1 //===-- Process.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <atomic> 10 #include <memory> 11 #include <mutex> 12 13 #include "llvm/ADT/ScopeExit.h" 14 #include "llvm/Support/ScopedPrinter.h" 15 #include "llvm/Support/Threading.h" 16 17 #include "lldb/Breakpoint/BreakpointLocation.h" 18 #include "lldb/Breakpoint/StoppointCallbackContext.h" 19 #include "lldb/Core/Debugger.h" 20 #include "lldb/Core/Module.h" 21 #include "lldb/Core/ModuleSpec.h" 22 #include "lldb/Core/PluginManager.h" 23 #include "lldb/Core/StreamFile.h" 24 #include "lldb/Expression/DiagnosticManager.h" 25 #include "lldb/Expression/DynamicCheckerFunctions.h" 26 #include "lldb/Expression/UserExpression.h" 27 #include "lldb/Expression/UtilityFunction.h" 28 #include "lldb/Host/ConnectionFileDescriptor.h" 29 #include "lldb/Host/FileSystem.h" 30 #include "lldb/Host/Host.h" 31 #include "lldb/Host/HostInfo.h" 32 #include "lldb/Host/OptionParser.h" 33 #include "lldb/Host/Pipe.h" 34 #include "lldb/Host/Terminal.h" 35 #include "lldb/Host/ThreadLauncher.h" 36 #include "lldb/Interpreter/CommandInterpreter.h" 37 #include "lldb/Interpreter/OptionArgParser.h" 38 #include "lldb/Interpreter/OptionValueProperties.h" 39 #include "lldb/Symbol/Function.h" 40 #include "lldb/Symbol/Symbol.h" 41 #include "lldb/Target/ABI.h" 42 #include "lldb/Target/AssertFrameRecognizer.h" 43 #include "lldb/Target/DynamicLoader.h" 44 #include "lldb/Target/InstrumentationRuntime.h" 45 #include "lldb/Target/JITLoader.h" 46 #include "lldb/Target/JITLoaderList.h" 47 #include "lldb/Target/Language.h" 48 #include "lldb/Target/LanguageRuntime.h" 49 #include "lldb/Target/MemoryHistory.h" 50 #include "lldb/Target/MemoryRegionInfo.h" 51 #include "lldb/Target/OperatingSystem.h" 52 #include "lldb/Target/Platform.h" 53 #include "lldb/Target/Process.h" 54 #include "lldb/Target/RegisterContext.h" 55 #include "lldb/Target/StopInfo.h" 56 #include "lldb/Target/StructuredDataPlugin.h" 57 #include "lldb/Target/SystemRuntime.h" 58 #include "lldb/Target/Target.h" 59 #include "lldb/Target/TargetList.h" 60 #include "lldb/Target/Thread.h" 61 #include "lldb/Target/ThreadPlan.h" 62 #include "lldb/Target/ThreadPlanBase.h" 63 #include "lldb/Target/ThreadPlanCallFunction.h" 64 #include "lldb/Target/ThreadPlanStack.h" 65 #include "lldb/Target/UnixSignals.h" 66 #include "lldb/Utility/Event.h" 67 #include "lldb/Utility/Log.h" 68 #include "lldb/Utility/NameMatches.h" 69 #include "lldb/Utility/ProcessInfo.h" 70 #include "lldb/Utility/SelectHelper.h" 71 #include "lldb/Utility/State.h" 72 #include "lldb/Utility/Timer.h" 73 74 using namespace lldb; 75 using namespace lldb_private; 76 using namespace std::chrono; 77 78 // Comment out line below to disable memory caching, overriding the process 79 // setting target.process.disable-memory-cache 80 #define ENABLE_MEMORY_CACHING 81 82 #ifdef ENABLE_MEMORY_CACHING 83 #define DISABLE_MEM_CACHE_DEFAULT false 84 #else 85 #define DISABLE_MEM_CACHE_DEFAULT true 86 #endif 87 88 class ProcessOptionValueProperties 89 : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> { 90 public: 91 ProcessOptionValueProperties(ConstString name) : Cloneable(name) {} 92 93 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 94 bool will_modify, 95 uint32_t idx) const override { 96 // When getting the value for a key from the process options, we will 97 // always try and grab the setting from the current process if there is 98 // one. Else we just use the one from this instance. 99 if (exe_ctx) { 100 Process *process = exe_ctx->GetProcessPtr(); 101 if (process) { 102 ProcessOptionValueProperties *instance_properties = 103 static_cast<ProcessOptionValueProperties *>( 104 process->GetValueProperties().get()); 105 if (this != instance_properties) 106 return instance_properties->ProtectedGetPropertyAtIndex(idx); 107 } 108 } 109 return ProtectedGetPropertyAtIndex(idx); 110 } 111 }; 112 113 static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = { 114 { 115 eFollowParent, 116 "parent", 117 "Continue tracing the parent process and detach the child.", 118 }, 119 { 120 eFollowChild, 121 "child", 122 "Trace the child process and detach the parent.", 123 }, 124 }; 125 126 #define LLDB_PROPERTIES_process 127 #include "TargetProperties.inc" 128 129 enum { 130 #define LLDB_PROPERTIES_process 131 #include "TargetPropertiesEnum.inc" 132 ePropertyExperimental, 133 }; 134 135 #define LLDB_PROPERTIES_process_experimental 136 #include "TargetProperties.inc" 137 138 enum { 139 #define LLDB_PROPERTIES_process_experimental 140 #include "TargetPropertiesEnum.inc" 141 }; 142 143 class ProcessExperimentalOptionValueProperties 144 : public Cloneable<ProcessExperimentalOptionValueProperties, 145 OptionValueProperties> { 146 public: 147 ProcessExperimentalOptionValueProperties() 148 : Cloneable( 149 ConstString(Properties::GetExperimentalSettingsName())) {} 150 }; 151 152 ProcessExperimentalProperties::ProcessExperimentalProperties() 153 : Properties(OptionValuePropertiesSP( 154 new ProcessExperimentalOptionValueProperties())) { 155 m_collection_sp->Initialize(g_process_experimental_properties); 156 } 157 158 ProcessProperties::ProcessProperties(lldb_private::Process *process) 159 : Properties(), 160 m_process(process) // Can be nullptr for global ProcessProperties 161 { 162 if (process == nullptr) { 163 // Global process properties, set them up one time 164 m_collection_sp = 165 std::make_shared<ProcessOptionValueProperties>(ConstString("process")); 166 m_collection_sp->Initialize(g_process_properties); 167 m_collection_sp->AppendProperty( 168 ConstString("thread"), ConstString("Settings specific to threads."), 169 true, Thread::GetGlobalProperties()->GetValueProperties()); 170 } else { 171 m_collection_sp = 172 OptionValueProperties::CreateLocalCopy(*Process::GetGlobalProperties()); 173 m_collection_sp->SetValueChangedCallback( 174 ePropertyPythonOSPluginPath, 175 [this] { m_process->LoadOperatingSystemPlugin(true); }); 176 } 177 178 m_experimental_properties_up = 179 std::make_unique<ProcessExperimentalProperties>(); 180 m_collection_sp->AppendProperty( 181 ConstString(Properties::GetExperimentalSettingsName()), 182 ConstString("Experimental settings - setting these won't produce " 183 "errors if the setting is not present."), 184 true, m_experimental_properties_up->GetValueProperties()); 185 } 186 187 ProcessProperties::~ProcessProperties() = default; 188 189 bool ProcessProperties::GetDisableMemoryCache() const { 190 const uint32_t idx = ePropertyDisableMemCache; 191 return m_collection_sp->GetPropertyAtIndexAsBoolean( 192 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 193 } 194 195 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 196 const uint32_t idx = ePropertyMemCacheLineSize; 197 return m_collection_sp->GetPropertyAtIndexAsUInt64( 198 nullptr, idx, g_process_properties[idx].default_uint_value); 199 } 200 201 Args ProcessProperties::GetExtraStartupCommands() const { 202 Args args; 203 const uint32_t idx = ePropertyExtraStartCommand; 204 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 205 return args; 206 } 207 208 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 209 const uint32_t idx = ePropertyExtraStartCommand; 210 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 211 } 212 213 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 214 const uint32_t idx = ePropertyPythonOSPluginPath; 215 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 216 } 217 218 uint32_t ProcessProperties::GetVirtualAddressableBits() const { 219 const uint32_t idx = ePropertyVirtualAddressableBits; 220 return m_collection_sp->GetPropertyAtIndexAsUInt64( 221 nullptr, idx, g_process_properties[idx].default_uint_value); 222 } 223 224 void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) { 225 const uint32_t idx = ePropertyVirtualAddressableBits; 226 m_collection_sp->SetPropertyAtIndexAsUInt64(nullptr, idx, bits); 227 } 228 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 229 const uint32_t idx = ePropertyPythonOSPluginPath; 230 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 231 } 232 233 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 234 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 235 return m_collection_sp->GetPropertyAtIndexAsBoolean( 236 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 237 } 238 239 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 240 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 241 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 242 } 243 244 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 245 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 246 return m_collection_sp->GetPropertyAtIndexAsBoolean( 247 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 248 } 249 250 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 251 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 252 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 253 } 254 255 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 256 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 257 return m_collection_sp->GetPropertyAtIndexAsBoolean( 258 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 259 } 260 261 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 262 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 263 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 264 } 265 266 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const { 267 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 268 return m_collection_sp->GetPropertyAtIndexAsBoolean( 269 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 270 } 271 272 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) { 273 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 274 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, disable); 275 m_process->Flush(); 276 } 277 278 bool ProcessProperties::GetDetachKeepsStopped() const { 279 const uint32_t idx = ePropertyDetachKeepsStopped; 280 return m_collection_sp->GetPropertyAtIndexAsBoolean( 281 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 282 } 283 284 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 285 const uint32_t idx = ePropertyDetachKeepsStopped; 286 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 287 } 288 289 bool ProcessProperties::GetWarningsOptimization() const { 290 const uint32_t idx = ePropertyWarningOptimization; 291 return m_collection_sp->GetPropertyAtIndexAsBoolean( 292 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 293 } 294 295 bool ProcessProperties::GetWarningsUnsupportedLanguage() const { 296 const uint32_t idx = ePropertyWarningUnsupportedLanguage; 297 return m_collection_sp->GetPropertyAtIndexAsBoolean( 298 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 299 } 300 301 bool ProcessProperties::GetStopOnExec() const { 302 const uint32_t idx = ePropertyStopOnExec; 303 return m_collection_sp->GetPropertyAtIndexAsBoolean( 304 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 305 } 306 307 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { 308 const uint32_t idx = ePropertyUtilityExpressionTimeout; 309 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 310 nullptr, idx, g_process_properties[idx].default_uint_value); 311 return std::chrono::seconds(value); 312 } 313 314 std::chrono::seconds ProcessProperties::GetInterruptTimeout() const { 315 const uint32_t idx = ePropertyInterruptTimeout; 316 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 317 nullptr, idx, g_process_properties[idx].default_uint_value); 318 return std::chrono::seconds(value); 319 } 320 321 bool ProcessProperties::GetSteppingRunsAllThreads() const { 322 const uint32_t idx = ePropertySteppingRunsAllThreads; 323 return m_collection_sp->GetPropertyAtIndexAsBoolean( 324 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 325 } 326 327 bool ProcessProperties::GetOSPluginReportsAllThreads() const { 328 const bool fail_value = true; 329 const Property *exp_property = 330 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 331 OptionValueProperties *exp_values = 332 exp_property->GetValue()->GetAsProperties(); 333 if (!exp_values) 334 return fail_value; 335 336 return exp_values->GetPropertyAtIndexAsBoolean( 337 nullptr, ePropertyOSPluginReportsAllThreads, fail_value); 338 } 339 340 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) { 341 const Property *exp_property = 342 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 343 OptionValueProperties *exp_values = 344 exp_property->GetValue()->GetAsProperties(); 345 if (exp_values) 346 exp_values->SetPropertyAtIndexAsBoolean( 347 nullptr, ePropertyOSPluginReportsAllThreads, does_report); 348 } 349 350 FollowForkMode ProcessProperties::GetFollowForkMode() const { 351 const uint32_t idx = ePropertyFollowForkMode; 352 return (FollowForkMode)m_collection_sp->GetPropertyAtIndexAsEnumeration( 353 nullptr, idx, g_process_properties[idx].default_uint_value); 354 } 355 356 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 357 llvm::StringRef plugin_name, 358 ListenerSP listener_sp, 359 const FileSpec *crash_file_path, 360 bool can_connect) { 361 static uint32_t g_process_unique_id = 0; 362 363 ProcessSP process_sp; 364 ProcessCreateInstance create_callback = nullptr; 365 if (!plugin_name.empty()) { 366 ConstString const_plugin_name(plugin_name); 367 create_callback = 368 PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name); 369 if (create_callback) { 370 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 371 can_connect); 372 if (process_sp) { 373 if (process_sp->CanDebug(target_sp, true)) { 374 process_sp->m_process_unique_id = ++g_process_unique_id; 375 } else 376 process_sp.reset(); 377 } 378 } 379 } else { 380 for (uint32_t idx = 0; 381 (create_callback = 382 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 383 ++idx) { 384 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 385 can_connect); 386 if (process_sp) { 387 if (process_sp->CanDebug(target_sp, false)) { 388 process_sp->m_process_unique_id = ++g_process_unique_id; 389 break; 390 } else 391 process_sp.reset(); 392 } 393 } 394 } 395 return process_sp; 396 } 397 398 ConstString &Process::GetStaticBroadcasterClass() { 399 static ConstString class_name("lldb.process"); 400 return class_name; 401 } 402 403 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 404 : Process(target_sp, listener_sp, 405 UnixSignals::Create(HostInfo::GetArchitecture())) { 406 // This constructor just delegates to the full Process constructor, 407 // defaulting to using the Host's UnixSignals. 408 } 409 410 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 411 const UnixSignalsSP &unix_signals_sp) 412 : ProcessProperties(this), 413 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 414 Process::GetStaticBroadcasterClass().AsCString()), 415 m_target_wp(target_sp), m_public_state(eStateUnloaded), 416 m_private_state(eStateUnloaded), 417 m_private_state_broadcaster(nullptr, 418 "lldb.process.internal_state_broadcaster"), 419 m_private_state_control_broadcaster( 420 nullptr, "lldb.process.internal_state_control_broadcaster"), 421 m_private_state_listener_sp( 422 Listener::MakeListener("lldb.process.internal_state_listener")), 423 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 424 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 425 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 426 m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this), 427 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 428 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 429 m_breakpoint_site_list(), m_dynamic_checkers_up(), 430 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 431 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 432 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 433 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 434 m_memory_cache(*this), m_allocated_memory_cache(*this), 435 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), 436 m_private_run_lock(), m_finalizing(false), 437 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 438 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 439 m_can_interpret_function_calls(false), m_warnings_issued(), 440 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 441 CheckInWithManager(); 442 443 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 444 LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this)); 445 446 if (!m_unix_signals_sp) 447 m_unix_signals_sp = std::make_shared<UnixSignals>(); 448 449 SetEventName(eBroadcastBitStateChanged, "state-changed"); 450 SetEventName(eBroadcastBitInterrupt, "interrupt"); 451 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 452 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 453 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 454 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 455 456 m_private_state_control_broadcaster.SetEventName( 457 eBroadcastInternalStateControlStop, "control-stop"); 458 m_private_state_control_broadcaster.SetEventName( 459 eBroadcastInternalStateControlPause, "control-pause"); 460 m_private_state_control_broadcaster.SetEventName( 461 eBroadcastInternalStateControlResume, "control-resume"); 462 463 m_listener_sp->StartListeningForEvents( 464 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 465 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 466 eBroadcastBitProfileData | eBroadcastBitStructuredData); 467 468 m_private_state_listener_sp->StartListeningForEvents( 469 &m_private_state_broadcaster, 470 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 471 472 m_private_state_listener_sp->StartListeningForEvents( 473 &m_private_state_control_broadcaster, 474 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 475 eBroadcastInternalStateControlResume); 476 // We need something valid here, even if just the default UnixSignalsSP. 477 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 478 479 // Allow the platform to override the default cache line size 480 OptionValueSP value_sp = 481 m_collection_sp 482 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 483 ->GetValue(); 484 uint32_t platform_cache_line_size = 485 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 486 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 487 value_sp->SetUInt64Value(platform_cache_line_size); 488 489 RegisterAssertFrameRecognizer(this); 490 } 491 492 Process::~Process() { 493 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 494 LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this)); 495 StopPrivateStateThread(); 496 497 // ThreadList::Clear() will try to acquire this process's mutex, so 498 // explicitly clear the thread list here to ensure that the mutex is not 499 // destroyed before the thread list. 500 m_thread_list.Clear(); 501 } 502 503 const ProcessPropertiesSP &Process::GetGlobalProperties() { 504 // NOTE: intentional leak so we don't crash if global destructor chain gets 505 // called as other threads still use the result of this function 506 static ProcessPropertiesSP *g_settings_sp_ptr = 507 new ProcessPropertiesSP(new ProcessProperties(nullptr)); 508 return *g_settings_sp_ptr; 509 } 510 511 void Process::Finalize() { 512 if (m_finalizing.exchange(true)) 513 return; 514 515 // Destroy the process. This will call the virtual function DoDestroy under 516 // the hood, giving our derived class a chance to do the ncessary tear down. 517 DestroyImpl(false); 518 519 // Clear our broadcaster before we proceed with destroying 520 Broadcaster::Clear(); 521 522 // Do any cleanup needed prior to being destructed... Subclasses that 523 // override this method should call this superclass method as well. 524 525 // We need to destroy the loader before the derived Process class gets 526 // destroyed since it is very likely that undoing the loader will require 527 // access to the real process. 528 m_dynamic_checkers_up.reset(); 529 m_abi_sp.reset(); 530 m_os_up.reset(); 531 m_system_runtime_up.reset(); 532 m_dyld_up.reset(); 533 m_jit_loaders_up.reset(); 534 m_thread_plans.Clear(); 535 m_thread_list_real.Destroy(); 536 m_thread_list.Destroy(); 537 m_extended_thread_list.Destroy(); 538 m_queue_list.Clear(); 539 m_queue_list_stop_id = 0; 540 std::vector<Notifications> empty_notifications; 541 m_notifications.swap(empty_notifications); 542 m_image_tokens.clear(); 543 m_memory_cache.Clear(); 544 m_allocated_memory_cache.Clear(); 545 { 546 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 547 m_language_runtimes.clear(); 548 } 549 m_instrumentation_runtimes.clear(); 550 m_next_event_action_up.reset(); 551 // Clear the last natural stop ID since it has a strong reference to this 552 // process 553 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 554 //#ifdef LLDB_CONFIGURATION_DEBUG 555 // StreamFile s(stdout, false); 556 // EventSP event_sp; 557 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 558 // { 559 // event_sp->Dump (&s); 560 // s.EOL(); 561 // } 562 //#endif 563 // We have to be very careful here as the m_private_state_listener might 564 // contain events that have ProcessSP values in them which can keep this 565 // process around forever. These events need to be cleared out. 566 m_private_state_listener_sp->Clear(); 567 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 568 m_public_run_lock.SetStopped(); 569 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 570 m_private_run_lock.SetStopped(); 571 m_structured_data_plugin_map.clear(); 572 } 573 574 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 575 m_notifications.push_back(callbacks); 576 if (callbacks.initialize != nullptr) 577 callbacks.initialize(callbacks.baton, this); 578 } 579 580 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 581 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 582 for (pos = m_notifications.begin(); pos != end; ++pos) { 583 if (pos->baton == callbacks.baton && 584 pos->initialize == callbacks.initialize && 585 pos->process_state_changed == callbacks.process_state_changed) { 586 m_notifications.erase(pos); 587 return true; 588 } 589 } 590 return false; 591 } 592 593 void Process::SynchronouslyNotifyStateChanged(StateType state) { 594 std::vector<Notifications>::iterator notification_pos, 595 notification_end = m_notifications.end(); 596 for (notification_pos = m_notifications.begin(); 597 notification_pos != notification_end; ++notification_pos) { 598 if (notification_pos->process_state_changed) 599 notification_pos->process_state_changed(notification_pos->baton, this, 600 state); 601 } 602 } 603 604 // FIXME: We need to do some work on events before the general Listener sees 605 // them. 606 // For instance if we are continuing from a breakpoint, we need to ensure that 607 // we do the little "insert real insn, step & stop" trick. But we can't do 608 // that when the event is delivered by the broadcaster - since that is done on 609 // the thread that is waiting for new events, so if we needed more than one 610 // event for our handling, we would stall. So instead we do it when we fetch 611 // the event off of the queue. 612 // 613 614 StateType Process::GetNextEvent(EventSP &event_sp) { 615 StateType state = eStateInvalid; 616 617 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 618 std::chrono::seconds(0)) && 619 event_sp) 620 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 621 622 return state; 623 } 624 625 void Process::SyncIOHandler(uint32_t iohandler_id, 626 const Timeout<std::micro> &timeout) { 627 // don't sync (potentially context switch) in case where there is no process 628 // IO 629 if (!m_process_input_reader) 630 return; 631 632 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 633 634 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 635 if (Result) { 636 LLDB_LOG( 637 log, 638 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 639 iohandler_id, *Result); 640 } else { 641 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 642 iohandler_id); 643 } 644 } 645 646 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 647 EventSP *event_sp_ptr, bool wait_always, 648 ListenerSP hijack_listener_sp, 649 Stream *stream, bool use_run_lock) { 650 // We can't just wait for a "stopped" event, because the stopped event may 651 // have restarted the target. We have to actually check each event, and in 652 // the case of a stopped event check the restarted flag on the event. 653 if (event_sp_ptr) 654 event_sp_ptr->reset(); 655 StateType state = GetState(); 656 // If we are exited or detached, we won't ever get back to any other valid 657 // state... 658 if (state == eStateDetached || state == eStateExited) 659 return state; 660 661 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 662 LLDB_LOG(log, "timeout = {0}", timeout); 663 664 if (!wait_always && StateIsStoppedState(state, true) && 665 StateIsStoppedState(GetPrivateState(), true)) { 666 LLDB_LOGF(log, 667 "Process::%s returning without waiting for events; process " 668 "private and public states are already 'stopped'.", 669 __FUNCTION__); 670 // We need to toggle the run lock as this won't get done in 671 // SetPublicState() if the process is hijacked. 672 if (hijack_listener_sp && use_run_lock) 673 m_public_run_lock.SetStopped(); 674 return state; 675 } 676 677 while (state != eStateInvalid) { 678 EventSP event_sp; 679 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 680 if (event_sp_ptr && event_sp) 681 *event_sp_ptr = event_sp; 682 683 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 684 Process::HandleProcessStateChangedEvent(event_sp, stream, 685 pop_process_io_handler); 686 687 switch (state) { 688 case eStateCrashed: 689 case eStateDetached: 690 case eStateExited: 691 case eStateUnloaded: 692 // We need to toggle the run lock as this won't get done in 693 // SetPublicState() if the process is hijacked. 694 if (hijack_listener_sp && use_run_lock) 695 m_public_run_lock.SetStopped(); 696 return state; 697 case eStateStopped: 698 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 699 continue; 700 else { 701 // We need to toggle the run lock as this won't get done in 702 // SetPublicState() if the process is hijacked. 