1 //===-- Process.cpp ---------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // C Includes 11 // C++ Includes 12 #include <atomic> 13 #include <mutex> 14 15 // Other libraries and framework includes 16 // Project includes 17 #include "Plugins/Process/Utility/InferiorCallPOSIX.h" 18 #include "lldb/Breakpoint/BreakpointLocation.h" 19 #include "lldb/Breakpoint/StoppointCallbackContext.h" 20 #include "lldb/Core/Debugger.h" 21 #include "lldb/Core/Event.h" 22 #include "lldb/Core/Log.h" 23 #include "lldb/Core/Module.h" 24 #include "lldb/Core/ModuleSpec.h" 25 #include "lldb/Core/PluginManager.h" 26 #include "lldb/Core/State.h" 27 #include "lldb/Core/StreamFile.h" 28 #include "lldb/Expression/DiagnosticManager.h" 29 #include "lldb/Expression/IRDynamicChecks.h" 30 #include "lldb/Expression/UserExpression.h" 31 #include "lldb/Host/ConnectionFileDescriptor.h" 32 #include "lldb/Host/FileSystem.h" 33 #include "lldb/Host/Host.h" 34 #include "lldb/Host/HostInfo.h" 35 #include "lldb/Host/Pipe.h" 36 #include "lldb/Host/Terminal.h" 37 #include "lldb/Host/ThreadLauncher.h" 38 #include "lldb/Interpreter/CommandInterpreter.h" 39 #include "lldb/Interpreter/OptionValueProperties.h" 40 #include "lldb/Symbol/Function.h" 41 #include "lldb/Symbol/Symbol.h" 42 #include "lldb/Target/ABI.h" 43 #include "lldb/Target/CPPLanguageRuntime.h" 44 #include "lldb/Target/DynamicLoader.h" 45 #include "lldb/Target/InstrumentationRuntime.h" 46 #include "lldb/Target/JITLoader.h" 47 #include "lldb/Target/JITLoaderList.h" 48 #include "lldb/Target/LanguageRuntime.h" 49 #include "lldb/Target/MemoryHistory.h" 50 #include "lldb/Target/MemoryRegionInfo.h" 51 #include "lldb/Target/ObjCLanguageRuntime.h" 52 #include "lldb/Target/OperatingSystem.h" 53 #include "lldb/Target/Platform.h" 54 #include "lldb/Target/Process.h" 55 #include "lldb/Target/RegisterContext.h" 56 #include "lldb/Target/StopInfo.h" 57 #include "lldb/Target/StructuredDataPlugin.h" 58 #include "lldb/Target/SystemRuntime.h" 59 #include "lldb/Target/Target.h" 60 #include "lldb/Target/TargetList.h" 61 #include "lldb/Target/Thread.h" 62 #include "lldb/Target/ThreadPlan.h" 63 #include "lldb/Target/ThreadPlanBase.h" 64 #include "lldb/Target/UnixSignals.h" 65 #include "lldb/Utility/NameMatches.h" 66 #include "lldb/Utility/SelectHelper.h" 67 68 using namespace lldb; 69 using namespace lldb_private; 70 71 // Comment out line below to disable memory caching, overriding the process setting 72 // target.process.disable-memory-cache 73 #define ENABLE_MEMORY_CACHING 74 75 #ifdef ENABLE_MEMORY_CACHING 76 #define DISABLE_MEM_CACHE_DEFAULT false 77 #else 78 #define DISABLE_MEM_CACHE_DEFAULT true 79 #endif 80 81 class ProcessOptionValueProperties : public OptionValueProperties 82 { 83 public: 84 ProcessOptionValueProperties (const ConstString &name) : 85 OptionValueProperties (name) 86 { 87 } 88 89 // This constructor is used when creating ProcessOptionValueProperties when it 90 // is part of a new lldb_private::Process instance. It will copy all current 91 // global property values as needed 92 ProcessOptionValueProperties (ProcessProperties *global_properties) : 93 OptionValueProperties(*global_properties->GetValueProperties()) 94 { 95 } 96 97 const Property * 98 GetPropertyAtIndex(const ExecutionContext *exe_ctx, bool will_modify, uint32_t idx) const override 99 { 100 // When getting the value for a key from the process options, we will always 101 // try and grab the setting from the current process if there is one. Else we just 102 // use the one from this instance. 103 if (exe_ctx) 104 { 105 Process *process = exe_ctx->GetProcessPtr(); 106 if (process) 107 { 108 ProcessOptionValueProperties *instance_properties = static_cast<ProcessOptionValueProperties *>(process->GetValueProperties().get()); 109 if (this != instance_properties) 110 return instance_properties->ProtectedGetPropertyAtIndex (idx); 111 } 112 } 113 return ProtectedGetPropertyAtIndex (idx); 114 } 115 }; 116 117 static PropertyDefinition 118 g_properties[] = 119 { 120 { "disable-memory-cache" , OptionValue::eTypeBoolean, false, DISABLE_MEM_CACHE_DEFAULT, nullptr, nullptr, "Disable reading and caching of memory in fixed-size units." }, 121 { "extra-startup-command", OptionValue::eTypeArray , false, OptionValue::eTypeString, nullptr, nullptr, "A list containing extra commands understood by the particular process plugin used. " 122 "For instance, to turn on debugserver logging set this to \"QSetLogging:bitmask=LOG_DEFAULT;\"" }, 123 { "ignore-breakpoints-in-expressions", OptionValue::eTypeBoolean, true, true, nullptr, nullptr, "If true, breakpoints will be ignored during expression evaluation." }, 124 { "unwind-on-error-in-expressions", OptionValue::eTypeBoolean, true, true, nullptr, nullptr, "If true, errors in expression evaluation will unwind the stack back to the state before the call." }, 125 { "python-os-plugin-path", OptionValue::eTypeFileSpec, false, true, nullptr, nullptr, "A path to a python OS plug-in module file that contains a OperatingSystemPlugIn class." }, 126 { "stop-on-sharedlibrary-events" , OptionValue::eTypeBoolean, true, false, nullptr, nullptr, "If true, stop when a shared library is loaded or unloaded." }, 127 { "detach-keeps-stopped" , OptionValue::eTypeBoolean, true, false, nullptr, nullptr, "If true, detach will attempt to keep the process stopped." }, 128 { "memory-cache-line-size" , OptionValue::eTypeUInt64, false, 512, nullptr, nullptr, "The memory cache line size" }, 129 { "optimization-warnings" , OptionValue::eTypeBoolean, false, true, nullptr, nullptr, "If true, warn when stopped in code that is optimized where stepping and variable availability may not behave as expected." }, 130 { nullptr , OptionValue::eTypeInvalid, false, 0, nullptr, nullptr, nullptr } 131 }; 132 133 enum { 134 ePropertyDisableMemCache, 135 ePropertyExtraStartCommand, 136 ePropertyIgnoreBreakpointsInExpressions, 137 ePropertyUnwindOnErrorInExpressions, 138 ePropertyPythonOSPluginPath, 139 ePropertyStopOnSharedLibraryEvents, 140 ePropertyDetachKeepsStopped, 141 ePropertyMemCacheLineSize, 142 ePropertyWarningOptimization 143 }; 144 145 ProcessProperties::ProcessProperties (lldb_private::Process *process) : 146 Properties(), 147 m_process(process) // Can be nullptr for global ProcessProperties 148 { 149 if (process == nullptr) 150 { 151 // Global process properties, set them up one time 152 m_collection_sp.reset (new ProcessOptionValueProperties(ConstString("process"))); 153 m_collection_sp->Initialize(g_properties); 154 m_collection_sp->AppendProperty(ConstString("thread"), 155 ConstString("Settings specific to threads."), 156 true, 157 Thread::GetGlobalProperties()->GetValueProperties()); 158 } 159 else 160 { 161 m_collection_sp.reset (new ProcessOptionValueProperties(Process::GetGlobalProperties().get())); 162 m_collection_sp->SetValueChangedCallback(ePropertyPythonOSPluginPath, ProcessProperties::OptionValueChangedCallback, this); 163 } 164 } 165 166 ProcessProperties::~ProcessProperties() = default; 167 168 void 169 ProcessProperties::OptionValueChangedCallback (void *baton, OptionValue *option_value) 170 { 171 ProcessProperties *properties = (ProcessProperties *)baton; 172 if (properties->m_process) 173 properties->m_process->LoadOperatingSystemPlugin(true); 174 } 175 176 bool 177 ProcessProperties::GetDisableMemoryCache() const 178 { 179 const uint32_t idx = ePropertyDisableMemCache; 180 return m_collection_sp->GetPropertyAtIndexAsBoolean(nullptr, idx, g_properties[idx].default_uint_value != 0); 181 } 182 183 uint64_t 184 ProcessProperties::GetMemoryCacheLineSize() const 185 { 186 const uint32_t idx = ePropertyMemCacheLineSize; 187 return m_collection_sp->GetPropertyAtIndexAsUInt64(nullptr, idx, g_properties[idx].default_uint_value); 188 } 189 190 Args 191 ProcessProperties::GetExtraStartupCommands () const 192 { 193 Args args; 194 const uint32_t idx = ePropertyExtraStartCommand; 195 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 196 return args; 197 } 198 199 void 200 ProcessProperties::SetExtraStartupCommands (const Args &args) 201 { 202 const uint32_t idx = ePropertyExtraStartCommand; 203 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 204 } 205 206 FileSpec 207 ProcessProperties::GetPythonOSPluginPath () const 208 { 209 const uint32_t idx = ePropertyPythonOSPluginPath; 210 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 211 } 212 213 void 214 ProcessProperties::SetPythonOSPluginPath (const FileSpec &file) 215 { 216 const uint32_t idx = ePropertyPythonOSPluginPath; 217 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 218 } 219 220 bool 221 ProcessProperties::GetIgnoreBreakpointsInExpressions () const 222 { 223 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 224 return m_collection_sp->GetPropertyAtIndexAsBoolean(nullptr, idx, g_properties[idx].default_uint_value != 0); 225 } 226 227 void 228 ProcessProperties::SetIgnoreBreakpointsInExpressions (bool ignore) 229 { 230 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 231 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 232 } 233 234 bool 235 ProcessProperties::GetUnwindOnErrorInExpressions () const 236 { 237 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 238 return m_collection_sp->GetPropertyAtIndexAsBoolean(nullptr, idx, g_properties[idx].default_uint_value != 0); 239 } 240 241 void 242 ProcessProperties::SetUnwindOnErrorInExpressions (bool ignore) 243 { 244 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 245 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 246 } 247 248 bool 249 ProcessProperties::GetStopOnSharedLibraryEvents () const 250 { 251 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 252 return m_collection_sp->GetPropertyAtIndexAsBoolean(nullptr, idx, g_properties[idx].default_uint_value != 0); 253 } 254 255 void 256 ProcessProperties::SetStopOnSharedLibraryEvents (bool stop) 257 { 258 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 259 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 260 } 261 262 bool 263 ProcessProperties::GetDetachKeepsStopped () const 264 { 265 const uint32_t idx = ePropertyDetachKeepsStopped; 266 return m_collection_sp->GetPropertyAtIndexAsBoolean(nullptr, idx, g_properties[idx].default_uint_value != 0); 267 } 268 269 void 270 ProcessProperties::SetDetachKeepsStopped (bool stop) 271 { 272 const uint32_t idx = ePropertyDetachKeepsStopped; 273 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 274 } 275 276 bool 277 ProcessProperties::GetWarningsOptimization () const 278 { 279 const uint32_t idx = ePropertyWarningOptimization; 280 return m_collection_sp->GetPropertyAtIndexAsBoolean(nullptr, idx, g_properties[idx].default_uint_value != 0); 281 } 282 283 void 284 ProcessInstanceInfo::Dump (Stream &s, Platform *platform) const 285 { 286 const char *cstr; 287 if (m_pid != LLDB_INVALID_PROCESS_ID) 288 s.Printf (" pid = %" PRIu64 "\n", m_pid); 289 290 if (m_parent_pid != LLDB_INVALID_PROCESS_ID) 291 s.Printf (" parent = %" PRIu64 "\n", m_parent_pid); 292 293 if (m_executable) 294 { 295 s.Printf (" name = %s\n", m_executable.GetFilename().GetCString()); 296 s.PutCString (" file = "); 297 m_executable.Dump(&s); 298 s.EOL(); 299 } 300 const uint32_t argc = m_arguments.GetArgumentCount(); 301 if (argc > 0) 302 { 303 for (uint32_t i = 0; i < argc; i++) 304 { 305 const char *arg = m_arguments.GetArgumentAtIndex(i); 306 if (i < 10) 307 s.Printf (" arg[%u] = %s\n", i, arg); 308 else 309 s.Printf ("arg[%u] = %s\n", i, arg); 310 } 311 } 312 313 const uint32_t envc = m_environment.GetArgumentCount(); 314 if (envc > 0) 315 { 316 for (uint32_t i = 0; i < envc; i++) 317 { 318 const char *env = m_environment.GetArgumentAtIndex(i); 319 if (i < 10) 320 s.Printf (" env[%u] = %s\n", i, env); 321 else 322 s.Printf ("env[%u] = %s\n", i, env); 323 } 324 } 325 326 if (m_arch.IsValid()) 327 { 328 s.Printf (" arch = "); 329 m_arch.DumpTriple(s); 330 s.EOL(); 331 } 332 333 if (m_uid != UINT32_MAX) 334 { 335 cstr = platform->GetUserName (m_uid); 336 s.Printf (" uid = %-5u (%s)\n", m_uid, cstr ? cstr : ""); 337 } 338 if (m_gid != UINT32_MAX) 339 { 340 cstr = platform->GetGroupName (m_gid); 341 s.Printf (" gid = %-5u (%s)\n", m_gid, cstr ? cstr : ""); 342 } 343 if (m_euid != UINT32_MAX) 344 { 345 cstr = platform->GetUserName (m_euid); 346 s.Printf (" euid = %-5u (%s)\n", m_euid, cstr ? cstr : ""); 347 } 348 if (m_egid != UINT32_MAX) 349 { 350 cstr = platform->GetGroupName (m_egid); 351 s.Printf (" egid = %-5u (%s)\n", m_egid, cstr ? cstr : ""); 352 } 353 } 354 355 void 356 ProcessInstanceInfo::DumpTableHeader (Stream &s, Platform *platform, bool show_args, bool verbose) 357 { 358 const char *label; 359 if (show_args || verbose) 360 label = "ARGUMENTS"; 361 else 362 label = "NAME"; 363 364 if (verbose) 365 { 366 s.Printf ("PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE %s\n", label); 367 s.PutCString ("====== ====== ========== ========== ========== ========== ======================== ============================\n"); 368 } 369 else 370 { 371 s.Printf ("PID PARENT USER TRIPLE %s\n", label); 372 s.PutCString ("====== ====== ========== ======================== ============================\n"); 373 } 374 } 375 376 void 377 ProcessInstanceInfo::DumpAsTableRow (Stream &s, Platform *platform, bool show_args, bool verbose) const 378 { 379 if (m_pid != LLDB_INVALID_PROCESS_ID) 380 { 381 const char *cstr; 382 s.Printf ("%-6" PRIu64 " %-6" PRIu64 " ", m_pid, m_parent_pid); 383 384 StreamString arch_strm; 385 if (m_arch.IsValid()) 386 m_arch.DumpTriple(arch_strm); 387 388 if (verbose) 389 { 390 cstr = platform->GetUserName (m_uid); 391 if (cstr && cstr[0]) // Watch for empty string that indicates lookup failed 392 s.Printf ("%-10s ", cstr); 393 else 394 s.Printf ("%-10u ", m_uid); 395 396 cstr = platform->GetGroupName (m_gid); 397 if (cstr && cstr[0]) // Watch for empty string that indicates lookup failed 398 s.Printf ("%-10s ", cstr); 399 else 400 s.Printf ("%-10u ", m_gid); 401 402 cstr = platform->GetUserName (m_euid); 403 if (cstr && cstr[0]) // Watch for empty string that indicates lookup failed 404 s.Printf ("%-10s ", cstr); 405 else 406 s.Printf ("%-10u ", m_euid); 407 408 cstr = platform->GetGroupName (m_egid); 409 if (cstr && cstr[0]) // Watch for empty string that indicates lookup failed 410 s.Printf ("%-10s ", cstr); 411 else 412 s.Printf ("%-10u ", m_egid); 413 414 s.Printf ("%-24s ", arch_strm.GetString().c_str()); 415 } 416 else 417 { 418 s.Printf ("%-10s %-24s ", 419 platform->GetUserName (m_euid), 420 arch_strm.GetString().c_str()); 421 } 422 423 if (verbose || show_args) 424 { 425 const uint32_t argc = m_arguments.GetArgumentCount(); 426 if (argc > 0) 427 { 428 for (uint32_t i = 0; i < argc; i++) 429 { 430 if (i > 0) 431 s.PutChar (' '); 432 s.PutCString (m_arguments.GetArgumentAtIndex(i)); 433 } 434 } 435 } 436 else 437 { 438 s.PutCString (GetName()); 439 } 440 441 s.EOL(); 442 } 443 } 444 445 Error 446 ProcessLaunchCommandOptions::SetOptionValue(uint32_t option_idx, 447 const char *option_arg, 448 ExecutionContext *execution_context) 449 { 450 Error error; 451 const int short_option = m_getopt_table[option_idx].val; 452 453 switch (short_option) 454 { 455 case 's': // Stop at program entry point 456 launch_info.GetFlags().Set (eLaunchFlagStopAtEntry); 457 break; 458 459 case 'i': // STDIN for read only 460 { 461 FileAction action; 462 if (action.Open(STDIN_FILENO, FileSpec{option_arg, false}, true, false)) 463 launch_info.AppendFileAction (action); 464 break; 465 } 466 467 case 'o': // Open STDOUT for write only 468 { 469 FileAction action; 470 if (action.Open(STDOUT_FILENO, FileSpec{option_arg, false}, false, true)) 471 launch_info.AppendFileAction (action); 472 break; 473 } 474 475 case 'e': // STDERR for write only 476 { 477 FileAction action; 478 if (action.Open(STDERR_FILENO, FileSpec{option_arg, false}, false, true)) 479 launch_info.AppendFileAction (action); 480 break; 481 } 482 483 case 'p': // Process plug-in name 484 launch_info.SetProcessPluginName (option_arg); 485 break; 486 487 case 'n': // Disable STDIO 488 { 489 FileAction action; 490 const FileSpec dev_null{FileSystem::DEV_NULL, false}; 491 if (action.Open(STDIN_FILENO, dev_null, true, false)) 492 launch_info.AppendFileAction (action); 493 if (action.Open(STDOUT_FILENO, dev_null, false, true)) 494 launch_info.AppendFileAction (action); 495 if (action.Open(STDERR_FILENO, dev_null, false, true)) 496 launch_info.AppendFileAction (action); 497 break; 498 } 499 500 case 'w': 501 launch_info.SetWorkingDirectory(FileSpec{option_arg, false}); 502 break; 503 504 case 't': // Open process in new terminal window 505 launch_info.GetFlags().Set (eLaunchFlagLaunchInTTY); 506 break; 507 508 case 'a': 509 { 510 TargetSP target_sp = execution_context ? 511 execution_context->GetTargetSP() : TargetSP(); 512 PlatformSP platform_sp = target_sp ? 513 target_sp->GetPlatform() : PlatformSP(); 514 if (!launch_info.GetArchitecture().SetTriple (option_arg, platform_sp.get())) 515 launch_info.GetArchitecture().SetTriple (option_arg); 516 } 517 break; 518 519 case 'A': // Disable ASLR. 520 { 521 bool success; 522 const bool disable_aslr_arg = Args::StringToBoolean (option_arg, true, &success); 523 if (success) 524 disable_aslr = disable_aslr_arg ? eLazyBoolYes : eLazyBoolNo; 525 else 526 error.SetErrorStringWithFormat ("Invalid boolean value for disable-aslr option: '%s'", option_arg ? option_arg : "<null>"); 527 break; 528 } 529 530 case 'X': // shell expand args. 531 { 532 bool success; 533 const bool expand_args = Args::StringToBoolean (option_arg, true, &success); 534 if (success) 535 launch_info.SetShellExpandArguments(expand_args); 536 else 537 error.SetErrorStringWithFormat ("Invalid boolean value for shell-expand-args option: '%s'", option_arg ? option_arg : "<null>"); 538 break; 539 } 540 541 case 'c': 542 if (option_arg && option_arg[0]) 543 launch_info.SetShell (FileSpec(option_arg, false)); 544 else 545 launch_info.SetShell (HostInfo::GetDefaultShell()); 546 break; 547 548 case 'v': 549 launch_info.GetEnvironmentEntries().AppendArgument(option_arg); 550 break; 551 552 default: 553 error.SetErrorStringWithFormat("unrecognized short option character '%c'", short_option); 554 break; 555 } 556 return error; 557 } 558 559 OptionDefinition 560 ProcessLaunchCommandOptions::g_option_table[] = 561 { 562 { LLDB_OPT_SET_ALL, false, "stop-at-entry", 's', OptionParser::eNoArgument, nullptr, nullptr, 0, eArgTypeNone, "Stop at the entry point of the program when launching a process." }, 563 { LLDB_OPT_SET_ALL, false, "disable-aslr", 'A', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeBoolean, "Set whether to disable address space layout randomization when launching a process." }, 564 { LLDB_OPT_SET_ALL, false, "plugin", 'p', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypePlugin, "Name of the process plugin you want to use." }, 565 { LLDB_OPT_SET_ALL, false, "working-dir", 'w', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeDirectoryName, "Set the current working directory to <path> when running the inferior." }, 566 { LLDB_OPT_SET_ALL, false, "arch", 'a', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeArchitecture, "Set the architecture for the process to launch when ambiguous." }, 567 { LLDB_OPT_SET_ALL, false, "environment", 'v', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeNone, "Specify an environment variable name/value string (--environment NAME=VALUE). Can be specified multiple times for subsequent environment entries." }, 568 { LLDB_OPT_SET_1|LLDB_OPT_SET_2|LLDB_OPT_SET_3, false, "shell", 'c', OptionParser::eOptionalArgument, nullptr, nullptr, 0, eArgTypeFilename, "Run the process in a shell (not supported on all platforms)." }, 569 570 { LLDB_OPT_SET_1 , false, "stdin", 'i', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeFilename, "Redirect stdin for the process to <filename>." }, 571 { LLDB_OPT_SET_1 , false, "stdout", 'o', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeFilename, "Redirect stdout for the process to <filename>." }, 572 { LLDB_OPT_SET_1 , false, "stderr", 'e', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeFilename, "Redirect stderr for the process to <filename>." }, 573 574 { LLDB_OPT_SET_2 , false, "tty", 't', OptionParser::eNoArgument, nullptr, nullptr, 0, eArgTypeNone, "Start the process in a terminal (not supported on all platforms)." }, 575 576 { LLDB_OPT_SET_3 , false, "no-stdio", 'n', OptionParser::eNoArgument, nullptr, nullptr, 0, eArgTypeNone, "Do not set up for terminal I/O to go to running process." }, 577 { LLDB_OPT_SET_4, false, "shell-expand-args", 'X', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeBoolean, "Set whether to shell expand arguments to the process when launching." }, 578 { 0 , false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr } 579 }; 580 581 bool 582 ProcessInstanceInfoMatch::NameMatches (const char *process_name) const 583 { 584 if (m_name_match_type == eNameMatchIgnore || process_name == nullptr) 585 return true; 586 const char *match_name = m_match_info.GetName(); 587 if (!match_name) 588 return true; 589 590 return lldb_private::NameMatches (process_name, m_name_match_type, match_name); 591 } 592 593 bool 594 ProcessInstanceInfoMatch::Matches (const ProcessInstanceInfo &proc_info) const 595 { 596 if (!NameMatches (proc_info.GetName())) 597 return false; 598 599 if (m_match_info.ProcessIDIsValid() && 600 m_match_info.GetProcessID() != proc_info.GetProcessID()) 601 return false; 602 603 if (m_match_info.ParentProcessIDIsValid() && 604 m_match_info.GetParentProcessID() != proc_info.GetParentProcessID()) 605 return false; 606 607 if (m_match_info.UserIDIsValid () && 608 m_match_info.GetUserID() != proc_info.GetUserID()) 609 return false; 610 611 if (m_match_info.GroupIDIsValid () && 612 m_match_info.GetGroupID() != proc_info.GetGroupID()) 613 return false; 614 615 if (m_match_info.EffectiveUserIDIsValid () && 616 m_match_info.GetEffectiveUserID() != proc_info.GetEffectiveUserID()) 617 return false; 618 619 if (m_match_info.EffectiveGroupIDIsValid () && 620 m_match_info.GetEffectiveGroupID() != proc_info.GetEffectiveGroupID()) 621 return false; 622 623 if (m_match_info.GetArchitecture().IsValid() && 624 !m_match_info.GetArchitecture().IsCompatibleMatch(proc_info.GetArchitecture())) 625 return false; 626 return true; 627 } 628 629 bool 630 ProcessInstanceInfoMatch::MatchAllProcesses () const 631 { 632 if (m_name_match_type != eNameMatchIgnore) 633 return false; 634 635 if (m_match_info.ProcessIDIsValid()) 636 return false; 637 638 if (m_match_info.ParentProcessIDIsValid()) 639 return false; 640 641 if (m_match_info.UserIDIsValid ()) 642 return false; 643 644 if (m_match_info.GroupIDIsValid ()) 645 return false; 646 647 if (m_match_info.EffectiveUserIDIsValid ()) 648 return false; 649 650 if (m_match_info.EffectiveGroupIDIsValid ()) 651 return false; 652 653 if (m_match_info.GetArchitecture().IsValid()) 654 return false; 655 656 if (m_match_all_users) 657 return false; 658 659 return true; 660 } 661 662 void 663 ProcessInstanceInfoMatch::Clear() 664 { 665 m_match_info.Clear(); 666 m_name_match_type = eNameMatchIgnore; 667 m_match_all_users = false; 668 } 669 670 ProcessSP 671 Process::FindPlugin (lldb::TargetSP target_sp, const char *plugin_name, ListenerSP listener_sp, const FileSpec *crash_file_path) 672 { 673 static uint32_t g_process_unique_id = 0; 674 675 ProcessSP process_sp; 676 ProcessCreateInstance create_callback = nullptr; 677 if (plugin_name) 678 { 679 ConstString const_plugin_name(plugin_name); 680 create_callback = PluginManager::GetProcessCreateCallbackForPluginName (const_plugin_name); 681 if (create_callback) 682 { 683 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 684 if (process_sp) 685 { 686 if (process_sp->CanDebug(target_sp, true)) 687 { 688 process_sp->m_process_unique_id = ++g_process_unique_id; 689 } 690 else 691 process_sp.reset(); 692 } 693 } 694 } 695 else 696 { 697 for (uint32_t idx = 0; (create_callback = PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; ++idx) 698 { 699 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 700 if (process_sp) 701 { 702 if (process_sp->CanDebug(target_sp, false)) 703 { 704 process_sp->m_process_unique_id = ++g_process_unique_id; 705 break; 706 } 707 else 708 process_sp.reset(); 709 } 710 } 711 } 712 return process_sp; 713 } 714 715 ConstString & 716 Process::GetStaticBroadcasterClass () 717 { 718 static ConstString class_name ("lldb.process"); 719 return class_name; 720 } 721 722 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) : 723 Process(target_sp, listener_sp, UnixSignals::Create(HostInfo::GetArchitecture())) 724 { 725 // This constructor just delegates to the full Process constructor, 726 // defaulting to using the Host's UnixSignals. 727 } 728 729 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, const UnixSignalsSP &unix_signals_sp) 730 : ProcessProperties(this), 731 UserID(LLDB_INVALID_PROCESS_ID), 732 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), Process::GetStaticBroadcasterClass().AsCString()), 733 m_target_sp(target_sp), 734 m_public_state(eStateUnloaded), 735 m_private_state(eStateUnloaded), 736 m_private_state_broadcaster(nullptr, "lldb.process.internal_state_broadcaster"), 737 m_private_state_control_broadcaster(nullptr, "lldb.process.internal_state_control_broadcaster"), 738 m_private_state_listener_sp(Listener::MakeListener("lldb.process.internal_state_listener")), 739 m_mod_id(), 740 m_process_unique_id(0), 741 m_thread_index_id(0), 742 m_thread_id_to_index_id_map(), 743 m_exit_status(-1), 744 m_exit_string(), 745 m_exit_status_mutex(), 746 m_thread_mutex(), 747 m_thread_list_real(this), 748 m_thread_list(this), 749 m_extended_thread_list(this), 750 m_extended_thread_stop_id(0), 751 m_queue_list(this), 752 m_queue_list_stop_id(0), 753 m_notifications(), 754 m_image_tokens(), 755 m_listener_sp(listener_sp), 756 m_breakpoint_site_list(), 757 m_dynamic_checkers_ap(), 758 m_unix_signals_sp(unix_signals_sp), 759 m_abi_sp(), 760 m_process_input_reader(), 761 m_stdio_communication("process.stdio"), 762 m_stdio_communication_mutex(), 763 m_stdin_forward(false), 764 m_stdout_data(), 765 m_stderr_data(), 766 m_profile_data_comm_mutex(), 767 m_profile_data(), 768 m_iohandler_sync(0), 769 m_memory_cache(*this), 770 m_allocated_memory_cache(*this), 771 m_should_detach(false), 772 m_next_event_action_ap(), 773 m_public_run_lock(), 774 m_private_run_lock(), 775 m_stop_info_override_callback(nullptr), 776 m_finalizing(false), 777 m_finalize_called(false), 778 m_clear_thread_plans_on_stop(false), 779 m_force_next_event_delivery(false), 780 m_last_broadcast_state(eStateInvalid), 781 m_destroy_in_process(false), 782 m_can_interpret_function_calls(false), 783 m_warnings_issued(), 784 m_run_thread_plan_lock(), 785 m_can_jit(eCanJITDontKnow) 786 { 787 CheckInWithManager(); 788 789 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 790 if (log) 791 log->Printf("%p Process::Process()", static_cast<void *>(this)); 792 793 if (!m_unix_signals_sp) 794 m_unix_signals_sp = std::make_shared<UnixSignals>(); 795 796 SetEventName(eBroadcastBitStateChanged, "state-changed"); 797 SetEventName(eBroadcastBitInterrupt, "interrupt"); 798 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 799 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 800 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 801 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 802 803 m_private_state_control_broadcaster.SetEventName(eBroadcastInternalStateControlStop, "control-stop"); 804 m_private_state_control_broadcaster.SetEventName(eBroadcastInternalStateControlPause, "control-pause"); 805 m_private_state_control_broadcaster.SetEventName(eBroadcastInternalStateControlResume, "control-resume"); 806 807 m_listener_sp->StartListeningForEvents(this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 808 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 809 eBroadcastBitProfileData | 810 eBroadcastBitStructuredData); 811 812 m_private_state_listener_sp->StartListeningForEvents(&m_private_state_broadcaster, 813 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 814 815 m_private_state_listener_sp->StartListeningForEvents( 816 &m_private_state_control_broadcaster, eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 817 eBroadcastInternalStateControlResume); 818 // We need something valid here, even if just the default UnixSignalsSP. 