1 //===-- Process.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <atomic> 10 #include <memory> 11 #include <mutex> 12 13 #include "llvm/Support/ScopedPrinter.h" 14 #include "llvm/Support/Threading.h" 15 16 #include "lldb/Breakpoint/BreakpointLocation.h" 17 #include "lldb/Breakpoint/StoppointCallbackContext.h" 18 #include "lldb/Core/Debugger.h" 19 #include "lldb/Core/Module.h" 20 #include "lldb/Core/ModuleSpec.h" 21 #include "lldb/Core/PluginManager.h" 22 #include "lldb/Core/StreamFile.h" 23 #include "lldb/Expression/DiagnosticManager.h" 24 #include "lldb/Expression/DynamicCheckerFunctions.h" 25 #include "lldb/Expression/UserExpression.h" 26 #include "lldb/Expression/UtilityFunction.h" 27 #include "lldb/Host/ConnectionFileDescriptor.h" 28 #include "lldb/Host/FileSystem.h" 29 #include "lldb/Host/Host.h" 30 #include "lldb/Host/HostInfo.h" 31 #include "lldb/Host/OptionParser.h" 32 #include "lldb/Host/Pipe.h" 33 #include "lldb/Host/Terminal.h" 34 #include "lldb/Host/ThreadLauncher.h" 35 #include "lldb/Interpreter/CommandInterpreter.h" 36 #include "lldb/Interpreter/OptionArgParser.h" 37 #include "lldb/Interpreter/OptionValueProperties.h" 38 #include "lldb/Symbol/Function.h" 39 #include "lldb/Symbol/Symbol.h" 40 #include "lldb/Target/ABI.h" 41 #include "lldb/Target/AssertFrameRecognizer.h" 42 #include "lldb/Target/DynamicLoader.h" 43 #include "lldb/Target/InstrumentationRuntime.h" 44 #include "lldb/Target/JITLoader.h" 45 #include "lldb/Target/JITLoaderList.h" 46 #include "lldb/Target/Language.h" 47 #include "lldb/Target/LanguageRuntime.h" 48 #include "lldb/Target/MemoryHistory.h" 49 #include "lldb/Target/MemoryRegionInfo.h" 50 #include "lldb/Target/OperatingSystem.h" 51 #include "lldb/Target/Platform.h" 52 #include "lldb/Target/Process.h" 53 #include "lldb/Target/RegisterContext.h" 54 #include "lldb/Target/StopInfo.h" 55 #include "lldb/Target/StructuredDataPlugin.h" 56 #include "lldb/Target/SystemRuntime.h" 57 #include "lldb/Target/Target.h" 58 #include "lldb/Target/TargetList.h" 59 #include "lldb/Target/Thread.h" 60 #include "lldb/Target/ThreadPlan.h" 61 #include "lldb/Target/ThreadPlanBase.h" 62 #include "lldb/Target/ThreadPlanCallFunction.h" 63 #include "lldb/Target/ThreadPlanStack.h" 64 #include "lldb/Target/UnixSignals.h" 65 #include "lldb/Utility/Event.h" 66 #include "lldb/Utility/Log.h" 67 #include "lldb/Utility/NameMatches.h" 68 #include "lldb/Utility/ProcessInfo.h" 69 #include "lldb/Utility/SelectHelper.h" 70 #include "lldb/Utility/State.h" 71 72 using namespace lldb; 73 using namespace lldb_private; 74 using namespace std::chrono; 75 76 // Comment out line below to disable memory caching, overriding the process 77 // setting target.process.disable-memory-cache 78 #define ENABLE_MEMORY_CACHING 79 80 #ifdef ENABLE_MEMORY_CACHING 81 #define DISABLE_MEM_CACHE_DEFAULT false 82 #else 83 #define DISABLE_MEM_CACHE_DEFAULT true 84 #endif 85 86 class ProcessOptionValueProperties 87 : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> { 88 public: 89 ProcessOptionValueProperties(ConstString name) : Cloneable(name) {} 90 91 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 92 bool will_modify, 93 uint32_t idx) const override { 94 // When getting the value for a key from the process options, we will 95 // always try and grab the setting from the current process if there is 96 // one. Else we just use the one from this instance. 97 if (exe_ctx) { 98 Process *process = exe_ctx->GetProcessPtr(); 99 if (process) { 100 ProcessOptionValueProperties *instance_properties = 101 static_cast<ProcessOptionValueProperties *>( 102 process->GetValueProperties().get()); 103 if (this != instance_properties) 104 return instance_properties->ProtectedGetPropertyAtIndex(idx); 105 } 106 } 107 return ProtectedGetPropertyAtIndex(idx); 108 } 109 }; 110 111 #define LLDB_PROPERTIES_process 112 #include "TargetProperties.inc" 113 114 enum { 115 #define LLDB_PROPERTIES_process 116 #include "TargetPropertiesEnum.inc" 117 ePropertyExperimental, 118 }; 119 120 #define LLDB_PROPERTIES_process_experimental 121 #include "TargetProperties.inc" 122 123 enum { 124 #define LLDB_PROPERTIES_process_experimental 125 #include "TargetPropertiesEnum.inc" 126 }; 127 128 class ProcessExperimentalOptionValueProperties 129 : public Cloneable<ProcessExperimentalOptionValueProperties, 130 OptionValueProperties> { 131 public: 132 ProcessExperimentalOptionValueProperties() 133 : Cloneable( 134 ConstString(Properties::GetExperimentalSettingsName())) {} 135 }; 136 137 ProcessExperimentalProperties::ProcessExperimentalProperties() 138 : Properties(OptionValuePropertiesSP( 139 new ProcessExperimentalOptionValueProperties())) { 140 m_collection_sp->Initialize(g_process_experimental_properties); 141 } 142 143 ProcessProperties::ProcessProperties(lldb_private::Process *process) 144 : Properties(), 145 m_process(process) // Can be nullptr for global ProcessProperties 146 { 147 if (process == nullptr) { 148 // Global process properties, set them up one time 149 m_collection_sp = 150 std::make_shared<ProcessOptionValueProperties>(ConstString("process")); 151 m_collection_sp->Initialize(g_process_properties); 152 m_collection_sp->AppendProperty( 153 ConstString("thread"), ConstString("Settings specific to threads."), 154 true, Thread::GetGlobalProperties()->GetValueProperties()); 155 } else { 156 m_collection_sp = 157 OptionValueProperties::CreateLocalCopy(*Process::GetGlobalProperties()); 158 m_collection_sp->SetValueChangedCallback( 159 ePropertyPythonOSPluginPath, 160 [this] { m_process->LoadOperatingSystemPlugin(true); }); 161 } 162 163 m_experimental_properties_up = 164 std::make_unique<ProcessExperimentalProperties>(); 165 m_collection_sp->AppendProperty( 166 ConstString(Properties::GetExperimentalSettingsName()), 167 ConstString("Experimental settings - setting these won't produce " 168 "errors if the setting is not present."), 169 true, m_experimental_properties_up->GetValueProperties()); 170 } 171 172 ProcessProperties::~ProcessProperties() = default; 173 174 bool ProcessProperties::GetDisableMemoryCache() const { 175 const uint32_t idx = ePropertyDisableMemCache; 176 return m_collection_sp->GetPropertyAtIndexAsBoolean( 177 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 178 } 179 180 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 181 const uint32_t idx = ePropertyMemCacheLineSize; 182 return m_collection_sp->GetPropertyAtIndexAsUInt64( 183 nullptr, idx, g_process_properties[idx].default_uint_value); 184 } 185 186 Args ProcessProperties::GetExtraStartupCommands() const { 187 Args args; 188 const uint32_t idx = ePropertyExtraStartCommand; 189 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 190 return args; 191 } 192 193 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 194 const uint32_t idx = ePropertyExtraStartCommand; 195 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 196 } 197 198 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 199 const uint32_t idx = ePropertyPythonOSPluginPath; 200 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 201 } 202 203 uint32_t ProcessProperties::GetVirtualAddressableBits() const { 204 const uint32_t idx = ePropertyVirtualAddressableBits; 205 return m_collection_sp->GetPropertyAtIndexAsUInt64( 206 nullptr, idx, g_process_properties[idx].default_uint_value); 207 } 208 209 void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) { 210 const uint32_t idx = ePropertyVirtualAddressableBits; 211 m_collection_sp->SetPropertyAtIndexAsUInt64(nullptr, idx, bits); 212 } 213 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 214 const uint32_t idx = ePropertyPythonOSPluginPath; 215 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 216 } 217 218 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 219 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 220 return m_collection_sp->GetPropertyAtIndexAsBoolean( 221 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 222 } 223 224 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 225 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 226 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 227 } 228 229 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 230 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 231 return m_collection_sp->GetPropertyAtIndexAsBoolean( 232 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 233 } 234 235 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 236 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 237 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 238 } 239 240 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 241 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 242 return m_collection_sp->GetPropertyAtIndexAsBoolean( 243 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 244 } 245 246 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 247 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 248 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 249 } 250 251 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const { 252 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 253 return m_collection_sp->GetPropertyAtIndexAsBoolean( 254 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 255 } 256 257 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) { 258 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 259 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, disable); 260 m_process->Flush(); 261 } 262 263 bool ProcessProperties::GetDetachKeepsStopped() const { 264 const uint32_t idx = ePropertyDetachKeepsStopped; 265 return m_collection_sp->GetPropertyAtIndexAsBoolean( 266 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 267 } 268 269 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 270 const uint32_t idx = ePropertyDetachKeepsStopped; 271 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 272 } 273 274 bool ProcessProperties::GetWarningsOptimization() const { 275 const uint32_t idx = ePropertyWarningOptimization; 276 return m_collection_sp->GetPropertyAtIndexAsBoolean( 277 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 278 } 279 280 bool ProcessProperties::GetWarningsUnsupportedLanguage() const { 281 const uint32_t idx = ePropertyWarningUnsupportedLanguage; 282 return m_collection_sp->GetPropertyAtIndexAsBoolean( 283 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 284 } 285 286 bool ProcessProperties::GetStopOnExec() const { 287 const uint32_t idx = ePropertyStopOnExec; 288 return m_collection_sp->GetPropertyAtIndexAsBoolean( 289 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 290 } 291 292 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { 293 const uint32_t idx = ePropertyUtilityExpressionTimeout; 294 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 295 nullptr, idx, g_process_properties[idx].default_uint_value); 296 return std::chrono::seconds(value); 297 } 298 299 std::chrono::seconds ProcessProperties::GetInterruptTimeout() const { 300 const uint32_t idx = ePropertyInterruptTimeout; 301 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 302 nullptr, idx, g_process_properties[idx].default_uint_value); 303 return std::chrono::seconds(value); 304 } 305 306 bool ProcessProperties::GetSteppingRunsAllThreads() const { 307 const uint32_t idx = ePropertySteppingRunsAllThreads; 308 return m_collection_sp->GetPropertyAtIndexAsBoolean( 309 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 310 } 311 312 bool ProcessProperties::GetOSPluginReportsAllThreads() const { 313 const bool fail_value = true; 314 const Property *exp_property = 315 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 316 OptionValueProperties *exp_values = 317 exp_property->GetValue()->GetAsProperties(); 318 if (!exp_values) 319 return fail_value; 320 321 return exp_values->GetPropertyAtIndexAsBoolean( 322 nullptr, ePropertyOSPluginReportsAllThreads, fail_value); 323 } 324 325 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) { 326 const Property *exp_property = 327 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 328 OptionValueProperties *exp_values = 329 exp_property->GetValue()->GetAsProperties(); 330 if (exp_values) 331 exp_values->SetPropertyAtIndexAsBoolean( 332 nullptr, ePropertyOSPluginReportsAllThreads, does_report); 333 } 334 335 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 336 llvm::StringRef plugin_name, 337 ListenerSP listener_sp, 338 const FileSpec *crash_file_path, 339 bool can_connect) { 340 static uint32_t g_process_unique_id = 0; 341 342 ProcessSP process_sp; 343 ProcessCreateInstance create_callback = nullptr; 344 if (!plugin_name.empty()) { 345 ConstString const_plugin_name(plugin_name); 346 create_callback = 347 PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name); 348 if (create_callback) { 349 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 350 can_connect); 351 if (process_sp) { 352 if (process_sp->CanDebug(target_sp, true)) { 353 process_sp->m_process_unique_id = ++g_process_unique_id; 354 } else 355 process_sp.reset(); 356 } 357 } 358 } else { 359 for (uint32_t idx = 0; 360 (create_callback = 361 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 362 ++idx) { 363 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 364 can_connect); 365 if (process_sp) { 366 if (process_sp->CanDebug(target_sp, false)) { 367 process_sp->m_process_unique_id = ++g_process_unique_id; 368 break; 369 } else 370 process_sp.reset(); 371 } 372 } 373 } 374 return process_sp; 375 } 376 377 ConstString &Process::GetStaticBroadcasterClass() { 378 static ConstString class_name("lldb.process"); 379 return class_name; 380 } 381 382 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 383 : Process(target_sp, listener_sp, 384 UnixSignals::Create(HostInfo::GetArchitecture())) { 385 // This constructor just delegates to the full Process constructor, 386 // defaulting to using the Host's UnixSignals. 387 } 388 389 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 390 const UnixSignalsSP &unix_signals_sp) 391 : ProcessProperties(this), 392 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 393 Process::GetStaticBroadcasterClass().AsCString()), 394 m_target_wp(target_sp), m_public_state(eStateUnloaded), 395 m_private_state(eStateUnloaded), 396 m_private_state_broadcaster(nullptr, 397 "lldb.process.internal_state_broadcaster"), 398 m_private_state_control_broadcaster( 399 nullptr, "lldb.process.internal_state_control_broadcaster"), 400 m_private_state_listener_sp( 401 Listener::MakeListener("lldb.process.internal_state_listener")), 402 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 403 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 404 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 405 m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this), 406 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 407 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 408 m_breakpoint_site_list(), m_dynamic_checkers_up(), 409 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 410 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 411 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 412 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 413 m_memory_cache(*this), m_allocated_memory_cache(*this), 414 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), 415 m_private_run_lock(), m_finalizing(false), 416 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 417 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 418 m_can_interpret_function_calls(false), m_warnings_issued(), 419 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 420 CheckInWithManager(); 421 422 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 423 LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this)); 424 425 if (!m_unix_signals_sp) 426 m_unix_signals_sp = std::make_shared<UnixSignals>(); 427 428 SetEventName(eBroadcastBitStateChanged, "state-changed"); 429 SetEventName(eBroadcastBitInterrupt, "interrupt"); 430 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 431 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 432 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 433 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 434 435 m_private_state_control_broadcaster.SetEventName( 436 eBroadcastInternalStateControlStop, "control-stop"); 437 m_private_state_control_broadcaster.SetEventName( 438 eBroadcastInternalStateControlPause, "control-pause"); 439 m_private_state_control_broadcaster.SetEventName( 440 eBroadcastInternalStateControlResume, "control-resume"); 441 442 m_listener_sp->StartListeningForEvents( 443 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 444 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 445 eBroadcastBitProfileData | eBroadcastBitStructuredData); 446 447 m_private_state_listener_sp->StartListeningForEvents( 448 &m_private_state_broadcaster, 449 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 450 451 m_private_state_listener_sp->StartListeningForEvents( 452 &m_private_state_control_broadcaster, 453 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 454 eBroadcastInternalStateControlResume); 455 // We need something valid here, even if just the default UnixSignalsSP. 456 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 457 458 // Allow the platform to override the default cache line size 459 OptionValueSP value_sp = 460 m_collection_sp 461 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 462 ->GetValue(); 463 uint32_t platform_cache_line_size = 464 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 465 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 466 value_sp->SetUInt64Value(platform_cache_line_size); 467 468 RegisterAssertFrameRecognizer(this); 469 } 470 471 Process::~Process() { 472 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 473 LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this)); 474 StopPrivateStateThread(); 475 476 // ThreadList::Clear() will try to acquire this process's mutex, so 477 // explicitly clear the thread list here to ensure that the mutex is not 478 // destroyed before the thread list. 479 m_thread_list.Clear(); 480 } 481 482 const ProcessPropertiesSP &Process::GetGlobalProperties() { 483 // NOTE: intentional leak so we don't crash if global destructor chain gets 484 // called as other threads still use the result of this function 485 static ProcessPropertiesSP *g_settings_sp_ptr = 486 new ProcessPropertiesSP(new ProcessProperties(nullptr)); 487 return *g_settings_sp_ptr; 488 } 489 490 void Process::Finalize() { 491 if (m_finalizing.exchange(true)) 492 return; 493 494 // Destroy this process if needed 495 switch (GetPrivateState()) { 496 case eStateConnected: 497 case eStateAttaching: 498 case eStateLaunching: 499 case eStateStopped: 500 case eStateRunning: 501 case eStateStepping: 502 case eStateCrashed: 503 case eStateSuspended: 504 DestroyImpl(false); 505 break; 506 507 case eStateInvalid: 508 case eStateUnloaded: 509 case eStateDetached: 510 case eStateExited: 511 break; 512 } 513 514 // Clear our broadcaster before we proceed with destroying 515 Broadcaster::Clear(); 516 517 // Do any cleanup needed prior to being destructed... Subclasses that 518 // override this method should call this superclass method as well. 519 520 // We need to destroy the loader before the derived Process class gets 521 // destroyed since it is very likely that undoing the loader will require 522 // access to the real process. 523 m_dynamic_checkers_up.reset(); 524 m_abi_sp.reset(); 525 m_os_up.reset(); 526 m_system_runtime_up.reset(); 527 m_dyld_up.reset(); 528 m_jit_loaders_up.reset(); 529 m_thread_plans.Clear(); 530 m_thread_list_real.Destroy(); 531 m_thread_list.Destroy(); 532 m_extended_thread_list.Destroy(); 533 m_queue_list.Clear(); 534 m_queue_list_stop_id = 0; 535 std::vector<Notifications> empty_notifications; 536 m_notifications.swap(empty_notifications); 537 m_image_tokens.clear(); 538 m_memory_cache.Clear(); 539 m_allocated_memory_cache.Clear(); 540 { 541 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 542 m_language_runtimes.clear(); 543 } 544 m_instrumentation_runtimes.clear(); 545 m_next_event_action_up.reset(); 546 // Clear the last natural stop ID since it has a strong reference to this 547 // process 548 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 549 //#ifdef LLDB_CONFIGURATION_DEBUG 550 // StreamFile s(stdout, false); 551 // EventSP event_sp; 552 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 553 // { 554 // event_sp->Dump (&s); 555 // s.EOL(); 556 // } 557 //#endif 558 // We have to be very careful here as the m_private_state_listener might 559 // contain events that have ProcessSP values in them which can keep this 560 // process around forever. These events need to be cleared out. 561 m_private_state_listener_sp->Clear(); 562 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 563 m_public_run_lock.SetStopped(); 564 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 565 m_private_run_lock.SetStopped(); 566 m_structured_data_plugin_map.clear(); 567 } 568 569 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 570 m_notifications.push_back(callbacks); 571 if (callbacks.initialize != nullptr) 572 callbacks.initialize(callbacks.baton, this); 573 } 574 575 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 576 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 577 for (pos = m_notifications.begin(); pos != end; ++pos) { 578 if (pos->baton == callbacks.baton && 579 pos->initialize == callbacks.initialize && 580 pos->process_state_changed == callbacks.process_state_changed) { 581 m_notifications.erase(pos); 582 return true; 583 } 584 } 585 return false; 586 } 587 588 void Process::SynchronouslyNotifyStateChanged(StateType state) { 589 std::vector<Notifications>::iterator notification_pos, 590 notification_end = m_notifications.end(); 591 for (notification_pos = m_notifications.begin(); 592 notification_pos != notification_end; ++notification_pos) { 593 if (notification_pos->process_state_changed) 594 notification_pos->process_state_changed(notification_pos->baton, this, 595 state); 596 } 597 } 598 599 // FIXME: We need to do some work on events before the general Listener sees 600 // them. 601 // For instance if we are continuing from a breakpoint, we need to ensure that 602 // we do the little "insert real insn, step & stop" trick. But we can't do 603 // that when the event is delivered by the broadcaster - since that is done on 604 // the thread that is waiting for new events, so if we needed more than one 605 // event for our handling, we would stall. So instead we do it when we fetch 606 // the event off of the queue. 607 // 608 609 StateType Process::GetNextEvent(EventSP &event_sp) { 610 StateType state = eStateInvalid; 611 612 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 613 std::chrono::seconds(0)) && 614 event_sp) 615 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 616 617 return state; 618 } 619 620 void Process::SyncIOHandler(uint32_t iohandler_id, 621 const Timeout<std::micro> &timeout) { 622 // don't sync (potentially context switch) in case where there is no process 623 // IO 624 if (!m_process_input_reader) 625 return; 626 627 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 628 629 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 630 if (Result) { 631 LLDB_LOG( 632 log, 633 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 634 iohandler_id, *Result); 635 } else { 636 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 637 iohandler_id); 638 } 639 } 640 641 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 642 EventSP *event_sp_ptr, bool wait_always, 643 ListenerSP hijack_listener_sp, 644 Stream *stream, bool use_run_lock) { 645 // We can't just wait for a "stopped" event, because the stopped event may 646 // have restarted the target. We have to actually check each event, and in 647 // the case of a stopped event check the restarted flag on the event. 648 if (event_sp_ptr) 649 event_sp_ptr->reset(); 650 StateType state = GetState(); 651 // If we are exited or detached, we won't ever get back to any other valid 652 // state... 653 if (state == eStateDetached || state == eStateExited) 654 return state; 655 656 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 657 LLDB_LOG(log, "timeout = {0}", timeout); 658 659 if (!wait_always && StateIsStoppedState(state, true) && 660 StateIsStoppedState(GetPrivateState(), true)) { 661 LLDB_LOGF(log, 662 "Process::%s returning without waiting for events; process " 663 "private and public states are already 'stopped'.", 664 __FUNCTION__); 665 // We need to toggle the run lock as this won't get done in 666 // SetPublicState() if the process is hijacked. 667 if (hijack_listener_sp && use_run_lock) 668 m_public_run_lock.SetStopped(); 669 return state; 670 } 671 672 while (state != eStateInvalid) { 673 EventSP event_sp; 674 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 675 if (event_sp_ptr && event_sp) 676 *event_sp_ptr = event_sp; 677 678 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 679 Process::HandleProcessStateChangedEvent(event_sp, stream, 680 pop_process_io_handler); 681 682 switch (state) { 683 case eStateCrashed: 684 case eStateDetached: 685 case eStateExited: 686 case eStateUnloaded: 687 // We need to toggle the run lock as this won't get done in 688 // SetPublicState() if the process is hijacked. 689 if (hijack_listener_sp && use_run_lock) 690 m_public_run_lock.SetStopped(); 691 return state; 692 case eStateStopped: 693 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 694 continue; 695 else { 696 // We need to toggle the run lock as this won't get done in 697 // SetPublicState() if the process is hijacked. 