1 //===-- Process.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <atomic> 10 #include <memory> 11 #include <mutex> 12 13 #include "llvm/ADT/ScopeExit.h" 14 #include "llvm/Support/ScopedPrinter.h" 15 #include "llvm/Support/Threading.h" 16 17 #include "lldb/Breakpoint/BreakpointLocation.h" 18 #include "lldb/Breakpoint/StoppointCallbackContext.h" 19 #include "lldb/Core/Debugger.h" 20 #include "lldb/Core/Module.h" 21 #include "lldb/Core/ModuleSpec.h" 22 #include "lldb/Core/PluginManager.h" 23 #include "lldb/Core/StreamFile.h" 24 #include "lldb/Expression/DiagnosticManager.h" 25 #include "lldb/Expression/DynamicCheckerFunctions.h" 26 #include "lldb/Expression/UserExpression.h" 27 #include "lldb/Expression/UtilityFunction.h" 28 #include "lldb/Host/ConnectionFileDescriptor.h" 29 #include "lldb/Host/FileSystem.h" 30 #include "lldb/Host/Host.h" 31 #include "lldb/Host/HostInfo.h" 32 #include "lldb/Host/OptionParser.h" 33 #include "lldb/Host/Pipe.h" 34 #include "lldb/Host/Terminal.h" 35 #include "lldb/Host/ThreadLauncher.h" 36 #include "lldb/Interpreter/CommandInterpreter.h" 37 #include "lldb/Interpreter/OptionArgParser.h" 38 #include "lldb/Interpreter/OptionValueProperties.h" 39 #include "lldb/Symbol/Function.h" 40 #include "lldb/Symbol/Symbol.h" 41 #include "lldb/Target/ABI.h" 42 #include "lldb/Target/AssertFrameRecognizer.h" 43 #include "lldb/Target/DynamicLoader.h" 44 #include "lldb/Target/InstrumentationRuntime.h" 45 #include "lldb/Target/JITLoader.h" 46 #include "lldb/Target/JITLoaderList.h" 47 #include "lldb/Target/Language.h" 48 #include "lldb/Target/LanguageRuntime.h" 49 #include "lldb/Target/MemoryHistory.h" 50 #include "lldb/Target/MemoryRegionInfo.h" 51 #include "lldb/Target/OperatingSystem.h" 52 #include "lldb/Target/Platform.h" 53 #include "lldb/Target/Process.h" 54 #include "lldb/Target/RegisterContext.h" 55 #include "lldb/Target/StopInfo.h" 56 #include "lldb/Target/StructuredDataPlugin.h" 57 #include "lldb/Target/SystemRuntime.h" 58 #include "lldb/Target/Target.h" 59 #include "lldb/Target/TargetList.h" 60 #include "lldb/Target/Thread.h" 61 #include "lldb/Target/ThreadPlan.h" 62 #include "lldb/Target/ThreadPlanBase.h" 63 #include "lldb/Target/ThreadPlanCallFunction.h" 64 #include "lldb/Target/ThreadPlanStack.h" 65 #include "lldb/Target/UnixSignals.h" 66 #include "lldb/Utility/Event.h" 67 #include "lldb/Utility/LLDBLog.h" 68 #include "lldb/Utility/Log.h" 69 #include "lldb/Utility/NameMatches.h" 70 #include "lldb/Utility/ProcessInfo.h" 71 #include "lldb/Utility/SelectHelper.h" 72 #include "lldb/Utility/State.h" 73 #include "lldb/Utility/Timer.h" 74 75 using namespace lldb; 76 using namespace lldb_private; 77 using namespace std::chrono; 78 79 // Comment out line below to disable memory caching, overriding the process 80 // setting target.process.disable-memory-cache 81 #define ENABLE_MEMORY_CACHING 82 83 #ifdef ENABLE_MEMORY_CACHING 84 #define DISABLE_MEM_CACHE_DEFAULT false 85 #else 86 #define DISABLE_MEM_CACHE_DEFAULT true 87 #endif 88 89 class ProcessOptionValueProperties 90 : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> { 91 public: 92 ProcessOptionValueProperties(ConstString name) : Cloneable(name) {} 93 94 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 95 bool will_modify, 96 uint32_t idx) const override { 97 // When getting the value for a key from the process options, we will 98 // always try and grab the setting from the current process if there is 99 // one. Else we just use the one from this instance. 100 if (exe_ctx) { 101 Process *process = exe_ctx->GetProcessPtr(); 102 if (process) { 103 ProcessOptionValueProperties *instance_properties = 104 static_cast<ProcessOptionValueProperties *>( 105 process->GetValueProperties().get()); 106 if (this != instance_properties) 107 return instance_properties->ProtectedGetPropertyAtIndex(idx); 108 } 109 } 110 return ProtectedGetPropertyAtIndex(idx); 111 } 112 }; 113 114 static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = { 115 { 116 eFollowParent, 117 "parent", 118 "Continue tracing the parent process and detach the child.", 119 }, 120 { 121 eFollowChild, 122 "child", 123 "Trace the child process and detach the parent.", 124 }, 125 }; 126 127 #define LLDB_PROPERTIES_process 128 #include "TargetProperties.inc" 129 130 enum { 131 #define LLDB_PROPERTIES_process 132 #include "TargetPropertiesEnum.inc" 133 ePropertyExperimental, 134 }; 135 136 #define LLDB_PROPERTIES_process_experimental 137 #include "TargetProperties.inc" 138 139 enum { 140 #define LLDB_PROPERTIES_process_experimental 141 #include "TargetPropertiesEnum.inc" 142 }; 143 144 class ProcessExperimentalOptionValueProperties 145 : public Cloneable<ProcessExperimentalOptionValueProperties, 146 OptionValueProperties> { 147 public: 148 ProcessExperimentalOptionValueProperties() 149 : Cloneable( 150 ConstString(Properties::GetExperimentalSettingsName())) {} 151 }; 152 153 ProcessExperimentalProperties::ProcessExperimentalProperties() 154 : Properties(OptionValuePropertiesSP( 155 new ProcessExperimentalOptionValueProperties())) { 156 m_collection_sp->Initialize(g_process_experimental_properties); 157 } 158 159 ProcessProperties::ProcessProperties(lldb_private::Process *process) 160 : Properties(), 161 m_process(process) // Can be nullptr for global ProcessProperties 162 { 163 if (process == nullptr) { 164 // Global process properties, set them up one time 165 m_collection_sp = 166 std::make_shared<ProcessOptionValueProperties>(ConstString("process")); 167 m_collection_sp->Initialize(g_process_properties); 168 m_collection_sp->AppendProperty( 169 ConstString("thread"), ConstString("Settings specific to threads."), 170 true, Thread::GetGlobalProperties().GetValueProperties()); 171 } else { 172 m_collection_sp = 173 OptionValueProperties::CreateLocalCopy(Process::GetGlobalProperties()); 174 m_collection_sp->SetValueChangedCallback( 175 ePropertyPythonOSPluginPath, 176 [this] { m_process->LoadOperatingSystemPlugin(true); }); 177 } 178 179 m_experimental_properties_up = 180 std::make_unique<ProcessExperimentalProperties>(); 181 m_collection_sp->AppendProperty( 182 ConstString(Properties::GetExperimentalSettingsName()), 183 ConstString("Experimental settings - setting these won't produce " 184 "errors if the setting is not present."), 185 true, m_experimental_properties_up->GetValueProperties()); 186 } 187 188 ProcessProperties::~ProcessProperties() = default; 189 190 bool ProcessProperties::GetDisableMemoryCache() const { 191 const uint32_t idx = ePropertyDisableMemCache; 192 return m_collection_sp->GetPropertyAtIndexAsBoolean( 193 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 194 } 195 196 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 197 const uint32_t idx = ePropertyMemCacheLineSize; 198 return m_collection_sp->GetPropertyAtIndexAsUInt64( 199 nullptr, idx, g_process_properties[idx].default_uint_value); 200 } 201 202 Args ProcessProperties::GetExtraStartupCommands() const { 203 Args args; 204 const uint32_t idx = ePropertyExtraStartCommand; 205 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 206 return args; 207 } 208 209 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 210 const uint32_t idx = ePropertyExtraStartCommand; 211 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 212 } 213 214 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 215 const uint32_t idx = ePropertyPythonOSPluginPath; 216 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 217 } 218 219 uint32_t ProcessProperties::GetVirtualAddressableBits() const { 220 const uint32_t idx = ePropertyVirtualAddressableBits; 221 return m_collection_sp->GetPropertyAtIndexAsUInt64( 222 nullptr, idx, g_process_properties[idx].default_uint_value); 223 } 224 225 void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) { 226 const uint32_t idx = ePropertyVirtualAddressableBits; 227 m_collection_sp->SetPropertyAtIndexAsUInt64(nullptr, idx, bits); 228 } 229 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 230 const uint32_t idx = ePropertyPythonOSPluginPath; 231 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 232 } 233 234 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 235 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 236 return m_collection_sp->GetPropertyAtIndexAsBoolean( 237 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 238 } 239 240 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 241 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 242 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 243 } 244 245 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 246 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 247 return m_collection_sp->GetPropertyAtIndexAsBoolean( 248 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 249 } 250 251 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 252 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 253 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 254 } 255 256 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 257 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 258 return m_collection_sp->GetPropertyAtIndexAsBoolean( 259 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 260 } 261 262 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 263 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 264 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 265 } 266 267 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const { 268 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 269 return m_collection_sp->GetPropertyAtIndexAsBoolean( 270 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 271 } 272 273 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) { 274 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 275 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, disable); 276 m_process->Flush(); 277 } 278 279 bool ProcessProperties::GetDetachKeepsStopped() const { 280 const uint32_t idx = ePropertyDetachKeepsStopped; 281 return m_collection_sp->GetPropertyAtIndexAsBoolean( 282 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 283 } 284 285 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 286 const uint32_t idx = ePropertyDetachKeepsStopped; 287 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 288 } 289 290 bool ProcessProperties::GetWarningsOptimization() const { 291 const uint32_t idx = ePropertyWarningOptimization; 292 return m_collection_sp->GetPropertyAtIndexAsBoolean( 293 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 294 } 295 296 bool ProcessProperties::GetWarningsUnsupportedLanguage() const { 297 const uint32_t idx = ePropertyWarningUnsupportedLanguage; 298 return m_collection_sp->GetPropertyAtIndexAsBoolean( 299 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 300 } 301 302 bool ProcessProperties::GetStopOnExec() const { 303 const uint32_t idx = ePropertyStopOnExec; 304 return m_collection_sp->GetPropertyAtIndexAsBoolean( 305 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 306 } 307 308 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { 309 const uint32_t idx = ePropertyUtilityExpressionTimeout; 310 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 311 nullptr, idx, g_process_properties[idx].default_uint_value); 312 return std::chrono::seconds(value); 313 } 314 315 std::chrono::seconds ProcessProperties::GetInterruptTimeout() const { 316 const uint32_t idx = ePropertyInterruptTimeout; 317 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 318 nullptr, idx, g_process_properties[idx].default_uint_value); 319 return std::chrono::seconds(value); 320 } 321 322 bool ProcessProperties::GetSteppingRunsAllThreads() const { 323 const uint32_t idx = ePropertySteppingRunsAllThreads; 324 return m_collection_sp->GetPropertyAtIndexAsBoolean( 325 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 326 } 327 328 bool ProcessProperties::GetOSPluginReportsAllThreads() const { 329 const bool fail_value = true; 330 const Property *exp_property = 331 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 332 OptionValueProperties *exp_values = 333 exp_property->GetValue()->GetAsProperties(); 334 if (!exp_values) 335 return fail_value; 336 337 return exp_values->GetPropertyAtIndexAsBoolean( 338 nullptr, ePropertyOSPluginReportsAllThreads, fail_value); 339 } 340 341 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) { 342 const Property *exp_property = 343 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 344 OptionValueProperties *exp_values = 345 exp_property->GetValue()->GetAsProperties(); 346 if (exp_values) 347 exp_values->SetPropertyAtIndexAsBoolean( 348 nullptr, ePropertyOSPluginReportsAllThreads, does_report); 349 } 350 351 FollowForkMode ProcessProperties::GetFollowForkMode() const { 352 const uint32_t idx = ePropertyFollowForkMode; 353 return (FollowForkMode)m_collection_sp->GetPropertyAtIndexAsEnumeration( 354 nullptr, idx, g_process_properties[idx].default_uint_value); 355 } 356 357 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 358 llvm::StringRef plugin_name, 359 ListenerSP listener_sp, 360 const FileSpec *crash_file_path, 361 bool can_connect) { 362 static uint32_t g_process_unique_id = 0; 363 364 ProcessSP process_sp; 365 ProcessCreateInstance create_callback = nullptr; 366 if (!plugin_name.empty()) { 367 create_callback = 368 PluginManager::GetProcessCreateCallbackForPluginName(plugin_name); 369 if (create_callback) { 370 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 371 can_connect); 372 if (process_sp) { 373 if (process_sp->CanDebug(target_sp, true)) { 374 process_sp->m_process_unique_id = ++g_process_unique_id; 375 } else 376 process_sp.reset(); 377 } 378 } 379 } else { 380 for (uint32_t idx = 0; 381 (create_callback = 382 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 383 ++idx) { 384 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 385 can_connect); 386 if (process_sp) { 387 if (process_sp->CanDebug(target_sp, false)) { 388 process_sp->m_process_unique_id = ++g_process_unique_id; 389 break; 390 } else 391 process_sp.reset(); 392 } 393 } 394 } 395 return process_sp; 396 } 397 398 ConstString &Process::GetStaticBroadcasterClass() { 399 static ConstString class_name("lldb.process"); 400 return class_name; 401 } 402 403 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 404 : Process(target_sp, listener_sp, 405 UnixSignals::Create(HostInfo::GetArchitecture())) { 406 // This constructor just delegates to the full Process constructor, 407 // defaulting to using the Host's UnixSignals. 408 } 409 410 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 411 const UnixSignalsSP &unix_signals_sp) 412 : ProcessProperties(this), 413 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 414 Process::GetStaticBroadcasterClass().AsCString()), 415 m_target_wp(target_sp), m_public_state(eStateUnloaded), 416 m_private_state(eStateUnloaded), 417 m_private_state_broadcaster(nullptr, 418 "lldb.process.internal_state_broadcaster"), 419 m_private_state_control_broadcaster( 420 nullptr, "lldb.process.internal_state_control_broadcaster"), 421 m_private_state_listener_sp( 422 Listener::MakeListener("lldb.process.internal_state_listener")), 423 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 424 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 425 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 426 m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this), 427 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 428 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 429 m_breakpoint_site_list(), m_dynamic_checkers_up(), 430 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 431 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 432 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 433 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 434 m_memory_cache(*this), m_allocated_memory_cache(*this), 435 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), 436 m_private_run_lock(), m_finalizing(false), 437 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 438 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 439 m_can_interpret_function_calls(false), m_run_thread_plan_lock(), 440 m_can_jit(eCanJITDontKnow) { 441 CheckInWithManager(); 442 443 Log *log = GetLog(LLDBLog::Object); 444 LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this)); 445 446 if (!m_unix_signals_sp) 447 m_unix_signals_sp = std::make_shared<UnixSignals>(); 448 449 SetEventName(eBroadcastBitStateChanged, "state-changed"); 450 SetEventName(eBroadcastBitInterrupt, "interrupt"); 451 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 452 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 453 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 454 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 455 456 m_private_state_control_broadcaster.SetEventName( 457 eBroadcastInternalStateControlStop, "control-stop"); 458 m_private_state_control_broadcaster.SetEventName( 459 eBroadcastInternalStateControlPause, "control-pause"); 460 m_private_state_control_broadcaster.SetEventName( 461 eBroadcastInternalStateControlResume, "control-resume"); 462 463 m_listener_sp->StartListeningForEvents( 464 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 465 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 466 eBroadcastBitProfileData | eBroadcastBitStructuredData); 467 468 m_private_state_listener_sp->StartListeningForEvents( 469 &m_private_state_broadcaster, 470 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 471 472 m_private_state_listener_sp->StartListeningForEvents( 473 &m_private_state_control_broadcaster, 474 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 475 eBroadcastInternalStateControlResume); 476 // We need something valid here, even if just the default UnixSignalsSP. 477 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 478 479 // Allow the platform to override the default cache line size 480 OptionValueSP value_sp = 481 m_collection_sp 482 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 483 ->GetValue(); 484 uint32_t platform_cache_line_size = 485 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 486 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 487 value_sp->SetUInt64Value(platform_cache_line_size); 488 489 RegisterAssertFrameRecognizer(this); 490 } 491 492 Process::~Process() { 493 Log *log = GetLog(LLDBLog::Object); 494 LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this)); 495 StopPrivateStateThread(); 496 497 // ThreadList::Clear() will try to acquire this process's mutex, so 498 // explicitly clear the thread list here to ensure that the mutex is not 499 // destroyed before the thread list. 500 m_thread_list.Clear(); 501 } 502 503 ProcessProperties &Process::GetGlobalProperties() { 504 // NOTE: intentional leak so we don't crash if global destructor chain gets 505 // called as other threads still use the result of this function 506 static ProcessProperties *g_settings_ptr = 507 new ProcessProperties(nullptr); 508 return *g_settings_ptr; 509 } 510 511 void Process::Finalize() { 512 if (m_finalizing.exchange(true)) 513 return; 514 515 // Destroy the process. This will call the virtual function DoDestroy under 516 // the hood, giving our derived class a chance to do the ncessary tear down. 517 DestroyImpl(false); 518 519 // Clear our broadcaster before we proceed with destroying 520 Broadcaster::Clear(); 521 522 // Do any cleanup needed prior to being destructed... Subclasses that 523 // override this method should call this superclass method as well. 524 525 // We need to destroy the loader before the derived Process class gets 526 // destroyed since it is very likely that undoing the loader will require 527 // access to the real process. 