703 if (hijack_listener_sp && use_run_lock) 704 m_public_run_lock.SetStopped(); 705 return state; 706 } 707 default: 708 continue; 709 } 710 } 711 return state; 712 } 713 714 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 715 Stream *stream, 716 bool &pop_process_io_handler) { 717 const bool handle_pop = pop_process_io_handler; 718 719 pop_process_io_handler = false; 720 ProcessSP process_sp = 721 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 722 723 if (!process_sp) 724 return false; 725 726 StateType event_state = 727 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 728 if (event_state == eStateInvalid) 729 return false; 730 731 switch (event_state) { 732 case eStateInvalid: 733 case eStateUnloaded: 734 case eStateAttaching: 735 case eStateLaunching: 736 case eStateStepping: 737 case eStateDetached: 738 if (stream) 739 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 740 StateAsCString(event_state)); 741 if (event_state == eStateDetached) 742 pop_process_io_handler = true; 743 break; 744 745 case eStateConnected: 746 case eStateRunning: 747 // Don't be chatty when we run... 748 break; 749 750 case eStateExited: 751 if (stream) 752 process_sp->GetStatus(*stream); 753 pop_process_io_handler = true; 754 break; 755 756 case eStateStopped: 757 case eStateCrashed: 758 case eStateSuspended: 759 // Make sure the program hasn't been auto-restarted: 760 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 761 if (stream) { 762 size_t num_reasons = 763 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 764 if (num_reasons > 0) { 765 // FIXME: Do we want to report this, or would that just be annoyingly 766 // chatty? 767 if (num_reasons == 1) { 768 const char *reason = 769 Process::ProcessEventData::GetRestartedReasonAtIndex( 770 event_sp.get(), 0); 771 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 772 process_sp->GetID(), 773 reason ? reason : "<UNKNOWN REASON>"); 774 } else { 775 stream->Printf("Process %" PRIu64 776 " stopped and restarted, reasons:\n", 777 process_sp->GetID()); 778 779 for (size_t i = 0; i < num_reasons; i++) { 780 const char *reason = 781 Process::ProcessEventData::GetRestartedReasonAtIndex( 782 event_sp.get(), i); 783 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 784 } 785 } 786 } 787 } 788 } else { 789 StopInfoSP curr_thread_stop_info_sp; 790 // Lock the thread list so it doesn't change on us, this is the scope for 791 // the locker: 792 { 793 ThreadList &thread_list = process_sp->GetThreadList(); 794 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 795 796 ThreadSP curr_thread(thread_list.GetSelectedThread()); 797 ThreadSP thread; 798 StopReason curr_thread_stop_reason = eStopReasonInvalid; 799 bool prefer_curr_thread = false; 800 if (curr_thread && curr_thread->IsValid()) { 801 curr_thread_stop_reason = curr_thread->GetStopReason(); 802 switch (curr_thread_stop_reason) { 803 case eStopReasonNone: 804 case eStopReasonInvalid: 805 // Don't prefer the current thread if it didn't stop for a reason. 806 break; 807 case eStopReasonSignal: { 808 // We need to do the same computation we do for other threads 809 // below in case the current thread happens to be the one that 810 // stopped for the no-stop signal. 811 uint64_t signo = curr_thread->GetStopInfo()->GetValue(); 812 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) 813 prefer_curr_thread = true; 814 } break; 815 default: 816 prefer_curr_thread = true; 817 break; 818 } 819 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 820 } 821 822 if (!prefer_curr_thread) { 823 // Prefer a thread that has just completed its plan over another 824 // thread as current thread. 825 ThreadSP plan_thread; 826 ThreadSP other_thread; 827 828 const size_t num_threads = thread_list.GetSize(); 829 size_t i; 830 for (i = 0; i < num_threads; ++i) { 831 thread = thread_list.GetThreadAtIndex(i); 832 StopReason thread_stop_reason = thread->GetStopReason(); 833 switch (thread_stop_reason) { 834 case eStopReasonInvalid: 835 case eStopReasonNone: 836 break; 837 838 case eStopReasonSignal: { 839 // Don't select a signal thread if we weren't going to stop at 840 // that signal. We have to have had another reason for stopping 841 // here, and the user doesn't want to see this thread. 842 uint64_t signo = thread->GetStopInfo()->GetValue(); 843 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 844 if (!other_thread) 845 other_thread = thread; 846 } 847 break; 848 } 849 case eStopReasonTrace: 850 case eStopReasonBreakpoint: 851 case eStopReasonWatchpoint: 852 case eStopReasonException: 853 case eStopReasonExec: 854 case eStopReasonFork: 855 case eStopReasonVFork: 856 case eStopReasonVForkDone: 857 case eStopReasonThreadExiting: 858 case eStopReasonInstrumentation: 859 case eStopReasonProcessorTrace: 860 if (!other_thread) 861 other_thread = thread; 862 break; 863 case eStopReasonPlanComplete: 864 if (!plan_thread) 865 plan_thread = thread; 866 break; 867 } 868 } 869 if (plan_thread) 870 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 871 else if (other_thread) 872 thread_list.SetSelectedThreadByID(other_thread->GetID()); 873 else { 874 if (curr_thread && curr_thread->IsValid()) 875 thread = curr_thread; 876 else 877 thread = thread_list.GetThreadAtIndex(0); 878 879 if (thread) 880 thread_list.SetSelectedThreadByID(thread->GetID()); 881 } 882 } 883 } 884 // Drop the ThreadList mutex by here, since GetThreadStatus below might 885 // have to run code, e.g. for Data formatters, and if we hold the 886 // ThreadList mutex, then the process is going to have a hard time 887 // restarting the process. 888 if (stream) { 889 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 890 if (debugger.GetTargetList().GetSelectedTarget().get() == 891 &process_sp->GetTarget()) { 892 ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); 893 894 if (!thread_sp || !thread_sp->IsValid()) 895 return false; 896 897 const bool only_threads_with_stop_reason = true; 898 const uint32_t start_frame = thread_sp->GetSelectedFrameIndex(); 899 const uint32_t num_frames = 1; 900 const uint32_t num_frames_with_source = 1; 901 const bool stop_format = true; 902 903 process_sp->GetStatus(*stream); 904 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 905 start_frame, num_frames, 906 num_frames_with_source, 907 stop_format); 908 if (curr_thread_stop_info_sp) { 909 lldb::addr_t crashing_address; 910 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 911 curr_thread_stop_info_sp, &crashing_address); 912 if (valobj_sp) { 913 const ValueObject::GetExpressionPathFormat format = 914 ValueObject::GetExpressionPathFormat:: 915 eGetExpressionPathFormatHonorPointers; 916 stream->PutCString("Likely cause: "); 917 valobj_sp->GetExpressionPath(*stream, format); 918 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 919 } 920 } 921 } else { 922 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 923 process_sp->GetTarget().shared_from_this()); 924 if (target_idx != UINT32_MAX) 925 stream->Printf("Target %d: (", target_idx); 926 else 927 stream->Printf("Target <unknown index>: ("); 928 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 929 stream->Printf(") stopped.\n"); 930 } 931 } 932 933 // Pop the process IO handler 934 pop_process_io_handler = true; 935 } 936 break; 937 } 938 939 if (handle_pop && pop_process_io_handler) 940 process_sp->PopProcessIOHandler(); 941 942 return true; 943 } 944 945 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 946 if (listener_sp) { 947 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 948 eBroadcastBitInterrupt); 949 } else 950 return false; 951 } 952 953 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 954 955 StateType Process::GetStateChangedEvents(EventSP &event_sp, 956 const Timeout<std::micro> &timeout, 957 ListenerSP hijack_listener_sp) { 958 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 959 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 960 961 ListenerSP listener_sp = hijack_listener_sp; 962 if (!listener_sp) 963 listener_sp = m_listener_sp; 964 965 StateType state = eStateInvalid; 966 if (listener_sp->GetEventForBroadcasterWithType( 967 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 968 timeout)) { 969 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 970 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 971 else 972 LLDB_LOG(log, "got no event or was interrupted."); 973 } 974 975 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 976 return state; 977 } 978 979 Event *Process::PeekAtStateChangedEvents() { 980 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 981 982 LLDB_LOGF(log, "Process::%s...", __FUNCTION__); 983 984 Event *event_ptr; 985 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 986 this, eBroadcastBitStateChanged); 987 if (log) { 988 if (event_ptr) { 989 LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, 990 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 991 } else { 992 LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); 993 } 994 } 995 return event_ptr; 996 } 997 998 StateType 999 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 1000 const Timeout<std::micro> &timeout) { 1001 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1002 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1003 1004 StateType state = eStateInvalid; 1005 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1006 &m_private_state_broadcaster, 1007 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1008 timeout)) 1009 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1010 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1011 1012 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1013 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1014 return state; 1015 } 1016 1017 bool Process::GetEventsPrivate(EventSP &event_sp, 1018 const Timeout<std::micro> &timeout, 1019 bool control_only) { 1020 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1021 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1022 1023 if (control_only) 1024 return m_private_state_listener_sp->GetEventForBroadcaster( 1025 &m_private_state_control_broadcaster, event_sp, timeout); 1026 else 1027 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1028 } 1029 1030 bool Process::IsRunning() const { 1031 return StateIsRunningState(m_public_state.GetValue()); 1032 } 1033 1034 int Process::GetExitStatus() { 1035 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1036 1037 if (m_public_state.GetValue() == eStateExited) 1038 return m_exit_status; 1039 return -1; 1040 } 1041 1042 const char *Process::GetExitDescription() { 1043 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1044 1045 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1046 return m_exit_string.c_str(); 1047 return nullptr; 1048 } 1049 1050 bool Process::SetExitStatus(int status, const char *cstr) { 1051 // Use a mutex to protect setting the exit status. 1052 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1053 1054 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1055 LIBLLDB_LOG_PROCESS)); 1056 LLDB_LOGF( 1057 log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1058 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : ""); 1059 1060 // We were already in the exited state 1061 if (m_private_state.GetValue() == eStateExited) { 1062 LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because " 1063 "state was already set to eStateExited"); 1064 return false; 1065 } 1066 1067 m_exit_status = status; 1068 if (cstr) 1069 m_exit_string = cstr; 1070 else 1071 m_exit_string.clear(); 1072 1073 // Clear the last natural stop ID since it has a strong reference to this 1074 // process 1075 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1076 1077 SetPrivateState(eStateExited); 1078 1079 // Allow subclasses to do some cleanup 1080 DidExit(); 1081 1082 return true; 1083 } 1084 1085 bool Process::IsAlive() { 1086 switch (m_private_state.GetValue()) { 1087 case eStateConnected: 1088 case eStateAttaching: 1089 case eStateLaunching: 1090 case eStateStopped: 1091 case eStateRunning: 1092 case eStateStepping: 1093 case eStateCrashed: 1094 case eStateSuspended: 1095 return true; 1096 default: 1097 return false; 1098 } 1099 } 1100 1101 // This static callback can be used to watch for local child processes on the 1102 // current host. The child process exits, the process will be found in the 1103 // global target list (we want to be completely sure that the 1104 // lldb_private::Process doesn't go away before we can deliver the signal. 1105 bool Process::SetProcessExitStatus( 1106 lldb::pid_t pid, bool exited, 1107 int signo, // Zero for no signal 1108 int exit_status // Exit value of process if signal is zero 1109 ) { 1110 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 1111 LLDB_LOGF(log, 1112 "Process::SetProcessExitStatus (pid=%" PRIu64 1113 ", exited=%i, signal=%i, exit_status=%i)\n", 1114 pid, exited, signo, exit_status); 1115 1116 if (exited) { 1117 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1118 if (target_sp) { 1119 ProcessSP process_sp(target_sp->GetProcessSP()); 1120 if (process_sp) { 1121 const char *signal_cstr = nullptr; 1122 if (signo) 1123 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1124 1125 process_sp->SetExitStatus(exit_status, signal_cstr); 1126 } 1127 } 1128 return true; 1129 } 1130 return false; 1131 } 1132 1133 bool Process::UpdateThreadList(ThreadList &old_thread_list, 1134 ThreadList &new_thread_list) { 1135 m_thread_plans.ClearThreadCache(); 1136 return DoUpdateThreadList(old_thread_list, new_thread_list); 1137 } 1138 1139 void Process::UpdateThreadListIfNeeded() { 1140 const uint32_t stop_id = GetStopID(); 1141 if (m_thread_list.GetSize(false) == 0 || 1142 stop_id != m_thread_list.GetStopID()) { 1143 bool clear_unused_threads = true; 1144 const StateType state = GetPrivateState(); 1145 if (StateIsStoppedState(state, true)) { 1146 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1147 m_thread_list.SetStopID(stop_id); 1148 1149 // m_thread_list does have its own mutex, but we need to hold onto the 1150 // mutex between the call to UpdateThreadList(...) and the 1151 // os->UpdateThreadList(...) so it doesn't change on us 1152 ThreadList &old_thread_list = m_thread_list; 1153 ThreadList real_thread_list(this); 1154 ThreadList new_thread_list(this); 1155 // Always update the thread list with the protocol specific thread list, 1156 // but only update if "true" is returned 1157 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1158 // Don't call into the OperatingSystem to update the thread list if we 1159 // are shutting down, since that may call back into the SBAPI's, 1160 // requiring the API lock which is already held by whoever is shutting 1161 // us down, causing a deadlock. 1162 OperatingSystem *os = GetOperatingSystem(); 1163 if (os && !m_destroy_in_process) { 1164 // Clear any old backing threads where memory threads might have been 1165 // backed by actual threads from the lldb_private::Process subclass 1166 size_t num_old_threads = old_thread_list.GetSize(false); 1167 for (size_t i = 0; i < num_old_threads; ++i) 1168 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1169 // See if the OS plugin reports all threads. If it does, then 1170 // it is safe to clear unseen thread's plans here. Otherwise we 1171 // should preserve them in case they show up again: 1172 clear_unused_threads = GetOSPluginReportsAllThreads(); 1173 1174 // Turn off dynamic types to ensure we don't run any expressions. 1175 // Objective-C can run an expression to determine if a SBValue is a 1176 // dynamic type or not and we need to avoid this. OperatingSystem 1177 // plug-ins can't run expressions that require running code... 1178 1179 Target &target = GetTarget(); 1180 const lldb::DynamicValueType saved_prefer_dynamic = 1181 target.GetPreferDynamicValue(); 1182 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1183 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1184 1185 // Now let the OperatingSystem plug-in update the thread list 1186 1187 os->UpdateThreadList( 1188 old_thread_list, // Old list full of threads created by OS plug-in 1189 real_thread_list, // The actual thread list full of threads 1190 // created by each lldb_private::Process 1191 // subclass 1192 new_thread_list); // The new thread list that we will show to the 1193 // user that gets filled in 1194 1195 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1196 target.SetPreferDynamicValue(saved_prefer_dynamic); 1197 } else { 1198 // No OS plug-in, the new thread list is the same as the real thread 1199 // list. 1200 new_thread_list = real_thread_list; 1201 } 1202 1203 m_thread_list_real.Update(real_thread_list); 1204 m_thread_list.Update(new_thread_list); 1205 m_thread_list.SetStopID(stop_id); 1206 1207 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1208 // Clear any extended threads that we may have accumulated previously 1209 m_extended_thread_list.Clear(); 1210 m_extended_thread_stop_id = GetLastNaturalStopID(); 1211 1212 m_queue_list.Clear(); 1213 m_queue_list_stop_id = GetLastNaturalStopID(); 1214 } 1215 } 1216 // Now update the plan stack map. 1217 // If we do have an OS plugin, any absent real threads in the 1218 // m_thread_list have already been removed from the ThreadPlanStackMap. 1219 // So any remaining threads are OS Plugin threads, and those we want to 1220 // preserve in case they show up again. 1221 m_thread_plans.Update(m_thread_list, clear_unused_threads); 1222 } 1223 } 1224 } 1225 1226 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) { 1227 return m_thread_plans.Find(tid); 1228 } 1229 1230 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) { 1231 return m_thread_plans.PrunePlansForTID(tid); 1232 } 1233 1234 void Process::PruneThreadPlans() { 1235 m_thread_plans.Update(GetThreadList(), true, false); 1236 } 1237 1238 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid, 1239 lldb::DescriptionLevel desc_level, 1240 bool internal, bool condense_trivial, 1241 bool skip_unreported_plans) { 1242 return m_thread_plans.DumpPlansForTID( 1243 strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans); 1244 } 1245 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level, 1246 bool internal, bool condense_trivial, 1247 bool skip_unreported_plans) { 1248 m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial, 1249 skip_unreported_plans); 1250 } 1251 1252 void Process::UpdateQueueListIfNeeded() { 1253 if (m_system_runtime_up) { 1254 if (m_queue_list.GetSize() == 0 || 1255 m_queue_list_stop_id != GetLastNaturalStopID()) { 1256 const StateType state = GetPrivateState(); 1257 if (StateIsStoppedState(state, true)) { 1258 m_system_runtime_up->PopulateQueueList(m_queue_list); 1259 m_queue_list_stop_id = GetLastNaturalStopID(); 1260 } 1261 } 1262 } 1263 } 1264 1265 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1266 OperatingSystem *os = GetOperatingSystem(); 1267 if (os) 1268 return os->CreateThread(tid, context); 1269 return ThreadSP(); 1270 } 1271 1272 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1273 return AssignIndexIDToThread(thread_id); 1274 } 1275 1276 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1277 return (m_thread_id_to_index_id_map.find(thread_id) != 1278 m_thread_id_to_index_id_map.end()); 1279 } 1280 1281 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1282 uint32_t result = 0; 1283 std::map<uint64_t, uint32_t>::iterator iterator = 1284 m_thread_id_to_index_id_map.find(thread_id); 1285 if (iterator == m_thread_id_to_index_id_map.end()) { 1286 result = ++m_thread_index_id; 1287 m_thread_id_to_index_id_map[thread_id] = result; 1288 } else { 1289 result = iterator->second; 1290 } 1291 1292 return result; 1293 } 1294 1295 StateType Process::GetState() { 1296 return m_public_state.GetValue(); 1297 } 1298 1299 void Process::SetPublicState(StateType new_state, bool restarted) { 1300 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1301 LIBLLDB_LOG_PROCESS)); 1302 LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)", 1303 StateAsCString(new_state), restarted); 1304 const StateType old_state = m_public_state.GetValue(); 1305 m_public_state.SetValue(new_state); 1306 1307 // On the transition from Run to Stopped, we unlock the writer end of the run 1308 // lock. The lock gets locked in Resume, which is the public API to tell the 1309 // program to run. 1310 if (!StateChangedIsExternallyHijacked()) { 1311 if (new_state == eStateDetached) { 1312 LLDB_LOGF(log, 1313 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1314 StateAsCString(new_state)); 1315 m_public_run_lock.SetStopped(); 1316 } else { 1317 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1318 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1319 if ((old_state_is_stopped != new_state_is_stopped)) { 1320 if (new_state_is_stopped && !restarted) { 1321 LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock", 1322 StateAsCString(new_state)); 1323 m_public_run_lock.SetStopped(); 1324 } 1325 } 1326 } 1327 } 1328 } 1329 1330 Status Process::Resume() { 1331 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1332 LIBLLDB_LOG_PROCESS)); 1333 LLDB_LOGF(log, "Process::Resume -- locking run lock"); 1334 if (!m_public_run_lock.TrySetRunning()) { 1335 Status error("Resume request failed - process still running."); 1336 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1337 return error; 1338 } 1339 Status error = PrivateResume(); 1340 if (!error.Success()) { 1341 // Undo running state change 1342 m_public_run_lock.SetStopped(); 1343 } 1344 return error; 1345 } 1346 1347 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack"; 1348 1349 Status Process::ResumeSynchronous(Stream *stream) { 1350 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1351 LIBLLDB_LOG_PROCESS)); 1352 LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); 1353 if (!m_public_run_lock.TrySetRunning()) { 1354 Status error("Resume request failed - process still running."); 1355 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1356 return error; 1357 } 1358 1359 ListenerSP listener_sp( 1360 Listener::MakeListener(g_resume_sync_name)); 1361 HijackProcessEvents(listener_sp); 1362 1363 Status error = PrivateResume(); 1364 if (error.Success()) { 1365 StateType state = WaitForProcessToStop(llvm::None, nullptr, true, 1366 listener_sp, stream); 1367 const bool must_be_alive = 1368 false; // eStateExited is ok, so this must be false 1369 if (!StateIsStoppedState(state, must_be_alive)) 1370 error.SetErrorStringWithFormat( 1371 "process not in stopped state after synchronous resume: %s", 1372 StateAsCString(state)); 1373 } else { 1374 // Undo running state change 1375 m_public_run_lock.SetStopped(); 1376 } 1377 1378 // Undo the hijacking of process events... 1379 RestoreProcessEvents(); 1380 1381 return error; 1382 } 1383 1384 bool Process::StateChangedIsExternallyHijacked() { 1385 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1386 const char *hijacking_name = GetHijackingListenerName(); 1387 if (hijacking_name && 1388 strcmp(hijacking_name, g_resume_sync_name)) 1389 return true; 1390 } 1391 return false; 1392 } 1393 1394 bool Process::StateChangedIsHijackedForSynchronousResume() { 1395 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1396 const char *hijacking_name = GetHijackingListenerName(); 1397 if (hijacking_name && 1398 strcmp(hijacking_name, g_resume_sync_name) == 0) 1399 return true; 1400 } 1401 return false; 1402 } 1403 1404 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1405 1406 void Process::SetPrivateState(StateType new_state) { 1407 if (m_finalizing) 1408 return; 1409 1410 Log *log(lldb_private::GetLogIfAnyCategoriesSet( 1411 LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_UNWIND)); 1412 bool state_changed = false; 1413 1414 LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state)); 1415 1416 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1417 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1418 1419 const StateType old_state = m_private_state.GetValueNoLock(); 1420 state_changed = old_state != new_state; 1421 1422 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1423 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1424 if (old_state_is_stopped != new_state_is_stopped) { 1425 if (new_state_is_stopped) 1426 m_private_run_lock.SetStopped(); 1427 else 1428 m_private_run_lock.SetRunning(); 1429 } 1430 1431 if (state_changed) { 1432 m_private_state.SetValueNoLock(new_state); 1433 EventSP event_sp( 1434 new Event(eBroadcastBitStateChanged, 1435 new ProcessEventData(shared_from_this(), new_state))); 1436 if (StateIsStoppedState(new_state, false)) { 1437 // Note, this currently assumes that all threads in the list stop when 1438 // the process stops. In the future we will want to support a debugging 1439 // model where some threads continue to run while others are stopped. 1440 // When that happens we will either need a way for the thread list to 1441 // identify which threads are stopping or create a special thread list 1442 // containing only threads which actually stopped. 1443 // 1444 // The process plugin is responsible for managing the actual behavior of 1445 // the threads and should have stopped any threads that are going to stop 1446 // before we get here. 1447 m_thread_list.DidStop(); 1448 1449 m_mod_id.BumpStopID(); 1450 if (!m_mod_id.IsLastResumeForUserExpression()) 1451 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1452 m_memory_cache.Clear(); 1453 LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u", 1454 StateAsCString(new_state), m_mod_id.GetStopID()); 1455 } 1456 1457 m_private_state_broadcaster.BroadcastEvent(event_sp); 1458 } else { 1459 LLDB_LOGF(log, 1460 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1461 StateAsCString(new_state)); 1462 } 1463 } 1464 1465 void Process::SetRunningUserExpression(bool on) { 1466 m_mod_id.SetRunningUserExpression(on); 1467 } 1468 1469 void Process::SetRunningUtilityFunction(bool on) { 1470 m_mod_id.SetRunningUtilityFunction(on); 1471 } 1472 1473 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1474 1475 const lldb::ABISP &Process::GetABI() { 1476 if (!m_abi_sp) 1477 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1478 return m_abi_sp; 1479 } 1480 1481 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { 1482 std::vector<LanguageRuntime *> language_runtimes; 1483 1484 if (m_finalizing) 1485 return language_runtimes; 1486 1487 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1488 // Before we pass off a copy of the language runtimes, we must make sure that 1489 // our collection is properly populated. It's possible that some of the 1490 // language runtimes were not loaded yet, either because nobody requested it 1491 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so 1492 // hadn't been loaded). 