4255     if (bytes_available > buf_size) {
4256       memcpy(buf, m_stdout_data.c_str(), buf_size);
4257       m_stdout_data.erase(0, buf_size);
4258       bytes_available = buf_size;
4259     } else {
4260       memcpy(buf, m_stdout_data.c_str(), bytes_available);
4261       m_stdout_data.clear();
4262     }
4263   }
4264   return bytes_available;
4265 }
4266 
4267 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) {
4268   std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex);
4269   size_t bytes_available = m_stderr_data.size();
4270   if (bytes_available > 0) {
4271     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4272     LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")",
4273               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4274     if (bytes_available > buf_size) {
4275       memcpy(buf, m_stderr_data.c_str(), buf_size);
4276       m_stderr_data.erase(0, buf_size);
4277       bytes_available = buf_size;
4278     } else {
4279       memcpy(buf, m_stderr_data.c_str(), bytes_available);
4280       m_stderr_data.clear();
4281     }
4282   }
4283   return bytes_available;
4284 }
4285 
4286 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src,
4287                                            size_t src_len) {
4288   Process *process = (Process *)baton;
4289   process->AppendSTDOUT(static_cast<const char *>(src), src_len);
4290 }
4291 
4292 class IOHandlerProcessSTDIO : public IOHandler {
4293 public:
4294   IOHandlerProcessSTDIO(Process *process, int write_fd)
4295       : IOHandler(process->GetTarget().GetDebugger(),
4296                   IOHandler::Type::ProcessIO),
4297         m_process(process),
4298         m_read_file(GetInputFD(), File::eOpenOptionRead, false),
4299         m_write_file(write_fd, File::eOpenOptionWrite, false) {
4300     m_pipe.CreateNew(false);
4301   }
4302 
4303   ~IOHandlerProcessSTDIO() override = default;
4304 
4305   // Each IOHandler gets to run until it is done. It should read data from the
4306   // "in" and place output into "out" and "err and return when done.
4307   void Run() override {
4308     if (!m_read_file.IsValid() || !m_write_file.IsValid() ||
4309         !m_pipe.CanRead() || !m_pipe.CanWrite()) {
4310       SetIsDone(true);
4311       return;
4312     }
4313 
4314     SetIsDone(false);
4315     const int read_fd = m_read_file.GetDescriptor();
4316     TerminalState terminal_state;
4317     terminal_state.Save(read_fd, false);
4318     Terminal terminal(read_fd);
4319     terminal.SetCanonical(false);
4320     terminal.SetEcho(false);
4321 // FD_ZERO, FD_SET are not supported on windows
4322 #ifndef _WIN32
4323     const int pipe_read_fd = m_pipe.GetReadFileDescriptor();
4324     m_is_running = true;
4325     while (!GetIsDone()) {
4326       SelectHelper select_helper;
4327       select_helper.FDSetRead(read_fd);
4328       select_helper.FDSetRead(pipe_read_fd);
4329       Status error = select_helper.Select();
4330 
4331       if (error.Fail()) {
4332         SetIsDone(true);
4333       } else {
4334         char ch = 0;
4335         size_t n;
4336         if (select_helper.FDIsSetRead(read_fd)) {
4337           n = 1;
4338           if (m_read_file.Read(&ch, n).Success() && n == 1) {
4339             if (m_write_file.Write(&ch, n).Fail() || n != 1)
4340               SetIsDone(true);
4341           } else
4342             SetIsDone(true);
4343         }
4344         if (select_helper.FDIsSetRead(pipe_read_fd)) {
4345           size_t bytes_read;
4346           // Consume the interrupt byte
4347           Status error = m_pipe.Read(&ch, 1, bytes_read);
4348           if (error.Success()) {
4349             switch (ch) {
4350             case 'q':
4351               SetIsDone(true);
4352               break;
4353             case 'i':
4354               if (StateIsRunningState(m_process->GetState()))
4355                 m_process->SendAsyncInterrupt();
4356               break;
4357             }
4358           }
4359         }
4360       }
4361     }
4362     m_is_running = false;
4363 #endif
4364     terminal_state.Restore();
4365   }
4366 
4367   void Cancel() override {
4368     SetIsDone(true);
4369     // Only write to our pipe to cancel if we are in
4370     // IOHandlerProcessSTDIO::Run(). We can end up with a python command that
4371     // is being run from the command interpreter:
4372     //
4373     // (lldb) step_process_thousands_of_times
4374     //
4375     // In this case the command interpreter will be in the middle of handling
4376     // the command and if the process pushes and pops the IOHandler thousands
4377     // of times, we can end up writing to m_pipe without ever consuming the
4378     // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up
4379     // deadlocking when the pipe gets fed up and blocks until data is consumed.
4380     if (m_is_running) {
4381       char ch = 'q'; // Send 'q' for quit
4382       size_t bytes_written = 0;
4383       m_pipe.Write(&ch, 1, bytes_written);
4384     }
4385   }
4386 
4387   bool Interrupt() override {
4388     // Do only things that are safe to do in an interrupt context (like in a
4389     // SIGINT handler), like write 1 byte to a file descriptor. This will
4390     // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte
4391     // that was written to the pipe and then call
4392     // m_process->SendAsyncInterrupt() from a much safer location in code.
4393     if (m_active) {
4394       char ch = 'i'; // Send 'i' for interrupt
4395       size_t bytes_written = 0;
4396       Status result = m_pipe.Write(&ch, 1, bytes_written);
4397       return result.Success();
4398     } else {
4399       // This IOHandler might be pushed on the stack, but not being run
4400       // currently so do the right thing if we aren't actively watching for
4401       // STDIN by sending the interrupt to the process. Otherwise the write to
4402       // the pipe above would do nothing. This can happen when the command
4403       // interpreter is running and gets a "expression ...". It will be on the
4404       // IOHandler thread and sending the input is complete to the delegate
4405       // which will cause the expression to run, which will push the process IO
4406       // handler, but not run it.
4407 
4408       if (StateIsRunningState(m_process->GetState())) {
4409         m_process->SendAsyncInterrupt();
4410         return true;
4411       }
4412     }
4413     return false;
4414   }
4415 
4416   void GotEOF() override {}
4417 
4418 protected:
4419   Process *m_process;
4420   NativeFile m_read_file;  // Read from this file (usually actual STDIN for LLDB
4421   NativeFile m_write_file; // Write to this file (usually the master pty for
4422                            // getting io to debuggee)
4423   Pipe m_pipe;
4424   std::atomic<bool> m_is_running{false};
4425 };
4426 
4427 void Process::SetSTDIOFileDescriptor(int fd) {
4428   // First set up the Read Thread for reading/handling process I/O
4429   m_stdio_communication.SetConnection(
4430       std::make_unique<ConnectionFileDescriptor>(fd, true));
4431   if (m_stdio_communication.IsConnected()) {
4432     m_stdio_communication.SetReadThreadBytesReceivedCallback(
4433         STDIOReadThreadBytesReceived, this);
4434     m_stdio_communication.StartReadThread();
4435 
4436     // Now read thread is set up, set up input reader.
4437 
4438     if (!m_process_input_reader)
4439       m_process_input_reader =
4440           std::make_shared<IOHandlerProcessSTDIO>(this, fd);
4441   }
4442 }
4443 
4444 bool Process::ProcessIOHandlerIsActive() {
4445   IOHandlerSP io_handler_sp(m_process_input_reader);
4446   if (io_handler_sp)
4447     return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp);
4448   return false;
4449 }
4450 bool Process::PushProcessIOHandler() {
4451   IOHandlerSP io_handler_sp(m_process_input_reader);
4452   if (io_handler_sp) {
4453     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
4454     LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__);
4455 
4456     io_handler_sp->SetIsDone(false);
4457     // If we evaluate an utility function, then we don't cancel the current
4458     // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the
4459     // existing IOHandler that potentially provides the user interface (e.g.
4460     // the IOHandler for Editline).
4461     bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction();
4462     GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp,
4463                                                 cancel_top_handler);
4464     return true;
4465   }
4466   return false;
4467 }
4468 
4469 bool Process::PopProcessIOHandler() {
4470   IOHandlerSP io_handler_sp(m_process_input_reader);
4471   if (io_handler_sp)
4472     return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp);
4473   return false;
4474 }
4475 
4476 // The process needs to know about installed plug-ins
4477 void Process::SettingsInitialize() { Thread::SettingsInitialize(); }
4478 
4479 void Process::SettingsTerminate() { Thread::SettingsTerminate(); }
4480 
4481 namespace {
4482 // RestorePlanState is used to record the "is private", "is master" and "okay
4483 // to discard" fields of the plan we are running, and reset it on Clean or on
4484 // destruction. It will only reset the state once, so you can call Clean and
4485 // then monkey with the state and it won't get reset on you again.