528 m_dynamic_checkers_up.reset(); 529 m_abi_sp.reset(); 530 m_os_up.reset(); 531 m_system_runtime_up.reset(); 532 m_dyld_up.reset(); 533 m_jit_loaders_up.reset(); 534 m_thread_plans.Clear(); 535 m_thread_list_real.Destroy(); 536 m_thread_list.Destroy(); 537 m_extended_thread_list.Destroy(); 538 m_queue_list.Clear(); 539 m_queue_list_stop_id = 0; 540 std::vector<Notifications> empty_notifications; 541 m_notifications.swap(empty_notifications); 542 m_image_tokens.clear(); 543 m_memory_cache.Clear(); 544 m_allocated_memory_cache.Clear(); 545 { 546 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 547 m_language_runtimes.clear(); 548 } 549 m_instrumentation_runtimes.clear(); 550 m_next_event_action_up.reset(); 551 // Clear the last natural stop ID since it has a strong reference to this 552 // process 553 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 554 //#ifdef LLDB_CONFIGURATION_DEBUG 555 // StreamFile s(stdout, false); 556 // EventSP event_sp; 557 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 558 // { 559 // event_sp->Dump (&s); 560 // s.EOL(); 561 // } 562 //#endif 563 // We have to be very careful here as the m_private_state_listener might 564 // contain events that have ProcessSP values in them which can keep this 565 // process around forever. These events need to be cleared out. 566 m_private_state_listener_sp->Clear(); 567 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 568 m_public_run_lock.SetStopped(); 569 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 570 m_private_run_lock.SetStopped(); 571 m_structured_data_plugin_map.clear(); 572 } 573 574 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 575 m_notifications.push_back(callbacks); 576 if (callbacks.initialize != nullptr) 577 callbacks.initialize(callbacks.baton, this); 578 } 579 580 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 581 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 582 for (pos = m_notifications.begin(); pos != end; ++pos) { 583 if (pos->baton == callbacks.baton && 584 pos->initialize == callbacks.initialize && 585 pos->process_state_changed == callbacks.process_state_changed) { 586 m_notifications.erase(pos); 587 return true; 588 } 589 } 590 return false; 591 } 592 593 void Process::SynchronouslyNotifyStateChanged(StateType state) { 594 std::vector<Notifications>::iterator notification_pos, 595 notification_end = m_notifications.end(); 596 for (notification_pos = m_notifications.begin(); 597 notification_pos != notification_end; ++notification_pos) { 598 if (notification_pos->process_state_changed) 599 notification_pos->process_state_changed(notification_pos->baton, this, 600 state); 601 } 602 } 603 604 // FIXME: We need to do some work on events before the general Listener sees 605 // them. 606 // For instance if we are continuing from a breakpoint, we need to ensure that 607 // we do the little "insert real insn, step & stop" trick. But we can't do 608 // that when the event is delivered by the broadcaster - since that is done on 609 // the thread that is waiting for new events, so if we needed more than one 610 // event for our handling, we would stall. So instead we do it when we fetch 611 // the event off of the queue. 612 // 613 614 StateType Process::GetNextEvent(EventSP &event_sp) { 615 StateType state = eStateInvalid; 616 617 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 618 std::chrono::seconds(0)) && 619 event_sp) 620 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 621 622 return state; 623 } 624 625 void Process::SyncIOHandler(uint32_t iohandler_id, 626 const Timeout<std::micro> &timeout) { 627 // don't sync (potentially context switch) in case where there is no process 628 // IO 629 if (!m_process_input_reader) 630 return; 631 632 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 633 634 Log *log = GetLog(LLDBLog::Process); 635 if (Result) { 636 LLDB_LOG( 637 log, 638 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 639 iohandler_id, *Result); 640 } else { 641 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 642 iohandler_id); 643 } 644 } 645 646 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 647 EventSP *event_sp_ptr, bool wait_always, 648 ListenerSP hijack_listener_sp, 649 Stream *stream, bool use_run_lock) { 650 // We can't just wait for a "stopped" event, because the stopped event may 651 // have restarted the target. We have to actually check each event, and in 652 // the case of a stopped event check the restarted flag on the event. 653 if (event_sp_ptr) 654 event_sp_ptr->reset(); 655 StateType state = GetState(); 656 // If we are exited or detached, we won't ever get back to any other valid 657 // state... 658 if (state == eStateDetached || state == eStateExited) 659 return state; 660 661 Log *log = GetLog(LLDBLog::Process); 662 LLDB_LOG(log, "timeout = {0}", timeout); 663 664 if (!wait_always && StateIsStoppedState(state, true) && 665 StateIsStoppedState(GetPrivateState(), true)) { 666 LLDB_LOGF(log, 667 "Process::%s returning without waiting for events; process " 668 "private and public states are already 'stopped'.", 669 __FUNCTION__); 670 // We need to toggle the run lock as this won't get done in 671 // SetPublicState() if the process is hijacked. 672 if (hijack_listener_sp && use_run_lock) 673 m_public_run_lock.SetStopped(); 674 return state; 675 } 676 677 while (state != eStateInvalid) { 678 EventSP event_sp; 679 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 680 if (event_sp_ptr && event_sp) 681 *event_sp_ptr = event_sp; 682 683 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 684 Process::HandleProcessStateChangedEvent(event_sp, stream, 685 pop_process_io_handler); 686 687 switch (state) { 688 case eStateCrashed: 689 case eStateDetached: 690 case eStateExited: 691 case eStateUnloaded: 692 // We need to toggle the run lock as this won't get done in 693 // SetPublicState() if the process is hijacked. 694 if (hijack_listener_sp && use_run_lock) 695 m_public_run_lock.SetStopped(); 696 return state; 697 case eStateStopped: 698 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 699 continue; 700 else { 701 // We need to toggle the run lock as this won't get done in 702 // SetPublicState() if the process is hijacked. 703 if (hijack_listener_sp && use_run_lock) 704 m_public_run_lock.SetStopped(); 705 return state; 706 } 707 default: 708 continue; 709 } 710 } 711 return state; 712 } 713 714 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 715 Stream *stream, 716 bool &pop_process_io_handler) { 717 const bool handle_pop = pop_process_io_handler; 718 719 pop_process_io_handler = false; 720 ProcessSP process_sp = 721 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 722 723 if (!process_sp) 724 return false; 725 726 StateType event_state = 727 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 728 if (event_state == eStateInvalid) 729 return false; 730 731 switch (event_state) { 732 case eStateInvalid: 733 case eStateUnloaded: 734 case eStateAttaching: 735 case eStateLaunching: 736 case eStateStepping: 737 case eStateDetached: 738 if (stream) 739 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 740 StateAsCString(event_state)); 741 if (event_state == eStateDetached) 742 pop_process_io_handler = true; 743 break; 744 745 case eStateConnected: 746 case eStateRunning: 747 // Don't be chatty when we run... 748 break; 749 750 case eStateExited: 751 if (stream) 752 process_sp->GetStatus(*stream); 753 pop_process_io_handler = true; 754 break; 755 756 case eStateStopped: 757 case eStateCrashed: 758 case eStateSuspended: 759 // Make sure the program hasn't been auto-restarted: 760 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 761 if (stream) { 762 size_t num_reasons = 763 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 764 if (num_reasons > 0) { 765 // FIXME: Do we want to report this, or would that just be annoyingly 766 // chatty? 767 if (num_reasons == 1) { 768 const char *reason = 769 Process::ProcessEventData::GetRestartedReasonAtIndex( 770 event_sp.get(), 0); 771 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 772 process_sp->GetID(), 773 reason ? reason : "<UNKNOWN REASON>"); 774 } else { 775 stream->Printf("Process %" PRIu64 776 " stopped and restarted, reasons:\n", 777 process_sp->GetID()); 778 779 for (size_t i = 0; i < num_reasons; i++) { 780 const char *reason = 781 Process::ProcessEventData::GetRestartedReasonAtIndex( 782 event_sp.get(), i); 783 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 784 } 785 } 786 } 787 } 788 } else { 789 StopInfoSP curr_thread_stop_info_sp; 790 // Lock the thread list so it doesn't change on us, this is the scope for 791 // the locker: 792 { 793 ThreadList &thread_list = process_sp->GetThreadList(); 794 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 795 796 ThreadSP curr_thread(thread_list.GetSelectedThread()); 797 ThreadSP thread; 798 StopReason curr_thread_stop_reason = eStopReasonInvalid; 799 bool prefer_curr_thread = false; 800 if (curr_thread && curr_thread->IsValid()) { 801 curr_thread_stop_reason = curr_thread->GetStopReason(); 802 switch (curr_thread_stop_reason) { 803 case eStopReasonNone: 804 case eStopReasonInvalid: 805 // Don't prefer the current thread if it didn't stop for a reason. 806 break; 807 case eStopReasonSignal: { 808 // We need to do the same computation we do for other threads 809 // below in case the current thread happens to be the one that 810 // stopped for the no-stop signal. 811 uint64_t signo = curr_thread->GetStopInfo()->GetValue(); 812 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) 813 prefer_curr_thread = true; 814 } break; 815 default: 816 prefer_curr_thread = true; 817 break; 818 } 819 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 820 } 821 822 if (!prefer_curr_thread) { 823 // Prefer a thread that has just completed its plan over another 824 // thread as current thread. 825 ThreadSP plan_thread; 826 ThreadSP other_thread; 827 828 const size_t num_threads = thread_list.GetSize(); 829 size_t i; 830 for (i = 0; i < num_threads; ++i) { 831 thread = thread_list.GetThreadAtIndex(i); 832 StopReason thread_stop_reason = thread->GetStopReason(); 833 switch (thread_stop_reason) { 834 case eStopReasonInvalid: 835 case eStopReasonNone: 836 break; 837 838 case eStopReasonSignal: { 839 // Don't select a signal thread if we weren't going to stop at 840 // that signal. We have to have had another reason for stopping 841 // here, and the user doesn't want to see this thread. 842 uint64_t signo = thread->GetStopInfo()->GetValue(); 843 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 844 if (!other_thread) 845 other_thread = thread; 846 } 847 break; 848 } 849 case eStopReasonTrace: 850 case eStopReasonBreakpoint: 851 case eStopReasonWatchpoint: 852 case eStopReasonException: 853 case eStopReasonExec: 854 case eStopReasonFork: 855 case eStopReasonVFork: 856 case eStopReasonVForkDone: 857 case eStopReasonThreadExiting: 858 case eStopReasonInstrumentation: 859 case eStopReasonProcessorTrace: 860 if (!other_thread) 861 other_thread = thread; 862 break; 863 case eStopReasonPlanComplete: 864 if (!plan_thread) 865 plan_thread = thread; 866 break; 867 } 868 } 869 if (plan_thread) 870 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 871 else if (other_thread) 872 thread_list.SetSelectedThreadByID(other_thread->GetID()); 873 else { 874 if (curr_thread && curr_thread->IsValid()) 875 thread = curr_thread; 876 else 877 thread = thread_list.GetThreadAtIndex(0); 878 879 if (thread) 880 thread_list.SetSelectedThreadByID(thread->GetID()); 881 } 882 } 883 } 884 // Drop the ThreadList mutex by here, since GetThreadStatus below might 885 // have to run code, e.g. for Data formatters, and if we hold the 886 // ThreadList mutex, then the process is going to have a hard time 887 // restarting the process. 888 if (stream) { 889 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 890 if (debugger.GetTargetList().GetSelectedTarget().get() == 891 &process_sp->GetTarget()) { 892 ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); 893 894 if (!thread_sp || !thread_sp->IsValid()) 895 return false; 896 897 const bool only_threads_with_stop_reason = true; 898 const uint32_t start_frame = thread_sp->GetSelectedFrameIndex(); 899 const uint32_t num_frames = 1; 900 const uint32_t num_frames_with_source = 1; 901 const bool stop_format = true; 902 903 process_sp->GetStatus(*stream); 904 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 905 start_frame, num_frames, 906 num_frames_with_source, 907 stop_format); 908 if (curr_thread_stop_info_sp) { 909 lldb::addr_t crashing_address; 910 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 911 curr_thread_stop_info_sp, &crashing_address); 912 if (valobj_sp) { 913 const ValueObject::GetExpressionPathFormat format = 914 ValueObject::GetExpressionPathFormat:: 915 eGetExpressionPathFormatHonorPointers; 916 stream->PutCString("Likely cause: "); 917 valobj_sp->GetExpressionPath(*stream, format); 918 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 919 } 920 } 921 } else { 922 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 923 process_sp->GetTarget().shared_from_this()); 924 if (target_idx != UINT32_MAX) 925 stream->Printf("Target %d: (", target_idx); 926 else 927 stream->Printf("Target <unknown index>: ("); 928 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 929 stream->Printf(") stopped.\n"); 930 } 931 } 932 933 // Pop the process IO handler 934 pop_process_io_handler = true; 935 } 936 break; 937 } 938 939 if (handle_pop && pop_process_io_handler) 940 process_sp->PopProcessIOHandler(); 941 942 return true; 943 } 944 945 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 946 if (listener_sp) { 947 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 948 eBroadcastBitInterrupt); 949 } else 950 return false; 951 } 952 953 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 954 955 StateType Process::GetStateChangedEvents(EventSP &event_sp, 956 const Timeout<std::micro> &timeout, 957 ListenerSP hijack_listener_sp) { 958 Log *log = GetLog(LLDBLog::Process); 959 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 960 961 ListenerSP listener_sp = hijack_listener_sp; 962 if (!listener_sp) 963 listener_sp = m_listener_sp; 964 965 StateType state = eStateInvalid; 966 if (listener_sp->GetEventForBroadcasterWithType( 967 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 968 timeout)) { 969 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 970 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 971 else 972 LLDB_LOG(log, "got no event or was interrupted."); 973 } 974 975 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 976 return state; 977 } 978 979 Event *Process::PeekAtStateChangedEvents() { 980 Log *log = GetLog(LLDBLog::Process); 981 982 LLDB_LOGF(log, "Process::%s...", __FUNCTION__); 983 984 Event *event_ptr; 985 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 986 this, eBroadcastBitStateChanged); 987 if (log) { 988 if (event_ptr) { 989 LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, 990 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 991 } else { 992 LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); 993 } 994 } 995 return event_ptr; 996 } 997 998 StateType 999 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 1000 const Timeout<std::micro> &timeout) { 1001 Log *log = GetLog(LLDBLog::Process); 1002 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1003 1004 StateType state = eStateInvalid; 1005 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1006 &m_private_state_broadcaster, 1007 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1008 timeout)) 1009 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1010 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1011 1012 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1013 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1014 return state; 1015 } 1016 1017 bool Process::GetEventsPrivate(EventSP &event_sp, 1018 const Timeout<std::micro> &timeout, 1019 bool control_only) { 1020 Log *log = GetLog(LLDBLog::Process); 1021 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1022 1023 if (control_only) 1024 return m_private_state_listener_sp->GetEventForBroadcaster( 1025 &m_private_state_control_broadcaster, event_sp, timeout); 1026 else 1027 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1028 } 1029 1030 bool Process::IsRunning() const { 1031 return StateIsRunningState(m_public_state.GetValue()); 1032 } 1033 1034 int Process::GetExitStatus() { 1035 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1036 1037 if (m_public_state.GetValue() == eStateExited) 1038 return m_exit_status; 1039 return -1; 1040 } 1041 1042 const char *Process::GetExitDescription() { 1043 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1044 1045 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1046 return m_exit_string.c_str(); 1047 return nullptr; 1048 } 1049 1050 bool Process::SetExitStatus(int status, const char *cstr) { 1051 // Use a mutex to protect setting the exit status. 1052 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1053 1054 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1055 LLDB_LOGF( 1056 log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1057 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : ""); 1058 1059 // We were already in the exited state 1060 if (m_private_state.GetValue() == eStateExited) { 1061 LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because " 1062 "state was already set to eStateExited"); 1063 return false; 1064 } 1065 1066 m_exit_status = status; 1067 if (cstr) 1068 m_exit_string = cstr; 1069 else 1070 m_exit_string.clear(); 1071 1072 // Clear the last natural stop ID since it has a strong reference to this 1073 // process 1074 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1075 1076 SetPrivateState(eStateExited); 1077 1078 // Allow subclasses to do some cleanup 1079 DidExit(); 1080 1081 return true; 1082 } 1083 1084 bool Process::IsAlive() { 1085 switch (m_private_state.GetValue()) { 1086 case eStateConnected: 1087 case eStateAttaching: 1088 case eStateLaunching: 1089 case eStateStopped: 1090 case eStateRunning: 1091 case eStateStepping: 1092 case eStateCrashed: 1093 case eStateSuspended: 1094 return true; 1095 default: 1096 return false; 1097 } 1098 } 1099 1100 // This static callback can be used to watch for local child processes on the 1101 // current host. The child process exits, the process will be found in the 1102 // global target list (we want to be completely sure that the 1103 // lldb_private::Process doesn't go away before we can deliver the signal. 1104 bool Process::SetProcessExitStatus( 1105 lldb::pid_t pid, bool exited, 1106 int signo, // Zero for no signal 1107 int exit_status // Exit value of process if signal is zero 1108 ) { 1109 Log *log = GetLog(LLDBLog::Process); 1110 LLDB_LOGF(log, 1111 "Process::SetProcessExitStatus (pid=%" PRIu64 1112 ", exited=%i, signal=%i, exit_status=%i)\n", 1113 pid, exited, signo, exit_status); 1114 1115 if (exited) { 1116 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1117 if (target_sp) { 1118 ProcessSP process_sp(target_sp->GetProcessSP()); 1119 if (process_sp) { 1120 const char *signal_cstr = nullptr; 1121 if (signo) 1122 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1123 1124 process_sp->SetExitStatus(exit_status, signal_cstr); 1125 } 1126 } 1127 return true; 1128 } 1129 return false; 1130 } 1131 1132 bool Process::UpdateThreadList(ThreadList &old_thread_list, 1133 ThreadList &new_thread_list) { 1134 m_thread_plans.ClearThreadCache(); 1135 return DoUpdateThreadList(old_thread_list, new_thread_list); 1136 } 1137 1138 void Process::UpdateThreadListIfNeeded() { 1139 const uint32_t stop_id = GetStopID(); 1140 if (m_thread_list.GetSize(false) == 0 || 1141 stop_id != m_thread_list.GetStopID()) { 1142 bool clear_unused_threads = true; 1143 const StateType state = GetPrivateState(); 1144 if (StateIsStoppedState(state, true)) { 1145 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1146 m_thread_list.SetStopID(stop_id); 1147 1148 // m_thread_list does have its own mutex, but we need to hold onto the 1149 // mutex between the call to UpdateThreadList(...) and the 1150 // os->UpdateThreadList(...) so it doesn't change on us 1151 ThreadList &old_thread_list = m_thread_list; 1152 ThreadList real_thread_list(this); 1153 ThreadList new_thread_list(this); 1154 // Always update the thread list with the protocol specific thread list, 1155 // but only update if "true" is returned 1156 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1157 // Don't call into the OperatingSystem to update the thread list if we 1158 // are shutting down, since that may call back into the SBAPI's, 1159 // requiring the API lock which is already held by whoever is shutting 1160 // us down, causing a deadlock. 