1493 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 1494 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 1495 language_runtimes.emplace_back(runtime); 1496 } 1497 1498 return language_runtimes; 1499 } 1500 1501 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { 1502 if (m_finalizing) 1503 return nullptr; 1504 1505 LanguageRuntime *runtime = nullptr; 1506 1507 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1508 LanguageRuntimeCollection::iterator pos; 1509 pos = m_language_runtimes.find(language); 1510 if (pos == m_language_runtimes.end() || !pos->second) { 1511 lldb::LanguageRuntimeSP runtime_sp( 1512 LanguageRuntime::FindPlugin(this, language)); 1513 1514 m_language_runtimes[language] = runtime_sp; 1515 runtime = runtime_sp.get(); 1516 } else 1517 runtime = pos->second.get(); 1518 1519 if (runtime) 1520 // It's possible that a language runtime can support multiple LanguageTypes, 1521 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, 1522 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the 1523 // primary language type and make sure that our runtime supports it. 1524 assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); 1525 1526 return runtime; 1527 } 1528 1529 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1530 if (m_finalizing) 1531 return false; 1532 1533 if (in_value.IsDynamic()) 1534 return false; 1535 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1536 1537 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1538 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1539 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1540 } 1541 1542 for (LanguageRuntime *runtime : GetLanguageRuntimes()) { 1543 if (runtime->CouldHaveDynamicValue(in_value)) 1544 return true; 1545 } 1546 1547 return false; 1548 } 1549 1550 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1551 m_dynamic_checkers_up.reset(dynamic_checkers); 1552 } 1553 1554 BreakpointSiteList &Process::GetBreakpointSiteList() { 1555 return m_breakpoint_site_list; 1556 } 1557 1558 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1559 return m_breakpoint_site_list; 1560 } 1561 1562 void Process::DisableAllBreakpointSites() { 1563 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1564 // bp_site->SetEnabled(true); 1565 DisableBreakpointSite(bp_site); 1566 }); 1567 } 1568 1569 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1570 Status error(DisableBreakpointSiteByID(break_id)); 1571 1572 if (error.Success()) 1573 m_breakpoint_site_list.Remove(break_id); 1574 1575 return error; 1576 } 1577 1578 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1579 Status error; 1580 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1581 if (bp_site_sp) { 1582 if (bp_site_sp->IsEnabled()) 1583 error = DisableBreakpointSite(bp_site_sp.get()); 1584 } else { 1585 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1586 break_id); 1587 } 1588 1589 return error; 1590 } 1591 1592 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1593 Status error; 1594 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1595 if (bp_site_sp) { 1596 if (!bp_site_sp->IsEnabled()) 1597 error = EnableBreakpointSite(bp_site_sp.get()); 1598 } else { 1599 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1600 break_id); 1601 } 1602 return error; 1603 } 1604 1605 lldb::break_id_t 1606 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1607 bool use_hardware) { 1608 addr_t load_addr = LLDB_INVALID_ADDRESS; 1609 1610 bool show_error = true; 1611 switch (GetState()) { 1612 case eStateInvalid: 1613 case eStateUnloaded: 1614 case eStateConnected: 1615 case eStateAttaching: 1616 case eStateLaunching: 1617 case eStateDetached: 1618 case eStateExited: 1619 show_error = false; 1620 break; 1621 1622 case eStateStopped: 1623 case eStateRunning: 1624 case eStateStepping: 1625 case eStateCrashed: 1626 case eStateSuspended: 1627 show_error = IsAlive(); 1628 break; 1629 } 1630 1631 // Reset the IsIndirect flag here, in case the location changes from pointing 1632 // to a indirect symbol to a regular symbol. 1633 owner->SetIsIndirect(false); 1634 1635 if (owner->ShouldResolveIndirectFunctions()) { 1636 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1637 if (symbol && symbol->IsIndirect()) { 1638 Status error; 1639 Address symbol_address = symbol->GetAddress(); 1640 load_addr = ResolveIndirectFunction(&symbol_address, error); 1641 if (!error.Success() && show_error) { 1642 GetTarget().GetDebugger().GetErrorStream().Printf( 1643 "warning: failed to resolve indirect function at 0x%" PRIx64 1644 " for breakpoint %i.%i: %s\n", 1645 symbol->GetLoadAddress(&GetTarget()), 1646 owner->GetBreakpoint().GetID(), owner->GetID(), 1647 error.AsCString() ? error.AsCString() : "unknown error"); 1648 return LLDB_INVALID_BREAK_ID; 1649 } 1650 Address resolved_address(load_addr); 1651 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1652 owner->SetIsIndirect(true); 1653 } else 1654 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1655 } else 1656 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1657 1658 if (load_addr != LLDB_INVALID_ADDRESS) { 1659 BreakpointSiteSP bp_site_sp; 1660 1661 // Look up this breakpoint site. If it exists, then add this new owner, 1662 // otherwise create a new breakpoint site and add it. 1663 1664 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1665 1666 if (bp_site_sp) { 1667 bp_site_sp->AddOwner(owner); 1668 owner->SetBreakpointSite(bp_site_sp); 1669 return bp_site_sp->GetID(); 1670 } else { 1671 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1672 load_addr, use_hardware)); 1673 if (bp_site_sp) { 1674 Status error = EnableBreakpointSite(bp_site_sp.get()); 1675 if (error.Success()) { 1676 owner->SetBreakpointSite(bp_site_sp); 1677 return m_breakpoint_site_list.Add(bp_site_sp); 1678 } else { 1679 if (show_error || use_hardware) { 1680 // Report error for setting breakpoint... 1681 GetTarget().GetDebugger().GetErrorStream().Printf( 1682 "warning: failed to set breakpoint site at 0x%" PRIx64 1683 " for breakpoint %i.%i: %s\n", 1684 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1685 error.AsCString() ? error.AsCString() : "unknown error"); 1686 } 1687 } 1688 } 1689 } 1690 } 1691 // We failed to enable the breakpoint 1692 return LLDB_INVALID_BREAK_ID; 1693 } 1694 1695 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1696 lldb::user_id_t owner_loc_id, 1697 BreakpointSiteSP &bp_site_sp) { 1698 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1699 if (num_owners == 0) { 1700 // Don't try to disable the site if we don't have a live process anymore. 1701 if (IsAlive()) 1702 DisableBreakpointSite(bp_site_sp.get()); 1703 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1704 } 1705 } 1706 1707 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1708 uint8_t *buf) const { 1709 size_t bytes_removed = 0; 1710 BreakpointSiteList bp_sites_in_range; 1711 1712 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1713 bp_sites_in_range)) { 1714 bp_sites_in_range.ForEach([bp_addr, size, 1715 buf](BreakpointSite *bp_site) -> void { 1716 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1717 addr_t intersect_addr; 1718 size_t intersect_size; 1719 size_t opcode_offset; 1720 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1721 &intersect_size, &opcode_offset)) { 1722 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1723 assert(bp_addr < intersect_addr + intersect_size && 1724 intersect_addr + intersect_size <= bp_addr + size); 1725 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1726 size_t buf_offset = intersect_addr - bp_addr; 1727 ::memcpy(buf + buf_offset, 1728 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1729 intersect_size); 1730 } 1731 } 1732 }); 1733 } 1734 return bytes_removed; 1735 } 1736 1737 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1738 PlatformSP platform_sp(GetTarget().GetPlatform()); 1739 if (platform_sp) 1740 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1741 return 0; 1742 } 1743 1744 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1745 Status error; 1746 assert(bp_site != nullptr); 1747 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1748 const addr_t bp_addr = bp_site->GetLoadAddress(); 1749 LLDB_LOGF( 1750 log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1751 bp_site->GetID(), (uint64_t)bp_addr); 1752 if (bp_site->IsEnabled()) { 1753 LLDB_LOGF( 1754 log, 1755 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1756 " -- already enabled", 1757 bp_site->GetID(), (uint64_t)bp_addr); 1758 return error; 1759 } 1760 1761 if (bp_addr == LLDB_INVALID_ADDRESS) { 1762 error.SetErrorString("BreakpointSite contains an invalid load address."); 1763 return error; 1764 } 1765 // Ask the lldb::Process subclass to fill in the correct software breakpoint 1766 // trap for the breakpoint site 1767 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 1768 1769 if (bp_opcode_size == 0) { 1770 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 1771 "returned zero, unable to get breakpoint " 1772 "trap for address 0x%" PRIx64, 1773 bp_addr); 1774 } else { 1775 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 1776 1777 if (bp_opcode_bytes == nullptr) { 1778 error.SetErrorString( 1779 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 1780 return error; 1781 } 1782 1783 // Save the original opcode by reading it 1784 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 1785 error) == bp_opcode_size) { 1786 // Write a software breakpoint in place of the original opcode 1787 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 1788 bp_opcode_size) { 1789 uint8_t verify_bp_opcode_bytes[64]; 1790 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 1791 error) == bp_opcode_size) { 1792 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 1793 bp_opcode_size) == 0) { 1794 bp_site->SetEnabled(true); 1795 bp_site->SetType(BreakpointSite::eSoftware); 1796 LLDB_LOGF(log, 1797 "Process::EnableSoftwareBreakpoint (site_id = %d) " 1798 "addr = 0x%" PRIx64 " -- SUCCESS", 1799 bp_site->GetID(), (uint64_t)bp_addr); 1800 } else 1801 error.SetErrorString( 1802 "failed to verify the breakpoint trap in memory."); 1803 } else 1804 error.SetErrorString( 1805 "Unable to read memory to verify breakpoint trap."); 1806 } else 1807 error.SetErrorString("Unable to write breakpoint trap to memory."); 1808 } else 1809 error.SetErrorString("Unable to read memory at breakpoint address."); 1810 } 1811 if (log && error.Fail()) 1812 LLDB_LOGF( 1813 log, 1814 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1815 " -- FAILED: %s", 1816 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1817 return error; 1818 } 1819 1820 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 1821 Status error; 1822 assert(bp_site != nullptr); 1823 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1824 addr_t bp_addr = bp_site->GetLoadAddress(); 1825 lldb::user_id_t breakID = bp_site->GetID(); 1826 LLDB_LOGF(log, 1827 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 1828 ") addr = 0x%" PRIx64, 1829 breakID, (uint64_t)bp_addr); 1830 1831 if (bp_site->IsHardware()) { 1832 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 1833 } else if (bp_site->IsEnabled()) { 1834 const size_t break_op_size = bp_site->GetByteSize(); 1835 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 1836 if (break_op_size > 0) { 1837 // Clear a software breakpoint instruction 1838 uint8_t curr_break_op[8]; 1839 assert(break_op_size <= sizeof(curr_break_op)); 1840 bool break_op_found = false; 1841 1842 // Read the breakpoint opcode 1843 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 1844 break_op_size) { 1845 bool verify = false; 1846 // Make sure the breakpoint opcode exists at this address 1847 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 1848 break_op_found = true; 1849 // We found a valid breakpoint opcode at this address, now restore 1850 // the saved opcode. 1851 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 1852 break_op_size, error) == break_op_size) { 1853 verify = true; 1854 } else 1855 error.SetErrorString( 1856 "Memory write failed when restoring original opcode."); 1857 } else { 1858 error.SetErrorString( 1859 "Original breakpoint trap is no longer in memory."); 1860 // Set verify to true and so we can check if the original opcode has 1861 // already been restored 1862 verify = true; 1863 } 1864 1865 if (verify) { 1866 uint8_t verify_opcode[8]; 1867 assert(break_op_size < sizeof(verify_opcode)); 1868 // Verify that our original opcode made it back to the inferior 1869 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 1870 break_op_size) { 1871 // compare the memory we just read with the original opcode 1872 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 1873 break_op_size) == 0) { 1874 // SUCCESS 1875 bp_site->SetEnabled(false); 1876 LLDB_LOGF(log, 1877 "Process::DisableSoftwareBreakpoint (site_id = %d) " 1878 "addr = 0x%" PRIx64 " -- SUCCESS", 1879 bp_site->GetID(), (uint64_t)bp_addr); 1880 return error; 1881 } else { 1882 if (break_op_found) 1883 error.SetErrorString("Failed to restore original opcode."); 1884 } 1885 } else 1886 error.SetErrorString("Failed to read memory to verify that " 1887 "breakpoint trap was restored."); 1888 } 1889 } else 1890 error.SetErrorString( 1891 "Unable to read memory that should contain the breakpoint trap."); 1892 } 1893 } else { 1894 LLDB_LOGF( 1895 log, 1896 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1897 " -- already disabled", 1898 bp_site->GetID(), (uint64_t)bp_addr); 1899 return error; 1900 } 1901 1902 LLDB_LOGF( 1903 log, 1904 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1905 " -- FAILED: %s", 1906 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1907 return error; 1908 } 1909 1910 // Uncomment to verify memory caching works after making changes to caching 1911 // code 1912 //#define VERIFY_MEMORY_READS 1913 1914 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 1915 error.Clear(); 1916 if (!GetDisableMemoryCache()) { 1917 #if defined(VERIFY_MEMORY_READS) 1918 // Memory caching is enabled, with debug verification 1919 1920 if (buf && size) { 1921 // Uncomment the line below to make sure memory caching is working. 1922 // I ran this through the test suite and got no assertions, so I am 1923 // pretty confident this is working well. If any changes are made to 1924 // memory caching, uncomment the line below and test your changes! 1925 1926 // Verify all memory reads by using the cache first, then redundantly 1927 // reading the same memory from the inferior and comparing to make sure 1928 // everything is exactly the same. 1929 std::string verify_buf(size, '\0'); 1930 assert(verify_buf.size() == size); 1931 const size_t cache_bytes_read = 1932 m_memory_cache.Read(this, addr, buf, size, error); 1933 Status verify_error; 1934 const size_t verify_bytes_read = 1935 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 1936 verify_buf.size(), verify_error); 1937 assert(cache_bytes_read == verify_bytes_read); 1938 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 1939 assert(verify_error.Success() == error.Success()); 1940 return cache_bytes_read; 1941 } 1942 return 0; 1943 #else // !defined(VERIFY_MEMORY_READS) 1944 // Memory caching is enabled, without debug verification 1945 1946 return m_memory_cache.Read(addr, buf, size, error); 1947 #endif // defined (VERIFY_MEMORY_READS) 1948 } else { 1949 // Memory caching is disabled 1950 1951 return ReadMemoryFromInferior(addr, buf, size, error); 1952 } 1953 } 1954 1955 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 1956 Status &error) { 1957 char buf[256]; 1958 out_str.clear(); 1959 addr_t curr_addr = addr; 1960 while (true) { 1961 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 1962 if (length == 0) 1963 break; 1964 out_str.append(buf, length); 1965 // If we got "length - 1" bytes, we didn't get the whole C string, we need 1966 // to read some more characters 1967 if (length == sizeof(buf) - 1) 1968 curr_addr += length; 1969 else 1970 break; 1971 } 1972 return out_str.size(); 1973 } 1974 1975 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes, 1976 Status &error, size_t type_width) { 1977 size_t total_bytes_read = 0; 1978 if (dst && max_bytes && type_width && max_bytes >= type_width) { 1979 // Ensure a null terminator independent of the number of bytes that is 1980 // read. 1981 memset(dst, 0, max_bytes); 1982 size_t bytes_left = max_bytes - type_width; 1983 1984 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 1985 assert(sizeof(terminator) >= type_width && "Attempting to validate a " 1986 "string with more than 4 bytes " 1987 "per character!"); 1988 1989 addr_t curr_addr = addr; 1990 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 1991 char *curr_dst = dst; 1992 1993 error.Clear(); 1994 while (bytes_left > 0 && error.Success()) { 1995 addr_t cache_line_bytes_left = 1996 cache_line_size - (curr_addr % cache_line_size); 1997 addr_t bytes_to_read = 1998 std::min<addr_t>(bytes_left, cache_line_bytes_left); 1999 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2000 2001 if (bytes_read == 0) 2002 break; 2003 2004 // Search for a null terminator of correct size and alignment in 2005 // bytes_read 2006 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 2007 for (size_t i = aligned_start; 2008 i + type_width <= total_bytes_read + bytes_read; i += type_width) 2009 if (::memcmp(&dst[i], terminator, type_width) == 0) { 2010 error.Clear(); 2011 return i; 2012 } 2013 2014 total_bytes_read += bytes_read; 2015 curr_dst += bytes_read; 2016 curr_addr += bytes_read; 2017 bytes_left -= bytes_read; 2018 } 2019 } else { 2020 if (max_bytes) 2021 error.SetErrorString("invalid arguments"); 2022 } 2023 return total_bytes_read; 2024 } 2025 2026 // Deprecated in favor of ReadStringFromMemory which has wchar support and 2027 // correct code to find null terminators. 2028 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 2029 size_t dst_max_len, 2030 Status &result_error) { 2031 size_t total_cstr_len = 0; 2032 if (dst && dst_max_len) { 2033 result_error.Clear(); 2034 // NULL out everything just to be safe 2035 memset(dst, 0, dst_max_len); 2036 Status error; 2037 addr_t curr_addr = addr; 2038 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2039 size_t bytes_left = dst_max_len - 1; 2040 char *curr_dst = dst; 2041 2042 while (bytes_left > 0) { 2043 addr_t cache_line_bytes_left = 2044 cache_line_size - (curr_addr % cache_line_size); 2045 addr_t bytes_to_read = 2046 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2047 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2048 2049 if (bytes_read == 0) { 2050 result_error = error; 2051 dst[total_cstr_len] = '\0'; 2052 break; 2053 } 2054 const size_t len = strlen(curr_dst); 2055 2056 total_cstr_len += len; 2057 2058 if (len < bytes_to_read) 2059 break; 2060 2061 curr_dst += bytes_read; 2062 curr_addr += bytes_read; 2063 bytes_left -= bytes_read; 2064 } 2065 } else { 2066 if (dst == nullptr) 2067 result_error.SetErrorString("invalid arguments"); 2068 else 2069 result_error.Clear(); 2070 } 2071 return total_cstr_len; 2072 } 2073 2074 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2075 Status &error) { 2076 LLDB_SCOPED_TIMER(); 2077 2078 if (buf == nullptr || size == 0) 2079 return 0; 2080 2081 size_t bytes_read = 0; 2082 uint8_t *bytes = (uint8_t *)buf; 2083 2084 while (bytes_read < size) { 2085 const size_t curr_size = size - bytes_read; 2086 const size_t curr_bytes_read = 2087 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2088 bytes_read += curr_bytes_read; 2089 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2090 break; 2091 } 2092 2093 // Replace any software breakpoint opcodes that fall into this range back 2094 // into "buf" before we return 2095 if (bytes_read > 0) 2096 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2097 return bytes_read; 2098 } 2099 2100 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2101 size_t integer_byte_size, 2102 uint64_t fail_value, 2103 Status &error) { 2104 Scalar scalar; 2105 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2106 error)) 2107 return scalar.ULongLong(fail_value); 2108 return fail_value; 2109 } 2110 2111 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2112 size_t integer_byte_size, 2113 int64_t fail_value, 2114 Status &error) { 2115 Scalar scalar; 2116 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2117 error)) 2118 return scalar.SLongLong(fail_value); 2119 return fail_value; 2120 } 2121 2122 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2123 Scalar scalar; 2124 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2125 error)) 2126 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2127 return LLDB_INVALID_ADDRESS; 2128 } 2129 2130 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2131 Status &error) { 2132 Scalar scalar; 2133 const uint32_t addr_byte_size = GetAddressByteSize(); 2134 if (addr_byte_size <= 4) 2135 scalar = (uint32_t)ptr_value; 2136 else 2137 scalar = ptr_value; 2138 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2139 addr_byte_size; 2140 } 2141 2142 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2143 Status &error) { 2144 size_t bytes_written = 0; 2145 const uint8_t *bytes = (const uint8_t *)buf; 2146 2147 while (bytes_written < size) { 2148 const size_t curr_size = size - bytes_written; 2149 const size_t curr_bytes_written = DoWriteMemory( 2150 addr + bytes_written, bytes + bytes_written, curr_size, error); 2151 bytes_written += curr_bytes_written; 2152 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2153 break; 2154 } 2155 return bytes_written; 2156 } 2157 2158 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2159 Status &error) { 2160 #if defined(ENABLE_MEMORY_CACHING) 2161 m_memory_cache.Flush(addr, size); 2162 #endif 2163 2164 if (buf == nullptr || size == 0) 2165 return 0; 2166 2167 m_mod_id.BumpMemoryID(); 2168 2169 // We need to write any data that would go where any current software traps 2170 // (enabled software breakpoints) any software traps (breakpoints) that we 2171 // may have placed in our tasks memory. 2172 2173 BreakpointSiteList bp_sites_in_range; 2174 if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range)) 2175 return WriteMemoryPrivate(addr, buf, size, error); 2176 2177 // No breakpoint sites overlap 2178 if (bp_sites_in_range.IsEmpty()) 2179 return WriteMemoryPrivate(addr, buf, size, error); 2180 2181 const uint8_t *ubuf = (const uint8_t *)buf; 2182 uint64_t bytes_written = 0; 2183 2184 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2185 &error](BreakpointSite *bp) -> void { 2186 if (error.Fail()) 2187 return; 2188 2189 if (bp->GetType() != BreakpointSite::eSoftware) 2190 return; 2191 2192 addr_t intersect_addr; 2193 size_t intersect_size; 2194 size_t opcode_offset; 2195 const bool intersects = bp->IntersectsRange( 2196 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2197 UNUSED_IF_ASSERT_DISABLED(intersects); 2198 assert(intersects); 2199 assert(addr <= intersect_addr && intersect_addr < addr + size); 2200 assert(addr < intersect_addr + intersect_size && 2201 intersect_addr + intersect_size <= addr + size); 2202 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2203 2204 // Check for bytes before this breakpoint 2205 const addr_t curr_addr = addr + bytes_written; 2206 if (intersect_addr > curr_addr) { 2207 // There are some bytes before this breakpoint that we need to just 2208 // write to memory 2209 size_t curr_size = intersect_addr - curr_addr; 2210 size_t curr_bytes_written = 2211 WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error); 2212 bytes_written += curr_bytes_written; 2213 if (curr_bytes_written != curr_size) { 2214 // We weren't able to write all of the requested bytes, we are 2215 // done looping and will return the number of bytes that we have 2216 // written so far. 2217 if (error.Success()) 2218 error.SetErrorToGenericError(); 2219 } 2220 } 2221 // Now write any bytes that would cover up any software breakpoints 2222 // directly into the breakpoint opcode buffer 2223 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, 2224 intersect_size); 2225 bytes_written += intersect_size; 2226 }); 2227 2228 // Write any remaining bytes after the last breakpoint if we have any left 2229 if (bytes_written < size) 2230 bytes_written += 2231 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2232 size - bytes_written, error); 2233 2234 return bytes_written; 2235 } 2236 2237 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2238 size_t byte_size, Status &error) { 2239 if (byte_size == UINT32_MAX) 2240 byte_size = scalar.GetByteSize(); 2241 if (byte_size > 0) { 2242 uint8_t buf[32]; 2243 const size_t mem_size = 2244 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2245 if (mem_size > 0) 2246 return WriteMemory(addr, buf, mem_size, error); 2247 else 2248 error.SetErrorString("failed to get scalar as memory data"); 2249 } else { 2250 error.SetErrorString("invalid scalar value"); 2251 } 2252 return 0; 2253 } 2254 2255 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2256 bool is_signed, Scalar &scalar, 2257 Status &error) { 2258 uint64_t uval = 0; 2259 if (byte_size == 0) { 2260 error.SetErrorString("byte size is zero"); 2261 } else if (byte_size & (byte_size - 1)) { 2262 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2263 byte_size); 2264 } else if (byte_size <= sizeof(uval)) { 2265 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2266 if (bytes_read == byte_size) { 2267 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2268 GetAddressByteSize()); 2269 lldb::offset_t offset = 0; 2270 if (byte_size <= 4) 2271 scalar = data.GetMaxU32(&offset, byte_size); 2272 else 2273 scalar = data.GetMaxU64(&offset, byte_size); 2274 if (is_signed) 2275 scalar.SignExtend(byte_size * 8); 2276 return bytes_read; 2277 } 2278 } else { 2279 error.SetErrorStringWithFormat( 2280 "byte size of %u is too large for integer scalar type", byte_size); 2281 } 2282 return 0; 2283 } 2284 2285 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2286 Status error; 2287 for (const auto &Entry : entries) { 2288 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2289 error); 2290 if (!error.Success()) 2291 break; 2292 } 2293 return error; 2294 } 2295 2296 #define USE_ALLOCATE_MEMORY_CACHE 1 2297 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2298 Status &error) { 2299 if (GetPrivateState() != eStateStopped) { 2300 error.SetErrorToGenericError(); 2301 return LLDB_INVALID_ADDRESS; 2302 } 2303 2304 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2305 