698 if (hijack_listener_sp && use_run_lock) 699 m_public_run_lock.SetStopped(); 700 return state; 701 } 702 default: 703 continue; 704 } 705 } 706 return state; 707 } 708 709 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 710 Stream *stream, 711 bool &pop_process_io_handler) { 712 const bool handle_pop = pop_process_io_handler; 713 714 pop_process_io_handler = false; 715 ProcessSP process_sp = 716 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 717 718 if (!process_sp) 719 return false; 720 721 StateType event_state = 722 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 723 if (event_state == eStateInvalid) 724 return false; 725 726 switch (event_state) { 727 case eStateInvalid: 728 case eStateUnloaded: 729 case eStateAttaching: 730 case eStateLaunching: 731 case eStateStepping: 732 case eStateDetached: 733 if (stream) 734 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 735 StateAsCString(event_state)); 736 if (event_state == eStateDetached) 737 pop_process_io_handler = true; 738 break; 739 740 case eStateConnected: 741 case eStateRunning: 742 // Don't be chatty when we run... 743 break; 744 745 case eStateExited: 746 if (stream) 747 process_sp->GetStatus(*stream); 748 pop_process_io_handler = true; 749 break; 750 751 case eStateStopped: 752 case eStateCrashed: 753 case eStateSuspended: 754 // Make sure the program hasn't been auto-restarted: 755 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 756 if (stream) { 757 size_t num_reasons = 758 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 759 if (num_reasons > 0) { 760 // FIXME: Do we want to report this, or would that just be annoyingly 761 // chatty? 762 if (num_reasons == 1) { 763 const char *reason = 764 Process::ProcessEventData::GetRestartedReasonAtIndex( 765 event_sp.get(), 0); 766 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 767 process_sp->GetID(), 768 reason ? reason : "<UNKNOWN REASON>"); 769 } else { 770 stream->Printf("Process %" PRIu64 771 " stopped and restarted, reasons:\n", 772 process_sp->GetID()); 773 774 for (size_t i = 0; i < num_reasons; i++) { 775 const char *reason = 776 Process::ProcessEventData::GetRestartedReasonAtIndex( 777 event_sp.get(), i); 778 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 779 } 780 } 781 } 782 } 783 } else { 784 StopInfoSP curr_thread_stop_info_sp; 785 // Lock the thread list so it doesn't change on us, this is the scope for 786 // the locker: 787 { 788 ThreadList &thread_list = process_sp->GetThreadList(); 789 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 790 791 ThreadSP curr_thread(thread_list.GetSelectedThread()); 792 ThreadSP thread; 793 StopReason curr_thread_stop_reason = eStopReasonInvalid; 794 if (curr_thread) { 795 curr_thread_stop_reason = curr_thread->GetStopReason(); 796 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 797 } 798 if (!curr_thread || !curr_thread->IsValid() || 799 curr_thread_stop_reason == eStopReasonInvalid || 800 curr_thread_stop_reason == eStopReasonNone) { 801 // Prefer a thread that has just completed its plan over another 802 // thread as current thread. 803 ThreadSP plan_thread; 804 ThreadSP other_thread; 805 806 const size_t num_threads = thread_list.GetSize(); 807 size_t i; 808 for (i = 0; i < num_threads; ++i) { 809 thread = thread_list.GetThreadAtIndex(i); 810 StopReason thread_stop_reason = thread->GetStopReason(); 811 switch (thread_stop_reason) { 812 case eStopReasonInvalid: 813 case eStopReasonNone: 814 break; 815 816 case eStopReasonSignal: { 817 // Don't select a signal thread if we weren't going to stop at 818 // that signal. We have to have had another reason for stopping 819 // here, and the user doesn't want to see this thread. 820 uint64_t signo = thread->GetStopInfo()->GetValue(); 821 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 822 if (!other_thread) 823 other_thread = thread; 824 } 825 break; 826 } 827 case eStopReasonTrace: 828 case eStopReasonBreakpoint: 829 case eStopReasonWatchpoint: 830 case eStopReasonException: 831 case eStopReasonExec: 832 case eStopReasonFork: 833 case eStopReasonVFork: 834 case eStopReasonVForkDone: 835 case eStopReasonThreadExiting: 836 case eStopReasonInstrumentation: 837 case eStopReasonProcessorTrace: 838 if (!other_thread) 839 other_thread = thread; 840 break; 841 case eStopReasonPlanComplete: 842 if (!plan_thread) 843 plan_thread = thread; 844 break; 845 } 846 } 847 if (plan_thread) 848 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 849 else if (other_thread) 850 thread_list.SetSelectedThreadByID(other_thread->GetID()); 851 else { 852 if (curr_thread && curr_thread->IsValid()) 853 thread = curr_thread; 854 else 855 thread = thread_list.GetThreadAtIndex(0); 856 857 if (thread) 858 thread_list.SetSelectedThreadByID(thread->GetID()); 859 } 860 } 861 } 862 // Drop the ThreadList mutex by here, since GetThreadStatus below might 863 // have to run code, e.g. for Data formatters, and if we hold the 864 // ThreadList mutex, then the process is going to have a hard time 865 // restarting the process. 866 if (stream) { 867 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 868 if (debugger.GetTargetList().GetSelectedTarget().get() == 869 &process_sp->GetTarget()) { 870 ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); 871 872 if (!thread_sp || !thread_sp->IsValid()) 873 return false; 874 875 const bool only_threads_with_stop_reason = true; 876 const uint32_t start_frame = thread_sp->GetSelectedFrameIndex(); 877 const uint32_t num_frames = 1; 878 const uint32_t num_frames_with_source = 1; 879 const bool stop_format = true; 880 881 process_sp->GetStatus(*stream); 882 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 883 start_frame, num_frames, 884 num_frames_with_source, 885 stop_format); 886 if (curr_thread_stop_info_sp) { 887 lldb::addr_t crashing_address; 888 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 889 curr_thread_stop_info_sp, &crashing_address); 890 if (valobj_sp) { 891 const ValueObject::GetExpressionPathFormat format = 892 ValueObject::GetExpressionPathFormat:: 893 eGetExpressionPathFormatHonorPointers; 894 stream->PutCString("Likely cause: "); 895 valobj_sp->GetExpressionPath(*stream, format); 896 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 897 } 898 } 899 } else { 900 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 901 process_sp->GetTarget().shared_from_this()); 902 if (target_idx != UINT32_MAX) 903 stream->Printf("Target %d: (", target_idx); 904 else 905 stream->Printf("Target <unknown index>: ("); 906 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 907 stream->Printf(") stopped.\n"); 908 } 909 } 910 911 // Pop the process IO handler 912 pop_process_io_handler = true; 913 } 914 break; 915 } 916 917 if (handle_pop && pop_process_io_handler) 918 process_sp->PopProcessIOHandler(); 919 920 return true; 921 } 922 923 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 924 if (listener_sp) { 925 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 926 eBroadcastBitInterrupt); 927 } else 928 return false; 929 } 930 931 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 932 933 StateType Process::GetStateChangedEvents(EventSP &event_sp, 934 const Timeout<std::micro> &timeout, 935 ListenerSP hijack_listener_sp) { 936 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 937 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 938 939 ListenerSP listener_sp = hijack_listener_sp; 940 if (!listener_sp) 941 listener_sp = m_listener_sp; 942 943 StateType state = eStateInvalid; 944 if (listener_sp->GetEventForBroadcasterWithType( 945 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 946 timeout)) { 947 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 948 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 949 else 950 LLDB_LOG(log, "got no event or was interrupted."); 951 } 952 953 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 954 return state; 955 } 956 957 Event *Process::PeekAtStateChangedEvents() { 958 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 959 960 LLDB_LOGF(log, "Process::%s...", __FUNCTION__); 961 962 Event *event_ptr; 963 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 964 this, eBroadcastBitStateChanged); 965 if (log) { 966 if (event_ptr) { 967 LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, 968 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 969 } else { 970 LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); 971 } 972 } 973 return event_ptr; 974 } 975 976 StateType 977 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 978 const Timeout<std::micro> &timeout) { 979 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 980 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 981 982 StateType state = eStateInvalid; 983 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 984 &m_private_state_broadcaster, 985 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 986 timeout)) 987 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 988 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 989 990 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 991 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 992 return state; 993 } 994 995 bool Process::GetEventsPrivate(EventSP &event_sp, 996 const Timeout<std::micro> &timeout, 997 bool control_only) { 998 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 999 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1000 1001 if (control_only) 1002 return m_private_state_listener_sp->GetEventForBroadcaster( 1003 &m_private_state_control_broadcaster, event_sp, timeout); 1004 else 1005 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1006 } 1007 1008 bool Process::IsRunning() const { 1009 return StateIsRunningState(m_public_state.GetValue()); 1010 } 1011 1012 int Process::GetExitStatus() { 1013 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1014 1015 if (m_public_state.GetValue() == eStateExited) 1016 return m_exit_status; 1017 return -1; 1018 } 1019 1020 const char *Process::GetExitDescription() { 1021 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1022 1023 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1024 return m_exit_string.c_str(); 1025 return nullptr; 1026 } 1027 1028 bool Process::SetExitStatus(int status, const char *cstr) { 1029 // Use a mutex to protect setting the exit status. 1030 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1031 1032 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1033 LIBLLDB_LOG_PROCESS)); 1034 LLDB_LOGF( 1035 log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1036 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : ""); 1037 1038 // We were already in the exited state 1039 if (m_private_state.GetValue() == eStateExited) { 1040 LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because " 1041 "state was already set to eStateExited"); 1042 return false; 1043 } 1044 1045 m_exit_status = status; 1046 if (cstr) 1047 m_exit_string = cstr; 1048 else 1049 m_exit_string.clear(); 1050 1051 // Clear the last natural stop ID since it has a strong reference to this 1052 // process 1053 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1054 1055 SetPrivateState(eStateExited); 1056 1057 // Allow subclasses to do some cleanup 1058 DidExit(); 1059 1060 return true; 1061 } 1062 1063 bool Process::IsAlive() { 1064 switch (m_private_state.GetValue()) { 1065 case eStateConnected: 1066 case eStateAttaching: 1067 case eStateLaunching: 1068 case eStateStopped: 1069 case eStateRunning: 1070 case eStateStepping: 1071 case eStateCrashed: 1072 case eStateSuspended: 1073 return true; 1074 default: 1075 return false; 1076 } 1077 } 1078 1079 // This static callback can be used to watch for local child processes on the 1080 // current host. The child process exits, the process will be found in the 1081 // global target list (we want to be completely sure that the 1082 // lldb_private::Process doesn't go away before we can deliver the signal. 1083 bool Process::SetProcessExitStatus( 1084 lldb::pid_t pid, bool exited, 1085 int signo, // Zero for no signal 1086 int exit_status // Exit value of process if signal is zero 1087 ) { 1088 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 1089 LLDB_LOGF(log, 1090 "Process::SetProcessExitStatus (pid=%" PRIu64 1091 ", exited=%i, signal=%i, exit_status=%i)\n", 1092 pid, exited, signo, exit_status); 1093 1094 if (exited) { 1095 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1096 if (target_sp) { 1097 ProcessSP process_sp(target_sp->GetProcessSP()); 1098 if (process_sp) { 1099 const char *signal_cstr = nullptr; 1100 if (signo) 1101 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1102 1103 process_sp->SetExitStatus(exit_status, signal_cstr); 1104 } 1105 } 1106 return true; 1107 } 1108 return false; 1109 } 1110 1111 bool Process::UpdateThreadList(ThreadList &old_thread_list, 1112 ThreadList &new_thread_list) { 1113 m_thread_plans.ClearThreadCache(); 1114 return DoUpdateThreadList(old_thread_list, new_thread_list); 1115 } 1116 1117 void Process::UpdateThreadListIfNeeded() { 1118 const uint32_t stop_id = GetStopID(); 1119 if (m_thread_list.GetSize(false) == 0 || 1120 stop_id != m_thread_list.GetStopID()) { 1121 bool clear_unused_threads = true; 1122 const StateType state = GetPrivateState(); 1123 if (StateIsStoppedState(state, true)) { 1124 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1125 m_thread_list.SetStopID(stop_id); 1126 1127 // m_thread_list does have its own mutex, but we need to hold onto the 1128 // mutex between the call to UpdateThreadList(...) and the 1129 // os->UpdateThreadList(...) so it doesn't change on us 1130 ThreadList &old_thread_list = m_thread_list; 1131 ThreadList real_thread_list(this); 1132 ThreadList new_thread_list(this); 1133 // Always update the thread list with the protocol specific thread list, 1134 // but only update if "true" is returned 1135 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1136 // Don't call into the OperatingSystem to update the thread list if we 1137 // are shutting down, since that may call back into the SBAPI's, 1138 // requiring the API lock which is already held by whoever is shutting 1139 // us down, causing a deadlock. 1140 OperatingSystem *os = GetOperatingSystem(); 1141 if (os && !m_destroy_in_process) { 1142 // Clear any old backing threads where memory threads might have been 1143 // backed by actual threads from the lldb_private::Process subclass 1144 size_t num_old_threads = old_thread_list.GetSize(false); 1145 for (size_t i = 0; i < num_old_threads; ++i) 1146 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1147 // See if the OS plugin reports all threads. If it does, then 1148 // it is safe to clear unseen thread's plans here. Otherwise we 1149 // should preserve them in case they show up again: 1150 clear_unused_threads = GetOSPluginReportsAllThreads(); 1151 1152 // Turn off dynamic types to ensure we don't run any expressions. 1153 // Objective-C can run an expression to determine if a SBValue is a 1154 // dynamic type or not and we need to avoid this. OperatingSystem 1155 // plug-ins can't run expressions that require running code... 1156 1157 Target &target = GetTarget(); 1158 const lldb::DynamicValueType saved_prefer_dynamic = 1159 target.GetPreferDynamicValue(); 1160 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1161 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1162 1163 // Now let the OperatingSystem plug-in update the thread list 1164 1165 os->UpdateThreadList( 1166 old_thread_list, // Old list full of threads created by OS plug-in 1167 real_thread_list, // The actual thread list full of threads 1168 // created by each lldb_private::Process 1169 // subclass 1170 new_thread_list); // The new thread list that we will show to the 1171 // user that gets filled in 1172 1173 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1174 target.SetPreferDynamicValue(saved_prefer_dynamic); 1175 } else { 1176 // No OS plug-in, the new thread list is the same as the real thread 1177 // list. 1178 new_thread_list = real_thread_list; 1179 } 1180 1181 m_thread_list_real.Update(real_thread_list); 1182 m_thread_list.Update(new_thread_list); 1183 m_thread_list.SetStopID(stop_id); 1184 1185 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1186 // Clear any extended threads that we may have accumulated previously 1187 m_extended_thread_list.Clear(); 1188 m_extended_thread_stop_id = GetLastNaturalStopID(); 1189 1190 m_queue_list.Clear(); 1191 m_queue_list_stop_id = GetLastNaturalStopID(); 1192 } 1193 } 1194 // Now update the plan stack map. 1195 // If we do have an OS plugin, any absent real threads in the 1196 // m_thread_list have already been removed from the ThreadPlanStackMap. 1197 // So any remaining threads are OS Plugin threads, and those we want to 1198 // preserve in case they show up again. 1199 m_thread_plans.Update(m_thread_list, clear_unused_threads); 1200 } 1201 } 1202 } 1203 1204 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) { 1205 return m_thread_plans.Find(tid); 1206 } 1207 1208 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) { 1209 return m_thread_plans.PrunePlansForTID(tid); 1210 } 1211 1212 void Process::PruneThreadPlans() { 1213 m_thread_plans.Update(GetThreadList(), true, false); 1214 } 1215 1216 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid, 1217 lldb::DescriptionLevel desc_level, 1218 bool internal, bool condense_trivial, 1219 bool skip_unreported_plans) { 1220 return m_thread_plans.DumpPlansForTID( 1221 strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans); 1222 } 1223 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level, 1224 bool internal, bool condense_trivial, 1225 bool skip_unreported_plans) { 1226 m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial, 1227 skip_unreported_plans); 1228 } 1229 1230 void Process::UpdateQueueListIfNeeded() { 1231 if (m_system_runtime_up) { 1232 if (m_queue_list.GetSize() == 0 || 1233 m_queue_list_stop_id != GetLastNaturalStopID()) { 1234 const StateType state = GetPrivateState(); 1235 if (StateIsStoppedState(state, true)) { 1236 m_system_runtime_up->PopulateQueueList(m_queue_list); 1237 m_queue_list_stop_id = GetLastNaturalStopID(); 1238 } 1239 } 1240 } 1241 } 1242 1243 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1244 OperatingSystem *os = GetOperatingSystem(); 1245 if (os) 1246 return os->CreateThread(tid, context); 1247 return ThreadSP(); 1248 } 1249 1250 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1251 return AssignIndexIDToThread(thread_id); 1252 } 1253 1254 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1255 return (m_thread_id_to_index_id_map.find(thread_id) != 1256 m_thread_id_to_index_id_map.end()); 1257 } 1258 1259 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1260 uint32_t result = 0; 1261 std::map<uint64_t, uint32_t>::iterator iterator = 1262 m_thread_id_to_index_id_map.find(thread_id); 1263 if (iterator == m_thread_id_to_index_id_map.end()) { 1264 result = ++m_thread_index_id; 1265 m_thread_id_to_index_id_map[thread_id] = result; 1266 } else { 1267 result = iterator->second; 1268 } 1269 1270 return result; 1271 } 1272 1273 StateType Process::GetState() { 1274 return m_public_state.GetValue(); 1275 } 1276 1277 void Process::SetPublicState(StateType new_state, bool restarted) { 1278 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1279 LIBLLDB_LOG_PROCESS)); 1280 LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)", 1281 StateAsCString(new_state), restarted); 1282 const StateType old_state = m_public_state.GetValue(); 1283 m_public_state.SetValue(new_state); 1284 1285 // On the transition from Run to Stopped, we unlock the writer end of the run 1286 // lock. The lock gets locked in Resume, which is the public API to tell the 1287 // program to run. 1288 if (!StateChangedIsExternallyHijacked()) { 1289 if (new_state == eStateDetached) { 1290 LLDB_LOGF(log, 1291 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1292 StateAsCString(new_state)); 1293 m_public_run_lock.SetStopped(); 1294 } else { 1295 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1296 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1297 if ((old_state_is_stopped != new_state_is_stopped)) { 1298 if (new_state_is_stopped && !restarted) { 1299 LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock", 1300 StateAsCString(new_state)); 1301 m_public_run_lock.SetStopped(); 1302 } 1303 } 1304 } 1305 } 1306 } 1307 1308 Status Process::Resume() { 1309 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1310 LIBLLDB_LOG_PROCESS)); 1311 LLDB_LOGF(log, "Process::Resume -- locking run lock"); 1312 if (!m_public_run_lock.TrySetRunning()) { 1313 Status error("Resume request failed - process still running."); 1314 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1315 return error; 1316 } 1317 Status error = PrivateResume(); 1318 if (!error.Success()) { 1319 // Undo running state change 1320 m_public_run_lock.SetStopped(); 1321 } 1322 return error; 1323 } 1324 1325 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack"; 1326 1327 Status Process::ResumeSynchronous(Stream *stream) { 1328 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1329 LIBLLDB_LOG_PROCESS)); 1330 LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); 1331 if (!m_public_run_lock.TrySetRunning()) { 1332 Status error("Resume request failed - process still running."); 1333 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1334 return error; 1335 } 1336 1337 ListenerSP listener_sp( 1338 Listener::MakeListener(g_resume_sync_name)); 1339 HijackProcessEvents(listener_sp); 1340 1341 Status error = PrivateResume(); 1342 if (error.Success()) { 1343 StateType state = WaitForProcessToStop(GetInterruptTimeout(), nullptr, true, 1344 listener_sp, stream); 1345 const bool must_be_alive = 1346 false; // eStateExited is ok, so this must be false 1347 if (!StateIsStoppedState(state, must_be_alive)) 1348 error.SetErrorStringWithFormat( 1349 "process not in stopped state after synchronous resume: %s", 1350 StateAsCString(state)); 1351 } else { 1352 // Undo running state change 1353 m_public_run_lock.SetStopped(); 1354 } 1355 1356 // Undo the hijacking of process events... 1357 RestoreProcessEvents(); 1358 1359 return error; 1360 } 1361 1362 bool Process::StateChangedIsExternallyHijacked() { 1363 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1364 const char *hijacking_name = GetHijackingListenerName(); 1365 if (hijacking_name && 1366 strcmp(hijacking_name, g_resume_sync_name)) 1367 return true; 1368 } 1369 return false; 1370 } 1371 1372 bool Process::StateChangedIsHijackedForSynchronousResume() { 1373 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1374 const char *hijacking_name = GetHijackingListenerName(); 1375 if (hijacking_name && 1376 strcmp(hijacking_name, g_resume_sync_name) == 0) 1377 return true; 1378 } 1379 return false; 1380 } 1381 1382 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1383 1384 void Process::SetPrivateState(StateType new_state) { 1385 if (m_finalizing) 1386 return; 1387 1388 Log *log(lldb_private::GetLogIfAnyCategoriesSet( 1389 LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_UNWIND)); 1390 bool state_changed = false; 1391 1392 LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state)); 1393 1394 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1395 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1396 1397 const StateType old_state = m_private_state.GetValueNoLock(); 1398 state_changed = old_state != new_state; 1399 1400 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1401 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1402 if (old_state_is_stopped != new_state_is_stopped) { 1403 if (new_state_is_stopped) 1404 m_private_run_lock.SetStopped(); 1405 else 1406 m_private_run_lock.SetRunning(); 1407 } 1408 1409 if (state_changed) { 1410 m_private_state.SetValueNoLock(new_state); 1411 EventSP event_sp( 1412 new Event(eBroadcastBitStateChanged, 1413 new ProcessEventData(shared_from_this(), new_state))); 1414 if (StateIsStoppedState(new_state, false)) { 1415 // Note, this currently assumes that all threads in the list stop when 1416 // the process stops. In the future we will want to support a debugging 1417 // model where some threads continue to run while others are stopped. 1418 // When that happens we will either need a way for the thread list to 1419 // identify which threads are stopping or create a special thread list 1420 // containing only threads which actually stopped. 1421 // 1422 // The process plugin is responsible for managing the actual behavior of 1423 // the threads and should have stopped any threads that are going to stop 1424 // before we get here. 1425 m_thread_list.DidStop(); 1426 1427 m_mod_id.BumpStopID(); 1428 if (!m_mod_id.IsLastResumeForUserExpression()) 1429 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1430 m_memory_cache.Clear(); 1431 LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u", 1432 StateAsCString(new_state), m_mod_id.GetStopID()); 1433 } 1434 1435 m_private_state_broadcaster.BroadcastEvent(event_sp); 1436 } else { 1437 LLDB_LOGF(log, 1438 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1439 StateAsCString(new_state)); 1440 } 1441 } 1442 1443 void Process::SetRunningUserExpression(bool on) { 1444 m_mod_id.SetRunningUserExpression(on); 1445 } 1446 1447 void Process::SetRunningUtilityFunction(bool on) { 1448 m_mod_id.SetRunningUtilityFunction(on); 1449 } 1450 1451 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1452 1453 const lldb::ABISP &Process::GetABI() { 1454 if (!m_abi_sp) 1455 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1456 return m_abi_sp; 1457 } 1458 1459 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { 1460 std::vector<LanguageRuntime *> language_runtimes; 1461 1462 if (m_finalizing) 1463 return language_runtimes; 1464 1465 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1466 // Before we pass off a copy of the language runtimes, we must make sure that 1467 // our collection is properly populated. It's possible that some of the 1468 // language runtimes were not loaded yet, either because nobody requested it 1469 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so 1470 // hadn't been loaded). 