1161 OperatingSystem *os = GetOperatingSystem(); 1162 if (os && !m_destroy_in_process) { 1163 // Clear any old backing threads where memory threads might have been 1164 // backed by actual threads from the lldb_private::Process subclass 1165 size_t num_old_threads = old_thread_list.GetSize(false); 1166 for (size_t i = 0; i < num_old_threads; ++i) 1167 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1168 // See if the OS plugin reports all threads. If it does, then 1169 // it is safe to clear unseen thread's plans here. Otherwise we 1170 // should preserve them in case they show up again: 1171 clear_unused_threads = GetOSPluginReportsAllThreads(); 1172 1173 // Turn off dynamic types to ensure we don't run any expressions. 1174 // Objective-C can run an expression to determine if a SBValue is a 1175 // dynamic type or not and we need to avoid this. OperatingSystem 1176 // plug-ins can't run expressions that require running code... 1177 1178 Target &target = GetTarget(); 1179 const lldb::DynamicValueType saved_prefer_dynamic = 1180 target.GetPreferDynamicValue(); 1181 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1182 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1183 1184 // Now let the OperatingSystem plug-in update the thread list 1185 1186 os->UpdateThreadList( 1187 old_thread_list, // Old list full of threads created by OS plug-in 1188 real_thread_list, // The actual thread list full of threads 1189 // created by each lldb_private::Process 1190 // subclass 1191 new_thread_list); // The new thread list that we will show to the 1192 // user that gets filled in 1193 1194 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1195 target.SetPreferDynamicValue(saved_prefer_dynamic); 1196 } else { 1197 // No OS plug-in, the new thread list is the same as the real thread 1198 // list. 1199 new_thread_list = real_thread_list; 1200 } 1201 1202 m_thread_list_real.Update(real_thread_list); 1203 m_thread_list.Update(new_thread_list); 1204 m_thread_list.SetStopID(stop_id); 1205 1206 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1207 // Clear any extended threads that we may have accumulated previously 1208 m_extended_thread_list.Clear(); 1209 m_extended_thread_stop_id = GetLastNaturalStopID(); 1210 1211 m_queue_list.Clear(); 1212 m_queue_list_stop_id = GetLastNaturalStopID(); 1213 } 1214 } 1215 // Now update the plan stack map. 1216 // If we do have an OS plugin, any absent real threads in the 1217 // m_thread_list have already been removed from the ThreadPlanStackMap. 1218 // So any remaining threads are OS Plugin threads, and those we want to 1219 // preserve in case they show up again. 1220 m_thread_plans.Update(m_thread_list, clear_unused_threads); 1221 } 1222 } 1223 } 1224 1225 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) { 1226 return m_thread_plans.Find(tid); 1227 } 1228 1229 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) { 1230 return m_thread_plans.PrunePlansForTID(tid); 1231 } 1232 1233 void Process::PruneThreadPlans() { 1234 m_thread_plans.Update(GetThreadList(), true, false); 1235 } 1236 1237 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid, 1238 lldb::DescriptionLevel desc_level, 1239 bool internal, bool condense_trivial, 1240 bool skip_unreported_plans) { 1241 return m_thread_plans.DumpPlansForTID( 1242 strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans); 1243 } 1244 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level, 1245 bool internal, bool condense_trivial, 1246 bool skip_unreported_plans) { 1247 m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial, 1248 skip_unreported_plans); 1249 } 1250 1251 void Process::UpdateQueueListIfNeeded() { 1252 if (m_system_runtime_up) { 1253 if (m_queue_list.GetSize() == 0 || 1254 m_queue_list_stop_id != GetLastNaturalStopID()) { 1255 const StateType state = GetPrivateState(); 1256 if (StateIsStoppedState(state, true)) { 1257 m_system_runtime_up->PopulateQueueList(m_queue_list); 1258 m_queue_list_stop_id = GetLastNaturalStopID(); 1259 } 1260 } 1261 } 1262 } 1263 1264 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1265 OperatingSystem *os = GetOperatingSystem(); 1266 if (os) 1267 return os->CreateThread(tid, context); 1268 return ThreadSP(); 1269 } 1270 1271 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1272 return AssignIndexIDToThread(thread_id); 1273 } 1274 1275 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1276 return (m_thread_id_to_index_id_map.find(thread_id) != 1277 m_thread_id_to_index_id_map.end()); 1278 } 1279 1280 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1281 uint32_t result = 0; 1282 std::map<uint64_t, uint32_t>::iterator iterator = 1283 m_thread_id_to_index_id_map.find(thread_id); 1284 if (iterator == m_thread_id_to_index_id_map.end()) { 1285 result = ++m_thread_index_id; 1286 m_thread_id_to_index_id_map[thread_id] = result; 1287 } else { 1288 result = iterator->second; 1289 } 1290 1291 return result; 1292 } 1293 1294 StateType Process::GetState() { 1295 return m_public_state.GetValue(); 1296 } 1297 1298 void Process::SetPublicState(StateType new_state, bool restarted) { 1299 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1300 if (new_state_is_stopped) { 1301 // This will only set the time if the public stop time has no value, so 1302 // it is ok to call this multiple times. With a public stop we can't look 1303 // at the stop ID because many private stops might have happened, so we 1304 // can't check for a stop ID of zero. This allows the "statistics" command 1305 // to dump the time it takes to reach somewhere in your code, like a 1306 // breakpoint you set. 1307 GetTarget().GetStatistics().SetFirstPublicStopTime(); 1308 } 1309 1310 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1311 LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)", 1312 StateAsCString(new_state), restarted); 1313 const StateType old_state = m_public_state.GetValue(); 1314 m_public_state.SetValue(new_state); 1315 1316 // On the transition from Run to Stopped, we unlock the writer end of the run 1317 // lock. The lock gets locked in Resume, which is the public API to tell the 1318 // program to run. 1319 if (!StateChangedIsExternallyHijacked()) { 1320 if (new_state == eStateDetached) { 1321 LLDB_LOGF(log, 1322 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1323 StateAsCString(new_state)); 1324 m_public_run_lock.SetStopped(); 1325 } else { 1326 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1327 if ((old_state_is_stopped != new_state_is_stopped)) { 1328 if (new_state_is_stopped && !restarted) { 1329 LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock", 1330 StateAsCString(new_state)); 1331 m_public_run_lock.SetStopped(); 1332 } 1333 } 1334 } 1335 } 1336 } 1337 1338 Status Process::Resume() { 1339 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1340 LLDB_LOGF(log, "Process::Resume -- locking run lock"); 1341 if (!m_public_run_lock.TrySetRunning()) { 1342 Status error("Resume request failed - process still running."); 1343 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1344 return error; 1345 } 1346 Status error = PrivateResume(); 1347 if (!error.Success()) { 1348 // Undo running state change 1349 m_public_run_lock.SetStopped(); 1350 } 1351 return error; 1352 } 1353 1354 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack"; 1355 1356 Status Process::ResumeSynchronous(Stream *stream) { 1357 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1358 LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); 1359 if (!m_public_run_lock.TrySetRunning()) { 1360 Status error("Resume request failed - process still running."); 1361 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1362 return error; 1363 } 1364 1365 ListenerSP listener_sp( 1366 Listener::MakeListener(g_resume_sync_name)); 1367 HijackProcessEvents(listener_sp); 1368 1369 Status error = PrivateResume(); 1370 if (error.Success()) { 1371 StateType state = WaitForProcessToStop(llvm::None, nullptr, true, 1372 listener_sp, stream); 1373 const bool must_be_alive = 1374 false; // eStateExited is ok, so this must be false 1375 if (!StateIsStoppedState(state, must_be_alive)) 1376 error.SetErrorStringWithFormat( 1377 "process not in stopped state after synchronous resume: %s", 1378 StateAsCString(state)); 1379 } else { 1380 // Undo running state change 1381 m_public_run_lock.SetStopped(); 1382 } 1383 1384 // Undo the hijacking of process events... 1385 RestoreProcessEvents(); 1386 1387 return error; 1388 } 1389 1390 bool Process::StateChangedIsExternallyHijacked() { 1391 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1392 const char *hijacking_name = GetHijackingListenerName(); 1393 if (hijacking_name && 1394 strcmp(hijacking_name, g_resume_sync_name)) 1395 return true; 1396 } 1397 return false; 1398 } 1399 1400 bool Process::StateChangedIsHijackedForSynchronousResume() { 1401 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1402 const char *hijacking_name = GetHijackingListenerName(); 1403 if (hijacking_name && 1404 strcmp(hijacking_name, g_resume_sync_name) == 0) 1405 return true; 1406 } 1407 return false; 1408 } 1409 1410 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1411 1412 void Process::SetPrivateState(StateType new_state) { 1413 if (m_finalizing) 1414 return; 1415 1416 Log *log(GetLog(LLDBLog::State | LLDBLog::Process | LLDBLog::Unwind)); 1417 bool state_changed = false; 1418 1419 LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state)); 1420 1421 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1422 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1423 1424 const StateType old_state = m_private_state.GetValueNoLock(); 1425 state_changed = old_state != new_state; 1426 1427 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1428 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1429 if (old_state_is_stopped != new_state_is_stopped) { 1430 if (new_state_is_stopped) 1431 m_private_run_lock.SetStopped(); 1432 else 1433 m_private_run_lock.SetRunning(); 1434 } 1435 1436 if (state_changed) { 1437 m_private_state.SetValueNoLock(new_state); 1438 EventSP event_sp( 1439 new Event(eBroadcastBitStateChanged, 1440 new ProcessEventData(shared_from_this(), new_state))); 1441 if (StateIsStoppedState(new_state, false)) { 1442 // Note, this currently assumes that all threads in the list stop when 1443 // the process stops. In the future we will want to support a debugging 1444 // model where some threads continue to run while others are stopped. 1445 // When that happens we will either need a way for the thread list to 1446 // identify which threads are stopping or create a special thread list 1447 // containing only threads which actually stopped. 1448 // 1449 // The process plugin is responsible for managing the actual behavior of 1450 // the threads and should have stopped any threads that are going to stop 1451 // before we get here. 1452 m_thread_list.DidStop(); 1453 1454 if (m_mod_id.BumpStopID() == 0) 1455 GetTarget().GetStatistics().SetFirstPrivateStopTime(); 1456 1457 if (!m_mod_id.IsLastResumeForUserExpression()) 1458 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1459 m_memory_cache.Clear(); 1460 LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u", 1461 StateAsCString(new_state), m_mod_id.GetStopID()); 1462 } 1463 1464 m_private_state_broadcaster.BroadcastEvent(event_sp); 1465 } else { 1466 LLDB_LOGF(log, 1467 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1468 StateAsCString(new_state)); 1469 } 1470 } 1471 1472 void Process::SetRunningUserExpression(bool on) { 1473 m_mod_id.SetRunningUserExpression(on); 1474 } 1475 1476 void Process::SetRunningUtilityFunction(bool on) { 1477 m_mod_id.SetRunningUtilityFunction(on); 1478 } 1479 1480 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1481 1482 const lldb::ABISP &Process::GetABI() { 1483 if (!m_abi_sp) 1484 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1485 return m_abi_sp; 1486 } 1487 1488 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { 1489 std::vector<LanguageRuntime *> language_runtimes; 1490 1491 if (m_finalizing) 1492 return language_runtimes; 1493 1494 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1495 // Before we pass off a copy of the language runtimes, we must make sure that 1496 // our collection is properly populated. It's possible that some of the 1497 // language runtimes were not loaded yet, either because nobody requested it 1498 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so 1499 // hadn't been loaded). 1500 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 1501 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 1502 language_runtimes.emplace_back(runtime); 1503 } 1504 1505 return language_runtimes; 1506 } 1507 1508 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { 1509 if (m_finalizing) 1510 return nullptr; 1511 1512 LanguageRuntime *runtime = nullptr; 1513 1514 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1515 LanguageRuntimeCollection::iterator pos; 1516 pos = m_language_runtimes.find(language); 1517 if (pos == m_language_runtimes.end() || !pos->second) { 1518 lldb::LanguageRuntimeSP runtime_sp( 1519 LanguageRuntime::FindPlugin(this, language)); 1520 1521 m_language_runtimes[language] = runtime_sp; 1522 runtime = runtime_sp.get(); 1523 } else 1524 runtime = pos->second.get(); 1525 1526 if (runtime) 1527 // It's possible that a language runtime can support multiple LanguageTypes, 1528 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, 1529 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the 1530 // primary language type and make sure that our runtime supports it. 1531 assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); 1532 1533 return runtime; 1534 } 1535 1536 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1537 if (m_finalizing) 1538 return false; 1539 1540 if (in_value.IsDynamic()) 1541 return false; 1542 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1543 1544 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1545 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1546 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1547 } 1548 1549 for (LanguageRuntime *runtime : GetLanguageRuntimes()) { 1550 if (runtime->CouldHaveDynamicValue(in_value)) 1551 return true; 1552 } 1553 1554 return false; 1555 } 1556 1557 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1558 m_dynamic_checkers_up.reset(dynamic_checkers); 1559 } 1560 1561 BreakpointSiteList &Process::GetBreakpointSiteList() { 1562 return m_breakpoint_site_list; 1563 } 1564 1565 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1566 return m_breakpoint_site_list; 1567 } 1568 1569 void Process::DisableAllBreakpointSites() { 1570 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1571 // bp_site->SetEnabled(true); 1572 DisableBreakpointSite(bp_site); 1573 }); 1574 } 1575 1576 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1577 Status error(DisableBreakpointSiteByID(break_id)); 1578 1579 if (error.Success()) 1580 m_breakpoint_site_list.Remove(break_id); 1581 1582 return error; 1583 } 1584 1585 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1586 Status error; 1587 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1588 if (bp_site_sp) { 1589 if (bp_site_sp->IsEnabled()) 1590 error = DisableBreakpointSite(bp_site_sp.get()); 1591 } else { 1592 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1593 break_id); 1594 } 1595 1596 return error; 1597 } 1598 1599 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1600 Status error; 1601 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1602 if (bp_site_sp) { 1603 if (!bp_site_sp->IsEnabled()) 1604 error = EnableBreakpointSite(bp_site_sp.get()); 1605 } else { 1606 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1607 break_id); 1608 } 1609 return error; 1610 } 1611 1612 lldb::break_id_t 1613 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1614 bool use_hardware) { 1615 addr_t load_addr = LLDB_INVALID_ADDRESS; 1616 1617 bool show_error = true; 1618 switch (GetState()) { 1619 case eStateInvalid: 1620 case eStateUnloaded: 1621 case eStateConnected: 1622 case eStateAttaching: 1623 case eStateLaunching: 1624 case eStateDetached: 1625 case eStateExited: 1626 show_error = false; 1627 break; 1628 1629 case eStateStopped: 1630 case eStateRunning: 1631 case eStateStepping: 1632 case eStateCrashed: 1633 case eStateSuspended: 1634 show_error = IsAlive(); 1635 break; 1636 } 1637 1638 // Reset the IsIndirect flag here, in case the location changes from pointing 1639 // to a indirect symbol to a regular symbol. 1640 owner->SetIsIndirect(false); 1641 1642 if (owner->ShouldResolveIndirectFunctions()) { 1643 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1644 if (symbol && symbol->IsIndirect()) { 1645 Status error; 1646 Address symbol_address = symbol->GetAddress(); 1647 load_addr = ResolveIndirectFunction(&symbol_address, error); 1648 if (!error.Success() && show_error) { 1649 GetTarget().GetDebugger().GetErrorStream().Printf( 1650 "warning: failed to resolve indirect function at 0x%" PRIx64 1651 " for breakpoint %i.%i: %s\n", 1652 symbol->GetLoadAddress(&GetTarget()), 1653 owner->GetBreakpoint().GetID(), owner->GetID(), 1654 error.AsCString() ? error.AsCString() : "unknown error"); 1655 return LLDB_INVALID_BREAK_ID; 1656 } 1657 Address resolved_address(load_addr); 1658 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1659 owner->SetIsIndirect(true); 1660 } else 1661 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1662 } else 1663 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1664 1665 if (load_addr != LLDB_INVALID_ADDRESS) { 1666 BreakpointSiteSP bp_site_sp; 1667 1668 // Look up this breakpoint site. If it exists, then add this new owner, 1669 // otherwise create a new breakpoint site and add it. 1670 1671 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1672 1673 if (bp_site_sp) { 1674 bp_site_sp->AddOwner(owner); 1675 owner->SetBreakpointSite(bp_site_sp); 1676 return bp_site_sp->GetID(); 1677 } else { 1678 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1679 load_addr, use_hardware)); 1680 if (bp_site_sp) { 1681 Status error = EnableBreakpointSite(bp_site_sp.get()); 1682 if (error.Success()) { 1683 owner->SetBreakpointSite(bp_site_sp); 1684 return m_breakpoint_site_list.Add(bp_site_sp); 1685 } else { 1686 if (show_error || use_hardware) { 1687 // Report error for setting breakpoint... 1688 GetTarget().GetDebugger().GetErrorStream().Printf( 1689 "warning: failed to set breakpoint site at 0x%" PRIx64 1690 " for breakpoint %i.