819 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 820 821 // Allow the platform to override the default cache line size 822 OptionValueSP value_sp = m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize)->GetValue(); 823 uint32_t platform_cache_line_size = target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 824 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 825 value_sp->SetUInt64Value(platform_cache_line_size); 826 } 827 828 Process::~Process() 829 { 830 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_OBJECT)); 831 if (log) 832 log->Printf ("%p Process::~Process()", static_cast<void*>(this)); 833 StopPrivateStateThread(); 834 835 // ThreadList::Clear() will try to acquire this process's mutex, so 836 // explicitly clear the thread list here to ensure that the mutex 837 // is not destroyed before the thread list. 838 m_thread_list.Clear(); 839 } 840 841 const ProcessPropertiesSP & 842 Process::GetGlobalProperties() 843 { 844 // NOTE: intentional leak so we don't crash if global destructor chain gets 845 // called as other threads still use the result of this function 846 static ProcessPropertiesSP *g_settings_sp_ptr = nullptr; 847 static std::once_flag g_once_flag; 848 std::call_once(g_once_flag, []() { 849 g_settings_sp_ptr = new ProcessPropertiesSP(new ProcessProperties(nullptr)); 850 }); 851 return *g_settings_sp_ptr; 852 } 853 854 void 855 Process::Finalize() 856 { 857 m_finalizing = true; 858 859 // Destroy this process if needed 860 switch (GetPrivateState()) 861 { 862 case eStateConnected: 863 case eStateAttaching: 864 case eStateLaunching: 865 case eStateStopped: 866 case eStateRunning: 867 case eStateStepping: 868 case eStateCrashed: 869 case eStateSuspended: 870 Destroy(false); 871 break; 872 873 case eStateInvalid: 874 case eStateUnloaded: 875 case eStateDetached: 876 case eStateExited: 877 break; 878 } 879 880 // Clear our broadcaster before we proceed with destroying 881 Broadcaster::Clear(); 882 883 // Do any cleanup needed prior to being destructed... Subclasses 884 // that override this method should call this superclass method as well. 885 886 // We need to destroy the loader before the derived Process class gets destroyed 887 // since it is very likely that undoing the loader will require access to the real process. 888 m_dynamic_checkers_ap.reset(); 889 m_abi_sp.reset(); 890 m_os_ap.reset(); 891 m_system_runtime_ap.reset(); 892 m_dyld_ap.reset(); 893 m_jit_loaders_ap.reset(); 894 m_thread_list_real.Destroy(); 895 m_thread_list.Destroy(); 896 m_extended_thread_list.Destroy(); 897 m_queue_list.Clear(); 898 m_queue_list_stop_id = 0; 899 std::vector<Notifications> empty_notifications; 900 m_notifications.swap(empty_notifications); 901 m_image_tokens.clear(); 902 m_memory_cache.Clear(); 903 m_allocated_memory_cache.Clear(); 904 m_language_runtimes.clear(); 905 m_instrumentation_runtimes.clear(); 906 m_next_event_action_ap.reset(); 907 m_stop_info_override_callback = nullptr; 908 // Clear the last natural stop ID since it has a strong 909 // reference to this process 910 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 911 //#ifdef LLDB_CONFIGURATION_DEBUG 912 // StreamFile s(stdout, false); 913 // EventSP event_sp; 914 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 915 // { 916 // event_sp->Dump (&s); 917 // s.EOL(); 918 // } 919 //#endif 920 // We have to be very careful here as the m_private_state_listener might 921 // contain events that have ProcessSP values in them which can keep this 922 // process around forever. These events need to be cleared out. 923 m_private_state_listener_sp->Clear(); 924 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 925 m_public_run_lock.SetStopped(); 926 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 927 m_private_run_lock.SetStopped(); 928 m_finalize_called = true; 929 } 930 931 void 932 Process::RegisterNotificationCallbacks (const Notifications& callbacks) 933 { 934 m_notifications.push_back(callbacks); 935 if (callbacks.initialize != nullptr) 936 callbacks.initialize (callbacks.baton, this); 937 } 938 939 bool 940 Process::UnregisterNotificationCallbacks(const Notifications& callbacks) 941 { 942 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 943 for (pos = m_notifications.begin(); pos != end; ++pos) 944 { 945 if (pos->baton == callbacks.baton && 946 pos->initialize == callbacks.initialize && 947 pos->process_state_changed == callbacks.process_state_changed) 948 { 949 m_notifications.erase(pos); 950 return true; 951 } 952 } 953 return false; 954 } 955 956 void 957 Process::SynchronouslyNotifyStateChanged (StateType state) 958 { 959 std::vector<Notifications>::iterator notification_pos, notification_end = m_notifications.end(); 960 for (notification_pos = m_notifications.begin(); notification_pos != notification_end; ++notification_pos) 961 { 962 if (notification_pos->process_state_changed) 963 notification_pos->process_state_changed (notification_pos->baton, this, state); 964 } 965 } 966 967 // FIXME: We need to do some work on events before the general Listener sees them. 968 // For instance if we are continuing from a breakpoint, we need to ensure that we do 969 // the little "insert real insn, step & stop" trick. But we can't do that when the 970 // event is delivered by the broadcaster - since that is done on the thread that is 971 // waiting for new events, so if we needed more than one event for our handling, we would 972 // stall. So instead we do it when we fetch the event off of the queue. 973 // 974 975 StateType 976 Process::GetNextEvent (EventSP &event_sp) 977 { 978 StateType state = eStateInvalid; 979 980 if (m_listener_sp->GetNextEventForBroadcaster (this, event_sp) && event_sp) 981 state = Process::ProcessEventData::GetStateFromEvent (event_sp.get()); 982 983 return state; 984 } 985 986 void 987 Process::SyncIOHandler (uint32_t iohandler_id, uint64_t timeout_msec) 988 { 989 // don't sync (potentially context switch) in case where there is no process IO 990 if (!m_process_input_reader) 991 return; 992 993 uint32_t new_iohandler_id = 0; 994 m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, new_iohandler_id, std::chrono::milliseconds(timeout_msec)); 995 996 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 997 if (log) 998 log->Printf("Process::%s waited for m_iohandler_sync to change from %u, new value is %u", __FUNCTION__, iohandler_id, new_iohandler_id); 999 } 1000 1001 StateType 1002 Process::WaitForProcessToStop(const std::chrono::microseconds &timeout, EventSP *event_sp_ptr, bool wait_always, 1003 ListenerSP hijack_listener_sp, Stream *stream, bool use_run_lock) 1004 { 1005 // We can't just wait for a "stopped" event, because the stopped event may have restarted the target. 1006 // We have to actually check each event, and in the case of a stopped event check the restarted flag 1007 // on the event. 1008 if (event_sp_ptr) 1009 event_sp_ptr->reset(); 1010 StateType state = GetState(); 1011 // If we are exited or detached, we won't ever get back to any 1012 // other valid state... 1013 if (state == eStateDetached || state == eStateExited) 1014 return state; 1015 1016 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1017 if (log) 1018 log->Printf("Process::%s (timeout = %llu)", __FUNCTION__, static_cast<unsigned long long>(timeout.count())); 1019 1020 if (!wait_always && 1021 StateIsStoppedState(state, true) && 1022 StateIsStoppedState(GetPrivateState(), true)) 1023 { 1024 if (log) 1025 log->Printf("Process::%s returning without waiting for events; process private and public states are already 'stopped'.", 1026 __FUNCTION__); 1027 // We need to toggle the run lock as this won't get done in 1028 // SetPublicState() if the process is hijacked. 1029 if (hijack_listener_sp && use_run_lock) 1030 m_public_run_lock.SetStopped(); 1031 return state; 1032 } 1033 1034 while (state != eStateInvalid) 1035 { 1036 EventSP event_sp; 1037 state = WaitForStateChangedEvents(timeout, event_sp, hijack_listener_sp); 1038 if (event_sp_ptr && event_sp) 1039 *event_sp_ptr = event_sp; 1040 1041 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 1042 Process::HandleProcessStateChangedEvent (event_sp, stream, pop_process_io_handler); 1043 1044 switch (state) 1045 { 1046 case eStateCrashed: 1047 case eStateDetached: 1048 case eStateExited: 1049 case eStateUnloaded: 1050 // We need to toggle the run lock as this won't get done in 1051 // SetPublicState() if the process is hijacked. 1052 if (hijack_listener_sp && use_run_lock) 1053 m_public_run_lock.SetStopped(); 1054 return state; 1055 case eStateStopped: 1056 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 1057 continue; 1058 else 1059 { 1060 // We need to toggle the run lock as this won't get done in 1061 // SetPublicState() if the process is hijacked. 1062 if (hijack_listener_sp && use_run_lock) 1063 m_public_run_lock.SetStopped(); 1064 return state; 1065 } 1066 default: 1067 continue; 1068 } 1069 } 1070 return state; 1071 } 1072 1073 bool 1074 Process::HandleProcessStateChangedEvent (const EventSP &event_sp, 1075 Stream *stream, 1076 bool &pop_process_io_handler) 1077 { 1078 const bool handle_pop = pop_process_io_handler; 1079 1080 pop_process_io_handler = false; 1081 ProcessSP process_sp = Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 1082 1083 if (!process_sp) 1084 return false; 1085 1086 StateType event_state = Process::ProcessEventData::GetStateFromEvent (event_sp.get()); 1087 if (event_state == eStateInvalid) 1088 return false; 1089 1090 switch (event_state) 1091 { 1092 case eStateInvalid: 1093 case eStateUnloaded: 1094 case eStateAttaching: 1095 case eStateLaunching: 1096 case eStateStepping: 1097 case eStateDetached: 1098 if (stream) 1099 stream->Printf("Process %" PRIu64 " %s\n", 1100 process_sp->GetID(), 1101 StateAsCString (event_state)); 1102 if (event_state == eStateDetached) 1103 pop_process_io_handler = true; 1104 break; 1105 1106 case eStateConnected: 1107 case eStateRunning: 1108 // Don't be chatty when we run... 1109 break; 1110 1111 case eStateExited: 1112 if (stream) 1113 process_sp->GetStatus(*stream); 1114 pop_process_io_handler = true; 1115 break; 1116 1117 case eStateStopped: 1118 case eStateCrashed: 1119 case eStateSuspended: 1120 // Make sure the program hasn't been auto-restarted: 1121 if (Process::ProcessEventData::GetRestartedFromEvent (event_sp.get())) 1122 { 1123 if (stream) 1124 { 1125 size_t num_reasons = Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 1126 if (num_reasons > 0) 1127 { 1128 // FIXME: Do we want to report this, or would that just be annoyingly chatty? 1129 if (num_reasons == 1) 1130 { 1131 const char *reason = Process::ProcessEventData::GetRestartedReasonAtIndex (event_sp.get(), 0); 1132 stream->Printf ("Process %" PRIu64 " stopped and restarted: %s\n", 1133 process_sp->GetID(), 1134 reason ? reason : "<UNKNOWN REASON>"); 1135 } 1136 else 1137 { 1138 stream->Printf ("Process %" PRIu64 " stopped and restarted, reasons:\n", 1139 process_sp->GetID()); 1140 1141 1142 for (size_t i = 0; i < num_reasons; i++) 1143 { 1144 const char *reason = Process::ProcessEventData::GetRestartedReasonAtIndex (event_sp.get(), i); 1145 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 1146 } 1147 } 1148 } 1149 } 1150 } 1151 else 1152 { 1153 // Lock the thread list so it doesn't change on us, this is the scope for the locker: 1154 { 1155 ThreadList &thread_list = process_sp->GetThreadList(); 1156 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 1157 1158 ThreadSP curr_thread (thread_list.GetSelectedThread()); 1159 ThreadSP thread; 1160 StopReason curr_thread_stop_reason = eStopReasonInvalid; 1161 if (curr_thread) 1162 curr_thread_stop_reason = curr_thread->GetStopReason(); 1163 if (!curr_thread || 1164 !curr_thread->IsValid() || 1165 curr_thread_stop_reason == eStopReasonInvalid || 1166 curr_thread_stop_reason == eStopReasonNone) 1167 { 1168 // Prefer a thread that has just completed its plan over another thread as current thread. 1169 ThreadSP plan_thread; 1170 ThreadSP other_thread; 1171 1172 const size_t num_threads = thread_list.GetSize(); 1173 size_t i; 1174 for (i = 0; i < num_threads; ++i) 1175 { 1176 thread = thread_list.GetThreadAtIndex(i); 1177 StopReason thread_stop_reason = thread->GetStopReason(); 1178 switch (thread_stop_reason) 1179 { 1180 case eStopReasonInvalid: 1181 case eStopReasonNone: 1182 break; 1183 1184 case eStopReasonSignal: 1185 { 1186 // Don't select a signal thread if we weren't going to stop at that 1187 // signal. We have to have had another reason for stopping here, and 1188 // the user doesn't want to see this thread. 1189 uint64_t signo = thread->GetStopInfo()->GetValue(); 1190 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) 1191 { 1192 if (!other_thread) 1193 other_thread = thread; 1194 } 1195 break; 1196 } 1197 case eStopReasonTrace: 1198 case eStopReasonBreakpoint: 1199 case eStopReasonWatchpoint: 1200 case eStopReasonException: 1201 case eStopReasonExec: 1202 case eStopReasonThreadExiting: 1203 case eStopReasonInstrumentation: 1204 if (!other_thread) 1205 other_thread = thread; 1206 break; 1207 case eStopReasonPlanComplete: 1208 if (!plan_thread) 1209 plan_thread = thread; 1210 break; 1211 } 1212 } 1213 if (plan_thread) 1214 thread_list.SetSelectedThreadByID (plan_thread->GetID()); 1215 else if (other_thread) 1216 thread_list.SetSelectedThreadByID (other_thread->GetID()); 1217 else 1218 { 1219 if (curr_thread && curr_thread->IsValid()) 1220 thread = curr_thread; 1221 else 1222 thread = thread_list.GetThreadAtIndex(0); 1223 1224 if (thread) 1225 thread_list.SetSelectedThreadByID (thread->GetID()); 1226 } 1227 } 1228 } 1229 // Drop the ThreadList mutex by here, since GetThreadStatus below might have to run code, 1230 // e.g. for Data formatters, and if we hold the ThreadList mutex, then the process is going to 1231 // have a hard time restarting the process. 1232 if (stream) 1233 { 1234 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 1235 if (debugger.GetTargetList().GetSelectedTarget().get() == &process_sp->GetTarget()) 1236 { 1237 const bool only_threads_with_stop_reason = true; 1238 const uint32_t start_frame = 0; 1239 const uint32_t num_frames = 1; 1240 const uint32_t num_frames_with_source = 1; 1241 process_sp->GetStatus(*stream); 1242 process_sp->GetThreadStatus (*stream, 1243 only_threads_with_stop_reason, 1244 start_frame, 1245 num_frames, 1246 num_frames_with_source); 1247 } 1248 else 1249 { 1250 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget(process_sp->GetTarget().shared_from_this()); 1251 if (target_idx != UINT32_MAX) 1252 stream->Printf ("Target %d: (", target_idx); 1253 else 1254 stream->Printf ("Target <unknown index>: ("); 1255 process_sp->GetTarget().Dump (stream, eDescriptionLevelBrief); 1256 stream->Printf (") stopped.\n"); 1257 } 1258 } 1259 1260 // Pop the process IO handler 1261 pop_process_io_handler = true; 1262 } 1263 break; 1264 } 1265 1266 if (handle_pop && pop_process_io_handler) 1267 process_sp->PopProcessIOHandler(); 1268 1269 return true; 1270 } 1271 1272 StateType 1273 Process::WaitForState(const std::chrono::microseconds &timeout, const StateType *match_states, 1274 const uint32_t num_match_states) 1275 { 1276 EventSP event_sp; 1277 StateType state = GetState(); 1278 while (state != eStateInvalid) 1279 { 1280 // If we are exited or detached, we won't ever get back to any 1281 // other valid state... 1282 if (state == eStateDetached || state == eStateExited) 1283 return state; 1284 1285 state = WaitForStateChangedEvents(timeout, event_sp, nullptr); 1286 1287 for (uint32_t i = 0; i < num_match_states; ++i) 1288 { 1289 if (match_states[i] == state) 1290 return state; 1291 } 1292 } 1293 return state; 1294 } 1295 1296 bool 1297 Process::HijackProcessEvents (ListenerSP listener_sp) 1298 { 1299 if (listener_sp) 1300 { 1301 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | eBroadcastBitInterrupt); 1302 } 1303 else 1304 return false; 1305 } 1306 1307 void 1308 Process::RestoreProcessEvents () 1309 { 1310 RestoreBroadcaster(); 1311 } 1312 1313 StateType 1314 Process::WaitForStateChangedEvents(const std::chrono::microseconds &timeout, EventSP &event_sp, 1315 ListenerSP hijack_listener_sp) 1316 { 1317 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1318 1319 if (log) 1320 log->Printf("Process::%s (timeout = %llu, event_sp)...", __FUNCTION__, 1321 static_cast<unsigned long long>(timeout.count())); 1322 1323 ListenerSP listener_sp = hijack_listener_sp; 1324 if (!listener_sp) 1325 listener_sp = m_listener_sp; 1326 1327 StateType state = eStateInvalid; 1328 if (listener_sp->WaitForEventForBroadcasterWithType (timeout, 1329 this, 1330 eBroadcastBitStateChanged | eBroadcastBitInterrupt, 1331 event_sp)) 1332 { 1333 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1334 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1335 else if (log) 1336 log->Printf ("Process::%s got no event or was interrupted.", __FUNCTION__); 1337 } 1338 1339 if (log) 1340 log->Printf("Process::%s (timeout = %llu, event_sp) => %s", __FUNCTION__, 1341 static_cast<unsigned long long>(timeout.count()), StateAsCString(state)); 1342 return state; 1343 } 1344 1345 Event * 1346 Process::PeekAtStateChangedEvents () 1347 { 1348 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1349 1350 if (log) 1351 log->Printf ("Process::%s...", __FUNCTION__); 1352 1353 Event *event_ptr; 1354 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType (this, 1355 eBroadcastBitStateChanged); 1356 if (log) 1357 { 1358 if (event_ptr) 1359 { 1360 log->Printf ("Process::%s (event_ptr) => %s", 1361 __FUNCTION__, 1362 StateAsCString(ProcessEventData::GetStateFromEvent (event_ptr))); 1363 } 1364 else 1365 { 1366 log->Printf ("Process::%s no events found", 1367 __FUNCTION__); 1368 } 1369 } 1370 return event_ptr; 1371 } 1372 1373 StateType 1374 Process::WaitForStateChangedEventsPrivate(const std::chrono::microseconds &timeout, EventSP &event_sp) 1375 { 1376 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1377 1378 if (log) 1379 log->Printf("Process::%s (timeout = %llu, event_sp)...", __FUNCTION__, 1380 static_cast<unsigned long long>(timeout.count())); 1381 1382 StateType state = eStateInvalid; 1383 if (m_private_state_listener_sp->WaitForEventForBroadcasterWithType (timeout, 1384 &m_private_state_broadcaster, 1385 eBroadcastBitStateChanged | eBroadcastBitInterrupt, 1386 event_sp)) 1387 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1388 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1389 1390 // This is a bit of a hack, but when we wait here we could very well return 1391 // to the command-line, and that could disable the log, which would render the 1392 // log we got above invalid. 1393 if (log) 1394 log->Printf("Process::%s (timeout = %llu, event_sp) => %s", __FUNCTION__, 1395 static_cast<unsigned long long>(timeout.count()), 1396 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1397 return state; 1398 } 1399 1400 bool 1401 Process::WaitForEventsPrivate(const std::chrono::microseconds &timeout, EventSP &event_sp, bool control_only) 1402 { 1403 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1404 1405 if (log) 1406 log->Printf("Process::%s (timeout = %llu, event_sp)...", __FUNCTION__, 1407 static_cast<unsigned long long>(timeout.count())); 1408 1409 if (control_only) 1410 return m_private_state_listener_sp->WaitForEventForBroadcaster(timeout, &m_private_state_control_broadcaster, event_sp); 1411 else 1412 return m_private_state_listener_sp->WaitForEvent(timeout, event_sp); 1413 } 1414 1415 bool 1416 Process::IsRunning () const 1417 { 1418 return StateIsRunningState (m_public_state.GetValue()); 1419 } 1420 1421 int 1422 Process::GetExitStatus () 1423 { 1424 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1425 1426 if (m_public_state.GetValue() == eStateExited) 1427 return m_exit_status; 1428 return -1; 1429 } 1430 1431 const char * 1432 Process::GetExitDescription () 1433 { 1434 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1435 1436 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1437 return m_exit_string.c_str(); 1438 return nullptr; 1439 } 1440 1441 bool 1442 Process::SetExitStatus (int status, const char *cstr) 1443 { 1444 // Use a mutex to protect setting the exit status. 1445 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1446 1447 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS)); 1448 if (log) 1449 log->Printf("Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1450 status, status, 1451 cstr ? "\"" : "", 1452 cstr ? cstr : "NULL", 1453 cstr ? "\"" : ""); 1454 1455 // We were already in the exited state 1456 if (m_private_state.GetValue() == eStateExited) 1457 { 1458 if (log) 1459 log->Printf("Process::SetExitStatus () ignoring exit status because state was already set to eStateExited"); 1460 return false; 1461 } 1462 1463 m_exit_status = status; 1464 if (cstr) 1465 m_exit_string = cstr; 1466 else 1467 m_exit_string.clear(); 1468 1469 // Clear the last natural stop ID since it has a strong 1470 // reference to this process 1471 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1472 1473 SetPrivateState (eStateExited); 1474 1475 // Allow subclasses to do some cleanup 1476 DidExit (); 1477 1478 return true; 1479 } 1480 1481 bool 1482 Process::IsAlive () 1483 { 1484 switch (m_private_state.GetValue()) 1485 { 1486 case eStateConnected: 1487 case eStateAttaching: 1488 case eStateLaunching: 1489 case eStateStopped: 1490 case eStateRunning: 1491 case eStateStepping: 1492 case eStateCrashed: 1493 case eStateSuspended: 1494 return true; 1495 default: 1496 return false; 1497 } 1498 } 1499 1500 // This static callback can be used to watch for local child processes on 1501 // the current host. The child process exits, the process will be 1502 // found in the global target list (we want to be completely sure that the 1503 // lldb_private::Process doesn't go away before we can deliver the signal. 1504 bool 1505 Process::SetProcessExitStatus(lldb::pid_t pid, bool exited, 1506 int signo, // Zero for no signal 1507 int exit_status // Exit value of process if signal is zero 1508 ) 1509 { 1510 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS)); 1511 if (log) 1512 log->Printf("Process::SetProcessExitStatus (pid=%" PRIu64 ", exited=%i, signal=%i, exit_status=%i)\n", pid, 1513 exited, signo, exit_status); 1514 1515 if (exited) 1516 { 1517 TargetSP target_sp(Debugger::FindTargetWithProcessID (pid)); 1518 if (target_sp) 1519 { 1520 ProcessSP process_sp (target_sp->GetProcessSP()); 1521 if (process_sp) 1522 { 1523 const char *signal_cstr = nullptr; 1524 if (signo) 1525 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1526 1527 process_sp->SetExitStatus (exit_status, signal_cstr); 1528 } 1529 } 1530 return true; 1531 } 1532 return false; 1533 } 1534 1535 void 1536 Process::UpdateThreadListIfNeeded () 1537 { 1538 const uint32_t stop_id = GetStopID(); 1539 if (m_thread_list.GetSize(false) == 0 || stop_id != m_thread_list.GetStopID()) 1540 { 1541 const StateType state = GetPrivateState(); 1542 if (StateIsStoppedState (state, true)) 1543 { 1544 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1545 // m_thread_list does have its own mutex, but we need to 1546 // hold onto the mutex between the call to UpdateThreadList(...) 1547 // and the os->UpdateThreadList(...) so it doesn't change on us 1548 ThreadList &old_thread_list = m_thread_list; 1549 ThreadList real_thread_list(this); 1550 ThreadList new_thread_list(this); 1551 // Always update the thread list with the protocol specific 1552 // thread list, but only update if "true" is returned 1553 if (UpdateThreadList (m_thread_list_real, real_thread_list)) 1554 { 1555 // Don't call into the OperatingSystem to update the thread list if we are shutting down, since 1556 // that may call back into the SBAPI's, requiring the API lock which is already held by whoever is 1557 // shutting us down, causing a deadlock. 