1471 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 1472 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 1473 language_runtimes.emplace_back(runtime); 1474 } 1475 1476 return language_runtimes; 1477 } 1478 1479 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { 1480 if (m_finalizing) 1481 return nullptr; 1482 1483 LanguageRuntime *runtime = nullptr; 1484 1485 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1486 LanguageRuntimeCollection::iterator pos; 1487 pos = m_language_runtimes.find(language); 1488 if (pos == m_language_runtimes.end() || !pos->second) { 1489 lldb::LanguageRuntimeSP runtime_sp( 1490 LanguageRuntime::FindPlugin(this, language)); 1491 1492 m_language_runtimes[language] = runtime_sp; 1493 runtime = runtime_sp.get(); 1494 } else 1495 runtime = pos->second.get(); 1496 1497 if (runtime) 1498 // It's possible that a language runtime can support multiple LanguageTypes, 1499 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, 1500 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the 1501 // primary language type and make sure that our runtime supports it. 1502 assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); 1503 1504 return runtime; 1505 } 1506 1507 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1508 if (m_finalizing) 1509 return false; 1510 1511 if (in_value.IsDynamic()) 1512 return false; 1513 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1514 1515 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1516 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1517 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1518 } 1519 1520 for (LanguageRuntime *runtime : GetLanguageRuntimes()) { 1521 if (runtime->CouldHaveDynamicValue(in_value)) 1522 return true; 1523 } 1524 1525 return false; 1526 } 1527 1528 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1529 m_dynamic_checkers_up.reset(dynamic_checkers); 1530 } 1531 1532 BreakpointSiteList &Process::GetBreakpointSiteList() { 1533 return m_breakpoint_site_list; 1534 } 1535 1536 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1537 return m_breakpoint_site_list; 1538 } 1539 1540 void Process::DisableAllBreakpointSites() { 1541 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1542 // bp_site->SetEnabled(true); 1543 DisableBreakpointSite(bp_site); 1544 }); 1545 } 1546 1547 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1548 Status error(DisableBreakpointSiteByID(break_id)); 1549 1550 if (error.Success()) 1551 m_breakpoint_site_list.Remove(break_id); 1552 1553 return error; 1554 } 1555 1556 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1557 Status error; 1558 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1559 if (bp_site_sp) { 1560 if (bp_site_sp->IsEnabled()) 1561 error = DisableBreakpointSite(bp_site_sp.get()); 1562 } else { 1563 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1564 break_id); 1565 } 1566 1567 return error; 1568 } 1569 1570 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1571 Status error; 1572 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1573 if (bp_site_sp) { 1574 if (!bp_site_sp->IsEnabled()) 1575 error = EnableBreakpointSite(bp_site_sp.get()); 1576 } else { 1577 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1578 break_id); 1579 } 1580 return error; 1581 } 1582 1583 lldb::break_id_t 1584 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1585 bool use_hardware) { 1586 addr_t load_addr = LLDB_INVALID_ADDRESS; 1587 1588 bool show_error = true; 1589 switch (GetState()) { 1590 case eStateInvalid: 1591 case eStateUnloaded: 1592 case eStateConnected: 1593 case eStateAttaching: 1594 case eStateLaunching: 1595 case eStateDetached: 1596 case eStateExited: 1597 show_error = false; 1598 break; 1599 1600 case eStateStopped: 1601 case eStateRunning: 1602 case eStateStepping: 1603 case eStateCrashed: 1604 case eStateSuspended: 1605 show_error = IsAlive(); 1606 break; 1607 } 1608 1609 // Reset the IsIndirect flag here, in case the location changes from pointing 1610 // to a indirect symbol to a regular symbol. 1611 owner->SetIsIndirect(false); 1612 1613 if (owner->ShouldResolveIndirectFunctions()) { 1614 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1615 if (symbol && symbol->IsIndirect()) { 1616 Status error; 1617 Address symbol_address = symbol->GetAddress(); 1618 load_addr = ResolveIndirectFunction(&symbol_address, error); 1619 if (!error.Success() && show_error) { 1620 GetTarget().GetDebugger().GetErrorStream().Printf( 1621 "warning: failed to resolve indirect function at 0x%" PRIx64 1622 " for breakpoint %i.%i: %s\n", 1623 symbol->GetLoadAddress(&GetTarget()), 1624 owner->GetBreakpoint().GetID(), owner->GetID(), 1625 error.AsCString() ? error.AsCString() : "unknown error"); 1626 return LLDB_INVALID_BREAK_ID; 1627 } 1628 Address resolved_address(load_addr); 1629 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1630 owner->SetIsIndirect(true); 1631 } else 1632 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1633 } else 1634 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1635 1636 if (load_addr != LLDB_INVALID_ADDRESS) { 1637 BreakpointSiteSP bp_site_sp; 1638 1639 // Look up this breakpoint site. If it exists, then add this new owner, 1640 // otherwise create a new breakpoint site and add it. 1641 1642 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1643 1644 if (bp_site_sp) { 1645 bp_site_sp->AddOwner(owner); 1646 owner->SetBreakpointSite(bp_site_sp); 1647 return bp_site_sp->GetID(); 1648 } else { 1649 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1650 load_addr, use_hardware)); 1651 if (bp_site_sp) { 1652 Status error = EnableBreakpointSite(bp_site_sp.get()); 1653 if (error.Success()) { 1654 owner->SetBreakpointSite(bp_site_sp); 1655 return m_breakpoint_site_list.Add(bp_site_sp); 1656 } else { 1657 if (show_error || use_hardware) { 1658 // Report error for setting breakpoint... 1659 GetTarget().GetDebugger().GetErrorStream().Printf( 1660 "warning: failed to set breakpoint site at 0x%" PRIx64 1661 " for breakpoint %i.%i: %s\n", 1662 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1663 error.AsCString() ? error.AsCString() : "unknown error"); 1664 } 1665 } 1666 } 1667 } 1668 } 1669 // We failed to enable the breakpoint 1670 return LLDB_INVALID_BREAK_ID; 1671 } 1672 1673 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1674 lldb::user_id_t owner_loc_id, 1675 BreakpointSiteSP &bp_site_sp) { 1676 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1677 if (num_owners == 0) { 1678 // Don't try to disable the site if we don't have a live process anymore. 1679 if (IsAlive()) 1680 DisableBreakpointSite(bp_site_sp.get()); 1681 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1682 } 1683 } 1684 1685 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1686 uint8_t *buf) const { 1687 size_t bytes_removed = 0; 1688 BreakpointSiteList bp_sites_in_range; 1689 1690 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1691 bp_sites_in_range)) { 1692 bp_sites_in_range.ForEach([bp_addr, size, 1693 buf](BreakpointSite *bp_site) -> void { 1694 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1695 addr_t intersect_addr; 1696 size_t intersect_size; 1697 size_t opcode_offset; 1698 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1699 &intersect_size, &opcode_offset)) { 1700 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1701 assert(bp_addr < intersect_addr + intersect_size && 1702 intersect_addr + intersect_size <= bp_addr + size); 1703 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1704 size_t buf_offset = intersect_addr - bp_addr; 1705 ::memcpy(buf + buf_offset, 1706 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1707 intersect_size); 1708 } 1709 } 1710 }); 1711 } 1712 return bytes_removed; 1713 } 1714 1715 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1716 PlatformSP platform_sp(GetTarget().GetPlatform()); 1717 if (platform_sp) 1718 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1719 return 0; 1720 } 1721 1722 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1723 Status error; 1724 assert(bp_site != nullptr); 1725 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1726 const addr_t bp_addr = bp_site->GetLoadAddress(); 1727 LLDB_LOGF( 1728 log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1729 bp_site->GetID(), (uint64_t)bp_addr); 1730 if (bp_site->IsEnabled()) { 1731 LLDB_LOGF( 1732 log, 1733 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1734 " -- already enabled", 1735 bp_site->GetID(), (uint64_t)bp_addr); 1736 return error; 1737 } 1738 1739 if (bp_addr == LLDB_INVALID_ADDRESS) { 1740 error.SetErrorString("BreakpointSite contains an invalid load address."); 1741 return error; 1742 } 1743 // Ask the lldb::Process subclass to fill in the correct software breakpoint 1744 // trap for the breakpoint site 1745 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 1746 1747 if (bp_opcode_size == 0) { 1748 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 1749 "returned zero, unable to get breakpoint " 1750 "trap for address 0x%" PRIx64, 1751 bp_addr); 1752 } else { 1753 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 1754 1755 if (bp_opcode_bytes == nullptr) { 1756 error.SetErrorString( 1757 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 1758 return error; 1759 } 1760 1761 // Save the original opcode by reading it 1762 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 1763 error) == bp_opcode_size) { 1764 // Write a software breakpoint in place of the original opcode 1765 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 1766 bp_opcode_size) { 1767 uint8_t verify_bp_opcode_bytes[64]; 1768 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 1769 error) == bp_opcode_size) { 1770 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 1771 bp_opcode_size) == 0) { 1772 bp_site->SetEnabled(true); 1773 bp_site->SetType(BreakpointSite::eSoftware); 1774 LLDB_LOGF(log, 1775 "Process::EnableSoftwareBreakpoint (site_id = %d) " 1776 "addr = 0x%" PRIx64 " -- SUCCESS", 1777 bp_site->GetID(), (uint64_t)bp_addr); 1778 } else 1779 error.SetErrorString( 1780 "failed to verify the breakpoint trap in memory."); 1781 } else 1782 error.SetErrorString( 1783 "Unable to read memory to verify breakpoint trap."); 1784 } else 1785 error.SetErrorString("Unable to write breakpoint trap to memory."); 1786 } else 1787 error.SetErrorString("Unable to read memory at breakpoint address."); 1788 } 1789 if (log && error.Fail()) 1790 LLDB_LOGF( 1791 log, 1792 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1793 " -- FAILED: %s", 1794 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1795 return error; 1796 } 1797 1798 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 1799 Status error; 1800 assert(bp_site != nullptr); 1801 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1802 addr_t bp_addr = bp_site->GetLoadAddress(); 1803 lldb::user_id_t breakID = bp_site->GetID(); 1804 LLDB_LOGF(log, 1805 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 1806 ") addr = 0x%" PRIx64, 1807 breakID, (uint64_t)bp_addr); 1808 1809 if (bp_site->IsHardware()) { 1810 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 1811 } else if (bp_site->IsEnabled()) { 1812 const size_t break_op_size = bp_site->GetByteSize(); 1813 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 1814 if (break_op_size > 0) { 1815 // Clear a software breakpoint instruction 1816 uint8_t curr_break_op[8]; 1817 assert(break_op_size <= sizeof(curr_break_op)); 1818 bool break_op_found = false; 1819 1820 // Read the breakpoint opcode 1821 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 1822 break_op_size) { 1823 bool verify = false; 1824 // Make sure the breakpoint opcode exists at this address 1825 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 1826 break_op_found = true; 1827 // We found a valid breakpoint opcode at this address, now restore 1828 // the saved opcode. 1829 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 1830 break_op_size, error) == break_op_size) { 1831 verify = true; 1832 } else 1833 error.SetErrorString( 1834 "Memory write failed when restoring original opcode."); 1835 } else { 1836 error.SetErrorString( 1837 "Original breakpoint trap is no longer in memory."); 1838 // Set verify to true and so we can check if the original opcode has 1839 // already been restored 1840 verify = true; 1841 } 1842 1843 if (verify) { 1844 uint8_t verify_opcode[8]; 1845 assert(break_op_size < sizeof(verify_opcode)); 1846 // Verify that our original opcode made it back to the inferior 1847 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 1848 break_op_size) { 1849 // compare the memory we just read with the original opcode 1850 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 1851 break_op_size) == 0) { 1852 // SUCCESS 1853 bp_site->SetEnabled(false); 1854 LLDB_LOGF(log, 1855 "Process::DisableSoftwareBreakpoint (site_id = %d) " 1856 "addr = 0x%" PRIx64 " -- SUCCESS", 1857 bp_site->GetID(), (uint64_t)bp_addr); 1858 return error; 1859 } else { 1860 if (break_op_found) 1861 error.SetErrorString("Failed to restore original opcode."); 1862 } 1863 } else 1864 error.SetErrorString("Failed to read memory to verify that " 1865 "breakpoint trap was restored."); 1866 } 1867 } else 1868 error.SetErrorString( 1869 "Unable to read memory that should contain the breakpoint trap."); 1870 } 1871 } else { 1872 LLDB_LOGF( 1873 log, 1874 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1875 " -- already disabled", 1876 bp_site->GetID(), (uint64_t)bp_addr); 1877 return error; 1878 } 1879 1880 LLDB_LOGF( 1881 log, 1882 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1883 " -- FAILED: %s", 1884 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1885 return error; 1886 } 1887 1888 // Uncomment to verify memory caching works after making changes to caching 1889 // code 1890 //#define VERIFY_MEMORY_READS 1891 1892 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 1893 error.Clear(); 1894 if (!GetDisableMemoryCache()) { 1895 #if defined(VERIFY_MEMORY_READS) 1896 // Memory caching is enabled, with debug verification 1897 1898 if (buf && size) { 1899 // Uncomment the line below to make sure memory caching is working. 1900 // I ran this through the test suite and got no assertions, so I am 1901 // pretty confident this is working well. If any changes are made to 1902 // memory caching, uncomment the line below and test your changes! 1903 1904 // Verify all memory reads by using the cache first, then redundantly 1905 // reading the same memory from the inferior and comparing to make sure 1906 // everything is exactly the same. 1907 std::string verify_buf(size, '\0'); 1908 assert(verify_buf.size() == size); 1909 const size_t cache_bytes_read = 1910 m_memory_cache.Read(this, addr, buf, size, error); 1911 Status verify_error; 1912 const size_t verify_bytes_read = 1913 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 1914 verify_buf.size(), verify_error); 1915 assert(cache_bytes_read == verify_bytes_read); 1916 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 1917 assert(verify_error.Success() == error.Success()); 1918 return cache_bytes_read; 1919 } 1920 return 0; 1921 #else // !defined(VERIFY_MEMORY_READS) 1922 // Memory caching is enabled, without debug verification 1923 1924 return m_memory_cache.Read(addr, buf, size, error); 1925 #endif // defined (VERIFY_MEMORY_READS) 1926 } else { 1927 // Memory caching is disabled 1928 1929 return ReadMemoryFromInferior(addr, buf, size, error); 1930 } 1931 } 1932 1933 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 1934 Status &error) { 1935 char buf[256]; 1936 out_str.clear(); 1937 addr_t curr_addr = addr; 1938 while (true) { 1939 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 1940 if (length == 0) 1941 break; 1942 out_str.append(buf, length); 1943 // If we got "length - 1" bytes, we didn't get the whole C string, we need 1944 // to read some more characters 1945 if (length == sizeof(buf) - 1) 1946 curr_addr += length; 1947 else 1948 break; 1949 } 1950 return out_str.size(); 1951 } 1952 1953 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes, 1954 Status &error, size_t type_width) { 1955 size_t total_bytes_read = 0; 1956 if (dst && max_bytes && type_width && max_bytes >= type_width) { 1957 // Ensure a null terminator independent of the number of bytes that is 1958 // read. 1959 memset(dst, 0, max_bytes); 1960 size_t bytes_left = max_bytes - type_width; 1961 1962 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 1963 assert(sizeof(terminator) >= type_width && "Attempting to validate a " 1964 "string with more than 4 bytes " 1965 "per character!"); 1966 1967 addr_t curr_addr = addr; 1968 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 1969 char *curr_dst = dst; 1970 1971 error.Clear(); 1972 while (bytes_left > 0 && error.Success()) { 1973 addr_t cache_line_bytes_left = 1974 cache_line_size - (curr_addr % cache_line_size); 1975 addr_t bytes_to_read = 1976 std::min<addr_t>(bytes_left, cache_line_bytes_left); 1977 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 1978 1979 if (bytes_read == 0) 1980 break; 1981 1982 // Search for a null terminator of correct size and alignment in 1983 // bytes_read 1984 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 1985 for (size_t i = aligned_start; 1986 i + type_width <= total_bytes_read + bytes_read; i += type_width) 1987 if (::memcmp(&dst[i], terminator, type_width) == 0) { 1988 error.Clear(); 1989 return i; 1990 } 1991 1992 total_bytes_read += bytes_read; 1993 curr_dst += bytes_read; 1994 curr_addr += bytes_read; 1995 bytes_left -= bytes_read; 1996 } 1997 } else { 1998 if (max_bytes) 1999 error.SetErrorString("invalid arguments"); 2000 } 2001 return total_bytes_read; 2002 } 2003 2004 // Deprecated in favor of ReadStringFromMemory which has wchar support and 2005 // correct code to find null terminators. 2006 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 2007 size_t dst_max_len, 2008 Status &result_error) { 2009 size_t total_cstr_len = 0; 2010 if (dst && dst_max_len) { 2011 result_error.Clear(); 2012 // NULL out everything just to be safe 2013 memset(dst, 0, dst_max_len); 2014 Status error; 2015 addr_t curr_addr = addr; 2016 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2017 size_t bytes_left = dst_max_len - 1; 2018 char *curr_dst = dst; 2019 2020 while (bytes_left > 0) { 2021 addr_t cache_line_bytes_left = 2022 cache_line_size - (curr_addr % cache_line_size); 2023 addr_t bytes_to_read = 2024 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2025 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2026 2027 if (bytes_read == 0) { 2028 result_error = error; 2029 dst[total_cstr_len] = '\0'; 2030 break; 2031 } 2032 const size_t len = strlen(curr_dst); 2033 2034 total_cstr_len += len; 2035 2036 if (len < bytes_to_read) 2037 break; 2038 2039 curr_dst += bytes_read; 2040 curr_addr += bytes_read; 2041 bytes_left -= bytes_read; 2042 } 2043 } else { 2044 if (dst == nullptr) 2045 result_error.SetErrorString("invalid arguments"); 2046 else 2047 result_error.Clear(); 2048 } 2049 return total_cstr_len; 2050 } 2051 2052 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2053 Status &error) { 2054 if (buf == nullptr || size == 0) 2055 return 0; 2056 2057 size_t bytes_read = 0; 2058 uint8_t *bytes = (uint8_t *)buf; 2059 2060 while (bytes_read < size) { 2061 const size_t curr_size = size - bytes_read; 2062 const size_t curr_bytes_read = 2063 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2064 bytes_read += curr_bytes_read; 2065 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2066 break; 2067 } 2068 2069 // Replace any software breakpoint opcodes that fall into this range back 2070 // into "buf" before we return 2071 if (bytes_read > 0) 2072 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2073 return bytes_read; 2074 } 2075 2076 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2077 size_t integer_byte_size, 2078 uint64_t fail_value, 2079 Status &error) { 2080 Scalar scalar; 2081 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2082 error)) 2083 return scalar.ULongLong(fail_value); 2084 return fail_value; 2085 } 2086 2087 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2088 size_t integer_byte_size, 2089 int64_t fail_value, 2090 Status &error) { 2091 Scalar scalar; 2092 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2093 error)) 2094 return scalar.SLongLong(fail_value); 2095 return fail_value; 2096 } 2097 2098 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2099 Scalar scalar; 2100 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2101 error)) 2102 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2103 return LLDB_INVALID_ADDRESS; 2104 } 2105 2106 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2107 Status &error) { 2108 Scalar scalar; 2109 const uint32_t addr_byte_size = GetAddressByteSize(); 2110 if (addr_byte_size <= 4) 2111 scalar = (uint32_t)ptr_value; 2112 else 2113 scalar = ptr_value; 2114 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2115 addr_byte_size; 2116 } 2117 2118 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2119 Status &error) { 2120 size_t bytes_written = 0; 2121 const uint8_t *bytes = (const uint8_t *)buf; 2122 2123 while (bytes_written < size) { 2124 const size_t curr_size = size - bytes_written; 2125 const size_t curr_bytes_written = DoWriteMemory( 2126 addr + bytes_written, bytes + bytes_written, curr_size, error); 2127 bytes_written += curr_bytes_written; 2128 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2129 break; 2130 } 2131 return bytes_written; 2132 } 2133 2134 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2135 Status &error) { 2136 #if defined(ENABLE_MEMORY_CACHING) 2137 m_memory_cache.Flush(addr, size); 2138 #endif 2139 2140 if (buf == nullptr || size == 0) 2141 return 0; 2142 2143 m_mod_id.BumpMemoryID(); 2144 2145 // We need to write any data that would go where any current software traps 2146 // (enabled software breakpoints) any software traps (breakpoints) that we 2147 // may have placed in our tasks memory. 2148 2149 BreakpointSiteList bp_sites_in_range; 2150 if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range)) 2151 return WriteMemoryPrivate(addr, buf, size, error); 2152 2153 // No breakpoint sites overlap 2154 if (bp_sites_in_range.IsEmpty()) 2155 return WriteMemoryPrivate(addr, buf, size, error); 2156 2157 const uint8_t *ubuf = (const uint8_t *)buf; 2158 uint64_t bytes_written = 0; 2159 2160 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2161 &error](BreakpointSite *bp) -> void { 2162 if (error.Fail()) 2163 return; 2164 2165 if (bp->GetType() != BreakpointSite::eSoftware) 2166 return; 2167 2168 addr_t intersect_addr; 2169 size_t intersect_size; 2170 size_t opcode_offset; 2171 const bool intersects = bp->IntersectsRange( 2172 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2173 UNUSED_IF_ASSERT_DISABLED(intersects); 2174 assert(intersects); 2175 assert(addr <= intersect_addr && intersect_addr < addr + size); 2176 assert(addr < intersect_addr + intersect_size && 2177 intersect_addr + intersect_size <= addr + size); 2178 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2179 2180 // Check for bytes before this breakpoint 2181 const addr_t curr_addr = addr + bytes_written; 2182 if (intersect_addr > curr_addr) { 2183 // There are some bytes before this breakpoint that we need to just 2184 // write to memory 2185 size_t curr_size = intersect_addr - curr_addr; 2186 size_t curr_bytes_written = 2187 WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error); 2188 bytes_written += curr_bytes_written; 2189 if (curr_bytes_written != curr_size) { 2190 // We weren't able to write all of the requested bytes, we are 2191 // done looping and will return the number of bytes that we have 2192 // written so far. 2193 if (error.Success()) 2194 error.SetErrorToGenericError(); 2195 } 2196 } 2197 // Now write any bytes that would cover up any software breakpoints 2198 // directly into the breakpoint opcode buffer 2199 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, 2200 intersect_size); 2201 bytes_written += intersect_size; 2202 }); 2203 2204 // Write any remaining bytes after the last breakpoint if we have any left 2205 if (bytes_written < size) 2206 bytes_written += 2207 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2208 size - bytes_written, error); 2209 2210 return bytes_written; 2211 } 2212 2213 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2214 size_t byte_size, Status &error) { 2215 if (byte_size == UINT32_MAX) 2216 byte_size = scalar.GetByteSize(); 2217 if (byte_size > 0) { 2218 uint8_t buf[32]; 2219 const size_t mem_size = 2220 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2221 if (mem_size > 0) 2222 return WriteMemory(addr, buf, mem_size, error); 2223 else 2224 error.SetErrorString("failed to get scalar as memory data"); 2225 } else { 2226 error.SetErrorString("invalid scalar value"); 2227 } 2228 return 0; 2229 } 2230 2231 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2232 bool is_signed, Scalar &scalar, 2233 Status &error) { 2234 uint64_t uval = 0; 2235 if (byte_size == 0) { 2236 error.SetErrorString("byte size is zero"); 2237 } else if (byte_size & (byte_size - 1)) { 2238 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2239 byte_size); 2240 } else if (byte_size <= sizeof(uval)) { 2241 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2242 if (bytes_read == byte_size) { 2243 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2244 GetAddressByteSize()); 2245 lldb::offset_t offset = 0; 2246 if (byte_size <= 4) 2247 scalar = data.GetMaxU32(&offset, byte_size); 2248 else 2249 scalar = data.GetMaxU64(&offset, byte_size); 2250 if (is_signed) 2251 scalar.SignExtend(byte_size * 8); 2252 return bytes_read; 2253 } 2254 } else { 2255 error.SetErrorStringWithFormat( 2256 "byte size of %u is too large for integer scalar type", byte_size); 2257 } 2258 return 0; 2259 } 2260 2261 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2262 Status error; 2263 for (const auto &Entry : entries) { 2264 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2265 error); 2266 if (!error.Success()) 2267 break; 2268 } 2269 return error; 2270 } 2271 2272 #define USE_ALLOCATE_MEMORY_CACHE 1 2273 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2274 Status &error) { 2275 