%i: %s\n", 1691 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1692 error.AsCString() ? error.AsCString() : "unknown error"); 1693 } 1694 } 1695 } 1696 } 1697 } 1698 // We failed to enable the breakpoint 1699 return LLDB_INVALID_BREAK_ID; 1700 } 1701 1702 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1703 lldb::user_id_t owner_loc_id, 1704 BreakpointSiteSP &bp_site_sp) { 1705 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1706 if (num_owners == 0) { 1707 // Don't try to disable the site if we don't have a live process anymore. 1708 if (IsAlive()) 1709 DisableBreakpointSite(bp_site_sp.get()); 1710 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1711 } 1712 } 1713 1714 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1715 uint8_t *buf) const { 1716 size_t bytes_removed = 0; 1717 BreakpointSiteList bp_sites_in_range; 1718 1719 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1720 bp_sites_in_range)) { 1721 bp_sites_in_range.ForEach([bp_addr, size, 1722 buf](BreakpointSite *bp_site) -> void { 1723 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1724 addr_t intersect_addr; 1725 size_t intersect_size; 1726 size_t opcode_offset; 1727 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1728 &intersect_size, &opcode_offset)) { 1729 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1730 assert(bp_addr < intersect_addr + intersect_size && 1731 intersect_addr + intersect_size <= bp_addr + size); 1732 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1733 size_t buf_offset = intersect_addr - bp_addr; 1734 ::memcpy(buf + buf_offset, 1735 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1736 intersect_size); 1737 } 1738 } 1739 }); 1740 } 1741 return bytes_removed; 1742 } 1743 1744 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1745 PlatformSP platform_sp(GetTarget().GetPlatform()); 1746 if (platform_sp) 1747 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1748 return 0; 1749 } 1750 1751 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1752 Status error; 1753 assert(bp_site != nullptr); 1754 Log *log = GetLog(LLDBLog::Breakpoints); 1755 const addr_t bp_addr = bp_site->GetLoadAddress(); 1756 LLDB_LOGF( 1757 log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1758 bp_site->GetID(), (uint64_t)bp_addr); 1759 if (bp_site->IsEnabled()) { 1760 LLDB_LOGF( 1761 log, 1762 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1763 " -- already enabled", 1764 bp_site->GetID(), (uint64_t)bp_addr); 1765 return error; 1766 } 1767 1768 if (bp_addr == LLDB_INVALID_ADDRESS) { 1769 error.SetErrorString("BreakpointSite contains an invalid load address."); 1770 return error; 1771 } 1772 // Ask the lldb::Process subclass to fill in the correct software breakpoint 1773 // trap for the breakpoint site 1774 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 1775 1776 if (bp_opcode_size == 0) { 1777 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 1778 "returned zero, unable to get breakpoint " 1779 "trap for address 0x%" PRIx64, 1780 bp_addr); 1781 } else { 1782 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 1783 1784 if (bp_opcode_bytes == nullptr) { 1785 error.SetErrorString( 1786 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 1787 return error; 1788 } 1789 1790 // Save the original opcode by reading it 1791 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 1792 error) == bp_opcode_size) { 1793 // Write a software breakpoint in place of the original opcode 1794 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 1795 bp_opcode_size) { 1796 uint8_t verify_bp_opcode_bytes[64]; 1797 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 1798 error) == bp_opcode_size) { 1799 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 1800 bp_opcode_size) == 0) { 1801 bp_site->SetEnabled(true); 1802 bp_site->SetType(BreakpointSite::eSoftware); 1803 LLDB_LOGF(log, 1804 "Process::EnableSoftwareBreakpoint (site_id = %d) " 1805 "addr = 0x%" PRIx64 " -- SUCCESS", 1806 bp_site->GetID(), (uint64_t)bp_addr); 1807 } else 1808 error.SetErrorString( 1809 "failed to verify the breakpoint trap in memory."); 1810 } else 1811 error.SetErrorString( 1812 "Unable to read memory to verify breakpoint trap."); 1813 } else 1814 error.SetErrorString("Unable to write breakpoint trap to memory."); 1815 } else 1816 error.SetErrorString("Unable to read memory at breakpoint address."); 1817 } 1818 if (log && error.Fail()) 1819 LLDB_LOGF( 1820 log, 1821 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1822 " -- FAILED: %s", 1823 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1824 return error; 1825 } 1826 1827 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 1828 Status error; 1829 assert(bp_site != nullptr); 1830 Log *log = GetLog(LLDBLog::Breakpoints); 1831 addr_t bp_addr = bp_site->GetLoadAddress(); 1832 lldb::user_id_t breakID = bp_site->GetID(); 1833 LLDB_LOGF(log, 1834 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 1835 ") addr = 0x%" PRIx64, 1836 breakID, (uint64_t)bp_addr); 1837 1838 if (bp_site->IsHardware()) { 1839 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 1840 } else if (bp_site->IsEnabled()) { 1841 const size_t break_op_size = bp_site->GetByteSize(); 1842 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 1843 if (break_op_size > 0) { 1844 // Clear a software breakpoint instruction 1845 uint8_t curr_break_op[8]; 1846 assert(break_op_size <= sizeof(curr_break_op)); 1847 bool break_op_found = false; 1848 1849 // Read the breakpoint opcode 1850 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 1851 break_op_size) { 1852 bool verify = false; 1853 // Make sure the breakpoint opcode exists at this address 1854 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 1855 break_op_found = true; 1856 // We found a valid breakpoint opcode at this address, now restore 1857 // the saved opcode. 1858 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 1859 break_op_size, error) == break_op_size) { 1860 verify = true; 1861 } else 1862 error.SetErrorString( 1863 "Memory write failed when restoring original opcode."); 1864 } else { 1865 error.SetErrorString( 1866 "Original breakpoint trap is no longer in memory."); 1867 // Set verify to true and so we can check if the original opcode has 1868 // already been restored 1869 verify = true; 1870 } 1871 1872 if (verify) { 1873 uint8_t verify_opcode[8]; 1874 assert(break_op_size < sizeof(verify_opcode)); 1875 // Verify that our original opcode made it back to the inferior 1876 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 1877 break_op_size) { 1878 // compare the memory we just read with the original opcode 1879 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 1880 break_op_size) == 0) { 1881 // SUCCESS 1882 bp_site->SetEnabled(false); 1883 LLDB_LOGF(log, 1884 "Process::DisableSoftwareBreakpoint (site_id = %d) " 1885 "addr = 0x%" PRIx64 " -- SUCCESS", 1886 bp_site->GetID(), (uint64_t)bp_addr); 1887 return error; 1888 } else { 1889 if (break_op_found) 1890 error.SetErrorString("Failed to restore original opcode."); 1891 } 1892 } else 1893 error.SetErrorString("Failed to read memory to verify that " 1894 "breakpoint trap was restored."); 1895 } 1896 } else 1897 error.SetErrorString( 1898 "Unable to read memory that should contain the breakpoint trap."); 1899 } 1900 } else { 1901 LLDB_LOGF( 1902 log, 1903 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1904 " -- already disabled", 1905 bp_site->GetID(), (uint64_t)bp_addr); 1906 return error; 1907 } 1908 1909 LLDB_LOGF( 1910 log, 1911 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1912 " -- FAILED: %s", 1913 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1914 return error; 1915 } 1916 1917 // Uncomment to verify memory caching works after making changes to caching 1918 // code 1919 //#define VERIFY_MEMORY_READS 1920 1921 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 1922 if (ABISP abi_sp = GetABI()) 1923 addr = abi_sp->FixAnyAddress(addr); 1924 1925 error.Clear(); 1926 if (!GetDisableMemoryCache()) { 1927 #if defined(VERIFY_MEMORY_READS) 1928 // Memory caching is enabled, with debug verification 1929 1930 if (buf && size) { 1931 // Uncomment the line below to make sure memory caching is working. 1932 // I ran this through the test suite and got no assertions, so I am 1933 // pretty confident this is working well. If any changes are made to 1934 // memory caching, uncomment the line below and test your changes! 1935 1936 // Verify all memory reads by using the cache first, then redundantly 1937 // reading the same memory from the inferior and comparing to make sure 1938 // everything is exactly the same. 1939 std::string verify_buf(size, '\0'); 1940 assert(verify_buf.size() == size); 1941 const size_t cache_bytes_read = 1942 m_memory_cache.Read(this, addr, buf, size, error); 1943 Status verify_error; 1944 const size_t verify_bytes_read = 1945 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 1946 verify_buf.size(), verify_error); 1947 assert(cache_bytes_read == verify_bytes_read); 1948 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 1949 assert(verify_error.Success() == error.Success()); 1950 return cache_bytes_read; 1951 } 1952 return 0; 1953 #else // !defined(VERIFY_MEMORY_READS) 1954 // Memory caching is enabled, without debug verification 1955 1956 return m_memory_cache.Read(addr, buf, size, error); 1957 #endif // defined (VERIFY_MEMORY_READS) 1958 } else { 1959 // Memory caching is disabled 1960 1961 return ReadMemoryFromInferior(addr, buf, size, error); 1962 } 1963 } 1964 1965 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 1966 Status &error) { 1967 char buf[256]; 1968 out_str.clear(); 1969 addr_t curr_addr = addr; 1970 while (true) { 1971 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 1972 if (length == 0) 1973 break; 1974 out_str.append(buf, length); 1975 // If we got "length - 1" bytes, we didn't get the whole C string, we need 1976 // to read some more characters 1977 if (length == sizeof(buf) - 1) 1978 curr_addr += length; 1979 else 1980 break; 1981 } 1982 return out_str.size(); 1983 } 1984 1985 // Deprecated in favor of ReadStringFromMemory which has wchar support and 1986 // correct code to find null terminators. 1987 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 1988 size_t dst_max_len, 1989 Status &result_error) { 1990 size_t total_cstr_len = 0; 1991 if (dst && dst_max_len) { 1992 result_error.Clear(); 1993 // NULL out everything just to be safe 1994 memset(dst, 0, dst_max_len); 1995 Status error; 1996 addr_t curr_addr = addr; 1997 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 1998 size_t bytes_left = dst_max_len - 1; 1999 char *curr_dst = dst; 2000 2001 while (bytes_left > 0) { 2002 addr_t cache_line_bytes_left = 2003 cache_line_size - (curr_addr % cache_line_size); 2004 addr_t bytes_to_read = 2005 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2006 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2007 2008 if (bytes_read == 0) { 2009 result_error = error; 2010 dst[total_cstr_len] = '\0'; 2011 break; 2012 } 2013 const size_t len = strlen(curr_dst); 2014 2015 total_cstr_len += len; 2016 2017 if (len < bytes_to_read) 2018 break; 2019 2020 curr_dst += bytes_read; 2021 curr_addr += bytes_read; 2022 bytes_left -= bytes_read; 2023 } 2024 } else { 2025 if (dst == nullptr) 2026 result_error.SetErrorString("invalid arguments"); 2027 else 2028 result_error.Clear(); 2029 } 2030 return total_cstr_len; 2031 } 2032 2033 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2034 Status &error) { 2035 LLDB_SCOPED_TIMER(); 2036 2037 if (ABISP abi_sp = GetABI()) 2038 addr = abi_sp->FixAnyAddress(addr); 2039 2040 if (buf == nullptr || size == 0) 2041 return 0; 2042 2043 size_t bytes_read = 0; 2044 uint8_t *bytes = (uint8_t *)buf; 2045 2046 while (bytes_read < size) { 2047 const size_t curr_size = size - bytes_read; 2048 const size_t curr_bytes_read = 2049 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2050 bytes_read += curr_bytes_read; 2051 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2052 break; 2053 } 2054 2055 // Replace any software breakpoint opcodes that fall into this range back 2056 // into "buf" before we return 2057 if (bytes_read > 0) 2058 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2059 return bytes_read; 2060 } 2061 2062 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2063 size_t integer_byte_size, 2064 uint64_t fail_value, 2065 Status &error) { 2066 Scalar scalar; 2067 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2068 error)) 2069 return scalar.ULongLong(fail_value); 2070 return fail_value; 2071 } 2072 2073 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2074 size_t integer_byte_size, 2075 int64_t fail_value, 2076 Status &error) { 2077 Scalar scalar; 2078 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2079 error)) 2080 return scalar.SLongLong(fail_value); 2081 return fail_value; 2082 } 2083 2084 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2085 Scalar scalar; 2086 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2087 error)) 2088 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2089 return LLDB_INVALID_ADDRESS; 2090 } 2091 2092 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2093 Status &error) { 2094 Scalar scalar; 2095 const uint32_t addr_byte_size = GetAddressByteSize(); 2096 if (addr_byte_size <= 4) 2097 scalar = (uint32_t)ptr_value; 2098 else 2099 scalar = ptr_value; 2100 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2101 addr_byte_size; 2102 } 2103 2104 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2105 Status &error) { 2106 size_t bytes_written = 0; 2107 const uint8_t *bytes = (const uint8_t *)buf; 2108 2109 while (bytes_written < size) { 2110 const size_t curr_size = size - bytes_written; 2111 const size_t curr_bytes_written = DoWriteMemory( 2112 addr + bytes_written, bytes + bytes_written, curr_size, error); 2113 bytes_written += curr_bytes_written; 2114 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2115 break; 2116 } 2117 return bytes_written; 2118 } 2119 2120 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2121 Status &error) { 2122 if (ABISP abi_sp = GetABI()) 2123 addr = abi_sp->FixAnyAddress(addr); 2124 2125 #if defined(ENABLE_MEMORY_CACHING) 2126 m_memory_cache.Flush(addr, size); 2127 #endif 2128 2129 if (buf == nullptr || size == 0) 2130 return 0; 2131 2132 m_mod_id.BumpMemoryID(); 2133 2134 // We need to write any data that would go where any current software traps 2135 // (enabled software breakpoints) any software traps (breakpoints) that we 2136 // may have placed in our tasks memory. 2137 2138 BreakpointSiteList bp_sites_in_range; 2139 if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range)) 2140 return WriteMemoryPrivate(addr, buf, size, error); 2141 2142 // No breakpoint sites overlap 2143 if (bp_sites_in_range.IsEmpty()) 2144 return WriteMemoryPrivate(addr, buf, size, error); 2145 2146 const uint8_t *ubuf = (const uint8_t *)buf; 2147 uint64_t bytes_written = 0; 2148 2149 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2150 &error](BreakpointSite *bp) -> void { 2151 if (error.Fail()) 2152 return; 2153 2154 if (bp->GetType() != BreakpointSite::eSoftware) 2155 return; 2156 2157 addr_t intersect_addr; 2158 size_t intersect_size; 2159 size_t opcode_offset; 2160 const bool intersects = bp->IntersectsRange( 2161 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2162 UNUSED_IF_ASSERT_DISABLED(intersects); 2163 assert(intersects); 2164 assert(addr <= intersect_addr && intersect_addr < addr + size); 2165 assert(addr < intersect_addr + intersect_size && 2166 intersect_addr + intersect_size <= addr + size); 2167 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2168 2169 // Check for bytes before this breakpoint 2170 const addr_t curr_addr = addr + bytes_written; 2171 if (intersect_addr > curr_addr) { 2172 // There are some bytes before this breakpoint that we need to just 2173 // write to memory 2174 size_t curr_size = intersect_addr - curr_addr; 2175 size_t curr_bytes_written = 2176 WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error); 2177 bytes_written += curr_bytes_written; 2178 if (curr_bytes_written != curr_size) { 2179 // We weren't able to write all of the requested bytes, we are 2180 // done looping and will return the number of bytes that we have 2181 // written so far. 2182 if (error.Success()) 2183 error.SetErrorToGenericError(); 2184 } 2185 } 2186 // Now write any bytes that would cover up any software breakpoints 2187 // directly into the breakpoint opcode buffer 2188 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, 2189 intersect_size); 2190 bytes_written += intersect_size; 2191 }); 2192 2193 // Write any remaining bytes after the last breakpoint if we have any left 2194 if (bytes_written < size) 2195 bytes_written += 2196 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2197 size - bytes_written, error); 2198 2199 return bytes_written; 2200 } 2201 2202 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2203 size_t byte_size, Status &error) { 2204 if (byte_size == UINT32_MAX) 2205 byte_size = scalar.GetByteSize(); 2206 if (byte_size > 0) { 2207 uint8_t buf[32]; 2208 const size_t mem_size = 2209 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2210 if (mem_size > 0) 2211 return WriteMemory(addr, buf, mem_size, error); 2212 else 2213 error.SetErrorString("failed to get scalar as memory data"); 2214 } else { 2215 error.SetErrorString("invalid scalar value"); 2216 } 2217 return 0; 2218 } 2219 2220 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2221 bool is_signed, Scalar &scalar, 2222 Status &error) { 2223 uint64_t uval = 0; 2224 if (byte_size == 0) { 2225 error.SetErrorString("byte size is zero"); 2226 } else if (byte_size & (byte_size - 1)) { 2227 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2228 byte_size); 2229 } else if (byte_size <= sizeof(uval)) { 2230 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2231 if (bytes_read == byte_size) { 2232 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2233 GetAddressByteSize()); 2234 lldb::offset_t offset = 0; 2235 if (byte_size <= 4) 2236 scalar = data.GetMaxU32(&offset, byte_size); 2237 else 2238 scalar = data.GetMaxU64(&offset, byte_size); 2239 if (is_signed) 2240 scalar.SignExtend(byte_size * 8); 2241 return bytes_read; 2242 } 2243 } else { 2244 error.SetErrorStringWithFormat( 2245 "byte size of %u is too large for integer scalar type", byte_size); 2246 } 2247 return 0; 2248 } 2249 2250 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2251 Status error; 2252 for (const auto &Entry : entries) { 2253 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2254 error); 2255 if (!error.Success()) 2256 break; 2257 } 2258 return error; 2259 } 2260 2261 #define USE_ALLOCATE_MEMORY_CACHE 1 2262 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2263 Status &error) { 2264 if (GetPrivateState() != eStateStopped) { 2265 error.SetErrorToGenericError(); 2266 return LLDB_INVALID_ADDRESS; 2267 } 2268 2269 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2270 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2271 #else 2272 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2273 Log *log = GetLog(LLDBLog::Process); 2274 LLDB_LOGF(log, 2275 "Process::AllocateMemory(size=%" PRIu64 2276 ", permissions=%s) => 0x%16.16" PRIx64 2277 " (m_stop_id = %u m_memory_id = %u)", 2278 (uint64_t)size, GetPermissionsAsCString(permissions), 2279 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2280 m_mod_id.GetMemoryID()); 2281 return allocated_addr; 2282 #endif 2283 } 2284 2285 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2286 Status &error) { 2287 addr_t return_addr = AllocateMemory(size, permissions, error); 2288 if (error.Success()) { 2289 std::string buffer(size, 0); 2290 WriteMemory(return_addr, buffer.c_str(), size, error); 2291 } 2292 