1558 OperatingSystem *os = GetOperatingSystem (); 1559 if (os && !m_destroy_in_process) 1560 { 1561 // Clear any old backing threads where memory threads might have been 1562 // backed by actual threads from the lldb_private::Process subclass 1563 size_t num_old_threads = old_thread_list.GetSize(false); 1564 for (size_t i = 0; i < num_old_threads; ++i) 1565 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1566 1567 // Turn off dynamic types to ensure we don't run any expressions. Objective C 1568 // can run an expression to determine if a SBValue is a dynamic type or not 1569 // and we need to avoid this. OperatingSystem plug-ins can't run expressions 1570 // that require running code... 1571 1572 Target &target = GetTarget(); 1573 const lldb::DynamicValueType saved_prefer_dynamic = target.GetPreferDynamicValue (); 1574 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1575 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1576 1577 // Now let the OperatingSystem plug-in update the thread list 1578 1579 os->UpdateThreadList (old_thread_list, // Old list full of threads created by OS plug-in 1580 real_thread_list, // The actual thread list full of threads created by each lldb_private::Process subclass 1581 new_thread_list); // The new thread list that we will show to the user that gets filled in 1582 1583 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1584 target.SetPreferDynamicValue(saved_prefer_dynamic); 1585 } 1586 else 1587 { 1588 // No OS plug-in, the new thread list is the same as the real thread list 1589 new_thread_list = real_thread_list; 1590 } 1591 1592 m_thread_list_real.Update(real_thread_list); 1593 m_thread_list.Update (new_thread_list); 1594 m_thread_list.SetStopID (stop_id); 1595 1596 if (GetLastNaturalStopID () != m_extended_thread_stop_id) 1597 { 1598 // Clear any extended threads that we may have accumulated previously 1599 m_extended_thread_list.Clear(); 1600 m_extended_thread_stop_id = GetLastNaturalStopID (); 1601 1602 m_queue_list.Clear(); 1603 m_queue_list_stop_id = GetLastNaturalStopID (); 1604 } 1605 } 1606 } 1607 } 1608 } 1609 1610 void 1611 Process::UpdateQueueListIfNeeded () 1612 { 1613 if (m_system_runtime_ap) 1614 { 1615 if (m_queue_list.GetSize() == 0 || m_queue_list_stop_id != GetLastNaturalStopID()) 1616 { 1617 const StateType state = GetPrivateState(); 1618 if (StateIsStoppedState (state, true)) 1619 { 1620 m_system_runtime_ap->PopulateQueueList (m_queue_list); 1621 m_queue_list_stop_id = GetLastNaturalStopID(); 1622 } 1623 } 1624 } 1625 } 1626 1627 ThreadSP 1628 Process::CreateOSPluginThread (lldb::tid_t tid, lldb::addr_t context) 1629 { 1630 OperatingSystem *os = GetOperatingSystem (); 1631 if (os) 1632 return os->CreateThread(tid, context); 1633 return ThreadSP(); 1634 } 1635 1636 uint32_t 1637 Process::GetNextThreadIndexID (uint64_t thread_id) 1638 { 1639 return AssignIndexIDToThread(thread_id); 1640 } 1641 1642 bool 1643 Process::HasAssignedIndexIDToThread(uint64_t thread_id) 1644 { 1645 return (m_thread_id_to_index_id_map.find(thread_id) != m_thread_id_to_index_id_map.end()); 1646 } 1647 1648 uint32_t 1649 Process::AssignIndexIDToThread(uint64_t thread_id) 1650 { 1651 uint32_t result = 0; 1652 std::map<uint64_t, uint32_t>::iterator iterator = m_thread_id_to_index_id_map.find(thread_id); 1653 if (iterator == m_thread_id_to_index_id_map.end()) 1654 { 1655 result = ++m_thread_index_id; 1656 m_thread_id_to_index_id_map[thread_id] = result; 1657 } 1658 else 1659 { 1660 result = iterator->second; 1661 } 1662 1663 return result; 1664 } 1665 1666 StateType 1667 Process::GetState() 1668 { 1669 // If any other threads access this we will need a mutex for it 1670 return m_public_state.GetValue (); 1671 } 1672 1673 bool 1674 Process::StateChangedIsExternallyHijacked() 1675 { 1676 if (IsHijackedForEvent(eBroadcastBitStateChanged)) 1677 { 1678 const char *hijacking_name = GetHijackingListenerName(); 1679 if (hijacking_name && strcmp(hijacking_name, "lldb.Process.ResumeSynchronous.hijack")) 1680 return true; 1681 } 1682 return false; 1683 } 1684 1685 void 1686 Process::SetPublicState (StateType new_state, bool restarted) 1687 { 1688 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS)); 1689 if (log) 1690 log->Printf("Process::SetPublicState (state = %s, restarted = %i)", StateAsCString(new_state), restarted); 1691 const StateType old_state = m_public_state.GetValue(); 1692 m_public_state.SetValue (new_state); 1693 1694 // On the transition from Run to Stopped, we unlock the writer end of the 1695 // run lock. The lock gets locked in Resume, which is the public API 1696 // to tell the program to run. 1697 if (!StateChangedIsExternallyHijacked()) 1698 { 1699 if (new_state == eStateDetached) 1700 { 1701 if (log) 1702 log->Printf("Process::SetPublicState (%s) -- unlocking run lock for detach", StateAsCString(new_state)); 1703 m_public_run_lock.SetStopped(); 1704 } 1705 else 1706 { 1707 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1708 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1709 if ((old_state_is_stopped != new_state_is_stopped)) 1710 { 1711 if (new_state_is_stopped && !restarted) 1712 { 1713 if (log) 1714 log->Printf("Process::SetPublicState (%s) -- unlocking run lock", StateAsCString(new_state)); 1715 m_public_run_lock.SetStopped(); 1716 } 1717 } 1718 } 1719 } 1720 } 1721 1722 Error 1723 Process::Resume () 1724 { 1725 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS)); 1726 if (log) 1727 log->Printf("Process::Resume -- locking run lock"); 1728 if (!m_public_run_lock.TrySetRunning()) 1729 { 1730 Error error("Resume request failed - process still running."); 1731 if (log) 1732 log->Printf ("Process::Resume: -- TrySetRunning failed, not resuming."); 1733 return error; 1734 } 1735 return PrivateResume(); 1736 } 1737 1738 Error 1739 Process::ResumeSynchronous (Stream *stream) 1740 { 1741 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS)); 1742 if (log) 1743 log->Printf("Process::ResumeSynchronous -- locking run lock"); 1744 if (!m_public_run_lock.TrySetRunning()) 1745 { 1746 Error error("Resume request failed - process still running."); 1747 if (log) 1748 log->Printf ("Process::Resume: -- TrySetRunning failed, not resuming."); 1749 return error; 1750 } 1751 1752 ListenerSP listener_sp (Listener::MakeListener("lldb.Process.ResumeSynchronous.hijack")); 1753 HijackProcessEvents(listener_sp); 1754 1755 Error error = PrivateResume(); 1756 if (error.Success()) 1757 { 1758 StateType state = WaitForProcessToStop(std::chrono::microseconds(0), NULL, true, listener_sp, stream); 1759 const bool must_be_alive = false; // eStateExited is ok, so this must be false 1760 if (!StateIsStoppedState(state, must_be_alive)) 1761 error.SetErrorStringWithFormat("process not in stopped state after synchronous resume: %s", StateAsCString(state)); 1762 } 1763 1764 // Undo the hijacking of process events... 1765 RestoreProcessEvents(); 1766 1767 return error; 1768 } 1769 1770 StateType 1771 Process::GetPrivateState () 1772 { 1773 return m_private_state.GetValue(); 1774 } 1775 1776 void 1777 Process::SetPrivateState (StateType new_state) 1778 { 1779 if (m_finalize_called) 1780 return; 1781 1782 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS)); 1783 bool state_changed = false; 1784 1785 if (log) 1786 log->Printf("Process::SetPrivateState (%s)", StateAsCString(new_state)); 1787 1788 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1789 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1790 1791 const StateType old_state = m_private_state.GetValueNoLock (); 1792 state_changed = old_state != new_state; 1793 1794 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1795 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1796 if (old_state_is_stopped != new_state_is_stopped) 1797 { 1798 if (new_state_is_stopped) 1799 m_private_run_lock.SetStopped(); 1800 else 1801 m_private_run_lock.SetRunning(); 1802 } 1803 1804 if (state_changed) 1805 { 1806 m_private_state.SetValueNoLock (new_state); 1807 EventSP event_sp (new Event (eBroadcastBitStateChanged, new ProcessEventData (shared_from_this(), new_state))); 1808 if (StateIsStoppedState(new_state, false)) 1809 { 1810 // Note, this currently assumes that all threads in the list 1811 // stop when the process stops. In the future we will want to 1812 // support a debugging model where some threads continue to run 1813 // while others are stopped. When that happens we will either need 1814 // a way for the thread list to identify which threads are stopping 1815 // or create a special thread list containing only threads which 1816 // actually stopped. 1817 // 1818 // The process plugin is responsible for managing the actual 1819 // behavior of the threads and should have stopped any threads 1820 // that are going to stop before we get here. 1821 m_thread_list.DidStop(); 1822 1823 m_mod_id.BumpStopID(); 1824 if (!m_mod_id.IsLastResumeForUserExpression()) 1825 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1826 m_memory_cache.Clear(); 1827 if (log) 1828 log->Printf("Process::SetPrivateState (%s) stop_id = %u", StateAsCString(new_state), m_mod_id.GetStopID()); 1829 } 1830 1831 // Use our target to get a shared pointer to ourselves... 1832 if (m_finalize_called && !PrivateStateThreadIsValid()) 1833 BroadcastEvent (event_sp); 1834 else 1835 m_private_state_broadcaster.BroadcastEvent (event_sp); 1836 } 1837 else 1838 { 1839 if (log) 1840 log->Printf("Process::SetPrivateState (%s) state didn't change. Ignoring...", StateAsCString(new_state)); 1841 } 1842 } 1843 1844 void 1845 Process::SetRunningUserExpression (bool on) 1846 { 1847 m_mod_id.SetRunningUserExpression (on); 1848 } 1849 1850 addr_t 1851 Process::GetImageInfoAddress() 1852 { 1853 return LLDB_INVALID_ADDRESS; 1854 } 1855 1856 const lldb::ABISP & 1857 Process::GetABI() 1858 { 1859 if (!m_abi_sp) 1860 m_abi_sp = ABI::FindPlugin(GetTarget().GetArchitecture()); 1861 return m_abi_sp; 1862 } 1863 1864 LanguageRuntime * 1865 Process::GetLanguageRuntime(lldb::LanguageType language, bool retry_if_null) 1866 { 1867 if (m_finalizing) 1868 return nullptr; 1869 1870 LanguageRuntimeCollection::iterator pos; 1871 pos = m_language_runtimes.find (language); 1872 if (pos == m_language_runtimes.end() || (retry_if_null && !(*pos).second)) 1873 { 1874 lldb::LanguageRuntimeSP runtime_sp(LanguageRuntime::FindPlugin(this, language)); 1875 1876 m_language_runtimes[language] = runtime_sp; 1877 return runtime_sp.get(); 1878 } 1879 else 1880 return (*pos).second.get(); 1881 } 1882 1883 CPPLanguageRuntime * 1884 Process::GetCPPLanguageRuntime (bool retry_if_null) 1885 { 1886 LanguageRuntime *runtime = GetLanguageRuntime(eLanguageTypeC_plus_plus, retry_if_null); 1887 if (runtime != nullptr && runtime->GetLanguageType() == eLanguageTypeC_plus_plus) 1888 return static_cast<CPPLanguageRuntime *> (runtime); 1889 return nullptr; 1890 } 1891 1892 ObjCLanguageRuntime * 1893 Process::GetObjCLanguageRuntime (bool retry_if_null) 1894 { 1895 LanguageRuntime *runtime = GetLanguageRuntime(eLanguageTypeObjC, retry_if_null); 1896 if (runtime != nullptr && runtime->GetLanguageType() == eLanguageTypeObjC) 1897 return static_cast<ObjCLanguageRuntime *> (runtime); 1898 return nullptr; 1899 } 1900 1901 bool 1902 Process::IsPossibleDynamicValue (ValueObject& in_value) 1903 { 1904 if (m_finalizing) 1905 return false; 1906 1907 if (in_value.IsDynamic()) 1908 return false; 1909 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1910 1911 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) 1912 { 1913 LanguageRuntime *runtime = GetLanguageRuntime (known_type); 1914 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1915 } 1916 1917 LanguageRuntime *cpp_runtime = GetLanguageRuntime (eLanguageTypeC_plus_plus); 1918 if (cpp_runtime && cpp_runtime->CouldHaveDynamicValue(in_value)) 1919 return true; 1920 1921 LanguageRuntime *objc_runtime = GetLanguageRuntime (eLanguageTypeObjC); 1922 return objc_runtime ? objc_runtime->CouldHaveDynamicValue(in_value) : false; 1923 } 1924 1925 void 1926 Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) 1927 { 1928 m_dynamic_checkers_ap.reset(dynamic_checkers); 1929 } 1930 1931 BreakpointSiteList & 1932 Process::GetBreakpointSiteList() 1933 { 1934 return m_breakpoint_site_list; 1935 } 1936 1937 const BreakpointSiteList & 1938 Process::GetBreakpointSiteList() const 1939 { 1940 return m_breakpoint_site_list; 1941 } 1942 1943 void 1944 Process::DisableAllBreakpointSites () 1945 { 1946 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1947 // bp_site->SetEnabled(true); 1948 DisableBreakpointSite(bp_site); 1949 }); 1950 } 1951 1952 Error 1953 Process::ClearBreakpointSiteByID (lldb::user_id_t break_id) 1954 { 1955 Error error (DisableBreakpointSiteByID (break_id)); 1956 1957 if (error.Success()) 1958 m_breakpoint_site_list.Remove(break_id); 1959 1960 return error; 1961 } 1962 1963 Error 1964 Process::DisableBreakpointSiteByID (lldb::user_id_t break_id) 1965 { 1966 Error error; 1967 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID (break_id); 1968 if (bp_site_sp) 1969 { 1970 if (bp_site_sp->IsEnabled()) 1971 error = DisableBreakpointSite (bp_site_sp.get()); 1972 } 1973 else 1974 { 1975 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, break_id); 1976 } 1977 1978 return error; 1979 } 1980 1981 Error 1982 Process::EnableBreakpointSiteByID (lldb::user_id_t break_id) 1983 { 1984 Error error; 1985 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID (break_id); 1986 if (bp_site_sp) 1987 { 1988 if (!bp_site_sp->IsEnabled()) 1989 error = EnableBreakpointSite (bp_site_sp.get()); 1990 } 1991 else 1992 { 1993 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, break_id); 1994 } 1995 return error; 1996 } 1997 1998 lldb::break_id_t 1999 Process::CreateBreakpointSite (const BreakpointLocationSP &owner, bool use_hardware) 2000 { 2001 addr_t load_addr = LLDB_INVALID_ADDRESS; 2002 2003 bool show_error = true; 2004 switch (GetState()) 2005 { 2006 case eStateInvalid: 2007 case eStateUnloaded: 2008 case eStateConnected: 2009 case eStateAttaching: 2010 case eStateLaunching: 2011 case eStateDetached: 2012 case eStateExited: 2013 show_error = false; 2014 break; 2015 2016 case eStateStopped: 2017 case eStateRunning: 2018 case eStateStepping: 2019 case eStateCrashed: 2020 case eStateSuspended: 2021 show_error = IsAlive(); 2022 break; 2023 } 2024 2025 // Reset the IsIndirect flag here, in case the location changes from 2026 // pointing to a indirect symbol to a regular symbol. 2027 owner->SetIsIndirect (false); 2028 2029 if (owner->ShouldResolveIndirectFunctions()) 2030 { 2031 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 2032 if (symbol && symbol->IsIndirect()) 2033 { 2034 Error error; 2035 Address symbol_address = symbol->GetAddress(); 2036 load_addr = ResolveIndirectFunction (&symbol_address, error); 2037 if (!error.Success() && show_error) 2038 { 2039 GetTarget().GetDebugger().GetErrorFile()->Printf ("warning: failed to resolve indirect function at 0x%" PRIx64 " for breakpoint %i.%i: %s\n", 2040 symbol->GetLoadAddress(&GetTarget()), 2041 owner->GetBreakpoint().GetID(), 2042 owner->GetID(), 2043 error.AsCString() ? error.AsCString() : "unknown error"); 2044 return LLDB_INVALID_BREAK_ID; 2045 } 2046 Address resolved_address(load_addr); 2047 load_addr = resolved_address.GetOpcodeLoadAddress (&GetTarget()); 2048 owner->SetIsIndirect(true); 2049 } 2050 else 2051 load_addr = owner->GetAddress().GetOpcodeLoadAddress (&GetTarget()); 2052 } 2053 else 2054 load_addr = owner->GetAddress().GetOpcodeLoadAddress (&GetTarget()); 2055 2056 if (load_addr != LLDB_INVALID_ADDRESS) 2057 { 2058 BreakpointSiteSP bp_site_sp; 2059 2060 // Look up this breakpoint site. If it exists, then add this new owner, otherwise 2061 // create a new breakpoint site and add it. 2062 2063 bp_site_sp = m_breakpoint_site_list.FindByAddress (load_addr); 2064 2065 if (bp_site_sp) 2066 { 2067 bp_site_sp->AddOwner (owner); 2068 owner->SetBreakpointSite (bp_site_sp); 2069 return bp_site_sp->GetID(); 2070 } 2071 else 2072 { 2073 bp_site_sp.reset (new BreakpointSite (&m_breakpoint_site_list, owner, load_addr, use_hardware)); 2074 if (bp_site_sp) 2075 { 2076 Error error = EnableBreakpointSite (bp_site_sp.get()); 2077 if (error.Success()) 2078 { 2079 owner->SetBreakpointSite (bp_site_sp); 2080 return m_breakpoint_site_list.Add (bp_site_sp); 2081 } 2082 else 2083 { 2084 if (show_error) 2085 { 2086 // Report error for setting breakpoint... 2087 GetTarget().GetDebugger().GetErrorFile()->Printf ("warning: failed to set breakpoint site at 0x%" PRIx64 " for breakpoint %i.%i: %s\n", 2088 load_addr, 2089 owner->GetBreakpoint().GetID(), 2090 owner->GetID(), 2091 error.AsCString() ? error.AsCString() : "unknown error"); 2092 } 2093 } 2094 } 2095 } 2096 } 2097 // We failed to enable the breakpoint 2098 return LLDB_INVALID_BREAK_ID; 2099 } 2100 2101 void 2102 Process::RemoveOwnerFromBreakpointSite (lldb::user_id_t owner_id, lldb::user_id_t owner_loc_id, BreakpointSiteSP &bp_site_sp) 2103 { 2104 uint32_t num_owners = bp_site_sp->RemoveOwner (owner_id, owner_loc_id); 2105 if (num_owners == 0) 2106 { 2107 // Don't try to disable the site if we don't have a live process anymore. 2108 if (IsAlive()) 2109 DisableBreakpointSite (bp_site_sp.get()); 2110 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 2111 } 2112 } 2113 2114 size_t 2115 Process::RemoveBreakpointOpcodesFromBuffer (addr_t bp_addr, size_t size, uint8_t *buf) const 2116 { 2117 size_t bytes_removed = 0; 2118 BreakpointSiteList bp_sites_in_range; 2119 2120 if (m_breakpoint_site_list.FindInRange (bp_addr, bp_addr + size, bp_sites_in_range)) 2121 { 2122 bp_sites_in_range.ForEach([bp_addr, size, buf, &bytes_removed](BreakpointSite *bp_site) -> void { 2123 if (bp_site->GetType() == BreakpointSite::eSoftware) 2124 { 2125 addr_t intersect_addr; 2126 size_t intersect_size; 2127 size_t opcode_offset; 2128 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, &intersect_size, &opcode_offset)) 2129 { 2130 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 2131 assert(bp_addr < intersect_addr + intersect_size && intersect_addr + intersect_size <= bp_addr + size); 2132 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 2133 size_t buf_offset = intersect_addr - bp_addr; 2134 ::memcpy(buf + buf_offset, bp_site->GetSavedOpcodeBytes() + opcode_offset, intersect_size); 2135 } 2136 } 2137 }); 2138 } 2139 return bytes_removed; 2140 } 2141 2142 size_t 2143 Process::GetSoftwareBreakpointTrapOpcode (BreakpointSite* bp_site) 2144 { 2145 PlatformSP platform_sp (GetTarget().GetPlatform()); 2146 if (platform_sp) 2147 return platform_sp->GetSoftwareBreakpointTrapOpcode (GetTarget(), bp_site); 2148 return 0; 2149 } 2150 2151 Error 2152 Process::EnableSoftwareBreakpoint (BreakpointSite *bp_site) 2153 { 2154 Error error; 2155 assert(bp_site != nullptr); 2156 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_BREAKPOINTS)); 2157 const addr_t bp_addr = bp_site->GetLoadAddress(); 2158 if (log) 2159 log->Printf ("Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, bp_site->GetID(), (uint64_t)bp_addr); 2160 if (bp_site->IsEnabled()) 2161 { 2162 if (log) 2163 log->Printf ("Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- already enabled", bp_site->GetID(), (uint64_t)bp_addr); 2164 return error; 2165 } 2166 2167 if (bp_addr == LLDB_INVALID_ADDRESS) 2168 { 2169 error.SetErrorString("BreakpointSite contains an invalid load address."); 2170 return error; 2171 } 2172 // Ask the lldb::Process subclass to fill in the correct software breakpoint 2173 // trap for the breakpoint site 2174 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 2175 2176 if (bp_opcode_size == 0) 2177 { 2178 error.SetErrorStringWithFormat ("Process::GetSoftwareBreakpointTrapOpcode() returned zero, unable to get breakpoint trap for address 0x%" PRIx64, bp_addr); 2179 } 2180 else 2181 { 2182 const uint8_t * const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 2183 2184 if (bp_opcode_bytes == nullptr) 2185 { 2186 error.SetErrorString ("BreakpointSite doesn't contain a valid breakpoint trap opcode."); 2187 return error; 2188 } 2189 2190 // Save the original opcode by reading it 2191 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, error) == bp_opcode_size) 2192 { 2193 // Write a software breakpoint in place of the original opcode 2194 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == bp_opcode_size) 2195 { 2196 uint8_t verify_bp_opcode_bytes[64]; 2197 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, error) == bp_opcode_size) 2198 { 2199 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, bp_opcode_size) == 0) 2200 { 2201 bp_site->SetEnabled(true); 2202 bp_site->SetType (BreakpointSite::eSoftware); 2203 if (log) 2204 log->Printf ("Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- SUCCESS", 2205 bp_site->GetID(), 2206 (uint64_t)bp_addr); 2207 } 2208 else 2209 error.SetErrorString("failed to verify the breakpoint trap in memory."); 2210 } 2211 else 2212 error.SetErrorString("Unable to read memory to verify breakpoint trap."); 2213 } 2214 else 2215 error.SetErrorString("Unable to write breakpoint trap to memory."); 2216 } 2217 else 2218 error.SetErrorString("Unable to read memory at breakpoint address."); 2219 } 2220 if (log && error.Fail()) 2221 log->Printf ("Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- FAILED: %s", 2222 bp_site->GetID(), 2223 (uint64_t)bp_addr, 2224 error.AsCString()); 2225 return error; 2226 } 2227 2228 Error 2229 Process::DisableSoftwareBreakpoint (BreakpointSite *bp_site) 2230 { 2231 Error error; 2232 assert(bp_site != nullptr); 2233 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_BREAKPOINTS)); 2234 addr_t bp_addr = bp_site->GetLoadAddress(); 2235 lldb::user_id_t breakID = bp_site->GetID(); 2236 if (log) 2237 log->Printf ("Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 ") addr = 0x%" PRIx64, breakID, (uint64_t)bp_addr); 2238 2239 if (bp_site->IsHardware()) 2240 { 2241 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 2242 } 2243 else if (bp_site->IsEnabled()) 2244 { 2245 const size_t break_op_size = bp_site->GetByteSize(); 2246 const uint8_t * const break_op = bp_site->GetTrapOpcodeBytes(); 2247 if (break_op_size > 0) 2248 { 2249 // Clear a software breakpoint instruction 2250 uint8_t curr_break_op[8]; 2251 assert (break_op_size <= sizeof(curr_break_op)); 2252 bool break_op_found = false; 2253 2254 // Read the breakpoint opcode 2255 if (DoReadMemory (bp_addr, curr_break_op, break_op_size, error) == break_op_size) 2256 { 2257 bool verify = false; 2258 // Make sure the breakpoint opcode exists at this address 2259 if (::memcmp (curr_break_op, break_op, break_op_size) == 0) 2260 { 2261 break_op_found = true; 2262 // We found a valid breakpoint opcode at this address, now restore 2263 // the saved opcode. 2264 if (DoWriteMemory (bp_addr, bp_site->GetSavedOpcodeBytes(), break_op_size, error) == break_op_size) 2265 { 2266 verify = true; 2267 } 2268 else 2269 error.SetErrorString("Memory write failed when restoring original opcode."); 2270 } 2271 else 2272 { 2273 error.SetErrorString("Original breakpoint trap is no longer in memory."); 2274 // Set verify to true and so we can check if the original opcode has already been restored 2275 verify = true; 2276 } 2277 2278 if (verify) 2279 { 2280 uint8_t verify_opcode[8]; 2281 assert (break_op_size < sizeof(verify_opcode)); 2282 // Verify that our original opcode made it back to the inferior 2283 if (DoReadMemory (bp_addr, verify_opcode, break_op_size, error) == break_op_size) 2284 { 2285 // compare the memory we just read with the original opcode 2286 if (::memcmp (bp_site->GetSavedOpcodeBytes(), verify_opcode, break_op_size) == 0) 2287 { 2288 // SUCCESS 2289 bp_site->SetEnabled(false); 2290 if (log) 2291 log->Printf ("Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- SUCCESS", bp_site->GetID(), (uint64_t)bp_addr); 2292 return error; 2293 } 2294 else 2295 { 2296 if (break_op_found) 2297 error.SetErrorString("Failed to restore original opcode."); 2298 } 2299 } 2300 else 2301 error.SetErrorString("Failed to read memory to verify that breakpoint trap was restored."); 2302 } 2303 } 2304 else 2305 error.SetErrorString("Unable to read memory that should contain the breakpoint trap."); 2306 } 2307 } 2308 else 2309 { 2310 if (log) 2311 log->Printf ("Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- already disabled", bp_site->GetID(), (uint64_t)bp_addr); 2312 return error; 2313 } 2314 2315 if (log) 2316 log->Printf ("Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- FAILED: %s", 2317 bp_site->GetID(), 2318 (uint64_t)bp_addr, 2319 error.AsCString()); 2320 return error; 2321 } 2322 2323 // Uncomment to verify memory caching works after making changes to caching code 2324 //#define VERIFY_MEMORY_READS 2325 2326 size_t 2327 Process::ReadMemory (addr_t addr, void *buf, size_t size, Error &error) 2328 { 2329 error.Clear(); 2330 if (!GetDisableMemoryCache()) 2331 { 2332 #if defined (VERIFY_MEMORY_READS) 2333 // Memory caching is enabled, with debug verification 2334 2335 if (buf && size) 2336 { 2337 // Uncomment the line below to make sure memory caching is working. 2338 // I ran this through the test suite and got no assertions, so I am 2339 // pretty confident this is working well. If any changes are made to 2340 // memory caching, uncomment the line below and test your changes! 2341 2342 // Verify all memory reads by using the cache first, then redundantly 2343 // reading the same memory from the inferior and comparing to make sure 2344 // everything is exactly the same. 2345 std::string verify_buf (size, '\0'); 2346 assert (verify_buf.size() == size); 2347 const size_t cache_bytes_read = m_memory_cache.Read (this, addr, buf, size, error); 2348 Error verify_error; 2349 const size_t verify_bytes_read = ReadMemoryFromInferior (addr, const_cast<char *>(verify_buf.data()), verify_buf.size(), verify_error); 2350 assert (cache_bytes_read == verify_bytes_read); 2351 assert (memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 2352 assert (verify_error.Success() == error.Success()); 2353 return cache_bytes_read; 2354 } 2355 return 0; 2356 #else // !defined(VERIFY_MEMORY_READS) 2357 // Memory caching is enabled, without debug verification 2358 2359 return m_memory_cache.Read (addr, buf, size, error); 2360 #endif // defined (VERIFY_MEMORY_READS) 2361 } 2362 else 2363 { 2364 // Memory caching is disabled 2365 2366 return ReadMemoryFromInferior (addr, buf, size, error); 2367 } 2368 } 2369 2370 size_t 2371 Process::ReadCStringFromMemory (addr_t addr, std::string &out_str, Error &error) 2372 { 2373 char buf[256]; 2374 out_str.clear(); 2375 addr_t curr_addr = addr; 2376 while (true) 2377 { 2378 size_t length = ReadCStringFromMemory (curr_addr, buf, sizeof(buf), error); 2379 if (length == 0) 2380 break; 2381 out_str.append(buf, length); 2382 // If we got "length - 1" bytes, we didn't get the whole C string, we 2383 // need to read some more characters 2384 if (length == sizeof(buf) - 1) 2385 curr_addr += length; 2386 else 2387 break; 2388 } 2389 return out_str.size(); 2390 } 2391 2392 size_t 2393 Process::ReadStringFromMemory (addr_t addr, char *dst, size_t max_bytes, Error &error, 2394 size_t type_width) 2395 { 2396 size_t total_bytes_read = 0; 2397 if (dst && max_bytes && type_width && max_bytes >= type_width) 2398 { 2399 // Ensure a null terminator independent of the number of bytes that is read. 2400 memset (dst, 0, max_bytes); 2401 size_t bytes_left = max_bytes - type_width; 2402 2403 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 2404 assert(sizeof(terminator) >= type_width && 2405 "Attempting to validate a string with more than 4 bytes per character!"); 2406 2407 addr_t curr_addr = addr; 2408 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2409 char *curr_dst = dst; 2410 2411 error.Clear(); 2412 while (bytes_left > 0 && error.Success()) 2413 { 2414 addr_t cache_line_bytes_left = cache_line_size - (curr_addr % cache_line_size); 2415 addr_t bytes_to_read = std::min<addr_t>(bytes_left, cache_line_bytes_left); 2416 size_t bytes_read = ReadMemory (curr_addr, curr_dst, bytes_to_read, error); 2417 2418 if (bytes_read == 0) 2419 break; 2420 2421 // Search for a null terminator of correct size and alignment in bytes_read 2422 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 2423 for (size_t i = aligned_start; i + type_width <= total_bytes_read + bytes_read; i += type_width) 2424 if (::memcmp(&dst[i], terminator, type_width) == 0) 2425 { 2426 error.Clear(); 2427 return i; 2428 } 2429 2430 total_bytes_read += bytes_read; 2431 curr_dst += bytes_read; 2432 curr_addr += bytes_read; 2433 bytes_left -= bytes_read; 2434 } 2435 } 2436 else 2437 { 2438 if (max_bytes) 2439 error.SetErrorString("invalid arguments"); 2440 } 2441 return total_bytes_read; 2442 } 2443 2444 // Deprecated in favor of ReadStringFromMemory which has wchar support and correct code to find 2445 // null terminators. 