if (GetPrivateState() != eStateStopped) { 2276 error.SetErrorToGenericError(); 2277 return LLDB_INVALID_ADDRESS; 2278 } 2279 2280 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2281 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2282 #else 2283 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2284 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2285 LLDB_LOGF(log, 2286 "Process::AllocateMemory(size=%" PRIu64 2287 ", permissions=%s) => 0x%16.16" PRIx64 2288 " (m_stop_id = %u m_memory_id = %u)", 2289 (uint64_t)size, GetPermissionsAsCString(permissions), 2290 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2291 m_mod_id.GetMemoryID()); 2292 return allocated_addr; 2293 #endif 2294 } 2295 2296 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2297 Status &error) { 2298 addr_t return_addr = AllocateMemory(size, permissions, error); 2299 if (error.Success()) { 2300 std::string buffer(size, 0); 2301 WriteMemory(return_addr, buffer.c_str(), size, error); 2302 } 2303 return return_addr; 2304 } 2305 2306 bool Process::CanJIT() { 2307 if (m_can_jit == eCanJITDontKnow) { 2308 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2309 Status err; 2310 2311 uint64_t allocated_memory = AllocateMemory( 2312 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2313 err); 2314 2315 if (err.Success()) { 2316 m_can_jit = eCanJITYes; 2317 LLDB_LOGF(log, 2318 "Process::%s pid %" PRIu64 2319 " allocation test passed, CanJIT () is true", 2320 __FUNCTION__, GetID()); 2321 } else { 2322 m_can_jit = eCanJITNo; 2323 LLDB_LOGF(log, 2324 "Process::%s pid %" PRIu64 2325 " allocation test failed, CanJIT () is false: %s", 2326 __FUNCTION__, GetID(), err.AsCString()); 2327 } 2328 2329 DeallocateMemory(allocated_memory); 2330 } 2331 2332 return m_can_jit == eCanJITYes; 2333 } 2334 2335 void Process::SetCanJIT(bool can_jit) { 2336 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2337 } 2338 2339 void Process::SetCanRunCode(bool can_run_code) { 2340 SetCanJIT(can_run_code); 2341 m_can_interpret_function_calls = can_run_code; 2342 } 2343 2344 Status Process::DeallocateMemory(addr_t ptr) { 2345 Status error; 2346 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2347 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2348 error.SetErrorStringWithFormat( 2349 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2350 } 2351 #else 2352 error = DoDeallocateMemory(ptr); 2353 2354 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2355 LLDB_LOGF(log, 2356 "Process::DeallocateMemory(addr=0x%16.16" PRIx64 2357 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2358 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2359 m_mod_id.GetMemoryID()); 2360 #endif 2361 return error; 2362 } 2363 2364 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2365 lldb::addr_t header_addr, 2366 size_t size_to_read) { 2367 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2368 if (log) { 2369 LLDB_LOGF(log, 2370 "Process::ReadModuleFromMemory reading %s binary from memory", 2371 file_spec.GetPath().c_str()); 2372 } 2373 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2374 if (module_sp) { 2375 Status error; 2376 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2377 shared_from_this(), header_addr, error, size_to_read); 2378 if (objfile) 2379 return module_sp; 2380 } 2381 return ModuleSP(); 2382 } 2383 2384 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2385 uint32_t &permissions) { 2386 MemoryRegionInfo range_info; 2387 permissions = 0; 2388 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2389 if (!error.Success()) 2390 return false; 2391 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2392 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2393 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2394 return false; 2395 } 2396 2397 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2398 permissions |= lldb::ePermissionsReadable; 2399 2400 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2401 permissions |= lldb::ePermissionsWritable; 2402 2403 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2404 permissions |= lldb::ePermissionsExecutable; 2405 2406 return true; 2407 } 2408 2409 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2410 Status error; 2411 error.SetErrorString("watchpoints are not supported"); 2412 return error; 2413 } 2414 2415 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2416 Status error; 2417 error.SetErrorString("watchpoints are not supported"); 2418 return error; 2419 } 2420 2421 StateType 2422 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2423 const Timeout<std::micro> &timeout) { 2424 StateType state; 2425 2426 while (true) { 2427 event_sp.reset(); 2428 state = GetStateChangedEventsPrivate(event_sp, timeout); 2429 2430 if (StateIsStoppedState(state, false)) 2431 break; 2432 2433 // If state is invalid, then we timed out 2434 if (state == eStateInvalid) 2435 break; 2436 2437 if (event_sp) 2438 HandlePrivateEvent(event_sp); 2439 } 2440 return state; 2441 } 2442 2443 void Process::LoadOperatingSystemPlugin(bool flush) { 2444 if (flush) 2445 m_thread_list.Clear(); 2446 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); 2447 if (flush) 2448 Flush(); 2449 } 2450 2451 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2452 Status error; 2453 m_abi_sp.reset(); 2454 m_dyld_up.reset(); 2455 m_jit_loaders_up.reset(); 2456 m_system_runtime_up.reset(); 2457 m_os_up.reset(); 2458 m_process_input_reader.reset(); 2459 2460 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2461 if (!exe_module) { 2462 error.SetErrorString("executable module does not exist"); 2463 return error; 2464 } 2465 2466 char local_exec_file_path[PATH_MAX]; 2467 char platform_exec_file_path[PATH_MAX]; 2468 exe_module->GetFileSpec().GetPath(local_exec_file_path, 2469 sizeof(local_exec_file_path)); 2470 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, 2471 sizeof(platform_exec_file_path)); 2472 if (FileSystem::Instance().Exists(exe_module->GetFileSpec())) { 2473 // Install anything that might need to be installed prior to launching. 2474 // For host systems, this will do nothing, but if we are connected to a 2475 // remote platform it will install any needed binaries 2476 error = GetTarget().Install(&launch_info); 2477 if (error.Fail()) 2478 return error; 2479 2480 if (PrivateStateThreadIsValid()) 2481 PausePrivateStateThread(); 2482 2483 error = WillLaunch(exe_module); 2484 if (error.Success()) { 2485 const bool restarted = false; 2486 SetPublicState(eStateLaunching, restarted); 2487 m_should_detach = false; 2488 2489 if (m_public_run_lock.TrySetRunning()) { 2490 // Now launch using these arguments. 2491 error = DoLaunch(exe_module, launch_info); 2492 } else { 2493 // This shouldn't happen 2494 error.SetErrorString("failed to acquire process run lock"); 2495 } 2496 2497 if (error.Fail()) { 2498 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2499 SetID(LLDB_INVALID_PROCESS_ID); 2500 const char *error_string = error.AsCString(); 2501 if (error_string == nullptr) 2502 error_string = "launch failed"; 2503 SetExitStatus(-1, error_string); 2504 } 2505 } else { 2506 EventSP event_sp; 2507 2508 // Now wait for the process to launch and return control to us, and then 2509 // call DidLaunch: 2510 StateType state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2511 2512 if (state == eStateInvalid || !event_sp) { 2513 // We were able to launch the process, but we failed to catch the 2514 // initial stop. 2515 error.SetErrorString("failed to catch stop after launch"); 2516 SetExitStatus(0, "failed to catch stop after launch"); 2517 Destroy(false); 2518 } else if (state == eStateStopped || state == eStateCrashed) { 2519 DidLaunch(); 2520 2521 DynamicLoader *dyld = GetDynamicLoader(); 2522 if (dyld) 2523 dyld->DidLaunch(); 2524 2525 GetJITLoaders().DidLaunch(); 2526 2527 SystemRuntime *system_runtime = GetSystemRuntime(); 2528 if (system_runtime) 2529 system_runtime->DidLaunch(); 2530 2531 if (!m_os_up) 2532 LoadOperatingSystemPlugin(false); 2533 2534 // We successfully launched the process and stopped, now it the 2535 // right time to set up signal filters before resuming. 2536 UpdateAutomaticSignalFiltering(); 2537 2538 // Note, the stop event was consumed above, but not handled. This 2539 // was done to give DidLaunch a chance to run. The target is either 2540 // stopped or crashed. Directly set the state. This is done to 2541 // prevent a stop message with a bunch of spurious output on thread 2542 // status, as well as not pop a ProcessIOHandler. 2543 SetPublicState(state, false); 2544 2545 if (PrivateStateThreadIsValid()) 2546 ResumePrivateStateThread(); 2547 else 2548 StartPrivateStateThread(); 2549 2550 // Target was stopped at entry as was intended. Need to notify the 2551 // listeners about it. 2552 if (state == eStateStopped && 2553 launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2554 HandlePrivateEvent(event_sp); 2555 } else if (state == eStateExited) { 2556 // We exited while trying to launch somehow. Don't call DidLaunch 2557 // as that's not likely to work, and return an invalid pid. 2558 HandlePrivateEvent(event_sp); 2559 } 2560 } 2561 } 2562 } else { 2563 error.SetErrorStringWithFormat("file doesn't exist: '%s'", 2564 local_exec_file_path); 2565 } 2566 2567 return error; 2568 } 2569 2570 Status Process::LoadCore() { 2571 Status error = DoLoadCore(); 2572 if (error.Success()) { 2573 ListenerSP listener_sp( 2574 Listener::MakeListener("lldb.process.load_core_listener")); 2575 HijackProcessEvents(listener_sp); 2576 2577 if (PrivateStateThreadIsValid()) 2578 ResumePrivateStateThread(); 2579 else 2580 StartPrivateStateThread(); 2581 2582 DynamicLoader *dyld = GetDynamicLoader(); 2583 if (dyld) 2584 dyld->DidAttach(); 2585 2586 GetJITLoaders().DidAttach(); 2587 2588 SystemRuntime *system_runtime = GetSystemRuntime(); 2589 if (system_runtime) 2590 system_runtime->DidAttach(); 2591 2592 if (!m_os_up) 2593 LoadOperatingSystemPlugin(false); 2594 2595 // We successfully loaded a core file, now pretend we stopped so we can 2596 // show all of the threads in the core file and explore the crashed state. 2597 SetPrivateState(eStateStopped); 2598 2599 // Wait for a stopped event since we just posted one above... 2600 lldb::EventSP event_sp; 2601 StateType state = 2602 WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp); 2603 2604 if (!StateIsStoppedState(state, false)) { 2605 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2606 LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", 2607 StateAsCString(state)); 2608 error.SetErrorString( 2609 "Did not get stopped event after loading the core file."); 2610 } 2611 RestoreProcessEvents(); 2612 } 2613 return error; 2614 } 2615 2616 DynamicLoader *Process::GetDynamicLoader() { 2617 if (!m_dyld_up) 2618 m_dyld_up.reset(DynamicLoader::FindPlugin(this, nullptr)); 2619 return m_dyld_up.get(); 2620 } 2621 2622 DataExtractor Process::GetAuxvData() { return DataExtractor(); } 2623 2624 JITLoaderList &Process::GetJITLoaders() { 2625 if (!m_jit_loaders_up) { 2626 m_jit_loaders_up = std::make_unique<JITLoaderList>(); 2627 JITLoader::LoadPlugins(this, *m_jit_loaders_up); 2628 } 2629 return *m_jit_loaders_up; 2630 } 2631 2632 SystemRuntime *Process::GetSystemRuntime() { 2633 if (!m_system_runtime_up) 2634 m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); 2635 return m_system_runtime_up.get(); 2636 } 2637 2638 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2639 uint32_t exec_count) 2640 : NextEventAction(process), m_exec_count(exec_count) { 2641 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2642 LLDB_LOGF( 2643 log, 2644 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2645 __FUNCTION__, static_cast<void *>(process), exec_count); 2646 } 2647 2648 Process::NextEventAction::EventActionResult 2649 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2650 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2651 2652 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2653 LLDB_LOGF(log, 2654 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2655 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2656 2657 switch (state) { 2658 case eStateAttaching: 2659 return eEventActionSuccess; 2660 2661 case eStateRunning: 2662 case eStateConnected: 2663 return eEventActionRetry; 2664 2665 case eStateStopped: 2666 case eStateCrashed: 2667 // During attach, prior to sending the eStateStopped event, 2668 // lldb_private::Process subclasses must set the new process ID. 2669 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2670 // We don't want these events to be reported, so go set the 2671 // ShouldReportStop here: 2672 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2673 2674 if (m_exec_count > 0) { 2675 --m_exec_count; 2676 2677 LLDB_LOGF(log, 2678 "Process::AttachCompletionHandler::%s state %s: reduced " 2679 "remaining exec count to %" PRIu32 ", requesting resume", 2680 __FUNCTION__, StateAsCString(state), m_exec_count); 2681 2682 RequestResume(); 2683 return eEventActionRetry; 2684 } else { 2685 LLDB_LOGF(log, 2686 "Process::AttachCompletionHandler::%s state %s: no more " 2687 "execs expected to start, continuing with attach", 2688 __FUNCTION__, StateAsCString(state)); 2689 2690 m_process->CompleteAttach(); 2691 return eEventActionSuccess; 2692 } 2693 break; 2694 2695 default: 2696 case eStateExited: 2697 case eStateInvalid: 2698 break; 2699 } 2700 2701 m_exit_string.assign("No valid Process"); 2702 return eEventActionExit; 2703 } 2704 2705 Process::NextEventAction::EventActionResult 2706 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2707 return eEventActionSuccess; 2708 } 2709 2710 const char *Process::AttachCompletionHandler::GetExitString() { 2711 return m_exit_string.c_str(); 2712 } 2713 2714 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2715 if (m_listener_sp) 2716 return m_listener_sp; 2717 else 2718 return debugger.GetListener(); 2719 } 2720 2721 Status Process::Attach(ProcessAttachInfo &attach_info) { 2722 m_abi_sp.reset(); 2723 m_process_input_reader.reset(); 2724 m_dyld_up.reset(); 2725 m_jit_loaders_up.reset(); 2726 m_system_runtime_up.reset(); 2727 m_os_up.reset(); 2728 2729 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2730 Status error; 2731 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2732 char process_name[PATH_MAX]; 2733 2734 if (attach_info.GetExecutableFile().GetPath(process_name, 2735 sizeof(process_name))) { 2736 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2737 2738 if (wait_for_launch) { 2739 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2740 if (error.Success()) { 2741 if (m_public_run_lock.TrySetRunning()) { 2742 m_should_detach = true; 2743 const bool restarted = false; 2744 SetPublicState(eStateAttaching, restarted); 2745 // Now attach using these arguments. 2746 error = DoAttachToProcessWithName(process_name, attach_info); 2747 } else { 2748 // This shouldn't happen 2749 error.SetErrorString("failed to acquire process run lock"); 2750 } 2751 2752 if (error.Fail()) { 2753 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2754 SetID(LLDB_INVALID_PROCESS_ID); 2755 if (error.AsCString() == nullptr) 2756 error.SetErrorString("attach failed"); 2757 2758 SetExitStatus(-1, error.AsCString()); 2759 } 2760 } else { 2761 SetNextEventAction(new Process::AttachCompletionHandler( 2762 this, attach_info.GetResumeCount())); 2763 StartPrivateStateThread(); 2764 } 2765 return error; 2766 } 2767 } else { 2768 ProcessInstanceInfoList process_infos; 2769 PlatformSP platform_sp(GetTarget().GetPlatform()); 2770 2771 if (platform_sp) { 2772 ProcessInstanceInfoMatch match_info; 2773 match_info.GetProcessInfo() = attach_info; 2774 match_info.SetNameMatchType(NameMatch::Equals); 2775 platform_sp->FindProcesses(match_info, process_infos); 2776 const uint32_t num_matches = process_infos.size(); 2777 if (num_matches == 1) { 2778 attach_pid = process_infos[0].GetProcessID(); 2779 // Fall through and attach using the above process ID 2780 } else { 2781 match_info.GetProcessInfo().GetExecutableFile().GetPath( 2782 process_name, sizeof(process_name)); 2783 if (num_matches > 1) { 2784 StreamString s; 2785 ProcessInstanceInfo::DumpTableHeader(s, true, false); 2786 for (size_t i = 0; i < num_matches; i++) { 2787 process_infos[i].DumpAsTableRow( 2788 s, platform_sp->GetUserIDResolver(), true, false); 2789 } 2790 error.SetErrorStringWithFormat( 2791 "more than one process named %s:\n%s", process_name, 2792 s.GetData()); 2793 } else 2794 error.SetErrorStringWithFormat( 2795 "could not find a process named %s", process_name); 2796 } 2797 } else { 2798 error.SetErrorString( 2799 "invalid platform, can't find processes by name"); 2800 return error; 2801 } 2802 } 2803 } else { 2804 error.SetErrorString("invalid process name"); 2805 } 2806 } 2807 2808 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 2809 error = WillAttachToProcessWithID(attach_pid); 2810 if (error.Success()) { 2811 2812 if (m_public_run_lock.TrySetRunning()) { 2813 // Now attach using these arguments. 2814 m_should_detach = true; 2815 const bool restarted = false; 2816 SetPublicState(eStateAttaching, restarted); 2817 error = DoAttachToProcessWithID(attach_pid, attach_info); 2818 } else { 2819 // This shouldn't happen 2820 error.SetErrorString("failed to acquire process run lock"); 2821 } 2822 2823 if (error.Success()) { 2824 SetNextEventAction(new Process::AttachCompletionHandler( 2825 this, attach_info.GetResumeCount())); 2826 StartPrivateStateThread(); 2827 } else { 2828 if (GetID() != LLDB_INVALID_PROCESS_ID) 2829 SetID(LLDB_INVALID_PROCESS_ID); 2830 2831 const char *error_string = error.AsCString(); 2832 if (error_string == nullptr) 2833 error_string = "attach failed"; 2834 2835 SetExitStatus(-1, error_string); 2836 } 2837 } 2838 } 2839 return error; 2840 } 2841 2842 void Process::CompleteAttach() { 2843 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 2844 LIBLLDB_LOG_TARGET)); 2845 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 2846 2847 // Let the process subclass figure out at much as it can about the process 2848 // before we go looking for a dynamic loader plug-in. 2849 ArchSpec process_arch; 2850 DidAttach(process_arch); 2851 2852 if (process_arch.IsValid()) { 2853 GetTarget().SetArchitecture(process_arch); 2854 if (log) { 2855 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 2856 LLDB_LOGF(log, 2857 "Process::%s replacing process architecture with DidAttach() " 2858 "architecture: %s", 2859 __FUNCTION__, triple_str ? triple_str : "<null>"); 2860 } 2861 } 2862 2863 // We just attached. If we have a platform, ask it for the process 2864 // architecture, and if it isn't the same as the one we've already set, 2865 // switch architectures. 2866 PlatformSP platform_sp(GetTarget().GetPlatform()); 2867 assert(platform_sp); 2868 if (platform_sp) { 2869 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2870 if (target_arch.IsValid() && 2871 !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) { 2872 ArchSpec platform_arch; 2873 platform_sp = 2874 platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch); 2875 if (platform_sp) { 2876 GetTarget().SetPlatform(platform_sp); 2877 GetTarget().SetArchitecture(platform_arch); 2878 LLDB_LOGF(log, 2879 "Process::%s switching platform to %s and architecture " 2880 "to %s based on info from attach", 2881 __FUNCTION__, platform_sp->GetName().AsCString(""), 2882 platform_arch.GetTriple().getTriple().c_str()); 2883 } 2884 } else if (!process_arch.IsValid()) { 2885 ProcessInstanceInfo process_info; 2886 GetProcessInfo(process_info); 2887 const ArchSpec &process_arch = process_info.GetArchitecture(); 2888 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2889 if (process_arch.IsValid() && 2890 target_arch.IsCompatibleMatch(process_arch) && 2891 !target_arch.IsExactMatch(process_arch)) { 2892 GetTarget().SetArchitecture(process_arch); 2893 LLDB_LOGF(log, 2894 "Process::%s switching architecture to %s based on info " 2895 "the platform retrieved for pid %" PRIu64, 2896 __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), 2897 GetID()); 2898 } 2899 } 2900 } 2901 2902 // We have completed the attach, now it is time to find the dynamic loader 2903 // plug-in 2904 DynamicLoader *dyld = GetDynamicLoader(); 2905 if (dyld) { 2906 dyld->DidAttach(); 2907 if (log) { 2908 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2909 LLDB_LOGF(log, 2910 "Process::%s after DynamicLoader::DidAttach(), target " 2911 "executable is %s (using %s plugin)", 2912 __FUNCTION__, 2913 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2914 : "<none>", 2915 dyld->GetPluginName().AsCString("<unnamed>")); 2916 } 2917 } 2918 2919 GetJITLoaders().DidAttach(); 2920 2921 SystemRuntime *system_runtime = GetSystemRuntime(); 2922 if (system_runtime) { 2923 system_runtime->DidAttach(); 2924 if (log) { 2925 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2926 LLDB_LOGF(log, 2927 "Process::%s after SystemRuntime::DidAttach(), target " 2928 "executable is %s (using %s plugin)", 2929 __FUNCTION__, 2930 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2931 : "<none>", 2932 system_runtime->GetPluginName().AsCString("<unnamed>")); 2933 } 2934 } 2935 2936 if (!m_os_up) { 2937 LoadOperatingSystemPlugin(false); 2938 if (m_os_up) { 2939 // Somebody might have gotten threads before now, but we need to force the 2940 // update after we've loaded the OperatingSystem plugin or it won't get a 2941 // chance to process the threads. 2942 m_thread_list.Clear(); 2943 UpdateThreadListIfNeeded(); 2944 } 2945 } 2946 // Figure out which one is the executable, and set that in our target: 2947 ModuleSP new_executable_module_sp; 2948 for (ModuleSP module_sp : GetTarget().GetImages().Modules()) { 2949 if (module_sp && module_sp->IsExecutable()) { 2950 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 2951 new_executable_module_sp = module_sp; 2952 break; 2953 } 2954 } 2955 if (new_executable_module_sp) { 2956 GetTarget().SetExecutableModule(new_executable_module_sp, 2957 eLoadDependentsNo); 2958 if (log) { 2959 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2960 LLDB_LOGF( 2961 log, 2962 "Process::%s after looping through modules, target executable is %s", 2963 __FUNCTION__, 2964 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2965 : "<none>"); 2966 } 2967 } 2968 } 2969 2970 Status Process::ConnectRemote(llvm::StringRef remote_url) { 2971 m_abi_sp.reset(); 2972 m_process_input_reader.reset(); 2973 2974 // Find the process and its architecture. Make sure it matches the 2975 // architecture of the current Target, and if not adjust it. 2976 2977 Status error(DoConnectRemote(remote_url)); 2978 if (error.Success()) { 2979 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2980 EventSP event_sp; 2981 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 2982 2983 if (state == eStateStopped || state == eStateCrashed) { 2984 // If we attached and actually have a process on the other end, then 2985 // this ended up being the equivalent of an attach. 2986 CompleteAttach(); 2987 2988 // This delays passing the stopped event to listeners till 2989 // CompleteAttach gets a chance to complete... 2990 HandlePrivateEvent(event_sp); 2991 } 2992 } 2993 2994 if (PrivateStateThreadIsValid()) 2995 ResumePrivateStateThread(); 2996 else 2997 StartPrivateStateThread(); 2998 } 2999 return error; 3000 } 3001 3002 Status Process::PrivateResume() { 3003 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3004 LIBLLDB_LOG_STEP)); 3005 LLDB_LOGF(log, 3006 "Process::PrivateResume() m_stop_id = %u, public state: %s " 3007 "private state: %s", 3008 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3009 StateAsCString(m_private_state.GetValue())); 3010 3011 // If signals handing status changed we might want to update our signal 3012 // filters before resuming. 3013 UpdateAutomaticSignalFiltering(); 3014 3015 Status error(WillResume()); 3016 // Tell the process it is about to resume before the thread list 3017 if (error.Success()) { 3018 // Now let the thread list know we are about to resume so it can let all of 3019 // our threads know that they are about to be resumed. Threads will each be 3020 // called with Thread::WillResume(StateType) where StateType contains the 3021 // state that they are supposed to have when the process is resumed 3022 // (suspended/running/stepping). Threads should also check their resume 3023 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3024 // start back up with a signal. 3025 if (m_thread_list.WillResume()) { 3026 // Last thing, do the PreResumeActions. 3027 if (!RunPreResumeActions()) { 3028 error.SetErrorString( 3029 "Process::PrivateResume PreResumeActions failed, not resuming."); 3030 } else { 3031 m_mod_id.BumpResumeID(); 3032 error = DoResume(); 3033 if (error.Success()) { 3034 DidResume(); 3035 m_thread_list.DidResume(); 3036 LLDB_LOGF(log, "Process thinks the process has resumed."); 3037 } else { 3038 LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); 3039 return error; 3040 } 3041 } 3042 } else { 3043 // Somebody wanted to run without running (e.g. we were faking a step 3044 // from one frame of a set of inlined frames that share the same PC to 3045 // another.) So generate a continue & a stopped event, and let the world 3046 // handle them. 3047 LLDB_LOGF(log, 3048 "Process::PrivateResume() asked to simulate a start & stop."); 3049 3050 SetPrivateState(eStateRunning); 3051 SetPrivateState(eStateStopped); 3052 } 3053 } else 3054 LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", 3055 error.AsCString("<unknown error>")); 3056 return error; 3057 } 3058 3059 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3060 if (!StateIsRunningState(m_public_state.GetValue())) 3061 return Status("Process is not running."); 3062 3063 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3064 // case it was already set and some thread plan logic calls halt on its own. 3065 m_clear_thread_plans_on_stop |= clear_thread_plans; 3066 3067 ListenerSP halt_listener_sp( 3068 Listener::MakeListener("lldb.process.halt_listener")); 3069 HijackProcessEvents(halt_listener_sp); 3070 3071 EventSP event_sp; 3072 3073 SendAsyncInterrupt(); 3074 3075 if (m_public_state.GetValue() == eStateAttaching) { 3076 // Don't hijack and eat the eStateExited as the code that was doing the 3077 // attach will be waiting for this event... 