return return_addr; 2293 } 2294 2295 bool Process::CanJIT() { 2296 if (m_can_jit == eCanJITDontKnow) { 2297 Log *log = GetLog(LLDBLog::Process); 2298 Status err; 2299 2300 uint64_t allocated_memory = AllocateMemory( 2301 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2302 err); 2303 2304 if (err.Success()) { 2305 m_can_jit = eCanJITYes; 2306 LLDB_LOGF(log, 2307 "Process::%s pid %" PRIu64 2308 " allocation test passed, CanJIT () is true", 2309 __FUNCTION__, GetID()); 2310 } else { 2311 m_can_jit = eCanJITNo; 2312 LLDB_LOGF(log, 2313 "Process::%s pid %" PRIu64 2314 " allocation test failed, CanJIT () is false: %s", 2315 __FUNCTION__, GetID(), err.AsCString()); 2316 } 2317 2318 DeallocateMemory(allocated_memory); 2319 } 2320 2321 return m_can_jit == eCanJITYes; 2322 } 2323 2324 void Process::SetCanJIT(bool can_jit) { 2325 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2326 } 2327 2328 void Process::SetCanRunCode(bool can_run_code) { 2329 SetCanJIT(can_run_code); 2330 m_can_interpret_function_calls = can_run_code; 2331 } 2332 2333 Status Process::DeallocateMemory(addr_t ptr) { 2334 Status error; 2335 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2336 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2337 error.SetErrorStringWithFormat( 2338 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2339 } 2340 #else 2341 error = DoDeallocateMemory(ptr); 2342 2343 Log *log = GetLog(LLDBLog::Process); 2344 LLDB_LOGF(log, 2345 "Process::DeallocateMemory(addr=0x%16.16" PRIx64 2346 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2347 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2348 m_mod_id.GetMemoryID()); 2349 #endif 2350 return error; 2351 } 2352 2353 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2354 lldb::addr_t header_addr, 2355 size_t size_to_read) { 2356 Log *log = GetLog(LLDBLog::Host); 2357 if (log) { 2358 LLDB_LOGF(log, 2359 "Process::ReadModuleFromMemory reading %s binary from memory", 2360 file_spec.GetPath().c_str()); 2361 } 2362 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2363 if (module_sp) { 2364 Status error; 2365 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2366 shared_from_this(), header_addr, error, size_to_read); 2367 if (objfile) 2368 return module_sp; 2369 } 2370 return ModuleSP(); 2371 } 2372 2373 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2374 uint32_t &permissions) { 2375 MemoryRegionInfo range_info; 2376 permissions = 0; 2377 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2378 if (!error.Success()) 2379 return false; 2380 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2381 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2382 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2383 return false; 2384 } 2385 2386 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2387 permissions |= lldb::ePermissionsReadable; 2388 2389 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2390 permissions |= lldb::ePermissionsWritable; 2391 2392 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2393 permissions |= lldb::ePermissionsExecutable; 2394 2395 return true; 2396 } 2397 2398 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2399 Status error; 2400 error.SetErrorString("watchpoints are not supported"); 2401 return error; 2402 } 2403 2404 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2405 Status error; 2406 error.SetErrorString("watchpoints are not supported"); 2407 return error; 2408 } 2409 2410 StateType 2411 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2412 const Timeout<std::micro> &timeout) { 2413 StateType state; 2414 2415 while (true) { 2416 event_sp.reset(); 2417 state = GetStateChangedEventsPrivate(event_sp, timeout); 2418 2419 if (StateIsStoppedState(state, false)) 2420 break; 2421 2422 // If state is invalid, then we timed out 2423 if (state == eStateInvalid) 2424 break; 2425 2426 if (event_sp) 2427 HandlePrivateEvent(event_sp); 2428 } 2429 return state; 2430 } 2431 2432 void Process::LoadOperatingSystemPlugin(bool flush) { 2433 if (flush) 2434 m_thread_list.Clear(); 2435 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); 2436 if (flush) 2437 Flush(); 2438 } 2439 2440 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2441 StateType state_after_launch = eStateInvalid; 2442 EventSP first_stop_event_sp; 2443 Status status = 2444 LaunchPrivate(launch_info, state_after_launch, first_stop_event_sp); 2445 if (status.Fail()) 2446 return status; 2447 2448 if (state_after_launch != eStateStopped && 2449 state_after_launch != eStateCrashed) 2450 return Status(); 2451 2452 // Note, the stop event was consumed above, but not handled. This 2453 // was done to give DidLaunch a chance to run. The target is either 2454 // stopped or crashed. Directly set the state. This is done to 2455 // prevent a stop message with a bunch of spurious output on thread 2456 // status, as well as not pop a ProcessIOHandler. 2457 SetPublicState(state_after_launch, false); 2458 2459 if (PrivateStateThreadIsValid()) 2460 ResumePrivateStateThread(); 2461 else 2462 StartPrivateStateThread(); 2463 2464 // Target was stopped at entry as was intended. Need to notify the 2465 // listeners about it. 2466 if (launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2467 HandlePrivateEvent(first_stop_event_sp); 2468 2469 return Status(); 2470 } 2471 2472 Status Process::LaunchPrivate(ProcessLaunchInfo &launch_info, StateType &state, 2473 EventSP &event_sp) { 2474 Status error; 2475 m_abi_sp.reset(); 2476 m_dyld_up.reset(); 2477 m_jit_loaders_up.reset(); 2478 m_system_runtime_up.reset(); 2479 m_os_up.reset(); 2480 m_process_input_reader.reset(); 2481 2482 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2483 2484 // The "remote executable path" is hooked up to the local Executable 2485 // module. But we should be able to debug a remote process even if the 2486 // executable module only exists on the remote. However, there needs to 2487 // be a way to express this path, without actually having a module. 2488 // The way to do that is to set the ExecutableFile in the LaunchInfo. 2489 // Figure that out here: 2490 2491 FileSpec exe_spec_to_use; 2492 if (!exe_module) { 2493 if (!launch_info.GetExecutableFile()) { 2494 error.SetErrorString("executable module does not exist"); 2495 return error; 2496 } 2497 exe_spec_to_use = launch_info.GetExecutableFile(); 2498 } else 2499 exe_spec_to_use = exe_module->GetFileSpec(); 2500 2501 if (exe_module && FileSystem::Instance().Exists(exe_module->GetFileSpec())) { 2502 // Install anything that might need to be installed prior to launching. 2503 // For host systems, this will do nothing, but if we are connected to a 2504 // remote platform it will install any needed binaries 2505 error = GetTarget().Install(&launch_info); 2506 if (error.Fail()) 2507 return error; 2508 } 2509 2510 // Listen and queue events that are broadcasted during the process launch. 2511 ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack")); 2512 HijackProcessEvents(listener_sp); 2513 auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); }); 2514 2515 if (PrivateStateThreadIsValid()) 2516 PausePrivateStateThread(); 2517 2518 error = WillLaunch(exe_module); 2519 if (error.Fail()) { 2520 std::string local_exec_file_path = exe_spec_to_use.GetPath(); 2521 return Status("file doesn't exist: '%s'", local_exec_file_path.c_str()); 2522 } 2523 2524 const bool restarted = false; 2525 SetPublicState(eStateLaunching, restarted); 2526 m_should_detach = false; 2527 2528 if (m_public_run_lock.TrySetRunning()) { 2529 // Now launch using these arguments. 2530 error = DoLaunch(exe_module, launch_info); 2531 } else { 2532 // This shouldn't happen 2533 error.SetErrorString("failed to acquire process run lock"); 2534 } 2535 2536 if (error.Fail()) { 2537 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2538 SetID(LLDB_INVALID_PROCESS_ID); 2539 const char *error_string = error.AsCString(); 2540 if (error_string == nullptr) 2541 error_string = "launch failed"; 2542 SetExitStatus(-1, error_string); 2543 } 2544 return error; 2545 } 2546 2547 // Now wait for the process to launch and return control to us, and then 2548 // call DidLaunch: 2549 state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2550 2551 if (state == eStateInvalid || !event_sp) { 2552 // We were able to launch the process, but we failed to catch the 2553 // initial stop. 2554 error.SetErrorString("failed to catch stop after launch"); 2555 SetExitStatus(0, error.AsCString()); 2556 Destroy(false); 2557 return error; 2558 } 2559 2560 if (state == eStateExited) { 2561 // We exited while trying to launch somehow. Don't call DidLaunch 2562 // as that's not likely to work, and return an invalid pid. 2563 HandlePrivateEvent(event_sp); 2564 return Status(); 2565 } 2566 2567 if (state == eStateStopped || state == eStateCrashed) { 2568 DidLaunch(); 2569 2570 DynamicLoader *dyld = GetDynamicLoader(); 2571 if (dyld) 2572 dyld->DidLaunch(); 2573 2574 GetJITLoaders().DidLaunch(); 2575 2576 SystemRuntime *system_runtime = GetSystemRuntime(); 2577 if (system_runtime) 2578 system_runtime->DidLaunch(); 2579 2580 if (!m_os_up) 2581 LoadOperatingSystemPlugin(false); 2582 2583 // We successfully launched the process and stopped, now it the 2584 // right time to set up signal filters before resuming. 2585 UpdateAutomaticSignalFiltering(); 2586 return Status(); 2587 } 2588 2589 return Status("Unexpected process state after the launch: %s, expected %s, " 2590 "%s, %s or %s", 2591 StateAsCString(state), StateAsCString(eStateInvalid), 2592 StateAsCString(eStateExited), StateAsCString(eStateStopped), 2593 StateAsCString(eStateCrashed)); 2594 } 2595 2596 Status Process::LoadCore() { 2597 Status error = DoLoadCore(); 2598 if (error.Success()) { 2599 ListenerSP listener_sp( 2600 Listener::MakeListener("lldb.process.load_core_listener")); 2601 HijackProcessEvents(listener_sp); 2602 2603 if (PrivateStateThreadIsValid()) 2604 ResumePrivateStateThread(); 2605 else 2606 StartPrivateStateThread(); 2607 2608 DynamicLoader *dyld = GetDynamicLoader(); 2609 if (dyld) 2610 dyld->DidAttach(); 2611 2612 GetJITLoaders().DidAttach(); 2613 2614 SystemRuntime *system_runtime = GetSystemRuntime(); 2615 if (system_runtime) 2616 system_runtime->DidAttach(); 2617 2618 if (!m_os_up) 2619 LoadOperatingSystemPlugin(false); 2620 2621 // We successfully loaded a core file, now pretend we stopped so we can 2622 // show all of the threads in the core file and explore the crashed state. 2623 SetPrivateState(eStateStopped); 2624 2625 // Wait for a stopped event since we just posted one above... 2626 lldb::EventSP event_sp; 2627 StateType state = 2628 WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp); 2629 2630 if (!StateIsStoppedState(state, false)) { 2631 Log *log = GetLog(LLDBLog::Process); 2632 LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", 2633 StateAsCString(state)); 2634 error.SetErrorString( 2635 "Did not get stopped event after loading the core file."); 2636 } 2637 RestoreProcessEvents(); 2638 } 2639 return error; 2640 } 2641 2642 DynamicLoader *Process::GetDynamicLoader() { 2643 if (!m_dyld_up) 2644 m_dyld_up.reset(DynamicLoader::FindPlugin(this, "")); 2645 return m_dyld_up.get(); 2646 } 2647 2648 DataExtractor Process::GetAuxvData() { return DataExtractor(); } 2649 2650 llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) { 2651 return false; 2652 } 2653 2654 JITLoaderList &Process::GetJITLoaders() { 2655 if (!m_jit_loaders_up) { 2656 m_jit_loaders_up = std::make_unique<JITLoaderList>(); 2657 JITLoader::LoadPlugins(this, *m_jit_loaders_up); 2658 } 2659 return *m_jit_loaders_up; 2660 } 2661 2662 SystemRuntime *Process::GetSystemRuntime() { 2663 if (!m_system_runtime_up) 2664 m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); 2665 return m_system_runtime_up.get(); 2666 } 2667 2668 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2669 uint32_t exec_count) 2670 : NextEventAction(process), m_exec_count(exec_count) { 2671 Log *log = GetLog(LLDBLog::Process); 2672 LLDB_LOGF( 2673 log, 2674 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2675 __FUNCTION__, static_cast<void *>(process), exec_count); 2676 } 2677 2678 Process::NextEventAction::EventActionResult 2679 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2680 Log *log = GetLog(LLDBLog::Process); 2681 2682 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2683 LLDB_LOGF(log, 2684 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2685 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2686 2687 switch (state) { 2688 case eStateAttaching: 2689 return eEventActionSuccess; 2690 2691 case eStateRunning: 2692 case eStateConnected: 2693 return eEventActionRetry; 2694 2695 case eStateStopped: 2696 case eStateCrashed: 2697 // During attach, prior to sending the eStateStopped event, 2698 // lldb_private::Process subclasses must set the new process ID. 2699 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2700 // We don't want these events to be reported, so go set the 2701 // ShouldReportStop here: 2702 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2703 2704 if (m_exec_count > 0) { 2705 --m_exec_count; 2706 2707 LLDB_LOGF(log, 2708 "Process::AttachCompletionHandler::%s state %s: reduced " 2709 "remaining exec count to %" PRIu32 ", requesting resume", 2710 __FUNCTION__, StateAsCString(state), m_exec_count); 2711 2712 RequestResume(); 2713 return eEventActionRetry; 2714 } else { 2715 LLDB_LOGF(log, 2716 "Process::AttachCompletionHandler::%s state %s: no more " 2717 "execs expected to start, continuing with attach", 2718 __FUNCTION__, StateAsCString(state)); 2719 2720 m_process->CompleteAttach(); 2721 return eEventActionSuccess; 2722 } 2723 break; 2724 2725 default: 2726 case eStateExited: 2727 case eStateInvalid: 2728 break; 2729 } 2730 2731 m_exit_string.assign("No valid Process"); 2732 return eEventActionExit; 2733 } 2734 2735 Process::NextEventAction::EventActionResult 2736 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2737 return eEventActionSuccess; 2738 } 2739 2740 const char *Process::AttachCompletionHandler::GetExitString() { 2741 return m_exit_string.c_str(); 2742 } 2743 2744 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2745 if (m_listener_sp) 2746 return m_listener_sp; 2747 else 2748 return debugger.GetListener(); 2749 } 2750 2751 Status Process::Attach(ProcessAttachInfo &attach_info) { 2752 m_abi_sp.reset(); 2753 m_process_input_reader.reset(); 2754 m_dyld_up.reset(); 2755 m_jit_loaders_up.reset(); 2756 m_system_runtime_up.reset(); 2757 m_os_up.reset(); 2758 2759 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2760 Status error; 2761 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2762 char process_name[PATH_MAX]; 2763 2764 if (attach_info.GetExecutableFile().GetPath(process_name, 2765 sizeof(process_name))) { 2766 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2767 2768 if (wait_for_launch) { 2769 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2770 if (error.Success()) { 2771 if (m_public_run_lock.TrySetRunning()) { 2772 m_should_detach = true; 2773 const bool restarted = false; 2774 SetPublicState(eStateAttaching, restarted); 2775 // Now attach using these arguments. 2776 error = DoAttachToProcessWithName(process_name, attach_info); 2777 } else { 2778 // This shouldn't happen 2779 error.SetErrorString("failed to acquire process run lock"); 2780 } 2781 2782 if (error.Fail()) { 2783 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2784 SetID(LLDB_INVALID_PROCESS_ID); 2785 if (error.AsCString() == nullptr) 2786 error.SetErrorString("attach failed"); 2787 2788 SetExitStatus(-1, error.AsCString()); 2789 } 2790 } else { 2791 SetNextEventAction(new Process::AttachCompletionHandler( 2792 this, attach_info.GetResumeCount())); 2793 StartPrivateStateThread(); 2794 } 2795 return error; 2796 } 2797 } else { 2798 ProcessInstanceInfoList process_infos; 2799 PlatformSP platform_sp(GetTarget().GetPlatform()); 2800 2801 if (platform_sp) { 2802 ProcessInstanceInfoMatch match_info; 2803 match_info.GetProcessInfo() = attach_info; 2804 match_info.SetNameMatchType(NameMatch::Equals); 2805 platform_sp->FindProcesses(match_info, process_infos); 2806 const uint32_t num_matches = process_infos.size(); 2807 if (num_matches == 1) { 2808 attach_pid = process_infos[0].GetProcessID(); 2809 // Fall through and attach using the above process ID 2810 } else { 2811 match_info.GetProcessInfo().GetExecutableFile().GetPath( 2812 process_name, sizeof(process_name)); 2813 if (num_matches > 1) { 2814 StreamString s; 2815 ProcessInstanceInfo::DumpTableHeader(s, true, false); 2816 for (size_t i = 0; i < num_matches; i++) { 2817 process_infos[i].DumpAsTableRow( 2818 s, platform_sp->GetUserIDResolver(), true, false); 2819 } 2820 error.SetErrorStringWithFormat( 2821 "more than one process named %s:\n%s", process_name, 2822 s.GetData()); 2823 } else 2824 error.SetErrorStringWithFormat( 2825 "could not find a process named %s", process_name); 2826 } 2827 } else { 2828 error.SetErrorString( 2829 "invalid platform, can't find processes by name"); 2830 return error; 2831 } 2832 } 2833 } else { 2834 error.SetErrorString("invalid process name"); 2835 } 2836 } 2837 2838 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 2839 error = WillAttachToProcessWithID(attach_pid); 2840 if (error.Success()) { 2841 2842 if (m_public_run_lock.TrySetRunning()) { 2843 // Now attach using these arguments. 2844 m_should_detach = true; 2845 const bool restarted = false; 2846 SetPublicState(eStateAttaching, restarted); 2847 error = DoAttachToProcessWithID(attach_pid, attach_info); 2848 } else { 2849 // This shouldn't happen 2850 error.SetErrorString("failed to acquire process run lock"); 2851 } 2852 2853 if (error.Success()) { 2854 SetNextEventAction(new Process::AttachCompletionHandler( 2855 this, attach_info.GetResumeCount())); 2856 StartPrivateStateThread(); 2857 } else { 2858 if (GetID() != LLDB_INVALID_PROCESS_ID) 2859 SetID(LLDB_INVALID_PROCESS_ID); 2860 2861 const char *error_string = error.AsCString(); 2862 if (error_string == nullptr) 2863 error_string = "attach failed"; 2864 2865 SetExitStatus(-1, error_string); 2866 } 2867 } 2868 } 2869 return error; 2870 } 2871 2872 void Process::CompleteAttach() { 2873 Log *log(GetLog(LLDBLog::Process | LLDBLog::Target)); 2874 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 2875 2876 // Let the process subclass figure out at much as it can about the process 2877 // before we go looking for a dynamic loader plug-in. 2878 ArchSpec process_arch; 2879 DidAttach(process_arch); 2880 2881 if (process_arch.IsValid()) { 2882 GetTarget().SetArchitecture(process_arch); 2883 if (log) { 2884 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 2885 LLDB_LOGF(log, 2886 "Process::%s replacing process architecture with DidAttach() " 2887 "architecture: %s", 2888 __FUNCTION__, triple_str ? triple_str : "<null>"); 2889 } 2890 } 2891 2892 // We just attached. If we have a platform, ask it for the process 2893 // architecture, and if it isn't the same as the one we've already set, 2894 // switch architectures. 