2446 size_t 2447 Process::ReadCStringFromMemory (addr_t addr, char *dst, size_t dst_max_len, Error &result_error) 2448 { 2449 size_t total_cstr_len = 0; 2450 if (dst && dst_max_len) 2451 { 2452 result_error.Clear(); 2453 // NULL out everything just to be safe 2454 memset (dst, 0, dst_max_len); 2455 Error error; 2456 addr_t curr_addr = addr; 2457 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2458 size_t bytes_left = dst_max_len - 1; 2459 char *curr_dst = dst; 2460 2461 while (bytes_left > 0) 2462 { 2463 addr_t cache_line_bytes_left = cache_line_size - (curr_addr % cache_line_size); 2464 addr_t bytes_to_read = std::min<addr_t>(bytes_left, cache_line_bytes_left); 2465 size_t bytes_read = ReadMemory (curr_addr, curr_dst, bytes_to_read, error); 2466 2467 if (bytes_read == 0) 2468 { 2469 result_error = error; 2470 dst[total_cstr_len] = '\0'; 2471 break; 2472 } 2473 const size_t len = strlen(curr_dst); 2474 2475 total_cstr_len += len; 2476 2477 if (len < bytes_to_read) 2478 break; 2479 2480 curr_dst += bytes_read; 2481 curr_addr += bytes_read; 2482 bytes_left -= bytes_read; 2483 } 2484 } 2485 else 2486 { 2487 if (dst == nullptr) 2488 result_error.SetErrorString("invalid arguments"); 2489 else 2490 result_error.Clear(); 2491 } 2492 return total_cstr_len; 2493 } 2494 2495 size_t 2496 Process::ReadMemoryFromInferior (addr_t addr, void *buf, size_t size, Error &error) 2497 { 2498 if (buf == nullptr || size == 0) 2499 return 0; 2500 2501 size_t bytes_read = 0; 2502 uint8_t *bytes = (uint8_t *)buf; 2503 2504 while (bytes_read < size) 2505 { 2506 const size_t curr_size = size - bytes_read; 2507 const size_t curr_bytes_read = DoReadMemory (addr + bytes_read, 2508 bytes + bytes_read, 2509 curr_size, 2510 error); 2511 bytes_read += curr_bytes_read; 2512 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2513 break; 2514 } 2515 2516 // Replace any software breakpoint opcodes that fall into this range back 2517 // into "buf" before we return 2518 if (bytes_read > 0) 2519 RemoveBreakpointOpcodesFromBuffer (addr, bytes_read, (uint8_t *)buf); 2520 return bytes_read; 2521 } 2522 2523 uint64_t 2524 Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, size_t integer_byte_size, uint64_t fail_value, 2525 Error &error) 2526 { 2527 Scalar scalar; 2528 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, error)) 2529 return scalar.ULongLong(fail_value); 2530 return fail_value; 2531 } 2532 2533 int64_t 2534 Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, size_t integer_byte_size, int64_t fail_value, Error &error) 2535 { 2536 Scalar scalar; 2537 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, error)) 2538 return scalar.SLongLong(fail_value); 2539 return fail_value; 2540 } 2541 2542 addr_t 2543 Process::ReadPointerFromMemory (lldb::addr_t vm_addr, Error &error) 2544 { 2545 Scalar scalar; 2546 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, error)) 2547 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2548 return LLDB_INVALID_ADDRESS; 2549 } 2550 2551 bool 2552 Process::WritePointerToMemory (lldb::addr_t vm_addr, 2553 lldb::addr_t ptr_value, 2554 Error &error) 2555 { 2556 Scalar scalar; 2557 const uint32_t addr_byte_size = GetAddressByteSize(); 2558 if (addr_byte_size <= 4) 2559 scalar = (uint32_t)ptr_value; 2560 else 2561 scalar = ptr_value; 2562 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == addr_byte_size; 2563 } 2564 2565 size_t 2566 Process::WriteMemoryPrivate (addr_t addr, const void *buf, size_t size, Error &error) 2567 { 2568 size_t bytes_written = 0; 2569 const uint8_t *bytes = (const uint8_t *)buf; 2570 2571 while (bytes_written < size) 2572 { 2573 const size_t curr_size = size - bytes_written; 2574 const size_t curr_bytes_written = DoWriteMemory (addr + bytes_written, 2575 bytes + bytes_written, 2576 curr_size, 2577 error); 2578 bytes_written += curr_bytes_written; 2579 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2580 break; 2581 } 2582 return bytes_written; 2583 } 2584 2585 size_t 2586 Process::WriteMemory (addr_t addr, const void *buf, size_t size, Error &error) 2587 { 2588 #if defined (ENABLE_MEMORY_CACHING) 2589 m_memory_cache.Flush (addr, size); 2590 #endif 2591 2592 if (buf == nullptr || size == 0) 2593 return 0; 2594 2595 m_mod_id.BumpMemoryID(); 2596 2597 // We need to write any data that would go where any current software traps 2598 // (enabled software breakpoints) any software traps (breakpoints) that we 2599 // may have placed in our tasks memory. 2600 2601 BreakpointSiteList bp_sites_in_range; 2602 2603 if (m_breakpoint_site_list.FindInRange (addr, addr + size, bp_sites_in_range)) 2604 { 2605 // No breakpoint sites overlap 2606 if (bp_sites_in_range.IsEmpty()) 2607 return WriteMemoryPrivate (addr, buf, size, error); 2608 else 2609 { 2610 const uint8_t *ubuf = (const uint8_t *)buf; 2611 uint64_t bytes_written = 0; 2612 2613 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, &error](BreakpointSite *bp) -> void { 2614 2615 if (error.Success()) 2616 { 2617 addr_t intersect_addr; 2618 size_t intersect_size; 2619 size_t opcode_offset; 2620 const bool intersects = bp->IntersectsRange(addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2621 UNUSED_IF_ASSERT_DISABLED(intersects); 2622 assert(intersects); 2623 assert(addr <= intersect_addr && intersect_addr < addr + size); 2624 assert(addr < intersect_addr + intersect_size && intersect_addr + intersect_size <= addr + size); 2625 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2626 2627 // Check for bytes before this breakpoint 2628 const addr_t curr_addr = addr + bytes_written; 2629 if (intersect_addr > curr_addr) 2630 { 2631 // There are some bytes before this breakpoint that we need to 2632 // just write to memory 2633 size_t curr_size = intersect_addr - curr_addr; 2634 size_t curr_bytes_written = WriteMemoryPrivate (curr_addr, 2635 ubuf + bytes_written, 2636 curr_size, 2637 error); 2638 bytes_written += curr_bytes_written; 2639 if (curr_bytes_written != curr_size) 2640 { 2641 // We weren't able to write all of the requested bytes, we 2642 // are done looping and will return the number of bytes that 2643 // we have written so far. 2644 if (error.Success()) 2645 error.SetErrorToGenericError(); 2646 } 2647 } 2648 // Now write any bytes that would cover up any software breakpoints 2649 // directly into the breakpoint opcode buffer 2650 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, intersect_size); 2651 bytes_written += intersect_size; 2652 } 2653 }); 2654 2655 if (bytes_written < size) 2656 WriteMemoryPrivate (addr + bytes_written, 2657 ubuf + bytes_written, 2658 size - bytes_written, 2659 error); 2660 } 2661 } 2662 else 2663 { 2664 return WriteMemoryPrivate (addr, buf, size, error); 2665 } 2666 2667 // Write any remaining bytes after the last breakpoint if we have any left 2668 return 0; //bytes_written; 2669 } 2670 2671 size_t 2672 Process::WriteScalarToMemory (addr_t addr, const Scalar &scalar, size_t byte_size, Error &error) 2673 { 2674 if (byte_size == UINT32_MAX) 2675 byte_size = scalar.GetByteSize(); 2676 if (byte_size > 0) 2677 { 2678 uint8_t buf[32]; 2679 const size_t mem_size = scalar.GetAsMemoryData (buf, byte_size, GetByteOrder(), error); 2680 if (mem_size > 0) 2681 return WriteMemory(addr, buf, mem_size, error); 2682 else 2683 error.SetErrorString ("failed to get scalar as memory data"); 2684 } 2685 else 2686 { 2687 error.SetErrorString ("invalid scalar value"); 2688 } 2689 return 0; 2690 } 2691 2692 size_t 2693 Process::ReadScalarIntegerFromMemory (addr_t addr, 2694 uint32_t byte_size, 2695 bool is_signed, 2696 Scalar &scalar, 2697 Error &error) 2698 { 2699 uint64_t uval = 0; 2700 if (byte_size == 0) 2701 { 2702 error.SetErrorString ("byte size is zero"); 2703 } 2704 else if (byte_size & (byte_size - 1)) 2705 { 2706 error.SetErrorStringWithFormat ("byte size %u is not a power of 2", byte_size); 2707 } 2708 else if (byte_size <= sizeof(uval)) 2709 { 2710 const size_t bytes_read = ReadMemory (addr, &uval, byte_size, error); 2711 if (bytes_read == byte_size) 2712 { 2713 DataExtractor data (&uval, sizeof(uval), GetByteOrder(), GetAddressByteSize()); 2714 lldb::offset_t offset = 0; 2715 if (byte_size <= 4) 2716 scalar = data.GetMaxU32 (&offset, byte_size); 2717 else 2718 scalar = data.GetMaxU64 (&offset, byte_size); 2719 if (is_signed) 2720 scalar.SignExtend(byte_size * 8); 2721 return bytes_read; 2722 } 2723 } 2724 else 2725 { 2726 error.SetErrorStringWithFormat ("byte size of %u is too large for integer scalar type", byte_size); 2727 } 2728 return 0; 2729 } 2730 2731 #define USE_ALLOCATE_MEMORY_CACHE 1 2732 addr_t 2733 Process::AllocateMemory(size_t size, uint32_t permissions, Error &error) 2734 { 2735 if (GetPrivateState() != eStateStopped) 2736 return LLDB_INVALID_ADDRESS; 2737 2738 #if defined (USE_ALLOCATE_MEMORY_CACHE) 2739 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2740 #else 2741 addr_t allocated_addr = DoAllocateMemory (size, permissions, error); 2742 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2743 if (log) 2744 log->Printf("Process::AllocateMemory(size=%" PRIu64 ", permissions=%s) => 0x%16.16" PRIx64 " (m_stop_id = %u m_memory_id = %u)", 2745 (uint64_t)size, 2746 GetPermissionsAsCString (permissions), 2747 (uint64_t)allocated_addr, 2748 m_mod_id.GetStopID(), 2749 m_mod_id.GetMemoryID()); 2750 return allocated_addr; 2751 #endif 2752 } 2753 2754 addr_t 2755 Process::CallocateMemory(size_t size, uint32_t permissions, Error &error) 2756 { 2757 addr_t return_addr = AllocateMemory(size, permissions, error); 2758 if (error.Success()) 2759 { 2760 std::string buffer(size, 0); 2761 WriteMemory(return_addr, buffer.c_str(), size, error); 2762 } 2763 return return_addr; 2764 } 2765 2766 bool 2767 Process::CanJIT () 2768 { 2769 if (m_can_jit == eCanJITDontKnow) 2770 { 2771 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2772 Error err; 2773 2774 uint64_t allocated_memory = AllocateMemory(8, 2775 ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2776 err); 2777 2778 if (err.Success()) 2779 { 2780 m_can_jit = eCanJITYes; 2781 if (log) 2782 log->Printf ("Process::%s pid %" PRIu64 " allocation test passed, CanJIT () is true", __FUNCTION__, GetID ()); 2783 } 2784 else 2785 { 2786 m_can_jit = eCanJITNo; 2787 if (log) 2788 log->Printf ("Process::%s pid %" PRIu64 " allocation test failed, CanJIT () is false: %s", __FUNCTION__, GetID (), err.AsCString ()); 2789 } 2790 2791 DeallocateMemory (allocated_memory); 2792 } 2793 2794 return m_can_jit == eCanJITYes; 2795 } 2796 2797 void 2798 Process::SetCanJIT (bool can_jit) 2799 { 2800 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2801 } 2802 2803 void 2804 Process::SetCanRunCode (bool can_run_code) 2805 { 2806 SetCanJIT(can_run_code); 2807 m_can_interpret_function_calls = can_run_code; 2808 } 2809 2810 Error 2811 Process::DeallocateMemory (addr_t ptr) 2812 { 2813 Error error; 2814 #if defined (USE_ALLOCATE_MEMORY_CACHE) 2815 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) 2816 { 2817 error.SetErrorStringWithFormat ("deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2818 } 2819 #else 2820 error = DoDeallocateMemory (ptr); 2821 2822 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2823 if (log) 2824 log->Printf("Process::DeallocateMemory(addr=0x%16.16" PRIx64 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2825 ptr, 2826 error.AsCString("SUCCESS"), 2827 m_mod_id.GetStopID(), 2828 m_mod_id.GetMemoryID()); 2829 #endif 2830 return error; 2831 } 2832 2833 ModuleSP 2834 Process::ReadModuleFromMemory (const FileSpec& file_spec, 2835 lldb::addr_t header_addr, 2836 size_t size_to_read) 2837 { 2838 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2839 if (log) 2840 { 2841 log->Printf ("Process::ReadModuleFromMemory reading %s binary from memory", file_spec.GetPath().c_str()); 2842 } 2843 ModuleSP module_sp (new Module (file_spec, ArchSpec())); 2844 if (module_sp) 2845 { 2846 Error error; 2847 ObjectFile *objfile = module_sp->GetMemoryObjectFile (shared_from_this(), header_addr, error, size_to_read); 2848 if (objfile) 2849 return module_sp; 2850 } 2851 return ModuleSP(); 2852 } 2853 2854 bool 2855 Process::GetLoadAddressPermissions (lldb::addr_t load_addr, uint32_t &permissions) 2856 { 2857 MemoryRegionInfo range_info; 2858 permissions = 0; 2859 Error error (GetMemoryRegionInfo (load_addr, range_info)); 2860 if (!error.Success()) 2861 return false; 2862 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow 2863 || range_info.GetWritable() == MemoryRegionInfo::eDontKnow 2864 || range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) 2865 { 2866 return false; 2867 } 2868 2869 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2870 permissions |= lldb::ePermissionsReadable; 2871 2872 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2873 permissions |= lldb::ePermissionsWritable; 2874 2875 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2876 permissions |= lldb::ePermissionsExecutable; 2877 2878 return true; 2879 } 2880 2881 Error 2882 Process::EnableWatchpoint (Watchpoint *watchpoint, bool notify) 2883 { 2884 Error error; 2885 error.SetErrorString("watchpoints are not supported"); 2886 return error; 2887 } 2888 2889 Error 2890 Process::DisableWatchpoint (Watchpoint *watchpoint, bool notify) 2891 { 2892 Error error; 2893 error.SetErrorString("watchpoints are not supported"); 2894 return error; 2895 } 2896 2897 StateType 2898 Process::WaitForProcessStopPrivate(const std::chrono::microseconds &timeout, EventSP &event_sp) 2899 { 2900 StateType state; 2901 // Now wait for the process to launch and return control to us, and then 2902 // call DidLaunch: 2903 while (true) 2904 { 2905 event_sp.reset(); 2906 state = WaitForStateChangedEventsPrivate (timeout, event_sp); 2907 2908 if (StateIsStoppedState(state, false)) 2909 break; 2910 2911 // If state is invalid, then we timed out 2912 if (state == eStateInvalid) 2913 break; 2914 2915 if (event_sp) 2916 HandlePrivateEvent (event_sp); 2917 } 2918 return state; 2919 } 2920 2921 void 2922 Process::LoadOperatingSystemPlugin(bool flush) 2923 { 2924 if (flush) 2925 m_thread_list.Clear(); 2926 m_os_ap.reset(OperatingSystem::FindPlugin(this, nullptr)); 2927 if (flush) 2928 Flush(); 2929 } 2930 2931 Error 2932 Process::Launch (ProcessLaunchInfo &launch_info) 2933 { 2934 Error error; 2935 m_abi_sp.reset(); 2936 m_dyld_ap.reset(); 2937 m_jit_loaders_ap.reset(); 2938 m_system_runtime_ap.reset(); 2939 m_os_ap.reset(); 2940 m_process_input_reader.reset(); 2941 m_stop_info_override_callback = nullptr; 2942 2943 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2944 if (exe_module) 2945 { 2946 char local_exec_file_path[PATH_MAX]; 2947 char platform_exec_file_path[PATH_MAX]; 2948 exe_module->GetFileSpec().GetPath(local_exec_file_path, sizeof(local_exec_file_path)); 2949 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, sizeof(platform_exec_file_path)); 2950 if (exe_module->GetFileSpec().Exists()) 2951 { 2952 // Install anything that might need to be installed prior to launching. 2953 // For host systems, this will do nothing, but if we are connected to a 2954 // remote platform it will install any needed binaries 2955 error = GetTarget().Install(&launch_info); 2956 if (error.Fail()) 2957 return error; 2958 2959 if (PrivateStateThreadIsValid ()) 2960 PausePrivateStateThread (); 2961 2962 error = WillLaunch (exe_module); 2963 if (error.Success()) 2964 { 2965 const bool restarted = false; 2966 SetPublicState (eStateLaunching, restarted); 2967 m_should_detach = false; 2968 2969 if (m_public_run_lock.TrySetRunning()) 2970 { 2971 // Now launch using these arguments. 2972 error = DoLaunch (exe_module, launch_info); 2973 } 2974 else 2975 { 2976 // This shouldn't happen 2977 error.SetErrorString("failed to acquire process run lock"); 2978 } 2979 2980 if (error.Fail()) 2981 { 2982 if (GetID() != LLDB_INVALID_PROCESS_ID) 2983 { 2984 SetID (LLDB_INVALID_PROCESS_ID); 2985 const char *error_string = error.AsCString(); 2986 if (error_string == nullptr) 2987 error_string = "launch failed"; 2988 SetExitStatus (-1, error_string); 2989 } 2990 } 2991 else 2992 { 2993 EventSP event_sp; 2994 StateType state = WaitForProcessStopPrivate(std::chrono::seconds(10), event_sp); 2995 2996 if (state == eStateInvalid || !event_sp) 2997 { 2998 // We were able to launch the process, but we failed to 2999 // catch the initial stop. 3000 error.SetErrorString ("failed to catch stop after launch"); 3001 SetExitStatus (0, "failed to catch stop after launch"); 3002 Destroy(false); 3003 } 3004 else if (state == eStateStopped || state == eStateCrashed) 3005 { 3006 DidLaunch (); 3007 3008 DynamicLoader *dyld = GetDynamicLoader (); 3009 if (dyld) 3010 dyld->DidLaunch(); 3011 3012 GetJITLoaders().DidLaunch(); 3013 3014 SystemRuntime *system_runtime = GetSystemRuntime (); 3015 if (system_runtime) 3016 system_runtime->DidLaunch(); 3017 3018 LoadOperatingSystemPlugin(false); 3019 3020 // Note, the stop event was consumed above, but not handled. This was done 3021 // to give DidLaunch a chance to run. The target is either stopped or crashed. 3022 // Directly set the state. This is done to prevent a stop message with a bunch 3023 // of spurious output on thread status, as well as not pop a ProcessIOHandler. 3024 SetPublicState(state, false); 3025 3026 if (PrivateStateThreadIsValid ()) 3027 ResumePrivateStateThread (); 3028 else 3029 StartPrivateStateThread (); 3030 3031 m_stop_info_override_callback = GetTarget().GetArchitecture().GetStopInfoOverrideCallback(); 3032 3033 // Target was stopped at entry as was intended. Need to notify the listeners 3034 // about it. 3035 if (state == eStateStopped && launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 3036 HandlePrivateEvent(event_sp); 3037 } 3038 else if (state == eStateExited) 3039 { 3040 // We exited while trying to launch somehow. Don't call DidLaunch as that's 3041 // not likely to work, and return an invalid pid. 3042 HandlePrivateEvent (event_sp); 3043 } 3044 } 3045 } 3046 } 3047 else 3048 { 3049 error.SetErrorStringWithFormat("file doesn't exist: '%s'", local_exec_file_path); 3050 } 3051 } 3052 return error; 3053 } 3054 3055 Error 3056 Process::LoadCore () 3057 { 3058 Error error = DoLoadCore(); 3059 if (error.Success()) 3060 { 3061 ListenerSP listener_sp (Listener::MakeListener("lldb.process.load_core_listener")); 3062 HijackProcessEvents(listener_sp); 3063 3064 if (PrivateStateThreadIsValid ()) 3065 ResumePrivateStateThread (); 3066 else 3067 StartPrivateStateThread (); 3068 3069 DynamicLoader *dyld = GetDynamicLoader (); 3070 if (dyld) 3071 dyld->DidAttach(); 3072 3073 GetJITLoaders().DidAttach(); 3074 3075 SystemRuntime *system_runtime = GetSystemRuntime (); 3076 if (system_runtime) 3077 system_runtime->DidAttach(); 3078 3079 m_os_ap.reset(OperatingSystem::FindPlugin(this, nullptr)); 3080 // We successfully loaded a core file, now pretend we stopped so we can 3081 // show all of the threads in the core file and explore the crashed 3082 // state. 3083 SetPrivateState (eStateStopped); 3084 3085 // Wait indefinitely for a stopped event since we just posted one above... 3086 lldb::EventSP event_sp; 3087 listener_sp->WaitForEvent(std::chrono::microseconds(0), event_sp); 3088 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 3089 3090 if (!StateIsStoppedState (state, false)) 3091 { 3092 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3093 if (log) 3094 log->Printf("Process::Halt() failed to stop, state is: %s", StateAsCString(state)); 3095 error.SetErrorString ("Did not get stopped event after loading the core file."); 3096 } 3097 RestoreProcessEvents (); 3098 } 3099 return error; 3100 } 3101 3102 DynamicLoader * 3103 Process::GetDynamicLoader () 3104 { 3105 if (!m_dyld_ap) 3106 m_dyld_ap.reset(DynamicLoader::FindPlugin(this, nullptr)); 3107 return m_dyld_ap.get(); 3108 } 3109 3110 const lldb::DataBufferSP 3111 Process::GetAuxvData() 3112 { 3113 return DataBufferSP (); 3114 } 3115 3116 JITLoaderList & 3117 Process::GetJITLoaders () 3118 { 3119 if (!m_jit_loaders_ap) 3120 { 3121 m_jit_loaders_ap.reset(new JITLoaderList()); 3122 JITLoader::LoadPlugins(this, *m_jit_loaders_ap); 3123 } 3124 return *m_jit_loaders_ap; 3125 } 3126 3127 SystemRuntime * 3128 Process::GetSystemRuntime () 3129 { 3130 if (!m_system_runtime_ap) 3131 m_system_runtime_ap.reset(SystemRuntime::FindPlugin(this)); 3132 return m_system_runtime_ap.get(); 3133 } 3134 3135 Process::AttachCompletionHandler::AttachCompletionHandler (Process *process, uint32_t exec_count) : 3136 NextEventAction (process), 3137 m_exec_count (exec_count) 3138 { 3139 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3140 if (log) 3141 log->Printf ("Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, __FUNCTION__, static_cast<void*>(process), exec_count); 3142 } 3143 3144 Process::NextEventAction::EventActionResult 3145 Process::AttachCompletionHandler::PerformAction (lldb::EventSP &event_sp) 3146 { 3147 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3148 3149 StateType state = ProcessEventData::GetStateFromEvent (event_sp.get()); 3150 if (log) 3151 log->Printf ("Process::AttachCompletionHandler::%s called with state %s (%d)", __FUNCTION__, StateAsCString(state), static_cast<int> (state)); 3152 3153 switch (state) 3154 { 3155 case eStateAttaching: 3156 return eEventActionSuccess; 3157 3158 case eStateRunning: 3159 case eStateConnected: 3160 return eEventActionRetry; 3161 3162 case eStateStopped: 3163 case eStateCrashed: 3164 // During attach, prior to sending the eStateStopped event, 3165 // lldb_private::Process subclasses must set the new process ID. 3166 assert (m_process->GetID() != LLDB_INVALID_PROCESS_ID); 3167 // We don't want these events to be reported, so go set the ShouldReportStop here: 3168 m_process->GetThreadList().SetShouldReportStop (eVoteNo); 3169 3170 if (m_exec_count > 0) 3171 { 3172 --m_exec_count; 3173 3174 if (log) 3175 log->Printf ("Process::AttachCompletionHandler::%s state %s: reduced remaining exec count to %" PRIu32 ", requesting resume", __FUNCTION__, StateAsCString(state), m_exec_count); 3176 3177 RequestResume(); 3178 return eEventActionRetry; 3179 } 3180 else 3181 { 3182 if (log) 3183 log->Printf ("Process::AttachCompletionHandler::%s state %s: no more execs expected to start, continuing with attach", __FUNCTION__, StateAsCString(state)); 3184 3185 m_process->CompleteAttach (); 3186 return eEventActionSuccess; 3187 } 3188 break; 3189 3190 default: 3191 case eStateExited: 3192 case eStateInvalid: 3193 break; 3194 } 3195 3196 m_exit_string.assign ("No valid Process"); 3197 return eEventActionExit; 3198 } 3199 3200 Process::NextEventAction::EventActionResult 3201 Process::AttachCompletionHandler::HandleBeingInterrupted() 3202 { 3203 return eEventActionSuccess; 3204 } 3205 3206 const char * 3207 Process::AttachCompletionHandler::GetExitString () 3208 { 3209 return m_exit_string.c_str(); 3210 } 3211 3212 ListenerSP 3213 ProcessAttachInfo::GetListenerForProcess (Debugger &debugger) 3214 { 3215 if (m_listener_sp) 3216 return m_listener_sp; 3217 else 3218 return debugger.GetListener(); 3219 } 3220 3221 Error 3222 Process::Attach (ProcessAttachInfo &attach_info) 3223 { 3224 m_abi_sp.reset(); 3225 m_process_input_reader.reset(); 3226 m_dyld_ap.reset(); 3227 m_jit_loaders_ap.reset(); 3228 m_system_runtime_ap.reset(); 3229 m_os_ap.reset(); 3230 m_stop_info_override_callback = nullptr; 3231 3232 lldb::pid_t attach_pid = attach_info.GetProcessID(); 3233 Error error; 3234 if (attach_pid == LLDB_INVALID_PROCESS_ID) 3235 { 3236 char process_name[PATH_MAX]; 3237 3238 if (attach_info.GetExecutableFile().GetPath (process_name, sizeof(process_name))) 3239 { 3240 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 3241 3242 if (wait_for_launch) 3243 { 3244 error = WillAttachToProcessWithName(process_name, wait_for_launch); 3245 if (error.Success()) 3246 { 3247 if (m_public_run_lock.TrySetRunning()) 3248 { 3249 m_should_detach = true; 3250 const bool restarted = false; 3251 SetPublicState (eStateAttaching, restarted); 3252 // Now attach using these arguments. 3253 error = DoAttachToProcessWithName (process_name, attach_info); 3254 } 3255 else 3256 { 3257 // This shouldn't happen 3258 error.SetErrorString("failed to acquire process run lock"); 3259 } 3260 3261 if (error.Fail()) 3262 { 3263 if (GetID() != LLDB_INVALID_PROCESS_ID) 3264 { 3265 SetID (LLDB_INVALID_PROCESS_ID); 3266 if (error.AsCString() == nullptr) 3267 error.SetErrorString("attach failed"); 3268 3269 SetExitStatus(-1, error.AsCString()); 3270 } 3271 } 3272 else 3273 { 3274 SetNextEventAction(new Process::AttachCompletionHandler(this, attach_info.GetResumeCount())); 3275 StartPrivateStateThread(); 3276 } 3277 return error; 3278 } 3279 } 3280 else 3281 { 3282 ProcessInstanceInfoList process_infos; 3283 PlatformSP platform_sp (GetTarget().GetPlatform ()); 3284 3285 if (platform_sp) 3286 { 3287 ProcessInstanceInfoMatch match_info; 3288 match_info.GetProcessInfo() = attach_info; 3289 match_info.SetNameMatchType (eNameMatchEquals); 3290 platform_sp->FindProcesses (match_info, process_infos); 3291 const uint32_t num_matches = process_infos.GetSize(); 3292 if (num_matches == 1) 3293 { 3294 attach_pid = process_infos.GetProcessIDAtIndex(0); 3295 // Fall through and attach using the above process ID 3296 } 3297 else 3298 { 3299 match_info.GetProcessInfo().GetExecutableFile().GetPath (process_name, sizeof(process_name)); 3300 if (num_matches > 1) 3301 { 3302 StreamString s; 3303 ProcessInstanceInfo::DumpTableHeader (s, platform_sp.get(), true, false); 3304 for (size_t i = 0; i < num_matches; i++) 3305 { 3306 process_infos.GetProcessInfoAtIndex(i).DumpAsTableRow(s, platform_sp.get(), true, false); 3307 } 3308 error.SetErrorStringWithFormat ("more than one process named %s:\n%s", 3309 process_name, 3310 s.GetData()); 3311 } 3312 else 3313 error.SetErrorStringWithFormat ("could not find a process named %s", process_name); 3314 } 3315 } 3316 else 3317 { 3318 error.SetErrorString ("invalid platform, can't find processes by name"); 3319 return error; 3320 } 3321 } 3322 } 3323 else 3324 { 3325 error.SetErrorString ("invalid process name"); 3326 } 3327 } 3328 3329 if (attach_pid != LLDB_INVALID_PROCESS_ID) 3330 { 3331 error = WillAttachToProcessWithID(attach_pid); 3332 if (error.Success()) 3333 { 3334 3335 if (m_public_run_lock.TrySetRunning()) 3336 { 3337 // Now attach using these arguments. 3338 m_should_detach = true; 3339 const bool restarted = false; 3340 SetPublicState (eStateAttaching, restarted); 3341 error = DoAttachToProcessWithID (attach_pid, attach_info); 3342 } 3343 else 3344 { 3345 // This shouldn't happen 3346 error.SetErrorString("failed to acquire process run lock"); 3347 } 3348 3349 if (error.Success()) 3350 { 3351 SetNextEventAction(new Process::AttachCompletionHandler(this, attach_info.GetResumeCount())); 3352 StartPrivateStateThread(); 3353 } 3354 else 3355 { 3356 if (GetID() != LLDB_INVALID_PROCESS_ID) 3357 SetID (LLDB_INVALID_PROCESS_ID); 3358 3359 const char *error_string = error.AsCString(); 3360 if (error_string == nullptr) 3361 error_string = "attach failed"; 3362 3363 SetExitStatus(-1, error_string); 3364 } 3365 } 3366 } 3367 return error; 3368 } 3369 3370 void 3371 Process::CompleteAttach () 3372 { 3373 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_TARGET)); 3374 if (log) 3375 log->Printf ("Process::%s()", __FUNCTION__); 3376 3377 // Let the process subclass figure out at much as it can about the process 3378 // before we go looking for a dynamic loader plug-in. 3379 ArchSpec process_arch; 3380 DidAttach(process_arch); 3381 3382 if (process_arch.IsValid()) 3383 { 3384 GetTarget().SetArchitecture(process_arch); 3385 if (log) 3386 { 3387 const char *triple_str = process_arch.GetTriple().getTriple().c_str (); 3388 log->Printf ("Process::%s replacing process architecture with DidAttach() architecture: %s", 3389 __FUNCTION__, 3390 triple_str ? triple_str : "<null>"); 3391 } 3392 } 3393 3394 // We just attached. If we have a platform, ask it for the process architecture, and if it isn't 3395 // the same as the one we've already set, switch architectures. 