4486 
4487 class RestorePlanState {
4488 public:
4489   RestorePlanState(lldb::ThreadPlanSP thread_plan_sp)
4490       : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) {
4491     if (m_thread_plan_sp) {
4492       m_private = m_thread_plan_sp->GetPrivate();
4493       m_is_master = m_thread_plan_sp->IsMasterPlan();
4494       m_okay_to_discard = m_thread_plan_sp->OkayToDiscard();
4495     }
4496   }
4497 
4498   ~RestorePlanState() { Clean(); }
4499 
4500   void Clean() {
4501     if (!m_already_reset && m_thread_plan_sp) {
4502       m_already_reset = true;
4503       m_thread_plan_sp->SetPrivate(m_private);
4504       m_thread_plan_sp->SetIsMasterPlan(m_is_master);
4505       m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard);
4506     }
4507   }
4508 
4509 private:
4510   lldb::ThreadPlanSP m_thread_plan_sp;
4511   bool m_already_reset;
4512   bool m_private;
4513   bool m_is_master;
4514   bool m_okay_to_discard;
4515 };
4516 } // anonymous namespace
4517 
4518 static microseconds
4519 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) {
4520   const milliseconds default_one_thread_timeout(250);
4521 
4522   // If the overall wait is forever, then we don't need to worry about it.
4523   if (!options.GetTimeout()) {
4524     return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout()
4525                                          : default_one_thread_timeout;
4526   }
4527 
4528   // If the one thread timeout is set, use it.
4529   if (options.GetOneThreadTimeout())
4530     return *options.GetOneThreadTimeout();
4531 
4532   // Otherwise use half the total timeout, bounded by the
4533   // default_one_thread_timeout.
4534   return std::min<microseconds>(default_one_thread_timeout,
4535                                 *options.GetTimeout() / 2);
4536 }
4537 
4538 static Timeout<std::micro>
4539 GetExpressionTimeout(const EvaluateExpressionOptions &options,
4540                      bool before_first_timeout) {
4541   // If we are going to run all threads the whole time, or if we are only going
4542   // to run one thread, we can just return the overall timeout.
4543   if (!options.GetStopOthers() || !options.GetTryAllThreads())
4544     return options.GetTimeout();
4545 
4546   if (before_first_timeout)
4547     return GetOneThreadExpressionTimeout(options);
4548 
4549   if (!options.GetTimeout())
4550     return llvm::None;
4551   else
4552     return *options.GetTimeout() - GetOneThreadExpressionTimeout(options);
4553 }
4554 
4555 static llvm::Optional<ExpressionResults>
4556 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp,
4557                    RestorePlanState &restorer, const EventSP &event_sp,
4558                    EventSP &event_to_broadcast_sp,
4559                    const EvaluateExpressionOptions &options,
4560                    bool handle_interrupts) {
4561   Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS);
4562 
4563   ThreadSP thread_sp = thread_plan_sp->GetTarget()
4564                            .GetProcessSP()
4565                            ->GetThreadList()
4566                            .FindThreadByID(thread_id);
4567   if (!thread_sp) {
4568     LLDB_LOG(log,
4569              "The thread on which we were running the "
4570              "expression: tid = {0}, exited while "
4571              "the expression was running.",
4572              thread_id);
4573     return eExpressionThreadVanished;
4574   }
4575 
4576   ThreadPlanSP plan = thread_sp->GetCompletedPlan();
4577   if (plan == thread_plan_sp && plan->PlanSucceeded()) {
4578     LLDB_LOG(log, "execution completed successfully");
4579 
4580     // Restore the plan state so it will get reported as intended when we are
4581     // done.
4582     restorer.Clean();
4583     return eExpressionCompleted;
4584   }
4585 
4586   StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
4587   if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint &&
4588       stop_info_sp->ShouldNotify(event_sp.get())) {
4589     LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription());
4590     if (!options.DoesIgnoreBreakpoints()) {
4591       // Restore the plan state and then force Private to false.  We are going
4592       // to stop because of this plan so we need it to become a public plan or
4593       // it won't report correctly when we continue to its termination later
4594       // on.
4595       restorer.Clean();
4596       thread_plan_sp->SetPrivate(false);
4597       event_to_broadcast_sp = event_sp;
4598     }
4599     return eExpressionHitBreakpoint;
4600   }
4601 
4602   if (!handle_interrupts &&
4603       Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get()))
4604     return llvm::None;
4605 
4606   LLDB_LOG(log, "thread plan did not successfully complete");
4607   if (!options.DoesUnwindOnError())
4608     event_to_broadcast_sp = event_sp;
4609   return eExpressionInterrupted;
4610 }
4611 
4612 ExpressionResults
4613 Process::RunThreadPlan(ExecutionContext &exe_ctx,
4614                        lldb::ThreadPlanSP &thread_plan_sp,
4615                        const EvaluateExpressionOptions &options,
4616                        DiagnosticManager &diagnostic_manager) {
4617   ExpressionResults return_value = eExpressionSetupError;
4618 
4619   std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock);
4620 
4621   if (!thread_plan_sp) {
4622     diagnostic_manager.PutString(
4623         eDiagnosticSeverityError,
4624         "RunThreadPlan called with empty thread plan.");
4625     return eExpressionSetupError;
4626   }
4627 
4628   if (!thread_plan_sp->ValidatePlan(nullptr)) {
4629     diagnostic_manager.PutString(
4630         eDiagnosticSeverityError,
4631         "RunThreadPlan called with an invalid thread plan.");
4632     return eExpressionSetupError;
4633   }
4634 
4635   if (exe_ctx.GetProcessPtr() != this) {
4636     diagnostic_manager.PutString(eDiagnosticSeverityError,
4637                                  "RunThreadPlan called on wrong process.");
4638     return eExpressionSetupError;
4639   }
4640 
4641   Thread *thread = exe_ctx.GetThreadPtr();
4642   if (thread == nullptr) {
4643     diagnostic_manager.PutString(eDiagnosticSeverityError,
4644                                  "RunThreadPlan called with invalid thread.");
4645     return eExpressionSetupError;
4646   }
4647 
4648   // Record the thread's id so we can tell when a thread we were using
4649   // to run the expression exits during the expression evaluation.
4650   lldb::tid_t expr_thread_id = thread->GetID();
4651 
4652   // We need to change some of the thread plan attributes for the thread plan
4653   // runner.  This will restore them when we are done:
4654 
4655   RestorePlanState thread_plan_restorer(thread_plan_sp);
4656 
4657   // We rely on the thread plan we are running returning "PlanCompleted" if
4658   // when it successfully completes. For that to be true the plan can't be
4659   // private - since private plans suppress themselves in the GetCompletedPlan
4660   // call.
4661 
4662   thread_plan_sp->SetPrivate(false);
4663 
4664   // The plans run with RunThreadPlan also need to be terminal master plans or
4665   // when they are done we will end up asking the plan above us whether we
4666   // should stop, which may give the wrong answer.
4667 
4668   thread_plan_sp->SetIsMasterPlan(true);
4669   thread_plan_sp->SetOkayToDiscard(false);
4670 
4671   // If we are running some utility expression for LLDB, we now have to mark
4672   // this in the ProcesModID of this process. This RAII takes care of marking
4673   // and reverting the mark it once we are done running the expression.
4674   UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr);
4675 
4676   if (m_private_state.GetValue() != eStateStopped) {
4677     diagnostic_manager.PutString(
4678         eDiagnosticSeverityError,
4679         "RunThreadPlan called while the private state was not stopped.");
4680     return eExpressionSetupError;
4681   }
4682 
4683   // Save the thread & frame from the exe_ctx for restoration after we run
4684   const uint32_t thread_idx_id = thread->GetIndexID();
4685   StackFrameSP selected_frame_sp = thread->GetSelectedFrame();
4686   if (!selected_frame_sp) {
4687     thread->SetSelectedFrame(nullptr);
4688     selected_frame_sp = thread->GetSelectedFrame();
4689     if (!selected_frame_sp) {
4690       diagnostic_manager.Printf(
4691           eDiagnosticSeverityError,
4692           "RunThreadPlan called without a selected frame on thread %d",
4693           thread_idx_id);
4694       return eExpressionSetupError;
4695     }
4696   }
4697 
4698   // Make sure the timeout values make sense. The one thread timeout needs to
4699   // be smaller than the overall timeout.
4700   if (options.GetOneThreadTimeout() && options.GetTimeout() &&
4701       *options.GetTimeout() < *options.GetOneThreadTimeout()) {
4702     diagnostic_manager.PutString(eDiagnosticSeverityError,
4703                                  "RunThreadPlan called with one thread "
4704                                  "timeout greater than total timeout");
4705     return eExpressionSetupError;
4706   }
4707 
4708   StackID ctx_frame_id = selected_frame_sp->GetStackID();
4709 
4710   // N.B. Running the target may unset the currently selected thread and frame.