2895 PlatformSP platform_sp(GetTarget().GetPlatform()); 2896 assert(platform_sp); 2897 ArchSpec process_host_arch = GetSystemArchitecture(); 2898 if (platform_sp) { 2899 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2900 if (target_arch.IsValid() && 2901 !platform_sp->IsCompatibleArchitecture(target_arch, process_host_arch, 2902 false, nullptr)) { 2903 ArchSpec platform_arch; 2904 platform_sp = GetTarget().GetDebugger().GetPlatformList().GetOrCreate( 2905 target_arch, process_host_arch, &platform_arch); 2906 if (platform_sp) { 2907 GetTarget().SetPlatform(platform_sp); 2908 GetTarget().SetArchitecture(platform_arch); 2909 LLDB_LOG(log, 2910 "switching platform to {0} and architecture to {1} based on " 2911 "info from attach", 2912 platform_sp->GetName(), platform_arch.GetTriple().getTriple()); 2913 } 2914 } else if (!process_arch.IsValid()) { 2915 ProcessInstanceInfo process_info; 2916 GetProcessInfo(process_info); 2917 const ArchSpec &process_arch = process_info.GetArchitecture(); 2918 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2919 if (process_arch.IsValid() && 2920 target_arch.IsCompatibleMatch(process_arch) && 2921 !target_arch.IsExactMatch(process_arch)) { 2922 GetTarget().SetArchitecture(process_arch); 2923 LLDB_LOGF(log, 2924 "Process::%s switching architecture to %s based on info " 2925 "the platform retrieved for pid %" PRIu64, 2926 __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), 2927 GetID()); 2928 } 2929 } 2930 } 2931 2932 // We have completed the attach, now it is time to find the dynamic loader 2933 // plug-in 2934 DynamicLoader *dyld = GetDynamicLoader(); 2935 if (dyld) { 2936 dyld->DidAttach(); 2937 if (log) { 2938 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2939 LLDB_LOG(log, 2940 "after DynamicLoader::DidAttach(), target " 2941 "executable is {0} (using {1} plugin)", 2942 exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), 2943 dyld->GetPluginName()); 2944 } 2945 } 2946 2947 GetJITLoaders().DidAttach(); 2948 2949 SystemRuntime *system_runtime = GetSystemRuntime(); 2950 if (system_runtime) { 2951 system_runtime->DidAttach(); 2952 if (log) { 2953 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2954 LLDB_LOG(log, 2955 "after SystemRuntime::DidAttach(), target " 2956 "executable is {0} (using {1} plugin)", 2957 exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), 2958 system_runtime->GetPluginName()); 2959 } 2960 } 2961 2962 if (!m_os_up) { 2963 LoadOperatingSystemPlugin(false); 2964 if (m_os_up) { 2965 // Somebody might have gotten threads before now, but we need to force the 2966 // update after we've loaded the OperatingSystem plugin or it won't get a 2967 // chance to process the threads. 2968 m_thread_list.Clear(); 2969 UpdateThreadListIfNeeded(); 2970 } 2971 } 2972 // Figure out which one is the executable, and set that in our target: 2973 ModuleSP new_executable_module_sp; 2974 for (ModuleSP module_sp : GetTarget().GetImages().Modules()) { 2975 if (module_sp && module_sp->IsExecutable()) { 2976 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 2977 new_executable_module_sp = module_sp; 2978 break; 2979 } 2980 } 2981 if (new_executable_module_sp) { 2982 GetTarget().SetExecutableModule(new_executable_module_sp, 2983 eLoadDependentsNo); 2984 if (log) { 2985 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2986 LLDB_LOGF( 2987 log, 2988 "Process::%s after looping through modules, target executable is %s", 2989 __FUNCTION__, 2990 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2991 : "<none>"); 2992 } 2993 } 2994 } 2995 2996 Status Process::ConnectRemote(llvm::StringRef remote_url) { 2997 m_abi_sp.reset(); 2998 m_process_input_reader.reset(); 2999 3000 // Find the process and its architecture. Make sure it matches the 3001 // architecture of the current Target, and if not adjust it. 3002 3003 Status error(DoConnectRemote(remote_url)); 3004 if (error.Success()) { 3005 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3006 EventSP event_sp; 3007 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 3008 3009 if (state == eStateStopped || state == eStateCrashed) { 3010 // If we attached and actually have a process on the other end, then 3011 // this ended up being the equivalent of an attach. 3012 CompleteAttach(); 3013 3014 // This delays passing the stopped event to listeners till 3015 // CompleteAttach gets a chance to complete... 3016 HandlePrivateEvent(event_sp); 3017 } 3018 } 3019 3020 if (PrivateStateThreadIsValid()) 3021 ResumePrivateStateThread(); 3022 else 3023 StartPrivateStateThread(); 3024 } 3025 return error; 3026 } 3027 3028 Status Process::PrivateResume() { 3029 Log *log(GetLog(LLDBLog::Process | LLDBLog::Step)); 3030 LLDB_LOGF(log, 3031 "Process::PrivateResume() m_stop_id = %u, public state: %s " 3032 "private state: %s", 3033 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3034 StateAsCString(m_private_state.GetValue())); 3035 3036 // If signals handing status changed we might want to update our signal 3037 // filters before resuming. 3038 UpdateAutomaticSignalFiltering(); 3039 3040 Status error(WillResume()); 3041 // Tell the process it is about to resume before the thread list 3042 if (error.Success()) { 3043 // Now let the thread list know we are about to resume so it can let all of 3044 // our threads know that they are about to be resumed. Threads will each be 3045 // called with Thread::WillResume(StateType) where StateType contains the 3046 // state that they are supposed to have when the process is resumed 3047 // (suspended/running/stepping). Threads should also check their resume 3048 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3049 // start back up with a signal. 3050 if (m_thread_list.WillResume()) { 3051 // Last thing, do the PreResumeActions. 3052 if (!RunPreResumeActions()) { 3053 error.SetErrorString( 3054 "Process::PrivateResume PreResumeActions failed, not resuming."); 3055 } else { 3056 m_mod_id.BumpResumeID(); 3057 error = DoResume(); 3058 if (error.Success()) { 3059 DidResume(); 3060 m_thread_list.DidResume(); 3061 LLDB_LOGF(log, "Process thinks the process has resumed."); 3062 } else { 3063 LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); 3064 return error; 3065 } 3066 } 3067 } else { 3068 // Somebody wanted to run without running (e.g. we were faking a step 3069 // from one frame of a set of inlined frames that share the same PC to 3070 // another.) So generate a continue & a stopped event, and let the world 3071 // handle them. 3072 LLDB_LOGF(log, 3073 "Process::PrivateResume() asked to simulate a start & stop."); 3074 3075 SetPrivateState(eStateRunning); 3076 SetPrivateState(eStateStopped); 3077 } 3078 } else 3079 LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", 3080 error.AsCString("<unknown error>")); 3081 return error; 3082 } 3083 3084 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3085 if (!StateIsRunningState(m_public_state.GetValue())) 3086 return Status("Process is not running."); 3087 3088 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3089 // case it was already set and some thread plan logic calls halt on its own. 3090 m_clear_thread_plans_on_stop |= clear_thread_plans; 3091 3092 ListenerSP halt_listener_sp( 3093 Listener::MakeListener("lldb.process.halt_listener")); 3094 HijackProcessEvents(halt_listener_sp); 3095 3096 EventSP event_sp; 3097 3098 SendAsyncInterrupt(); 3099 3100 if (m_public_state.GetValue() == eStateAttaching) { 3101 // Don't hijack and eat the eStateExited as the code that was doing the 3102 // attach will be waiting for this event... 3103 RestoreProcessEvents(); 3104 SetExitStatus(SIGKILL, "Cancelled async attach."); 3105 Destroy(false); 3106 return Status(); 3107 } 3108 3109 // Wait for the process halt timeout seconds for the process to stop. 3110 StateType state = 3111 WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true, 3112 halt_listener_sp, nullptr, use_run_lock); 3113 RestoreProcessEvents(); 3114 3115 if (state == eStateInvalid || !event_sp) { 3116 // We timed out and didn't get a stop event... 3117 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3118 } 3119 3120 BroadcastEvent(event_sp); 3121 3122 return Status(); 3123 } 3124 3125 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3126 Status error; 3127 3128 // Check both the public & private states here. If we're hung evaluating an 3129 // expression, for instance, then the public state will be stopped, but we 3130 // still need to interrupt. 3131 if (m_public_state.GetValue() == eStateRunning || 3132 m_private_state.GetValue() == eStateRunning) { 3133 Log *log = GetLog(LLDBLog::Process); 3134 LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); 3135 3136 ListenerSP listener_sp( 3137 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3138 HijackProcessEvents(listener_sp); 3139 3140 SendAsyncInterrupt(); 3141 3142 // Consume the interrupt event. 3143 StateType state = WaitForProcessToStop(GetInterruptTimeout(), 3144 &exit_event_sp, true, listener_sp); 3145 3146 RestoreProcessEvents(); 3147 3148 // If the process exited while we were waiting for it to stop, put the 3149 // exited event into the shared pointer passed in and return. Our caller 3150 // doesn't need to do anything else, since they don't have a process 3151 // anymore... 3152 3153 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3154 LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", 3155 __FUNCTION__); 3156 return error; 3157 } else 3158 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3159 3160 if (state != eStateStopped) { 3161 LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, 3162 StateAsCString(state)); 3163 // If we really couldn't stop the process then we should just error out 3164 // here, but if the lower levels just bobbled sending the event and we 3165 // really are stopped, then continue on. 3166 StateType private_state = m_private_state.GetValue(); 3167 if (private_state != eStateStopped) { 3168 return Status( 3169 "Attempt to stop the target in order to detach timed out. " 3170 "State = %s", 3171 StateAsCString(GetState())); 3172 } 3173 } 3174 } 3175 return error; 3176 } 3177 3178 Status Process::Detach(bool keep_stopped) { 3179 EventSP exit_event_sp; 3180 Status error; 3181 m_destroy_in_process = true; 3182 3183 error = WillDetach(); 3184 3185 if (error.Success()) { 3186 if (DetachRequiresHalt()) { 3187 error = StopForDestroyOrDetach(exit_event_sp); 3188 if (!error.Success()) { 3189 m_destroy_in_process = false; 3190 return error; 3191 } else if (exit_event_sp) { 3192 // We shouldn't need to do anything else here. There's no process left 3193 // to detach from... 3194 StopPrivateStateThread(); 3195 m_destroy_in_process = false; 3196 return error; 3197 } 3198 } 3199 3200 m_thread_list.DiscardThreadPlans(); 3201 DisableAllBreakpointSites(); 3202 3203 error = DoDetach(keep_stopped); 3204 if (error.Success()) { 3205 DidDetach(); 3206 StopPrivateStateThread(); 3207 } else { 3208 return error; 3209 } 3210 } 3211 m_destroy_in_process = false; 3212 3213 // If we exited when we were waiting for a process to stop, then forward the 3214 // event here so we don't lose the event 3215 if (exit_event_sp) { 3216 // Directly broadcast our exited event because we shut down our private 3217 // state thread above 3218 BroadcastEvent(exit_event_sp); 3219 } 3220 3221 // If we have been interrupted (to kill us) in the middle of running, we may 3222 // not end up propagating the last events through the event system, in which 3223 // case we might strand the write lock. Unlock it here so when we do to tear 3224 // down the process we don't get an error destroying the lock. 3225 3226 m_public_run_lock.SetStopped(); 3227 return error; 3228 } 3229 3230 Status Process::Destroy(bool force_kill) { 3231 // If we've already called Process::Finalize then there's nothing useful to 3232 // be done here. Finalize has actually called Destroy already. 3233 if (m_finalizing) 3234 return {}; 3235 return DestroyImpl(force_kill); 3236 } 3237 3238 Status Process::DestroyImpl(bool force_kill) { 3239 // Tell ourselves we are in the process of destroying the process, so that we 3240 // don't do any unnecessary work that might hinder the destruction. Remember 3241 // to set this back to false when we are done. That way if the attempt 3242 // failed and the process stays around for some reason it won't be in a 3243 // confused state. 3244 3245 if (force_kill) 3246 m_should_detach = false; 3247 3248 if (GetShouldDetach()) { 3249 // FIXME: This will have to be a process setting: 3250 bool keep_stopped = false; 3251 Detach(keep_stopped); 3252 } 3253 3254 m_destroy_in_process = true; 3255 3256 Status error(WillDestroy()); 3257 if (error.Success()) { 3258 EventSP exit_event_sp; 3259 if (DestroyRequiresHalt()) { 3260 error = StopForDestroyOrDetach(exit_event_sp); 3261 } 3262 3263 if (m_public_state.GetValue() == eStateStopped) { 3264 // Ditch all thread plans, and remove all our breakpoints: in case we 3265 // have to restart the target to kill it, we don't want it hitting a 3266 // breakpoint... Only do this if we've stopped, however, since if we 3267 // didn't manage to halt it above, then we're not going to have much luck 3268 // doing this now. 3269 m_thread_list.DiscardThreadPlans(); 3270 DisableAllBreakpointSites(); 3271 } 3272 3273 error = DoDestroy(); 3274 if (error.Success()) { 3275 DidDestroy(); 3276 StopPrivateStateThread(); 3277 } 3278 m_stdio_communication.StopReadThread(); 3279 m_stdio_communication.Disconnect(); 3280 m_stdin_forward = false; 3281 3282 if (m_process_input_reader) { 3283 m_process_input_reader->SetIsDone(true); 3284 m_process_input_reader->Cancel(); 3285 m_process_input_reader.reset(); 3286 } 3287 3288 // If we exited when we were waiting for a process to stop, then forward 3289 // the event here so we don't lose the event 3290 if (exit_event_sp) { 3291 // Directly broadcast our exited event because we shut down our private 3292 // state thread above 3293 BroadcastEvent(exit_event_sp); 3294 } 3295 3296 // If we have been interrupted (to kill us) in the middle of running, we 3297 // may not end up propagating the last events through the event system, in 3298 // which case we might strand the write lock. Unlock it here so when we do 3299 // to tear down the process we don't get an error destroying the lock. 3300 m_public_run_lock.SetStopped(); 3301 } 3302 3303 m_destroy_in_process = false; 3304 3305 return error; 3306 } 3307 3308 Status Process::Signal(int signal) { 3309 Status error(WillSignal()); 3310 if (error.Success()) { 3311 error = DoSignal(signal); 3312 if (error.Success()) 3313 DidSignal(); 3314 } 3315 return error; 3316 } 3317 3318 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3319 assert(signals_sp && "null signals_sp"); 3320 m_unix_signals_sp = signals_sp; 3321 } 3322 3323 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3324 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3325 return m_unix_signals_sp; 3326 } 3327 3328 lldb::ByteOrder Process::GetByteOrder() const { 3329 return GetTarget().GetArchitecture().GetByteOrder(); 3330 } 3331 3332 uint32_t Process::GetAddressByteSize() const { 3333 return GetTarget().GetArchitecture().GetAddressByteSize(); 3334 } 3335 3336 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3337 const StateType state = 3338 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3339 bool return_value = true; 3340 Log *log(GetLog(LLDBLog::Events | LLDBLog::Process)); 3341 3342 switch (state) { 3343 case eStateDetached: 3344 case eStateExited: 3345 case eStateUnloaded: 3346 m_stdio_communication.SynchronizeWithReadThread(); 3347 m_stdio_communication.StopReadThread(); 3348 m_stdio_communication.Disconnect(); 3349 m_stdin_forward = false; 3350 3351 LLVM_FALLTHROUGH; 3352 case eStateConnected: 3353 case eStateAttaching: 3354 case eStateLaunching: 3355 // These events indicate changes in the state of the debugging session, 3356 // always report them. 3357 return_value = true; 3358 break; 3359 case eStateInvalid: 3360 // We stopped for no apparent reason, don't report it. 3361 return_value = false; 3362 break; 3363 case eStateRunning: 3364 case eStateStepping: 3365 // If we've started the target running, we handle the cases where we are 3366 // already running and where there is a transition from stopped to running 3367 // differently. running -> running: Automatically suppress extra running 3368 // events stopped -> running: Report except when there is one or more no 3369 // votes 3370 // and no yes votes. 3371 SynchronouslyNotifyStateChanged(state); 3372 if (m_force_next_event_delivery) 3373 return_value = true; 3374 else { 3375 switch (m_last_broadcast_state) { 3376 case eStateRunning: 3377 case eStateStepping: 3378 // We always suppress multiple runnings with no PUBLIC stop in between. 3379 return_value = false; 3380 break; 3381 default: 3382 // TODO: make this work correctly. For now always report 3383 // run if we aren't running so we don't miss any running events. If I 3384 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3385 // and hit the breakpoints on multiple threads, then somehow during the 3386 // stepping over of all breakpoints no run gets reported. 3387 3388 // This is a transition from stop to run. 3389 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3390 case eVoteYes: 3391 case eVoteNoOpinion: 3392 return_value = true; 3393 break; 3394 case eVoteNo: 3395 return_value = false; 3396 break; 3397 } 3398 break; 3399 } 3400 } 3401 break; 3402 case eStateStopped: 3403 case eStateCrashed: 3404 case eStateSuspended: 3405 // We've stopped. First see if we're going to restart the target. If we 3406 // are going to stop, then we always broadcast the event. If we aren't 3407 // going to stop, let the thread plans decide if we're going to report this 3408 // event. If no thread has an opinion, we don't report it. 3409 3410 m_stdio_communication.SynchronizeWithReadThread(); 3411 RefreshStateAfterStop(); 3412 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3413 LLDB_LOGF(log, 3414 "Process::ShouldBroadcastEvent (%p) stopped due to an " 3415 "interrupt, state: %s", 3416 static_cast<void *>(event_ptr), StateAsCString(state)); 3417 // Even though we know we are going to stop, we should let the threads 3418 // have a look at the stop, so they can properly set their state. 3419 m_thread_list.ShouldStop(event_ptr); 3420 return_value = true; 3421 } else { 3422 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3423 bool should_resume = false; 3424 3425 // It makes no sense to ask "ShouldStop" if we've already been 3426 // restarted... Asking the thread list is also not likely to go well, 3427 // since we are running again. So in that case just report the event. 3428 3429 if (!was_restarted) 3430 should_resume = !m_thread_list.ShouldStop(event_ptr); 3431 3432 if (was_restarted || should_resume || m_resume_requested) { 3433 Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3434 LLDB_LOGF(log, 3435 "Process::ShouldBroadcastEvent: should_resume: %i state: " 3436 "%s was_restarted: %i report_stop_vote: %d.", 3437 should_resume, StateAsCString(state), was_restarted, 3438 report_stop_vote); 3439 3440 switch (report_stop_vote) { 3441 case eVoteYes: 3442 return_value = true; 3443 break; 3444 case eVoteNoOpinion: 3445 case eVoteNo: 3446 return_value = false; 3447 break; 3448 } 3449 3450 if (!was_restarted) { 3451 LLDB_LOGF(log, 3452 "Process::ShouldBroadcastEvent (%p) Restarting process " 3453 "from state: %s", 3454 static_cast<void *>(event_ptr), StateAsCString(state)); 3455 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3456 PrivateResume(); 3457 } 3458 } else { 3459 return_value = true; 3460 SynchronouslyNotifyStateChanged(state); 3461 } 3462 } 3463 break; 3464 } 3465 3466 // Forcing the next event delivery is a one shot deal. So reset it here. 3467 m_force_next_event_delivery = false; 3468 3469 // We do some coalescing of events (for instance two consecutive running 3470 // events get coalesced.) But we only coalesce against events we actually 3471 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3472 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3473 // done, because the PublicState reflects the last event pulled off the 3474 // queue, and there may be several events stacked up on the queue unserviced. 