3396 PlatformSP platform_sp (GetTarget().GetPlatform ()); 3397 assert(platform_sp); 3398 if (platform_sp) 3399 { 3400 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 3401 if (target_arch.IsValid() && !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) 3402 { 3403 ArchSpec platform_arch; 3404 platform_sp = platform_sp->GetPlatformForArchitecture (target_arch, &platform_arch); 3405 if (platform_sp) 3406 { 3407 GetTarget().SetPlatform (platform_sp); 3408 GetTarget().SetArchitecture(platform_arch); 3409 if (log) 3410 log->Printf ("Process::%s switching platform to %s and architecture to %s based on info from attach", __FUNCTION__, platform_sp->GetName().AsCString (""), platform_arch.GetTriple().getTriple().c_str ()); 3411 } 3412 } 3413 else if (!process_arch.IsValid()) 3414 { 3415 ProcessInstanceInfo process_info; 3416 GetProcessInfo(process_info); 3417 const ArchSpec &process_arch = process_info.GetArchitecture(); 3418 if (process_arch.IsValid() && !GetTarget().GetArchitecture().IsExactMatch(process_arch)) 3419 { 3420 GetTarget().SetArchitecture (process_arch); 3421 if (log) 3422 log->Printf ("Process::%s switching architecture to %s based on info the platform retrieved for pid %" PRIu64, __FUNCTION__, process_arch.GetTriple().getTriple().c_str (), GetID ()); 3423 } 3424 } 3425 } 3426 3427 // We have completed the attach, now it is time to find the dynamic loader 3428 // plug-in 3429 DynamicLoader *dyld = GetDynamicLoader (); 3430 if (dyld) 3431 { 3432 dyld->DidAttach(); 3433 if (log) 3434 { 3435 ModuleSP exe_module_sp = GetTarget().GetExecutableModule (); 3436 log->Printf ("Process::%s after DynamicLoader::DidAttach(), target executable is %s (using %s plugin)", 3437 __FUNCTION__, 3438 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str () : "<none>", 3439 dyld->GetPluginName().AsCString ("<unnamed>")); 3440 } 3441 } 3442 3443 GetJITLoaders().DidAttach(); 3444 3445 SystemRuntime *system_runtime = GetSystemRuntime (); 3446 if (system_runtime) 3447 { 3448 system_runtime->DidAttach(); 3449 if (log) 3450 { 3451 ModuleSP exe_module_sp = GetTarget().GetExecutableModule (); 3452 log->Printf ("Process::%s after SystemRuntime::DidAttach(), target executable is %s (using %s plugin)", 3453 __FUNCTION__, 3454 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str () : "<none>", 3455 system_runtime->GetPluginName().AsCString("<unnamed>")); 3456 } 3457 } 3458 3459 m_os_ap.reset(OperatingSystem::FindPlugin(this, nullptr)); 3460 // Figure out which one is the executable, and set that in our target: 3461 const ModuleList &target_modules = GetTarget().GetImages(); 3462 std::lock_guard<std::recursive_mutex> guard(target_modules.GetMutex()); 3463 size_t num_modules = target_modules.GetSize(); 3464 ModuleSP new_executable_module_sp; 3465 3466 for (size_t i = 0; i < num_modules; i++) 3467 { 3468 ModuleSP module_sp (target_modules.GetModuleAtIndexUnlocked (i)); 3469 if (module_sp && module_sp->IsExecutable()) 3470 { 3471 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 3472 new_executable_module_sp = module_sp; 3473 break; 3474 } 3475 } 3476 if (new_executable_module_sp) 3477 { 3478 GetTarget().SetExecutableModule (new_executable_module_sp, false); 3479 if (log) 3480 { 3481 ModuleSP exe_module_sp = GetTarget().GetExecutableModule (); 3482 log->Printf ("Process::%s after looping through modules, target executable is %s", 3483 __FUNCTION__, 3484 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str () : "<none>"); 3485 } 3486 } 3487 3488 m_stop_info_override_callback = process_arch.GetStopInfoOverrideCallback(); 3489 } 3490 3491 Error 3492 Process::ConnectRemote (Stream *strm, const char *remote_url) 3493 { 3494 m_abi_sp.reset(); 3495 m_process_input_reader.reset(); 3496 3497 // Find the process and its architecture. Make sure it matches the architecture 3498 // of the current Target, and if not adjust it. 3499 3500 Error error (DoConnectRemote (strm, remote_url)); 3501 if (error.Success()) 3502 { 3503 if (GetID() != LLDB_INVALID_PROCESS_ID) 3504 { 3505 EventSP event_sp; 3506 StateType state = WaitForProcessStopPrivate(std::chrono::microseconds(0), event_sp); 3507 3508 if (state == eStateStopped || state == eStateCrashed) 3509 { 3510 // If we attached and actually have a process on the other end, then 3511 // this ended up being the equivalent of an attach. 3512 CompleteAttach (); 3513 3514 // This delays passing the stopped event to listeners till 3515 // CompleteAttach gets a chance to complete... 3516 HandlePrivateEvent (event_sp); 3517 } 3518 } 3519 3520 if (PrivateStateThreadIsValid ()) 3521 ResumePrivateStateThread (); 3522 else 3523 StartPrivateStateThread (); 3524 } 3525 return error; 3526 } 3527 3528 Error 3529 Process::PrivateResume () 3530 { 3531 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS|LIBLLDB_LOG_STEP)); 3532 if (log) 3533 log->Printf("Process::PrivateResume() m_stop_id = %u, public state: %s private state: %s", 3534 m_mod_id.GetStopID(), 3535 StateAsCString(m_public_state.GetValue()), 3536 StateAsCString(m_private_state.GetValue())); 3537 3538 Error error (WillResume()); 3539 // Tell the process it is about to resume before the thread list 3540 if (error.Success()) 3541 { 3542 // Now let the thread list know we are about to resume so it 3543 // can let all of our threads know that they are about to be 3544 // resumed. Threads will each be called with 3545 // Thread::WillResume(StateType) where StateType contains the state 3546 // that they are supposed to have when the process is resumed 3547 // (suspended/running/stepping). Threads should also check 3548 // their resume signal in lldb::Thread::GetResumeSignal() 3549 // to see if they are supposed to start back up with a signal. 3550 if (m_thread_list.WillResume()) 3551 { 3552 // Last thing, do the PreResumeActions. 3553 if (!RunPreResumeActions()) 3554 { 3555 error.SetErrorStringWithFormat ("Process::PrivateResume PreResumeActions failed, not resuming."); 3556 } 3557 else 3558 { 3559 m_mod_id.BumpResumeID(); 3560 error = DoResume(); 3561 if (error.Success()) 3562 { 3563 DidResume(); 3564 m_thread_list.DidResume(); 3565 if (log) 3566 log->Printf ("Process thinks the process has resumed."); 3567 } 3568 } 3569 } 3570 else 3571 { 3572 // Somebody wanted to run without running (e.g. we were faking a step from one frame of a set of inlined 3573 // frames that share the same PC to another.) So generate a continue & a stopped event, 3574 // and let the world handle them. 3575 if (log) 3576 log->Printf ("Process::PrivateResume() asked to simulate a start & stop."); 3577 3578 SetPrivateState(eStateRunning); 3579 SetPrivateState(eStateStopped); 3580 } 3581 } 3582 else if (log) 3583 log->Printf ("Process::PrivateResume() got an error \"%s\".", error.AsCString("<unknown error>")); 3584 return error; 3585 } 3586 3587 Error 3588 Process::Halt (bool clear_thread_plans, bool use_run_lock) 3589 { 3590 if (! StateIsRunningState(m_public_state.GetValue())) 3591 return Error("Process is not running."); 3592 3593 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if 3594 // in case it was already set and some thread plan logic calls halt on its 3595 // own. 3596 m_clear_thread_plans_on_stop |= clear_thread_plans; 3597 3598 ListenerSP halt_listener_sp (Listener::MakeListener("lldb.process.halt_listener")); 3599 HijackProcessEvents(halt_listener_sp); 3600 3601 EventSP event_sp; 3602 3603 SendAsyncInterrupt(); 3604 3605 if (m_public_state.GetValue() == eStateAttaching) 3606 { 3607 // Don't hijack and eat the eStateExited as the code that was doing 3608 // the attach will be waiting for this event... 3609 RestoreProcessEvents(); 3610 SetExitStatus(SIGKILL, "Cancelled async attach."); 3611 Destroy (false); 3612 return Error(); 3613 } 3614 3615 // Wait for 10 second for the process to stop. 3616 StateType state = 3617 WaitForProcessToStop(std::chrono::seconds(10), &event_sp, true, halt_listener_sp, nullptr, use_run_lock); 3618 RestoreProcessEvents(); 3619 3620 if (state == eStateInvalid || ! event_sp) 3621 { 3622 // We timed out and didn't get a stop event... 3623 return Error("Halt timed out. State = %s", StateAsCString(GetState())); 3624 } 3625 3626 BroadcastEvent(event_sp); 3627 3628 return Error(); 3629 } 3630 3631 Error 3632 Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) 3633 { 3634 Error error; 3635 3636 // Check both the public & private states here. If we're hung evaluating an expression, for instance, then 3637 // the public state will be stopped, but we still need to interrupt. 3638 if (m_public_state.GetValue() == eStateRunning || m_private_state.GetValue() == eStateRunning) 3639 { 3640 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3641 if (log) 3642 log->Printf("Process::%s() About to stop.", __FUNCTION__); 3643 3644 ListenerSP listener_sp (Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3645 HijackProcessEvents(listener_sp); 3646 3647 SendAsyncInterrupt(); 3648 3649 // Consume the interrupt event. 3650 StateType state = WaitForProcessToStop(std::chrono::seconds(10), &exit_event_sp, true, listener_sp); 3651 3652 RestoreProcessEvents(); 3653 3654 // If the process exited while we were waiting for it to stop, put the exited event into 3655 // the shared pointer passed in and return. Our caller doesn't need to do anything else, since 3656 // they don't have a process anymore... 3657 3658 if (state == eStateExited || m_private_state.GetValue() == eStateExited) 3659 { 3660 if (log) 3661 log->Printf("Process::%s() Process exited while waiting to stop.", __FUNCTION__); 3662 return error; 3663 } 3664 else 3665 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3666 3667 if (state != eStateStopped) 3668 { 3669 if (log) 3670 log->Printf("Process::%s() failed to stop, state is: %s", __FUNCTION__, StateAsCString(state)); 3671 // If we really couldn't stop the process then we should just error out here, but if the 3672 // lower levels just bobbled sending the event and we really are stopped, then continue on. 3673 StateType private_state = m_private_state.GetValue(); 3674 if (private_state != eStateStopped) 3675 { 3676 return Error("Attempt to stop the target in order to detach timed out. State = %s", StateAsCString(GetState())); 3677 } 3678 } 3679 } 3680 return error; 3681 } 3682 3683 Error 3684 Process::Detach (bool keep_stopped) 3685 { 3686 EventSP exit_event_sp; 3687 Error error; 3688 m_destroy_in_process = true; 3689 3690 error = WillDetach(); 3691 3692 if (error.Success()) 3693 { 3694 if (DetachRequiresHalt()) 3695 { 3696 error = StopForDestroyOrDetach (exit_event_sp); 3697 if (!error.Success()) 3698 { 3699 m_destroy_in_process = false; 3700 return error; 3701 } 3702 else if (exit_event_sp) 3703 { 3704 // We shouldn't need to do anything else here. There's no process left to detach from... 3705 StopPrivateStateThread(); 3706 m_destroy_in_process = false; 3707 return error; 3708 } 3709 } 3710 3711 m_thread_list.DiscardThreadPlans(); 3712 DisableAllBreakpointSites(); 3713 3714 error = DoDetach(keep_stopped); 3715 if (error.Success()) 3716 { 3717 DidDetach(); 3718 StopPrivateStateThread(); 3719 } 3720 else 3721 { 3722 return error; 3723 } 3724 } 3725 m_destroy_in_process = false; 3726 3727 // If we exited when we were waiting for a process to stop, then 3728 // forward the event here so we don't lose the event 3729 if (exit_event_sp) 3730 { 3731 // Directly broadcast our exited event because we shut down our 3732 // private state thread above 3733 BroadcastEvent(exit_event_sp); 3734 } 3735 3736 // If we have been interrupted (to kill us) in the middle of running, we may not end up propagating 3737 // the last events through the event system, in which case we might strand the write lock. Unlock 3738 // it here so when we do to tear down the process we don't get an error destroying the lock. 3739 3740 m_public_run_lock.SetStopped(); 3741 return error; 3742 } 3743 3744 Error 3745 Process::Destroy (bool force_kill) 3746 { 3747 3748 // Tell ourselves we are in the process of destroying the process, so that we don't do any unnecessary work 3749 // that might hinder the destruction. Remember to set this back to false when we are done. That way if the attempt 3750 // failed and the process stays around for some reason it won't be in a confused state. 3751 3752 if (force_kill) 3753 m_should_detach = false; 3754 3755 if (GetShouldDetach()) 3756 { 3757 // FIXME: This will have to be a process setting: 3758 bool keep_stopped = false; 3759 Detach(keep_stopped); 3760 } 3761 3762 m_destroy_in_process = true; 3763 3764 Error error (WillDestroy()); 3765 if (error.Success()) 3766 { 3767 EventSP exit_event_sp; 3768 if (DestroyRequiresHalt()) 3769 { 3770 error = StopForDestroyOrDetach(exit_event_sp); 3771 } 3772 3773 if (m_public_state.GetValue() != eStateRunning) 3774 { 3775 // Ditch all thread plans, and remove all our breakpoints: in case we have to restart the target to 3776 // kill it, we don't want it hitting a breakpoint... 3777 // Only do this if we've stopped, however, since if we didn't manage to halt it above, then 3778 // we're not going to have much luck doing this now. 3779 m_thread_list.DiscardThreadPlans(); 3780 DisableAllBreakpointSites(); 3781 } 3782 3783 error = DoDestroy(); 3784 if (error.Success()) 3785 { 3786 DidDestroy(); 3787 StopPrivateStateThread(); 3788 } 3789 m_stdio_communication.Disconnect(); 3790 m_stdio_communication.StopReadThread(); 3791 m_stdin_forward = false; 3792 3793 if (m_process_input_reader) 3794 { 3795 m_process_input_reader->SetIsDone(true); 3796 m_process_input_reader->Cancel(); 3797 m_process_input_reader.reset(); 3798 } 3799 3800 // If we exited when we were waiting for a process to stop, then 3801 // forward the event here so we don't lose the event 3802 if (exit_event_sp) 3803 { 3804 // Directly broadcast our exited event because we shut down our 3805 // private state thread above 3806 BroadcastEvent(exit_event_sp); 3807 } 3808 3809 // If we have been interrupted (to kill us) in the middle of running, we may not end up propagating 3810 // the last events through the event system, in which case we might strand the write lock. Unlock 3811 // it here so when we do to tear down the process we don't get an error destroying the lock. 3812 m_public_run_lock.SetStopped(); 3813 } 3814 3815 m_destroy_in_process = false; 3816 3817 return error; 3818 } 3819 3820 Error 3821 Process::Signal (int signal) 3822 { 3823 Error error (WillSignal()); 3824 if (error.Success()) 3825 { 3826 error = DoSignal(signal); 3827 if (error.Success()) 3828 DidSignal(); 3829 } 3830 return error; 3831 } 3832 3833 void 3834 Process::SetUnixSignals(UnixSignalsSP &&signals_sp) 3835 { 3836 assert (signals_sp && "null signals_sp"); 3837 m_unix_signals_sp = signals_sp; 3838 } 3839 3840 const lldb::UnixSignalsSP & 3841 Process::GetUnixSignals () 3842 { 3843 assert (m_unix_signals_sp && "null m_unix_signals_sp"); 3844 return m_unix_signals_sp; 3845 } 3846 3847 lldb::ByteOrder 3848 Process::GetByteOrder () const 3849 { 3850 return GetTarget().GetArchitecture().GetByteOrder(); 3851 } 3852 3853 uint32_t 3854 Process::GetAddressByteSize () const 3855 { 3856 return GetTarget().GetArchitecture().GetAddressByteSize(); 3857 } 3858 3859 bool 3860 Process::ShouldBroadcastEvent (Event *event_ptr) 3861 { 3862 const StateType state = Process::ProcessEventData::GetStateFromEvent (event_ptr); 3863 bool return_value = true; 3864 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | LIBLLDB_LOG_PROCESS)); 3865 3866 switch (state) 3867 { 3868 case eStateDetached: 3869 case eStateExited: 3870 case eStateUnloaded: 3871 m_stdio_communication.SynchronizeWithReadThread(); 3872 m_stdio_communication.Disconnect(); 3873 m_stdio_communication.StopReadThread(); 3874 m_stdin_forward = false; 3875 3876 LLVM_FALLTHROUGH; 3877 case eStateConnected: 3878 case eStateAttaching: 3879 case eStateLaunching: 3880 // These events indicate changes in the state of the debugging session, always report them. 3881 return_value = true; 3882 break; 3883 case eStateInvalid: 3884 // We stopped for no apparent reason, don't report it. 3885 return_value = false; 3886 break; 3887 case eStateRunning: 3888 case eStateStepping: 3889 // If we've started the target running, we handle the cases where we 3890 // are already running and where there is a transition from stopped to 3891 // running differently. 3892 // running -> running: Automatically suppress extra running events 3893 // stopped -> running: Report except when there is one or more no votes 3894 // and no yes votes. 3895 SynchronouslyNotifyStateChanged (state); 3896 if (m_force_next_event_delivery) 3897 return_value = true; 3898 else 3899 { 3900 switch (m_last_broadcast_state) 3901 { 3902 case eStateRunning: 3903 case eStateStepping: 3904 // We always suppress multiple runnings with no PUBLIC stop in between. 3905 return_value = false; 3906 break; 3907 default: 3908 // TODO: make this work correctly. For now always report 3909 // run if we aren't running so we don't miss any running 3910 // events. If I run the lldb/test/thread/a.out file and 3911 // break at main.cpp:58, run and hit the breakpoints on 3912 // multiple threads, then somehow during the stepping over 3913 // of all breakpoints no run gets reported. 3914 3915 // This is a transition from stop to run. 3916 switch (m_thread_list.ShouldReportRun (event_ptr)) 3917 { 3918 case eVoteYes: 3919 case eVoteNoOpinion: 3920 return_value = true; 3921 break; 3922 case eVoteNo: 3923 return_value = false; 3924 break; 3925 } 3926 break; 3927 } 3928 } 3929 break; 3930 case eStateStopped: 3931 case eStateCrashed: 3932 case eStateSuspended: 3933 // We've stopped. First see if we're going to restart the target. 3934 // If we are going to stop, then we always broadcast the event. 3935 // If we aren't going to stop, let the thread plans decide if we're going to report this event. 3936 // If no thread has an opinion, we don't report it. 3937 3938 m_stdio_communication.SynchronizeWithReadThread(); 3939 RefreshStateAfterStop (); 3940 if (ProcessEventData::GetInterruptedFromEvent (event_ptr)) 3941 { 3942 if (log) 3943 log->Printf ("Process::ShouldBroadcastEvent (%p) stopped due to an interrupt, state: %s", 3944 static_cast<void*>(event_ptr), 3945 StateAsCString(state)); 3946 // Even though we know we are going to stop, we should let the threads have a look at the stop, 3947 // so they can properly set their state. 3948 m_thread_list.ShouldStop (event_ptr); 3949 return_value = true; 3950 } 3951 else 3952 { 3953 bool was_restarted = ProcessEventData::GetRestartedFromEvent (event_ptr); 3954 bool should_resume = false; 3955 3956 // It makes no sense to ask "ShouldStop" if we've already been restarted... 3957 // Asking the thread list is also not likely to go well, since we are running again. 3958 // So in that case just report the event. 3959 3960 if (!was_restarted) 3961 should_resume = !m_thread_list.ShouldStop(event_ptr); 3962 3963 if (was_restarted || should_resume || m_resume_requested) 3964 { 3965 Vote stop_vote = m_thread_list.ShouldReportStop (event_ptr); 3966 if (log) 3967 log->Printf ("Process::ShouldBroadcastEvent: should_resume: %i state: %s was_restarted: %i stop_vote: %d.", 3968 should_resume, StateAsCString(state), 3969 was_restarted, stop_vote); 3970 3971 switch (stop_vote) 3972 { 3973 case eVoteYes: 3974 return_value = true; 3975 break; 3976 case eVoteNoOpinion: 3977 case eVoteNo: 3978 return_value = false; 3979 break; 3980 } 3981 3982 if (!was_restarted) 3983 { 3984 if (log) 3985 log->Printf ("Process::ShouldBroadcastEvent (%p) Restarting process from state: %s", 3986 static_cast<void*>(event_ptr), 3987 StateAsCString(state)); 3988 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3989 PrivateResume (); 3990 } 3991 } 3992 else 3993 { 3994 return_value = true; 3995 SynchronouslyNotifyStateChanged (state); 3996 } 3997 } 3998 break; 3999 } 4000 4001 // Forcing the next event delivery is a one shot deal. So reset it here. 4002 m_force_next_event_delivery = false; 4003 4004 // We do some coalescing of events (for instance two consecutive running events get coalesced.) 4005 // But we only coalesce against events we actually broadcast. So we use m_last_broadcast_state 4006 // to track that. NB - you can't use "m_public_state.GetValue()" for that purpose, as was originally done, 4007 // because the PublicState reflects the last event pulled off the queue, and there may be several 4008 // events stacked up on the queue unserviced. So the PublicState may not reflect the last broadcasted event 4009 // yet. m_last_broadcast_state gets updated here. 4010 4011 if (return_value) 4012 m_last_broadcast_state = state; 4013 4014 if (log) 4015 log->Printf ("Process::ShouldBroadcastEvent (%p) => new state: %s, last broadcast state: %s - %s", 4016 static_cast<void*>(event_ptr), StateAsCString(state), 4017 StateAsCString(m_last_broadcast_state), 4018 return_value ? "YES" : "NO"); 4019 return return_value; 4020 } 4021 4022 bool 4023 Process::StartPrivateStateThread (bool is_secondary_thread) 4024 { 4025 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 4026 4027 bool already_running = PrivateStateThreadIsValid (); 4028 if (log) 4029 log->Printf ("Process::%s()%s ", __FUNCTION__, already_running ? " already running" : " starting private state thread"); 4030 4031 if (!is_secondary_thread && already_running) 4032 return true; 4033 4034 // Create a thread that watches our internal state and controls which 4035 // events make it to clients (into the DCProcess event queue). 4036 char thread_name[1024]; 4037 4038 if (HostInfo::GetMaxThreadNameLength() <= 30) 4039 { 4040 // On platforms with abbreviated thread name lengths, choose thread names that fit within the limit. 4041 if (already_running) 4042 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 4043 else 4044 snprintf(thread_name, sizeof(thread_name), "intern-state"); 4045 } 4046 else 4047 { 4048 if (already_running) 4049 snprintf(thread_name, sizeof(thread_name), "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", GetID()); 4050 else 4051 snprintf(thread_name, sizeof(thread_name), "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 4052 } 4053 4054 // Create the private state thread, and start it running. 4055 PrivateStateThreadArgs *args_ptr = new PrivateStateThreadArgs(this, is_secondary_thread); 4056 m_private_state_thread = ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, (void *) args_ptr, nullptr, 8 * 1024 * 1024); 4057 if (m_private_state_thread.IsJoinable()) 4058 { 4059 ResumePrivateStateThread(); 4060 return true; 4061 } 4062 else 4063 return false; 4064 } 4065 4066 void 4067 Process::PausePrivateStateThread () 4068 { 4069 ControlPrivateStateThread (eBroadcastInternalStateControlPause); 4070 } 4071 4072 void 4073 Process::ResumePrivateStateThread () 4074 { 4075 ControlPrivateStateThread (eBroadcastInternalStateControlResume); 4076 } 4077 4078 void 4079 Process::StopPrivateStateThread () 4080 { 4081 if (m_private_state_thread.IsJoinable ()) 4082 ControlPrivateStateThread (eBroadcastInternalStateControlStop); 4083 else 4084 { 4085 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4086 if (log) 4087 log->Printf ("Went to stop the private state thread, but it was already invalid."); 4088 } 4089 } 4090 4091 void 4092 Process::ControlPrivateStateThread (uint32_t signal) 4093 { 4094 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4095 4096 assert (signal == eBroadcastInternalStateControlStop || 4097 signal == eBroadcastInternalStateControlPause || 4098 signal == eBroadcastInternalStateControlResume); 4099 4100 if (log) 4101 log->Printf ("Process::%s (signal = %d)", __FUNCTION__, signal); 4102 4103 // Signal the private state thread 4104 if (m_private_state_thread.IsJoinable()) 4105 { 4106 // Broadcast the event. 4107 // It is important to do this outside of the if below, because 4108 // it's possible that the thread state is invalid but that the 4109 // thread is waiting on a control event instead of simply being 4110 // on its way out (this should not happen, but it apparently can). 4111 if (log) 4112 log->Printf ("Sending control event of type: %d.", signal); 4113 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 4114 m_private_state_control_broadcaster.BroadcastEvent(signal, event_receipt_sp); 4115 4116 // Wait for the event receipt or for the private state thread to exit 4117 bool receipt_received = false; 4118 if (PrivateStateThreadIsValid()) 4119 { 4120 while (!receipt_received) 4121 { 4122 bool timed_out = false; 4123 // Check for a receipt for 2 seconds and then check if the private state 4124 // thread is still around. 4125 receipt_received = event_receipt_sp->WaitForEventReceived(std::chrono::seconds(2), &timed_out); 4126 if (!receipt_received) 4127 { 4128 // Check if the private state thread is still around. If it isn't then we are done waiting 4129 if (!PrivateStateThreadIsValid()) 4130 break; // Private state thread exited or is exiting, we are done 4131 } 4132 } 4133 } 4134 4135 if (signal == eBroadcastInternalStateControlStop) 4136 { 4137 thread_result_t result = NULL; 4138 m_private_state_thread.Join(&result); 4139 m_private_state_thread.Reset(); 4140 } 4141 } 4142 else 4143 { 4144 if (log) 4145 log->Printf("Private state thread already dead, no need to signal it to stop."); 4146 } 4147 } 4148 4149 void 4150 Process::SendAsyncInterrupt () 4151 { 4152 if (PrivateStateThreadIsValid()) 4153 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 4154 else 4155 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 4156 } 4157 4158 void 4159 Process::HandlePrivateEvent (EventSP &event_sp) 4160 { 4161 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 4162 m_resume_requested = false; 4163 4164 const StateType new_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4165 4166 // First check to see if anybody wants a shot at this event: 4167 if (m_next_event_action_ap) 4168 { 4169 NextEventAction::EventActionResult action_result = m_next_event_action_ap->PerformAction(event_sp); 4170 if (log) 4171 log->Printf ("Ran next event action, result was %d.", action_result); 4172 4173 switch (action_result) 4174 { 4175 case NextEventAction::eEventActionSuccess: 4176 SetNextEventAction(nullptr); 4177 break; 4178 4179 case NextEventAction::eEventActionRetry: 4180 break; 4181 4182 case NextEventAction::eEventActionExit: 4183 // Handle Exiting Here. If we already got an exited event, 4184 // we should just propagate it. Otherwise, swallow this event, 4185 // and set our state to exit so the next event will kill us. 4186 if (new_state != eStateExited) 4187 { 4188 // FIXME: should cons up an exited event, and discard this one. 4189 SetExitStatus(0, m_next_event_action_ap->GetExitString()); 4190 SetNextEventAction(nullptr); 4191 return; 4192 } 4193 SetNextEventAction(nullptr); 4194 break; 4195 } 4196 } 4197 4198 // See if we should broadcast this state to external clients? 4199 const bool should_broadcast = ShouldBroadcastEvent (event_sp.get()); 4200 4201 if (should_broadcast) 4202 { 4203 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 4204 if (log) 4205 { 4206 log->Printf ("Process::%s (pid = %" PRIu64 ") broadcasting new state %s (old state %s) to %s", 4207 __FUNCTION__, 4208 GetID(), 4209 StateAsCString(new_state), 4210 StateAsCString (GetState ()), 4211 is_hijacked ? "hijacked" : "public"); 4212 } 4213 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 4214 if (StateIsRunningState (new_state)) 4215 { 4216 // Only push the input handler if we aren't fowarding events, 4217 // as this means the curses GUI is in use... 4218 // Or don't push it if we are launching since it will come up stopped. 