3078 RestoreProcessEvents(); 3079 SetExitStatus(SIGKILL, "Cancelled async attach."); 3080 Destroy(false); 3081 return Status(); 3082 } 3083 3084 // Wait for the process halt timeout seconds for the process to stop. 3085 StateType state = 3086 WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true, 3087 halt_listener_sp, nullptr, use_run_lock); 3088 RestoreProcessEvents(); 3089 3090 if (state == eStateInvalid || !event_sp) { 3091 // We timed out and didn't get a stop event... 3092 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3093 } 3094 3095 BroadcastEvent(event_sp); 3096 3097 return Status(); 3098 } 3099 3100 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3101 Status error; 3102 3103 // Check both the public & private states here. If we're hung evaluating an 3104 // expression, for instance, then the public state will be stopped, but we 3105 // still need to interrupt. 3106 if (m_public_state.GetValue() == eStateRunning || 3107 m_private_state.GetValue() == eStateRunning) { 3108 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3109 LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); 3110 3111 ListenerSP listener_sp( 3112 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3113 HijackProcessEvents(listener_sp); 3114 3115 SendAsyncInterrupt(); 3116 3117 // Consume the interrupt event. 3118 StateType state = WaitForProcessToStop(GetInterruptTimeout(), 3119 &exit_event_sp, true, listener_sp); 3120 3121 RestoreProcessEvents(); 3122 3123 // If the process exited while we were waiting for it to stop, put the 3124 // exited event into the shared pointer passed in and return. Our caller 3125 // doesn't need to do anything else, since they don't have a process 3126 // anymore... 3127 3128 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3129 LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", 3130 __FUNCTION__); 3131 return error; 3132 } else 3133 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3134 3135 if (state != eStateStopped) { 3136 LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, 3137 StateAsCString(state)); 3138 // If we really couldn't stop the process then we should just error out 3139 // here, but if the lower levels just bobbled sending the event and we 3140 // really are stopped, then continue on. 3141 StateType private_state = m_private_state.GetValue(); 3142 if (private_state != eStateStopped) { 3143 return Status( 3144 "Attempt to stop the target in order to detach timed out. " 3145 "State = %s", 3146 StateAsCString(GetState())); 3147 } 3148 } 3149 } 3150 return error; 3151 } 3152 3153 Status Process::Detach(bool keep_stopped) { 3154 EventSP exit_event_sp; 3155 Status error; 3156 m_destroy_in_process = true; 3157 3158 error = WillDetach(); 3159 3160 if (error.Success()) { 3161 if (DetachRequiresHalt()) { 3162 error = StopForDestroyOrDetach(exit_event_sp); 3163 if (!error.Success()) { 3164 m_destroy_in_process = false; 3165 return error; 3166 } else if (exit_event_sp) { 3167 // We shouldn't need to do anything else here. There's no process left 3168 // to detach from... 3169 StopPrivateStateThread(); 3170 m_destroy_in_process = false; 3171 return error; 3172 } 3173 } 3174 3175 m_thread_list.DiscardThreadPlans(); 3176 DisableAllBreakpointSites(); 3177 3178 error = DoDetach(keep_stopped); 3179 if (error.Success()) { 3180 DidDetach(); 3181 StopPrivateStateThread(); 3182 } else { 3183 return error; 3184 } 3185 } 3186 m_destroy_in_process = false; 3187 3188 // If we exited when we were waiting for a process to stop, then forward the 3189 // event here so we don't lose the event 3190 if (exit_event_sp) { 3191 // Directly broadcast our exited event because we shut down our private 3192 // state thread above 3193 BroadcastEvent(exit_event_sp); 3194 } 3195 3196 // If we have been interrupted (to kill us) in the middle of running, we may 3197 // not end up propagating the last events through the event system, in which 3198 // case we might strand the write lock. Unlock it here so when we do to tear 3199 // down the process we don't get an error destroying the lock. 3200 3201 m_public_run_lock.SetStopped(); 3202 return error; 3203 } 3204 3205 Status Process::Destroy(bool force_kill) { 3206 // If we've already called Process::Finalize then there's nothing useful to 3207 // be done here. Finalize has actually called Destroy already. 3208 if (m_finalizing) 3209 return {}; 3210 return DestroyImpl(force_kill); 3211 } 3212 3213 Status Process::DestroyImpl(bool force_kill) { 3214 // Tell ourselves we are in the process of destroying the process, so that we 3215 // don't do any unnecessary work that might hinder the destruction. Remember 3216 // to set this back to false when we are done. That way if the attempt 3217 // failed and the process stays around for some reason it won't be in a 3218 // confused state. 3219 3220 if (force_kill) 3221 m_should_detach = false; 3222 3223 if (GetShouldDetach()) { 3224 // FIXME: This will have to be a process setting: 3225 bool keep_stopped = false; 3226 Detach(keep_stopped); 3227 } 3228 3229 m_destroy_in_process = true; 3230 3231 Status error(WillDestroy()); 3232 if (error.Success()) { 3233 EventSP exit_event_sp; 3234 if (DestroyRequiresHalt()) { 3235 error = StopForDestroyOrDetach(exit_event_sp); 3236 } 3237 3238 if (m_public_state.GetValue() != eStateRunning) { 3239 // Ditch all thread plans, and remove all our breakpoints: in case we 3240 // have to restart the target to kill it, we don't want it hitting a 3241 // breakpoint... Only do this if we've stopped, however, since if we 3242 // didn't manage to halt it above, then we're not going to have much luck 3243 // doing this now. 3244 m_thread_list.DiscardThreadPlans(); 3245 DisableAllBreakpointSites(); 3246 } 3247 3248 error = DoDestroy(); 3249 if (error.Success()) { 3250 DidDestroy(); 3251 StopPrivateStateThread(); 3252 } 3253 m_stdio_communication.StopReadThread(); 3254 m_stdio_communication.Disconnect(); 3255 m_stdin_forward = false; 3256 3257 if (m_process_input_reader) { 3258 m_process_input_reader->SetIsDone(true); 3259 m_process_input_reader->Cancel(); 3260 m_process_input_reader.reset(); 3261 } 3262 3263 // If we exited when we were waiting for a process to stop, then forward 3264 // the event here so we don't lose the event 3265 if (exit_event_sp) { 3266 // Directly broadcast our exited event because we shut down our private 3267 // state thread above 3268 BroadcastEvent(exit_event_sp); 3269 } 3270 3271 // If we have been interrupted (to kill us) in the middle of running, we 3272 // may not end up propagating the last events through the event system, in 3273 // which case we might strand the write lock. Unlock it here so when we do 3274 // to tear down the process we don't get an error destroying the lock. 3275 m_public_run_lock.SetStopped(); 3276 } 3277 3278 m_destroy_in_process = false; 3279 3280 return error; 3281 } 3282 3283 Status Process::Signal(int signal) { 3284 Status error(WillSignal()); 3285 if (error.Success()) { 3286 error = DoSignal(signal); 3287 if (error.Success()) 3288 DidSignal(); 3289 } 3290 return error; 3291 } 3292 3293 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3294 assert(signals_sp && "null signals_sp"); 3295 m_unix_signals_sp = signals_sp; 3296 } 3297 3298 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3299 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3300 return m_unix_signals_sp; 3301 } 3302 3303 lldb::ByteOrder Process::GetByteOrder() const { 3304 return GetTarget().GetArchitecture().GetByteOrder(); 3305 } 3306 3307 uint32_t Process::GetAddressByteSize() const { 3308 return GetTarget().GetArchitecture().GetAddressByteSize(); 3309 } 3310 3311 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3312 const StateType state = 3313 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3314 bool return_value = true; 3315 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | 3316 LIBLLDB_LOG_PROCESS)); 3317 3318 switch (state) { 3319 case eStateDetached: 3320 case eStateExited: 3321 case eStateUnloaded: 3322 m_stdio_communication.SynchronizeWithReadThread(); 3323 m_stdio_communication.StopReadThread(); 3324 m_stdio_communication.Disconnect(); 3325 m_stdin_forward = false; 3326 3327 LLVM_FALLTHROUGH; 3328 case eStateConnected: 3329 case eStateAttaching: 3330 case eStateLaunching: 3331 // These events indicate changes in the state of the debugging session, 3332 // always report them. 3333 return_value = true; 3334 break; 3335 case eStateInvalid: 3336 // We stopped for no apparent reason, don't report it. 3337 return_value = false; 3338 break; 3339 case eStateRunning: 3340 case eStateStepping: 3341 // If we've started the target running, we handle the cases where we are 3342 // already running and where there is a transition from stopped to running 3343 // differently. running -> running: Automatically suppress extra running 3344 // events stopped -> running: Report except when there is one or more no 3345 // votes 3346 // and no yes votes. 3347 SynchronouslyNotifyStateChanged(state); 3348 if (m_force_next_event_delivery) 3349 return_value = true; 3350 else { 3351 switch (m_last_broadcast_state) { 3352 case eStateRunning: 3353 case eStateStepping: 3354 // We always suppress multiple runnings with no PUBLIC stop in between. 3355 return_value = false; 3356 break; 3357 default: 3358 // TODO: make this work correctly. For now always report 3359 // run if we aren't running so we don't miss any running events. If I 3360 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3361 // and hit the breakpoints on multiple threads, then somehow during the 3362 // stepping over of all breakpoints no run gets reported. 3363 3364 // This is a transition from stop to run. 3365 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3366 case eVoteYes: 3367 case eVoteNoOpinion: 3368 return_value = true; 3369 break; 3370 case eVoteNo: 3371 return_value = false; 3372 break; 3373 } 3374 break; 3375 } 3376 } 3377 break; 3378 case eStateStopped: 3379 case eStateCrashed: 3380 case eStateSuspended: 3381 // We've stopped. First see if we're going to restart the target. If we 3382 // are going to stop, then we always broadcast the event. If we aren't 3383 // going to stop, let the thread plans decide if we're going to report this 3384 // event. If no thread has an opinion, we don't report it. 3385 3386 m_stdio_communication.SynchronizeWithReadThread(); 3387 RefreshStateAfterStop(); 3388 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3389 LLDB_LOGF(log, 3390 "Process::ShouldBroadcastEvent (%p) stopped due to an " 3391 "interrupt, state: %s", 3392 static_cast<void *>(event_ptr), StateAsCString(state)); 3393 // Even though we know we are going to stop, we should let the threads 3394 // have a look at the stop, so they can properly set their state. 3395 m_thread_list.ShouldStop(event_ptr); 3396 return_value = true; 3397 } else { 3398 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3399 bool should_resume = false; 3400 3401 // It makes no sense to ask "ShouldStop" if we've already been 3402 // restarted... Asking the thread list is also not likely to go well, 3403 // since we are running again. So in that case just report the event. 3404 3405 if (!was_restarted) 3406 should_resume = !m_thread_list.ShouldStop(event_ptr); 3407 3408 if (was_restarted || should_resume || m_resume_requested) { 3409 Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3410 LLDB_LOGF(log, 3411 "Process::ShouldBroadcastEvent: should_resume: %i state: " 3412 "%s was_restarted: %i report_stop_vote: %d.", 3413 should_resume, StateAsCString(state), was_restarted, 3414 report_stop_vote); 3415 3416 switch (report_stop_vote) { 3417 case eVoteYes: 3418 return_value = true; 3419 break; 3420 case eVoteNoOpinion: 3421 case eVoteNo: 3422 return_value = false; 3423 break; 3424 } 3425 3426 if (!was_restarted) { 3427 LLDB_LOGF(log, 3428 "Process::ShouldBroadcastEvent (%p) Restarting process " 3429 "from state: %s", 3430 static_cast<void *>(event_ptr), StateAsCString(state)); 3431 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3432 PrivateResume(); 3433 } 3434 } else { 3435 return_value = true; 3436 SynchronouslyNotifyStateChanged(state); 3437 } 3438 } 3439 break; 3440 } 3441 3442 // Forcing the next event delivery is a one shot deal. So reset it here. 3443 m_force_next_event_delivery = false; 3444 3445 // We do some coalescing of events (for instance two consecutive running 3446 // events get coalesced.) But we only coalesce against events we actually 3447 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3448 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3449 // done, because the PublicState reflects the last event pulled off the 3450 // queue, and there may be several events stacked up on the queue unserviced. 3451 // So the PublicState may not reflect the last broadcasted event yet. 3452 // m_last_broadcast_state gets updated here. 3453 3454 if (return_value) 3455 m_last_broadcast_state = state; 3456 3457 LLDB_LOGF(log, 3458 "Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3459 "broadcast state: %s - %s", 3460 static_cast<void *>(event_ptr), StateAsCString(state), 3461 StateAsCString(m_last_broadcast_state), 3462 return_value ? "YES" : "NO"); 3463 return return_value; 3464 } 3465 3466 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3467 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 3468 3469 bool already_running = PrivateStateThreadIsValid(); 3470 LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, 3471 already_running ? " already running" 3472 : " starting private state thread"); 3473 3474 if (!is_secondary_thread && already_running) 3475 return true; 3476 3477 // Create a thread that watches our internal state and controls which events 3478 // make it to clients (into the DCProcess event queue). 3479 char thread_name[1024]; 3480 uint32_t max_len = llvm::get_max_thread_name_length(); 3481 if (max_len > 0 && max_len <= 30) { 3482 // On platforms with abbreviated thread name lengths, choose thread names 3483 // that fit within the limit. 3484 if (already_running) 3485 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3486 else 3487 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3488 } else { 3489 if (already_running) 3490 snprintf(thread_name, sizeof(thread_name), 3491 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3492 GetID()); 3493 else 3494 snprintf(thread_name, sizeof(thread_name), 3495 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3496 } 3497 3498 // Create the private state thread, and start it running. 3499 PrivateStateThreadArgs *args_ptr = 3500 new PrivateStateThreadArgs(this, is_secondary_thread); 3501 llvm::Expected<HostThread> private_state_thread = 3502 ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, 3503 (void *)args_ptr, 8 * 1024 * 1024); 3504 if (!private_state_thread) { 3505 LLDB_LOG(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST), 3506 "failed to launch host thread: {}", 3507 llvm::toString(private_state_thread.takeError())); 3508 return false; 3509 } 3510 3511 assert(private_state_thread->IsJoinable()); 3512 m_private_state_thread = *private_state_thread; 3513 ResumePrivateStateThread(); 3514 return true; 3515 } 3516 3517 void Process::PausePrivateStateThread() { 3518 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3519 } 3520 3521 void Process::ResumePrivateStateThread() { 3522 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3523 } 3524 3525 void Process::StopPrivateStateThread() { 3526 if (m_private_state_thread.IsJoinable()) 3527 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3528 else { 3529 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3530 LLDB_LOGF( 3531 log, 3532 "Went to stop the private state thread, but it was already invalid."); 3533 } 3534 } 3535 3536 void Process::ControlPrivateStateThread(uint32_t signal) { 3537 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3538 3539 assert(signal == eBroadcastInternalStateControlStop || 3540 signal == eBroadcastInternalStateControlPause || 3541 signal == eBroadcastInternalStateControlResume); 3542 3543 LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); 3544 3545 // Signal the private state thread 3546 if (m_private_state_thread.IsJoinable()) { 3547 // Broadcast the event. 3548 // It is important to do this outside of the if below, because it's 3549 // possible that the thread state is invalid but that the thread is waiting 3550 // on a control event instead of simply being on its way out (this should 3551 // not happen, but it apparently can). 3552 LLDB_LOGF(log, "Sending control event of type: %d.", signal); 3553 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3554 m_private_state_control_broadcaster.BroadcastEvent(signal, 3555 event_receipt_sp); 3556 3557 // Wait for the event receipt or for the private state thread to exit 3558 bool receipt_received = false; 3559 if (PrivateStateThreadIsValid()) { 3560 while (!receipt_received) { 3561 // Check for a receipt for n seconds and then check if the private 3562 // state thread is still around. 3563 receipt_received = 3564 event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout()); 3565 if (!receipt_received) { 3566 // Check if the private state thread is still around. If it isn't 3567 // then we are done waiting 3568 if (!PrivateStateThreadIsValid()) 3569 break; // Private state thread exited or is exiting, we are done 3570 } 3571 } 3572 } 3573 3574 if (signal == eBroadcastInternalStateControlStop) { 3575 thread_result_t result = {}; 3576 m_private_state_thread.Join(&result); 3577 m_private_state_thread.Reset(); 3578 } 3579 } else { 3580 LLDB_LOGF( 3581 log, 3582 "Private state thread already dead, no need to signal it to stop."); 3583 } 3584 } 3585 3586 void Process::SendAsyncInterrupt() { 3587 if (PrivateStateThreadIsValid()) 3588 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3589 nullptr); 3590 else 3591 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3592 } 3593 3594 void Process::HandlePrivateEvent(EventSP &event_sp) { 3595 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3596 m_resume_requested = false; 3597 3598 const StateType new_state = 3599 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3600 3601 // First check to see if anybody wants a shot at this event: 3602 if (m_next_event_action_up) { 3603 NextEventAction::EventActionResult action_result = 3604 m_next_event_action_up->PerformAction(event_sp); 3605 LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); 3606 3607 switch (action_result) { 3608 case NextEventAction::eEventActionSuccess: 3609 SetNextEventAction(nullptr); 3610 break; 3611 3612 case NextEventAction::eEventActionRetry: 3613 break; 3614 3615 case NextEventAction::eEventActionExit: 3616 // Handle Exiting Here. If we already got an exited event, we should 3617 // just propagate it. Otherwise, swallow this event, and set our state 3618 // to exit so the next event will kill us. 3619 if (new_state != eStateExited) { 3620 // FIXME: should cons up an exited event, and discard this one. 3621 SetExitStatus(0, m_next_event_action_up->GetExitString()); 3622 SetNextEventAction(nullptr); 3623 return; 3624 } 3625 SetNextEventAction(nullptr); 3626 break; 3627 } 3628 } 3629 3630 // See if we should broadcast this state to external clients? 3631 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3632 3633 if (should_broadcast) { 3634 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3635 if (log) { 3636 LLDB_LOGF(log, 3637 "Process::%s (pid = %" PRIu64 3638 ") broadcasting new state %s (old state %s) to %s", 3639 __FUNCTION__, GetID(), StateAsCString(new_state), 3640 StateAsCString(GetState()), 3641 is_hijacked ? "hijacked" : "public"); 3642 } 3643 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3644 if (StateIsRunningState(new_state)) { 3645 // Only push the input handler if we aren't fowarding events, as this 3646 // means the curses GUI is in use... Or don't push it if we are launching 3647 // since it will come up stopped. 3648 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3649 new_state != eStateLaunching && new_state != eStateAttaching) { 3650 PushProcessIOHandler(); 3651 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3652 eBroadcastAlways); 3653 LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", 3654 __FUNCTION__, m_iohandler_sync.GetValue()); 3655 } 3656 } else if (StateIsStoppedState(new_state, false)) { 3657 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3658 // If the lldb_private::Debugger is handling the events, we don't want 3659 // to pop the process IOHandler here, we want to do it when we receive 3660 // the stopped event so we can carefully control when the process 3661 // IOHandler is popped because when we stop we want to display some 3662 // text stating how and why we stopped, then maybe some 3663 // process/thread/frame info, and then we want the "(lldb) " prompt to 3664 // show up. If we pop the process IOHandler here, then we will cause 3665 // the command interpreter to become the top IOHandler after the 3666 // process pops off and it will update its prompt right away... See the 3667 // Debugger.cpp file where it calls the function as 3668 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3669 // Otherwise we end up getting overlapping "(lldb) " prompts and 3670 // garbled output. 3671 // 3672 // If we aren't handling the events in the debugger (which is indicated 3673 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3674 // we are hijacked, then we always pop the process IO handler manually. 3675 // Hijacking happens when the internal process state thread is running 3676 // thread plans, or when commands want to run in synchronous mode and 3677 // they call "process->WaitForProcessToStop()". An example of something 3678 // that will hijack the events is a simple expression: 3679 // 3680 // (lldb) expr (int)puts("hello") 3681 // 3682 // This will cause the internal process state thread to resume and halt 3683 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3684 // events) and we do need the IO handler to be pushed and popped 3685 // correctly. 3686 3687 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3688 PopProcessIOHandler(); 3689 } 3690 } 3691 3692 BroadcastEvent(event_sp); 3693 } else { 3694 if (log) { 3695 LLDB_LOGF( 3696 log, 3697 "Process::%s (pid = %" PRIu64 3698 ") suppressing state %s (old state %s): should_broadcast == false", 3699 __FUNCTION__, GetID(), StateAsCString(new_state), 3700 StateAsCString(GetState())); 3701 } 3702 } 3703 } 3704 3705 Status Process::HaltPrivate() { 3706 EventSP event_sp; 3707 Status error(WillHalt()); 3708 if (error.Fail()) 3709 return error; 3710 3711 // Ask the process subclass to actually halt our process 3712 bool caused_stop; 3713 error = DoHalt(caused_stop); 3714 3715 DidHalt(); 3716 return error; 3717 } 3718 3719 thread_result_t Process::PrivateStateThread(void *arg) { 3720 std::unique_ptr<PrivateStateThreadArgs> args_up( 3721 static_cast<PrivateStateThreadArgs *>(arg)); 3722 thread_result_t result = 3723 args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 3724 return result; 3725 } 3726 3727 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3728 bool control_only = true; 3729 3730 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3731 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3732 __FUNCTION__, static_cast<void *>(this), GetID()); 3733 3734 bool exit_now = false; 3735 bool interrupt_requested = false; 3736 while (!exit_now) { 3737 EventSP event_sp; 3738 GetEventsPrivate(event_sp, llvm::None, control_only); 3739 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3740 LLDB_LOGF(log, 3741 "Process::%s (arg = %p, pid = %" PRIu64 3742 ") got a control event: %d", 3743 __FUNCTION__, static_cast<void *>(this), GetID(), 3744 event_sp->GetType()); 3745 3746 switch (event_sp->GetType()) { 3747 case eBroadcastInternalStateControlStop: 3748 exit_now = true; 3749 break; // doing any internal state management below 3750 3751 case eBroadcastInternalStateControlPause: 3752 control_only = true; 3753 break; 3754 3755 case eBroadcastInternalStateControlResume: 3756 control_only = false; 3757 break; 3758 } 3759 3760 continue; 3761 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 3762 if (m_public_state.GetValue() == eStateAttaching) { 3763 LLDB_LOGF(log, 3764 "Process::%s (arg = %p, pid = %" PRIu64 3765 ") woke up with an interrupt while attaching - " 3766 "forwarding interrupt.", 3767 __FUNCTION__, static_cast<void *>(this), GetID()); 3768 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 3769 } else if (StateIsRunningState(m_last_broadcast_state)) { 3770 LLDB_LOGF(log, 3771 "Process::%s (arg = %p, pid = %" PRIu64 3772 ") woke up with an interrupt - Halting.", 3773 __FUNCTION__, static_cast<void *>(this), GetID()); 3774 Status error = HaltPrivate(); 3775 if (error.Fail() && log) 3776 LLDB_LOGF(log, 3777 "Process::%s (arg = %p, pid = %" PRIu64 3778 ") failed to halt the process: %s", 3779 __FUNCTION__, static_cast<void *>(this), GetID(), 3780 error.AsCString()); 3781 // Halt should generate a stopped event. Make a note of the fact that 3782 // we were doing the interrupt, so we can set the interrupted flag 3783 // after we receive the event. We deliberately set this to true even if 3784 // HaltPrivate failed, so that we can interrupt on the next natural 3785 // stop. 3786 interrupt_requested = true; 3787 } else { 3788 // This can happen when someone (e.g. Process::Halt) sees that we are 3789 // running and sends an interrupt request, but the process actually 3790 // stops before we receive it. In that case, we can just ignore the 3791 // request. We use m_last_broadcast_state, because the Stopped event 3792 // may not have been popped of the event queue yet, which is when the 3793 // public state gets updated. 