4711   // We don't want to do that either, so we should arrange to reset them as
4712   // well.
4713 
4714   lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread();
4715 
4716   uint32_t selected_tid;
4717   StackID selected_stack_id;
4718   if (selected_thread_sp) {
4719     selected_tid = selected_thread_sp->GetIndexID();
4720     selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID();
4721   } else {
4722     selected_tid = LLDB_INVALID_THREAD_ID;
4723   }
4724 
4725   HostThread backup_private_state_thread;
4726   lldb::StateType old_state = eStateInvalid;
4727   lldb::ThreadPlanSP stopper_base_plan_sp;
4728 
4729   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP |
4730                                                   LIBLLDB_LOG_PROCESS));
4731   if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) {
4732     // Yikes, we are running on the private state thread!  So we can't wait for
4733     // public events on this thread, since we are the thread that is generating
4734     // public events. The simplest thing to do is to spin up a temporary thread
4735     // to handle private state thread events while we are fielding public
4736     // events here.
4737     LLDB_LOGF(log, "Running thread plan on private state thread, spinning up "
4738                    "another state thread to handle the events.");
4739 
4740     backup_private_state_thread = m_private_state_thread;
4741 
4742     // One other bit of business: we want to run just this thread plan and
4743     // anything it pushes, and then stop, returning control here. But in the
4744     // normal course of things, the plan above us on the stack would be given a
4745     // shot at the stop event before deciding to stop, and we don't want that.
4746     // So we insert a "stopper" base plan on the stack before the plan we want
4747     // to run.  Since base plans always stop and return control to the user,
4748     // that will do just what we want.
4749     stopper_base_plan_sp.reset(new ThreadPlanBase(*thread));
4750     thread->QueueThreadPlan(stopper_base_plan_sp, false);
4751     // Have to make sure our public state is stopped, since otherwise the
4752     // reporting logic below doesn't work correctly.
4753     old_state = m_public_state.GetValue();
4754     m_public_state.SetValueNoLock(eStateStopped);
4755 
4756     // Now spin up the private state thread:
4757     StartPrivateStateThread(true);
4758   }
4759 
4760   thread->QueueThreadPlan(
4761       thread_plan_sp, false); // This used to pass "true" does that make sense?
4762 
4763   if (options.GetDebug()) {
4764     // In this case, we aren't actually going to run, we just want to stop
4765     // right away. Flush this thread so we will refetch the stacks and show the
4766     // correct backtrace.
4767     // FIXME: To make this prettier we should invent some stop reason for this,
4768     // but that
4769     // is only cosmetic, and this functionality is only of use to lldb
4770     // developers who can live with not pretty...
4771     thread->Flush();
4772     return eExpressionStoppedForDebug;
4773   }
4774 
4775   ListenerSP listener_sp(
4776       Listener::MakeListener("lldb.process.listener.run-thread-plan"));
4777 
4778   lldb::EventSP event_to_broadcast_sp;
4779 
4780   {
4781     // This process event hijacker Hijacks the Public events and its destructor
4782     // makes sure that the process events get restored on exit to the function.
4783     //
4784     // If the event needs to propagate beyond the hijacker (e.g., the process
4785     // exits during execution), then the event is put into
4786     // event_to_broadcast_sp for rebroadcasting.
4787 
4788     ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp);
4789 
4790     if (log) {
4791       StreamString s;
4792       thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose);
4793       LLDB_LOGF(log,
4794                 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64
4795                 " to run thread plan \"%s\".",
4796                 thread_idx_id, expr_thread_id, s.GetData());
4797     }
4798 
4799     bool got_event;
4800     lldb::EventSP event_sp;
4801     lldb::StateType stop_state = lldb::eStateInvalid;
4802 
4803     bool before_first_timeout = true; // This is set to false the first time
4804                                       // that we have to halt the target.
4805     bool do_resume = true;
4806     bool handle_running_event = true;
4807 
4808     // This is just for accounting:
4809     uint32_t num_resumes = 0;
4810 
4811     // If we are going to run all threads the whole time, or if we are only
4812     // going to run one thread, then we don't need the first timeout.  So we
4813     // pretend we are after the first timeout already.
4814     if (!options.GetStopOthers() || !options.GetTryAllThreads())
4815       before_first_timeout = false;
4816 
4817     LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n",
4818               options.GetStopOthers(), options.GetTryAllThreads(),
4819               before_first_timeout);
4820 
4821     // This isn't going to work if there are unfetched events on the queue. Are
4822     // there cases where we might want to run the remaining events here, and
4823     // then try to call the function?  That's probably being too tricky for our
4824     // own good.
4825 
4826     Event *other_events = listener_sp->PeekAtNextEvent();
4827     if (other_events != nullptr) {
4828       diagnostic_manager.PutString(
4829           eDiagnosticSeverityError,
4830           "RunThreadPlan called with pending events on the queue.");
4831       return eExpressionSetupError;
4832     }
4833 
4834     // We also need to make sure that the next event is delivered.  We might be
4835     // calling a function as part of a thread plan, in which case the last
4836     // delivered event could be the running event, and we don't want event
4837     // coalescing to cause us to lose OUR running event...
4838     ForceNextEventDelivery();
4839 
4840 // This while loop must exit out the bottom, there's cleanup that we need to do
4841 // when we are done. So don't call return anywhere within it.
4842 
4843 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
4844     // It's pretty much impossible to write test cases for things like: One
4845     // thread timeout expires, I go to halt, but the process already stopped on
4846     // the function call stop breakpoint.  Turning on this define will make us
4847     // not fetch the first event till after the halt.  So if you run a quick
4848     // function, it will have completed, and the completion event will be
4849     // waiting, when you interrupt for halt. The expression evaluation should
4850     // still succeed.
4851     bool miss_first_event = true;
4852 #endif
4853     while (true) {
4854       // We usually want to resume the process if we get to the top of the
4855       // loop. The only exception is if we get two running events with no
4856       // intervening stop, which can happen, we will just wait for then next
4857       // stop event.
4858       LLDB_LOGF(log,
4859                 "Top of while loop: do_resume: %i handle_running_event: %i "
4860                 "before_first_timeout: %i.",
4861                 do_resume, handle_running_event, before_first_timeout);
4862 
4863       if (do_resume || handle_running_event) {
4864         // Do the initial resume and wait for the running event before going
4865         // further.
4866 
4867         if (do_resume) {
4868           num_resumes++;
4869           Status resume_error = PrivateResume();
4870           if (!resume_error.Success()) {
4871             diagnostic_manager.Printf(
4872                 eDiagnosticSeverityError,
4873                 "couldn't resume inferior the %d time: \"%s\".", num_resumes,
4874                 resume_error.AsCString());
4875             return_value = eExpressionSetupError;
4876             break;
4877           }
4878         }
4879 
4880         got_event =
4881             listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
4882         if (!got_event) {
4883           LLDB_LOGF(log,
4884                     "Process::RunThreadPlan(): didn't get any event after "
4885                     "resume %" PRIu32 ", exiting.",
4886                     num_resumes);
4887 
4888           diagnostic_manager.Printf(eDiagnosticSeverityError,
4889                                     "didn't get any event after resume %" PRIu32
4890                                     ", exiting.",
4891                                     num_resumes);
4892           return_value = eExpressionSetupError;
4893           break;
4894         }
4895 
4896         stop_state =
4897             Process::ProcessEventData::GetStateFromEvent(event_sp.get());
4898 
4899         if (stop_state != eStateRunning) {
4900           bool restarted = false;
4901 
4902           if (stop_state == eStateStopped) {
4903             restarted = Process::ProcessEventData::GetRestartedFromEvent(
4904                 event_sp.get());
4905             LLDB_LOGF(
4906                 log,
4907                 "Process::RunThreadPlan(): didn't get running event after "
4908                 "resume %d, got %s instead (restarted: %i, do_resume: %i, "
4909                 "handle_running_event: %i).",
4910                 num_resumes, StateAsCString(stop_state), restarted, do_resume,
4911                 handle_running_event);
4912           }
4913 
4914           if (restarted) {
4915             // This is probably an overabundance of caution, I don't think I
4916             // should ever get a stopped & restarted event here.  But if I do,
4917             // the best thing is to Halt and then get out of here.
4918             const bool clear_thread_plans = false;
4919             const bool use_run_lock = false;
4920             Halt(clear_thread_plans, use_run_lock);
4921           }
4922 
4923           diagnostic_manager.Printf(
4924               eDiagnosticSeverityError,
4925               "didn't get running event after initial resume, got %s instead.",
4926               StateAsCString(stop_state));
4927           return_value = eExpressionSetupError;
4928           break;
4929         }
4930 
4931         if (log)
4932           log->PutCString("Process::RunThreadPlan(): resuming succeeded.");
4933         // We need to call the function synchronously, so spin waiting for it
4934         // to return. If we get interrupted while executing, we're going to
4935         // lose our context, and won't be able to gather the result at this
4936         // point. We set the timeout AFTER the resume, since the resume takes
4937         // some time and we don't want to charge that to the timeout.