4219 if (!GetTarget().GetDebugger().IsForwardingEvents() && new_state != eStateLaunching && 4220 new_state != eStateAttaching) 4221 { 4222 PushProcessIOHandler (); 4223 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue()+1, eBroadcastAlways); 4224 if (log) 4225 log->Printf("Process::%s updated m_iohandler_sync to %d", __FUNCTION__, m_iohandler_sync.GetValue()); 4226 } 4227 } 4228 else if (StateIsStoppedState(new_state, false)) 4229 { 4230 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 4231 { 4232 // If the lldb_private::Debugger is handling the events, we don't 4233 // want to pop the process IOHandler here, we want to do it when 4234 // we receive the stopped event so we can carefully control when 4235 // the process IOHandler is popped because when we stop we want to 4236 // display some text stating how and why we stopped, then maybe some 4237 // process/thread/frame info, and then we want the "(lldb) " prompt 4238 // to show up. If we pop the process IOHandler here, then we will 4239 // cause the command interpreter to become the top IOHandler after 4240 // the process pops off and it will update its prompt right away... 4241 // See the Debugger.cpp file where it calls the function as 4242 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 4243 // Otherwise we end up getting overlapping "(lldb) " prompts and 4244 // garbled output. 4245 // 4246 // If we aren't handling the events in the debugger (which is indicated 4247 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or we 4248 // are hijacked, then we always pop the process IO handler manually. 4249 // Hijacking happens when the internal process state thread is running 4250 // thread plans, or when commands want to run in synchronous mode 4251 // and they call "process->WaitForProcessToStop()". An example of something 4252 // that will hijack the events is a simple expression: 4253 // 4254 // (lldb) expr (int)puts("hello") 4255 // 4256 // This will cause the internal process state thread to resume and halt 4257 // the process (and _it_ will hijack the eBroadcastBitStateChanged 4258 // events) and we do need the IO handler to be pushed and popped 4259 // correctly. 4260 4261 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 4262 PopProcessIOHandler (); 4263 } 4264 } 4265 4266 BroadcastEvent (event_sp); 4267 } 4268 else 4269 { 4270 if (log) 4271 { 4272 log->Printf ("Process::%s (pid = %" PRIu64 ") suppressing state %s (old state %s): should_broadcast == false", 4273 __FUNCTION__, 4274 GetID(), 4275 StateAsCString(new_state), 4276 StateAsCString (GetState ())); 4277 } 4278 } 4279 } 4280 4281 Error 4282 Process::HaltPrivate() 4283 { 4284 EventSP event_sp; 4285 Error error (WillHalt()); 4286 if (error.Fail()) 4287 return error; 4288 4289 // Ask the process subclass to actually halt our process 4290 bool caused_stop; 4291 error = DoHalt(caused_stop); 4292 4293 DidHalt(); 4294 return error; 4295 } 4296 4297 thread_result_t 4298 Process::PrivateStateThread (void *arg) 4299 { 4300 std::unique_ptr<PrivateStateThreadArgs> args_up(static_cast<PrivateStateThreadArgs *>(arg)); 4301 thread_result_t result = args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 4302 return result; 4303 } 4304 4305 thread_result_t 4306 Process::RunPrivateStateThread (bool is_secondary_thread) 4307 { 4308 bool control_only = true; 4309 4310 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 4311 if (log) 4312 log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 4313 __FUNCTION__, static_cast<void*>(this), GetID()); 4314 4315 bool exit_now = false; 4316 bool interrupt_requested = false; 4317 while (!exit_now) 4318 { 4319 EventSP event_sp; 4320 WaitForEventsPrivate(std::chrono::microseconds(0), event_sp, control_only); 4321 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) 4322 { 4323 if (log) 4324 log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") got a control event: %d", 4325 __FUNCTION__, static_cast<void*>(this), GetID(), 4326 event_sp->GetType()); 4327 4328 switch (event_sp->GetType()) 4329 { 4330 case eBroadcastInternalStateControlStop: 4331 exit_now = true; 4332 break; // doing any internal state management below 4333 4334 case eBroadcastInternalStateControlPause: 4335 control_only = true; 4336 break; 4337 4338 case eBroadcastInternalStateControlResume: 4339 control_only = false; 4340 break; 4341 } 4342 4343 continue; 4344 } 4345 else if (event_sp->GetType() == eBroadcastBitInterrupt) 4346 { 4347 if (m_public_state.GetValue() == eStateAttaching) 4348 { 4349 if (log) 4350 log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") woke up with an interrupt while attaching - forwarding interrupt.", 4351 __FUNCTION__, static_cast<void*>(this), 4352 GetID()); 4353 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 4354 } 4355 else if(StateIsRunningState(m_last_broadcast_state)) 4356 { 4357 if (log) 4358 log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") woke up with an interrupt - Halting.", 4359 __FUNCTION__, static_cast<void*>(this), 4360 GetID()); 4361 Error error = HaltPrivate(); 4362 if (error.Fail() && log) 4363 log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") failed to halt the process: %s", 4364 __FUNCTION__, static_cast<void*>(this), 4365 GetID(), error.AsCString()); 4366 // Halt should generate a stopped event. Make a note of the fact that we were 4367 // doing the interrupt, so we can set the interrupted flag after we receive the 4368 // event. We deliberately set this to true even if HaltPrivate failed, so that we 4369 // can interrupt on the next natural stop. 4370 interrupt_requested = true; 4371 } 4372 else 4373 { 4374 // This can happen when someone (e.g. Process::Halt) sees that we are running and 4375 // sends an interrupt request, but the process actually stops before we receive 4376 // it. In that case, we can just ignore the request. We use 4377 // m_last_broadcast_state, because the Stopped event may not have been popped of 4378 // the event queue yet, which is when the public state gets updated. 4379 if (log) 4380 log->Printf("Process::%s ignoring interrupt as we have already stopped.", __FUNCTION__); 4381 } 4382 continue; 4383 } 4384 4385 const StateType internal_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4386 4387 if (internal_state != eStateInvalid) 4388 { 4389 if (m_clear_thread_plans_on_stop && 4390 StateIsStoppedState(internal_state, true)) 4391 { 4392 m_clear_thread_plans_on_stop = false; 4393 m_thread_list.DiscardThreadPlans(); 4394 } 4395 4396 if (interrupt_requested) 4397 { 4398 if (StateIsStoppedState (internal_state, true)) 4399 { 4400 // We requested the interrupt, so mark this as such in the stop event so 4401 // clients can tell an interrupted process from a natural stop 4402 ProcessEventData::SetInterruptedInEvent (event_sp.get(), true); 4403 interrupt_requested = false; 4404 } 4405 else if (log) 4406 { 4407 log->Printf("Process::%s interrupt_requested, but a non-stopped state '%s' received.", 4408 __FUNCTION__, StateAsCString(internal_state)); 4409 } 4410 } 4411 4412 HandlePrivateEvent (event_sp); 4413 } 4414 4415 if (internal_state == eStateInvalid || 4416 internal_state == eStateExited || 4417 internal_state == eStateDetached ) 4418 { 4419 if (log) 4420 log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") about to exit with internal state %s...", 4421 __FUNCTION__, static_cast<void*>(this), GetID(), 4422 StateAsCString(internal_state)); 4423 4424 break; 4425 } 4426 } 4427 4428 // Verify log is still enabled before attempting to write to it... 4429 if (log) 4430 log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 4431 __FUNCTION__, static_cast<void*>(this), GetID()); 4432 4433 // If we are a secondary thread, then the primary thread we are working for will have already 4434 // acquired the public_run_lock, and isn't done with what it was doing yet, so don't 4435 // try to change it on the way out. 4436 if (!is_secondary_thread) 4437 m_public_run_lock.SetStopped(); 4438 return NULL; 4439 } 4440 4441 //------------------------------------------------------------------ 4442 // Process Event Data 4443 //------------------------------------------------------------------ 4444 4445 Process::ProcessEventData::ProcessEventData () : 4446 EventData (), 4447 m_process_wp (), 4448 m_state (eStateInvalid), 4449 m_restarted (false), 4450 m_update_state (0), 4451 m_interrupted (false) 4452 { 4453 } 4454 4455 Process::ProcessEventData::ProcessEventData (const ProcessSP &process_sp, StateType state) : 4456 EventData (), 4457 m_process_wp (), 4458 m_state (state), 4459 m_restarted (false), 4460 m_update_state (0), 4461 m_interrupted (false) 4462 { 4463 if (process_sp) 4464 m_process_wp = process_sp; 4465 } 4466 4467 Process::ProcessEventData::~ProcessEventData() = default; 4468 4469 const ConstString & 4470 Process::ProcessEventData::GetFlavorString () 4471 { 4472 static ConstString g_flavor ("Process::ProcessEventData"); 4473 return g_flavor; 4474 } 4475 4476 const ConstString & 4477 Process::ProcessEventData::GetFlavor () const 4478 { 4479 return ProcessEventData::GetFlavorString (); 4480 } 4481 4482 void 4483 Process::ProcessEventData::DoOnRemoval (Event *event_ptr) 4484 { 4485 ProcessSP process_sp(m_process_wp.lock()); 4486 4487 if (!process_sp) 4488 return; 4489 4490 // This function gets called twice for each event, once when the event gets pulled 4491 // off of the private process event queue, and then any number of times, first when it gets pulled off of 4492 // the public event queue, then other times when we're pretending that this is where we stopped at the 4493 // end of expression evaluation. m_update_state is used to distinguish these 4494 // three cases; it is 0 when we're just pulling it off for private handling, 4495 // and > 1 for expression evaluation, and we don't want to do the breakpoint command handling then. 4496 if (m_update_state != 1) 4497 return; 4498 4499 process_sp->SetPublicState (m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4500 4501 // If this is a halt event, even if the halt stopped with some reason other than a plain interrupt (e.g. we had 4502 // already stopped for a breakpoint when the halt request came through) don't do the StopInfo actions, as they may 4503 // end up restarting the process. 4504 if (m_interrupted) 4505 return; 4506 4507 // If we're stopped and haven't restarted, then do the StopInfo actions here: 4508 if (m_state == eStateStopped && ! m_restarted) 4509 { 4510 // Let process subclasses know we are about to do a public stop and 4511 // do anything they might need to in order to speed up register and 4512 // memory accesses. 4513 process_sp->WillPublicStop(); 4514 4515 ThreadList &curr_thread_list = process_sp->GetThreadList(); 4516 uint32_t num_threads = curr_thread_list.GetSize(); 4517 uint32_t idx; 4518 4519 // The actions might change one of the thread's stop_info's opinions about whether we should 4520 // stop the process, so we need to query that as we go. 4521 4522 // One other complication here, is that we try to catch any case where the target has run (except for expressions) 4523 // and immediately exit, but if we get that wrong (which is possible) then the thread list might have changed, and 4524 // that would cause our iteration here to crash. We could make a copy of the thread list, but we'd really like 4525 // to also know if it has changed at all, so we make up a vector of the thread ID's and check what we get back 4526 // against this list & bag out if anything differs. 4527 std::vector<uint32_t> thread_index_array(num_threads); 4528 for (idx = 0; idx < num_threads; ++idx) 4529 thread_index_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetIndexID(); 4530 4531 // Use this to track whether we should continue from here. We will only continue the target running if 4532 // no thread says we should stop. Of course if some thread's PerformAction actually sets the target running, 4533 // then it doesn't matter what the other threads say... 4534 4535 bool still_should_stop = false; 4536 4537 // Sometimes - for instance if we have a bug in the stub we are talking to, we stop but no thread has a 4538 // valid stop reason. In that case we should just stop, because we have no way of telling what the right 4539 // thing to do is, and it's better to let the user decide than continue behind their backs. 4540 4541 bool does_anybody_have_an_opinion = false; 4542 4543 for (idx = 0; idx < num_threads; ++idx) 4544 { 4545 curr_thread_list = process_sp->GetThreadList(); 4546 if (curr_thread_list.GetSize() != num_threads) 4547 { 4548 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS)); 4549 if (log) 4550 log->Printf("Number of threads changed from %u to %u while processing event.", num_threads, curr_thread_list.GetSize()); 4551 break; 4552 } 4553 4554 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 4555 4556 if (thread_sp->GetIndexID() != thread_index_array[idx]) 4557 { 4558 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS)); 4559 if (log) 4560 log->Printf("The thread at position %u changed from %u to %u while processing event.", 4561 idx, 4562 thread_index_array[idx], 4563 thread_sp->GetIndexID()); 4564 break; 4565 } 4566 4567 StopInfoSP stop_info_sp = thread_sp->GetStopInfo (); 4568 if (stop_info_sp && stop_info_sp->IsValid()) 4569 { 4570 does_anybody_have_an_opinion = true; 4571 bool this_thread_wants_to_stop; 4572 if (stop_info_sp->GetOverrideShouldStop()) 4573 { 4574 this_thread_wants_to_stop = stop_info_sp->GetOverriddenShouldStopValue(); 4575 } 4576 else 4577 { 4578 stop_info_sp->PerformAction(event_ptr); 4579 // The stop action might restart the target. If it does, then we want to mark that in the 4580 // event so that whoever is receiving it will know to wait for the running event and reflect 4581 // that state appropriately. 4582 // We also need to stop processing actions, since they aren't expecting the target to be running. 4583 4584 // FIXME: we might have run. 4585 if (stop_info_sp->HasTargetRunSinceMe()) 4586 { 4587 SetRestarted (true); 4588 break; 4589 } 4590 4591 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4592 } 4593 4594 if (!still_should_stop) 4595 still_should_stop = this_thread_wants_to_stop; 4596 } 4597 } 4598 4599 if (!GetRestarted()) 4600 { 4601 if (!still_should_stop && does_anybody_have_an_opinion) 4602 { 4603 // We've been asked to continue, so do that here. 4604 SetRestarted(true); 4605 // Use the public resume method here, since this is just 4606 // extending a public resume. 4607 process_sp->PrivateResume(); 4608 } 4609 else 4610 { 4611 // If we didn't restart, run the Stop Hooks here: 4612 // They might also restart the target, so watch for that. 4613 process_sp->GetTarget().RunStopHooks(); 4614 if (process_sp->GetPrivateState() == eStateRunning) 4615 SetRestarted(true); 4616 } 4617 } 4618 } 4619 } 4620 4621 void 4622 Process::ProcessEventData::Dump (Stream *s) const 4623 { 4624 ProcessSP process_sp(m_process_wp.lock()); 4625 4626 if (process_sp) 4627 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4628 static_cast<void*>(process_sp.get()), process_sp->GetID()); 4629 else 4630 s->PutCString(" process = NULL, "); 4631 4632 s->Printf("state = %s", StateAsCString(GetState())); 4633 } 4634 4635 const Process::ProcessEventData * 4636 Process::ProcessEventData::GetEventDataFromEvent (const Event *event_ptr) 4637 { 4638 if (event_ptr) 4639 { 4640 const EventData *event_data = event_ptr->GetData(); 4641 if (event_data && event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4642 return static_cast <const ProcessEventData *> (event_ptr->GetData()); 4643 } 4644 return nullptr; 4645 } 4646 4647 ProcessSP 4648 Process::ProcessEventData::GetProcessFromEvent (const Event *event_ptr) 4649 { 4650 ProcessSP process_sp; 4651 const ProcessEventData *data = GetEventDataFromEvent (event_ptr); 4652 if (data) 4653 process_sp = data->GetProcessSP(); 4654 return process_sp; 4655 } 4656 4657 StateType 4658 Process::ProcessEventData::GetStateFromEvent (const Event *event_ptr) 4659 { 4660 const ProcessEventData *data = GetEventDataFromEvent (event_ptr); 4661 if (data == nullptr) 4662 return eStateInvalid; 4663 else 4664 return data->GetState(); 4665 } 4666 4667 bool 4668 Process::ProcessEventData::GetRestartedFromEvent (const Event *event_ptr) 4669 { 4670 const ProcessEventData *data = GetEventDataFromEvent (event_ptr); 4671 if (data == nullptr) 4672 return false; 4673 else 4674 return data->GetRestarted(); 4675 } 4676 4677 void 4678 Process::ProcessEventData::SetRestartedInEvent (Event *event_ptr, bool new_value) 4679 { 4680 ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr)); 4681 if (data != nullptr) 4682 data->SetRestarted(new_value); 4683 } 4684 4685 size_t 4686 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) 4687 { 4688 ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr)); 4689 if (data != nullptr) 4690 return data->GetNumRestartedReasons(); 4691 else 4692 return 0; 4693 } 4694 4695 const char * 4696 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, size_t idx) 4697 { 4698 ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr)); 4699 if (data != nullptr) 4700 return data->GetRestartedReasonAtIndex(idx); 4701 else 4702 return nullptr; 4703 } 4704 4705 void 4706 Process::ProcessEventData::AddRestartedReason (Event *event_ptr, const char *reason) 4707 { 4708 ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr)); 4709 if (data != nullptr) 4710 data->AddRestartedReason(reason); 4711 } 4712 4713 bool 4714 Process::ProcessEventData::GetInterruptedFromEvent (const Event *event_ptr) 4715 { 4716 const ProcessEventData *data = GetEventDataFromEvent (event_ptr); 4717 if (data == nullptr) 4718 return false; 4719 else 4720 return data->GetInterrupted (); 4721 } 4722 4723 void 4724 Process::ProcessEventData::SetInterruptedInEvent (Event *event_ptr, bool new_value) 4725 { 4726 ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr)); 4727 if (data != nullptr) 4728 data->SetInterrupted(new_value); 4729 } 4730 4731 bool 4732 Process::ProcessEventData::SetUpdateStateOnRemoval (Event *event_ptr) 4733 { 4734 ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr)); 4735 if (data) 4736 { 4737 data->SetUpdateStateOnRemoval(); 4738 return true; 4739 } 4740 return false; 4741 } 4742 4743 lldb::TargetSP 4744 Process::CalculateTarget () 4745 { 4746 return m_target_sp.lock(); 4747 } 4748 4749 void 4750 Process::CalculateExecutionContext (ExecutionContext &exe_ctx) 4751 { 4752 exe_ctx.SetTargetPtr (&GetTarget()); 4753 exe_ctx.SetProcessPtr (this); 4754 exe_ctx.SetThreadPtr(nullptr); 4755 exe_ctx.SetFramePtr(nullptr); 4756 } 4757 4758 //uint32_t 4759 //Process::ListProcessesMatchingName (const char *name, StringList &matches, std::vector<lldb::pid_t> &pids) 4760 //{ 4761 // return 0; 4762 //} 4763 // 4764 //ArchSpec 4765 //Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4766 //{ 4767 // return Host::GetArchSpecForExistingProcess (pid); 4768 //} 4769 // 4770 //ArchSpec 4771 //Process::GetArchSpecForExistingProcess (const char *process_name) 4772 //{ 4773 // return Host::GetArchSpecForExistingProcess (process_name); 4774 //} 4775 4776 void 4777 Process::AppendSTDOUT (const char * s, size_t len) 4778 { 4779 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4780 m_stdout_data.append (s, len); 4781 BroadcastEventIfUnique (eBroadcastBitSTDOUT, new ProcessEventData (shared_from_this(), GetState())); 4782 } 4783 4784 void 4785 Process::AppendSTDERR (const char * s, size_t len) 4786 { 4787 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4788 m_stderr_data.append (s, len); 4789 BroadcastEventIfUnique (eBroadcastBitSTDERR, new ProcessEventData (shared_from_this(), GetState())); 4790 } 4791 4792 void 4793 Process::BroadcastAsyncProfileData(const std::string &one_profile_data) 4794 { 4795 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4796 m_profile_data.push_back(one_profile_data); 4797 BroadcastEventIfUnique (eBroadcastBitProfileData, new ProcessEventData (shared_from_this(), GetState())); 4798 } 4799 4800 void 4801 Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4802 const StructuredDataPluginSP &plugin_sp) 4803 { 4804 BroadcastEvent(eBroadcastBitStructuredData, 4805 new EventDataStructuredData(shared_from_this(), 4806 object_sp, plugin_sp)); 4807 } 4808 4809 StructuredDataPluginSP 4810 Process::GetStructuredDataPlugin(const ConstString &type_name) const 4811 { 4812 auto find_it = m_structured_data_plugin_map.find(type_name); 4813 if (find_it != m_structured_data_plugin_map.end()) 4814 return find_it->second; 4815 else 4816 return StructuredDataPluginSP(); 4817 } 4818 4819 size_t 4820 Process::GetAsyncProfileData (char *buf, size_t buf_size, Error &error) 4821 { 4822 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4823 if (m_profile_data.empty()) 4824 return 0; 4825 4826 std::string &one_profile_data = m_profile_data.front(); 4827 size_t bytes_available = one_profile_data.size(); 4828 if (bytes_available > 0) 4829 { 4830 Log *log (lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 4831 if (log) 4832 log->Printf ("Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4833 static_cast<void*>(buf), 4834 static_cast<uint64_t>(buf_size)); 4835 if (bytes_available > buf_size) 4836 { 4837 memcpy(buf, one_profile_data.c_str(), buf_size); 4838 one_profile_data.erase(0, buf_size); 4839 bytes_available = buf_size; 4840 } 4841 else 4842 { 4843 memcpy(buf, one_profile_data.c_str(), bytes_available); 4844 m_profile_data.erase(m_profile_data.begin()); 4845 } 4846 } 4847 return bytes_available; 4848 } 4849 4850 //------------------------------------------------------------------ 4851 // Process STDIO 4852 //------------------------------------------------------------------ 4853 4854 size_t 4855 Process::GetSTDOUT (char *buf, size_t buf_size, Error &error) 4856 { 4857 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4858 size_t bytes_available = m_stdout_data.size(); 4859 if (bytes_available > 0) 4860 { 4861 Log *log (lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 4862 if (log) 4863 log->Printf ("Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4864 static_cast<void*>(buf), 4865 static_cast<uint64_t>(buf_size)); 4866 if (bytes_available > buf_size) 4867 { 4868 memcpy(buf, m_stdout_data.c_str(), buf_size); 4869 m_stdout_data.erase(0, buf_size); 4870 bytes_available = buf_size; 4871 } 4872 else 4873 { 4874 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4875 m_stdout_data.clear(); 4876 } 4877 } 4878 return bytes_available; 4879 } 4880 4881 size_t 4882 Process::GetSTDERR (char *buf, size_t buf_size, Error &error) 4883 { 4884 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4885 size_t bytes_available = m_stderr_data.size(); 4886 if (bytes_available > 0) 4887 { 4888 Log *log (lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 4889 if (log) 4890 log->Printf ("Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4891 static_cast<void*>(buf), 4892 static_cast<uint64_t>(buf_size)); 4893 if (bytes_available > buf_size) 4894 { 4895 memcpy(buf, m_stderr_data.c_str(), buf_size); 4896 m_stderr_data.erase(0, buf_size); 4897 bytes_available = buf_size; 4898 } 4899 else 4900 { 4901 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4902 m_stderr_data.clear(); 4903 } 4904 } 4905 return bytes_available; 4906 } 4907 4908 void 4909 Process::STDIOReadThreadBytesReceived (void *baton, const void *src, size_t src_len) 4910 { 4911 Process *process = (Process *) baton; 4912 process->AppendSTDOUT (static_cast<const char *>(src), src_len); 4913 } 4914 4915 class IOHandlerProcessSTDIO : 4916 public IOHandler 4917 { 4918 public: 4919 IOHandlerProcessSTDIO (Process *process, 4920 int write_fd) : 4921 IOHandler(process->GetTarget().GetDebugger(), IOHandler::Type::ProcessIO), 4922 m_process (process), 4923 m_read_file (), 4924 m_write_file (write_fd, false), 4925 m_pipe () 4926 { 4927 m_pipe.CreateNew(false); 4928 m_read_file.SetDescriptor(GetInputFD(), false); 4929 } 4930 4931 ~IOHandlerProcessSTDIO() override = default; 4932 4933 // Each IOHandler gets to run until it is done. It should read data 4934 // from the "in" and place output into "out" and "err and return 4935 // when done. 4936 void 4937 Run () override 4938 { 4939 if (!m_read_file.IsValid() || !m_write_file.IsValid() || !m_pipe.CanRead() || !m_pipe.CanWrite()) 4940 { 4941 SetIsDone(true); 4942 return; 4943 } 4944 4945 SetIsDone(false); 4946 const int read_fd = m_read_file.GetDescriptor(); 4947 TerminalState terminal_state; 4948 terminal_state.Save (read_fd, false); 4949 Terminal terminal(read_fd); 4950 terminal.SetCanonical(false); 4951 terminal.SetEcho(false); 4952 // FD_ZERO, FD_SET are not supported on windows 4953 #ifndef _WIN32 4954 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4955 m_is_running = true; 4956 while (!GetIsDone()) 4957 { 4958 SelectHelper select_helper; 4959 select_helper.FDSetRead(read_fd); 4960 select_helper.FDSetRead(pipe_read_fd); 4961 Error error = select_helper.Select(); 4962 4963 if (error.Fail()) 4964 { 4965 SetIsDone(true); 4966 } 4967 else 4968 { 4969 char ch = 0; 4970 size_t n; 4971 if (select_helper.FDIsSetRead(read_fd)) 4972 { 4973 n = 1; 4974 if (m_read_file.Read(&ch, n).Success() && n == 1) 4975 { 4976 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4977 SetIsDone(true); 4978 } 4979 else 4980 SetIsDone(true); 4981 } 4982 if (select_helper.FDIsSetRead(pipe_read_fd)) 4983 { 4984 size_t bytes_read; 4985 // Consume the interrupt byte 4986 Error error = m_pipe.Read(&ch, 1, bytes_read); 4987 if (error.Success()) 4988 { 4989 switch (ch) 4990 { 4991 case 'q': 4992 SetIsDone(true); 4993 break; 4994 case 'i': 4995 if (StateIsRunningState(m_process->GetState())) 4996 m_process->SendAsyncInterrupt(); 4997 break; 4998 } 4999 } 5000 } 5001 } 5002 } 5003 m_is_running = false; 5004 #endif 5005 terminal_state.Restore(); 5006 } 5007 5008 void 5009 Cancel () override 5010 { 5011 SetIsDone(true); 5012 // Only write to our pipe to cancel if we are in IOHandlerProcessSTDIO::Run(). 5013 // We can end up with a python command that is being run from the command 5014 // interpreter: 5015 // 5016 // (lldb) step_process_thousands_of_times 5017 // 5018 // In this case the command interpreter will be in the middle of handling 5019 // the command and if the process pushes and pops the IOHandler thousands 5020 // of times, we can end up writing to m_pipe without ever consuming the 5021 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 5022 // deadlocking when the pipe gets fed up and blocks until data is consumed. 