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2306 #else 2307 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2308 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2309 LLDB_LOGF(log, 2310 "Process::AllocateMemory(size=%" PRIu64 2311 ", permissions=%s) => 0x%16.16" PRIx64 2312 " (m_stop_id = %u m_memory_id = %u)", 2313 (uint64_t)size, GetPermissionsAsCString(permissions), 2314 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2315 m_mod_id.GetMemoryID()); 2316 return allocated_addr; 2317 #endif 2318 } 2319 2320 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2321 Status &error) { 2322 addr_t return_addr = AllocateMemory(size, permissions, error); 2323 if (error.Success()) { 2324 std::string buffer(size, 0); 2325 WriteMemory(return_addr, buffer.c_str(), size, error); 2326 } 2327 return return_addr; 2328 } 2329 2330 bool Process::CanJIT() { 2331 if (m_can_jit == eCanJITDontKnow) { 2332 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2333 Status err; 2334 2335 uint64_t allocated_memory = AllocateMemory( 2336 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2337 err); 2338 2339 if (err.Success()) { 2340 m_can_jit = eCanJITYes; 2341 LLDB_LOGF(log, 2342 "Process::%s pid %" PRIu64 2343 " allocation test passed, CanJIT () is true", 2344 __FUNCTION__, GetID()); 2345 } else { 2346 m_can_jit = eCanJITNo; 2347 LLDB_LOGF(log, 2348 "Process::%s pid %" PRIu64 2349 " allocation test failed, CanJIT () is false: %s", 2350 __FUNCTION__, GetID(), err.AsCString()); 2351 } 2352 2353 DeallocateMemory(allocated_memory); 2354 } 2355 2356 return m_can_jit == eCanJITYes; 2357 } 2358 2359 void Process::SetCanJIT(bool can_jit) { 2360 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2361 } 2362 2363 void Process::SetCanRunCode(bool can_run_code) { 2364 SetCanJIT(can_run_code); 2365 m_can_interpret_function_calls = can_run_code; 2366 } 2367 2368 Status Process::DeallocateMemory(addr_t ptr) { 2369 Status error; 2370 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2371 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2372 error.SetErrorStringWithFormat( 2373 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2374 } 2375 #else 2376 error = DoDeallocateMemory(ptr); 2377 2378 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2379 LLDB_LOGF(log, 2380 "Process::DeallocateMemory(addr=0x%16.16" PRIx64 2381 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2382 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2383 m_mod_id.GetMemoryID()); 2384 #endif 2385 return error; 2386 } 2387 2388 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2389 lldb::addr_t header_addr, 2390 size_t size_to_read) { 2391 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2392 if (log) { 2393 LLDB_LOGF(log, 2394 "Process::ReadModuleFromMemory reading %s binary from memory", 2395 file_spec.GetPath().c_str()); 2396 } 2397 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2398 if (module_sp) { 2399 Status error; 2400 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2401 shared_from_this(), header_addr, error, size_to_read); 2402 if (objfile) 2403 return module_sp; 2404 } 2405 return ModuleSP(); 2406 } 2407 2408 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2409 uint32_t &permissions) { 2410 MemoryRegionInfo range_info; 2411 permissions = 0; 2412 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2413 if (!error.Success()) 2414 return false; 2415 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2416 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2417 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2418 return false; 2419 } 2420 2421 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2422 permissions |= lldb::ePermissionsReadable; 2423 2424 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2425 permissions |= lldb::ePermissionsWritable; 2426 2427 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2428 permissions |= lldb::ePermissionsExecutable; 2429 2430 return true; 2431 } 2432 2433 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2434 Status error; 2435 error.SetErrorString("watchpoints are not supported"); 2436 return error; 2437 } 2438 2439 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2440 Status error; 2441 error.SetErrorString("watchpoints are not supported"); 2442 return error; 2443 } 2444 2445 StateType 2446 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2447 const Timeout<std::micro> &timeout) { 2448 StateType state; 2449 2450 while (true) { 2451 event_sp.reset(); 2452 state = GetStateChangedEventsPrivate(event_sp, timeout); 2453 2454 if (StateIsStoppedState(state, false)) 2455 break; 2456 2457 // If state is invalid, then we timed out 2458 if (state == eStateInvalid) 2459 break; 2460 2461 if (event_sp) 2462 HandlePrivateEvent(event_sp); 2463 } 2464 return state; 2465 } 2466 2467 void Process::LoadOperatingSystemPlugin(bool flush) { 2468 if (flush) 2469 m_thread_list.Clear(); 2470 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); 2471 if (flush) 2472 Flush(); 2473 } 2474 2475 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2476 Status error; 2477 m_abi_sp.reset(); 2478 m_dyld_up.reset(); 2479 m_jit_loaders_up.reset(); 2480 m_system_runtime_up.reset(); 2481 m_os_up.reset(); 2482 m_process_input_reader.reset(); 2483 2484 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2485 if (!exe_module) { 2486 error.SetErrorString("executable module does not exist"); 2487 return error; 2488 } 2489 2490 char local_exec_file_path[PATH_MAX]; 2491 char platform_exec_file_path[PATH_MAX]; 2492 exe_module->GetFileSpec().GetPath(local_exec_file_path, 2493 sizeof(local_exec_file_path)); 2494 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, 2495 sizeof(platform_exec_file_path)); 2496 if (FileSystem::Instance().Exists(exe_module->GetFileSpec())) { 2497 // Install anything that might need to be installed prior to launching. 2498 // For host systems, this will do nothing, but if we are connected to a 2499 // remote platform it will install any needed binaries 2500 error = GetTarget().Install(&launch_info); 2501 if (error.Fail()) 2502 return error; 2503 2504 // Listen and queue events that are broadcasted during the process launch. 2505 ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack")); 2506 HijackProcessEvents(listener_sp); 2507 auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); }); 2508 2509 if (PrivateStateThreadIsValid()) 2510 PausePrivateStateThread(); 2511 2512 error = WillLaunch(exe_module); 2513 if (error.Success()) { 2514 const bool restarted = false; 2515 SetPublicState(eStateLaunching, restarted); 2516 m_should_detach = false; 2517 2518 if (m_public_run_lock.TrySetRunning()) { 2519 // Now launch using these arguments. 2520 error = DoLaunch(exe_module, launch_info); 2521 } else { 2522 // This shouldn't happen 2523 error.SetErrorString("failed to acquire process run lock"); 2524 } 2525 2526 if (error.Fail()) { 2527 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2528 SetID(LLDB_INVALID_PROCESS_ID); 2529 const char *error_string = error.AsCString(); 2530 if (error_string == nullptr) 2531 error_string = "launch failed"; 2532 SetExitStatus(-1, error_string); 2533 } 2534 } else { 2535 EventSP event_sp; 2536 2537 // Now wait for the process to launch and return control to us, and then 2538 // call DidLaunch: 2539 StateType state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2540 2541 if (state == eStateInvalid || !event_sp) { 2542 // We were able to launch the process, but we failed to catch the 2543 // initial stop. 2544 error.SetErrorString("failed to catch stop after launch"); 2545 SetExitStatus(0, "failed to catch stop after launch"); 2546 Destroy(false); 2547 } else if (state == eStateStopped || state == eStateCrashed) { 2548 DidLaunch(); 2549 2550 DynamicLoader *dyld = GetDynamicLoader(); 2551 if (dyld) 2552 dyld->DidLaunch(); 2553 2554 GetJITLoaders().DidLaunch(); 2555 2556 SystemRuntime *system_runtime = GetSystemRuntime(); 2557 if (system_runtime) 2558 system_runtime->DidLaunch(); 2559 2560 if (!m_os_up) 2561 LoadOperatingSystemPlugin(false); 2562 2563 // We successfully launched the process and stopped, now it the 2564 // right time to set up signal filters before resuming. 2565 UpdateAutomaticSignalFiltering(); 2566 2567 // Note, the stop event was consumed above, but not handled. This 2568 // was done to give DidLaunch a chance to run. The target is either 2569 // stopped or crashed. Directly set the state. This is done to 2570 // prevent a stop message with a bunch of spurious output on thread 2571 // status, as well as not pop a ProcessIOHandler. 2572 SetPublicState(state, false); 2573 2574 if (PrivateStateThreadIsValid()) 2575 ResumePrivateStateThread(); 2576 else 2577 StartPrivateStateThread(); 2578 2579 // Target was stopped at entry as was intended. Need to notify the 2580 // listeners about it. 2581 if (state == eStateStopped && 2582 launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2583 HandlePrivateEvent(event_sp); 2584 } else if (state == eStateExited) { 2585 // We exited while trying to launch somehow. Don't call DidLaunch 2586 // as that's not likely to work, and return an invalid pid. 2587 HandlePrivateEvent(event_sp); 2588 } 2589 } 2590 } 2591 } else { 2592 error.SetErrorStringWithFormat("file doesn't exist: '%s'", 2593 local_exec_file_path); 2594 } 2595 2596 return error; 2597 } 2598 2599 Status Process::LoadCore() { 2600 Status error = DoLoadCore(); 2601 if (error.Success()) { 2602 ListenerSP listener_sp( 2603 Listener::MakeListener("lldb.process.load_core_listener")); 2604 HijackProcessEvents(listener_sp); 2605 2606 if (PrivateStateThreadIsValid()) 2607 ResumePrivateStateThread(); 2608 else 2609 StartPrivateStateThread(); 2610 2611 DynamicLoader *dyld = GetDynamicLoader(); 2612 if (dyld) 2613 dyld->DidAttach(); 2614 2615 GetJITLoaders().DidAttach(); 2616 2617 SystemRuntime *system_runtime = GetSystemRuntime(); 2618 if (system_runtime) 2619 system_runtime->DidAttach(); 2620 2621 if (!m_os_up) 2622 LoadOperatingSystemPlugin(false); 2623 2624 // We successfully loaded a core file, now pretend we stopped so we can 2625 // show all of the threads in the core file and explore the crashed state. 2626 SetPrivateState(eStateStopped); 2627 2628 // Wait for a stopped event since we just posted one above... 2629 lldb::EventSP event_sp; 2630 StateType state = 2631 WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp); 2632 2633 if (!StateIsStoppedState(state, false)) { 2634 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2635 LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", 2636 StateAsCString(state)); 2637 error.SetErrorString( 2638 "Did not get stopped event after loading the core file."); 2639 } 2640 RestoreProcessEvents(); 2641 } 2642 return error; 2643 } 2644 2645 DynamicLoader *Process::GetDynamicLoader() { 2646 if (!m_dyld_up) 2647 m_dyld_up.reset(DynamicLoader::FindPlugin(this, nullptr)); 2648 return m_dyld_up.get(); 2649 } 2650 2651 DataExtractor Process::GetAuxvData() { return DataExtractor(); } 2652 2653 JITLoaderList &Process::GetJITLoaders() { 2654 if (!m_jit_loaders_up) { 2655 m_jit_loaders_up = std::make_unique<JITLoaderList>(); 2656 JITLoader::LoadPlugins(this, *m_jit_loaders_up); 2657 } 2658 return *m_jit_loaders_up; 2659 } 2660 2661 SystemRuntime *Process::GetSystemRuntime() { 2662 if (!m_system_runtime_up) 2663 m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); 2664 return m_system_runtime_up.get(); 2665 } 2666 2667 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2668 uint32_t exec_count) 2669 : NextEventAction(process), m_exec_count(exec_count) { 2670 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2671 LLDB_LOGF( 2672 log, 2673 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2674 __FUNCTION__, static_cast<void *>(process), exec_count); 2675 } 2676 2677 Process::NextEventAction::EventActionResult 2678 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2679 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2680 2681 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2682 LLDB_LOGF(log, 2683 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2684 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2685 2686 switch (state) { 2687 case eStateAttaching: 2688 return eEventActionSuccess; 2689 2690 case eStateRunning: 2691 case eStateConnected: 2692 return eEventActionRetry; 2693 2694 case eStateStopped: 2695 case eStateCrashed: 2696 // During attach, prior to sending the eStateStopped event, 2697 // lldb_private::Process subclasses must set the new process ID. 2698 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2699 // We don't want these events to be reported, so go set the 2700 // ShouldReportStop here: 2701 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2702 2703 if (m_exec_count > 0) { 2704 --m_exec_count; 2705 2706 LLDB_LOGF(log, 2707 "Process::AttachCompletionHandler::%s state %s: reduced " 2708 "remaining exec count to %" PRIu32 ", requesting resume", 2709 __FUNCTION__, StateAsCString(state), m_exec_count); 2710 2711 RequestResume(); 2712 return eEventActionRetry; 2713 } else { 2714 LLDB_LOGF(log, 2715 "Process::AttachCompletionHandler::%s state %s: no more " 2716 "execs expected to start, continuing with attach", 2717 __FUNCTION__, StateAsCString(state)); 2718 2719 m_process->CompleteAttach(); 2720 return eEventActionSuccess; 2721 } 2722 break; 2723 2724 default: 2725 case eStateExited: 2726 case eStateInvalid: 2727 break; 2728 } 2729 2730 m_exit_string.assign("No valid Process"); 2731 return eEventActionExit; 2732 } 2733 2734 Process::NextEventAction::EventActionResult 2735 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2736 return eEventActionSuccess; 2737 } 2738 2739 const char *Process::AttachCompletionHandler::GetExitString() { 2740 return m_exit_string.c_str(); 2741 } 2742 2743 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2744 if (m_listener_sp) 2745 return m_listener_sp; 2746 else 2747 return debugger.GetListener(); 2748 } 2749 2750 Status Process::Attach(ProcessAttachInfo &attach_info) { 2751 m_abi_sp.reset(); 2752 m_process_input_reader.reset(); 2753 m_dyld_up.reset(); 2754 m_jit_loaders_up.reset(); 2755 m_system_runtime_up.reset(); 2756 m_os_up.reset(); 2757 2758 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2759 Status error; 2760 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2761 char process_name[PATH_MAX]; 2762 2763 if (attach_info.GetExecutableFile().GetPath(process_name, 2764 sizeof(process_name))) { 2765 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2766 2767 if (wait_for_launch) { 2768 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2769 if (error.Success()) { 2770 if (m_public_run_lock.TrySetRunning()) { 2771 m_should_detach = true; 2772 const bool restarted = false; 2773 SetPublicState(eStateAttaching, restarted); 2774 // Now attach using these arguments. 2775 error = DoAttachToProcessWithName(process_name, attach_info); 2776 } else { 2777 // This shouldn't happen 2778 error.SetErrorString("failed to acquire process run lock"); 2779 } 2780 2781 if (error.Fail()) { 2782 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2783 SetID(LLDB_INVALID_PROCESS_ID); 2784 if (error.AsCString() == nullptr) 2785 error.SetErrorString("attach failed"); 2786 2787 SetExitStatus(-1, error.AsCString()); 2788 } 2789 } else { 2790 SetNextEventAction(new Process::AttachCompletionHandler( 2791 this, attach_info.GetResumeCount())); 2792 StartPrivateStateThread(); 2793 } 2794 return error; 2795 } 2796 } else { 2797 ProcessInstanceInfoList process_infos; 2798 PlatformSP platform_sp(GetTarget().GetPlatform()); 2799 2800 if (platform_sp) { 2801 ProcessInstanceInfoMatch match_info; 2802 match_info.GetProcessInfo() = attach_info; 2803 match_info.SetNameMatchType(NameMatch::Equals); 2804 platform_sp->FindProcesses(match_info, process_infos); 2805 const uint32_t num_matches = process_infos.size(); 2806 if (num_matches == 1) { 2807 attach_pid = process_infos[0].GetProcessID(); 2808 // Fall through and attach using the above process ID 2809 } else { 2810 match_info.GetProcessInfo().GetExecutableFile().GetPath( 2811 process_name, sizeof(process_name)); 2812 if (num_matches > 1) { 2813 StreamString s; 2814 ProcessInstanceInfo::DumpTableHeader(s, true, false); 2815 for (size_t i = 0; i < num_matches; i++) { 2816 process_infos[i].DumpAsTableRow( 2817 s, platform_sp->GetUserIDResolver(), true, false); 2818 } 2819 error.SetErrorStringWithFormat( 2820 "more than one process named %s:\n%s", process_name, 2821 s.GetData()); 2822 } else 2823 error.SetErrorStringWithFormat( 2824 "could not find a process named %s", process_name); 2825 } 2826 } else { 2827 error.SetErrorString( 2828 "invalid platform, can't find processes by name"); 2829 return error; 2830 } 2831 } 2832 } else { 2833 error.SetErrorString("invalid process name"); 2834 } 2835 } 2836 2837 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 2838 error = WillAttachToProcessWithID(attach_pid); 2839 if (error.Success()) { 2840 2841 if (m_public_run_lock.TrySetRunning()) { 2842 // Now attach using these arguments. 2843 m_should_detach = true; 2844 const bool restarted = false; 2845 SetPublicState(eStateAttaching, restarted); 2846 error = DoAttachToProcessWithID(attach_pid, attach_info); 2847 } else { 2848 // This shouldn't happen 2849 error.SetErrorString("failed to acquire process run lock"); 2850 } 2851 2852 if (error.Success()) { 2853 SetNextEventAction(new Process::AttachCompletionHandler( 2854 this, attach_info.GetResumeCount())); 2855 StartPrivateStateThread(); 2856 } else { 2857 if (GetID() != LLDB_INVALID_PROCESS_ID) 2858 SetID(LLDB_INVALID_PROCESS_ID); 2859 2860 const char *error_string = error.AsCString(); 2861 if (error_string == nullptr) 2862 error_string = "attach failed"; 2863 2864 SetExitStatus(-1, error_string); 2865 } 2866 } 2867 } 2868 return error; 2869 } 2870 2871 void Process::CompleteAttach() { 2872 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 2873 LIBLLDB_LOG_TARGET)); 2874 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 2875 2876 // Let the process subclass figure out at much as it can about the process 2877 // before we go looking for a dynamic loader plug-in. 2878 ArchSpec process_arch; 2879 DidAttach(process_arch); 2880 2881 if (process_arch.IsValid()) { 2882 GetTarget().SetArchitecture(process_arch); 2883 if (log) { 2884 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 2885 LLDB_LOGF(log, 2886 "Process::%s replacing process architecture with DidAttach() " 2887 "architecture: %s", 2888 __FUNCTION__, triple_str ? triple_str : "<null>"); 2889 } 2890 } 2891 2892 // We just attached. If we have a platform, ask it for the process 2893 // architecture, and if it isn't the same as the one we've already set, 2894 // switch architectures. 2895 PlatformSP platform_sp(GetTarget().GetPlatform()); 2896 assert(platform_sp); 2897 if (platform_sp) { 2898 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2899 if (target_arch.IsValid() && 2900 !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) { 2901 ArchSpec platform_arch; 2902 platform_sp = 2903 platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch); 2904 if (platform_sp) { 2905 GetTarget().SetPlatform(platform_sp); 2906 GetTarget().SetArchitecture(platform_arch); 2907 LLDB_LOGF(log, 2908 "Process::%s switching platform to %s and architecture " 2909 "to %s based on info from attach", 2910 __FUNCTION__, platform_sp->GetName().AsCString(""), 2911 platform_arch.GetTriple().getTriple().c_str()); 2912 } 2913 } else if (!process_arch.IsValid()) { 2914 ProcessInstanceInfo process_info; 2915 GetProcessInfo(process_info); 2916 const ArchSpec &process_arch = process_info.GetArchitecture(); 2917 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2918 if (process_arch.IsValid() && 2919 target_arch.IsCompatibleMatch(process_arch) && 2920 !target_arch.IsExactMatch(process_arch)) { 2921 GetTarget().SetArchitecture(process_arch); 2922 LLDB_LOGF(log, 2923 "Process::%s switching architecture to %s based on info " 2924 "the platform retrieved for pid %" PRIu64, 2925 __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), 2926 GetID()); 2927 } 2928 } 2929 } 2930 2931 // We have completed the attach, now it is time to find the dynamic loader 2932 // plug-in 2933 DynamicLoader *dyld = GetDynamicLoader(); 2934 if (dyld) { 2935 dyld->DidAttach(); 2936 if (log) { 2937 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2938 LLDB_LOGF(log, 2939 "Process::%s after DynamicLoader::DidAttach(), target " 2940 "executable is %s (using %s plugin)", 2941 __FUNCTION__, 2942 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2943 : "<none>", 2944 dyld->GetPluginName().AsCString("<unnamed>")); 2945 } 2946 } 2947 2948 GetJITLoaders().DidAttach(); 2949 2950 SystemRuntime *system_runtime = GetSystemRuntime(); 2951 if (system_runtime) { 2952 system_runtime->DidAttach(); 2953 if (log) { 2954 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2955 LLDB_LOGF(log, 2956 "Process::%s after SystemRuntime::DidAttach(), target " 2957 "executable is %s (using %s plugin)", 2958 __FUNCTION__, 2959 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2960 : "<none>", 2961 system_runtime->GetPluginName().AsCString("<unnamed>")); 2962 } 2963 } 2964 2965 if (!m_os_up) { 2966 LoadOperatingSystemPlugin(false); 2967 if (m_os_up) { 2968 // Somebody might have gotten threads before now, but we need to force the 2969 // update after we've loaded the OperatingSystem plugin or it won't get a 2970 // chance to process the threads. 2971 m_thread_list.Clear(); 2972 UpdateThreadListIfNeeded(); 2973 } 2974 } 2975 // Figure out which one is the executable, and set that in our target: 2976 ModuleSP new_executable_module_sp; 2977 for (ModuleSP module_sp : GetTarget().GetImages().Modules()) { 2978 if (module_sp && module_sp->IsExecutable()) { 2979 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 2980 new_executable_module_sp = module_sp; 2981 break; 2982 } 2983 } 2984 if (new_executable_module_sp) { 2985 GetTarget().SetExecutableModule(new_executable_module_sp, 2986 eLoadDependentsNo); 2987 if (log) { 2988 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2989 LLDB_LOGF( 2990 log, 2991 "Process::%s after looping through modules, target executable is %s", 2992 __FUNCTION__, 2993 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2994 : "<none>"); 2995 } 2996 } 2997 } 2998 2999 Status Process::ConnectRemote(llvm::StringRef remote_url) { 3000 m_abi_sp.reset(); 3001 m_process_input_reader.reset(); 3002 3003 // Find the process and its architecture. Make sure it matches the 3004 // architecture of the current Target, and if not adjust it. 3005 3006 Status error(DoConnectRemote(remote_url)); 3007 if (error.Success()) { 3008 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3009 EventSP event_sp; 3010 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 3011 3012 if (state == eStateStopped || state == eStateCrashed) { 3013 // If we attached and actually have a process on the other end, then 3014 // this ended up being the equivalent of an attach. 3015 CompleteAttach(); 3016 3017 // This delays passing the stopped event to listeners till 3018 // CompleteAttach gets a chance to complete... 3019 HandlePrivateEvent(event_sp); 3020 } 3021 } 3022 3023 if (PrivateStateThreadIsValid()) 3024 ResumePrivateStateThread(); 3025 else 3026 StartPrivateStateThread(); 3027 } 3028 return error; 3029 } 3030 3031 Status Process::PrivateResume() { 3032 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3033 LIBLLDB_LOG_STEP)); 3034 LLDB_LOGF(log, 3035 "Process::PrivateResume() m_stop_id = %u, public state: %s " 3036 "private state: %s", 3037 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3038 StateAsCString(m_private_state.GetValue())); 3039 3040 // If signals handing status changed we might want to update our signal 3041 // filters before resuming. 3042 UpdateAutomaticSignalFiltering(); 3043 3044 Status error(WillResume()); 3045 // Tell the process it is about to resume before the thread list 3046 if (error.Success()) { 3047 // Now let the thread list know we are about to resume so it can let all of 3048 // our threads know that they are about to be resumed. Threads will each be 3049 // called with Thread::WillResume(StateType) where StateType contains the 3050 // state that they are supposed to have when the process is resumed 3051 // (suspended/running/stepping). Threads should also check their resume 3052 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3053 // start back up with a signal. 3054 if (m_thread_list.WillResume()) { 3055 // Last thing, do the PreResumeActions. 3056 if (!RunPreResumeActions()) { 3057 error.SetErrorString( 3058 "Process::PrivateResume PreResumeActions failed, not resuming."); 3059 } else { 3060 m_mod_id.BumpResumeID(); 3061 error = DoResume(); 3062 if (error.Success()) { 3063 DidResume(); 3064 m_thread_list.DidResume(); 3065 LLDB_LOGF(log, "Process thinks the process has resumed."); 3066 } else { 3067 LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); 3068 return error; 3069 } 3070 } 3071 } else { 3072 // Somebody wanted to run without running (e.g. we were faking a step 3073 // from one frame of a set of inlined frames that share the same PC to 3074 // another.) So generate a continue & a stopped event, and let the world 3075 // handle them. 3076 LLDB_LOGF(log, 3077 "Process::PrivateResume() asked to simulate a start & stop."); 3078 3079 SetPrivateState(eStateRunning); 3080 SetPrivateState(eStateStopped); 3081 } 3082 } else 3083 LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", 3084 error.AsCString("<unknown error>")); 3085 return error; 3086 } 3087 3088 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3089 if (!StateIsRunningState(m_public_state.GetValue())) 3090 return Status("Process is not running."); 3091 3092 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3093 // case it was already set and some thread plan logic calls halt on its own. 3094 m_clear_thread_plans_on_stop |= clear_thread_plans; 3095 3096 ListenerSP halt_listener_sp( 3097 Listener::MakeListener("lldb.process.halt_listener")); 3098 HijackProcessEvents(halt_listener_sp); 3099 3100 EventSP event_sp; 3101 3102 SendAsyncInterrupt(); 3103 3104 if (m_public_state.GetValue() == eStateAttaching) { 3105 // Don't hijack and eat the eStateExited as the code that was doing the 3106 // attach will be waiting for this event... 