4938       } else {
4939         if (log)
4940           log->PutCString("Process::RunThreadPlan(): waiting for next event.");
4941       }
4942 
4943       do_resume = true;
4944       handle_running_event = true;
4945 
4946       // Now wait for the process to stop again:
4947       event_sp.reset();
4948 
4949       Timeout<std::micro> timeout =
4950           GetExpressionTimeout(options, before_first_timeout);
4951       if (log) {
4952         if (timeout) {
4953           auto now = system_clock::now();
4954           LLDB_LOGF(log,
4955                     "Process::RunThreadPlan(): about to wait - now is %s - "
4956                     "endpoint is %s",
4957                     llvm::to_string(now).c_str(),
4958                     llvm::to_string(now + *timeout).c_str());
4959         } else {
4960           LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever.");
4961         }
4962       }
4963 
4964 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
4965       // See comment above...
4966       if (miss_first_event) {
4967         std::this_thread::sleep_for(std::chrono::milliseconds(1));
4968         miss_first_event = false;
4969         got_event = false;
4970       } else
4971 #endif
4972         got_event = listener_sp->GetEvent(event_sp, timeout);
4973 
4974       if (got_event) {
4975         if (event_sp) {
4976           bool keep_going = false;
4977           if (event_sp->GetType() == eBroadcastBitInterrupt) {
4978             const bool clear_thread_plans = false;
4979             const bool use_run_lock = false;
4980             Halt(clear_thread_plans, use_run_lock);
4981             return_value = eExpressionInterrupted;
4982             diagnostic_manager.PutString(eDiagnosticSeverityRemark,
4983                                          "execution halted by user interrupt.");
4984             LLDB_LOGF(log, "Process::RunThreadPlan(): Got  interrupted by "
4985                            "eBroadcastBitInterrupted, exiting.");
4986             break;
4987           } else {
4988             stop_state =
4989                 Process::ProcessEventData::GetStateFromEvent(event_sp.get());
4990             LLDB_LOGF(log,
4991                       "Process::RunThreadPlan(): in while loop, got event: %s.",
4992                       StateAsCString(stop_state));
4993 
4994             switch (stop_state) {
4995             case lldb::eStateStopped: {
4996               if (Process::ProcessEventData::GetRestartedFromEvent(
4997                       event_sp.get())) {
4998                 // If we were restarted, we just need to go back up to fetch
4999                 // another event.
5000                 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and "
5001                                "restart, so we'll continue waiting.");
5002                 keep_going = true;
5003                 do_resume = false;
5004                 handle_running_event = true;
5005               } else {
5006                 const bool handle_interrupts = true;
5007                 return_value = *HandleStoppedEvent(
5008                     expr_thread_id, thread_plan_sp, thread_plan_restorer,
5009                     event_sp, event_to_broadcast_sp, options,
5010                     handle_interrupts);
5011                 if (return_value == eExpressionThreadVanished)
5012                   keep_going = false;
5013               }
5014             } break;
5015 
5016             case lldb::eStateRunning:
5017               // This shouldn't really happen, but sometimes we do get two
5018               // running events without an intervening stop, and in that case
5019               // we should just go back to waiting for the stop.
5020               do_resume = false;
5021               keep_going = true;
5022               handle_running_event = false;
5023               break;
5024 
5025             default:
5026               LLDB_LOGF(log,
5027                         "Process::RunThreadPlan(): execution stopped with "
5028                         "unexpected state: %s.",
5029                         StateAsCString(stop_state));
5030 
5031               if (stop_state == eStateExited)
5032                 event_to_broadcast_sp = event_sp;
5033 
5034               diagnostic_manager.PutString(
5035                   eDiagnosticSeverityError,
5036                   "execution stopped with unexpected state.");
5037               return_value = eExpressionInterrupted;
5038               break;
5039             }
5040           }
5041 
5042           if (keep_going)
5043             continue;
5044           else
5045             break;
5046         } else {
5047           if (log)
5048             log->PutCString("Process::RunThreadPlan(): got_event was true, but "
5049                             "the event pointer was null.  How odd...");
5050           return_value = eExpressionInterrupted;
5051           break;
5052         }
5053       } else {
5054         // If we didn't get an event that means we've timed out... We will
5055         // interrupt the process here.  Depending on what we were asked to do
5056         // we will either exit, or try with all threads running for the same
5057         // timeout.
5058 
5059         if (log) {
5060           if (options.GetTryAllThreads()) {
5061             if (before_first_timeout) {
5062               LLDB_LOG(log,
5063                        "Running function with one thread timeout timed out.");
5064             } else
5065               LLDB_LOG(log, "Restarting function with all threads enabled and "
5066                             "timeout: {0} timed out, abandoning execution.",
5067                        timeout);
5068           } else
5069             LLDB_LOG(log, "Running function with timeout: {0} timed out, "
5070                           "abandoning execution.",
5071                      timeout);
5072         }
5073 
5074         // It is possible that between the time we issued the Halt, and we get
5075         // around to calling Halt the target could have stopped.  That's fine,
5076         // Halt will figure that out and send the appropriate Stopped event.
5077         // BUT it is also possible that we stopped & restarted (e.g. hit a
5078         // signal with "stop" set to false.)  In
5079         // that case, we'll get the stopped & restarted event, and we should go
5080         // back to waiting for the Halt's stopped event.  That's what this
5081         // while loop does.
5082 
5083         bool back_to_top = true;
5084         uint32_t try_halt_again = 0;
5085         bool do_halt = true;
5086         const uint32_t num_retries = 5;
5087         while (try_halt_again < num_retries) {
5088           Status halt_error;
5089           if (do_halt) {
5090             LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt.");
5091             const bool clear_thread_plans = false;
5092             const bool use_run_lock = false;
5093             Halt(clear_thread_plans, use_run_lock);
5094           }
5095           if (halt_error.Success()) {
5096             if (log)
5097               log->PutCString("Process::RunThreadPlan(): Halt succeeded.");
5098 
5099             got_event =
5100                 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
5101 
5102             if (got_event) {
5103               stop_state =
5104                   Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5105               if (log) {
5106                 LLDB_LOGF(log,
5107                           "Process::RunThreadPlan(): Stopped with event: %s",
5108                           StateAsCString(stop_state));
5109                 if (stop_state == lldb::eStateStopped &&
5110                     Process::ProcessEventData::GetInterruptedFromEvent(
5111                         event_sp.get()))
5112                   log->PutCString("    Event was the Halt interruption event.");
5113               }
5114 
5115               if (stop_state == lldb::eStateStopped) {
5116                 if (Process::ProcessEventData::GetRestartedFromEvent(
5117                         event_sp.get())) {
5118                   if (log)
5119                     log->PutCString("Process::RunThreadPlan(): Went to halt "
5120                                     "but got a restarted event, there must be "
5121                                     "an un-restarted stopped event so try "
5122                                     "again...  "
5123                                     "Exiting wait loop.");
5124                   try_halt_again++;
5125                   do_halt = false;
5126                   continue;
5127                 }
5128 
5129                 // Between the time we initiated the Halt and the time we
5130                 // delivered it, the process could have already finished its
5131                 // job.  Check that here:
5132                 const bool handle_interrupts = false;
5133                 if (auto result = HandleStoppedEvent(
5134                         expr_thread_id, thread_plan_sp, thread_plan_restorer,
5135                         event_sp, event_to_broadcast_sp, options,
5136                         handle_interrupts)) {
5137                   return_value = *result;
5138                   back_to_top = false;
5139                   break;
5140                 }
5141 
5142                 if (!options.GetTryAllThreads()) {
5143                   if (log)
5144                     log->PutCString("Process::RunThreadPlan(): try_all_threads "
5145                                     "was false, we stopped so now we're "
5146                                     "quitting.");
5147                   return_value = eExpressionInterrupted;
5148                   back_to_top = false;
5149                   break;
5150                 }
5151 
5152                 if (before_first_timeout) {
5153                   // Set all the other threads to run, and return to the top of
5154                   // the loop, which will continue;
5155                   before_first_timeout = false;
5156                   thread_plan_sp->SetStopOthers(false);
5157                   if (log)
5158                     log->PutCString(
5159                         "Process::RunThreadPlan(): about to resume.");
5160 
5161                   back_to_top = true;
5162                   break;
5163                 } else {
5164                   // Running all threads failed, so return Interrupted.