5023 if (m_is_running) 5024 { 5025 char ch = 'q'; // Send 'q' for quit 5026 size_t bytes_written = 0; 5027 m_pipe.Write(&ch, 1, bytes_written); 5028 } 5029 } 5030 5031 bool 5032 Interrupt () override 5033 { 5034 // Do only things that are safe to do in an interrupt context (like in 5035 // a SIGINT handler), like write 1 byte to a file descriptor. This will 5036 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 5037 // that was written to the pipe and then call m_process->SendAsyncInterrupt() 5038 // from a much safer location in code. 5039 if (m_active) 5040 { 5041 char ch = 'i'; // Send 'i' for interrupt 5042 size_t bytes_written = 0; 5043 Error result = m_pipe.Write(&ch, 1, bytes_written); 5044 return result.Success(); 5045 } 5046 else 5047 { 5048 // This IOHandler might be pushed on the stack, but not being run currently 5049 // so do the right thing if we aren't actively watching for STDIN by sending 5050 // the interrupt to the process. Otherwise the write to the pipe above would 5051 // do nothing. This can happen when the command interpreter is running and 5052 // gets a "expression ...". It will be on the IOHandler thread and sending 5053 // the input is complete to the delegate which will cause the expression to 5054 // run, which will push the process IO handler, but not run it. 5055 5056 if (StateIsRunningState(m_process->GetState())) 5057 { 5058 m_process->SendAsyncInterrupt(); 5059 return true; 5060 } 5061 } 5062 return false; 5063 } 5064 5065 void 5066 GotEOF() override 5067 { 5068 } 5069 5070 protected: 5071 Process *m_process; 5072 File m_read_file; // Read from this file (usually actual STDIN for LLDB 5073 File m_write_file; // Write to this file (usually the master pty for getting io to debuggee) 5074 Pipe m_pipe; 5075 std::atomic<bool> m_is_running; 5076 }; 5077 5078 void 5079 Process::SetSTDIOFileDescriptor (int fd) 5080 { 5081 // First set up the Read Thread for reading/handling process I/O 5082 5083 std::unique_ptr<ConnectionFileDescriptor> conn_ap (new ConnectionFileDescriptor (fd, true)); 5084 5085 if (conn_ap) 5086 { 5087 m_stdio_communication.SetConnection (conn_ap.release()); 5088 if (m_stdio_communication.IsConnected()) 5089 { 5090 m_stdio_communication.SetReadThreadBytesReceivedCallback (STDIOReadThreadBytesReceived, this); 5091 m_stdio_communication.StartReadThread(); 5092 5093 // Now read thread is set up, set up input reader. 5094 5095 if (!m_process_input_reader) 5096 m_process_input_reader.reset (new IOHandlerProcessSTDIO (this, fd)); 5097 } 5098 } 5099 } 5100 5101 bool 5102 Process::ProcessIOHandlerIsActive () 5103 { 5104 IOHandlerSP io_handler_sp (m_process_input_reader); 5105 if (io_handler_sp) 5106 return GetTarget().GetDebugger().IsTopIOHandler (io_handler_sp); 5107 return false; 5108 } 5109 bool 5110 Process::PushProcessIOHandler () 5111 { 5112 IOHandlerSP io_handler_sp (m_process_input_reader); 5113 if (io_handler_sp) 5114 { 5115 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 5116 if (log) 5117 log->Printf("Process::%s pushing IO handler", __FUNCTION__); 5118 5119 io_handler_sp->SetIsDone(false); 5120 GetTarget().GetDebugger().PushIOHandler (io_handler_sp); 5121 return true; 5122 } 5123 return false; 5124 } 5125 5126 bool 5127 Process::PopProcessIOHandler () 5128 { 5129 IOHandlerSP io_handler_sp (m_process_input_reader); 5130 if (io_handler_sp) 5131 return GetTarget().GetDebugger().PopIOHandler (io_handler_sp); 5132 return false; 5133 } 5134 5135 // The process needs to know about installed plug-ins 5136 void 5137 Process::SettingsInitialize () 5138 { 5139 Thread::SettingsInitialize (); 5140 } 5141 5142 void 5143 Process::SettingsTerminate () 5144 { 5145 Thread::SettingsTerminate (); 5146 } 5147 5148 namespace 5149 { 5150 // RestorePlanState is used to record the "is private", "is master" and "okay to discard" fields of 5151 // the plan we are running, and reset it on Clean or on destruction. 5152 // It will only reset the state once, so you can call Clean and then monkey with the state and it 5153 // won't get reset on you again. 5154 5155 class RestorePlanState 5156 { 5157 public: 5158 RestorePlanState (lldb::ThreadPlanSP thread_plan_sp) : 5159 m_thread_plan_sp(thread_plan_sp), 5160 m_already_reset(false) 5161 { 5162 if (m_thread_plan_sp) 5163 { 5164 m_private = m_thread_plan_sp->GetPrivate(); 5165 m_is_master = m_thread_plan_sp->IsMasterPlan(); 5166 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 5167 } 5168 } 5169 5170 ~RestorePlanState() 5171 { 5172 Clean(); 5173 } 5174 5175 void 5176 Clean () 5177 { 5178 if (!m_already_reset && m_thread_plan_sp) 5179 { 5180 m_already_reset = true; 5181 m_thread_plan_sp->SetPrivate(m_private); 5182 m_thread_plan_sp->SetIsMasterPlan (m_is_master); 5183 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 5184 } 5185 } 5186 5187 private: 5188 lldb::ThreadPlanSP m_thread_plan_sp; 5189 bool m_already_reset; 5190 bool m_private; 5191 bool m_is_master; 5192 bool m_okay_to_discard; 5193 }; 5194 } // anonymous namespace 5195 5196 ExpressionResults 5197 Process::RunThreadPlan(ExecutionContext &exe_ctx, lldb::ThreadPlanSP &thread_plan_sp, 5198 const EvaluateExpressionOptions &options, DiagnosticManager &diagnostic_manager) 5199 { 5200 ExpressionResults return_value = eExpressionSetupError; 5201 5202 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 5203 5204 if (!thread_plan_sp) 5205 { 5206 diagnostic_manager.PutCString(eDiagnosticSeverityError, "RunThreadPlan called with empty thread plan."); 5207 return eExpressionSetupError; 5208 } 5209 5210 if (!thread_plan_sp->ValidatePlan(nullptr)) 5211 { 5212 diagnostic_manager.PutCString(eDiagnosticSeverityError, "RunThreadPlan called with an invalid thread plan."); 5213 return eExpressionSetupError; 5214 } 5215 5216 if (exe_ctx.GetProcessPtr() != this) 5217 { 5218 diagnostic_manager.PutCString(eDiagnosticSeverityError, "RunThreadPlan called on wrong process."); 5219 return eExpressionSetupError; 5220 } 5221 5222 Thread *thread = exe_ctx.GetThreadPtr(); 5223 if (thread == nullptr) 5224 { 5225 diagnostic_manager.PutCString(eDiagnosticSeverityError, "RunThreadPlan called with invalid thread."); 5226 return eExpressionSetupError; 5227 } 5228 5229 // We need to change some of the thread plan attributes for the thread plan runner. This will restore them 5230 // when we are done: 5231 5232 RestorePlanState thread_plan_restorer(thread_plan_sp); 5233 5234 // We rely on the thread plan we are running returning "PlanCompleted" if when it successfully completes. 5235 // For that to be true the plan can't be private - since private plans suppress themselves in the 5236 // GetCompletedPlan call. 5237 5238 thread_plan_sp->SetPrivate(false); 5239 5240 // The plans run with RunThreadPlan also need to be terminal master plans or when they are done we will end 5241 // up asking the plan above us whether we should stop, which may give the wrong answer. 5242 5243 thread_plan_sp->SetIsMasterPlan (true); 5244 thread_plan_sp->SetOkayToDiscard(false); 5245 5246 if (m_private_state.GetValue() != eStateStopped) 5247 { 5248 diagnostic_manager.PutCString(eDiagnosticSeverityError, 5249 "RunThreadPlan called while the private state was not stopped."); 5250 return eExpressionSetupError; 5251 } 5252 5253 // Save the thread & frame from the exe_ctx for restoration after we run 5254 const uint32_t thread_idx_id = thread->GetIndexID(); 5255 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 5256 if (!selected_frame_sp) 5257 { 5258 thread->SetSelectedFrame(nullptr); 5259 selected_frame_sp = thread->GetSelectedFrame(); 5260 if (!selected_frame_sp) 5261 { 5262 diagnostic_manager.Printf(eDiagnosticSeverityError, 5263 "RunThreadPlan called without a selected frame on thread %d", thread_idx_id); 5264 return eExpressionSetupError; 5265 } 5266 } 5267 5268 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 5269 5270 // N.B. Running the target may unset the currently selected thread and frame. We don't want to do that either, 5271 // so we should arrange to reset them as well. 5272 5273 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 5274 5275 uint32_t selected_tid; 5276 StackID selected_stack_id; 5277 if (selected_thread_sp) 5278 { 5279 selected_tid = selected_thread_sp->GetIndexID(); 5280 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 5281 } 5282 else 5283 { 5284 selected_tid = LLDB_INVALID_THREAD_ID; 5285 } 5286 5287 HostThread backup_private_state_thread; 5288 lldb::StateType old_state = eStateInvalid; 5289 lldb::ThreadPlanSP stopper_base_plan_sp; 5290 5291 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS)); 5292 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5293 { 5294 // Yikes, we are running on the private state thread! So we can't wait for public events on this thread, since 5295 // we are the thread that is generating public events. 5296 // The simplest thing to do is to spin up a temporary thread to handle private state thread events while 5297 // we are fielding public events here. 5298 if (log) 5299 log->Printf ("Running thread plan on private state thread, spinning up another state thread to handle the events."); 5300 5301 backup_private_state_thread = m_private_state_thread; 5302 5303 // One other bit of business: we want to run just this thread plan and anything it pushes, and then stop, 5304 // returning control here. 5305 // But in the normal course of things, the plan above us on the stack would be given a shot at the stop 5306 // event before deciding to stop, and we don't want that. So we insert a "stopper" base plan on the stack 5307 // before the plan we want to run. Since base plans always stop and return control to the user, that will 5308 // do just what we want. 5309 stopper_base_plan_sp.reset(new ThreadPlanBase (*thread)); 5310 thread->QueueThreadPlan (stopper_base_plan_sp, false); 5311 // Have to make sure our public state is stopped, since otherwise the reporting logic below doesn't work correctly. 5312 old_state = m_public_state.GetValue(); 5313 m_public_state.SetValueNoLock(eStateStopped); 5314 5315 // Now spin up the private state thread: 5316 StartPrivateStateThread(true); 5317 } 5318 5319 thread->QueueThreadPlan(thread_plan_sp, false); // This used to pass "true" does that make sense? 5320 5321 if (options.GetDebug()) 5322 { 5323 // In this case, we aren't actually going to run, we just want to stop right away. 5324 // Flush this thread so we will refetch the stacks and show the correct backtrace. 5325 // FIXME: To make this prettier we should invent some stop reason for this, but that 5326 // is only cosmetic, and this functionality is only of use to lldb developers who can 5327 // live with not pretty... 5328 thread->Flush(); 5329 return eExpressionStoppedForDebug; 5330 } 5331 5332 ListenerSP listener_sp(Listener::MakeListener("lldb.process.listener.run-thread-plan")); 5333 5334 lldb::EventSP event_to_broadcast_sp; 5335 5336 { 5337 // This process event hijacker Hijacks the Public events and its destructor makes sure that the process events get 5338 // restored on exit to the function. 5339 // 5340 // If the event needs to propagate beyond the hijacker (e.g., the process exits during execution), then the event 5341 // is put into event_to_broadcast_sp for rebroadcasting. 5342 5343 ProcessEventHijacker run_thread_plan_hijacker (*this, listener_sp); 5344 5345 if (log) 5346 { 5347 StreamString s; 5348 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 5349 log->Printf ("Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 " to run thread plan \"%s\".", 5350 thread->GetIndexID(), 5351 thread->GetID(), 5352 s.GetData()); 5353 } 5354 5355 bool got_event; 5356 lldb::EventSP event_sp; 5357 lldb::StateType stop_state = lldb::eStateInvalid; 5358 5359 bool before_first_timeout = true; // This is set to false the first time that we have to halt the target. 5360 bool do_resume = true; 5361 bool handle_running_event = true; 5362 const uint64_t default_one_thread_timeout_usec = 250000; 5363 5364 // This is just for accounting: 5365 uint32_t num_resumes = 0; 5366 5367 uint32_t timeout_usec = options.GetTimeoutUsec(); 5368 uint32_t one_thread_timeout_usec; 5369 uint32_t all_threads_timeout_usec = 0; 5370 5371 // If we are going to run all threads the whole time, or if we are only going to run one thread, 5372 // then we don't need the first timeout. So we set the final timeout, and pretend we are after the 5373 // first timeout already. 5374 5375 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 5376 { 5377 before_first_timeout = false; 5378 one_thread_timeout_usec = 0; 5379 all_threads_timeout_usec = timeout_usec; 5380 } 5381 else 5382 { 5383 uint32_t option_one_thread_timeout = options.GetOneThreadTimeoutUsec(); 5384 5385 // If the overall wait is forever, then we only need to set the one thread timeout: 5386 if (timeout_usec == 0) 5387 { 5388 if (option_one_thread_timeout != 0) 5389 one_thread_timeout_usec = option_one_thread_timeout; 5390 else 5391 one_thread_timeout_usec = default_one_thread_timeout_usec; 5392 } 5393 else 5394 { 5395 // Otherwise, if the one thread timeout is set, make sure it isn't longer than the overall timeout, 5396 // and use it, otherwise use half the total timeout, bounded by the default_one_thread_timeout_usec. 5397 uint64_t computed_one_thread_timeout; 5398 if (option_one_thread_timeout != 0) 5399 { 5400 if (timeout_usec < option_one_thread_timeout) 5401 { 5402 diagnostic_manager.PutCString( 5403 eDiagnosticSeverityError, 5404 "RunThreadPlan called without one thread timeout greater than total timeout"); 5405 return eExpressionSetupError; 5406 } 5407 computed_one_thread_timeout = option_one_thread_timeout; 5408 } 5409 else 5410 { 5411 computed_one_thread_timeout = timeout_usec / 2; 5412 if (computed_one_thread_timeout > default_one_thread_timeout_usec) 5413 computed_one_thread_timeout = default_one_thread_timeout_usec; 5414 } 5415 one_thread_timeout_usec = computed_one_thread_timeout; 5416 all_threads_timeout_usec = timeout_usec - one_thread_timeout_usec; 5417 } 5418 } 5419 5420 if (log) 5421 log->Printf ("Stop others: %u, try all: %u, before_first: %u, one thread: %" PRIu32 " - all threads: %" PRIu32 ".\n", 5422 options.GetStopOthers(), 5423 options.GetTryAllThreads(), 5424 before_first_timeout, 5425 one_thread_timeout_usec, 5426 all_threads_timeout_usec); 5427 5428 // This isn't going to work if there are unfetched events on the queue. 5429 // Are there cases where we might want to run the remaining events here, and then try to 5430 // call the function? That's probably being too tricky for our own good. 5431 5432 Event *other_events = listener_sp->PeekAtNextEvent(); 5433 if (other_events != nullptr) 5434 { 5435 diagnostic_manager.PutCString(eDiagnosticSeverityError, 5436 "RunThreadPlan called with pending events on the queue."); 5437 return eExpressionSetupError; 5438 } 5439 5440 // We also need to make sure that the next event is delivered. We might be calling a function as part of 5441 // a thread plan, in which case the last delivered event could be the running event, and we don't want 5442 // event coalescing to cause us to lose OUR running event... 5443 ForceNextEventDelivery(); 5444 5445 // This while loop must exit out the bottom, there's cleanup that we need to do when we are done. 5446 // So don't call return anywhere within it. 5447 5448 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5449 // It's pretty much impossible to write test cases for things like: 5450 // One thread timeout expires, I go to halt, but the process already stopped 5451 // on the function call stop breakpoint. Turning on this define will make us not 5452 // fetch the first event till after the halt. So if you run a quick function, it will have 5453 // completed, and the completion event will be waiting, when you interrupt for halt. 5454 // The expression evaluation should still succeed. 5455 bool miss_first_event = true; 5456 #endif 5457 TimeValue one_thread_timeout; 5458 TimeValue final_timeout; 5459 std::chrono::microseconds timeout = std::chrono::microseconds(0); 5460 5461 while (true) 5462 { 5463 // We usually want to resume the process if we get to the top of the loop. 5464 // The only exception is if we get two running events with no intervening 5465 // stop, which can happen, we will just wait for then next stop event. 5466 if (log) 5467 log->Printf ("Top of while loop: do_resume: %i handle_running_event: %i before_first_timeout: %i.", 5468 do_resume, 5469 handle_running_event, 5470 before_first_timeout); 5471 5472 if (do_resume || handle_running_event) 5473 { 5474 // Do the initial resume and wait for the running event before going further. 5475 5476 if (do_resume) 5477 { 5478 num_resumes++; 5479 Error resume_error = PrivateResume(); 5480 if (!resume_error.Success()) 5481 { 5482 diagnostic_manager.Printf(eDiagnosticSeverityError, 5483 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 5484 resume_error.AsCString()); 5485 return_value = eExpressionSetupError; 5486 break; 5487 } 5488 } 5489 5490 got_event = listener_sp->WaitForEvent(std::chrono::microseconds(500000), event_sp); 5491 if (!got_event) 5492 { 5493 if (log) 5494 log->Printf("Process::RunThreadPlan(): didn't get any event after resume %" PRIu32 ", exiting.", 5495 num_resumes); 5496 5497 diagnostic_manager.Printf(eDiagnosticSeverityError, 5498 "didn't get any event after resume %" PRIu32 ", exiting.", num_resumes); 5499 return_value = eExpressionSetupError; 5500 break; 5501 } 5502 5503 stop_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5504 5505 if (stop_state != eStateRunning) 5506 { 5507 bool restarted = false; 5508 5509 if (stop_state == eStateStopped) 5510 { 5511 restarted = Process::ProcessEventData::GetRestartedFromEvent(event_sp.get()); 5512 if (log) 5513 log->Printf("Process::RunThreadPlan(): didn't get running event after " 5514 "resume %d, got %s instead (restarted: %i, do_resume: %i, handle_running_event: %i).", 5515 num_resumes, 5516 StateAsCString(stop_state), 5517 restarted, 5518 do_resume, 5519 handle_running_event); 5520 } 5521 5522 if (restarted) 5523 { 5524 // This is probably an overabundance of caution, I don't think I should ever get a stopped & restarted 5525 // event here. But if I do, the best thing is to Halt and then get out of here. 5526 const bool clear_thread_plans = false; 5527 const bool use_run_lock = false; 5528 Halt(clear_thread_plans, use_run_lock); 5529 } 5530 5531 diagnostic_manager.Printf(eDiagnosticSeverityError, 5532 "didn't get running event after initial resume, got %s instead.", 5533 StateAsCString(stop_state)); 5534 return_value = eExpressionSetupError; 5535 break; 5536 } 5537 5538 if (log) 5539 log->PutCString ("Process::RunThreadPlan(): resuming succeeded."); 5540 // We need to call the function synchronously, so spin waiting for it to return. 5541 // If we get interrupted while executing, we're going to lose our context, and 5542 // won't be able to gather the result at this point. 5543 // We set the timeout AFTER the resume, since the resume takes some time and we 5544 // don't want to charge that to the timeout. 5545 } 5546 else 5547 { 5548 if (log) 5549 log->PutCString ("Process::RunThreadPlan(): waiting for next event."); 5550 } 5551 5552 if (before_first_timeout) 5553 { 5554 if (options.GetTryAllThreads()) 5555 timeout = std::chrono::microseconds(one_thread_timeout_usec); 5556 else 5557 timeout = std::chrono::microseconds(timeout_usec); 5558 } 5559 else 5560 { 5561 if (timeout_usec == 0) 5562 timeout = std::chrono::microseconds(0); 5563 else 5564 timeout = std::chrono::microseconds(all_threads_timeout_usec); 5565 } 5566 5567 do_resume = true; 5568 handle_running_event = true; 5569 5570 // Now wait for the process to stop again: 5571 event_sp.reset(); 5572 5573 if (log) 5574 { 5575 if (timeout.count()) 5576 { 5577 log->Printf( 5578 "Process::RunThreadPlan(): about to wait - now is %llu - endpoint is %llu", 5579 static_cast<unsigned long long>(std::chrono::system_clock::now().time_since_epoch().count()), 5580 static_cast<unsigned long long>( 5581 std::chrono::time_point<std::chrono::system_clock, std::chrono::microseconds>(timeout) 5582 .time_since_epoch() 5583 .count())); 5584 } 5585 else 5586 { 5587 log->Printf ("Process::RunThreadPlan(): about to wait forever."); 5588 } 5589 } 5590 5591 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5592 // See comment above... 5593 if (miss_first_event) 5594 { 5595 usleep(1000); 5596 miss_first_event = false; 5597 got_event = false; 5598 } 5599 else 5600 #endif 5601 got_event = listener_sp->WaitForEvent(timeout, event_sp); 5602 5603 if (got_event) 5604 { 5605 if (event_sp) 5606 { 5607 bool keep_going = false; 5608 if (event_sp->GetType() == eBroadcastBitInterrupt) 5609 { 5610 const bool clear_thread_plans = false; 5611 const bool use_run_lock = false; 5612 Halt(clear_thread_plans, use_run_lock); 5613 return_value = eExpressionInterrupted; 5614 diagnostic_manager.PutCString(eDiagnosticSeverityRemark, "execution halted by user interrupt."); 5615 if (log) 5616 log->Printf( 5617 "Process::RunThreadPlan(): Got interrupted by eBroadcastBitInterrupted, exiting."); 5618 break; 5619 } 5620 else 5621 { 5622 stop_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5623 if (log) 5624 log->Printf("Process::RunThreadPlan(): in while loop, got event: %s.", StateAsCString(stop_state)); 5625 5626 switch (stop_state) 5627 { 5628 case lldb::eStateStopped: 5629 { 5630 // We stopped, figure out what we are going to do now. 5631 ThreadSP thread_sp = GetThreadList().FindThreadByIndexID (thread_idx_id); 5632 if (!thread_sp) 5633 { 5634 // Ooh, our thread has vanished. Unlikely that this was successful execution... 5635 if (log) 5636 log->Printf ("Process::RunThreadPlan(): execution completed but our thread (index-id=%u) has vanished.", thread_idx_id); 5637 return_value = eExpressionInterrupted; 5638 } 5639 else 5640 { 5641 // If we were restarted, we just need to go back up to fetch another event. 5642 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 5643 { 5644 if (log) 5645 { 5646 log->Printf ("Process::RunThreadPlan(): Got a stop and restart, so we'll continue waiting."); 5647 } 5648 keep_going = true; 5649 do_resume = false; 5650 handle_running_event = true; 5651 } 5652 else 5653 { 5654 StopInfoSP stop_info_sp (thread_sp->GetStopInfo ()); 5655 StopReason stop_reason = eStopReasonInvalid; 5656 if (stop_info_sp) 5657 stop_reason = stop_info_sp->GetStopReason(); 5658 5659 // FIXME: We only check if the stop reason is plan complete, should we make sure that 5660 // it is OUR plan that is complete? 5661 if (stop_reason == eStopReasonPlanComplete) 5662 { 5663 if (log) 5664 log->PutCString ("Process::RunThreadPlan(): execution completed successfully."); 5665 5666 // Restore the plan state so it will get reported as intended when we are done. 5667 thread_plan_restorer.Clean(); 5668 5669 return_value = eExpressionCompleted; 5670 } 5671 else 5672 { 5673 // Something restarted the target, so just wait for it to stop for real. 5674 if (stop_reason == eStopReasonBreakpoint) 5675 { 5676 if (log) 5677 log->Printf ("Process::RunThreadPlan() stopped for breakpoint: %s.", stop_info_sp->GetDescription()); 5678 return_value = eExpressionHitBreakpoint; 5679 if (!options.DoesIgnoreBreakpoints()) 5680 { 5681 // Restore the plan state and then force Private to false. We are 5682 // going to stop because of this plan so we need it to become a public 5683 // plan or it won't report correctly when we continue to its termination 5684 // later on. 5685 thread_plan_restorer.Clean(); 5686 if (thread_plan_sp) 5687 thread_plan_sp->SetPrivate(false); 5688 event_to_broadcast_sp = event_sp; 5689 } 5690 } 5691 else 5692 { 5693 if (log) 5694 log->PutCString ("Process::RunThreadPlan(): thread plan didn't successfully complete."); 5695 if (!options.DoesUnwindOnError()) 5696 event_to_broadcast_sp = event_sp; 5697 return_value = eExpressionInterrupted; 5698 } 5699 } 5700 } 5701 } 5702 } 5703 break; 5704 5705 case lldb::eStateRunning: 5706 // This shouldn't really happen, but sometimes we do get two running events without an 5707 // intervening stop, and in that case we should just go back to waiting for the stop. 5708 do_resume = false; 5709 keep_going = true; 5710 handle_running_event = false; 5711 break; 5712 5713 default: 5714 if (log) 5715 log->Printf("Process::RunThreadPlan(): execution stopped with unexpected state: %s.", StateAsCString(stop_state)); 5716 5717 if (stop_state == eStateExited) 5718 event_to_broadcast_sp = event_sp; 5719 5720 diagnostic_manager.PutCString(eDiagnosticSeverityError, 5721 "execution stopped with unexpected state."); 5722 return_value = eExpressionInterrupted; 5723 break; 5724 } 5725 } 5726 5727 if (keep_going) 5728 continue; 5729 else 5730 break; 5731 } 5732 else 5733 { 5734 if (log) 5735 log->PutCString ("Process::RunThreadPlan(): got_event was true, but the event pointer was null. How odd..."); 5736 return_value = eExpressionInterrupted; 5737 break; 5738 } 5739 } 5740 else 5741 { 5742 // If we didn't get an event that means we've timed out... 5743 // We will interrupt the process here. Depending on what we were asked to do we will 5744 // either exit, or try with all threads running for the same timeout. 5745 5746 if (log) { 5747 if (options.GetTryAllThreads()) 5748 { 5749 if (before_first_timeout) 5750 { 5751 if (timeout_usec != 0) 5752 { 5753 log->Printf ("Process::RunThreadPlan(): Running function with one thread timeout timed out, " 5754 "running for %" PRIu32 " usec with all threads enabled.", 5755 all_threads_timeout_usec); 5756 } 5757 else 5758 { 5759 log->Printf ("Process::RunThreadPlan(): Running function with one thread timeout timed out, " 5760 "running forever with all threads enabled."); 5761 } 5762 } 5763 else 5764 log->Printf ("Process::RunThreadPlan(): Restarting function with all threads enabled " 5765 "and timeout: %u timed out, abandoning execution.", 5766 timeout_usec); 5767 } 5768 else 5769 log->Printf ("Process::RunThreadPlan(): Running function with timeout: %u timed out, " 5770 "abandoning execution.", 5771 timeout_usec); 5772 } 5773 5774 // It is possible that between the time we issued the Halt, and we get around to calling Halt the target 5775 // could have stopped. That's fine, Halt will figure that out and send the appropriate Stopped event. 5776 // BUT it is also possible that we stopped & restarted (e.g. hit a signal with "stop" set to false.) In 5777 // that case, we'll get the stopped & restarted event, and we should go back to waiting for the Halt's 5778 // stopped event. That's what this while loop does. 5779 5780 bool back_to_top = true; 5781 uint32_t try_halt_again = 0; 5782 bool do_halt = true; 5783 const uint32_t num_retries = 5; 5784 while (try_halt_again < num_retries) 5785 { 5786 Error halt_error; 5787 if (do_halt) 5788 { 5789 if (log) 5790 log->Printf ("Process::RunThreadPlan(): Running Halt."); 5791 const bool clear_thread_plans = false; 5792 const bool use_run_lock = false; 5793 Halt(clear_thread_plans, use_run_lock); 5794 } 5795 if (halt_error.Success()) 5796 { 5797 if (log) 5798 log->PutCString ("Process::RunThreadPlan(): Halt succeeded."); 5799 5800 got_event = listener_sp->WaitForEvent(std::chrono::microseconds(500000), event_sp); 5801 5802 if (got_event) 5803 { 5804 stop_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5805 if (log) 5806 { 5807 log->Printf ("Process::RunThreadPlan(): Stopped with event: %s", StateAsCString(stop_state)); 5808 if (stop_state == lldb::eStateStopped 5809 && Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 5810 log->PutCString (" Event was the Halt interruption event."); 5811 } 5812 5813 if (stop_state == lldb::eStateStopped) 5814 { 5815 // Between the time we initiated the Halt and the time we delivered it, the process could have 5816 // already finished its job. Check that here: 5817 5818 if (thread->IsThreadPlanDone (thread_plan_sp.get())) 5819 { 5820 if (log) 5821 log->PutCString ("Process::RunThreadPlan(): Even though we timed out, the call plan was done. " 5822 "Exiting wait loop."); 5823 return_value = eExpressionCompleted; 5824 back_to_top = false; 5825 break; 5826 } 5827 5828 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 5829 { 5830 if (log) 5831 log->PutCString ("Process::RunThreadPlan(): Went to halt but got a restarted event, there must be an un-restarted stopped event so try again... " 5832 "Exiting wait loop."); 5833 try_halt_again++; 5834 do_halt = false; 5835 continue; 5836 } 5837 5838 if (!options.GetTryAllThreads()) 5839 { 5840 if (log) 5841 log->PutCString ("Process::RunThreadPlan(): try_all_threads was false, we stopped so now we're quitting."); 5842 return_value = eExpressionInterrupted; 5843 back_to_top = false; 5844 break; 5845 } 5846 5847 if (before_first_timeout) 5848 { 5849 // Set all the other threads to run, and return to the top of the loop, which will continue; 5850 before_first_timeout = false; 5851 thread_plan_sp->SetStopOthers (false); 5852 if (log) 5853 log->PutCString ("Process::RunThreadPlan(): about to resume."); 5854 5855 back_to_top = true; 5856 break; 5857 } 5858 else 5859 { 5860 // Running all threads failed, so return Interrupted. 