3794 LLDB_LOGF(log, 3795 "Process::%s ignoring interrupt as we have already stopped.", 3796 __FUNCTION__); 3797 } 3798 continue; 3799 } 3800 3801 const StateType internal_state = 3802 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3803 3804 if (internal_state != eStateInvalid) { 3805 if (m_clear_thread_plans_on_stop && 3806 StateIsStoppedState(internal_state, true)) { 3807 m_clear_thread_plans_on_stop = false; 3808 m_thread_list.DiscardThreadPlans(); 3809 } 3810 3811 if (interrupt_requested) { 3812 if (StateIsStoppedState(internal_state, true)) { 3813 // We requested the interrupt, so mark this as such in the stop event 3814 // so clients can tell an interrupted process from a natural stop 3815 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 3816 interrupt_requested = false; 3817 } else if (log) { 3818 LLDB_LOGF(log, 3819 "Process::%s interrupt_requested, but a non-stopped " 3820 "state '%s' received.", 3821 __FUNCTION__, StateAsCString(internal_state)); 3822 } 3823 } 3824 3825 HandlePrivateEvent(event_sp); 3826 } 3827 3828 if (internal_state == eStateInvalid || internal_state == eStateExited || 3829 internal_state == eStateDetached) { 3830 LLDB_LOGF(log, 3831 "Process::%s (arg = %p, pid = %" PRIu64 3832 ") about to exit with internal state %s...", 3833 __FUNCTION__, static_cast<void *>(this), GetID(), 3834 StateAsCString(internal_state)); 3835 3836 break; 3837 } 3838 } 3839 3840 // Verify log is still enabled before attempting to write to it... 3841 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 3842 __FUNCTION__, static_cast<void *>(this), GetID()); 3843 3844 // If we are a secondary thread, then the primary thread we are working for 3845 // will have already acquired the public_run_lock, and isn't done with what 3846 // it was doing yet, so don't try to change it on the way out. 3847 if (!is_secondary_thread) 3848 m_public_run_lock.SetStopped(); 3849 return {}; 3850 } 3851 3852 // Process Event Data 3853 3854 Process::ProcessEventData::ProcessEventData() 3855 : EventData(), m_process_wp(), m_state(eStateInvalid), m_restarted(false), 3856 m_update_state(0), m_interrupted(false) {} 3857 3858 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 3859 StateType state) 3860 : EventData(), m_process_wp(), m_state(state), m_restarted(false), 3861 m_update_state(0), m_interrupted(false) { 3862 if (process_sp) 3863 m_process_wp = process_sp; 3864 } 3865 3866 Process::ProcessEventData::~ProcessEventData() = default; 3867 3868 ConstString Process::ProcessEventData::GetFlavorString() { 3869 static ConstString g_flavor("Process::ProcessEventData"); 3870 return g_flavor; 3871 } 3872 3873 ConstString Process::ProcessEventData::GetFlavor() const { 3874 return ProcessEventData::GetFlavorString(); 3875 } 3876 3877 bool Process::ProcessEventData::ShouldStop(Event *event_ptr, 3878 bool &found_valid_stopinfo) { 3879 found_valid_stopinfo = false; 3880 3881 ProcessSP process_sp(m_process_wp.lock()); 3882 if (!process_sp) 3883 return false; 3884 3885 ThreadList &curr_thread_list = process_sp->GetThreadList(); 3886 uint32_t num_threads = curr_thread_list.GetSize(); 3887 uint32_t idx; 3888 3889 // The actions might change one of the thread's stop_info's opinions about 3890 // whether we should stop the process, so we need to query that as we go. 3891 3892 // One other complication here, is that we try to catch any case where the 3893 // target has run (except for expressions) and immediately exit, but if we 3894 // get that wrong (which is possible) then the thread list might have 3895 // changed, and that would cause our iteration here to crash. We could 3896 // make a copy of the thread list, but we'd really like to also know if it 3897 // has changed at all, so we make up a vector of the thread ID's and check 3898 // what we get back against this list & bag out if anything differs. 3899 ThreadList not_suspended_thread_list(process_sp.get()); 3900 std::vector<uint32_t> thread_index_array(num_threads); 3901 uint32_t not_suspended_idx = 0; 3902 for (idx = 0; idx < num_threads; ++idx) { 3903 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 3904 3905 /* 3906 Filter out all suspended threads, they could not be the reason 3907 of stop and no need to perform any actions on them. 3908 */ 3909 if (thread_sp->GetResumeState() != eStateSuspended) { 3910 not_suspended_thread_list.AddThread(thread_sp); 3911 thread_index_array[not_suspended_idx] = thread_sp->GetIndexID(); 3912 not_suspended_idx++; 3913 } 3914 } 3915 3916 // Use this to track whether we should continue from here. We will only 3917 // continue the target running if no thread says we should stop. Of course 3918 // if some thread's PerformAction actually sets the target running, then it 3919 // doesn't matter what the other threads say... 3920 3921 bool still_should_stop = false; 3922 3923 // Sometimes - for instance if we have a bug in the stub we are talking to, 3924 // we stop but no thread has a valid stop reason. In that case we should 3925 // just stop, because we have no way of telling what the right thing to do 3926 // is, and it's better to let the user decide than continue behind their 3927 // backs. 3928 3929 for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) { 3930 curr_thread_list = process_sp->GetThreadList(); 3931 if (curr_thread_list.GetSize() != num_threads) { 3932 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 3933 LIBLLDB_LOG_PROCESS)); 3934 LLDB_LOGF( 3935 log, 3936 "Number of threads changed from %u to %u while processing event.", 3937 num_threads, curr_thread_list.GetSize()); 3938 break; 3939 } 3940 3941 lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx); 3942 3943 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 3944 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 3945 LIBLLDB_LOG_PROCESS)); 3946 LLDB_LOGF(log, 3947 "The thread at position %u changed from %u to %u while " 3948 "processing event.", 3949 idx, thread_index_array[idx], thread_sp->GetIndexID()); 3950 break; 3951 } 3952 3953 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 3954 if (stop_info_sp && stop_info_sp->IsValid()) { 3955 found_valid_stopinfo = true; 3956 bool this_thread_wants_to_stop; 3957 if (stop_info_sp->GetOverrideShouldStop()) { 3958 this_thread_wants_to_stop = 3959 stop_info_sp->GetOverriddenShouldStopValue(); 3960 } else { 3961 stop_info_sp->PerformAction(event_ptr); 3962 // The stop action might restart the target. If it does, then we 3963 // want to mark that in the event so that whoever is receiving it 3964 // will know to wait for the running event and reflect that state 3965 // appropriately. We also need to stop processing actions, since they 3966 // aren't expecting the target to be running. 3967 3968 // FIXME: we might have run. 3969 if (stop_info_sp->HasTargetRunSinceMe()) { 3970 SetRestarted(true); 3971 break; 3972 } 3973 3974 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 3975 } 3976 3977 if (!still_should_stop) 3978 still_should_stop = this_thread_wants_to_stop; 3979 } 3980 } 3981 3982 return still_should_stop; 3983 } 3984 3985 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 3986 ProcessSP process_sp(m_process_wp.lock()); 3987 3988 if (!process_sp) 3989 return; 3990 3991 // This function gets called twice for each event, once when the event gets 3992 // pulled off of the private process event queue, and then any number of 3993 // times, first when it gets pulled off of the public event queue, then other 3994 // times when we're pretending that this is where we stopped at the end of 3995 // expression evaluation. m_update_state is used to distinguish these three 3996 // cases; it is 0 when we're just pulling it off for private handling, and > 3997 // 1 for expression evaluation, and we don't want to do the breakpoint 3998 // command handling then. 3999 if (m_update_state != 1) 4000 return; 4001 4002 process_sp->SetPublicState( 4003 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4004 4005 if (m_state == eStateStopped && !m_restarted) { 4006 // Let process subclasses know we are about to do a public stop and do 4007 // anything they might need to in order to speed up register and memory 4008 // accesses. 4009 process_sp->WillPublicStop(); 4010 } 4011 4012 // If this is a halt event, even if the halt stopped with some reason other 4013 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 4014 // the halt request came through) don't do the StopInfo actions, as they may 4015 // end up restarting the process. 4016 if (m_interrupted) 4017 return; 4018 4019 // If we're not stopped or have restarted, then skip the StopInfo actions: 4020 if (m_state != eStateStopped || m_restarted) { 4021 return; 4022 } 4023 4024 bool does_anybody_have_an_opinion = false; 4025 bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion); 4026 4027 if (GetRestarted()) { 4028 return; 4029 } 4030 4031 if (!still_should_stop && does_anybody_have_an_opinion) { 4032 // We've been asked to continue, so do that here. 4033 SetRestarted(true); 4034 // Use the public resume method here, since this is just extending a 4035 // public resume. 4036 process_sp->PrivateResume(); 4037 } else { 4038 bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) && 4039 !process_sp->StateChangedIsHijackedForSynchronousResume(); 4040 4041 if (!hijacked) { 4042 // If we didn't restart, run the Stop Hooks here. 4043 // Don't do that if state changed events aren't hooked up to the 4044 // public (or SyncResume) broadcasters. StopHooks are just for 4045 // real public stops. They might also restart the target, 4046 // so watch for that. 4047 if (process_sp->GetTarget().RunStopHooks()) 4048 SetRestarted(true); 4049 } 4050 } 4051 } 4052 4053 void Process::ProcessEventData::Dump(Stream *s) const { 4054 ProcessSP process_sp(m_process_wp.lock()); 4055 4056 if (process_sp) 4057 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4058 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4059 else 4060 s->PutCString(" process = NULL, "); 4061 4062 s->Printf("state = %s", StateAsCString(GetState())); 4063 } 4064 4065 const Process::ProcessEventData * 4066 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4067 if (event_ptr) { 4068 const EventData *event_data = event_ptr->GetData(); 4069 if (event_data && 4070 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4071 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4072 } 4073 return nullptr; 4074 } 4075 4076 ProcessSP 4077 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4078 ProcessSP process_sp; 4079 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4080 if (data) 4081 process_sp = data->GetProcessSP(); 4082 return process_sp; 4083 } 4084 4085 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4086 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4087 if (data == nullptr) 4088 return eStateInvalid; 4089 else 4090 return data->GetState(); 4091 } 4092 4093 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4094 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4095 if (data == nullptr) 4096 return false; 4097 else 4098 return data->GetRestarted(); 4099 } 4100 4101 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4102 bool new_value) { 4103 ProcessEventData *data = 4104 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4105 if (data != nullptr) 4106 data->SetRestarted(new_value); 4107 } 4108 4109 size_t 4110 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4111 ProcessEventData *data = 4112 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4113 if (data != nullptr) 4114 return data->GetNumRestartedReasons(); 4115 else 4116 return 0; 4117 } 4118 4119 const char * 4120 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4121 size_t idx) { 4122 ProcessEventData *data = 4123 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4124 if (data != nullptr) 4125 return data->GetRestartedReasonAtIndex(idx); 4126 else 4127 return nullptr; 4128 } 4129 4130 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4131 const char *reason) { 4132 ProcessEventData *data = 4133 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4134 if (data != nullptr) 4135 data->AddRestartedReason(reason); 4136 } 4137 4138 bool Process::ProcessEventData::GetInterruptedFromEvent( 4139 const Event *event_ptr) { 4140 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4141 if (data == nullptr) 4142 return false; 4143 else 4144 return data->GetInterrupted(); 4145 } 4146 4147 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4148 bool new_value) { 4149 ProcessEventData *data = 4150 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4151 if (data != nullptr) 4152 data->SetInterrupted(new_value); 4153 } 4154 4155 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4156 ProcessEventData *data = 4157 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4158 if (data) { 4159 data->SetUpdateStateOnRemoval(); 4160 return true; 4161 } 4162 return false; 4163 } 4164 4165 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4166 4167 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4168 exe_ctx.SetTargetPtr(&GetTarget()); 4169 exe_ctx.SetProcessPtr(this); 4170 exe_ctx.SetThreadPtr(nullptr); 4171 exe_ctx.SetFramePtr(nullptr); 4172 } 4173 4174 // uint32_t 4175 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4176 // std::vector<lldb::pid_t> &pids) 4177 //{ 4178 // return 0; 4179 //} 4180 // 4181 // ArchSpec 4182 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4183 //{ 4184 // return Host::GetArchSpecForExistingProcess (pid); 4185 //} 4186 // 4187 // ArchSpec 4188 // Process::GetArchSpecForExistingProcess (const char *process_name) 4189 //{ 4190 // return Host::GetArchSpecForExistingProcess (process_name); 4191 //} 4192 4193 void Process::AppendSTDOUT(const char *s, size_t len) { 4194 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4195 m_stdout_data.append(s, len); 4196 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4197 new ProcessEventData(shared_from_this(), GetState())); 4198 } 4199 4200 void Process::AppendSTDERR(const char *s, size_t len) { 4201 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4202 m_stderr_data.append(s, len); 4203 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4204 new ProcessEventData(shared_from_this(), GetState())); 4205 } 4206 4207 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4208 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4209 m_profile_data.push_back(one_profile_data); 4210 BroadcastEventIfUnique(eBroadcastBitProfileData, 4211 new ProcessEventData(shared_from_this(), GetState())); 4212 } 4213 4214 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4215 const StructuredDataPluginSP &plugin_sp) { 4216 BroadcastEvent( 4217 eBroadcastBitStructuredData, 4218 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4219 } 4220 4221 StructuredDataPluginSP 4222 Process::GetStructuredDataPlugin(ConstString type_name) const { 4223 auto find_it = m_structured_data_plugin_map.find(type_name); 4224 if (find_it != m_structured_data_plugin_map.end()) 4225 return find_it->second; 4226 else 4227 return StructuredDataPluginSP(); 4228 } 4229 4230 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4231 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4232 if (m_profile_data.empty()) 4233 return 0; 4234 4235 std::string &one_profile_data = m_profile_data.front(); 4236 size_t bytes_available = one_profile_data.size(); 4237 if (bytes_available > 0) { 4238 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4239 LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4240 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4241 if (bytes_available > buf_size) { 4242 memcpy(buf, one_profile_data.c_str(), buf_size); 4243 one_profile_data.erase(0, buf_size); 4244 bytes_available = buf_size; 4245 } else { 4246 memcpy(buf, one_profile_data.c_str(), bytes_available); 4247 m_profile_data.erase(m_profile_data.begin()); 4248 } 4249 } 4250 return bytes_available; 4251 } 4252 4253 // Process STDIO 4254 4255 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4256 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4257 size_t bytes_available = m_stdout_data.size(); 4258 if (bytes_available > 0) { 4259 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4260 LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4261 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4262 if (bytes_available > buf_size) { 4263 memcpy(buf, m_stdout_data.c_str(), buf_size); 4264 m_stdout_data.erase(0, buf_size); 4265 bytes_available = buf_size; 4266 } else { 4267 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4268 m_stdout_data.clear(); 4269 } 4270 } 4271 return bytes_available; 4272 } 4273 4274 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4275 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4276 size_t bytes_available = m_stderr_data.size(); 4277 if (bytes_available > 0) { 4278 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4279 LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4280 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4281 if (bytes_available > buf_size) { 4282 memcpy(buf, m_stderr_data.c_str(), buf_size); 4283 m_stderr_data.erase(0, buf_size); 4284 bytes_available = buf_size; 4285 } else { 4286 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4287 m_stderr_data.clear(); 4288 } 4289 } 4290 return bytes_available; 4291 } 4292 4293 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4294 size_t src_len) { 4295 Process *process = (Process *)baton; 4296 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4297 } 4298 4299 class IOHandlerProcessSTDIO : public IOHandler { 4300 public: 4301 IOHandlerProcessSTDIO(Process *process, int write_fd) 4302 : IOHandler(process->GetTarget().GetDebugger(), 4303 IOHandler::Type::ProcessIO), 4304 m_process(process), 4305 m_read_file(GetInputFD(), File::eOpenOptionRead, false), 4306 m_write_file(write_fd, File::eOpenOptionWrite, false) { 4307 m_pipe.CreateNew(false); 4308 } 4309 4310 ~IOHandlerProcessSTDIO() override = default; 4311 4312 // Each IOHandler gets to run until it is done. It should read data from the 4313 // "in" and place output into "out" and "err and return when done. 4314 void Run() override { 4315 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4316 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4317 SetIsDone(true); 4318 return; 4319 } 4320 4321 SetIsDone(false); 4322 const int read_fd = m_read_file.GetDescriptor(); 4323 TerminalState terminal_state; 4324 terminal_state.Save(read_fd, false); 4325 Terminal terminal(read_fd); 4326 terminal.SetCanonical(false); 4327 terminal.SetEcho(false); 4328 // FD_ZERO, FD_SET are not supported on windows 4329 #ifndef _WIN32 4330 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4331 m_is_running = true; 4332 while (!GetIsDone()) { 4333 SelectHelper select_helper; 4334 select_helper.FDSetRead(read_fd); 4335 select_helper.FDSetRead(pipe_read_fd); 4336 Status error = select_helper.Select(); 4337 4338 if (error.Fail()) { 4339 SetIsDone(true); 4340 } else { 4341 char ch = 0; 4342 size_t n; 4343 if (select_helper.FDIsSetRead(read_fd)) { 4344 n = 1; 4345 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4346 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4347 SetIsDone(true); 4348 } else 4349 SetIsDone(true); 4350 } 4351 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4352 size_t bytes_read; 4353 // Consume the interrupt byte 4354 Status error = m_pipe.Read(&ch, 1, bytes_read); 4355 if (error.Success()) { 4356 switch (ch) { 4357 case 'q': 4358 SetIsDone(true); 4359 break; 4360 case 'i': 4361 if (StateIsRunningState(m_process->GetState())) 4362 m_process->SendAsyncInterrupt(); 4363 break; 4364 } 4365 } 4366 } 4367 } 4368 } 4369 m_is_running = false; 4370 #endif 4371 terminal_state.Restore(); 4372 } 4373 4374 void Cancel() override { 4375 SetIsDone(true); 4376 // Only write to our pipe to cancel if we are in 4377 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4378 // is being run from the command interpreter: 4379 // 4380 // (lldb) step_process_thousands_of_times 4381 // 4382 // In this case the command interpreter will be in the middle of handling 4383 // the command and if the process pushes and pops the IOHandler thousands 4384 // of times, we can end up writing to m_pipe without ever consuming the 4385 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4386 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4387 if (m_is_running) { 4388 char ch = 'q'; // Send 'q' for quit 4389 size_t bytes_written = 0; 4390 m_pipe.Write(&ch, 1, bytes_written); 4391 } 4392 } 4393 4394 bool Interrupt() override { 4395 // Do only things that are safe to do in an interrupt context (like in a 4396 // SIGINT handler), like write 1 byte to a file descriptor. This will 4397 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4398 // that was written to the pipe and then call 4399 // m_process->SendAsyncInterrupt() from a much safer location in code. 4400 if (m_active) { 4401 char ch = 'i'; // Send 'i' for interrupt 4402 size_t bytes_written = 0; 4403 Status result = m_pipe.Write(&ch, 1, bytes_written); 4404 return result.Success(); 4405 } else { 4406 // This IOHandler might be pushed on the stack, but not being run 4407 // currently so do the right thing if we aren't actively watching for 4408 // STDIN by sending the interrupt to the process. Otherwise the write to 4409 // the pipe above would do nothing. This can happen when the command 4410 // interpreter is running and gets a "expression ...". It will be on the 4411 // IOHandler thread and sending the input is complete to the delegate 4412 // which will cause the expression to run, which will push the process IO 4413 // handler, but not run it. 4414 4415 if (StateIsRunningState(m_process->GetState())) { 4416 m_process->SendAsyncInterrupt(); 4417 return true; 4418 } 4419 } 4420 return false; 4421 } 4422 4423 void GotEOF() override {} 4424 4425 protected: 4426 Process *m_process; 4427 NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB 4428 NativeFile m_write_file; // Write to this file (usually the master pty for 4429 // getting io to debuggee) 4430 Pipe m_pipe; 4431 std::atomic<bool> m_is_running{false}; 4432 }; 4433 4434 void Process::SetSTDIOFileDescriptor(int fd) { 4435 // First set up the Read Thread for reading/handling process I/O 4436 m_stdio_communication.SetConnection( 4437 std::make_unique<ConnectionFileDescriptor>(fd, true)); 4438 if (m_stdio_communication.IsConnected()) { 4439 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4440 STDIOReadThreadBytesReceived, this); 4441 m_stdio_communication.StartReadThread(); 4442 4443 // Now read thread is set up, set up input reader. 4444 4445 if (!m_process_input_reader) 4446 m_process_input_reader = 4447 std::make_shared<IOHandlerProcessSTDIO>(this, fd); 4448 } 4449 } 4450 4451 bool Process::ProcessIOHandlerIsActive() { 4452 IOHandlerSP io_handler_sp(m_process_input_reader); 4453 if (io_handler_sp) 4454 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4455 return false; 4456 } 4457 bool Process::PushProcessIOHandler() { 4458 IOHandlerSP io_handler_sp(m_process_input_reader); 4459 if (io_handler_sp) { 4460 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4461 LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); 4462 4463 io_handler_sp->SetIsDone(false); 4464 // If we evaluate an utility function, then we don't cancel the current 4465 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the 4466 // existing IOHandler that potentially provides the user interface (e.g. 4467 // the IOHandler for Editline). 4468 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); 4469 GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp, 4470 cancel_top_handler); 4471 return true; 4472 } 4473 return false; 4474 } 4475 4476 bool Process::PopProcessIOHandler() { 4477 IOHandlerSP io_handler_sp(m_process_input_reader); 4478 if (io_handler_sp) 4479 return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp); 4480 return false; 4481 } 4482 4483 // The process needs to know about installed plug-ins 4484 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4485 4486 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4487 4488 namespace { 4489 // RestorePlanState is used to record the "is private", "is master" and "okay 4490 // to discard" fields of the plan we are running, and reset it on Clean or on 4491 // destruction. It will only reset the state once, so you can call Clean and 4492 // then monkey with the state and it won't get reset on you again. 4493 4494 class RestorePlanState { 4495 public: 4496 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4497 : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) { 4498 if (m_thread_plan_sp) { 4499 m_private = m_thread_plan_sp->GetPrivate(); 4500 m_is_master = m_thread_plan_sp->IsMasterPlan(); 4501 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4502 } 4503 } 4504 4505 ~RestorePlanState() { Clean(); } 4506 4507 void Clean() { 4508 if (!m_already_reset && m_thread_plan_sp) { 4509 m_already_reset = true; 4510 m_thread_plan_sp->SetPrivate(m_private); 4511 m_thread_plan_sp->SetIsMasterPlan(m_is_master); 4512 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4513 } 4514 } 4515 4516 private: 4517 lldb::ThreadPlanSP m_thread_plan_sp; 4518 bool m_already_reset; 4519 bool m_private; 4520 bool m_is_master; 4521 bool m_okay_to_discard; 4522 }; 4523 } // anonymous namespace 4524 4525 static microseconds 4526 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4527 const milliseconds default_one_thread_timeout(250); 4528 4529 // If the overall wait is forever, then we don't need to worry about it. 4530 if (!options.GetTimeout()) { 4531 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4532 : default_one_thread_timeout; 4533 } 4534 4535 // If the one thread timeout is set, use it. 4536 if (options.GetOneThreadTimeout()) 4537 return *options.GetOneThreadTimeout(); 4538 4539 // Otherwise use half the total timeout, bounded by the 4540 // default_one_thread_timeout. 