5165                   if (log)
5166                     log->PutCString("Process::RunThreadPlan(): running all "
5167                                     "threads timed out.");
5168                   return_value = eExpressionInterrupted;
5169                   back_to_top = false;
5170                   break;
5171                 }
5172               }
5173             } else {
5174               if (log)
5175                 log->PutCString("Process::RunThreadPlan(): halt said it "
5176                                 "succeeded, but I got no event.  "
5177                                 "I'm getting out of here passing Interrupted.");
5178               return_value = eExpressionInterrupted;
5179               back_to_top = false;
5180               break;
5181             }
5182           } else {
5183             try_halt_again++;
5184             continue;
5185           }
5186         }
5187 
5188         if (!back_to_top || try_halt_again > num_retries)
5189           break;
5190         else
5191           continue;
5192       }
5193     } // END WAIT LOOP
5194 
5195     // If we had to start up a temporary private state thread to run this
5196     // thread plan, shut it down now.
5197     if (backup_private_state_thread.IsJoinable()) {
5198       StopPrivateStateThread();
5199       Status error;
5200       m_private_state_thread = backup_private_state_thread;
5201       if (stopper_base_plan_sp) {
5202         thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp);
5203       }
5204       if (old_state != eStateInvalid)
5205         m_public_state.SetValueNoLock(old_state);
5206     }
5207 
5208     // If our thread went away on us, we need to get out of here without
5209     // doing any more work.  We don't have to clean up the thread plan, that
5210     // will have happened when the Thread was destroyed.
5211     if (return_value == eExpressionThreadVanished) {
5212       return return_value;
5213     }
5214 
5215     if (return_value != eExpressionCompleted && log) {
5216       // Print a backtrace into the log so we can figure out where we are:
5217       StreamString s;
5218       s.PutCString("Thread state after unsuccessful completion: \n");
5219       thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX);
5220       log->PutString(s.GetString());
5221     }
5222     // Restore the thread state if we are going to discard the plan execution.
5223     // There are three cases where this could happen: 1) The execution
5224     // successfully completed 2) We hit a breakpoint, and ignore_breakpoints
5225     // was true 3) We got some other error, and discard_on_error was true
5226     bool should_unwind = (return_value == eExpressionInterrupted &&
5227                           options.DoesUnwindOnError()) ||
5228                          (return_value == eExpressionHitBreakpoint &&
5229                           options.DoesIgnoreBreakpoints());
5230 
5231     if (return_value == eExpressionCompleted || should_unwind) {
5232       thread_plan_sp->RestoreThreadState();
5233     }
5234 
5235     // Now do some processing on the results of the run:
5236     if (return_value == eExpressionInterrupted ||
5237         return_value == eExpressionHitBreakpoint) {
5238       if (log) {
5239         StreamString s;
5240         if (event_sp)
5241           event_sp->Dump(&s);
5242         else {
5243           log->PutCString("Process::RunThreadPlan(): Stop event that "
5244                           "interrupted us is NULL.");
5245         }
5246 
5247         StreamString ts;
5248 
5249         const char *event_explanation = nullptr;
5250 
5251         do {
5252           if (!event_sp) {
5253             event_explanation = "<no event>";
5254             break;
5255           } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
5256             event_explanation = "<user interrupt>";
5257             break;
5258           } else {
5259             const Process::ProcessEventData *event_data =
5260                 Process::ProcessEventData::GetEventDataFromEvent(
5261                     event_sp.get());
5262 
5263             if (!event_data) {
5264               event_explanation = "<no event data>";
5265               break;
5266             }
5267 
5268             Process *process = event_data->GetProcessSP().get();
5269 
5270             if (!process) {
5271               event_explanation = "<no process>";
5272               break;
5273             }
5274 
5275             ThreadList &thread_list = process->GetThreadList();
5276 
5277             uint32_t num_threads = thread_list.GetSize();
5278             uint32_t thread_index;
5279 
5280             ts.Printf("<%u threads> ", num_threads);
5281 
5282             for (thread_index = 0; thread_index < num_threads; ++thread_index) {
5283               Thread *thread = thread_list.GetThreadAtIndex(thread_index).get();
5284 
5285               if (!thread) {
5286                 ts.Printf("<?> ");
5287                 continue;
5288               }
5289 
5290               ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID());
5291               RegisterContext *register_context =
5292                   thread->GetRegisterContext().get();
5293 
5294               if (register_context)
5295                 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC());
5296               else
5297                 ts.Printf("[ip unknown] ");
5298 
5299               // Show the private stop info here, the public stop info will be
5300               // from the last natural stop.
5301               lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo();
5302               if (stop_info_sp) {
5303                 const char *stop_desc = stop_info_sp->GetDescription();
5304                 if (stop_desc)
5305                   ts.PutCString(stop_desc);
5306               }
5307               ts.Printf(">");
5308             }
5309 
5310             event_explanation = ts.GetData();
5311           }
5312         } while (false);
5313 
5314         if (event_explanation)
5315           LLDB_LOGF(log,
5316                     "Process::RunThreadPlan(): execution interrupted: %s %s",
5317                     s.GetData(), event_explanation);
5318         else
5319           LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s",
5320                     s.GetData());
5321       }
5322 
5323       if (should_unwind) {
5324         LLDB_LOGF(log,
5325                   "Process::RunThreadPlan: ExecutionInterrupted - "
5326                   "discarding thread plans up to %p.",
5327                   static_cast<void *>(thread_plan_sp.get()));
5328         thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5329       } else {
5330         LLDB_LOGF(log,
5331                   "Process::RunThreadPlan: ExecutionInterrupted - for "
5332                   "plan: %p not discarding.",
5333                   static_cast<void *>(thread_plan_sp.get()));
5334       }
5335     } else if (return_value == eExpressionSetupError) {
5336       if (log)
5337         log->PutCString("Process::RunThreadPlan(): execution set up error.");
5338 
5339       if (options.DoesUnwindOnError()) {
5340         thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5341       }
5342     } else {
5343       if (thread->IsThreadPlanDone(thread_plan_sp.get())) {
5344         if (log)
5345           log->PutCString("Process::RunThreadPlan(): thread plan is done");
5346         return_value = eExpressionCompleted;
5347       } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) {
5348         if (log)
5349           log->PutCString(
5350               "Process::RunThreadPlan(): thread plan was discarded");
5351         return_value = eExpressionDiscarded;
5352       } else {
5353         if (log)
5354           log->PutCString(
5355               "Process::RunThreadPlan(): thread plan stopped in mid course");
5356         if (options.DoesUnwindOnError() && thread_plan_sp) {
5357           if (log)
5358             log->PutCString("Process::RunThreadPlan(): discarding thread plan "
5359                             "'cause unwind_on_error is set.");
5360           thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5361         }
5362       }
5363     }
5364 
5365     // Thread we ran the function in may have gone away because we ran the
5366     // target Check that it's still there, and if it is put it back in the
5367     // context. Also restore the frame in the context if it is still present.
5368     thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get();
5369     if (thread) {
5370       exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id));
5371     }
5372 
5373     // Also restore the current process'es selected frame & thread, since this
5374     // function calling may be done behind the user's back.
5375 
5376     if (selected_tid != LLDB_INVALID_THREAD_ID) {
5377       if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) &&
5378           selected_stack_id.IsValid()) {
5379         // We were able to restore the selected thread, now restore the frame:
5380         std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5381         StackFrameSP old_frame_sp =
5382             GetThreadList().GetSelectedThread()->GetFrameWithStackID(
5383                 selected_stack_id);
5384         if (old_frame_sp)
5385           GetThreadList().GetSelectedThread()->SetSelectedFrame(
5386               old_frame_sp.get());
5387       }
5388     }
5389   }
5390 
5391   // If the process exited during the run of the thread plan, notify everyone.