3107 RestoreProcessEvents(); 3108 SetExitStatus(SIGKILL, "Cancelled async attach."); 3109 Destroy(false); 3110 return Status(); 3111 } 3112 3113 // Wait for the process halt timeout seconds for the process to stop. 3114 StateType state = 3115 WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true, 3116 halt_listener_sp, nullptr, use_run_lock); 3117 RestoreProcessEvents(); 3118 3119 if (state == eStateInvalid || !event_sp) { 3120 // We timed out and didn't get a stop event... 3121 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3122 } 3123 3124 BroadcastEvent(event_sp); 3125 3126 return Status(); 3127 } 3128 3129 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3130 Status error; 3131 3132 // Check both the public & private states here. If we're hung evaluating an 3133 // expression, for instance, then the public state will be stopped, but we 3134 // still need to interrupt. 3135 if (m_public_state.GetValue() == eStateRunning || 3136 m_private_state.GetValue() == eStateRunning) { 3137 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3138 LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); 3139 3140 ListenerSP listener_sp( 3141 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3142 HijackProcessEvents(listener_sp); 3143 3144 SendAsyncInterrupt(); 3145 3146 // Consume the interrupt event. 3147 StateType state = WaitForProcessToStop(GetInterruptTimeout(), 3148 &exit_event_sp, true, listener_sp); 3149 3150 RestoreProcessEvents(); 3151 3152 // If the process exited while we were waiting for it to stop, put the 3153 // exited event into the shared pointer passed in and return. Our caller 3154 // doesn't need to do anything else, since they don't have a process 3155 // anymore... 3156 3157 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3158 LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", 3159 __FUNCTION__); 3160 return error; 3161 } else 3162 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3163 3164 if (state != eStateStopped) { 3165 LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, 3166 StateAsCString(state)); 3167 // If we really couldn't stop the process then we should just error out 3168 // here, but if the lower levels just bobbled sending the event and we 3169 // really are stopped, then continue on. 3170 StateType private_state = m_private_state.GetValue(); 3171 if (private_state != eStateStopped) { 3172 return Status( 3173 "Attempt to stop the target in order to detach timed out. " 3174 "State = %s", 3175 StateAsCString(GetState())); 3176 } 3177 } 3178 } 3179 return error; 3180 } 3181 3182 Status Process::Detach(bool keep_stopped) { 3183 EventSP exit_event_sp; 3184 Status error; 3185 m_destroy_in_process = true; 3186 3187 error = WillDetach(); 3188 3189 if (error.Success()) { 3190 if (DetachRequiresHalt()) { 3191 error = StopForDestroyOrDetach(exit_event_sp); 3192 if (!error.Success()) { 3193 m_destroy_in_process = false; 3194 return error; 3195 } else if (exit_event_sp) { 3196 // We shouldn't need to do anything else here. There's no process left 3197 // to detach from... 3198 StopPrivateStateThread(); 3199 m_destroy_in_process = false; 3200 return error; 3201 } 3202 } 3203 3204 m_thread_list.DiscardThreadPlans(); 3205 DisableAllBreakpointSites(); 3206 3207 error = DoDetach(keep_stopped); 3208 if (error.Success()) { 3209 DidDetach(); 3210 StopPrivateStateThread(); 3211 } else { 3212 return error; 3213 } 3214 } 3215 m_destroy_in_process = false; 3216 3217 // If we exited when we were waiting for a process to stop, then forward the 3218 // event here so we don't lose the event 3219 if (exit_event_sp) { 3220 // Directly broadcast our exited event because we shut down our private 3221 // state thread above 3222 BroadcastEvent(exit_event_sp); 3223 } 3224 3225 // If we have been interrupted (to kill us) in the middle of running, we may 3226 // not end up propagating the last events through the event system, in which 3227 // case we might strand the write lock. Unlock it here so when we do to tear 3228 // down the process we don't get an error destroying the lock. 3229 3230 m_public_run_lock.SetStopped(); 3231 return error; 3232 } 3233 3234 Status Process::Destroy(bool force_kill) { 3235 // If we've already called Process::Finalize then there's nothing useful to 3236 // be done here. Finalize has actually called Destroy already. 3237 if (m_finalizing) 3238 return {}; 3239 return DestroyImpl(force_kill); 3240 } 3241 3242 Status Process::DestroyImpl(bool force_kill) { 3243 // Tell ourselves we are in the process of destroying the process, so that we 3244 // don't do any unnecessary work that might hinder the destruction. Remember 3245 // to set this back to false when we are done. That way if the attempt 3246 // failed and the process stays around for some reason it won't be in a 3247 // confused state. 3248 3249 if (force_kill) 3250 m_should_detach = false; 3251 3252 if (GetShouldDetach()) { 3253 // FIXME: This will have to be a process setting: 3254 bool keep_stopped = false; 3255 Detach(keep_stopped); 3256 } 3257 3258 m_destroy_in_process = true; 3259 3260 Status error(WillDestroy()); 3261 if (error.Success()) { 3262 EventSP exit_event_sp; 3263 if (DestroyRequiresHalt()) { 3264 error = StopForDestroyOrDetach(exit_event_sp); 3265 } 3266 3267 if (m_public_state.GetValue() == eStateStopped) { 3268 // Ditch all thread plans, and remove all our breakpoints: in case we 3269 // have to restart the target to kill it, we don't want it hitting a 3270 // breakpoint... Only do this if we've stopped, however, since if we 3271 // didn't manage to halt it above, then we're not going to have much luck 3272 // doing this now. 3273 m_thread_list.DiscardThreadPlans(); 3274 DisableAllBreakpointSites(); 3275 } 3276 3277 error = DoDestroy(); 3278 if (error.Success()) { 3279 DidDestroy(); 3280 StopPrivateStateThread(); 3281 } 3282 m_stdio_communication.StopReadThread(); 3283 m_stdio_communication.Disconnect(); 3284 m_stdin_forward = false; 3285 3286 if (m_process_input_reader) { 3287 m_process_input_reader->SetIsDone(true); 3288 m_process_input_reader->Cancel(); 3289 m_process_input_reader.reset(); 3290 } 3291 3292 // If we exited when we were waiting for a process to stop, then forward 3293 // the event here so we don't lose the event 3294 if (exit_event_sp) { 3295 // Directly broadcast our exited event because we shut down our private 3296 // state thread above 3297 BroadcastEvent(exit_event_sp); 3298 } 3299 3300 // If we have been interrupted (to kill us) in the middle of running, we 3301 // may not end up propagating the last events through the event system, in 3302 // which case we might strand the write lock. Unlock it here so when we do 3303 // to tear down the process we don't get an error destroying the lock. 3304 m_public_run_lock.SetStopped(); 3305 } 3306 3307 m_destroy_in_process = false; 3308 3309 return error; 3310 } 3311 3312 Status Process::Signal(int signal) { 3313 Status error(WillSignal()); 3314 if (error.Success()) { 3315 error = DoSignal(signal); 3316 if (error.Success()) 3317 DidSignal(); 3318 } 3319 return error; 3320 } 3321 3322 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3323 assert(signals_sp && "null signals_sp"); 3324 m_unix_signals_sp = signals_sp; 3325 } 3326 3327 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3328 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3329 return m_unix_signals_sp; 3330 } 3331 3332 lldb::ByteOrder Process::GetByteOrder() const { 3333 return GetTarget().GetArchitecture().GetByteOrder(); 3334 } 3335 3336 uint32_t Process::GetAddressByteSize() const { 3337 return GetTarget().GetArchitecture().GetAddressByteSize(); 3338 } 3339 3340 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3341 const StateType state = 3342 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3343 bool return_value = true; 3344 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | 3345 LIBLLDB_LOG_PROCESS)); 3346 3347 switch (state) { 3348 case eStateDetached: 3349 case eStateExited: 3350 case eStateUnloaded: 3351 m_stdio_communication.SynchronizeWithReadThread(); 3352 m_stdio_communication.StopReadThread(); 3353 m_stdio_communication.Disconnect(); 3354 m_stdin_forward = false; 3355 3356 LLVM_FALLTHROUGH; 3357 case eStateConnected: 3358 case eStateAttaching: 3359 case eStateLaunching: 3360 // These events indicate changes in the state of the debugging session, 3361 // always report them. 3362 return_value = true; 3363 break; 3364 case eStateInvalid: 3365 // We stopped for no apparent reason, don't report it. 3366 return_value = false; 3367 break; 3368 case eStateRunning: 3369 case eStateStepping: 3370 // If we've started the target running, we handle the cases where we are 3371 // already running and where there is a transition from stopped to running 3372 // differently. running -> running: Automatically suppress extra running 3373 // events stopped -> running: Report except when there is one or more no 3374 // votes 3375 // and no yes votes. 3376 SynchronouslyNotifyStateChanged(state); 3377 if (m_force_next_event_delivery) 3378 return_value = true; 3379 else { 3380 switch (m_last_broadcast_state) { 3381 case eStateRunning: 3382 case eStateStepping: 3383 // We always suppress multiple runnings with no PUBLIC stop in between. 3384 return_value = false; 3385 break; 3386 default: 3387 // TODO: make this work correctly. For now always report 3388 // run if we aren't running so we don't miss any running events. If I 3389 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3390 // and hit the breakpoints on multiple threads, then somehow during the 3391 // stepping over of all breakpoints no run gets reported. 3392 3393 // This is a transition from stop to run. 3394 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3395 case eVoteYes: 3396 case eVoteNoOpinion: 3397 return_value = true; 3398 break; 3399 case eVoteNo: 3400 return_value = false; 3401 break; 3402 } 3403 break; 3404 } 3405 } 3406 break; 3407 case eStateStopped: 3408 case eStateCrashed: 3409 case eStateSuspended: 3410 // We've stopped. First see if we're going to restart the target. If we 3411 // are going to stop, then we always broadcast the event. If we aren't 3412 // going to stop, let the thread plans decide if we're going to report this 3413 // event. If no thread has an opinion, we don't report it. 3414 3415 m_stdio_communication.SynchronizeWithReadThread(); 3416 RefreshStateAfterStop(); 3417 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3418 LLDB_LOGF(log, 3419 "Process::ShouldBroadcastEvent (%p) stopped due to an " 3420 "interrupt, state: %s", 3421 static_cast<void *>(event_ptr), StateAsCString(state)); 3422 // Even though we know we are going to stop, we should let the threads 3423 // have a look at the stop, so they can properly set their state. 3424 m_thread_list.ShouldStop(event_ptr); 3425 return_value = true; 3426 } else { 3427 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3428 bool should_resume = false; 3429 3430 // It makes no sense to ask "ShouldStop" if we've already been 3431 // restarted... Asking the thread list is also not likely to go well, 3432 // since we are running again. So in that case just report the event. 3433 3434 if (!was_restarted) 3435 should_resume = !m_thread_list.ShouldStop(event_ptr); 3436 3437 if (was_restarted || should_resume || m_resume_requested) { 3438 Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3439 LLDB_LOGF(log, 3440 "Process::ShouldBroadcastEvent: should_resume: %i state: " 3441 "%s was_restarted: %i report_stop_vote: %d.", 3442 should_resume, StateAsCString(state), was_restarted, 3443 report_stop_vote); 3444 3445 switch (report_stop_vote) { 3446 case eVoteYes: 3447 return_value = true; 3448 break; 3449 case eVoteNoOpinion: 3450 case eVoteNo: 3451 return_value = false; 3452 break; 3453 } 3454 3455 if (!was_restarted) { 3456 LLDB_LOGF(log, 3457 "Process::ShouldBroadcastEvent (%p) Restarting process " 3458 "from state: %s", 3459 static_cast<void *>(event_ptr), StateAsCString(state)); 3460 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3461 PrivateResume(); 3462 } 3463 } else { 3464 return_value = true; 3465 SynchronouslyNotifyStateChanged(state); 3466 } 3467 } 3468 break; 3469 } 3470 3471 // Forcing the next event delivery is a one shot deal. So reset it here. 3472 m_force_next_event_delivery = false; 3473 3474 // We do some coalescing of events (for instance two consecutive running 3475 // events get coalesced.) But we only coalesce against events we actually 3476 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3477 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3478 // done, because the PublicState reflects the last event pulled off the 3479 // queue, and there may be several events stacked up on the queue unserviced. 3480 // So the PublicState may not reflect the last broadcasted event yet. 3481 // m_last_broadcast_state gets updated here. 3482 3483 if (return_value) 3484 m_last_broadcast_state = state; 3485 3486 LLDB_LOGF(log, 3487 "Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3488 "broadcast state: %s - %s", 3489 static_cast<void *>(event_ptr), StateAsCString(state), 3490 StateAsCString(m_last_broadcast_state), 3491 return_value ? "YES" : "NO"); 3492 return return_value; 3493 } 3494 3495 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3496 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 3497 3498 bool already_running = PrivateStateThreadIsValid(); 3499 LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, 3500 already_running ? " already running" 3501 : " starting private state thread"); 3502 3503 if (!is_secondary_thread && already_running) 3504 return true; 3505 3506 // Create a thread that watches our internal state and controls which events 3507 // make it to clients (into the DCProcess event queue). 3508 char thread_name[1024]; 3509 uint32_t max_len = llvm::get_max_thread_name_length(); 3510 if (max_len > 0 && max_len <= 30) { 3511 // On platforms with abbreviated thread name lengths, choose thread names 3512 // that fit within the limit. 3513 if (already_running) 3514 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3515 else 3516 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3517 } else { 3518 if (already_running) 3519 snprintf(thread_name, sizeof(thread_name), 3520 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3521 GetID()); 3522 else 3523 snprintf(thread_name, sizeof(thread_name), 3524 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3525 } 3526 3527 // Create the private state thread, and start it running. 3528 PrivateStateThreadArgs *args_ptr = 3529 new PrivateStateThreadArgs(this, is_secondary_thread); 3530 llvm::Expected<HostThread> private_state_thread = 3531 ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, 3532 (void *)args_ptr, 8 * 1024 * 1024); 3533 if (!private_state_thread) { 3534 LLDB_LOG(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST), 3535 "failed to launch host thread: {}", 3536 llvm::toString(private_state_thread.takeError())); 3537 return false; 3538 } 3539 3540 assert(private_state_thread->IsJoinable()); 3541 m_private_state_thread = *private_state_thread; 3542 ResumePrivateStateThread(); 3543 return true; 3544 } 3545 3546 void Process::PausePrivateStateThread() { 3547 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3548 } 3549 3550 void Process::ResumePrivateStateThread() { 3551 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3552 } 3553 3554 void Process::StopPrivateStateThread() { 3555 if (m_private_state_thread.IsJoinable()) 3556 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3557 else { 3558 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3559 LLDB_LOGF( 3560 log, 3561 "Went to stop the private state thread, but it was already invalid."); 3562 } 3563 } 3564 3565 void Process::ControlPrivateStateThread(uint32_t signal) { 3566 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3567 3568 assert(signal == eBroadcastInternalStateControlStop || 3569 signal == eBroadcastInternalStateControlPause || 3570 signal == eBroadcastInternalStateControlResume); 3571 3572 LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); 3573 3574 // Signal the private state thread 3575 if (m_private_state_thread.IsJoinable()) { 3576 // Broadcast the event. 3577 // It is important to do this outside of the if below, because it's 3578 // possible that the thread state is invalid but that the thread is waiting 3579 // on a control event instead of simply being on its way out (this should 3580 // not happen, but it apparently can). 3581 LLDB_LOGF(log, "Sending control event of type: %d.", signal); 3582 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3583 m_private_state_control_broadcaster.BroadcastEvent(signal, 3584 event_receipt_sp); 3585 3586 // Wait for the event receipt or for the private state thread to exit 3587 bool receipt_received = false; 3588 if (PrivateStateThreadIsValid()) { 3589 while (!receipt_received) { 3590 // Check for a receipt for n seconds and then check if the private 3591 // state thread is still around. 3592 receipt_received = 3593 event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout()); 3594 if (!receipt_received) { 3595 // Check if the private state thread is still around. If it isn't 3596 // then we are done waiting 3597 if (!PrivateStateThreadIsValid()) 3598 break; // Private state thread exited or is exiting, we are done 3599 } 3600 } 3601 } 3602 3603 if (signal == eBroadcastInternalStateControlStop) { 3604 thread_result_t result = {}; 3605 m_private_state_thread.Join(&result); 3606 m_private_state_thread.Reset(); 3607 } 3608 } else { 3609 LLDB_LOGF( 3610 log, 3611 "Private state thread already dead, no need to signal it to stop."); 3612 } 3613 } 3614 3615 void Process::SendAsyncInterrupt() { 3616 if (PrivateStateThreadIsValid()) 3617 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3618 nullptr); 3619 else 3620 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3621 } 3622 3623 void Process::HandlePrivateEvent(EventSP &event_sp) { 3624 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3625 m_resume_requested = false; 3626 3627 const StateType new_state = 3628 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3629 3630 // First check to see if anybody wants a shot at this event: 3631 if (m_next_event_action_up) { 3632 NextEventAction::EventActionResult action_result = 3633 m_next_event_action_up->PerformAction(event_sp); 3634 LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); 3635 3636 switch (action_result) { 3637 case NextEventAction::eEventActionSuccess: 3638 SetNextEventAction(nullptr); 3639 break; 3640 3641 case NextEventAction::eEventActionRetry: 3642 break; 3643 3644 case NextEventAction::eEventActionExit: 3645 // Handle Exiting Here. If we already got an exited event, we should 3646 // just propagate it. Otherwise, swallow this event, and set our state 3647 // to exit so the next event will kill us. 3648 if (new_state != eStateExited) { 3649 // FIXME: should cons up an exited event, and discard this one. 3650 SetExitStatus(0, m_next_event_action_up->GetExitString()); 3651 SetNextEventAction(nullptr); 3652 return; 3653 } 3654 SetNextEventAction(nullptr); 3655 break; 3656 } 3657 } 3658 3659 // See if we should broadcast this state to external clients? 3660 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3661 3662 if (should_broadcast) { 3663 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3664 if (log) { 3665 LLDB_LOGF(log, 3666 "Process::%s (pid = %" PRIu64 3667 ") broadcasting new state %s (old state %s) to %s", 3668 __FUNCTION__, GetID(), StateAsCString(new_state), 3669 StateAsCString(GetState()), 3670 is_hijacked ? "hijacked" : "public"); 3671 } 3672 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3673 if (StateIsRunningState(new_state)) { 3674 // Only push the input handler if we aren't fowarding events, as this 3675 // means the curses GUI is in use... Or don't push it if we are launching 3676 // since it will come up stopped. 3677 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3678 new_state != eStateLaunching && new_state != eStateAttaching) { 3679 PushProcessIOHandler(); 3680 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3681 eBroadcastAlways); 3682 LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", 3683 __FUNCTION__, m_iohandler_sync.GetValue()); 3684 } 3685 } else if (StateIsStoppedState(new_state, false)) { 3686 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3687 // If the lldb_private::Debugger is handling the events, we don't want 3688 // to pop the process IOHandler here, we want to do it when we receive 3689 // the stopped event so we can carefully control when the process 3690 // IOHandler is popped because when we stop we want to display some 3691 // text stating how and why we stopped, then maybe some 3692 // process/thread/frame info, and then we want the "(lldb) " prompt to 3693 // show up. If we pop the process IOHandler here, then we will cause 3694 // the command interpreter to become the top IOHandler after the 3695 // process pops off and it will update its prompt right away... See the 3696 // Debugger.cpp file where it calls the function as 3697 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3698 // Otherwise we end up getting overlapping "(lldb) " prompts and 3699 // garbled output. 3700 // 3701 // If we aren't handling the events in the debugger (which is indicated 3702 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3703 // we are hijacked, then we always pop the process IO handler manually. 3704 // Hijacking happens when the internal process state thread is running 3705 // thread plans, or when commands want to run in synchronous mode and 3706 // they call "process->WaitForProcessToStop()". An example of something 3707 // that will hijack the events is a simple expression: 3708 // 3709 // (lldb) expr (int)puts("hello") 3710 // 3711 // This will cause the internal process state thread to resume and halt 3712 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3713 // events) and we do need the IO handler to be pushed and popped 3714 // correctly. 3715 3716 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3717 PopProcessIOHandler(); 3718 } 3719 } 3720 3721 BroadcastEvent(event_sp); 3722 } else { 3723 if (log) { 3724 LLDB_LOGF( 3725 log, 3726 "Process::%s (pid = %" PRIu64 3727 ") suppressing state %s (old state %s): should_broadcast == false", 3728 __FUNCTION__, GetID(), StateAsCString(new_state), 3729 StateAsCString(GetState())); 3730 } 3731 } 3732 } 3733 3734 Status Process::HaltPrivate() { 3735 EventSP event_sp; 3736 Status error(WillHalt()); 3737 if (error.Fail()) 3738 return error; 3739 3740 // Ask the process subclass to actually halt our process 3741 bool caused_stop; 3742 error = DoHalt(caused_stop); 3743 3744 DidHalt(); 3745 return error; 3746 } 3747 3748 thread_result_t Process::PrivateStateThread(void *arg) { 3749 std::unique_ptr<PrivateStateThreadArgs> args_up( 3750 static_cast<PrivateStateThreadArgs *>(arg)); 3751 thread_result_t result = 3752 args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 3753 return result; 3754 } 3755 3756 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3757 bool control_only = true; 3758 3759 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3760 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3761 __FUNCTION__, static_cast<void *>(this), GetID()); 3762 3763 bool exit_now = false; 3764 bool interrupt_requested = false; 3765 while (!exit_now) { 3766 EventSP event_sp; 3767 GetEventsPrivate(event_sp, llvm::None, control_only); 3768 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3769 LLDB_LOGF(log, 3770 "Process::%s (arg = %p, pid = %" PRIu64 3771 ") got a control event: %d", 3772 __FUNCTION__, static_cast<void *>(this), GetID(), 3773 event_sp->GetType()); 3774 3775 switch (event_sp->GetType()) { 3776 case eBroadcastInternalStateControlStop: 3777 exit_now = true; 3778 break; // doing any internal state management below 3779 3780 case eBroadcastInternalStateControlPause: 3781 control_only = true; 3782 break; 3783 3784 case eBroadcastInternalStateControlResume: 3785 control_only = false; 3786 break; 3787 } 3788 3789 continue; 3790 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 3791 if (m_public_state.GetValue() == eStateAttaching) { 3792 LLDB_LOGF(log, 3793 "Process::%s (arg = %p, pid = %" PRIu64 3794 ") woke up with an interrupt while attaching - " 3795 "forwarding interrupt.", 3796 __FUNCTION__, static_cast<void *>(this), GetID()); 3797 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 3798 } else if (StateIsRunningState(m_last_broadcast_state)) { 3799 LLDB_LOGF(log, 3800 "Process::%s (arg = %p, pid = %" PRIu64 3801 ") woke up with an interrupt - Halting.", 3802 __FUNCTION__, static_cast<void *>(this), GetID()); 3803 Status error = HaltPrivate(); 3804 if (error.Fail() && log) 3805 LLDB_LOGF(log, 3806 "Process::%s (arg = %p, pid = %" PRIu64 3807 ") failed to halt the process: %s", 3808 __FUNCTION__, static_cast<void *>(this), GetID(), 3809 error.AsCString()); 3810 // Halt should generate a stopped event. Make a note of the fact that 3811 // we were doing the interrupt, so we can set the interrupted flag 3812 // after we receive the event. We deliberately set this to true even if 3813 // HaltPrivate failed, so that we can interrupt on the next natural 3814 // stop. 3815 interrupt_requested = true; 3816 } else { 3817 // This can happen when someone (e.g. Process::Halt) sees that we are 3818 // running and sends an interrupt request, but the process actually 3819 // stops before we receive it. In that case, we can just ignore the 3820 // request. We use m_last_broadcast_state, because the Stopped event 3821 // may not have been popped of the event queue yet, which is when the 3822 // public state gets updated. 