4541 return std::min<microseconds>(default_one_thread_timeout, 4542 *options.GetTimeout() / 2); 4543 } 4544 4545 static Timeout<std::micro> 4546 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4547 bool before_first_timeout) { 4548 // If we are going to run all threads the whole time, or if we are only going 4549 // to run one thread, we can just return the overall timeout. 4550 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4551 return options.GetTimeout(); 4552 4553 if (before_first_timeout) 4554 return GetOneThreadExpressionTimeout(options); 4555 4556 if (!options.GetTimeout()) 4557 return llvm::None; 4558 else 4559 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4560 } 4561 4562 static llvm::Optional<ExpressionResults> 4563 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp, 4564 RestorePlanState &restorer, const EventSP &event_sp, 4565 EventSP &event_to_broadcast_sp, 4566 const EvaluateExpressionOptions &options, 4567 bool handle_interrupts) { 4568 Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS); 4569 4570 ThreadSP thread_sp = thread_plan_sp->GetTarget() 4571 .GetProcessSP() 4572 ->GetThreadList() 4573 .FindThreadByID(thread_id); 4574 if (!thread_sp) { 4575 LLDB_LOG(log, 4576 "The thread on which we were running the " 4577 "expression: tid = {0}, exited while " 4578 "the expression was running.", 4579 thread_id); 4580 return eExpressionThreadVanished; 4581 } 4582 4583 ThreadPlanSP plan = thread_sp->GetCompletedPlan(); 4584 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4585 LLDB_LOG(log, "execution completed successfully"); 4586 4587 // Restore the plan state so it will get reported as intended when we are 4588 // done. 4589 restorer.Clean(); 4590 return eExpressionCompleted; 4591 } 4592 4593 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4594 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4595 stop_info_sp->ShouldNotify(event_sp.get())) { 4596 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4597 if (!options.DoesIgnoreBreakpoints()) { 4598 // Restore the plan state and then force Private to false. We are going 4599 // to stop because of this plan so we need it to become a public plan or 4600 // it won't report correctly when we continue to its termination later 4601 // on. 4602 restorer.Clean(); 4603 thread_plan_sp->SetPrivate(false); 4604 event_to_broadcast_sp = event_sp; 4605 } 4606 return eExpressionHitBreakpoint; 4607 } 4608 4609 if (!handle_interrupts && 4610 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4611 return llvm::None; 4612 4613 LLDB_LOG(log, "thread plan did not successfully complete"); 4614 if (!options.DoesUnwindOnError()) 4615 event_to_broadcast_sp = event_sp; 4616 return eExpressionInterrupted; 4617 } 4618 4619 ExpressionResults 4620 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4621 lldb::ThreadPlanSP &thread_plan_sp, 4622 const EvaluateExpressionOptions &options, 4623 DiagnosticManager &diagnostic_manager) { 4624 ExpressionResults return_value = eExpressionSetupError; 4625 4626 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4627 4628 if (!thread_plan_sp) { 4629 diagnostic_manager.PutString( 4630 eDiagnosticSeverityError, 4631 "RunThreadPlan called with empty thread plan."); 4632 return eExpressionSetupError; 4633 } 4634 4635 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4636 diagnostic_manager.PutString( 4637 eDiagnosticSeverityError, 4638 "RunThreadPlan called with an invalid thread plan."); 4639 return eExpressionSetupError; 4640 } 4641 4642 if (exe_ctx.GetProcessPtr() != this) { 4643 diagnostic_manager.PutString(eDiagnosticSeverityError, 4644 "RunThreadPlan called on wrong process."); 4645 return eExpressionSetupError; 4646 } 4647 4648 Thread *thread = exe_ctx.GetThreadPtr(); 4649 if (thread == nullptr) { 4650 diagnostic_manager.PutString(eDiagnosticSeverityError, 4651 "RunThreadPlan called with invalid thread."); 4652 return eExpressionSetupError; 4653 } 4654 4655 // Record the thread's id so we can tell when a thread we were using 4656 // to run the expression exits during the expression evaluation. 4657 lldb::tid_t expr_thread_id = thread->GetID(); 4658 4659 // We need to change some of the thread plan attributes for the thread plan 4660 // runner. This will restore them when we are done: 4661 4662 RestorePlanState thread_plan_restorer(thread_plan_sp); 4663 4664 // We rely on the thread plan we are running returning "PlanCompleted" if 4665 // when it successfully completes. For that to be true the plan can't be 4666 // private - since private plans suppress themselves in the GetCompletedPlan 4667 // call. 4668 4669 thread_plan_sp->SetPrivate(false); 4670 4671 // The plans run with RunThreadPlan also need to be terminal master plans or 4672 // when they are done we will end up asking the plan above us whether we 4673 // should stop, which may give the wrong answer. 4674 4675 thread_plan_sp->SetIsMasterPlan(true); 4676 thread_plan_sp->SetOkayToDiscard(false); 4677 4678 // If we are running some utility expression for LLDB, we now have to mark 4679 // this in the ProcesModID of this process. This RAII takes care of marking 4680 // and reverting the mark it once we are done running the expression. 4681 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); 4682 4683 if (m_private_state.GetValue() != eStateStopped) { 4684 diagnostic_manager.PutString( 4685 eDiagnosticSeverityError, 4686 "RunThreadPlan called while the private state was not stopped."); 4687 return eExpressionSetupError; 4688 } 4689 4690 // Save the thread & frame from the exe_ctx for restoration after we run 4691 const uint32_t thread_idx_id = thread->GetIndexID(); 4692 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4693 if (!selected_frame_sp) { 4694 thread->SetSelectedFrame(nullptr); 4695 selected_frame_sp = thread->GetSelectedFrame(); 4696 if (!selected_frame_sp) { 4697 diagnostic_manager.Printf( 4698 eDiagnosticSeverityError, 4699 "RunThreadPlan called without a selected frame on thread %d", 4700 thread_idx_id); 4701 return eExpressionSetupError; 4702 } 4703 } 4704 4705 // Make sure the timeout values make sense. The one thread timeout needs to 4706 // be smaller than the overall timeout. 4707 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4708 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4709 diagnostic_manager.PutString(eDiagnosticSeverityError, 4710 "RunThreadPlan called with one thread " 4711 "timeout greater than total timeout"); 4712 return eExpressionSetupError; 4713 } 4714 4715 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4716 4717 // N.B. Running the target may unset the currently selected thread and frame. 4718 // We don't want to do that either, so we should arrange to reset them as 4719 // well. 4720 4721 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4722 4723 uint32_t selected_tid; 4724 StackID selected_stack_id; 4725 if (selected_thread_sp) { 4726 selected_tid = selected_thread_sp->GetIndexID(); 4727 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4728 } else { 4729 selected_tid = LLDB_INVALID_THREAD_ID; 4730 } 4731 4732 HostThread backup_private_state_thread; 4733 lldb::StateType old_state = eStateInvalid; 4734 lldb::ThreadPlanSP stopper_base_plan_sp; 4735 4736 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4737 LIBLLDB_LOG_PROCESS)); 4738 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4739 // Yikes, we are running on the private state thread! So we can't wait for 4740 // public events on this thread, since we are the thread that is generating 4741 // public events. The simplest thing to do is to spin up a temporary thread 4742 // to handle private state thread events while we are fielding public 4743 // events here. 4744 LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " 4745 "another state thread to handle the events."); 4746 4747 backup_private_state_thread = m_private_state_thread; 4748 4749 // One other bit of business: we want to run just this thread plan and 4750 // anything it pushes, and then stop, returning control here. But in the 4751 // normal course of things, the plan above us on the stack would be given a 4752 // shot at the stop event before deciding to stop, and we don't want that. 4753 // So we insert a "stopper" base plan on the stack before the plan we want 4754 // to run. Since base plans always stop and return control to the user, 4755 // that will do just what we want. 4756 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4757 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4758 // Have to make sure our public state is stopped, since otherwise the 4759 // reporting logic below doesn't work correctly. 4760 old_state = m_public_state.GetValue(); 4761 m_public_state.SetValueNoLock(eStateStopped); 4762 4763 // Now spin up the private state thread: 4764 StartPrivateStateThread(true); 4765 } 4766 4767 thread->QueueThreadPlan( 4768 thread_plan_sp, false); // This used to pass "true" does that make sense? 4769 4770 if (options.GetDebug()) { 4771 // In this case, we aren't actually going to run, we just want to stop 4772 // right away. Flush this thread so we will refetch the stacks and show the 4773 // correct backtrace. 4774 // FIXME: To make this prettier we should invent some stop reason for this, 4775 // but that 4776 // is only cosmetic, and this functionality is only of use to lldb 4777 // developers who can live with not pretty... 4778 thread->Flush(); 4779 return eExpressionStoppedForDebug; 4780 } 4781 4782 ListenerSP listener_sp( 4783 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4784 4785 lldb::EventSP event_to_broadcast_sp; 4786 4787 { 4788 // This process event hijacker Hijacks the Public events and its destructor 4789 // makes sure that the process events get restored on exit to the function. 4790 // 4791 // If the event needs to propagate beyond the hijacker (e.g., the process 4792 // exits during execution), then the event is put into 4793 // event_to_broadcast_sp for rebroadcasting. 4794 4795 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 4796 4797 if (log) { 4798 StreamString s; 4799 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 4800 LLDB_LOGF(log, 4801 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 4802 " to run thread plan \"%s\".", 4803 thread_idx_id, expr_thread_id, s.GetData()); 4804 } 4805 4806 bool got_event; 4807 lldb::EventSP event_sp; 4808 lldb::StateType stop_state = lldb::eStateInvalid; 4809 4810 bool before_first_timeout = true; // This is set to false the first time 4811 // that we have to halt the target. 4812 bool do_resume = true; 4813 bool handle_running_event = true; 4814 4815 // This is just for accounting: 4816 uint32_t num_resumes = 0; 4817 4818 // If we are going to run all threads the whole time, or if we are only 4819 // going to run one thread, then we don't need the first timeout. So we 4820 // pretend we are after the first timeout already. 4821 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4822 before_first_timeout = false; 4823 4824 LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", 4825 options.GetStopOthers(), options.GetTryAllThreads(), 4826 before_first_timeout); 4827 4828 // This isn't going to work if there are unfetched events on the queue. Are 4829 // there cases where we might want to run the remaining events here, and 4830 // then try to call the function? That's probably being too tricky for our 4831 // own good. 4832 4833 Event *other_events = listener_sp->PeekAtNextEvent(); 4834 if (other_events != nullptr) { 4835 diagnostic_manager.PutString( 4836 eDiagnosticSeverityError, 4837 "RunThreadPlan called with pending events on the queue."); 4838 return eExpressionSetupError; 4839 } 4840 4841 // We also need to make sure that the next event is delivered. We might be 4842 // calling a function as part of a thread plan, in which case the last 4843 // delivered event could be the running event, and we don't want event 4844 // coalescing to cause us to lose OUR running event... 4845 ForceNextEventDelivery(); 4846 4847 // This while loop must exit out the bottom, there's cleanup that we need to do 4848 // when we are done. So don't call return anywhere within it. 4849 4850 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4851 // It's pretty much impossible to write test cases for things like: One 4852 // thread timeout expires, I go to halt, but the process already stopped on 4853 // the function call stop breakpoint. Turning on this define will make us 4854 // not fetch the first event till after the halt. So if you run a quick 4855 // function, it will have completed, and the completion event will be 4856 // waiting, when you interrupt for halt. The expression evaluation should 4857 // still succeed. 4858 bool miss_first_event = true; 4859 #endif 4860 while (true) { 4861 // We usually want to resume the process if we get to the top of the 4862 // loop. The only exception is if we get two running events with no 4863 // intervening stop, which can happen, we will just wait for then next 4864 // stop event. 4865 LLDB_LOGF(log, 4866 "Top of while loop: do_resume: %i handle_running_event: %i " 4867 "before_first_timeout: %i.", 4868 do_resume, handle_running_event, before_first_timeout); 4869 4870 if (do_resume || handle_running_event) { 4871 // Do the initial resume and wait for the running event before going 4872 // further. 4873 4874 if (do_resume) { 4875 num_resumes++; 4876 Status resume_error = PrivateResume(); 4877 if (!resume_error.Success()) { 4878 diagnostic_manager.Printf( 4879 eDiagnosticSeverityError, 4880 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 4881 resume_error.AsCString()); 4882 return_value = eExpressionSetupError; 4883 break; 4884 } 4885 } 4886 4887 got_event = 4888 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 4889 if (!got_event) { 4890 LLDB_LOGF(log, 4891 "Process::RunThreadPlan(): didn't get any event after " 4892 "resume %" PRIu32 ", exiting.", 4893 num_resumes); 4894 4895 diagnostic_manager.Printf(eDiagnosticSeverityError, 4896 "didn't get any event after resume %" PRIu32 4897 ", exiting.", 4898 num_resumes); 4899 return_value = eExpressionSetupError; 4900 break; 4901 } 4902 4903 stop_state = 4904 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4905 4906 if (stop_state != eStateRunning) { 4907 bool restarted = false; 4908 4909 if (stop_state == eStateStopped) { 4910 restarted = Process::ProcessEventData::GetRestartedFromEvent( 4911 event_sp.get()); 4912 LLDB_LOGF( 4913 log, 4914 "Process::RunThreadPlan(): didn't get running event after " 4915 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 4916 "handle_running_event: %i).", 4917 num_resumes, StateAsCString(stop_state), restarted, do_resume, 4918 handle_running_event); 4919 } 4920 4921 if (restarted) { 4922 // This is probably an overabundance of caution, I don't think I 4923 // should ever get a stopped & restarted event here. But if I do, 4924 // the best thing is to Halt and then get out of here. 4925 const bool clear_thread_plans = false; 4926 const bool use_run_lock = false; 4927 Halt(clear_thread_plans, use_run_lock); 4928 } 4929 4930 diagnostic_manager.Printf( 4931 eDiagnosticSeverityError, 4932 "didn't get running event after initial resume, got %s instead.", 4933 StateAsCString(stop_state)); 4934 return_value = eExpressionSetupError; 4935 break; 4936 } 4937 4938 if (log) 4939 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 4940 // We need to call the function synchronously, so spin waiting for it 4941 // to return. If we get interrupted while executing, we're going to 4942 // lose our context, and won't be able to gather the result at this 4943 // point. We set the timeout AFTER the resume, since the resume takes 4944 // some time and we don't want to charge that to the timeout. 4945 } else { 4946 if (log) 4947 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 4948 } 4949 4950 do_resume = true; 4951 handle_running_event = true; 4952 4953 // Now wait for the process to stop again: 4954 event_sp.reset(); 4955 4956 Timeout<std::micro> timeout = 4957 GetExpressionTimeout(options, before_first_timeout); 4958 if (log) { 4959 if (timeout) { 4960 auto now = system_clock::now(); 4961 LLDB_LOGF(log, 4962 "Process::RunThreadPlan(): about to wait - now is %s - " 4963 "endpoint is %s", 4964 llvm::to_string(now).c_str(), 4965 llvm::to_string(now + *timeout).c_str()); 4966 } else { 4967 LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); 4968 } 4969 } 4970 4971 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4972 // See comment above... 4973 if (miss_first_event) { 4974 std::this_thread::sleep_for(std::chrono::milliseconds(1)); 4975 miss_first_event = false; 4976 got_event = false; 4977 } else 4978 #endif 4979 got_event = listener_sp->GetEvent(event_sp, timeout); 4980 4981 if (got_event) { 4982 if (event_sp) { 4983 bool keep_going = false; 4984 if (event_sp->GetType() == eBroadcastBitInterrupt) { 4985 const bool clear_thread_plans = false; 4986 const bool use_run_lock = false; 4987 Halt(clear_thread_plans, use_run_lock); 4988 return_value = eExpressionInterrupted; 4989 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 4990 "execution halted by user interrupt."); 4991 LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " 4992 "eBroadcastBitInterrupted, exiting."); 4993 break; 4994 } else { 4995 stop_state = 4996 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4997 LLDB_LOGF(log, 4998 "Process::RunThreadPlan(): in while loop, got event: %s.", 4999 StateAsCString(stop_state)); 5000 5001 switch (stop_state) { 5002 case lldb::eStateStopped: { 5003 if (Process::ProcessEventData::GetRestartedFromEvent( 5004 event_sp.get())) { 5005 // If we were restarted, we just need to go back up to fetch 5006 // another event. 5007 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " 5008 "restart, so we'll continue waiting."); 5009 keep_going = true; 5010 do_resume = false; 5011 handle_running_event = true; 5012 } else { 5013 const bool handle_interrupts = true; 5014 return_value = *HandleStoppedEvent( 5015 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5016 event_sp, event_to_broadcast_sp, options, 5017 handle_interrupts); 5018 if (return_value == eExpressionThreadVanished) 5019 keep_going = false; 5020 } 5021 } break; 5022 5023 case lldb::eStateRunning: 5024 // This shouldn't really happen, but sometimes we do get two 5025 // running events without an intervening stop, and in that case 5026 // we should just go back to waiting for the stop. 5027 do_resume = false; 5028 keep_going = true; 5029 handle_running_event = false; 5030 break; 5031 5032 default: 5033 LLDB_LOGF(log, 5034 "Process::RunThreadPlan(): execution stopped with " 5035 "unexpected state: %s.", 5036 StateAsCString(stop_state)); 5037 5038 if (stop_state == eStateExited) 5039 event_to_broadcast_sp = event_sp; 5040 5041 diagnostic_manager.PutString( 5042 eDiagnosticSeverityError, 5043 "execution stopped with unexpected state."); 5044 return_value = eExpressionInterrupted; 5045 break; 5046 } 5047 } 5048 5049 if (keep_going) 5050 continue; 5051 else 5052 break; 5053 } else { 5054 if (log) 5055 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5056 "the event pointer was null. How odd..."); 5057 return_value = eExpressionInterrupted; 5058 break; 5059 } 5060 } else { 5061 // If we didn't get an event that means we've timed out... We will 5062 // interrupt the process here. Depending on what we were asked to do 5063 // we will either exit, or try with all threads running for the same 5064 // timeout. 5065 5066 if (log) { 5067 if (options.GetTryAllThreads()) { 5068 if (before_first_timeout) { 5069 LLDB_LOG(log, 5070 "Running function with one thread timeout timed out."); 5071 } else 5072 LLDB_LOG(log, "Restarting function with all threads enabled and " 5073 "timeout: {0} timed out, abandoning execution.", 5074 timeout); 5075 } else 5076 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5077 "abandoning execution.", 5078 timeout); 5079 } 5080 5081 // It is possible that between the time we issued the Halt, and we get 5082 // around to calling Halt the target could have stopped. That's fine, 5083 // Halt will figure that out and send the appropriate Stopped event. 5084 // BUT it is also possible that we stopped & restarted (e.g. hit a 5085 // signal with "stop" set to false.) In 5086 // that case, we'll get the stopped & restarted event, and we should go 5087 // back to waiting for the Halt's stopped event. That's what this 5088 // while loop does. 5089 5090 bool back_to_top = true; 5091 uint32_t try_halt_again = 0; 5092 bool do_halt = true; 5093 const uint32_t num_retries = 5; 5094 while (try_halt_again < num_retries) { 5095 Status halt_error; 5096 if (do_halt) { 5097 LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); 5098 const bool clear_thread_plans = false; 5099 const bool use_run_lock = false; 5100 Halt(clear_thread_plans, use_run_lock); 5101 } 5102 if (halt_error.Success()) { 5103 if (log) 5104 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5105 5106 got_event = 5107 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5108 5109 if (got_event) { 5110 stop_state = 5111 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5112 if (log) { 5113 LLDB_LOGF(log, 5114 "Process::RunThreadPlan(): Stopped with event: %s", 5115 StateAsCString(stop_state)); 5116 if (stop_state == lldb::eStateStopped && 5117 Process::ProcessEventData::GetInterruptedFromEvent( 5118 event_sp.get())) 5119 log->PutCString(" Event was the Halt interruption event."); 5120 } 5121 5122 if (stop_state == lldb::eStateStopped) { 5123 if (Process::ProcessEventData::GetRestartedFromEvent( 5124 event_sp.get())) { 5125 if (log) 5126 log->PutCString("Process::RunThreadPlan(): Went to halt " 5127 "but got a restarted event, there must be " 5128 "an un-restarted stopped event so try " 5129 "again... " 5130 "Exiting wait loop."); 5131 try_halt_again++; 5132 do_halt = false; 5133 continue; 5134 } 5135 5136 // Between the time we initiated the Halt and the time we 5137 // delivered it, the process could have already finished its 5138 // job. Check that here: 5139 const bool handle_interrupts = false; 5140 if (auto result = HandleStoppedEvent( 5141 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5142 event_sp, event_to_broadcast_sp, options, 5143 handle_interrupts)) { 5144 return_value = *result; 5145 back_to_top = false; 5146 break; 5147 } 5148 5149 if (!options.GetTryAllThreads()) { 5150 if (log) 5151 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5152 "was false, we stopped so now we're " 5153 "quitting."); 5154 return_value = eExpressionInterrupted; 5155 back_to_top = false; 5156 break; 5157 } 5158 5159 if (before_first_timeout) { 5160 // Set all the other threads to run, and return to the top of 5161 // the loop, which will continue; 5162 before_first_timeout = false; 5163 thread_plan_sp->SetStopOthers(false); 5164 if (log) 5165 log->PutCString( 5166 "Process::RunThreadPlan(): about to resume."); 5167 5168 back_to_top = true; 5169 break; 5170 } else { 5171 // Running all threads failed, so return Interrupted. 5172 if (log) 5173 log->PutCString("Process::RunThreadPlan(): running all " 5174 "threads timed out."); 5175 return_value = eExpressionInterrupted; 5176 back_to_top = false; 5177 break; 5178 } 5179 } 5180 } else { 5181 if (log) 5182 log->PutCString("Process::RunThreadPlan(): halt said it " 5183 "succeeded, but I got no event. " 5184 "I'm getting out of here passing Interrupted."); 5185 return_value = eExpressionInterrupted; 5186 back_to_top = false; 5187 break; 5188 } 5189 } else { 5190 try_halt_again++; 5191 continue; 5192 } 5193 } 5194 5195 if (!back_to_top || try_halt_again > num_retries) 5196 break; 5197 else 5198 continue; 5199 } 5200 } // END WAIT LOOP 5201 5202 // If we had to start up a temporary private state thread to run this 5203 // thread plan, shut it down now. 5204 if (backup_private_state_thread.IsJoinable()) { 5205 StopPrivateStateThread(); 5206 Status error; 5207 m_private_state_thread = backup_private_state_thread; 5208 if (stopper_base_plan_sp) { 5209 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5210 } 5211 if (old_state != eStateInvalid) 5212 m_public_state.SetValueNoLock(old_state); 5213 } 5214 5215 // If our thread went away on us, we need to get out of here without 5216 // doing any more work. We don't have to clean up the thread plan, that 5217 // will have happened when the Thread was destroyed. 5218 if (return_value == eExpressionThreadVanished) { 5219 return return_value; 5220 } 5221 5222 if (return_value != eExpressionCompleted && log) { 5223 // Print a backtrace into the log so we can figure out where we are: 5224 StreamString s; 5225 s.PutCString("Thread state after unsuccessful completion: \n"); 5226 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5227 log->PutString(s.GetString()); 5228 } 5229 // Restore the thread state if we are going to discard the plan execution. 5230 // There are three cases where this could happen: 1) The execution 5231 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5232 // was true 3) We got some other error, and discard_on_error was true 5233 bool should_unwind = (return_value == eExpressionInterrupted && 5234 options.DoesUnwindOnError()) || 5235 (return_value == eExpressionHitBreakpoint && 5236 options.DoesIgnoreBreakpoints()); 5237 5238 if (return_value == eExpressionCompleted || should_unwind) { 5239 thread_plan_sp->RestoreThreadState(); 5240 } 5241 5242 // Now do some processing on the results of the run: 5243 if (return_value == eExpressionInterrupted || 5244 return_value == eExpressionHitBreakpoint) { 5245 if (log) { 5246 StreamString s; 5247 if (event_sp) 5248 event_sp->Dump(&s); 5249 else { 5250 log->PutCString("Process::RunThreadPlan(): Stop event that " 5251 "interrupted us is NULL."); 5252 } 5253 5254 StreamString ts; 5255 5256 const char *event_explanation = nullptr; 5257 5258 do { 5259 if (!event_sp) { 5260 event_explanation = "<no event>"; 5261 break; 5262 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5263 event_explanation = "<user interrupt>"; 5264 break; 5265 } else { 5266 const Process::ProcessEventData *event_data = 5267 Process::ProcessEventData::GetEventDataFromEvent( 5268 event_sp.get()); 5269 5270 if (!event_data) { 5271 event_explanation = "<no event data>"; 5272 break; 5273 } 5274 5275 Process *process = event_data->GetProcessSP().get(); 5276 5277 if (!process) { 5278 event_explanation = "<no process>"; 5279 break; 5280 } 5281 5282 ThreadList &thread_list = process->GetThreadList(); 5283 5284 uint32_t num_threads = thread_list.GetSize(); 5285 uint32_t thread_index; 5286 5287 ts.Printf("<%u threads> ", num_threads); 5288 5289 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5290 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5291 5292 if (!thread) { 5293 ts.Printf("<?