3475 // So the PublicState may not reflect the last broadcasted event yet. 3476 // m_last_broadcast_state gets updated here. 3477 3478 if (return_value) 3479 m_last_broadcast_state = state; 3480 3481 LLDB_LOGF(log, 3482 "Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3483 "broadcast state: %s - %s", 3484 static_cast<void *>(event_ptr), StateAsCString(state), 3485 StateAsCString(m_last_broadcast_state), 3486 return_value ? "YES" : "NO"); 3487 return return_value; 3488 } 3489 3490 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3491 Log *log = GetLog(LLDBLog::Events); 3492 3493 bool already_running = PrivateStateThreadIsValid(); 3494 LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, 3495 already_running ? " already running" 3496 : " starting private state thread"); 3497 3498 if (!is_secondary_thread && already_running) 3499 return true; 3500 3501 // Create a thread that watches our internal state and controls which events 3502 // make it to clients (into the DCProcess event queue). 3503 char thread_name[1024]; 3504 uint32_t max_len = llvm::get_max_thread_name_length(); 3505 if (max_len > 0 && max_len <= 30) { 3506 // On platforms with abbreviated thread name lengths, choose thread names 3507 // that fit within the limit. 3508 if (already_running) 3509 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3510 else 3511 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3512 } else { 3513 if (already_running) 3514 snprintf(thread_name, sizeof(thread_name), 3515 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3516 GetID()); 3517 else 3518 snprintf(thread_name, sizeof(thread_name), 3519 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3520 } 3521 3522 llvm::Expected<HostThread> private_state_thread = 3523 ThreadLauncher::LaunchThread( 3524 thread_name, 3525 [this, is_secondary_thread] { 3526 return RunPrivateStateThread(is_secondary_thread); 3527 }, 3528 8 * 1024 * 1024); 3529 if (!private_state_thread) { 3530 LLDB_LOG(GetLog(LLDBLog::Host), "failed to launch host thread: {}", 3531 llvm::toString(private_state_thread.takeError())); 3532 return false; 3533 } 3534 3535 assert(private_state_thread->IsJoinable()); 3536 m_private_state_thread = *private_state_thread; 3537 ResumePrivateStateThread(); 3538 return true; 3539 } 3540 3541 void Process::PausePrivateStateThread() { 3542 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3543 } 3544 3545 void Process::ResumePrivateStateThread() { 3546 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3547 } 3548 3549 void Process::StopPrivateStateThread() { 3550 if (m_private_state_thread.IsJoinable()) 3551 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3552 else { 3553 Log *log = GetLog(LLDBLog::Process); 3554 LLDB_LOGF( 3555 log, 3556 "Went to stop the private state thread, but it was already invalid."); 3557 } 3558 } 3559 3560 void Process::ControlPrivateStateThread(uint32_t signal) { 3561 Log *log = GetLog(LLDBLog::Process); 3562 3563 assert(signal == eBroadcastInternalStateControlStop || 3564 signal == eBroadcastInternalStateControlPause || 3565 signal == eBroadcastInternalStateControlResume); 3566 3567 LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); 3568 3569 // Signal the private state thread 3570 if (m_private_state_thread.IsJoinable()) { 3571 // Broadcast the event. 3572 // It is important to do this outside of the if below, because it's 3573 // possible that the thread state is invalid but that the thread is waiting 3574 // on a control event instead of simply being on its way out (this should 3575 // not happen, but it apparently can). 3576 LLDB_LOGF(log, "Sending control event of type: %d.", signal); 3577 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3578 m_private_state_control_broadcaster.BroadcastEvent(signal, 3579 event_receipt_sp); 3580 3581 // Wait for the event receipt or for the private state thread to exit 3582 bool receipt_received = false; 3583 if (PrivateStateThreadIsValid()) { 3584 while (!receipt_received) { 3585 // Check for a receipt for n seconds and then check if the private 3586 // state thread is still around. 3587 receipt_received = 3588 event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout()); 3589 if (!receipt_received) { 3590 // Check if the private state thread is still around. If it isn't 3591 // then we are done waiting 3592 if (!PrivateStateThreadIsValid()) 3593 break; // Private state thread exited or is exiting, we are done 3594 } 3595 } 3596 } 3597 3598 if (signal == eBroadcastInternalStateControlStop) { 3599 thread_result_t result = {}; 3600 m_private_state_thread.Join(&result); 3601 m_private_state_thread.Reset(); 3602 } 3603 } else { 3604 LLDB_LOGF( 3605 log, 3606 "Private state thread already dead, no need to signal it to stop."); 3607 } 3608 } 3609 3610 void Process::SendAsyncInterrupt() { 3611 if (PrivateStateThreadIsValid()) 3612 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3613 nullptr); 3614 else 3615 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3616 } 3617 3618 void Process::HandlePrivateEvent(EventSP &event_sp) { 3619 Log *log = GetLog(LLDBLog::Process); 3620 m_resume_requested = false; 3621 3622 const StateType new_state = 3623 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3624 3625 // First check to see if anybody wants a shot at this event: 3626 if (m_next_event_action_up) { 3627 NextEventAction::EventActionResult action_result = 3628 m_next_event_action_up->PerformAction(event_sp); 3629 LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); 3630 3631 switch (action_result) { 3632 case NextEventAction::eEventActionSuccess: 3633 SetNextEventAction(nullptr); 3634 break; 3635 3636 case NextEventAction::eEventActionRetry: 3637 break; 3638 3639 case NextEventAction::eEventActionExit: 3640 // Handle Exiting Here. If we already got an exited event, we should 3641 // just propagate it. Otherwise, swallow this event, and set our state 3642 // to exit so the next event will kill us. 3643 if (new_state != eStateExited) { 3644 // FIXME: should cons up an exited event, and discard this one. 3645 SetExitStatus(0, m_next_event_action_up->GetExitString()); 3646 SetNextEventAction(nullptr); 3647 return; 3648 } 3649 SetNextEventAction(nullptr); 3650 break; 3651 } 3652 } 3653 3654 // See if we should broadcast this state to external clients? 3655 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3656 3657 if (should_broadcast) { 3658 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3659 if (log) { 3660 LLDB_LOGF(log, 3661 "Process::%s (pid = %" PRIu64 3662 ") broadcasting new state %s (old state %s) to %s", 3663 __FUNCTION__, GetID(), StateAsCString(new_state), 3664 StateAsCString(GetState()), 3665 is_hijacked ? "hijacked" : "public"); 3666 } 3667 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3668 if (StateIsRunningState(new_state)) { 3669 // Only push the input handler if we aren't fowarding events, as this 3670 // means the curses GUI is in use... Or don't push it if we are launching 3671 // since it will come up stopped. 3672 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3673 new_state != eStateLaunching && new_state != eStateAttaching) { 3674 PushProcessIOHandler(); 3675 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3676 eBroadcastAlways); 3677 LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", 3678 __FUNCTION__, m_iohandler_sync.GetValue()); 3679 } 3680 } else if (StateIsStoppedState(new_state, false)) { 3681 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3682 // If the lldb_private::Debugger is handling the events, we don't want 3683 // to pop the process IOHandler here, we want to do it when we receive 3684 // the stopped event so we can carefully control when the process 3685 // IOHandler is popped because when we stop we want to display some 3686 // text stating how and why we stopped, then maybe some 3687 // process/thread/frame info, and then we want the "(lldb) " prompt to 3688 // show up. If we pop the process IOHandler here, then we will cause 3689 // the command interpreter to become the top IOHandler after the 3690 // process pops off and it will update its prompt right away... See the 3691 // Debugger.cpp file where it calls the function as 3692 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3693 // Otherwise we end up getting overlapping "(lldb) " prompts and 3694 // garbled output. 3695 // 3696 // If we aren't handling the events in the debugger (which is indicated 3697 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3698 // we are hijacked, then we always pop the process IO handler manually. 3699 // Hijacking happens when the internal process state thread is running 3700 // thread plans, or when commands want to run in synchronous mode and 3701 // they call "process->WaitForProcessToStop()". An example of something 3702 // that will hijack the events is a simple expression: 3703 // 3704 // (lldb) expr (int)puts("hello") 3705 // 3706 // This will cause the internal process state thread to resume and halt 3707 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3708 // events) and we do need the IO handler to be pushed and popped 3709 // correctly. 3710 3711 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3712 PopProcessIOHandler(); 3713 } 3714 } 3715 3716 BroadcastEvent(event_sp); 3717 } else { 3718 if (log) { 3719 LLDB_LOGF( 3720 log, 3721 "Process::%s (pid = %" PRIu64 3722 ") suppressing state %s (old state %s): should_broadcast == false", 3723 __FUNCTION__, GetID(), StateAsCString(new_state), 3724 StateAsCString(GetState())); 3725 } 3726 } 3727 } 3728 3729 Status Process::HaltPrivate() { 3730 EventSP event_sp; 3731 Status error(WillHalt()); 3732 if (error.Fail()) 3733 return error; 3734 3735 // Ask the process subclass to actually halt our process 3736 bool caused_stop; 3737 error = DoHalt(caused_stop); 3738 3739 DidHalt(); 3740 return error; 3741 } 3742 3743 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3744 bool control_only = true; 3745 3746 Log *log = GetLog(LLDBLog::Process); 3747 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3748 __FUNCTION__, static_cast<void *>(this), GetID()); 3749 3750 bool exit_now = false; 3751 bool interrupt_requested = false; 3752 while (!exit_now) { 3753 EventSP event_sp; 3754 GetEventsPrivate(event_sp, llvm::None, control_only); 3755 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3756 LLDB_LOGF(log, 3757 "Process::%s (arg = %p, pid = %" PRIu64 3758 ") got a control event: %d", 3759 __FUNCTION__, static_cast<void *>(this), GetID(), 3760 event_sp->GetType()); 3761 3762 switch (event_sp->GetType()) { 3763 case eBroadcastInternalStateControlStop: 3764 exit_now = true; 3765 break; // doing any internal state management below 3766 3767 case eBroadcastInternalStateControlPause: 3768 control_only = true; 3769 break; 3770 3771 case eBroadcastInternalStateControlResume: 3772 control_only = false; 3773 break; 3774 } 3775 3776 continue; 3777 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 3778 if (m_public_state.GetValue() == eStateAttaching) { 3779 LLDB_LOGF(log, 3780 "Process::%s (arg = %p, pid = %" PRIu64 3781 ") woke up with an interrupt while attaching - " 3782 "forwarding interrupt.", 3783 __FUNCTION__, static_cast<void *>(this), GetID()); 3784 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 3785 } else if (StateIsRunningState(m_last_broadcast_state)) { 3786 LLDB_LOGF(log, 3787 "Process::%s (arg = %p, pid = %" PRIu64 3788 ") woke up with an interrupt - Halting.", 3789 __FUNCTION__, static_cast<void *>(this), GetID()); 3790 Status error = HaltPrivate(); 3791 if (error.Fail() && log) 3792 LLDB_LOGF(log, 3793 "Process::%s (arg = %p, pid = %" PRIu64 3794 ") failed to halt the process: %s", 3795 __FUNCTION__, static_cast<void *>(this), GetID(), 3796 error.AsCString()); 3797 // Halt should generate a stopped event. Make a note of the fact that 3798 // we were doing the interrupt, so we can set the interrupted flag 3799 // after we receive the event. We deliberately set this to true even if 3800 // HaltPrivate failed, so that we can interrupt on the next natural 3801 // stop. 3802 interrupt_requested = true; 3803 } else { 3804 // This can happen when someone (e.g. Process::Halt) sees that we are 3805 // running and sends an interrupt request, but the process actually 3806 // stops before we receive it. In that case, we can just ignore the 3807 // request. We use m_last_broadcast_state, because the Stopped event 3808 // may not have been popped of the event queue yet, which is when the 3809 // public state gets updated. 3810 LLDB_LOGF(log, 3811 "Process::%s ignoring interrupt as we have already stopped.", 3812 __FUNCTION__); 3813 } 3814 continue; 3815 } 3816 3817 const StateType internal_state = 3818 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3819 3820 if (internal_state != eStateInvalid) { 3821 if (m_clear_thread_plans_on_stop && 3822 StateIsStoppedState(internal_state, true)) { 3823 m_clear_thread_plans_on_stop = false; 3824 m_thread_list.DiscardThreadPlans(); 3825 } 3826 3827 if (interrupt_requested) { 3828 if (StateIsStoppedState(internal_state, true)) { 3829 // We requested the interrupt, so mark this as such in the stop event 3830 // so clients can tell an interrupted process from a natural stop 3831 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 3832 interrupt_requested = false; 3833 } else if (log) { 3834 LLDB_LOGF(log, 3835 "Process::%s interrupt_requested, but a non-stopped " 3836 "state '%s' received.", 3837 __FUNCTION__, StateAsCString(internal_state)); 3838 } 3839 } 3840 3841 HandlePrivateEvent(event_sp); 3842 } 3843 3844 if (internal_state == eStateInvalid || internal_state == eStateExited || 3845 internal_state == eStateDetached) { 3846 LLDB_LOGF(log, 3847 "Process::%s (arg = %p, pid = %" PRIu64 3848 ") about to exit with internal state %s...", 3849 __FUNCTION__, static_cast<void *>(this), GetID(), 3850 StateAsCString(internal_state)); 3851 3852 break; 3853 } 3854 } 3855 3856 // Verify log is still enabled before attempting to write to it... 3857 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 3858 __FUNCTION__, static_cast<void *>(this), GetID()); 3859 3860 // If we are a secondary thread, then the primary thread we are working for 3861 // will have already acquired the public_run_lock, and isn't done with what 3862 // it was doing yet, so don't try to change it on the way out. 3863 if (!is_secondary_thread) 3864 m_public_run_lock.SetStopped(); 3865 return {}; 3866 } 3867 3868 // Process Event Data 3869 3870 Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {} 3871 3872 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 3873 StateType state) 3874 : EventData(), m_process_wp(), m_state(state) { 3875 if (process_sp) 3876 m_process_wp = process_sp; 3877 } 3878 3879 Process::ProcessEventData::~ProcessEventData() = default; 3880 3881 ConstString Process::ProcessEventData::GetFlavorString() { 3882 static ConstString g_flavor("Process::ProcessEventData"); 3883 return g_flavor; 3884 } 3885 3886 ConstString Process::ProcessEventData::GetFlavor() const { 3887 return ProcessEventData::GetFlavorString(); 3888 } 3889 3890 bool Process::ProcessEventData::ShouldStop(Event *event_ptr, 3891 bool &found_valid_stopinfo) { 3892 found_valid_stopinfo = false; 3893 3894 ProcessSP process_sp(m_process_wp.lock()); 3895 if (!process_sp) 3896 return false; 3897 3898 ThreadList &curr_thread_list = process_sp->GetThreadList(); 3899 uint32_t num_threads = curr_thread_list.GetSize(); 3900 uint32_t idx; 3901 3902 // The actions might change one of the thread's stop_info's opinions about 3903 // whether we should stop the process, so we need to query that as we go. 3904 3905 // One other complication here, is that we try to catch any case where the 3906 // target has run (except for expressions) and immediately exit, but if we 3907 // get that wrong (which is possible) then the thread list might have 3908 // changed, and that would cause our iteration here to crash. We could 3909 // make a copy of the thread list, but we'd really like to also know if it 3910 // has changed at all, so we make up a vector of the thread ID's and check 3911 // what we get back against this list & bag out if anything differs. 3912 ThreadList not_suspended_thread_list(process_sp.get()); 3913 std::vector<uint32_t> thread_index_array(num_threads); 3914 uint32_t not_suspended_idx = 0; 3915 for (idx = 0; idx < num_threads; ++idx) { 3916 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 3917 3918 /* 3919 Filter out all suspended threads, they could not be the reason 3920 of stop and no need to perform any actions on them. 3921 */ 3922 if (thread_sp->GetResumeState() != eStateSuspended) { 3923 not_suspended_thread_list.AddThread(thread_sp); 3924 thread_index_array[not_suspended_idx] = thread_sp->GetIndexID(); 3925 not_suspended_idx++; 3926 } 3927 } 3928 3929 // Use this to track whether we should continue from here. We will only 3930 // continue the target running if no thread says we should stop. Of course 3931 // if some thread's PerformAction actually sets the target running, then it 3932 // doesn't matter what the other threads say... 3933 3934 bool still_should_stop = false; 3935 3936 // Sometimes - for instance if we have a bug in the stub we are talking to, 3937 // we stop but no thread has a valid stop reason. In that case we should 3938 // just stop, because we have no way of telling what the right thing to do 3939 // is, and it's better to let the user decide than continue behind their 3940 // backs. 3941 3942 for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) { 3943 curr_thread_list = process_sp->GetThreadList(); 3944 if (curr_thread_list.GetSize() != num_threads) { 3945 Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); 3946 LLDB_LOGF( 3947 log, 3948 "Number of threads changed from %u to %u while processing event.", 3949 num_threads, curr_thread_list.GetSize()); 3950 break; 3951 } 3952 3953 lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx); 3954 3955 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 3956 Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); 3957 LLDB_LOGF(log, 3958 "The thread at position %u changed from %u to %u while " 3959 "processing event.", 3960 idx, thread_index_array[idx], thread_sp->GetIndexID()); 3961 break; 3962 } 3963 3964 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 3965 if (stop_info_sp && stop_info_sp->IsValid()) { 3966 found_valid_stopinfo = true; 3967 bool this_thread_wants_to_stop; 3968 if (stop_info_sp->GetOverrideShouldStop()) { 3969 this_thread_wants_to_stop = 3970 stop_info_sp->GetOverriddenShouldStopValue(); 3971 } else { 3972 stop_info_sp->PerformAction(event_ptr); 3973 // The stop action might restart the target. If it does, then we 3974 // want to mark that in the event so that whoever is receiving it 3975 // will know to wait for the running event and reflect that state 3976 // appropriately. We also need to stop processing actions, since they 3977 // aren't expecting the target to be running. 3978 3979 // FIXME: we might have run. 3980 if (stop_info_sp->HasTargetRunSinceMe()) { 3981 SetRestarted(true); 3982 break; 3983 } 3984 3985 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 3986 } 3987 3988 if (!still_should_stop) 3989 still_should_stop = this_thread_wants_to_stop; 3990 } 3991 } 3992 3993 return still_should_stop; 3994 } 3995 3996 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 3997 ProcessSP process_sp(m_process_wp.lock()); 3998 3999 if (!process_sp) 4000 return; 4001 4002 // This function gets called twice for each event, once when the event gets 4003 // pulled off of the private process event queue, and then any number of 4004 // times, first when it gets pulled off of the public event queue, then other 4005 // times when we're pretending that this is where we stopped at the end of 4006 // expression evaluation. m_update_state is used to distinguish these three 4007 // cases; it is 0 when we're just pulling it off for private handling, and > 4008 // 1 for expression evaluation, and we don't want to do the breakpoint 4009 // command handling then. 4010 if (m_update_state != 1) 4011 return; 4012 4013 process_sp->SetPublicState( 4014 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4015 4016 if (m_state == eStateStopped && !m_restarted) { 4017 // Let process subclasses know we are about to do a public stop and do 4018 // anything they might need to in order to speed up register and memory 4019 // accesses. 