3823 LLDB_LOGF(log, 3824 "Process::%s ignoring interrupt as we have already stopped.", 3825 __FUNCTION__); 3826 } 3827 continue; 3828 } 3829 3830 const StateType internal_state = 3831 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3832 3833 if (internal_state != eStateInvalid) { 3834 if (m_clear_thread_plans_on_stop && 3835 StateIsStoppedState(internal_state, true)) { 3836 m_clear_thread_plans_on_stop = false; 3837 m_thread_list.DiscardThreadPlans(); 3838 } 3839 3840 if (interrupt_requested) { 3841 if (StateIsStoppedState(internal_state, true)) { 3842 // We requested the interrupt, so mark this as such in the stop event 3843 // so clients can tell an interrupted process from a natural stop 3844 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 3845 interrupt_requested = false; 3846 } else if (log) { 3847 LLDB_LOGF(log, 3848 "Process::%s interrupt_requested, but a non-stopped " 3849 "state '%s' received.", 3850 __FUNCTION__, StateAsCString(internal_state)); 3851 } 3852 } 3853 3854 HandlePrivateEvent(event_sp); 3855 } 3856 3857 if (internal_state == eStateInvalid || internal_state == eStateExited || 3858 internal_state == eStateDetached) { 3859 LLDB_LOGF(log, 3860 "Process::%s (arg = %p, pid = %" PRIu64 3861 ") about to exit with internal state %s...", 3862 __FUNCTION__, static_cast<void *>(this), GetID(), 3863 StateAsCString(internal_state)); 3864 3865 break; 3866 } 3867 } 3868 3869 // Verify log is still enabled before attempting to write to it... 3870 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 3871 __FUNCTION__, static_cast<void *>(this), GetID()); 3872 3873 // If we are a secondary thread, then the primary thread we are working for 3874 // will have already acquired the public_run_lock, and isn't done with what 3875 // it was doing yet, so don't try to change it on the way out. 3876 if (!is_secondary_thread) 3877 m_public_run_lock.SetStopped(); 3878 return {}; 3879 } 3880 3881 // Process Event Data 3882 3883 Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {} 3884 3885 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 3886 StateType state) 3887 : EventData(), m_process_wp(), m_state(state), m_restarted(false), 3888 m_update_state(0), m_interrupted(false) { 3889 if (process_sp) 3890 m_process_wp = process_sp; 3891 } 3892 3893 Process::ProcessEventData::~ProcessEventData() = default; 3894 3895 ConstString Process::ProcessEventData::GetFlavorString() { 3896 static ConstString g_flavor("Process::ProcessEventData"); 3897 return g_flavor; 3898 } 3899 3900 ConstString Process::ProcessEventData::GetFlavor() const { 3901 return ProcessEventData::GetFlavorString(); 3902 } 3903 3904 bool Process::ProcessEventData::ShouldStop(Event *event_ptr, 3905 bool &found_valid_stopinfo) { 3906 found_valid_stopinfo = false; 3907 3908 ProcessSP process_sp(m_process_wp.lock()); 3909 if (!process_sp) 3910 return false; 3911 3912 ThreadList &curr_thread_list = process_sp->GetThreadList(); 3913 uint32_t num_threads = curr_thread_list.GetSize(); 3914 uint32_t idx; 3915 3916 // The actions might change one of the thread's stop_info's opinions about 3917 // whether we should stop the process, so we need to query that as we go. 3918 3919 // One other complication here, is that we try to catch any case where the 3920 // target has run (except for expressions) and immediately exit, but if we 3921 // get that wrong (which is possible) then the thread list might have 3922 // changed, and that would cause our iteration here to crash. We could 3923 // make a copy of the thread list, but we'd really like to also know if it 3924 // has changed at all, so we make up a vector of the thread ID's and check 3925 // what we get back against this list & bag out if anything differs. 3926 ThreadList not_suspended_thread_list(process_sp.get()); 3927 std::vector<uint32_t> thread_index_array(num_threads); 3928 uint32_t not_suspended_idx = 0; 3929 for (idx = 0; idx < num_threads; ++idx) { 3930 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 3931 3932 /* 3933 Filter out all suspended threads, they could not be the reason 3934 of stop and no need to perform any actions on them. 3935 */ 3936 if (thread_sp->GetResumeState() != eStateSuspended) { 3937 not_suspended_thread_list.AddThread(thread_sp); 3938 thread_index_array[not_suspended_idx] = thread_sp->GetIndexID(); 3939 not_suspended_idx++; 3940 } 3941 } 3942 3943 // Use this to track whether we should continue from here. We will only 3944 // continue the target running if no thread says we should stop. Of course 3945 // if some thread's PerformAction actually sets the target running, then it 3946 // doesn't matter what the other threads say... 3947 3948 bool still_should_stop = false; 3949 3950 // Sometimes - for instance if we have a bug in the stub we are talking to, 3951 // we stop but no thread has a valid stop reason. In that case we should 3952 // just stop, because we have no way of telling what the right thing to do 3953 // is, and it's better to let the user decide than continue behind their 3954 // backs. 3955 3956 for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) { 3957 curr_thread_list = process_sp->GetThreadList(); 3958 if (curr_thread_list.GetSize() != num_threads) { 3959 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 3960 LIBLLDB_LOG_PROCESS)); 3961 LLDB_LOGF( 3962 log, 3963 "Number of threads changed from %u to %u while processing event.", 3964 num_threads, curr_thread_list.GetSize()); 3965 break; 3966 } 3967 3968 lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx); 3969 3970 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 3971 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 3972 LIBLLDB_LOG_PROCESS)); 3973 LLDB_LOGF(log, 3974 "The thread at position %u changed from %u to %u while " 3975 "processing event.", 3976 idx, thread_index_array[idx], thread_sp->GetIndexID()); 3977 break; 3978 } 3979 3980 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 3981 if (stop_info_sp && stop_info_sp->IsValid()) { 3982 found_valid_stopinfo = true; 3983 bool this_thread_wants_to_stop; 3984 if (stop_info_sp->GetOverrideShouldStop()) { 3985 this_thread_wants_to_stop = 3986 stop_info_sp->GetOverriddenShouldStopValue(); 3987 } else { 3988 stop_info_sp->PerformAction(event_ptr); 3989 // The stop action might restart the target. If it does, then we 3990 // want to mark that in the event so that whoever is receiving it 3991 // will know to wait for the running event and reflect that state 3992 // appropriately. We also need to stop processing actions, since they 3993 // aren't expecting the target to be running. 3994 3995 // FIXME: we might have run. 3996 if (stop_info_sp->HasTargetRunSinceMe()) { 3997 SetRestarted(true); 3998 break; 3999 } 4000 4001 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4002 } 4003 4004 if (!still_should_stop) 4005 still_should_stop = this_thread_wants_to_stop; 4006 } 4007 } 4008 4009 return still_should_stop; 4010 } 4011 4012 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 4013 ProcessSP process_sp(m_process_wp.lock()); 4014 4015 if (!process_sp) 4016 return; 4017 4018 // This function gets called twice for each event, once when the event gets 4019 // pulled off of the private process event queue, and then any number of 4020 // times, first when it gets pulled off of the public event queue, then other 4021 // times when we're pretending that this is where we stopped at the end of 4022 // expression evaluation. m_update_state is used to distinguish these three 4023 // cases; it is 0 when we're just pulling it off for private handling, and > 4024 // 1 for expression evaluation, and we don't want to do the breakpoint 4025 // command handling then. 4026 if (m_update_state != 1) 4027 return; 4028 4029 process_sp->SetPublicState( 4030 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4031 4032 if (m_state == eStateStopped && !m_restarted) { 4033 // Let process subclasses know we are about to do a public stop and do 4034 // anything they might need to in order to speed up register and memory 4035 // accesses. 4036 process_sp->WillPublicStop(); 4037 } 4038 4039 // If this is a halt event, even if the halt stopped with some reason other 4040 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 4041 // the halt request came through) don't do the StopInfo actions, as they may 4042 // end up restarting the process. 4043 if (m_interrupted) 4044 return; 4045 4046 // If we're not stopped or have restarted, then skip the StopInfo actions: 4047 if (m_state != eStateStopped || m_restarted) { 4048 return; 4049 } 4050 4051 bool does_anybody_have_an_opinion = false; 4052 bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion); 4053 4054 if (GetRestarted()) { 4055 return; 4056 } 4057 4058 if (!still_should_stop && does_anybody_have_an_opinion) { 4059 // We've been asked to continue, so do that here. 4060 SetRestarted(true); 4061 // Use the public resume method here, since this is just extending a 4062 // public resume. 4063 process_sp->PrivateResume(); 4064 } else { 4065 bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) && 4066 !process_sp->StateChangedIsHijackedForSynchronousResume(); 4067 4068 if (!hijacked) { 4069 // If we didn't restart, run the Stop Hooks here. 4070 // Don't do that if state changed events aren't hooked up to the 4071 // public (or SyncResume) broadcasters. StopHooks are just for 4072 // real public stops. They might also restart the target, 4073 // so watch for that. 4074 if (process_sp->GetTarget().RunStopHooks()) 4075 SetRestarted(true); 4076 } 4077 } 4078 } 4079 4080 void Process::ProcessEventData::Dump(Stream *s) const { 4081 ProcessSP process_sp(m_process_wp.lock()); 4082 4083 if (process_sp) 4084 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4085 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4086 else 4087 s->PutCString(" process = NULL, "); 4088 4089 s->Printf("state = %s", StateAsCString(GetState())); 4090 } 4091 4092 const Process::ProcessEventData * 4093 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4094 if (event_ptr) { 4095 const EventData *event_data = event_ptr->GetData(); 4096 if (event_data && 4097 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4098 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4099 } 4100 return nullptr; 4101 } 4102 4103 ProcessSP 4104 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4105 ProcessSP process_sp; 4106 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4107 if (data) 4108 process_sp = data->GetProcessSP(); 4109 return process_sp; 4110 } 4111 4112 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4113 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4114 if (data == nullptr) 4115 return eStateInvalid; 4116 else 4117 return data->GetState(); 4118 } 4119 4120 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4121 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4122 if (data == nullptr) 4123 return false; 4124 else 4125 return data->GetRestarted(); 4126 } 4127 4128 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4129 bool new_value) { 4130 ProcessEventData *data = 4131 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4132 if (data != nullptr) 4133 data->SetRestarted(new_value); 4134 } 4135 4136 size_t 4137 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4138 ProcessEventData *data = 4139 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4140 if (data != nullptr) 4141 return data->GetNumRestartedReasons(); 4142 else 4143 return 0; 4144 } 4145 4146 const char * 4147 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4148 size_t idx) { 4149 ProcessEventData *data = 4150 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4151 if (data != nullptr) 4152 return data->GetRestartedReasonAtIndex(idx); 4153 else 4154 return nullptr; 4155 } 4156 4157 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4158 const char *reason) { 4159 ProcessEventData *data = 4160 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4161 if (data != nullptr) 4162 data->AddRestartedReason(reason); 4163 } 4164 4165 bool Process::ProcessEventData::GetInterruptedFromEvent( 4166 const Event *event_ptr) { 4167 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4168 if (data == nullptr) 4169 return false; 4170 else 4171 return data->GetInterrupted(); 4172 } 4173 4174 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4175 bool new_value) { 4176 ProcessEventData *data = 4177 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4178 if (data != nullptr) 4179 data->SetInterrupted(new_value); 4180 } 4181 4182 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4183 ProcessEventData *data = 4184 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4185 if (data) { 4186 data->SetUpdateStateOnRemoval(); 4187 return true; 4188 } 4189 return false; 4190 } 4191 4192 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4193 4194 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4195 exe_ctx.SetTargetPtr(&GetTarget()); 4196 exe_ctx.SetProcessPtr(this); 4197 exe_ctx.SetThreadPtr(nullptr); 4198 exe_ctx.SetFramePtr(nullptr); 4199 } 4200 4201 // uint32_t 4202 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4203 // std::vector<lldb::pid_t> &pids) 4204 //{ 4205 // return 0; 4206 //} 4207 // 4208 // ArchSpec 4209 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4210 //{ 4211 // return Host::GetArchSpecForExistingProcess (pid); 4212 //} 4213 // 4214 // ArchSpec 4215 // Process::GetArchSpecForExistingProcess (const char *process_name) 4216 //{ 4217 // return Host::GetArchSpecForExistingProcess (process_name); 4218 //} 4219 4220 void Process::AppendSTDOUT(const char *s, size_t len) { 4221 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4222 m_stdout_data.append(s, len); 4223 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4224 new ProcessEventData(shared_from_this(), GetState())); 4225 } 4226 4227 void Process::AppendSTDERR(const char *s, size_t len) { 4228 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4229 m_stderr_data.append(s, len); 4230 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4231 new ProcessEventData(shared_from_this(), GetState())); 4232 } 4233 4234 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4235 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4236 m_profile_data.push_back(one_profile_data); 4237 BroadcastEventIfUnique(eBroadcastBitProfileData, 4238 new ProcessEventData(shared_from_this(), GetState())); 4239 } 4240 4241 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4242 const StructuredDataPluginSP &plugin_sp) { 4243 BroadcastEvent( 4244 eBroadcastBitStructuredData, 4245 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4246 } 4247 4248 StructuredDataPluginSP 4249 Process::GetStructuredDataPlugin(ConstString type_name) const { 4250 auto find_it = m_structured_data_plugin_map.find(type_name); 4251 if (find_it != m_structured_data_plugin_map.end()) 4252 return find_it->second; 4253 else 4254 return StructuredDataPluginSP(); 4255 } 4256 4257 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4258 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4259 if (m_profile_data.empty()) 4260 return 0; 4261 4262 std::string &one_profile_data = m_profile_data.front(); 4263 size_t bytes_available = one_profile_data.size(); 4264 if (bytes_available > 0) { 4265 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4266 LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4267 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4268 if (bytes_available > buf_size) { 4269 memcpy(buf, one_profile_data.c_str(), buf_size); 4270 one_profile_data.erase(0, buf_size); 4271 bytes_available = buf_size; 4272 } else { 4273 memcpy(buf, one_profile_data.c_str(), bytes_available); 4274 m_profile_data.erase(m_profile_data.begin()); 4275 } 4276 } 4277 return bytes_available; 4278 } 4279 4280 // Process STDIO 4281 4282 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4283 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4284 size_t bytes_available = m_stdout_data.size(); 4285 if (bytes_available > 0) { 4286 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4287 LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4288 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4289 if (bytes_available > buf_size) { 4290 memcpy(buf, m_stdout_data.c_str(), buf_size); 4291 m_stdout_data.erase(0, buf_size); 4292 bytes_available = buf_size; 4293 } else { 4294 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4295 m_stdout_data.clear(); 4296 } 4297 } 4298 return bytes_available; 4299 } 4300 4301 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4302 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4303 size_t bytes_available = m_stderr_data.size(); 4304 if (bytes_available > 0) { 4305 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4306 LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4307 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4308 if (bytes_available > buf_size) { 4309 memcpy(buf, m_stderr_data.c_str(), buf_size); 4310 m_stderr_data.erase(0, buf_size); 4311 bytes_available = buf_size; 4312 } else { 4313 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4314 m_stderr_data.clear(); 4315 } 4316 } 4317 return bytes_available; 4318 } 4319 4320 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4321 size_t src_len) { 4322 Process *process = (Process *)baton; 4323 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4324 } 4325 4326 class IOHandlerProcessSTDIO : public IOHandler { 4327 public: 4328 IOHandlerProcessSTDIO(Process *process, int write_fd) 4329 : IOHandler(process->GetTarget().GetDebugger(), 4330 IOHandler::Type::ProcessIO), 4331 m_process(process), 4332 m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false), 4333 m_write_file(write_fd, File::eOpenOptionWriteOnly, false) { 4334 m_pipe.CreateNew(false); 4335 } 4336 4337 ~IOHandlerProcessSTDIO() override = default; 4338 4339 // Each IOHandler gets to run until it is done. It should read data from the 4340 // "in" and place output into "out" and "err and return when done. 4341 void Run() override { 4342 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4343 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4344 SetIsDone(true); 4345 return; 4346 } 4347 4348 SetIsDone(false); 4349 const int read_fd = m_read_file.GetDescriptor(); 4350 TerminalState terminal_state; 4351 terminal_state.Save(read_fd, false); 4352 Terminal terminal(read_fd); 4353 terminal.SetCanonical(false); 4354 terminal.SetEcho(false); 4355 // FD_ZERO, FD_SET are not supported on windows 4356 #ifndef _WIN32 4357 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4358 m_is_running = true; 4359 while (!GetIsDone()) { 4360 SelectHelper select_helper; 4361 select_helper.FDSetRead(read_fd); 4362 select_helper.FDSetRead(pipe_read_fd); 4363 Status error = select_helper.Select(); 4364 4365 if (error.Fail()) { 4366 SetIsDone(true); 4367 } else { 4368 char ch = 0; 4369 size_t n; 4370 if (select_helper.FDIsSetRead(read_fd)) { 4371 n = 1; 4372 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4373 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4374 SetIsDone(true); 4375 } else 4376 SetIsDone(true); 4377 } 4378 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4379 size_t bytes_read; 4380 // Consume the interrupt byte 4381 Status error = m_pipe.Read(&ch, 1, bytes_read); 4382 if (error.Success()) { 4383 switch (ch) { 4384 case 'q': 4385 SetIsDone(true); 4386 break; 4387 case 'i': 4388 if (StateIsRunningState(m_process->GetState())) 4389 m_process->SendAsyncInterrupt(); 4390 break; 4391 } 4392 } 4393 } 4394 } 4395 } 4396 m_is_running = false; 4397 #endif 4398 terminal_state.Restore(); 4399 } 4400 4401 void Cancel() override { 4402 SetIsDone(true); 4403 // Only write to our pipe to cancel if we are in 4404 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4405 // is being run from the command interpreter: 4406 // 4407 // (lldb) step_process_thousands_of_times 4408 // 4409 // In this case the command interpreter will be in the middle of handling 4410 // the command and if the process pushes and pops the IOHandler thousands 4411 // of times, we can end up writing to m_pipe without ever consuming the 4412 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4413 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4414 if (m_is_running) { 4415 char ch = 'q'; // Send 'q' for quit 4416 size_t bytes_written = 0; 4417 m_pipe.Write(&ch, 1, bytes_written); 4418 } 4419 } 4420 4421 bool Interrupt() override { 4422 // Do only things that are safe to do in an interrupt context (like in a 4423 // SIGINT handler), like write 1 byte to a file descriptor. This will 4424 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4425 // that was written to the pipe and then call 4426 // m_process->SendAsyncInterrupt() from a much safer location in code. 4427 if (m_active) { 4428 char ch = 'i'; // Send 'i' for interrupt 4429 size_t bytes_written = 0; 4430 Status result = m_pipe.Write(&ch, 1, bytes_written); 4431 return result.Success(); 4432 } else { 4433 // This IOHandler might be pushed on the stack, but not being run 4434 // currently so do the right thing if we aren't actively watching for 4435 // STDIN by sending the interrupt to the process. Otherwise the write to 4436 // the pipe above would do nothing. This can happen when the command 4437 // interpreter is running and gets a "expression ...". It will be on the 4438 // IOHandler thread and sending the input is complete to the delegate 4439 // which will cause the expression to run, which will push the process IO 4440 // handler, but not run it. 4441 4442 if (StateIsRunningState(m_process->GetState())) { 4443 m_process->SendAsyncInterrupt(); 4444 return true; 4445 } 4446 } 4447 return false; 4448 } 4449 4450 void GotEOF() override {} 4451 4452 protected: 4453 Process *m_process; 4454 NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB 4455 NativeFile m_write_file; // Write to this file (usually the master pty for 4456 // getting io to debuggee) 4457 Pipe m_pipe; 4458 std::atomic<bool> m_is_running{false}; 4459 }; 4460 4461 void Process::SetSTDIOFileDescriptor(int fd) { 4462 // First set up the Read Thread for reading/handling process I/O 4463 m_stdio_communication.SetConnection( 4464 std::make_unique<ConnectionFileDescriptor>(fd, true)); 4465 if (m_stdio_communication.IsConnected()) { 4466 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4467 STDIOReadThreadBytesReceived, this); 4468 m_stdio_communication.StartReadThread(); 4469 4470 // Now read thread is set up, set up input reader. 4471 4472 if (!m_process_input_reader) 4473 m_process_input_reader = 4474 std::make_shared<IOHandlerProcessSTDIO>(this, fd); 4475 } 4476 } 4477 4478 bool Process::ProcessIOHandlerIsActive() { 4479 IOHandlerSP io_handler_sp(m_process_input_reader); 4480 if (io_handler_sp) 4481 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4482 return false; 4483 } 4484 bool Process::PushProcessIOHandler() { 4485 IOHandlerSP io_handler_sp(m_process_input_reader); 4486 if (io_handler_sp) { 4487 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4488 LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); 4489 4490 io_handler_sp->SetIsDone(false); 4491 // If we evaluate an utility function, then we don't cancel the current 4492 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the 4493 // existing IOHandler that potentially provides the user interface (e.g. 4494 // the IOHandler for Editline). 4495 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); 4496 GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp, 4497 cancel_top_handler); 4498 return true; 4499 } 4500 return false; 4501 } 4502 4503 bool Process::PopProcessIOHandler() { 4504 IOHandlerSP io_handler_sp(m_process_input_reader); 4505 if (io_handler_sp) 4506 return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp); 4507 return false; 4508 } 4509 4510 // The process needs to know about installed plug-ins 4511 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4512 4513 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4514 4515 namespace { 4516 // RestorePlanState is used to record the "is private", "is master" and "okay 4517 // to discard" fields of the plan we are running, and reset it on Clean or on 4518 // destruction. It will only reset the state once, so you can call Clean and 4519 // then monkey with the state and it won't get reset on you again. 4520 4521 class RestorePlanState { 4522 public: 4523 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4524 : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) { 4525 if (m_thread_plan_sp) { 4526 m_private = m_thread_plan_sp->GetPrivate(); 4527 m_is_master = m_thread_plan_sp->IsMasterPlan(); 4528 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4529 } 4530 } 4531 4532 ~RestorePlanState() { Clean(); } 4533 4534 void Clean() { 4535 if (!m_already_reset && m_thread_plan_sp) { 4536 m_already_reset = true; 4537 m_thread_plan_sp->SetPrivate(m_private); 4538 m_thread_plan_sp->SetIsMasterPlan(m_is_master); 4539 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4540 } 4541 } 4542 4543 private: 4544 lldb::ThreadPlanSP m_thread_plan_sp; 4545 bool m_already_reset; 4546 bool m_private; 4547 bool m_is_master; 4548 bool m_okay_to_discard; 4549 }; 4550 } // anonymous namespace 4551 4552 static microseconds 4553 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4554 const milliseconds default_one_thread_timeout(250); 4555 4556 // If the overall wait is forever, then we don't need to worry about it. 4557 if (!options.GetTimeout()) { 4558 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4559 : default_one_thread_timeout; 4560 } 4561 4562 // If the one thread timeout is set, use it. 4563 if (options.GetOneThreadTimeout()) 4564 return *options.GetOneThreadTimeout(); 4565 4566 // Otherwise use half the total timeout, bounded by the 4567 // default_one_thread_timeout. 4568 return std::min<microseconds>(default_one_thread_timeout, 4569 *options.GetTimeout() / 2); 4570 } 4571 4572 static Timeout<std::micro> 4573 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4574 bool before_first_timeout) { 4575 // If we are going to run all threads the whole time, or if we are only going 4576 // to run one thread, we can just return the overall timeout. 