> "); 5294 continue; 5295 } 5296 5297 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5298 RegisterContext *register_context = 5299 thread->GetRegisterContext().get(); 5300 5301 if (register_context) 5302 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5303 else 5304 ts.Printf("[ip unknown] "); 5305 5306 // Show the private stop info here, the public stop info will be 5307 // from the last natural stop. 5308 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5309 if (stop_info_sp) { 5310 const char *stop_desc = stop_info_sp->GetDescription(); 5311 if (stop_desc) 5312 ts.PutCString(stop_desc); 5313 } 5314 ts.Printf(">"); 5315 } 5316 5317 event_explanation = ts.GetData(); 5318 } 5319 } while (false); 5320 5321 if (event_explanation) 5322 LLDB_LOGF(log, 5323 "Process::RunThreadPlan(): execution interrupted: %s %s", 5324 s.GetData(), event_explanation); 5325 else 5326 LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", 5327 s.GetData()); 5328 } 5329 5330 if (should_unwind) { 5331 LLDB_LOGF(log, 5332 "Process::RunThreadPlan: ExecutionInterrupted - " 5333 "discarding thread plans up to %p.", 5334 static_cast<void *>(thread_plan_sp.get())); 5335 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5336 } else { 5337 LLDB_LOGF(log, 5338 "Process::RunThreadPlan: ExecutionInterrupted - for " 5339 "plan: %p not discarding.", 5340 static_cast<void *>(thread_plan_sp.get())); 5341 } 5342 } else if (return_value == eExpressionSetupError) { 5343 if (log) 5344 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5345 5346 if (options.DoesUnwindOnError()) { 5347 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5348 } 5349 } else { 5350 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5351 if (log) 5352 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5353 return_value = eExpressionCompleted; 5354 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5355 if (log) 5356 log->PutCString( 5357 "Process::RunThreadPlan(): thread plan was discarded"); 5358 return_value = eExpressionDiscarded; 5359 } else { 5360 if (log) 5361 log->PutCString( 5362 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5363 if (options.DoesUnwindOnError() && thread_plan_sp) { 5364 if (log) 5365 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5366 "'cause unwind_on_error is set."); 5367 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5368 } 5369 } 5370 } 5371 5372 // Thread we ran the function in may have gone away because we ran the 5373 // target Check that it's still there, and if it is put it back in the 5374 // context. Also restore the frame in the context if it is still present. 5375 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5376 if (thread) { 5377 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5378 } 5379 5380 // Also restore the current process'es selected frame & thread, since this 5381 // function calling may be done behind the user's back. 5382 5383 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5384 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5385 selected_stack_id.IsValid()) { 5386 // We were able to restore the selected thread, now restore the frame: 5387 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5388 StackFrameSP old_frame_sp = 5389 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5390 selected_stack_id); 5391 if (old_frame_sp) 5392 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5393 old_frame_sp.get()); 5394 } 5395 } 5396 } 5397 5398 // If the process exited during the run of the thread plan, notify everyone. 5399 5400 if (event_to_broadcast_sp) { 5401 if (log) 5402 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5403 BroadcastEvent(event_to_broadcast_sp); 5404 } 5405 5406 return return_value; 5407 } 5408 5409 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5410 const char *result_name = "<unknown>"; 5411 5412 switch (result) { 5413 case eExpressionCompleted: 5414 result_name = "eExpressionCompleted"; 5415 break; 5416 case eExpressionDiscarded: 5417 result_name = "eExpressionDiscarded"; 5418 break; 5419 case eExpressionInterrupted: 5420 result_name = "eExpressionInterrupted"; 5421 break; 5422 case eExpressionHitBreakpoint: 5423 result_name = "eExpressionHitBreakpoint"; 5424 break; 5425 case eExpressionSetupError: 5426 result_name = "eExpressionSetupError"; 5427 break; 5428 case eExpressionParseError: 5429 result_name = "eExpressionParseError"; 5430 break; 5431 case eExpressionResultUnavailable: 5432 result_name = "eExpressionResultUnavailable"; 5433 break; 5434 case eExpressionTimedOut: 5435 result_name = "eExpressionTimedOut"; 5436 break; 5437 case eExpressionStoppedForDebug: 5438 result_name = "eExpressionStoppedForDebug"; 5439 break; 5440 case eExpressionThreadVanished: 5441 result_name = "eExpressionThreadVanished"; 5442 } 5443 return result_name; 5444 } 5445 5446 void Process::GetStatus(Stream &strm) { 5447 const StateType state = GetState(); 5448 if (StateIsStoppedState(state, false)) { 5449 if (state == eStateExited) { 5450 int exit_status = GetExitStatus(); 5451 const char *exit_description = GetExitDescription(); 5452 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5453 GetID(), exit_status, exit_status, 5454 exit_description ? exit_description : ""); 5455 } else { 5456 if (state == eStateConnected) 5457 strm.Printf("Connected to remote target.\n"); 5458 else 5459 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5460 } 5461 } else { 5462 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5463 } 5464 } 5465 5466 size_t Process::GetThreadStatus(Stream &strm, 5467 bool only_threads_with_stop_reason, 5468 uint32_t start_frame, uint32_t num_frames, 5469 uint32_t num_frames_with_source, 5470 bool stop_format) { 5471 size_t num_thread_infos_dumped = 0; 5472 5473 // You can't hold the thread list lock while calling Thread::GetStatus. That 5474 // very well might run code (e.g. if we need it to get return values or 5475 // arguments.) For that to work the process has to be able to acquire it. 5476 // So instead copy the thread ID's, and look them up one by one: 5477 5478 uint32_t num_threads; 5479 std::vector<lldb::tid_t> thread_id_array; 5480 // Scope for thread list locker; 5481 { 5482 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5483 ThreadList &curr_thread_list = GetThreadList(); 5484 num_threads = curr_thread_list.GetSize(); 5485 uint32_t idx; 5486 thread_id_array.resize(num_threads); 5487 for (idx = 0; idx < num_threads; ++idx) 5488 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5489 } 5490 5491 for (uint32_t i = 0; i < num_threads; i++) { 5492 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5493 if (thread_sp) { 5494 if (only_threads_with_stop_reason) { 5495 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5496 if (!stop_info_sp || !stop_info_sp->IsValid()) 5497 continue; 5498 } 5499 thread_sp->GetStatus(strm, start_frame, num_frames, 5500 num_frames_with_source, 5501 stop_format); 5502 ++num_thread_infos_dumped; 5503 } else { 5504 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5505 LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 5506 " vanished while running Thread::GetStatus."); 5507 } 5508 } 5509 return num_thread_infos_dumped; 5510 } 5511 5512 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5513 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5514 } 5515 5516 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5517 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5518 region.GetByteSize()); 5519 } 5520 5521 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5522 void *baton) { 5523 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5524 } 5525 5526 bool Process::RunPreResumeActions() { 5527 bool result = true; 5528 while (!m_pre_resume_actions.empty()) { 5529 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5530 m_pre_resume_actions.pop_back(); 5531 bool this_result = action.callback(action.baton); 5532 if (result) 5533 result = this_result; 5534 } 5535 return result; 5536 } 5537 5538 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5539 5540 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5541 { 5542 PreResumeCallbackAndBaton element(callback, baton); 5543 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5544 if (found_iter != m_pre_resume_actions.end()) 5545 { 5546 m_pre_resume_actions.erase(found_iter); 5547 } 5548 } 5549 5550 ProcessRunLock &Process::GetRunLock() { 5551 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5552 return m_private_run_lock; 5553 else 5554 return m_public_run_lock; 5555 } 5556 5557 bool Process::CurrentThreadIsPrivateStateThread() 5558 { 5559 return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); 5560 } 5561 5562 5563 void Process::Flush() { 5564 m_thread_list.Flush(); 5565 m_extended_thread_list.Flush(); 5566 m_extended_thread_stop_id = 0; 5567 m_queue_list.Clear(); 5568 m_queue_list_stop_id = 0; 5569 } 5570 5571 lldb::addr_t Process::GetCodeAddressMask() { 5572 if (m_code_address_mask == 0) { 5573 if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) { 5574 lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1); 5575 SetCodeAddressMask(address_mask); 5576 } 5577 } 5578 return m_code_address_mask; 5579 } 5580 5581 lldb::addr_t Process::GetDataAddressMask() { 5582 if (m_data_address_mask == 0) { 5583 if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) { 5584 lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1); 5585 SetDataAddressMask(address_mask); 5586 } 5587 } 5588 return m_data_address_mask; 5589 } 5590 5591 void Process::DidExec() { 5592 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 5593 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 5594 5595 Target &target = GetTarget(); 5596 target.CleanupProcess(); 5597 target.ClearModules(false); 5598 m_dynamic_checkers_up.reset(); 5599 m_abi_sp.reset(); 5600 m_system_runtime_up.reset(); 5601 m_os_up.reset(); 5602 m_dyld_up.reset(); 5603 m_jit_loaders_up.reset(); 5604 m_image_tokens.clear(); 5605 m_allocated_memory_cache.Clear(); 5606 { 5607 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5608 m_language_runtimes.clear(); 5609 } 5610 m_instrumentation_runtimes.clear(); 5611 m_thread_list.DiscardThreadPlans(); 5612 m_memory_cache.Clear(true); 5613 DoDidExec(); 5614 CompleteAttach(); 5615 // Flush the process (threads and all stack frames) after running 5616 // CompleteAttach() in case the dynamic loader loaded things in new 5617 // locations. 5618 Flush(); 5619 5620 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5621 // let the target know so it can do any cleanup it needs to. 5622 target.DidExec(); 5623 } 5624 5625 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5626 if (address == nullptr) { 5627 error.SetErrorString("Invalid address argument"); 5628 return LLDB_INVALID_ADDRESS; 5629 } 5630 5631 addr_t function_addr = LLDB_INVALID_ADDRESS; 5632 5633 addr_t addr = address->GetLoadAddress(&GetTarget()); 5634 std::map<addr_t, addr_t>::const_iterator iter = 5635 m_resolved_indirect_addresses.find(addr); 5636 if (iter != m_resolved_indirect_addresses.end()) { 5637 function_addr = (*iter).second; 5638 } else { 5639 if (!CallVoidArgVoidPtrReturn(address, function_addr)) { 5640 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5641 error.SetErrorStringWithFormat( 5642 "Unable to call resolver for indirect function %s", 5643 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5644 function_addr = LLDB_INVALID_ADDRESS; 5645 } else { 5646 if (ABISP abi_sp = GetABI()) 5647 function_addr = abi_sp->FixCodeAddress(function_addr); 5648 m_resolved_indirect_addresses.insert( 5649 std::pair<addr_t, addr_t>(addr, function_addr)); 5650 } 5651 } 5652 return function_addr; 5653 } 5654 5655 void Process::ModulesDidLoad(ModuleList &module_list) { 5656 // Inform the system runtime of the modified modules. 5657 SystemRuntime *sys_runtime = GetSystemRuntime(); 5658 if (sys_runtime) 5659 sys_runtime->ModulesDidLoad(module_list); 5660 5661 GetJITLoaders().ModulesDidLoad(module_list); 5662 5663 // Give the instrumentation runtimes a chance to be created before informing 5664 // them of the modified modules. 5665 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5666 m_instrumentation_runtimes); 5667 for (auto &runtime : m_instrumentation_runtimes) 5668 runtime.second->ModulesDidLoad(module_list); 5669 5670 // Give the language runtimes a chance to be created before informing them of 5671 // the modified modules. 5672 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 5673 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 5674 runtime->ModulesDidLoad(module_list); 5675 } 5676 5677 // If we don't have an operating system plug-in, try to load one since 5678 // loading shared libraries might cause a new one to try and load 5679 if (!m_os_up) 5680 LoadOperatingSystemPlugin(false); 5681 5682 // Inform the structured-data plugins of the modified modules. 5683 for (auto pair : m_structured_data_plugin_map) { 5684 if (pair.second) 5685 pair.second->ModulesDidLoad(*this, module_list); 5686 } 5687 } 5688 5689 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5690 const char *fmt, ...) { 5691 bool print_warning = true; 5692 5693 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5694 if (!stream_sp) 5695 return; 5696 5697 if (repeat_key != nullptr) { 5698 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5699 if (it == m_warnings_issued.end()) { 5700 m_warnings_issued[warning_type] = WarningsPointerSet(); 5701 m_warnings_issued[warning_type].insert(repeat_key); 5702 } else { 5703 if (it->second.find(repeat_key) != it->second.end()) { 5704 print_warning = false; 5705 } else { 5706 it->second.insert(repeat_key); 5707 } 5708 } 5709 } 5710 5711 if (print_warning) { 5712 va_list args; 5713 va_start(args, fmt); 5714 stream_sp->PrintfVarArg(fmt, args); 5715 va_end(args); 5716 } 5717 } 5718 5719 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5720 if (!GetWarningsOptimization()) 5721 return; 5722 if (!sc.module_sp) 5723 return; 5724 if (!sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5725 sc.function->GetIsOptimized()) { 5726 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5727 "%s was compiled with optimization - stepping may behave " 5728 "oddly; variables may not be available.\n", 5729 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5730 } 5731 } 5732 5733 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) { 5734 if (!GetWarningsUnsupportedLanguage()) 5735 return; 5736 if (!sc.module_sp) 5737 return; 5738 LanguageType language = sc.GetLanguage(); 5739 if (language == eLanguageTypeUnknown) 5740 return; 5741 LanguageSet plugins = 5742 PluginManager::GetAllTypeSystemSupportedLanguagesForTypes(); 5743 if (!plugins[language]) { 5744 PrintWarning(Process::Warnings::eWarningsUnsupportedLanguage, 5745 sc.module_sp.get(), 5746 "This version of LLDB has no plugin for the language \"%s\". " 5747 "Inspection of frame variables will be limited.\n", 5748 Language::GetNameForLanguageType(language)); 5749 } 5750 } 5751 5752 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5753 info.Clear(); 5754 5755 PlatformSP platform_sp = GetTarget().GetPlatform(); 5756 if (!platform_sp) 5757 return false; 5758 5759 return platform_sp->GetProcessInfo(GetID(), info); 5760 } 5761 5762 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5763 ThreadCollectionSP threads; 5764 5765 const MemoryHistorySP &memory_history = 5766 MemoryHistory::FindPlugin(shared_from_this()); 5767 5768 if (!memory_history) { 5769 return threads; 5770 } 5771 5772 threads = std::make_shared<ThreadCollection>( 5773 memory_history->GetHistoryThreads(addr)); 5774 5775 return threads; 5776 } 5777 5778 InstrumentationRuntimeSP 5779 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5780 InstrumentationRuntimeCollection::iterator pos; 5781 pos = m_instrumentation_runtimes.find(type); 5782 if (pos == m_instrumentation_runtimes.end()) { 5783 return InstrumentationRuntimeSP(); 5784 } else 5785 return (*pos).second; 5786 } 5787 5788 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5789 const ArchSpec &arch, ModuleSpec &module_spec) { 5790 module_spec.Clear(); 5791 return false; 5792 } 5793 5794 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5795 m_image_tokens.push_back(image_ptr); 5796 return m_image_tokens.size() - 1; 5797 } 5798 5799 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5800 if (token < m_image_tokens.size()) 5801 return m_image_tokens[token]; 5802 return LLDB_INVALID_ADDRESS; 5803 } 5804 5805 void Process::ResetImageToken(size_t token) { 5806 if (token < m_image_tokens.size()) 5807 m_image_tokens[token] = LLDB_INVALID_ADDRESS; 5808 } 5809 5810 Address 5811 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5812 AddressRange range_bounds) { 5813 Target &target = GetTarget(); 5814 DisassemblerSP disassembler_sp; 5815 InstructionList *insn_list = nullptr; 5816 5817 Address retval = default_stop_addr; 5818 5819 if (!target.GetUseFastStepping()) 5820 return retval; 5821 if (!default_stop_addr.IsValid()) 5822 return retval; 5823 5824 const char *plugin_name = nullptr; 5825 const char *flavor = nullptr; 5826 disassembler_sp = Disassembler::DisassembleRange( 5827 target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds); 5828 if (disassembler_sp) 5829 insn_list = &disassembler_sp->GetInstructionList(); 5830 5831 if (insn_list == nullptr) { 5832 return retval; 5833 } 5834 5835 size_t insn_offset = 5836 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 5837 if (insn_offset == UINT32_MAX) { 5838 return retval; 5839 } 5840 5841 uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction( 5842 insn_offset, false /* ignore_calls*/, nullptr); 5843 if (branch_index == UINT32_MAX) { 5844 return retval; 5845 } 5846 5847 if (branch_index > insn_offset) { 5848 Address next_branch_insn_address = 5849 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 5850 if (next_branch_insn_address.IsValid() && 5851 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 5852 retval = next_branch_insn_address; 5853 } 5854 } 5855 5856 return retval; 5857 } 5858 5859 Status 5860 Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { 5861 5862 Status error; 5863 5864 lldb::addr_t range_end = 0; 5865 5866 region_list.clear(); 5867 do { 5868 lldb_private::MemoryRegionInfo region_info; 5869 error = GetMemoryRegionInfo(range_end, region_info); 5870 // GetMemoryRegionInfo should only return an error if it is unimplemented. 5871 if (error.Fail()) { 5872 region_list.clear(); 5873 break; 5874 } 5875 5876 range_end = region_info.GetRange().GetRangeEnd(); 5877 if (region_info.GetMapped() == MemoryRegionInfo::eYes) { 5878 region_list.push_back(std::move(region_info)); 5879 } 5880 } while (range_end != LLDB_INVALID_ADDRESS); 5881 5882 return error; 5883 } 5884 5885 Status 5886 Process::ConfigureStructuredData(ConstString type_name, 5887 const StructuredData::ObjectSP &config_sp) { 5888 // If you get this, the Process-derived class needs to implement a method to 5889 // enable an already-reported asynchronous structured data feature. See 5890 // ProcessGDBRemote for an example implementation over gdb-remote. 5891 return Status("unimplemented"); 5892 } 5893 5894 void Process::MapSupportedStructuredDataPlugins( 5895 const StructuredData::Array &supported_type_names) { 5896 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5897 5898 // Bail out early if there are no type names to map. 5899 if (supported_type_names.GetSize() == 0) { 5900 LLDB_LOGF(log, "Process::%s(): no structured data types supported", 5901 __FUNCTION__); 5902 return; 5903 } 5904 5905 // Convert StructuredData type names to ConstString instances. 5906 std::set<ConstString> const_type_names; 5907 5908 LLDB_LOGF(log, 5909 "Process::%s(): the process supports the following async " 5910 "structured data types:", 5911 __FUNCTION__); 5912 5913 supported_type_names.ForEach( 5914 [&const_type_names, &log](StructuredData::Object *object) { 5915 if (!object) { 5916 // Invalid - shouldn't be null objects in the array. 5917 return false; 5918 } 5919 5920 auto type_name = object->GetAsString(); 5921 if (!type_name) { 5922 // Invalid format - all type names should be strings. 5923 return false; 5924 } 5925 5926 const_type_names.insert(ConstString(type_name->GetValue())); 5927 LLDB_LOG(log, "- {0}", type_name->GetValue()); 5928 return true; 5929 }); 5930 5931 // For each StructuredDataPlugin, if the plugin handles any of the types in 5932 // the supported_type_names, map that type name to that plugin. Stop when 5933 // we've consumed all the type names. 5934 // FIXME: should we return an error if there are type names nobody 5935 // supports? 5936 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 5937 auto create_instance = 5938 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 5939 plugin_index); 5940 if (!create_instance) 5941 break; 5942 5943 // Create the plugin. 5944 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 5945 if (!plugin_sp) { 5946 // This plugin doesn't think it can work with the process. Move on to the 5947 // next. 5948 continue; 5949 } 5950 5951 // For any of the remaining type names, map any that this plugin supports. 5952 std::vector<ConstString> names_to_remove; 5953 for (auto &type_name : const_type_names) { 5954 if (plugin_sp->SupportsStructuredDataType(type_name)) { 5955 m_structured_data_plugin_map.insert( 5956 std::make_pair(type_name, plugin_sp)); 5957 names_to_remove.push_back(type_name); 5958 LLDB_LOGF(log, 5959 "Process::%s(): using plugin %s for type name " 5960 "%s", 5961 __FUNCTION__, plugin_sp->GetPluginName().GetCString(), 5962 type_name.GetCString()); 5963 } 5964 } 5965 5966 // Remove the type names that were consumed by this plugin. 5967 for (auto &type_name : names_to_remove) 5968 const_type_names.erase(type_name); 5969 } 5970 } 5971 5972 bool Process::RouteAsyncStructuredData( 5973 const StructuredData::ObjectSP object_sp) { 5974 // Nothing to do if there's no data. 5975 if (!object_sp) 5976 return false; 5977 5978 // The contract is this must be a dictionary, so we can look up the routing 5979 // key via the top-level 'type' string value within the dictionary. 5980 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 5981 if (!dictionary) 5982 return false; 5983 5984 // Grab the async structured type name (i.e. the feature/plugin name). 5985 ConstString type_name; 5986 if (!dictionary->GetValueForKeyAsString("type", type_name)) 5987 return false; 5988 5989 // Check if there's a plugin registered for this type name. 5990 auto find_it = m_structured_data_plugin_map.find(type_name); 5991 if (find_it == m_structured_data_plugin_map.end()) { 5992 // We don't have a mapping for this structured data type. 5993 return false; 5994 } 5995 5996 // Route the structured data to the plugin. 5997 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 5998 return true; 5999 } 6000 6001 Status Process::UpdateAutomaticSignalFiltering() { 6002 // Default implementation does nothign. 6003 // No automatic signal filtering to speak of. 6004 return Status(); 6005 } 6006 6007 UtilityFunction *Process::GetLoadImageUtilityFunction( 6008 Platform *platform, 6009 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 6010 if (platform != GetTarget().GetPlatform().get()) 6011 return nullptr; 6012 llvm::call_once(m_dlopen_utility_func_flag_once, 6013 [&] { m_dlopen_utility_func_up = factory(); }); 6014 return m_dlopen_utility_func_up.get(); 6015 } 6016 6017 llvm::Expected<TraceSupportedResponse> Process::TraceSupported() { 6018 if (!IsLiveDebugSession()) 6019 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6020 "Can't trace a non-live process."); 6021 return llvm::make_error<UnimplementedError>(); 6022 } 6023 6024 bool Process::CallVoidArgVoidPtrReturn(const Address *address, 6025 addr_t &returned_func, 6026 bool trap_exceptions) { 6027 Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); 6028 if (thread == nullptr || address == nullptr) 6029 return false; 6030 6031 EvaluateExpressionOptions options; 6032 options.SetStopOthers(true); 6033 options.SetUnwindOnError(true); 6034 options.SetIgnoreBreakpoints(true); 6035 options.SetTryAllThreads(true); 6036 options.SetDebug(false); 6037 options.SetTimeout(GetUtilityExpressionTimeout()); 6038 options.SetTrapExceptions(trap_exceptions); 6039 6040 auto type_system_or_err = 6041 GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC); 6042 if (!type_system_or_err) { 6043 llvm::consumeError(type_system_or_err.takeError()); 6044 return false; 6045 } 6046 CompilerType void_ptr_type = 6047 type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType(); 6048 lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( 6049 *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); 6050 if (call_plan_sp) { 6051 DiagnosticManager diagnostics; 6052 6053 StackFrame *frame = thread->GetStackFrameAtIndex(0).get(); 6054 if (frame) { 6055 ExecutionContext exe_ctx; 6056 frame->CalculateExecutionContext(exe_ctx); 6057 ExpressionResults result = 6058 RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics); 6059 if (result == eExpressionCompleted) { 6060 returned_func = 6061 call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( 6062 LLDB_INVALID_ADDRESS); 6063 6064 if (GetAddressByteSize() == 4) { 6065 if (returned_func == UINT32_MAX) 6066 return false; 6067 } else if (GetAddressByteSize() == 8) { 6068 if (returned_func == UINT64_MAX) 6069 return false; 6070 } 6071 return true; 6072 } 6073 } 6074 } 6075 6076 return false; 6077 } 6078