5392 
5393   if (event_to_broadcast_sp) {
5394     if (log)
5395       log->PutCString("Process::RunThreadPlan(): rebroadcasting event.");
5396     BroadcastEvent(event_to_broadcast_sp);
5397   }
5398 
5399   return return_value;
5400 }
5401 
5402 const char *Process::ExecutionResultAsCString(ExpressionResults result) {
5403   const char *result_name = "<unknown>";
5404 
5405   switch (result) {
5406   case eExpressionCompleted:
5407     result_name = "eExpressionCompleted";
5408     break;
5409   case eExpressionDiscarded:
5410     result_name = "eExpressionDiscarded";
5411     break;
5412   case eExpressionInterrupted:
5413     result_name = "eExpressionInterrupted";
5414     break;
5415   case eExpressionHitBreakpoint:
5416     result_name = "eExpressionHitBreakpoint";
5417     break;
5418   case eExpressionSetupError:
5419     result_name = "eExpressionSetupError";
5420     break;
5421   case eExpressionParseError:
5422     result_name = "eExpressionParseError";
5423     break;
5424   case eExpressionResultUnavailable:
5425     result_name = "eExpressionResultUnavailable";
5426     break;
5427   case eExpressionTimedOut:
5428     result_name = "eExpressionTimedOut";
5429     break;
5430   case eExpressionStoppedForDebug:
5431     result_name = "eExpressionStoppedForDebug";
5432     break;
5433   case eExpressionThreadVanished:
5434     result_name = "eExpressionThreadVanished";
5435   }
5436   return result_name;
5437 }
5438 
5439 void Process::GetStatus(Stream &strm) {
5440   const StateType state = GetState();
5441   if (StateIsStoppedState(state, false)) {
5442     if (state == eStateExited) {
5443       int exit_status = GetExitStatus();
5444       const char *exit_description = GetExitDescription();
5445       strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n",
5446                   GetID(), exit_status, exit_status,
5447                   exit_description ? exit_description : "");
5448     } else {
5449       if (state == eStateConnected)
5450         strm.Printf("Connected to remote target.\n");
5451       else
5452         strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state));
5453     }
5454   } else {
5455     strm.Printf("Process %" PRIu64 " is running.\n", GetID());
5456   }
5457 }
5458 
5459 size_t Process::GetThreadStatus(Stream &strm,
5460                                 bool only_threads_with_stop_reason,
5461                                 uint32_t start_frame, uint32_t num_frames,
5462                                 uint32_t num_frames_with_source,
5463                                 bool stop_format) {
5464   size_t num_thread_infos_dumped = 0;
5465 
5466   // You can't hold the thread list lock while calling Thread::GetStatus.  That
5467   // very well might run code (e.g. if we need it to get return values or
5468   // arguments.)  For that to work the process has to be able to acquire it.
5469   // So instead copy the thread ID's, and look them up one by one:
5470 
5471   uint32_t num_threads;
5472   std::vector<lldb::tid_t> thread_id_array;
5473   // Scope for thread list locker;
5474   {
5475     std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5476     ThreadList &curr_thread_list = GetThreadList();
5477     num_threads = curr_thread_list.GetSize();
5478     uint32_t idx;
5479     thread_id_array.resize(num_threads);
5480     for (idx = 0; idx < num_threads; ++idx)
5481       thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID();
5482   }
5483 
5484   for (uint32_t i = 0; i < num_threads; i++) {
5485     ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i]));
5486     if (thread_sp) {
5487       if (only_threads_with_stop_reason) {
5488         StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
5489         if (!stop_info_sp || !stop_info_sp->IsValid())
5490           continue;
5491       }
5492       thread_sp->GetStatus(strm, start_frame, num_frames,
5493                            num_frames_with_source,
5494                            stop_format);
5495       ++num_thread_infos_dumped;
5496     } else {
5497       Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
5498       LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64
5499                      " vanished while running Thread::GetStatus.");
5500     }
5501   }
5502   return num_thread_infos_dumped;
5503 }
5504 
5505 void Process::AddInvalidMemoryRegion(const LoadRange &region) {
5506   m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize());
5507 }
5508 
5509 bool Process::RemoveInvalidMemoryRange(const LoadRange &region) {
5510   return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(),
5511                                            region.GetByteSize());
5512 }
5513 
5514 void Process::AddPreResumeAction(PreResumeActionCallback callback,
5515                                  void *baton) {
5516   m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton));
5517 }
5518 
5519 bool Process::RunPreResumeActions() {
5520   bool result = true;
5521   while (!m_pre_resume_actions.empty()) {
5522     struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back();
5523     m_pre_resume_actions.pop_back();
5524     bool this_result = action.callback(action.baton);
5525     if (result)
5526       result = this_result;
5527   }
5528   return result;
5529 }
5530 
5531 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); }
5532 
5533 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton)
5534 {
5535     PreResumeCallbackAndBaton element(callback, baton);
5536     auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element);
5537     if (found_iter != m_pre_resume_actions.end())
5538     {
5539         m_pre_resume_actions.erase(found_iter);
5540     }
5541 }
5542 
5543 ProcessRunLock &Process::GetRunLock() {
5544   if (m_private_state_thread.EqualsThread(Host::GetCurrentThread()))
5545     return m_private_run_lock;
5546   else
5547     return m_public_run_lock;
5548 }
5549 
5550 bool Process::CurrentThreadIsPrivateStateThread()
5551 {
5552   return m_private_state_thread.EqualsThread(Host::GetCurrentThread());
5553 }
5554 
5555 
5556 void Process::Flush() {
5557   m_thread_list.Flush();
5558   m_extended_thread_list.Flush();
5559   m_extended_thread_stop_id = 0;
5560   m_queue_list.Clear();
5561   m_queue_list_stop_id = 0;
5562 }
5563 
5564 lldb::addr_t Process::GetCodeAddressMask() {
5565   if (m_code_address_mask == 0) {
5566     if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) {
5567       lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1);
5568       SetCodeAddressMask(address_mask);
5569     }
5570   }
5571   return m_code_address_mask;
5572 }
5573 
5574 lldb::addr_t Process::GetDataAddressMask() {
5575   if (m_data_address_mask == 0) {
5576     if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) {
5577       lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1);
5578       SetDataAddressMask(address_mask);
5579     }
5580   }
5581   return m_data_address_mask;
5582 }
5583 
5584 void Process::DidExec() {
5585   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
5586   LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
5587 
5588   Target &target = GetTarget();
5589   target.CleanupProcess();
5590   target.ClearModules(false);
5591   m_dynamic_checkers_up.reset();
5592   m_abi_sp.reset();
5593   m_system_runtime_up.reset();
5594   m_os_up.reset();
5595   m_dyld_up.reset();
5596   m_jit_loaders_up.reset();
5597   m_image_tokens.clear();
5598   m_allocated_memory_cache.Clear();
5599   {
5600     std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
5601     m_language_runtimes.clear();
5602   }
5603   m_instrumentation_runtimes.clear();
5604   m_thread_list.DiscardThreadPlans();
5605   m_memory_cache.Clear(true);
5606   DoDidExec();
5607   CompleteAttach();
5608   // Flush the process (threads and all stack frames) after running
5609   // CompleteAttach() in case the dynamic loader loaded things in new
5610   // locations.
5611   Flush();
5612 
5613   // After we figure out what was loaded/unloaded in CompleteAttach, we need to
5614   // let the target know so it can do any cleanup it needs to.
5615   target.DidExec();
5616 }
5617 
5618 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) {
5619   if (address == nullptr) {
5620     error.SetErrorString("Invalid address argument");
5621     return LLDB_INVALID_ADDRESS;
5622   }
5623 
5624   addr_t function_addr = LLDB_INVALID_ADDRESS;
5625 
5626   addr_t addr = address->GetLoadAddress(&GetTarget());
5627   std::map<addr_t, addr_t>::const_iterator iter =
5628       m_resolved_indirect_addresses.find(addr);
5629   if (iter != m_resolved_indirect_addresses.end()) {
5630     function_addr = (*iter).second;
5631   } else {
5632     if (!CallVoidArgVoidPtrReturn(address, function_addr)) {
5633       Symbol *symbol = address->CalculateSymbolContextSymbol();
5634       error.SetErrorStringWithFormat(
5635           "Unable to call resolver for indirect function %s",
5636           symbol ? symbol->GetName().AsCString() : "<UNKNOWN>");
5637       function_addr = LLDB_INVALID_ADDRESS;
5638     } else {
5639       if (ABISP abi_sp = GetABI())
5640         function_addr = abi_sp->FixCodeAddress(function_addr);
5641       m_resolved_indirect_addresses.insert(
5642           std::pair<addr_t, addr_t>(addr, function_addr));
5643     }
5644   }
5645   return function_addr;
5646 }
5647 
5648 void Process::ModulesDidLoad(ModuleList &module_list) {
5649   // Inform the system runtime of the modified modules.
5650   SystemRuntime *sys_runtime = GetSystemRuntime();
5651   if (sys_runtime)
5652     sys_runtime->ModulesDidLoad(module_list);
5653 
5654   GetJITLoaders().ModulesDidLoad(module_list);
5655 
5656   // Give the instrumentation runtimes a chance to be created before informing
5657   // them of the modified modules.
5658   InstrumentationRuntime::ModulesDidLoad(module_list, this,
5659                                          m_instrumentation_runtimes);
5660   for (auto &runtime : m_instrumentation_runtimes)
5661     runtime.second->ModulesDidLoad(module_list);
5662 
5663   // Give the language runtimes a chance to be created before informing them of
5664   // the modified modules.
5665   for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
5666     if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
5667       runtime->ModulesDidLoad(module_list);
5668   }
5669 
5670   // If we don't have an operating system plug-in, try to load one since
5671   // loading shared libraries might cause a new one to try and load
5672   if (!m_os_up)
5673     LoadOperatingSystemPlugin(false);
5674 
5675   // Inform the structured-data plugins of the modified modules.