4577 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4578 return options.GetTimeout(); 4579 4580 if (before_first_timeout) 4581 return GetOneThreadExpressionTimeout(options); 4582 4583 if (!options.GetTimeout()) 4584 return llvm::None; 4585 else 4586 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4587 } 4588 4589 static llvm::Optional<ExpressionResults> 4590 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp, 4591 RestorePlanState &restorer, const EventSP &event_sp, 4592 EventSP &event_to_broadcast_sp, 4593 const EvaluateExpressionOptions &options, 4594 bool handle_interrupts) { 4595 Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS); 4596 4597 ThreadSP thread_sp = thread_plan_sp->GetTarget() 4598 .GetProcessSP() 4599 ->GetThreadList() 4600 .FindThreadByID(thread_id); 4601 if (!thread_sp) { 4602 LLDB_LOG(log, 4603 "The thread on which we were running the " 4604 "expression: tid = {0}, exited while " 4605 "the expression was running.", 4606 thread_id); 4607 return eExpressionThreadVanished; 4608 } 4609 4610 ThreadPlanSP plan = thread_sp->GetCompletedPlan(); 4611 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4612 LLDB_LOG(log, "execution completed successfully"); 4613 4614 // Restore the plan state so it will get reported as intended when we are 4615 // done. 4616 restorer.Clean(); 4617 return eExpressionCompleted; 4618 } 4619 4620 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4621 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4622 stop_info_sp->ShouldNotify(event_sp.get())) { 4623 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4624 if (!options.DoesIgnoreBreakpoints()) { 4625 // Restore the plan state and then force Private to false. We are going 4626 // to stop because of this plan so we need it to become a public plan or 4627 // it won't report correctly when we continue to its termination later 4628 // on. 4629 restorer.Clean(); 4630 thread_plan_sp->SetPrivate(false); 4631 event_to_broadcast_sp = event_sp; 4632 } 4633 return eExpressionHitBreakpoint; 4634 } 4635 4636 if (!handle_interrupts && 4637 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4638 return llvm::None; 4639 4640 LLDB_LOG(log, "thread plan did not successfully complete"); 4641 if (!options.DoesUnwindOnError()) 4642 event_to_broadcast_sp = event_sp; 4643 return eExpressionInterrupted; 4644 } 4645 4646 ExpressionResults 4647 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4648 lldb::ThreadPlanSP &thread_plan_sp, 4649 const EvaluateExpressionOptions &options, 4650 DiagnosticManager &diagnostic_manager) { 4651 ExpressionResults return_value = eExpressionSetupError; 4652 4653 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4654 4655 if (!thread_plan_sp) { 4656 diagnostic_manager.PutString( 4657 eDiagnosticSeverityError, 4658 "RunThreadPlan called with empty thread plan."); 4659 return eExpressionSetupError; 4660 } 4661 4662 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4663 diagnostic_manager.PutString( 4664 eDiagnosticSeverityError, 4665 "RunThreadPlan called with an invalid thread plan."); 4666 return eExpressionSetupError; 4667 } 4668 4669 if (exe_ctx.GetProcessPtr() != this) { 4670 diagnostic_manager.PutString(eDiagnosticSeverityError, 4671 "RunThreadPlan called on wrong process."); 4672 return eExpressionSetupError; 4673 } 4674 4675 Thread *thread = exe_ctx.GetThreadPtr(); 4676 if (thread == nullptr) { 4677 diagnostic_manager.PutString(eDiagnosticSeverityError, 4678 "RunThreadPlan called with invalid thread."); 4679 return eExpressionSetupError; 4680 } 4681 4682 // Record the thread's id so we can tell when a thread we were using 4683 // to run the expression exits during the expression evaluation. 4684 lldb::tid_t expr_thread_id = thread->GetID(); 4685 4686 // We need to change some of the thread plan attributes for the thread plan 4687 // runner. This will restore them when we are done: 4688 4689 RestorePlanState thread_plan_restorer(thread_plan_sp); 4690 4691 // We rely on the thread plan we are running returning "PlanCompleted" if 4692 // when it successfully completes. For that to be true the plan can't be 4693 // private - since private plans suppress themselves in the GetCompletedPlan 4694 // call. 4695 4696 thread_plan_sp->SetPrivate(false); 4697 4698 // The plans run with RunThreadPlan also need to be terminal master plans or 4699 // when they are done we will end up asking the plan above us whether we 4700 // should stop, which may give the wrong answer. 4701 4702 thread_plan_sp->SetIsMasterPlan(true); 4703 thread_plan_sp->SetOkayToDiscard(false); 4704 4705 // If we are running some utility expression for LLDB, we now have to mark 4706 // this in the ProcesModID of this process. This RAII takes care of marking 4707 // and reverting the mark it once we are done running the expression. 4708 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); 4709 4710 if (m_private_state.GetValue() != eStateStopped) { 4711 diagnostic_manager.PutString( 4712 eDiagnosticSeverityError, 4713 "RunThreadPlan called while the private state was not stopped."); 4714 return eExpressionSetupError; 4715 } 4716 4717 // Save the thread & frame from the exe_ctx for restoration after we run 4718 const uint32_t thread_idx_id = thread->GetIndexID(); 4719 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4720 if (!selected_frame_sp) { 4721 thread->SetSelectedFrame(nullptr); 4722 selected_frame_sp = thread->GetSelectedFrame(); 4723 if (!selected_frame_sp) { 4724 diagnostic_manager.Printf( 4725 eDiagnosticSeverityError, 4726 "RunThreadPlan called without a selected frame on thread %d", 4727 thread_idx_id); 4728 return eExpressionSetupError; 4729 } 4730 } 4731 4732 // Make sure the timeout values make sense. The one thread timeout needs to 4733 // be smaller than the overall timeout. 4734 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4735 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4736 diagnostic_manager.PutString(eDiagnosticSeverityError, 4737 "RunThreadPlan called with one thread " 4738 "timeout greater than total timeout"); 4739 return eExpressionSetupError; 4740 } 4741 4742 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4743 4744 // N.B. Running the target may unset the currently selected thread and frame. 4745 // We don't want to do that either, so we should arrange to reset them as 4746 // well. 4747 4748 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4749 4750 uint32_t selected_tid; 4751 StackID selected_stack_id; 4752 if (selected_thread_sp) { 4753 selected_tid = selected_thread_sp->GetIndexID(); 4754 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4755 } else { 4756 selected_tid = LLDB_INVALID_THREAD_ID; 4757 } 4758 4759 HostThread backup_private_state_thread; 4760 lldb::StateType old_state = eStateInvalid; 4761 lldb::ThreadPlanSP stopper_base_plan_sp; 4762 4763 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4764 LIBLLDB_LOG_PROCESS)); 4765 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4766 // Yikes, we are running on the private state thread! So we can't wait for 4767 // public events on this thread, since we are the thread that is generating 4768 // public events. The simplest thing to do is to spin up a temporary thread 4769 // to handle private state thread events while we are fielding public 4770 // events here. 4771 LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " 4772 "another state thread to handle the events."); 4773 4774 backup_private_state_thread = m_private_state_thread; 4775 4776 // One other bit of business: we want to run just this thread plan and 4777 // anything it pushes, and then stop, returning control here. But in the 4778 // normal course of things, the plan above us on the stack would be given a 4779 // shot at the stop event before deciding to stop, and we don't want that. 4780 // So we insert a "stopper" base plan on the stack before the plan we want 4781 // to run. Since base plans always stop and return control to the user, 4782 // that will do just what we want. 4783 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4784 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4785 // Have to make sure our public state is stopped, since otherwise the 4786 // reporting logic below doesn't work correctly. 4787 old_state = m_public_state.GetValue(); 4788 m_public_state.SetValueNoLock(eStateStopped); 4789 4790 // Now spin up the private state thread: 4791 StartPrivateStateThread(true); 4792 } 4793 4794 thread->QueueThreadPlan( 4795 thread_plan_sp, false); // This used to pass "true" does that make sense? 4796 4797 if (options.GetDebug()) { 4798 // In this case, we aren't actually going to run, we just want to stop 4799 // right away. Flush this thread so we will refetch the stacks and show the 4800 // correct backtrace. 4801 // FIXME: To make this prettier we should invent some stop reason for this, 4802 // but that 4803 // is only cosmetic, and this functionality is only of use to lldb 4804 // developers who can live with not pretty... 4805 thread->Flush(); 4806 return eExpressionStoppedForDebug; 4807 } 4808 4809 ListenerSP listener_sp( 4810 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4811 4812 lldb::EventSP event_to_broadcast_sp; 4813 4814 { 4815 // This process event hijacker Hijacks the Public events and its destructor 4816 // makes sure that the process events get restored on exit to the function. 4817 // 4818 // If the event needs to propagate beyond the hijacker (e.g., the process 4819 // exits during execution), then the event is put into 4820 // event_to_broadcast_sp for rebroadcasting. 4821 4822 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 4823 4824 if (log) { 4825 StreamString s; 4826 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 4827 LLDB_LOGF(log, 4828 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 4829 " to run thread plan \"%s\".", 4830 thread_idx_id, expr_thread_id, s.GetData()); 4831 } 4832 4833 bool got_event; 4834 lldb::EventSP event_sp; 4835 lldb::StateType stop_state = lldb::eStateInvalid; 4836 4837 bool before_first_timeout = true; // This is set to false the first time 4838 // that we have to halt the target. 4839 bool do_resume = true; 4840 bool handle_running_event = true; 4841 4842 // This is just for accounting: 4843 uint32_t num_resumes = 0; 4844 4845 // If we are going to run all threads the whole time, or if we are only 4846 // going to run one thread, then we don't need the first timeout. So we 4847 // pretend we are after the first timeout already. 4848 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4849 before_first_timeout = false; 4850 4851 LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", 4852 options.GetStopOthers(), options.GetTryAllThreads(), 4853 before_first_timeout); 4854 4855 // This isn't going to work if there are unfetched events on the queue. Are 4856 // there cases where we might want to run the remaining events here, and 4857 // then try to call the function? That's probably being too tricky for our 4858 // own good. 4859 4860 Event *other_events = listener_sp->PeekAtNextEvent(); 4861 if (other_events != nullptr) { 4862 diagnostic_manager.PutString( 4863 eDiagnosticSeverityError, 4864 "RunThreadPlan called with pending events on the queue."); 4865 return eExpressionSetupError; 4866 } 4867 4868 // We also need to make sure that the next event is delivered. We might be 4869 // calling a function as part of a thread plan, in which case the last 4870 // delivered event could be the running event, and we don't want event 4871 // coalescing to cause us to lose OUR running event... 4872 ForceNextEventDelivery(); 4873 4874 // This while loop must exit out the bottom, there's cleanup that we need to do 4875 // when we are done. So don't call return anywhere within it. 4876 4877 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4878 // It's pretty much impossible to write test cases for things like: One 4879 // thread timeout expires, I go to halt, but the process already stopped on 4880 // the function call stop breakpoint. Turning on this define will make us 4881 // not fetch the first event till after the halt. So if you run a quick 4882 // function, it will have completed, and the completion event will be 4883 // waiting, when you interrupt for halt. The expression evaluation should 4884 // still succeed. 4885 bool miss_first_event = true; 4886 #endif 4887 while (true) { 4888 // We usually want to resume the process if we get to the top of the 4889 // loop. The only exception is if we get two running events with no 4890 // intervening stop, which can happen, we will just wait for then next 4891 // stop event. 4892 LLDB_LOGF(log, 4893 "Top of while loop: do_resume: %i handle_running_event: %i " 4894 "before_first_timeout: %i.", 4895 do_resume, handle_running_event, before_first_timeout); 4896 4897 if (do_resume || handle_running_event) { 4898 // Do the initial resume and wait for the running event before going 4899 // further. 4900 4901 if (do_resume) { 4902 num_resumes++; 4903 Status resume_error = PrivateResume(); 4904 if (!resume_error.Success()) { 4905 diagnostic_manager.Printf( 4906 eDiagnosticSeverityError, 4907 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 4908 resume_error.AsCString()); 4909 return_value = eExpressionSetupError; 4910 break; 4911 } 4912 } 4913 4914 got_event = 4915 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 4916 if (!got_event) { 4917 LLDB_LOGF(log, 4918 "Process::RunThreadPlan(): didn't get any event after " 4919 "resume %" PRIu32 ", exiting.", 4920 num_resumes); 4921 4922 diagnostic_manager.Printf(eDiagnosticSeverityError, 4923 "didn't get any event after resume %" PRIu32 4924 ", exiting.", 4925 num_resumes); 4926 return_value = eExpressionSetupError; 4927 break; 4928 } 4929 4930 stop_state = 4931 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4932 4933 if (stop_state != eStateRunning) { 4934 bool restarted = false; 4935 4936 if (stop_state == eStateStopped) { 4937 restarted = Process::ProcessEventData::GetRestartedFromEvent( 4938 event_sp.get()); 4939 LLDB_LOGF( 4940 log, 4941 "Process::RunThreadPlan(): didn't get running event after " 4942 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 4943 "handle_running_event: %i).", 4944 num_resumes, StateAsCString(stop_state), restarted, do_resume, 4945 handle_running_event); 4946 } 4947 4948 if (restarted) { 4949 // This is probably an overabundance of caution, I don't think I 4950 // should ever get a stopped & restarted event here. But if I do, 4951 // the best thing is to Halt and then get out of here. 4952 const bool clear_thread_plans = false; 4953 const bool use_run_lock = false; 4954 Halt(clear_thread_plans, use_run_lock); 4955 } 4956 4957 diagnostic_manager.Printf( 4958 eDiagnosticSeverityError, 4959 "didn't get running event after initial resume, got %s instead.", 4960 StateAsCString(stop_state)); 4961 return_value = eExpressionSetupError; 4962 break; 4963 } 4964 4965 if (log) 4966 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 4967 // We need to call the function synchronously, so spin waiting for it 4968 // to return. If we get interrupted while executing, we're going to 4969 // lose our context, and won't be able to gather the result at this 4970 // point. We set the timeout AFTER the resume, since the resume takes 4971 // some time and we don't want to charge that to the timeout. 4972 } else { 4973 if (log) 4974 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 4975 } 4976 4977 do_resume = true; 4978 handle_running_event = true; 4979 4980 // Now wait for the process to stop again: 4981 event_sp.reset(); 4982 4983 Timeout<std::micro> timeout = 4984 GetExpressionTimeout(options, before_first_timeout); 4985 if (log) { 4986 if (timeout) { 4987 auto now = system_clock::now(); 4988 LLDB_LOGF(log, 4989 "Process::RunThreadPlan(): about to wait - now is %s - " 4990 "endpoint is %s", 4991 llvm::to_string(now).c_str(), 4992 llvm::to_string(now + *timeout).c_str()); 4993 } else { 4994 LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); 4995 } 4996 } 4997 4998 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4999 // See comment above... 5000 if (miss_first_event) { 5001 std::this_thread::sleep_for(std::chrono::milliseconds(1)); 5002 miss_first_event = false; 5003 got_event = false; 5004 } else 5005 #endif 5006 got_event = listener_sp->GetEvent(event_sp, timeout); 5007 5008 if (got_event) { 5009 if (event_sp) { 5010 bool keep_going = false; 5011 if (event_sp->GetType() == eBroadcastBitInterrupt) { 5012 const bool clear_thread_plans = false; 5013 const bool use_run_lock = false; 5014 Halt(clear_thread_plans, use_run_lock); 5015 return_value = eExpressionInterrupted; 5016 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 5017 "execution halted by user interrupt."); 5018 LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " 5019 "eBroadcastBitInterrupted, exiting."); 5020 break; 5021 } else { 5022 stop_state = 5023 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5024 LLDB_LOGF(log, 5025 "Process::RunThreadPlan(): in while loop, got event: %s.", 5026 StateAsCString(stop_state)); 5027 5028 switch (stop_state) { 5029 case lldb::eStateStopped: { 5030 if (Process::ProcessEventData::GetRestartedFromEvent( 5031 event_sp.get())) { 5032 // If we were restarted, we just need to go back up to fetch 5033 // another event. 5034 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " 5035 "restart, so we'll continue waiting."); 5036 keep_going = true; 5037 do_resume = false; 5038 handle_running_event = true; 5039 } else { 5040 const bool handle_interrupts = true; 5041 return_value = *HandleStoppedEvent( 5042 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5043 event_sp, event_to_broadcast_sp, options, 5044 handle_interrupts); 5045 if (return_value == eExpressionThreadVanished) 5046 keep_going = false; 5047 } 5048 } break; 5049 5050 case lldb::eStateRunning: 5051 // This shouldn't really happen, but sometimes we do get two 5052 // running events without an intervening stop, and in that case 5053 // we should just go back to waiting for the stop. 5054 do_resume = false; 5055 keep_going = true; 5056 handle_running_event = false; 5057 break; 5058 5059 default: 5060 LLDB_LOGF(log, 5061 "Process::RunThreadPlan(): execution stopped with " 5062 "unexpected state: %s.", 5063 StateAsCString(stop_state)); 5064 5065 if (stop_state == eStateExited) 5066 event_to_broadcast_sp = event_sp; 5067 5068 diagnostic_manager.PutString( 5069 eDiagnosticSeverityError, 5070 "execution stopped with unexpected state."); 5071 return_value = eExpressionInterrupted; 5072 break; 5073 } 5074 } 5075 5076 if (keep_going) 5077 continue; 5078 else 5079 break; 5080 } else { 5081 if (log) 5082 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5083 "the event pointer was null. How odd..."); 5084 return_value = eExpressionInterrupted; 5085 break; 5086 } 5087 } else { 5088 // If we didn't get an event that means we've timed out... We will 5089 // interrupt the process here. Depending on what we were asked to do 5090 // we will either exit, or try with all threads running for the same 5091 // timeout. 5092 5093 if (log) { 5094 if (options.GetTryAllThreads()) { 5095 if (before_first_timeout) { 5096 LLDB_LOG(log, 5097 "Running function with one thread timeout timed out."); 5098 } else 5099 LLDB_LOG(log, "Restarting function with all threads enabled and " 5100 "timeout: {0} timed out, abandoning execution.", 5101 timeout); 5102 } else 5103 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5104 "abandoning execution.", 5105 timeout); 5106 } 5107 5108 // It is possible that between the time we issued the Halt, and we get 5109 // around to calling Halt the target could have stopped. That's fine, 5110 // Halt will figure that out and send the appropriate Stopped event. 5111 // BUT it is also possible that we stopped & restarted (e.g. hit a 5112 // signal with "stop" set to false.) In 5113 // that case, we'll get the stopped & restarted event, and we should go 5114 // back to waiting for the Halt's stopped event. That's what this 5115 // while loop does. 5116 5117 bool back_to_top = true; 5118 uint32_t try_halt_again = 0; 5119 bool do_halt = true; 5120 const uint32_t num_retries = 5; 5121 while (try_halt_again < num_retries) { 5122 Status halt_error; 5123 if (do_halt) { 5124 LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); 5125 const bool clear_thread_plans = false; 5126 const bool use_run_lock = false; 5127 Halt(clear_thread_plans, use_run_lock); 5128 } 5129 if (halt_error.Success()) { 5130 if (log) 5131 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5132 5133 got_event = 5134 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5135 5136 if (got_event) { 5137 stop_state = 5138 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5139 if (log) { 5140 LLDB_LOGF(log, 5141 "Process::RunThreadPlan(): Stopped with event: %s", 5142 StateAsCString(stop_state)); 5143 if (stop_state == lldb::eStateStopped && 5144 Process::ProcessEventData::GetInterruptedFromEvent( 5145 event_sp.get())) 5146 log->PutCString(" Event was the Halt interruption event."); 5147 } 5148 5149 if (stop_state == lldb::eStateStopped) { 5150 if (Process::ProcessEventData::GetRestartedFromEvent( 5151 event_sp.get())) { 5152 if (log) 5153 log->PutCString("Process::RunThreadPlan(): Went to halt " 5154 "but got a restarted event, there must be " 5155 "an un-restarted stopped event so try " 5156 "again... " 5157 "Exiting wait loop."); 5158 try_halt_again++; 5159 do_halt = false; 5160 continue; 5161 } 5162 5163 // Between the time we initiated the Halt and the time we 5164 // delivered it, the process could have already finished its 5165 // job. Check that here: 5166 const bool handle_interrupts = false; 5167 if (auto result = HandleStoppedEvent( 5168 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5169 event_sp, event_to_broadcast_sp, options, 5170 handle_interrupts)) { 5171 return_value = *result; 5172 back_to_top = false; 5173 break; 5174 } 5175 5176 if (!options.GetTryAllThreads()) { 5177 if (log) 5178 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5179 "was false, we stopped so now we're " 5180 "quitting."); 5181 return_value = eExpressionInterrupted; 5182 back_to_top = false; 5183 break; 5184 } 5185 5186 if (before_first_timeout) { 5187 // Set all the other threads to run, and return to the top of 5188 // the loop, which will continue; 5189 before_first_timeout = false; 5190 thread_plan_sp->SetStopOthers(false); 5191 if (log) 5192 log->PutCString( 5193 "Process::RunThreadPlan(): about to resume."); 5194 5195 back_to_top = true; 5196 break; 5197 } else { 5198 // Running all threads failed, so return Interrupted. 5199 if (log) 5200 log->PutCString("Process::RunThreadPlan(): running all " 5201 "threads timed out."); 5202 return_value = eExpressionInterrupted; 5203 back_to_top = false; 5204 break; 5205 } 5206 } 5207 } else { 5208 if (log) 5209 log->PutCString("Process::RunThreadPlan(): halt said it " 5210 "succeeded, but I got no event. " 5211 "I'm getting out of here passing Interrupted."); 5212 return_value = eExpressionInterrupted; 5213 back_to_top = false; 5214 break; 5215 } 5216 } else { 5217 try_halt_again++; 5218 continue; 5219 } 5220 } 5221 5222 if (!back_to_top || try_halt_again > num_retries) 5223 break; 5224 else 5225 continue; 5226 } 5227 } // END WAIT LOOP 5228 5229 // If we had to start up a temporary private state thread to run this 5230 // thread plan, shut it down now. 5231 if (backup_private_state_thread.IsJoinable()) { 5232 StopPrivateStateThread(); 5233 Status error; 5234 m_private_state_thread = backup_private_state_thread; 5235 if (stopper_base_plan_sp) { 5236 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5237 } 5238 if (old_state != eStateInvalid) 5239 m_public_state.SetValueNoLock(old_state); 5240 } 5241 5242 // If our thread went away on us, we need to get out of here without 5243 // doing any more work. We don't have to clean up the thread plan, that 5244 // will have happened when the Thread was destroyed. 5245 if (return_value == eExpressionThreadVanished) { 5246 return return_value; 5247 } 5248 5249 if (return_value != eExpressionCompleted && log) { 5250 // Print a backtrace into the log so we can figure out where we are: 5251 StreamString s; 5252 s.PutCString("Thread state after unsuccessful completion: \n"); 5253 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5254 log->PutString(s.GetString()); 5255 } 5256 // Restore the thread state if we are going to discard the plan execution. 5257 // There are three cases where this could happen: 1) The execution 5258 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5259 // was true 3) We got some other error, and discard_on_error was true 5260 bool should_unwind = (return_value == eExpressionInterrupted && 5261 options.DoesUnwindOnError()) || 5262 (return_value == eExpressionHitBreakpoint && 5263 options.DoesIgnoreBreakpoints()); 5264 5265 if (return_value == eExpressionCompleted || should_unwind) { 5266 thread_plan_sp->RestoreThreadState(); 5267 } 5268 5269 // Now do some processing on the results of the run: 5270 if (return_value == eExpressionInterrupted || 5271 return_value == eExpressionHitBreakpoint) { 5272 if (log) { 5273 StreamString s; 5274 if (event_sp) 5275 event_sp->Dump(&s); 5276 else { 5277 log->PutCString("Process::RunThreadPlan(): Stop event that " 5278 "interrupted us is NULL."); 5279 } 5280 5281 StreamString ts; 5282 5283 const char *event_explanation = nullptr; 5284 5285 do { 5286 if (!event_sp) { 5287 event_explanation = "<no event>"; 5288 break; 5289 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5290 event_explanation = "<user interrupt>"; 5291 break; 5292 } else { 5293 const Process::ProcessEventData *event_data = 5294 Process::ProcessEventData::GetEventDataFromEvent( 5295 event_sp.get()); 5296 5297 if (!event_data) { 5298 event_explanation = "<no event data>"; 5299 break; 5300 } 5301 5302 Process *process = event_data->GetProcessSP().get(); 5303 5304 if (!process) { 5305 event_explanation = "<no process>"; 5306 break; 5307 } 5308 5309 ThreadList &thread_list = process->GetThreadList(); 5310 5311 uint32_t num_threads = thread_list.GetSize(); 5312 uint32_t thread_index; 5313 5314 ts.Printf("<%u threads> ", num_threads); 5315 5316 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5317 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5318 5319 if (!thread) { 5320 ts.Printf("<?