5861 if (log) 5862 log->PutCString("Process::RunThreadPlan(): running all threads timed out."); 5863 return_value = eExpressionInterrupted; 5864 back_to_top = false; 5865 break; 5866 } 5867 } 5868 } 5869 else 5870 { if (log) 5871 log->PutCString("Process::RunThreadPlan(): halt said it succeeded, but I got no event. " 5872 "I'm getting out of here passing Interrupted."); 5873 return_value = eExpressionInterrupted; 5874 back_to_top = false; 5875 break; 5876 } 5877 } 5878 else 5879 { 5880 try_halt_again++; 5881 continue; 5882 } 5883 } 5884 5885 if (!back_to_top || try_halt_again > num_retries) 5886 break; 5887 else 5888 continue; 5889 } 5890 } // END WAIT LOOP 5891 5892 // If we had to start up a temporary private state thread to run this thread plan, shut it down now. 5893 if (backup_private_state_thread.IsJoinable()) 5894 { 5895 StopPrivateStateThread(); 5896 Error error; 5897 m_private_state_thread = backup_private_state_thread; 5898 if (stopper_base_plan_sp) 5899 { 5900 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5901 } 5902 if (old_state != eStateInvalid) 5903 m_public_state.SetValueNoLock(old_state); 5904 } 5905 5906 if (return_value != eExpressionCompleted && log) 5907 { 5908 // Print a backtrace into the log so we can figure out where we are: 5909 StreamString s; 5910 s.PutCString("Thread state after unsuccessful completion: \n"); 5911 thread->GetStackFrameStatus (s, 5912 0, 5913 UINT32_MAX, 5914 true, 5915 UINT32_MAX); 5916 log->PutCString(s.GetData()); 5917 5918 } 5919 // Restore the thread state if we are going to discard the plan execution. There are three cases where this 5920 // could happen: 5921 // 1) The execution successfully completed 5922 // 2) We hit a breakpoint, and ignore_breakpoints was true 5923 // 3) We got some other error, and discard_on_error was true 5924 bool should_unwind = (return_value == eExpressionInterrupted && options.DoesUnwindOnError()) 5925 || (return_value == eExpressionHitBreakpoint && options.DoesIgnoreBreakpoints()); 5926 5927 if (return_value == eExpressionCompleted 5928 || should_unwind) 5929 { 5930 thread_plan_sp->RestoreThreadState(); 5931 } 5932 5933 // Now do some processing on the results of the run: 5934 if (return_value == eExpressionInterrupted || return_value == eExpressionHitBreakpoint) 5935 { 5936 if (log) 5937 { 5938 StreamString s; 5939 if (event_sp) 5940 event_sp->Dump (&s); 5941 else 5942 { 5943 log->PutCString ("Process::RunThreadPlan(): Stop event that interrupted us is NULL."); 5944 } 5945 5946 StreamString ts; 5947 5948 const char *event_explanation = nullptr; 5949 5950 do 5951 { 5952 if (!event_sp) 5953 { 5954 event_explanation = "<no event>"; 5955 break; 5956 } 5957 else if (event_sp->GetType() == eBroadcastBitInterrupt) 5958 { 5959 event_explanation = "<user interrupt>"; 5960 break; 5961 } 5962 else 5963 { 5964 const Process::ProcessEventData *event_data = Process::ProcessEventData::GetEventDataFromEvent (event_sp.get()); 5965 5966 if (!event_data) 5967 { 5968 event_explanation = "<no event data>"; 5969 break; 5970 } 5971 5972 Process *process = event_data->GetProcessSP().get(); 5973 5974 if (!process) 5975 { 5976 event_explanation = "<no process>"; 5977 break; 5978 } 5979 5980 ThreadList &thread_list = process->GetThreadList(); 5981 5982 uint32_t num_threads = thread_list.GetSize(); 5983 uint32_t thread_index; 5984 5985 ts.Printf("<%u threads> ", num_threads); 5986 5987 for (thread_index = 0; 5988 thread_index < num_threads; 5989 ++thread_index) 5990 { 5991 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5992 5993 if (!thread) 5994 { 5995 ts.Printf("<?> "); 5996 continue; 5997 } 5998 5999 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 6000 RegisterContext *register_context = thread->GetRegisterContext().get(); 6001 6002 if (register_context) 6003 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 6004 else 6005 ts.Printf("[ip unknown] "); 6006 6007 // Show the private stop info here, the public stop info will be from the last natural stop. 6008 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 6009 if (stop_info_sp) 6010 { 6011 const char *stop_desc = stop_info_sp->GetDescription(); 6012 if (stop_desc) 6013 ts.PutCString (stop_desc); 6014 } 6015 ts.Printf(">"); 6016 } 6017 6018 event_explanation = ts.GetData(); 6019 } 6020 } while (0); 6021 6022 if (event_explanation) 6023 log->Printf("Process::RunThreadPlan(): execution interrupted: %s %s", s.GetData(), event_explanation); 6024 else 6025 log->Printf("Process::RunThreadPlan(): execution interrupted: %s", s.GetData()); 6026 } 6027 6028 if (should_unwind) 6029 { 6030 if (log) 6031 log->Printf ("Process::RunThreadPlan: ExecutionInterrupted - discarding thread plans up to %p.", 6032 static_cast<void*>(thread_plan_sp.get())); 6033 thread->DiscardThreadPlansUpToPlan (thread_plan_sp); 6034 } 6035 else 6036 { 6037 if (log) 6038 log->Printf ("Process::RunThreadPlan: ExecutionInterrupted - for plan: %p not discarding.", 6039 static_cast<void*>(thread_plan_sp.get())); 6040 } 6041 } 6042 else if (return_value == eExpressionSetupError) 6043 { 6044 if (log) 6045 log->PutCString("Process::RunThreadPlan(): execution set up error."); 6046 6047 if (options.DoesUnwindOnError()) 6048 { 6049 thread->DiscardThreadPlansUpToPlan (thread_plan_sp); 6050 } 6051 } 6052 else 6053 { 6054 if (thread->IsThreadPlanDone (thread_plan_sp.get())) 6055 { 6056 if (log) 6057 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 6058 return_value = eExpressionCompleted; 6059 } 6060 else if (thread->WasThreadPlanDiscarded (thread_plan_sp.get())) 6061 { 6062 if (log) 6063 log->PutCString("Process::RunThreadPlan(): thread plan was discarded"); 6064 return_value = eExpressionDiscarded; 6065 } 6066 else 6067 { 6068 if (log) 6069 log->PutCString("Process::RunThreadPlan(): thread plan stopped in mid course"); 6070 if (options.DoesUnwindOnError() && thread_plan_sp) 6071 { 6072 if (log) 6073 log->PutCString("Process::RunThreadPlan(): discarding thread plan 'cause unwind_on_error is set."); 6074 thread->DiscardThreadPlansUpToPlan (thread_plan_sp); 6075 } 6076 } 6077 } 6078 6079 // Thread we ran the function in may have gone away because we ran the target 6080 // Check that it's still there, and if it is put it back in the context. Also restore the 6081 // frame in the context if it is still present. 6082 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 6083 if (thread) 6084 { 6085 exe_ctx.SetFrameSP (thread->GetFrameWithStackID (ctx_frame_id)); 6086 } 6087 6088 // Also restore the current process'es selected frame & thread, since this function calling may 6089 // be done behind the user's back. 6090 6091 if (selected_tid != LLDB_INVALID_THREAD_ID) 6092 { 6093 if (GetThreadList().SetSelectedThreadByIndexID (selected_tid) && selected_stack_id.IsValid()) 6094 { 6095 // We were able to restore the selected thread, now restore the frame: 6096 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 6097 StackFrameSP old_frame_sp = GetThreadList().GetSelectedThread()->GetFrameWithStackID(selected_stack_id); 6098 if (old_frame_sp) 6099 GetThreadList().GetSelectedThread()->SetSelectedFrame(old_frame_sp.get()); 6100 } 6101 } 6102 } 6103 6104 // If the process exited during the run of the thread plan, notify everyone. 6105 6106 if (event_to_broadcast_sp) 6107 { 6108 if (log) 6109 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 6110 BroadcastEvent(event_to_broadcast_sp); 6111 } 6112 6113 return return_value; 6114 } 6115 6116 const char * 6117 Process::ExecutionResultAsCString (ExpressionResults result) 6118 { 6119 const char *result_name; 6120 6121 switch (result) 6122 { 6123 case eExpressionCompleted: 6124 result_name = "eExpressionCompleted"; 6125 break; 6126 case eExpressionDiscarded: 6127 result_name = "eExpressionDiscarded"; 6128 break; 6129 case eExpressionInterrupted: 6130 result_name = "eExpressionInterrupted"; 6131 break; 6132 case eExpressionHitBreakpoint: 6133 result_name = "eExpressionHitBreakpoint"; 6134 break; 6135 case eExpressionSetupError: 6136 result_name = "eExpressionSetupError"; 6137 break; 6138 case eExpressionParseError: 6139 result_name = "eExpressionParseError"; 6140 break; 6141 case eExpressionResultUnavailable: 6142 result_name = "eExpressionResultUnavailable"; 6143 break; 6144 case eExpressionTimedOut: 6145 result_name = "eExpressionTimedOut"; 6146 break; 6147 case eExpressionStoppedForDebug: 6148 result_name = "eExpressionStoppedForDebug"; 6149 break; 6150 } 6151 return result_name; 6152 } 6153 6154 void 6155 Process::GetStatus (Stream &strm) 6156 { 6157 const StateType state = GetState(); 6158 if (StateIsStoppedState(state, false)) 6159 { 6160 if (state == eStateExited) 6161 { 6162 int exit_status = GetExitStatus(); 6163 const char *exit_description = GetExitDescription(); 6164 strm.Printf ("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 6165 GetID(), 6166 exit_status, 6167 exit_status, 6168 exit_description ? exit_description : ""); 6169 } 6170 else 6171 { 6172 if (state == eStateConnected) 6173 strm.Printf ("Connected to remote target.\n"); 6174 else 6175 strm.Printf ("Process %" PRIu64 " %s\n", GetID(), StateAsCString (state)); 6176 } 6177 } 6178 else 6179 { 6180 strm.Printf ("Process %" PRIu64 " is running.\n", GetID()); 6181 } 6182 } 6183 6184 size_t 6185 Process::GetThreadStatus (Stream &strm, 6186 bool only_threads_with_stop_reason, 6187 uint32_t start_frame, 6188 uint32_t num_frames, 6189 uint32_t num_frames_with_source) 6190 { 6191 size_t num_thread_infos_dumped = 0; 6192 6193 // You can't hold the thread list lock while calling Thread::GetStatus. That very well might run code (e.g. if we need it 6194 // to get return values or arguments.) For that to work the process has to be able to acquire it. So instead copy the thread 6195 // ID's, and look them up one by one: 6196 6197 uint32_t num_threads; 6198 std::vector<lldb::tid_t> thread_id_array; 6199 //Scope for thread list locker; 6200 { 6201 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 6202 ThreadList &curr_thread_list = GetThreadList(); 6203 num_threads = curr_thread_list.GetSize(); 6204 uint32_t idx; 6205 thread_id_array.resize(num_threads); 6206 for (idx = 0; idx < num_threads; ++idx) 6207 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 6208 } 6209 6210 for (uint32_t i = 0; i < num_threads; i++) 6211 { 6212 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 6213 if (thread_sp) 6214 { 6215 if (only_threads_with_stop_reason) 6216 { 6217 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 6218 if (!stop_info_sp || !stop_info_sp->IsValid()) 6219 continue; 6220 } 6221 thread_sp->GetStatus (strm, 6222 start_frame, 6223 num_frames, 6224 num_frames_with_source); 6225 ++num_thread_infos_dumped; 6226 } 6227 else 6228 { 6229 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS)); 6230 if (log) 6231 log->Printf("Process::GetThreadStatus - thread 0x" PRIu64 " vanished while running Thread::GetStatus."); 6232 } 6233 } 6234 return num_thread_infos_dumped; 6235 } 6236 6237 void 6238 Process::AddInvalidMemoryRegion (const LoadRange ®ion) 6239 { 6240 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 6241 } 6242 6243 bool 6244 Process::RemoveInvalidMemoryRange (const LoadRange ®ion) 6245 { 6246 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), region.GetByteSize()); 6247 } 6248 6249 void 6250 Process::AddPreResumeAction (PreResumeActionCallback callback, void *baton) 6251 { 6252 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton (callback, baton)); 6253 } 6254 6255 bool 6256 Process::RunPreResumeActions () 6257 { 6258 bool result = true; 6259 while (!m_pre_resume_actions.empty()) 6260 { 6261 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 6262 m_pre_resume_actions.pop_back(); 6263 bool this_result = action.callback (action.baton); 6264 if (result) 6265 result = this_result; 6266 } 6267 return result; 6268 } 6269 6270 void 6271 Process::ClearPreResumeActions () 6272 { 6273 m_pre_resume_actions.clear(); 6274 } 6275 6276 ProcessRunLock & 6277 Process::GetRunLock() 6278 { 6279 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 6280 return m_private_run_lock; 6281 else 6282 return m_public_run_lock; 6283 } 6284 6285 void 6286 Process::Flush () 6287 { 6288 m_thread_list.Flush(); 6289 m_extended_thread_list.Flush(); 6290 m_extended_thread_stop_id = 0; 6291 m_queue_list.Clear(); 6292 m_queue_list_stop_id = 0; 6293 } 6294 6295 void 6296 Process::DidExec () 6297 { 6298 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 6299 if (log) 6300 log->Printf ("Process::%s()", __FUNCTION__); 6301 6302 Target &target = GetTarget(); 6303 target.CleanupProcess (); 6304 target.ClearModules(false); 6305 m_dynamic_checkers_ap.reset(); 6306 m_abi_sp.reset(); 6307 m_system_runtime_ap.reset(); 6308 m_os_ap.reset(); 6309 m_dyld_ap.reset(); 6310 m_jit_loaders_ap.reset(); 6311 m_image_tokens.clear(); 6312 m_allocated_memory_cache.Clear(); 6313 m_language_runtimes.clear(); 6314 m_instrumentation_runtimes.clear(); 6315 m_thread_list.DiscardThreadPlans(); 6316 m_memory_cache.Clear(true); 6317 m_stop_info_override_callback = nullptr; 6318 DoDidExec(); 6319 CompleteAttach (); 6320 // Flush the process (threads and all stack frames) after running CompleteAttach() 6321 // in case the dynamic loader loaded things in new locations. 6322 Flush(); 6323 6324 // After we figure out what was loaded/unloaded in CompleteAttach, 6325 // we need to let the target know so it can do any cleanup it needs to. 6326 target.DidExec(); 6327 } 6328 6329 addr_t 6330 Process::ResolveIndirectFunction(const Address *address, Error &error) 6331 { 6332 if (address == nullptr) 6333 { 6334 error.SetErrorString("Invalid address argument"); 6335 return LLDB_INVALID_ADDRESS; 6336 } 6337 6338 addr_t function_addr = LLDB_INVALID_ADDRESS; 6339 6340 addr_t addr = address->GetLoadAddress(&GetTarget()); 6341 std::map<addr_t,addr_t>::const_iterator iter = m_resolved_indirect_addresses.find(addr); 6342 if (iter != m_resolved_indirect_addresses.end()) 6343 { 6344 function_addr = (*iter).second; 6345 } 6346 else 6347 { 6348 if (!InferiorCall(this, address, function_addr)) 6349 { 6350 Symbol *symbol = address->CalculateSymbolContextSymbol(); 6351 error.SetErrorStringWithFormat ("Unable to call resolver for indirect function %s", 6352 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 6353 function_addr = LLDB_INVALID_ADDRESS; 6354 } 6355 else 6356 { 6357 m_resolved_indirect_addresses.insert(std::pair<addr_t, addr_t>(addr, function_addr)); 6358 } 6359 } 6360 return function_addr; 6361 } 6362 6363 void 6364 Process::ModulesDidLoad (ModuleList &module_list) 6365 { 6366 SystemRuntime *sys_runtime = GetSystemRuntime(); 6367 if (sys_runtime) 6368 { 6369 sys_runtime->ModulesDidLoad (module_list); 6370 } 6371 6372 GetJITLoaders().ModulesDidLoad (module_list); 6373 6374 // Give runtimes a chance to be created. 6375 InstrumentationRuntime::ModulesDidLoad(module_list, this, m_instrumentation_runtimes); 6376 6377 // Tell runtimes about new modules. 6378 for (auto pos = m_instrumentation_runtimes.begin(); pos != m_instrumentation_runtimes.end(); ++pos) 6379 { 6380 InstrumentationRuntimeSP runtime = pos->second; 6381 runtime->ModulesDidLoad(module_list); 6382 } 6383 6384 // Let any language runtimes we have already created know 6385 // about the modules that loaded. 6386 6387 // Iterate over a copy of this language runtime list in case 6388 // the language runtime ModulesDidLoad somehow causes the language 6389 // riuntime to be unloaded. 6390 LanguageRuntimeCollection language_runtimes(m_language_runtimes); 6391 for (const auto &pair: language_runtimes) 6392 { 6393 // We must check language_runtime_sp to make sure it is not 6394 // nullptr as we might cache the fact that we didn't have a 6395 // language runtime for a language. 6396 LanguageRuntimeSP language_runtime_sp = pair.second; 6397 if (language_runtime_sp) 6398 language_runtime_sp->ModulesDidLoad(module_list); 6399 } 6400 6401 // If we don't have an operating system plug-in, try to load one since 6402 // loading shared libraries might cause a new one to try and load 6403 if (!m_os_ap) 6404 LoadOperatingSystemPlugin(false); 6405 6406 // Give structured-data plugins a chance to see the modified modules. 6407 for (auto pair : m_structured_data_plugin_map) 6408 { 6409 if (pair.second) 6410 pair.second->ModulesDidLoad(*this, module_list); 6411 } 6412 } 6413 6414 void 6415 Process::PrintWarning (uint64_t warning_type, const void *repeat_key, const char *fmt, ...) 6416 { 6417 bool print_warning = true; 6418 6419 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 6420 if (!stream_sp) 6421 return; 6422 if (warning_type == eWarningsOptimization 6423 && !GetWarningsOptimization()) 6424 { 6425 return; 6426 } 6427 6428 if (repeat_key != nullptr) 6429 { 6430 WarningsCollection::iterator it = m_warnings_issued.find (warning_type); 6431 if (it == m_warnings_issued.end()) 6432 { 6433 m_warnings_issued[warning_type] = WarningsPointerSet(); 6434 m_warnings_issued[warning_type].insert (repeat_key); 6435 } 6436 else 6437 { 6438 if (it->second.find (repeat_key) != it->second.end()) 6439 { 6440 print_warning = false; 6441 } 6442 else 6443 { 6444 it->second.insert (repeat_key); 6445 } 6446 } 6447 } 6448 6449 if (print_warning) 6450 { 6451 va_list args; 6452 va_start (args, fmt); 6453 stream_sp->PrintfVarArg (fmt, args); 6454 va_end (args); 6455 } 6456 } 6457 6458 void 6459 Process::PrintWarningOptimization (const SymbolContext &sc) 6460 { 6461 if (GetWarningsOptimization() 6462 && sc.module_sp 6463 && !sc.module_sp->GetFileSpec().GetFilename().IsEmpty() 6464 && sc.function 6465 && sc.function->GetIsOptimized()) 6466 { 6467 PrintWarning (Process::Warnings::eWarningsOptimization, sc.module_sp.get(), "%s was compiled with optimization - stepping may behave oddly; variables may not be available.\n", sc.module_sp->GetFileSpec().GetFilename().GetCString()); 6468 } 6469 } 6470 6471 bool 6472 Process::GetProcessInfo(ProcessInstanceInfo &info) 6473 { 6474 info.Clear(); 6475 6476 PlatformSP platform_sp = GetTarget().GetPlatform(); 6477 if (! platform_sp) 6478 return false; 6479 6480 return platform_sp->GetProcessInfo(GetID(), info); 6481 } 6482 6483 ThreadCollectionSP 6484 Process::GetHistoryThreads(lldb::addr_t addr) 6485 { 6486 ThreadCollectionSP threads; 6487 6488 const MemoryHistorySP &memory_history = MemoryHistory::FindPlugin(shared_from_this()); 6489 6490 if (!memory_history) { 6491 return threads; 6492 } 6493 6494 threads.reset(new ThreadCollection(memory_history->GetHistoryThreads(addr))); 6495 6496 return threads; 6497 } 6498 6499 InstrumentationRuntimeSP 6500 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) 6501 { 6502 InstrumentationRuntimeCollection::iterator pos; 6503 pos = m_instrumentation_runtimes.find (type); 6504 if (pos == m_instrumentation_runtimes.end()) 6505 { 6506 return InstrumentationRuntimeSP(); 6507 } 6508 else 6509 return (*pos).second; 6510 } 6511 6512 bool 6513 Process::GetModuleSpec(const FileSpec& module_file_spec, 6514 const ArchSpec& arch, 6515 ModuleSpec& module_spec) 6516 { 6517 module_spec.Clear(); 6518 return false; 6519 } 6520 6521 size_t 6522 Process::AddImageToken(lldb::addr_t image_ptr) 6523 { 6524 m_image_tokens.push_back(image_ptr); 6525 return m_image_tokens.size() - 1; 6526 } 6527 6528 lldb::addr_t 6529 Process::GetImagePtrFromToken(size_t token) const 6530 { 6531 if (token < m_image_tokens.size()) 6532 return m_image_tokens[token]; 6533 return LLDB_INVALID_IMAGE_TOKEN; 6534 } 6535 6536 void 6537 Process::ResetImageToken(size_t token) 6538 { 6539 if (token < m_image_tokens.size()) 6540 m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN; 6541 } 6542 6543 Address 6544 Process::AdvanceAddressToNextBranchInstruction (Address default_stop_addr, AddressRange range_bounds) 6545 { 6546 Target &target = GetTarget(); 6547 DisassemblerSP disassembler_sp; 6548 InstructionList *insn_list = nullptr; 6549 6550 Address retval = default_stop_addr; 6551 6552 if (!target.GetUseFastStepping()) 6553 return retval; 6554 if (!default_stop_addr.IsValid()) 6555 return retval; 6556 6557 ExecutionContext exe_ctx (this); 6558 const char *plugin_name = nullptr; 6559 const char *flavor = nullptr; 6560 const bool prefer_file_cache = true; 6561 disassembler_sp = Disassembler::DisassembleRange(target.GetArchitecture(), 6562 plugin_name, 6563 flavor, 6564 exe_ctx, 6565 range_bounds, 6566 prefer_file_cache); 6567 if (disassembler_sp) 6568 insn_list = &disassembler_sp->GetInstructionList(); 6569 6570 if (insn_list == nullptr) 6571 { 6572 return retval; 6573 } 6574 6575 size_t insn_offset = insn_list->GetIndexOfInstructionAtAddress (default_stop_addr); 6576 if (insn_offset == UINT32_MAX) 6577 { 6578 return retval; 6579 } 6580 6581 uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction (insn_offset, target); 6582 if (branch_index == UINT32_MAX) 6583 { 6584 return retval; 6585 } 6586 6587 if (branch_index > insn_offset) 6588 { 6589 Address next_branch_insn_address = insn_list->GetInstructionAtIndex (branch_index)->GetAddress(); 6590 if (next_branch_insn_address.IsValid() && range_bounds.ContainsFileAddress (next_branch_insn_address)) 6591 { 6592 retval = next_branch_insn_address; 6593 } 6594 } 6595 6596 return retval; 6597 } 6598 6599 Error 6600 Process::GetMemoryRegions (std::vector<lldb::MemoryRegionInfoSP>& region_list) 6601 { 6602 6603 Error error; 6604 6605 lldb::addr_t range_base = 0; 6606 lldb::addr_t range_end = 0; 6607 6608 region_list.clear(); 6609 do 6610 { 6611 lldb::MemoryRegionInfoSP region_info( new lldb_private::MemoryRegionInfo() ); 6612 error = GetMemoryRegionInfo (range_end, *region_info); 6613 // GetMemoryRegionInfo should only return an error if it is unimplemented. 6614 if (error.Fail()) 6615 { 6616 region_list.clear(); 6617 break; 6618 } 6619 6620 range_base = region_info->GetRange().GetRangeBase(); 6621 range_end = region_info->GetRange().GetRangeEnd(); 6622 if( region_info->GetMapped() == MemoryRegionInfo::eYes ) 6623 { 6624 region_list.push_back(region_info); 6625 } 6626 } while (range_end != LLDB_INVALID_ADDRESS); 6627 6628 return error; 6629 } 6630 6631 Error 6632 Process::ConfigureStructuredData(const ConstString &type_name, 6633 const StructuredData::ObjectSP &config_sp) 6634 { 6635 // If you get this, the Process-derived class needs to implement a method 6636 // to enable an already-reported asynchronous structured data feature. 6637 // See ProcessGDBRemote for an example implementation over gdb-remote. 6638 return Error("unimplemented"); 6639 } 6640 6641 void 6642 Process::MapSupportedStructuredDataPlugins(const StructuredData::Array 6643 &supported_type_names) 6644 { 6645 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 6646 6647 // Bail out early if there are no type names to map. 6648 if (supported_type_names.GetSize() == 0) 6649 { 6650 if (log) 6651 log->Printf("Process::%s(): no structured data types supported", 6652 __FUNCTION__); 6653 return; 6654 } 6655 6656 // Convert StructuredData type names to ConstString instances. 6657 std::set<ConstString> const_type_names; 6658 6659 if (log) 6660 log->Printf("Process::%s(): the process supports the following async " 6661 "structured data types:", __FUNCTION__); 6662 6663 supported_type_names.ForEach([&const_type_names, &log] 6664 (StructuredData::Object *object) { 6665 if (!object) 6666 { 6667 // Invalid - shouldn't be null objects in the array. 6668 return false; 6669 } 6670 6671 auto type_name = object->GetAsString(); 6672 if (!type_name) 6673 { 6674 // Invalid format - all type names should be strings. 6675 return false; 6676 } 6677 6678 const_type_names.insert(ConstString(type_name->GetValue())); 6679 if (log) 6680 log->Printf("- %s", type_name->GetValue().c_str()); 6681 return true; 6682 }); 6683 6684 // For each StructuredDataPlugin, if the plugin handles any of the 6685 // types in the supported_type_names, map that type name to that plugin. 6686 uint32_t plugin_index = 0; 6687 for (auto create_instance = 6688 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex(plugin_index); 6689 create_instance && !const_type_names.empty(); 6690 ++plugin_index) 6691 { 6692 // Create the plugin. 6693 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 6694 if (!plugin_sp) 6695 { 6696 // This plugin doesn't think it can work with the process. 6697 // Move on to the next. 6698 continue; 6699 } 6700 6701 // For any of the remaining type names, map any that this plugin 6702 // supports. 6703 std::vector<ConstString> names_to_remove; 6704 for (auto &type_name : const_type_names) 6705 { 6706 if (plugin_sp->SupportsStructuredDataType(type_name)) 6707 { 6708 m_structured_data_plugin_map.insert(std::make_pair(type_name, 6709 plugin_sp)); 6710 names_to_remove.push_back(type_name); 6711 if (log) 6712 log->Printf("Process::%s(): using plugin %s for type name " 6713 "%s", __FUNCTION__, 6714 plugin_sp->GetPluginName().GetCString(), 6715 type_name.GetCString()); 6716 } 6717 } 6718 6719 // Remove the type names that were consumed by this plugin. 6720 for (auto &type_name : names_to_remove) 6721 const_type_names.erase(type_name); 6722 } 6723 } 6724 6725 bool 6726 Process::RouteAsyncStructuredData(const StructuredData::ObjectSP object_sp) 6727 { 6728 // Nothing to do if there's no data. 6729 if (!object_sp) 6730 return false; 6731 6732 // The contract is this must be a dictionary, so we can look up the 6733 // routing key via the top-level 'type' string value within the dictionary. 6734 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 6735 if (!dictionary) 6736 return false; 6737 6738 // Grab the async structured type name (i.e. the feature/plugin name). 6739 ConstString type_name; 6740 if (!dictionary->GetValueForKeyAsString("type", type_name)) 6741 return false; 6742 6743 // Check if there's a plugin registered for this type name. 6744 auto find_it = m_structured_data_plugin_map.find(type_name); 6745 if (find_it == m_structured_data_plugin_map.end()) 6746 { 6747 // We don't have a mapping for this structured data type. 6748 return false; 6749 } 6750 6751 // Route the structured data to the plugin. 6752 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 6753 return true; 6754 } 6755