5676   for (auto pair : m_structured_data_plugin_map) {
5677     if (pair.second)
5678       pair.second->ModulesDidLoad(*this, module_list);
5679   }
5680 }
5681 
5682 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key,
5683                            const char *fmt, ...) {
5684   bool print_warning = true;
5685 
5686   StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream();
5687   if (!stream_sp)
5688     return;
5689 
5690   if (repeat_key != nullptr) {
5691     WarningsCollection::iterator it = m_warnings_issued.find(warning_type);
5692     if (it == m_warnings_issued.end()) {
5693       m_warnings_issued[warning_type] = WarningsPointerSet();
5694       m_warnings_issued[warning_type].insert(repeat_key);
5695     } else {
5696       if (it->second.find(repeat_key) != it->second.end()) {
5697         print_warning = false;
5698       } else {
5699         it->second.insert(repeat_key);
5700       }
5701     }
5702   }
5703 
5704   if (print_warning) {
5705     va_list args;
5706     va_start(args, fmt);
5707     stream_sp->PrintfVarArg(fmt, args);
5708     va_end(args);
5709   }
5710 }
5711 
5712 void Process::PrintWarningOptimization(const SymbolContext &sc) {
5713   if (!GetWarningsOptimization())
5714     return;
5715   if (!sc.module_sp)
5716     return;
5717   if (!sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function &&
5718       sc.function->GetIsOptimized()) {
5719     PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(),
5720                  "%s was compiled with optimization - stepping may behave "
5721                  "oddly; variables may not be available.\n",
5722                  sc.module_sp->GetFileSpec().GetFilename().GetCString());
5723   }
5724 }
5725 
5726 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) {
5727   if (!GetWarningsUnsupportedLanguage())
5728     return;
5729   if (!sc.module_sp)
5730     return;
5731   LanguageType language = sc.GetLanguage();
5732   if (language == eLanguageTypeUnknown)
5733     return;
5734   LanguageSet plugins =
5735       PluginManager::GetAllTypeSystemSupportedLanguagesForTypes();
5736   if (!plugins[language]) {
5737     PrintWarning(Process::Warnings::eWarningsUnsupportedLanguage,
5738                  sc.module_sp.get(),
5739                  "This version of LLDB has no plugin for the language \"%s\". "
5740                  "Inspection of frame variables will be limited.\n",
5741                  Language::GetNameForLanguageType(language));
5742   }
5743 }
5744 
5745 bool Process::GetProcessInfo(ProcessInstanceInfo &info) {
5746   info.Clear();
5747 
5748   PlatformSP platform_sp = GetTarget().GetPlatform();
5749   if (!platform_sp)
5750     return false;
5751 
5752   return platform_sp->GetProcessInfo(GetID(), info);
5753 }
5754 
5755 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) {
5756   ThreadCollectionSP threads;
5757 
5758   const MemoryHistorySP &memory_history =
5759       MemoryHistory::FindPlugin(shared_from_this());
5760 
5761   if (!memory_history) {
5762     return threads;
5763   }
5764 
5765   threads = std::make_shared<ThreadCollection>(
5766       memory_history->GetHistoryThreads(addr));
5767 
5768   return threads;
5769 }
5770 
5771 InstrumentationRuntimeSP
5772 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) {
5773   InstrumentationRuntimeCollection::iterator pos;
5774   pos = m_instrumentation_runtimes.find(type);
5775   if (pos == m_instrumentation_runtimes.end()) {
5776     return InstrumentationRuntimeSP();
5777   } else
5778     return (*pos).second;
5779 }
5780 
5781 bool Process::GetModuleSpec(const FileSpec &module_file_spec,
5782                             const ArchSpec &arch, ModuleSpec &module_spec) {
5783   module_spec.Clear();
5784   return false;
5785 }
5786 
5787 size_t Process::AddImageToken(lldb::addr_t image_ptr) {
5788   m_image_tokens.push_back(image_ptr);
5789   return m_image_tokens.size() - 1;
5790 }
5791 
5792 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const {
5793   if (token < m_image_tokens.size())
5794     return m_image_tokens[token];
5795   return LLDB_INVALID_ADDRESS;
5796 }
5797 
5798 void Process::ResetImageToken(size_t token) {
5799   if (token < m_image_tokens.size())
5800     m_image_tokens[token] = LLDB_INVALID_ADDRESS;
5801 }
5802 
5803 Address
5804 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr,
5805                                                AddressRange range_bounds) {
5806   Target &target = GetTarget();
5807   DisassemblerSP disassembler_sp;
5808   InstructionList *insn_list = nullptr;
5809 
5810   Address retval = default_stop_addr;
5811 
5812   if (!target.GetUseFastStepping())
5813     return retval;
5814   if (!default_stop_addr.IsValid())
5815     return retval;
5816 
5817   const char *plugin_name = nullptr;
5818   const char *flavor = nullptr;
5819   disassembler_sp = Disassembler::DisassembleRange(
5820       target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds);
5821   if (disassembler_sp)
5822     insn_list = &disassembler_sp->GetInstructionList();
5823 
5824   if (insn_list == nullptr) {
5825     return retval;
5826   }
5827 
5828   size_t insn_offset =
5829       insn_list->GetIndexOfInstructionAtAddress(default_stop_addr);
5830   if (insn_offset == UINT32_MAX) {
5831     return retval;
5832   }
5833 
5834   uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction(
5835       insn_offset, false /* ignore_calls*/, nullptr);
5836   if (branch_index == UINT32_MAX) {
5837     return retval;
5838   }
5839 
5840   if (branch_index > insn_offset) {
5841     Address next_branch_insn_address =
5842         insn_list->GetInstructionAtIndex(branch_index)->GetAddress();
5843     if (next_branch_insn_address.IsValid() &&
5844         range_bounds.ContainsFileAddress(next_branch_insn_address)) {
5845       retval = next_branch_insn_address;
5846     }
5847   }
5848 
5849   return retval;
5850 }
5851 
5852 Status
5853 Process::GetMemoryRegions(lldb_private::MemoryRegionInfos &region_list) {
5854 
5855   Status error;
5856 
5857   lldb::addr_t range_end = 0;
5858 
5859   region_list.clear();
5860   do {
5861     lldb_private::MemoryRegionInfo region_info;
5862     error = GetMemoryRegionInfo(range_end, region_info);
5863     // GetMemoryRegionInfo should only return an error if it is unimplemented.
5864     if (error.Fail()) {
5865       region_list.clear();
5866       break;
5867     }
5868 
5869     range_end = region_info.GetRange().GetRangeEnd();
5870     if (region_info.GetMapped() == MemoryRegionInfo::eYes) {
5871       region_list.push_back(std::move(region_info));
5872     }
5873   } while (range_end != LLDB_INVALID_ADDRESS);
5874 
5875   return error;
5876 }
5877 
5878 Status
5879 Process::ConfigureStructuredData(ConstString type_name,
5880                                  const StructuredData::ObjectSP &config_sp) {
5881   // If you get this, the Process-derived class needs to implement a method to
5882   // enable an already-reported asynchronous structured data feature. See
5883   // ProcessGDBRemote for an example implementation over gdb-remote.
5884   return Status("unimplemented");
5885 }
5886 
5887 void Process::MapSupportedStructuredDataPlugins(
5888     const StructuredData::Array &supported_type_names) {
5889   Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS));
5890 
5891   // Bail out early if there are no type names to map.
5892   if (supported_type_names.GetSize() == 0) {
5893     LLDB_LOGF(log, "Process::%s(): no structured data types supported",
5894               __FUNCTION__);
5895     return;
5896   }
5897 
5898   // Convert StructuredData type names to ConstString instances.
5899   std::set<ConstString> const_type_names;
5900 
5901   LLDB_LOGF(log,
5902             "Process::%s(): the process supports the following async "
5903             "structured data types:",
5904             __FUNCTION__);
5905 
5906   supported_type_names.ForEach(
5907       [&const_type_names, &log](StructuredData::Object *object) {
5908         if (!object) {
5909           // Invalid - shouldn't be null objects in the array.
5910           return false;
5911         }
5912 
5913         auto type_name = object->GetAsString();
5914         if (!type_name) {
5915           // Invalid format - all type names should be strings.
5916           return false;
5917         }
5918 
5919         const_type_names.insert(ConstString(type_name->GetValue()));
5920         LLDB_LOG(log, "- {0}", type_name->GetValue());
5921         return true;
5922       });
5923 
5924   // For each StructuredDataPlugin, if the plugin handles any of the types in
5925   // the supported_type_names, map that type name to that plugin. Stop when
5926   // we've consumed all the type names.
5927   // FIXME: should we return an error if there are type names nobody
5928   // supports?