> "); 5321 continue; 5322 } 5323 5324 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5325 RegisterContext *register_context = 5326 thread->GetRegisterContext().get(); 5327 5328 if (register_context) 5329 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5330 else 5331 ts.Printf("[ip unknown] "); 5332 5333 // Show the private stop info here, the public stop info will be 5334 // from the last natural stop. 5335 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5336 if (stop_info_sp) { 5337 const char *stop_desc = stop_info_sp->GetDescription(); 5338 if (stop_desc) 5339 ts.PutCString(stop_desc); 5340 } 5341 ts.Printf(">"); 5342 } 5343 5344 event_explanation = ts.GetData(); 5345 } 5346 } while (false); 5347 5348 if (event_explanation) 5349 LLDB_LOGF(log, 5350 "Process::RunThreadPlan(): execution interrupted: %s %s", 5351 s.GetData(), event_explanation); 5352 else 5353 LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", 5354 s.GetData()); 5355 } 5356 5357 if (should_unwind) { 5358 LLDB_LOGF(log, 5359 "Process::RunThreadPlan: ExecutionInterrupted - " 5360 "discarding thread plans up to %p.", 5361 static_cast<void *>(thread_plan_sp.get())); 5362 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5363 } else { 5364 LLDB_LOGF(log, 5365 "Process::RunThreadPlan: ExecutionInterrupted - for " 5366 "plan: %p not discarding.", 5367 static_cast<void *>(thread_plan_sp.get())); 5368 } 5369 } else if (return_value == eExpressionSetupError) { 5370 if (log) 5371 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5372 5373 if (options.DoesUnwindOnError()) { 5374 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5375 } 5376 } else { 5377 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5378 if (log) 5379 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5380 return_value = eExpressionCompleted; 5381 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5382 if (log) 5383 log->PutCString( 5384 "Process::RunThreadPlan(): thread plan was discarded"); 5385 return_value = eExpressionDiscarded; 5386 } else { 5387 if (log) 5388 log->PutCString( 5389 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5390 if (options.DoesUnwindOnError() && thread_plan_sp) { 5391 if (log) 5392 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5393 "'cause unwind_on_error is set."); 5394 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5395 } 5396 } 5397 } 5398 5399 // Thread we ran the function in may have gone away because we ran the 5400 // target Check that it's still there, and if it is put it back in the 5401 // context. Also restore the frame in the context if it is still present. 5402 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5403 if (thread) { 5404 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5405 } 5406 5407 // Also restore the current process'es selected frame & thread, since this 5408 // function calling may be done behind the user's back. 5409 5410 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5411 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5412 selected_stack_id.IsValid()) { 5413 // We were able to restore the selected thread, now restore the frame: 5414 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5415 StackFrameSP old_frame_sp = 5416 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5417 selected_stack_id); 5418 if (old_frame_sp) 5419 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5420 old_frame_sp.get()); 5421 } 5422 } 5423 } 5424 5425 // If the process exited during the run of the thread plan, notify everyone. 5426 5427 if (event_to_broadcast_sp) { 5428 if (log) 5429 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5430 BroadcastEvent(event_to_broadcast_sp); 5431 } 5432 5433 return return_value; 5434 } 5435 5436 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5437 const char *result_name = "<unknown>"; 5438 5439 switch (result) { 5440 case eExpressionCompleted: 5441 result_name = "eExpressionCompleted"; 5442 break; 5443 case eExpressionDiscarded: 5444 result_name = "eExpressionDiscarded"; 5445 break; 5446 case eExpressionInterrupted: 5447 result_name = "eExpressionInterrupted"; 5448 break; 5449 case eExpressionHitBreakpoint: 5450 result_name = "eExpressionHitBreakpoint"; 5451 break; 5452 case eExpressionSetupError: 5453 result_name = "eExpressionSetupError"; 5454 break; 5455 case eExpressionParseError: 5456 result_name = "eExpressionParseError"; 5457 break; 5458 case eExpressionResultUnavailable: 5459 result_name = "eExpressionResultUnavailable"; 5460 break; 5461 case eExpressionTimedOut: 5462 result_name = "eExpressionTimedOut"; 5463 break; 5464 case eExpressionStoppedForDebug: 5465 result_name = "eExpressionStoppedForDebug"; 5466 break; 5467 case eExpressionThreadVanished: 5468 result_name = "eExpressionThreadVanished"; 5469 } 5470 return result_name; 5471 } 5472 5473 void Process::GetStatus(Stream &strm) { 5474 const StateType state = GetState(); 5475 if (StateIsStoppedState(state, false)) { 5476 if (state == eStateExited) { 5477 int exit_status = GetExitStatus(); 5478 const char *exit_description = GetExitDescription(); 5479 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5480 GetID(), exit_status, exit_status, 5481 exit_description ? exit_description : ""); 5482 } else { 5483 if (state == eStateConnected) 5484 strm.Printf("Connected to remote target.\n"); 5485 else 5486 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5487 } 5488 } else { 5489 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5490 } 5491 } 5492 5493 size_t Process::GetThreadStatus(Stream &strm, 5494 bool only_threads_with_stop_reason, 5495 uint32_t start_frame, uint32_t num_frames, 5496 uint32_t num_frames_with_source, 5497 bool stop_format) { 5498 size_t num_thread_infos_dumped = 0; 5499 5500 // You can't hold the thread list lock while calling Thread::GetStatus. That 5501 // very well might run code (e.g. if we need it to get return values or 5502 // arguments.) For that to work the process has to be able to acquire it. 5503 // So instead copy the thread ID's, and look them up one by one: 5504 5505 uint32_t num_threads; 5506 std::vector<lldb::tid_t> thread_id_array; 5507 // Scope for thread list locker; 5508 { 5509 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5510 ThreadList &curr_thread_list = GetThreadList(); 5511 num_threads = curr_thread_list.GetSize(); 5512 uint32_t idx; 5513 thread_id_array.resize(num_threads); 5514 for (idx = 0; idx < num_threads; ++idx) 5515 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5516 } 5517 5518 for (uint32_t i = 0; i < num_threads; i++) { 5519 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5520 if (thread_sp) { 5521 if (only_threads_with_stop_reason) { 5522 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5523 if (!stop_info_sp || !stop_info_sp->IsValid()) 5524 continue; 5525 } 5526 thread_sp->GetStatus(strm, start_frame, num_frames, 5527 num_frames_with_source, 5528 stop_format); 5529 ++num_thread_infos_dumped; 5530 } else { 5531 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5532 LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 5533 " vanished while running Thread::GetStatus."); 5534 } 5535 } 5536 return num_thread_infos_dumped; 5537 } 5538 5539 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5540 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5541 } 5542 5543 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5544 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5545 region.GetByteSize()); 5546 } 5547 5548 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5549 void *baton) { 5550 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5551 } 5552 5553 bool Process::RunPreResumeActions() { 5554 bool result = true; 5555 while (!m_pre_resume_actions.empty()) { 5556 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5557 m_pre_resume_actions.pop_back(); 5558 bool this_result = action.callback(action.baton); 5559 if (result) 5560 result = this_result; 5561 } 5562 return result; 5563 } 5564 5565 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5566 5567 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5568 { 5569 PreResumeCallbackAndBaton element(callback, baton); 5570 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5571 if (found_iter != m_pre_resume_actions.end()) 5572 { 5573 m_pre_resume_actions.erase(found_iter); 5574 } 5575 } 5576 5577 ProcessRunLock &Process::GetRunLock() { 5578 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5579 return m_private_run_lock; 5580 else 5581 return m_public_run_lock; 5582 } 5583 5584 bool Process::CurrentThreadIsPrivateStateThread() 5585 { 5586 return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); 5587 } 5588 5589 5590 void Process::Flush() { 5591 m_thread_list.Flush(); 5592 m_extended_thread_list.Flush(); 5593 m_extended_thread_stop_id = 0; 5594 m_queue_list.Clear(); 5595 m_queue_list_stop_id = 0; 5596 } 5597 5598 lldb::addr_t Process::GetCodeAddressMask() { 5599 if (m_code_address_mask == 0) { 5600 if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) { 5601 lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1); 5602 SetCodeAddressMask(address_mask); 5603 } 5604 } 5605 return m_code_address_mask; 5606 } 5607 5608 lldb::addr_t Process::GetDataAddressMask() { 5609 if (m_data_address_mask == 0) { 5610 if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) { 5611 lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1); 5612 SetDataAddressMask(address_mask); 5613 } 5614 } 5615 return m_data_address_mask; 5616 } 5617 5618 void Process::DidExec() { 5619 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 5620 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 5621 5622 Target &target = GetTarget(); 5623 target.CleanupProcess(); 5624 target.ClearModules(false); 5625 m_dynamic_checkers_up.reset(); 5626 m_abi_sp.reset(); 5627 m_system_runtime_up.reset(); 5628 m_os_up.reset(); 5629 m_dyld_up.reset(); 5630 m_jit_loaders_up.reset(); 5631 m_image_tokens.clear(); 5632 m_allocated_memory_cache.Clear(); 5633 { 5634 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5635 m_language_runtimes.clear(); 5636 } 5637 m_instrumentation_runtimes.clear(); 5638 m_thread_list.DiscardThreadPlans(); 5639 m_memory_cache.Clear(true); 5640 DoDidExec(); 5641 CompleteAttach(); 5642 // Flush the process (threads and all stack frames) after running 5643 // CompleteAttach() in case the dynamic loader loaded things in new 5644 // locations. 5645 Flush(); 5646 5647 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5648 // let the target know so it can do any cleanup it needs to. 5649 target.DidExec(); 5650 } 5651 5652 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5653 if (address == nullptr) { 5654 error.SetErrorString("Invalid address argument"); 5655 return LLDB_INVALID_ADDRESS; 5656 } 5657 5658 addr_t function_addr = LLDB_INVALID_ADDRESS; 5659 5660 addr_t addr = address->GetLoadAddress(&GetTarget()); 5661 std::map<addr_t, addr_t>::const_iterator iter = 5662 m_resolved_indirect_addresses.find(addr); 5663 if (iter != m_resolved_indirect_addresses.end()) { 5664 function_addr = (*iter).second; 5665 } else { 5666 if (!CallVoidArgVoidPtrReturn(address, function_addr)) { 5667 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5668 error.SetErrorStringWithFormat( 5669 "Unable to call resolver for indirect function %s", 5670 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5671 function_addr = LLDB_INVALID_ADDRESS; 5672 } else { 5673 if (ABISP abi_sp = GetABI()) 5674 function_addr = abi_sp->FixCodeAddress(function_addr); 5675 m_resolved_indirect_addresses.insert( 5676 std::pair<addr_t, addr_t>(addr, function_addr)); 5677 } 5678 } 5679 return function_addr; 5680 } 5681 5682 void Process::ModulesDidLoad(ModuleList &module_list) { 5683 // Inform the system runtime of the modified modules. 5684 SystemRuntime *sys_runtime = GetSystemRuntime(); 5685 if (sys_runtime) 5686 sys_runtime->ModulesDidLoad(module_list); 5687 5688 GetJITLoaders().ModulesDidLoad(module_list); 5689 5690 // Give the instrumentation runtimes a chance to be created before informing 5691 // them of the modified modules. 5692 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5693 m_instrumentation_runtimes); 5694 for (auto &runtime : m_instrumentation_runtimes) 5695 runtime.second->ModulesDidLoad(module_list); 5696 5697 // Give the language runtimes a chance to be created before informing them of 5698 // the modified modules. 5699 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 5700 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 5701 runtime->ModulesDidLoad(module_list); 5702 } 5703 5704 // If we don't have an operating system plug-in, try to load one since 5705 // loading shared libraries might cause a new one to try and load 5706 if (!m_os_up) 5707 LoadOperatingSystemPlugin(false); 5708 5709 // Inform the structured-data plugins of the modified modules. 5710 for (auto pair : m_structured_data_plugin_map) { 5711 if (pair.second) 5712 pair.second->ModulesDidLoad(*this, module_list); 5713 } 5714 } 5715 5716 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5717 const char *fmt, ...) { 5718 bool print_warning = true; 5719 5720 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5721 if (!stream_sp) 5722 return; 5723 5724 if (repeat_key != nullptr) { 5725 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5726 if (it == m_warnings_issued.end()) { 5727 m_warnings_issued[warning_type] = WarningsPointerSet(); 5728 m_warnings_issued[warning_type].insert(repeat_key); 5729 } else { 5730 if (it->second.find(repeat_key) != it->second.end()) { 5731 print_warning = false; 5732 } else { 5733 it->second.insert(repeat_key); 5734 } 5735 } 5736 } 5737 5738 if (print_warning) { 5739 va_list args; 5740 va_start(args, fmt); 5741 stream_sp->PrintfVarArg(fmt, args); 5742 va_end(args); 5743 } 5744 } 5745 5746 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5747 if (!GetWarningsOptimization()) 5748 return; 5749 if (!sc.module_sp) 5750 return; 5751 if (!sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5752 sc.function->GetIsOptimized()) { 5753 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5754 "%s was compiled with optimization - stepping may behave " 5755 "oddly; variables may not be available.\n", 5756 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5757 } 5758 } 5759 5760 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) { 5761 if (!GetWarningsUnsupportedLanguage()) 5762 return; 5763 if (!sc.module_sp) 5764 return; 5765 LanguageType language = sc.GetLanguage(); 5766 if (language == eLanguageTypeUnknown) 5767 return; 5768 LanguageSet plugins = 5769 PluginManager::GetAllTypeSystemSupportedLanguagesForTypes(); 5770 if (!plugins[language]) { 5771 PrintWarning(Process::Warnings::eWarningsUnsupportedLanguage, 5772 sc.module_sp.get(), 5773 "This version of LLDB has no plugin for the language \"%s\". " 5774 "Inspection of frame variables will be limited.\n", 5775 Language::GetNameForLanguageType(language)); 5776 } 5777 } 5778 5779 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5780 info.Clear(); 5781 5782 PlatformSP platform_sp = GetTarget().GetPlatform(); 5783 if (!platform_sp) 5784 return false; 5785 5786 return platform_sp->GetProcessInfo(GetID(), info); 5787 } 5788 5789 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5790 ThreadCollectionSP threads; 5791 5792 const MemoryHistorySP &memory_history = 5793 MemoryHistory::FindPlugin(shared_from_this()); 5794 5795 if (!memory_history) { 5796 return threads; 5797 } 5798 5799 threads = std::make_shared<ThreadCollection>( 5800 memory_history->GetHistoryThreads(addr)); 5801 5802 return threads; 5803 } 5804 5805 InstrumentationRuntimeSP 5806 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5807 InstrumentationRuntimeCollection::iterator pos; 5808 pos = m_instrumentation_runtimes.find(type); 5809 if (pos == m_instrumentation_runtimes.end()) { 5810 return InstrumentationRuntimeSP(); 5811 } else 5812 return (*pos).second; 5813 } 5814 5815 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5816 const ArchSpec &arch, ModuleSpec &module_spec) { 5817 module_spec.Clear(); 5818 return false; 5819 } 5820 5821 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5822 m_image_tokens.push_back(image_ptr); 5823 return m_image_tokens.size() - 1; 5824 } 5825 5826 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5827 if (token < m_image_tokens.size()) 5828 return m_image_tokens[token]; 5829 return LLDB_INVALID_ADDRESS; 5830 } 5831 5832 void Process::ResetImageToken(size_t token) { 5833 if (token < m_image_tokens.size()) 5834 m_image_tokens[token] = LLDB_INVALID_ADDRESS; 5835 } 5836 5837 Address 5838 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5839 AddressRange range_bounds) { 5840 Target &target = GetTarget(); 5841 DisassemblerSP disassembler_sp; 5842 InstructionList *insn_list = nullptr; 5843 5844 Address retval = default_stop_addr; 5845 5846 if (!target.GetUseFastStepping()) 5847 return retval; 5848 if (!default_stop_addr.IsValid()) 5849 return retval; 5850 5851 const char *plugin_name = nullptr; 5852 const char *flavor = nullptr; 5853 disassembler_sp = Disassembler::DisassembleRange( 5854 target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds); 5855 if (disassembler_sp) 5856 insn_list = &disassembler_sp->GetInstructionList(); 5857 5858 if (insn_list == nullptr) { 5859 return retval; 5860 } 5861 5862 size_t insn_offset = 5863 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 5864 if (insn_offset == UINT32_MAX) { 5865 return retval; 5866 } 5867 5868 uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction( 5869 insn_offset, false /* ignore_calls*/, nullptr); 5870 if (branch_index == UINT32_MAX) { 5871 return retval; 5872 } 5873 5874 if (branch_index > insn_offset) { 5875 Address next_branch_insn_address = 5876 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 5877 if (next_branch_insn_address.IsValid() && 5878 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 5879 retval = next_branch_insn_address; 5880 } 5881 } 5882 5883 return retval; 5884 } 5885 5886 Status 5887 Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { 5888 5889 Status error; 5890 5891 lldb::addr_t range_end = 0; 5892 5893 region_list.clear(); 5894 do { 5895 lldb_private::MemoryRegionInfo region_info; 5896 error = GetMemoryRegionInfo(range_end, region_info); 5897 // GetMemoryRegionInfo should only return an error if it is unimplemented. 5898 if (error.Fail()) { 5899 region_list.clear(); 5900 break; 5901 } 5902 5903 range_end = region_info.GetRange().GetRangeEnd(); 5904 if (region_info.GetMapped() == MemoryRegionInfo::eYes) { 5905 region_list.push_back(std::move(region_info)); 5906 } 5907 } while (range_end != LLDB_INVALID_ADDRESS); 5908 5909 return error; 5910 } 5911 5912 Status 5913 Process::ConfigureStructuredData(ConstString type_name, 5914 const StructuredData::ObjectSP &config_sp) { 5915 // If you get this, the Process-derived class needs to implement a method to 5916 // enable an already-reported asynchronous structured data feature. See 5917 // ProcessGDBRemote for an example implementation over gdb-remote. 5918 return Status("unimplemented"); 5919 } 5920 5921 void Process::MapSupportedStructuredDataPlugins( 5922 const StructuredData::Array &supported_type_names) { 5923 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5924 5925 // Bail out early if there are no type names to map. 5926 if (supported_type_names.GetSize() == 0) { 5927 LLDB_LOGF(log, "Process::%s(): no structured data types supported", 5928 __FUNCTION__); 5929 return; 5930 } 5931 5932 // Convert StructuredData type names to ConstString instances. 5933 std::set<ConstString> const_type_names; 5934 5935 LLDB_LOGF(log, 5936 "Process::%s(): the process supports the following async " 5937 "structured data types:", 5938 __FUNCTION__); 5939 5940 supported_type_names.ForEach( 5941 [&const_type_names, &log](StructuredData::Object *object) { 5942 if (!object) { 5943 // Invalid - shouldn't be null objects in the array. 5944 return false; 5945 } 5946 5947 auto type_name = object->GetAsString(); 5948 if (!type_name) { 5949 // Invalid format - all type names should be strings. 5950 return false; 5951 } 5952 5953 const_type_names.insert(ConstString(type_name->GetValue())); 5954 LLDB_LOG(log, "- {0}", type_name->GetValue()); 5955 return true; 5956 }); 5957 5958 // For each StructuredDataPlugin, if the plugin handles any of the types in 5959 // the supported_type_names, map that type name to that plugin. Stop when 5960 // we've consumed all the type names. 5961 // FIXME: should we return an error if there are type names nobody 5962 // supports? 5963 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 5964 auto create_instance = 5965 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 5966 plugin_index); 5967 if (!create_instance) 5968 break; 5969 5970 // Create the plugin. 5971 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 5972 if (!plugin_sp) { 5973 // This plugin doesn't think it can work with the process. Move on to the 5974 // next. 5975 continue; 5976 } 5977 5978 // For any of the remaining type names, map any that this plugin supports. 5979 std::vector<ConstString> names_to_remove; 5980 for (auto &type_name : const_type_names) { 5981 if (plugin_sp->SupportsStructuredDataType(type_name)) { 5982 m_structured_data_plugin_map.insert( 5983 std::make_pair(type_name, plugin_sp)); 5984 names_to_remove.push_back(type_name); 5985 LLDB_LOGF(log, 5986 "Process::%s(): using plugin %s for type name " 5987 "%s", 5988 __FUNCTION__, plugin_sp->GetPluginName().GetCString(), 5989 type_name.GetCString()); 5990 } 5991 } 5992 5993 // Remove the type names that were consumed by this plugin. 5994 for (auto &type_name : names_to_remove) 5995 const_type_names.erase(type_name); 5996 } 5997 } 5998 5999 bool Process::RouteAsyncStructuredData( 6000 const StructuredData::ObjectSP object_sp) { 6001 // Nothing to do if there's no data. 6002 if (!object_sp) 6003 return false; 6004 6005 // The contract is this must be a dictionary, so we can look up the routing 6006 // key via the top-level 'type' string value within the dictionary. 6007 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 6008 if (!dictionary) 6009 return false; 6010 6011 // Grab the async structured type name (i.e. the feature/plugin name). 6012 ConstString type_name; 6013 if (!dictionary->GetValueForKeyAsString("type", type_name)) 6014 return false; 6015 6016 // Check if there's a plugin registered for this type name. 6017 auto find_it = m_structured_data_plugin_map.find(type_name); 6018 if (find_it == m_structured_data_plugin_map.end()) { 6019 // We don't have a mapping for this structured data type. 6020 return false; 6021 } 6022 6023 // Route the structured data to the plugin. 6024 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 6025 return true; 6026 } 6027 6028 Status Process::UpdateAutomaticSignalFiltering() { 6029 // Default implementation does nothign. 6030 // No automatic signal filtering to speak of. 6031 return Status(); 6032 } 6033 6034 UtilityFunction *Process::GetLoadImageUtilityFunction( 6035 Platform *platform, 6036 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 6037 if (platform != GetTarget().GetPlatform().get()) 6038 return nullptr; 6039 llvm::call_once(m_dlopen_utility_func_flag_once, 6040 [&] { m_dlopen_utility_func_up = factory(); }); 6041 return m_dlopen_utility_func_up.get(); 6042 } 6043 6044 llvm::Expected<TraceSupportedResponse> Process::TraceSupported() { 6045 if (!IsLiveDebugSession()) 6046 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6047 "Can't trace a non-live process."); 6048 return llvm::make_error<UnimplementedError>(); 6049 } 6050 6051 bool Process::CallVoidArgVoidPtrReturn(const Address *address, 6052 addr_t &returned_func, 6053 bool trap_exceptions) { 6054 Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); 6055 if (thread == nullptr || address == nullptr) 6056 return false; 6057 6058 EvaluateExpressionOptions options; 6059 options.SetStopOthers(true); 6060 options.SetUnwindOnError(true); 6061 options.SetIgnoreBreakpoints(true); 6062 options.SetTryAllThreads(true); 6063 options.SetDebug(false); 6064 options.SetTimeout(GetUtilityExpressionTimeout()); 6065 options.SetTrapExceptions(trap_exceptions); 6066 6067 auto type_system_or_err = 6068 GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC); 6069 if (!type_system_or_err) { 6070 llvm::consumeError(type_system_or_err.takeError()); 6071 return false; 6072 } 6073 CompilerType void_ptr_type = 6074 type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType(); 6075 lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( 6076 *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); 6077 if (call_plan_sp) { 6078 DiagnosticManager diagnostics; 6079 6080 StackFrame *frame = thread->GetStackFrameAtIndex(0).get(); 6081 if (frame) { 6082 ExecutionContext exe_ctx; 6083 frame->CalculateExecutionContext(exe_ctx); 6084 ExpressionResults result = 6085 RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics); 6086 if (result == eExpressionCompleted) { 6087 returned_func = 6088 call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( 6089 LLDB_INVALID_ADDRESS); 6090 6091 if (GetAddressByteSize() == 4) { 6092 if (returned_func == UINT32_MAX) 6093 return false; 6094 } else if (GetAddressByteSize() == 8) { 6095 if (returned_func == UINT64_MAX) 6096 return false; 6097 } 6098 return true; 6099 } 6100 } 6101 } 6102 6103 return false; 6104 } 6105 6106 llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() { 6107 Architecture *arch = GetTarget().GetArchitecturePlugin(); 6108 const MemoryTagManager *tag_manager = 6109 arch ? arch->GetMemoryTagManager() : nullptr; 6110 if (!arch || !tag_manager) { 6111 return llvm::createStringError( 6112 llvm::inconvertibleErrorCode(), 6113 "This architecture does not support memory tagging", 6114 GetPluginName().GetCString()); 6115 } 6116 6117 if (!SupportsMemoryTagging()) { 6118 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6119 "Process does not support memory tagging"); 6120 } 6121 6122 return tag_manager; 6123 } 6124 6125 llvm::Expected<std::vector<lldb::addr_t>> 6126 Process::ReadMemoryTags(lldb::addr_t addr, size_t len) { 6127 llvm::Expected<const MemoryTagManager *> tag_manager_or_err = 6128 GetMemoryTagManager(); 6129 if (!tag_manager_or_err) 6130 return tag_manager_or_err.takeError(); 6131 6132 const MemoryTagManager *tag_manager = *tag_manager_or_err; 6133 llvm::Expected<std::vector<uint8_t>> tag_data = 6134 DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType()); 6135 if (!tag_data) 6136 return tag_data.takeError(); 6137 6138 return tag_manager->UnpackTagsData(*tag_data, 6139 len / tag_manager->GetGranuleSize()); 6140 } 6141 6142 Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len, 6143 const std::vector<lldb::addr_t> &tags) { 6144 llvm::Expected<const MemoryTagManager *> tag_manager_or_err = 6145 GetMemoryTagManager(); 6146 if (!tag_manager_or_err) 6147 return Status(tag_manager_or_err.takeError()); 6148 6149 const MemoryTagManager *tag_manager = *tag_manager_or_err; 6150 llvm::Expected<std::vector<uint8_t>> packed_tags = 6151 tag_manager->PackTags(tags); 6152 if (!packed_tags) { 6153 return Status(packed_tags.takeError()); 6154 } 6155 6156 return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(), 6157 *packed_tags); 6158 } 6159