5929   for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) {
5930     auto create_instance =
5931            PluginManager::GetStructuredDataPluginCreateCallbackAtIndex(
5932                plugin_index);
5933     if (!create_instance)
5934       break;
5935 
5936     // Create the plugin.
5937     StructuredDataPluginSP plugin_sp = (*create_instance)(*this);
5938     if (!plugin_sp) {
5939       // This plugin doesn't think it can work with the process. Move on to the
5940       // next.
5941       continue;
5942     }
5943 
5944     // For any of the remaining type names, map any that this plugin supports.
5945     std::vector<ConstString> names_to_remove;
5946     for (auto &type_name : const_type_names) {
5947       if (plugin_sp->SupportsStructuredDataType(type_name)) {
5948         m_structured_data_plugin_map.insert(
5949             std::make_pair(type_name, plugin_sp));
5950         names_to_remove.push_back(type_name);
5951         LLDB_LOGF(log,
5952                   "Process::%s(): using plugin %s for type name "
5953                   "%s",
5954                   __FUNCTION__, plugin_sp->GetPluginName().GetCString(),
5955                   type_name.GetCString());
5956       }
5957     }
5958 
5959     // Remove the type names that were consumed by this plugin.
5960     for (auto &type_name : names_to_remove)
5961       const_type_names.erase(type_name);
5962   }
5963 }
5964 
5965 bool Process::RouteAsyncStructuredData(
5966     const StructuredData::ObjectSP object_sp) {
5967   // Nothing to do if there's no data.
5968   if (!object_sp)
5969     return false;
5970 
5971   // The contract is this must be a dictionary, so we can look up the routing
5972   // key via the top-level 'type' string value within the dictionary.
5973   StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary();
5974   if (!dictionary)
5975     return false;
5976 
5977   // Grab the async structured type name (i.e. the feature/plugin name).
5978   ConstString type_name;
5979   if (!dictionary->GetValueForKeyAsString("type", type_name))
5980     return false;
5981 
5982   // Check if there's a plugin registered for this type name.
5983   auto find_it = m_structured_data_plugin_map.find(type_name);
5984   if (find_it == m_structured_data_plugin_map.end()) {
5985     // We don't have a mapping for this structured data type.
5986     return false;
5987   }
5988 
5989   // Route the structured data to the plugin.
5990   find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp);
5991   return true;
5992 }
5993 
5994 Status Process::UpdateAutomaticSignalFiltering() {
5995   // Default implementation does nothign.
5996   // No automatic signal filtering to speak of.
5997   return Status();
5998 }
5999 
6000 UtilityFunction *Process::GetLoadImageUtilityFunction(
6001     Platform *platform,
6002     llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) {
6003   if (platform != GetTarget().GetPlatform().get())
6004     return nullptr;
6005   llvm::call_once(m_dlopen_utility_func_flag_once,
6006                   [&] { m_dlopen_utility_func_up = factory(); });
6007   return m_dlopen_utility_func_up.get();
6008 }
6009 
6010 llvm::Expected<TraceSupportedResponse> Process::TraceSupported() {
6011   if (!IsLiveDebugSession())
6012     return llvm::createStringError(llvm::inconvertibleErrorCode(),
6013                                    "Can't trace a non-live process.");
6014   return llvm::make_error<UnimplementedError>();
6015 }
6016 
6017 bool Process::CallVoidArgVoidPtrReturn(const Address *address,
6018                                        addr_t &returned_func,
6019                                        bool trap_exceptions) {
6020   Thread *thread = GetThreadList().GetExpressionExecutionThread().get();
6021   if (thread == nullptr || address == nullptr)
6022     return false;
6023 
6024   EvaluateExpressionOptions options;
6025   options.SetStopOthers(true);
6026   options.SetUnwindOnError(true);
6027   options.SetIgnoreBreakpoints(true);
6028   options.SetTryAllThreads(true);
6029   options.SetDebug(false);
6030   options.SetTimeout(GetUtilityExpressionTimeout());
6031   options.SetTrapExceptions(trap_exceptions);
6032 
6033   auto type_system_or_err =
6034       GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC);
6035   if (!type_system_or_err) {
6036     llvm::consumeError(type_system_or_err.takeError());
6037     return false;
6038   }
6039   CompilerType void_ptr_type =
6040       type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType();
6041   lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction(
6042       *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options));
6043   if (call_plan_sp) {
6044     DiagnosticManager diagnostics;
6045 
6046     StackFrame *frame = thread->GetStackFrameAtIndex(0).get();
6047     if (frame) {
6048       ExecutionContext exe_ctx;
6049       frame->CalculateExecutionContext(exe_ctx);
6050       ExpressionResults result =
6051           RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics);
6052       if (result == eExpressionCompleted) {
6053         returned_func =
6054             call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned(
6055                 LLDB_INVALID_ADDRESS);
6056 
6057         if (GetAddressByteSize() == 4) {
6058           if (returned_func == UINT32_MAX)
6059             return false;
6060         } else if (GetAddressByteSize() == 8) {
6061           if (returned_func == UINT64_MAX)
6062             return false;
6063         }
6064         return true;
6065       }
6066     }
6067   }
6068 
6069   return false;
6070 }
6071 
6072 llvm::Expected<const MemoryTagManager *>
6073 Process::GetMemoryTagManager(lldb::addr_t addr, lldb::addr_t end_addr) {
6074   Architecture *arch = GetTarget().GetArchitecturePlugin();
6075   const MemoryTagManager *tag_manager =
6076       arch ? arch->GetMemoryTagManager() : nullptr;
6077   if (!arch || !tag_manager) {
6078     return llvm::createStringError(
6079         llvm::inconvertibleErrorCode(),
6080         "This architecture does not support memory tagging",
6081         GetPluginName().GetCString());
6082   }
6083 
6084   if (!SupportsMemoryTagging()) {
6085     return llvm::createStringError(llvm::inconvertibleErrorCode(),
6086                                    "Process does not support memory tagging");
6087   }
6088 
6089   ptrdiff_t len = tag_manager->AddressDiff(end_addr, addr);
6090   if (len <= 0) {
6091     return llvm::createStringError(
6092         llvm::inconvertibleErrorCode(),
6093         "End address (0x%" PRIx64
6094         ") must be greater than the start address (0x%" PRIx64 ")",
6095         end_addr, addr);
6096   }
6097 
6098   // Region lookup is not address size aware so mask the address
6099   MemoryRegionInfo::RangeType tag_range(tag_manager->RemoveNonAddressBits(addr),
6100                                         len);
6101   tag_range = tag_manager->ExpandToGranule(tag_range);
6102 
6103   // Make a copy so we can use the original range in errors
6104   MemoryRegionInfo::RangeType remaining_range(tag_range);
6105 
6106   // While we haven't found a matching memory region for some of the range
6107   while (remaining_range.IsValid()) {
6108     MemoryRegionInfo region;
6109     Status status = GetMemoryRegionInfo(remaining_range.GetRangeBase(), region);
6110 
6111     if (status.Fail() || region.GetMemoryTagged() != MemoryRegionInfo::eYes) {
6112       return llvm::createStringError(
6113           llvm::inconvertibleErrorCode(),
6114           "Address range 0x%lx:0x%lx is not in a memory tagged region",
6115           tag_range.GetRangeBase(), tag_range.GetRangeEnd());
6116     }
6117 
6118     if (region.GetRange().GetRangeEnd() >= remaining_range.GetRangeEnd()) {
6119       // We've found a region for the whole range or the last piece of a range
6120       remaining_range.SetByteSize(0);
6121     } else {
6122       // We've found some part of the range, look for the rest
6123       remaining_range.SetRangeBase(region.GetRange().GetRangeEnd());
6124     }
6125   }
6126 
6127   return tag_manager;
6128 }
6129 
6130 llvm::Expected<std::vector<lldb::addr_t>>
6131 Process::ReadMemoryTags(const MemoryTagManager *tag_manager, lldb::addr_t addr,
6132                         size_t len) {
6133   if (!tag_manager) {
6134     return llvm::createStringError(
6135         llvm::inconvertibleErrorCode(),
6136         "A memory tag manager is required for reading memory tags.");
6137   }
6138 
6139   MemoryTagManager::TagRange range(tag_manager->RemoveNonAddressBits(addr),
6140                                    len);
6141   range = tag_manager->ExpandToGranule(range);
6142 
6143   llvm::Expected<std::vector<uint8_t>> tag_data =
6144       DoReadMemoryTags(range.GetRangeBase(), range.GetByteSize(),
6145                        tag_manager->GetAllocationTagType());
6146   if (!tag_data)
6147     return tag_data.takeError();
6148 
6149   return tag_manager->UnpackTagsData(
6150       *tag_data, range.GetByteSize() / tag_manager->GetGranuleSize());
6151 }
6152