4020 process_sp->WillPublicStop(); 4021 } 4022 4023 // If this is a halt event, even if the halt stopped with some reason other 4024 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 4025 // the halt request came through) don't do the StopInfo actions, as they may 4026 // end up restarting the process. 4027 if (m_interrupted) 4028 return; 4029 4030 // If we're not stopped or have restarted, then skip the StopInfo actions: 4031 if (m_state != eStateStopped || m_restarted) { 4032 return; 4033 } 4034 4035 bool does_anybody_have_an_opinion = false; 4036 bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion); 4037 4038 if (GetRestarted()) { 4039 return; 4040 } 4041 4042 if (!still_should_stop && does_anybody_have_an_opinion) { 4043 // We've been asked to continue, so do that here. 4044 SetRestarted(true); 4045 // Use the public resume method here, since this is just extending a 4046 // public resume. 4047 process_sp->PrivateResume(); 4048 } else { 4049 bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) && 4050 !process_sp->StateChangedIsHijackedForSynchronousResume(); 4051 4052 if (!hijacked) { 4053 // If we didn't restart, run the Stop Hooks here. 4054 // Don't do that if state changed events aren't hooked up to the 4055 // public (or SyncResume) broadcasters. StopHooks are just for 4056 // real public stops. They might also restart the target, 4057 // so watch for that. 4058 if (process_sp->GetTarget().RunStopHooks()) 4059 SetRestarted(true); 4060 } 4061 } 4062 } 4063 4064 void Process::ProcessEventData::Dump(Stream *s) const { 4065 ProcessSP process_sp(m_process_wp.lock()); 4066 4067 if (process_sp) 4068 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4069 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4070 else 4071 s->PutCString(" process = NULL, "); 4072 4073 s->Printf("state = %s", StateAsCString(GetState())); 4074 } 4075 4076 const Process::ProcessEventData * 4077 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4078 if (event_ptr) { 4079 const EventData *event_data = event_ptr->GetData(); 4080 if (event_data && 4081 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4082 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4083 } 4084 return nullptr; 4085 } 4086 4087 ProcessSP 4088 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4089 ProcessSP process_sp; 4090 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4091 if (data) 4092 process_sp = data->GetProcessSP(); 4093 return process_sp; 4094 } 4095 4096 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4097 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4098 if (data == nullptr) 4099 return eStateInvalid; 4100 else 4101 return data->GetState(); 4102 } 4103 4104 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4105 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4106 if (data == nullptr) 4107 return false; 4108 else 4109 return data->GetRestarted(); 4110 } 4111 4112 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4113 bool new_value) { 4114 ProcessEventData *data = 4115 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4116 if (data != nullptr) 4117 data->SetRestarted(new_value); 4118 } 4119 4120 size_t 4121 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4122 ProcessEventData *data = 4123 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4124 if (data != nullptr) 4125 return data->GetNumRestartedReasons(); 4126 else 4127 return 0; 4128 } 4129 4130 const char * 4131 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4132 size_t idx) { 4133 ProcessEventData *data = 4134 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4135 if (data != nullptr) 4136 return data->GetRestartedReasonAtIndex(idx); 4137 else 4138 return nullptr; 4139 } 4140 4141 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4142 const char *reason) { 4143 ProcessEventData *data = 4144 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4145 if (data != nullptr) 4146 data->AddRestartedReason(reason); 4147 } 4148 4149 bool Process::ProcessEventData::GetInterruptedFromEvent( 4150 const Event *event_ptr) { 4151 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4152 if (data == nullptr) 4153 return false; 4154 else 4155 return data->GetInterrupted(); 4156 } 4157 4158 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4159 bool new_value) { 4160 ProcessEventData *data = 4161 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4162 if (data != nullptr) 4163 data->SetInterrupted(new_value); 4164 } 4165 4166 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4167 ProcessEventData *data = 4168 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4169 if (data) { 4170 data->SetUpdateStateOnRemoval(); 4171 return true; 4172 } 4173 return false; 4174 } 4175 4176 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4177 4178 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4179 exe_ctx.SetTargetPtr(&GetTarget()); 4180 exe_ctx.SetProcessPtr(this); 4181 exe_ctx.SetThreadPtr(nullptr); 4182 exe_ctx.SetFramePtr(nullptr); 4183 } 4184 4185 // uint32_t 4186 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4187 // std::vector<lldb::pid_t> &pids) 4188 //{ 4189 // return 0; 4190 //} 4191 // 4192 // ArchSpec 4193 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4194 //{ 4195 // return Host::GetArchSpecForExistingProcess (pid); 4196 //} 4197 // 4198 // ArchSpec 4199 // Process::GetArchSpecForExistingProcess (const char *process_name) 4200 //{ 4201 // return Host::GetArchSpecForExistingProcess (process_name); 4202 //} 4203 4204 void Process::AppendSTDOUT(const char *s, size_t len) { 4205 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4206 m_stdout_data.append(s, len); 4207 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4208 new ProcessEventData(shared_from_this(), GetState())); 4209 } 4210 4211 void Process::AppendSTDERR(const char *s, size_t len) { 4212 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4213 m_stderr_data.append(s, len); 4214 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4215 new ProcessEventData(shared_from_this(), GetState())); 4216 } 4217 4218 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4219 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4220 m_profile_data.push_back(one_profile_data); 4221 BroadcastEventIfUnique(eBroadcastBitProfileData, 4222 new ProcessEventData(shared_from_this(), GetState())); 4223 } 4224 4225 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4226 const StructuredDataPluginSP &plugin_sp) { 4227 BroadcastEvent( 4228 eBroadcastBitStructuredData, 4229 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4230 } 4231 4232 StructuredDataPluginSP 4233 Process::GetStructuredDataPlugin(ConstString type_name) const { 4234 auto find_it = m_structured_data_plugin_map.find(type_name); 4235 if (find_it != m_structured_data_plugin_map.end()) 4236 return find_it->second; 4237 else 4238 return StructuredDataPluginSP(); 4239 } 4240 4241 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4242 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4243 if (m_profile_data.empty()) 4244 return 0; 4245 4246 std::string &one_profile_data = m_profile_data.front(); 4247 size_t bytes_available = one_profile_data.size(); 4248 if (bytes_available > 0) { 4249 Log *log = GetLog(LLDBLog::Process); 4250 LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4251 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4252 if (bytes_available > buf_size) { 4253 memcpy(buf, one_profile_data.c_str(), buf_size); 4254 one_profile_data.erase(0, buf_size); 4255 bytes_available = buf_size; 4256 } else { 4257 memcpy(buf, one_profile_data.c_str(), bytes_available); 4258 m_profile_data.erase(m_profile_data.begin()); 4259 } 4260 } 4261 return bytes_available; 4262 } 4263 4264 // Process STDIO 4265 4266 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4267 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4268 size_t bytes_available = m_stdout_data.size(); 4269 if (bytes_available > 0) { 4270 Log *log = GetLog(LLDBLog::Process); 4271 LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4272 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4273 if (bytes_available > buf_size) { 4274 memcpy(buf, m_stdout_data.c_str(), buf_size); 4275 m_stdout_data.erase(0, buf_size); 4276 bytes_available = buf_size; 4277 } else { 4278 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4279 m_stdout_data.clear(); 4280 } 4281 } 4282 return bytes_available; 4283 } 4284 4285 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4286 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4287 size_t bytes_available = m_stderr_data.size(); 4288 if (bytes_available > 0) { 4289 Log *log = GetLog(LLDBLog::Process); 4290 LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4291 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4292 if (bytes_available > buf_size) { 4293 memcpy(buf, m_stderr_data.c_str(), buf_size); 4294 m_stderr_data.erase(0, buf_size); 4295 bytes_available = buf_size; 4296 } else { 4297 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4298 m_stderr_data.clear(); 4299 } 4300 } 4301 return bytes_available; 4302 } 4303 4304 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4305 size_t src_len) { 4306 Process *process = (Process *)baton; 4307 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4308 } 4309 4310 class IOHandlerProcessSTDIO : public IOHandler { 4311 public: 4312 IOHandlerProcessSTDIO(Process *process, int write_fd) 4313 : IOHandler(process->GetTarget().GetDebugger(), 4314 IOHandler::Type::ProcessIO), 4315 m_process(process), 4316 m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false), 4317 m_write_file(write_fd, File::eOpenOptionWriteOnly, false) { 4318 m_pipe.CreateNew(false); 4319 } 4320 4321 ~IOHandlerProcessSTDIO() override = default; 4322 4323 void SetIsRunning(bool running) { 4324 std::lock_guard<std::mutex> guard(m_mutex); 4325 SetIsDone(!running); 4326 m_is_running = running; 4327 } 4328 4329 // Each IOHandler gets to run until it is done. It should read data from the 4330 // "in" and place output into "out" and "err and return when done. 4331 void Run() override { 4332 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4333 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4334 SetIsDone(true); 4335 return; 4336 } 4337 4338 SetIsDone(false); 4339 const int read_fd = m_read_file.GetDescriptor(); 4340 Terminal terminal(read_fd); 4341 TerminalState terminal_state(terminal, false); 4342 // FIXME: error handling? 4343 llvm::consumeError(terminal.SetCanonical(false)); 4344 llvm::consumeError(terminal.SetEcho(false)); 4345 // FD_ZERO, FD_SET are not supported on windows 4346 #ifndef _WIN32 4347 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4348 SetIsRunning(true); 4349 while (true) { 4350 { 4351 std::lock_guard<std::mutex> guard(m_mutex); 4352 if (GetIsDone()) 4353 break; 4354 } 4355 4356 SelectHelper select_helper; 4357 select_helper.FDSetRead(read_fd); 4358 select_helper.FDSetRead(pipe_read_fd); 4359 Status error = select_helper.Select(); 4360 4361 if (error.Fail()) 4362 break; 4363 4364 char ch = 0; 4365 size_t n; 4366 if (select_helper.FDIsSetRead(read_fd)) { 4367 n = 1; 4368 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4369 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4370 break; 4371 } else 4372 break; 4373 } 4374 4375 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4376 size_t bytes_read; 4377 // Consume the interrupt byte 4378 Status error = m_pipe.Read(&ch, 1, bytes_read); 4379 if (error.Success()) { 4380 if (ch == 'q') 4381 break; 4382 if (ch == 'i') 4383 if (StateIsRunningState(m_process->GetState())) 4384 m_process->SendAsyncInterrupt(); 4385 } 4386 } 4387 } 4388 SetIsRunning(false); 4389 #endif 4390 } 4391 4392 void Cancel() override { 4393 std::lock_guard<std::mutex> guard(m_mutex); 4394 SetIsDone(true); 4395 // Only write to our pipe to cancel if we are in 4396 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4397 // is being run from the command interpreter: 4398 // 4399 // (lldb) step_process_thousands_of_times 4400 // 4401 // In this case the command interpreter will be in the middle of handling 4402 // the command and if the process pushes and pops the IOHandler thousands 4403 // of times, we can end up writing to m_pipe without ever consuming the 4404 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4405 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4406 if (m_is_running) { 4407 char ch = 'q'; // Send 'q' for quit 4408 size_t bytes_written = 0; 4409 m_pipe.Write(&ch, 1, bytes_written); 4410 } 4411 } 4412 4413 bool Interrupt() override { 4414 // Do only things that are safe to do in an interrupt context (like in a 4415 // SIGINT handler), like write 1 byte to a file descriptor. This will 4416 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4417 // that was written to the pipe and then call 4418 // m_process->SendAsyncInterrupt() from a much safer location in code. 4419 if (m_active) { 4420 char ch = 'i'; // Send 'i' for interrupt 4421 size_t bytes_written = 0; 4422 Status result = m_pipe.Write(&ch, 1, bytes_written); 4423 return result.Success(); 4424 } else { 4425 // This IOHandler might be pushed on the stack, but not being run 4426 // currently so do the right thing if we aren't actively watching for 4427 // STDIN by sending the interrupt to the process. Otherwise the write to 4428 // the pipe above would do nothing. This can happen when the command 4429 // interpreter is running and gets a "expression ...". It will be on the 4430 // IOHandler thread and sending the input is complete to the delegate 4431 // which will cause the expression to run, which will push the process IO 4432 // handler, but not run it. 4433 4434 if (StateIsRunningState(m_process->GetState())) { 4435 m_process->SendAsyncInterrupt(); 4436 return true; 4437 } 4438 } 4439 return false; 4440 } 4441 4442 void GotEOF() override {} 4443 4444 protected: 4445 Process *m_process; 4446 NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB 4447 NativeFile m_write_file; // Write to this file (usually the primary pty for 4448 // getting io to debuggee) 4449 Pipe m_pipe; 4450 std::mutex m_mutex; 4451 bool m_is_running = false; 4452 }; 4453 4454 void Process::SetSTDIOFileDescriptor(int fd) { 4455 // First set up the Read Thread for reading/handling process I/O 4456 m_stdio_communication.SetConnection( 4457 std::make_unique<ConnectionFileDescriptor>(fd, true)); 4458 if (m_stdio_communication.IsConnected()) { 4459 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4460 STDIOReadThreadBytesReceived, this); 4461 m_stdio_communication.StartReadThread(); 4462 4463 // Now read thread is set up, set up input reader. 4464 4465 if (!m_process_input_reader) 4466 m_process_input_reader = 4467 std::make_shared<IOHandlerProcessSTDIO>(this, fd); 4468 } 4469 } 4470 4471 bool Process::ProcessIOHandlerIsActive() { 4472 IOHandlerSP io_handler_sp(m_process_input_reader); 4473 if (io_handler_sp) 4474 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4475 return false; 4476 } 4477 bool Process::PushProcessIOHandler() { 4478 IOHandlerSP io_handler_sp(m_process_input_reader); 4479 if (io_handler_sp) { 4480 Log *log = GetLog(LLDBLog::Process); 4481 LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); 4482 4483 io_handler_sp->SetIsDone(false); 4484 // If we evaluate an utility function, then we don't cancel the current 4485 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the 4486 // existing IOHandler that potentially provides the user interface (e.g. 4487 // the IOHandler for Editline). 4488 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); 4489 GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp, 4490 cancel_top_handler); 4491 return true; 4492 } 4493 return false; 4494 } 4495 4496 bool Process::PopProcessIOHandler() { 4497 IOHandlerSP io_handler_sp(m_process_input_reader); 4498 if (io_handler_sp) 4499 return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp); 4500 return false; 4501 } 4502 4503 // The process needs to know about installed plug-ins 4504 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4505 4506 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4507 4508 namespace { 4509 // RestorePlanState is used to record the "is private", "is controlling" and 4510 // "okay 4511 // to discard" fields of the plan we are running, and reset it on Clean or on 4512 // destruction. It will only reset the state once, so you can call Clean and 4513 // then monkey with the state and it won't get reset on you again. 4514 4515 class RestorePlanState { 4516 public: 4517 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4518 : m_thread_plan_sp(thread_plan_sp) { 4519 if (m_thread_plan_sp) { 4520 m_private = m_thread_plan_sp->GetPrivate(); 4521 m_is_controlling = m_thread_plan_sp->IsControllingPlan(); 4522 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4523 } 4524 } 4525 4526 ~RestorePlanState() { Clean(); } 4527 4528 void Clean() { 4529 if (!m_already_reset && m_thread_plan_sp) { 4530 m_already_reset = true; 4531 m_thread_plan_sp->SetPrivate(m_private); 4532 m_thread_plan_sp->SetIsControllingPlan(m_is_controlling); 4533 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4534 } 4535 } 4536 4537 private: 4538 lldb::ThreadPlanSP m_thread_plan_sp; 4539 bool m_already_reset = false; 4540 bool m_private; 4541 bool m_is_controlling; 4542 bool m_okay_to_discard; 4543 }; 4544 } // anonymous namespace 4545 4546 static microseconds 4547 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4548 const milliseconds default_one_thread_timeout(250); 4549 4550 // If the overall wait is forever, then we don't need to worry about it. 4551 if (!options.GetTimeout()) { 4552 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4553 : default_one_thread_timeout; 4554 } 4555 4556 // If the one thread timeout is set, use it. 4557 if (options.GetOneThreadTimeout()) 4558 return *options.GetOneThreadTimeout(); 4559 4560 // Otherwise use half the total timeout, bounded by the 4561 // default_one_thread_timeout. 4562 return std::min<microseconds>(default_one_thread_timeout, 4563 *options.GetTimeout() / 2); 4564 } 4565 4566 static Timeout<std::micro> 4567 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4568 bool before_first_timeout) { 4569 // If we are going to run all threads the whole time, or if we are only going 4570 // to run one thread, we can just return the overall timeout. 4571 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4572 return options.GetTimeout(); 4573 4574 if (before_first_timeout) 4575 return GetOneThreadExpressionTimeout(options); 4576 4577 if (!options.GetTimeout()) 4578 return llvm::None; 4579 else 4580 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4581 } 4582 4583 static llvm::Optional<ExpressionResults> 4584 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp, 4585 RestorePlanState &restorer, const EventSP &event_sp, 4586 EventSP &event_to_broadcast_sp, 4587 const EvaluateExpressionOptions &options, 4588 bool handle_interrupts) { 4589 Log *log = GetLog(LLDBLog::Step | LLDBLog::Process); 4590 4591 ThreadSP thread_sp = thread_plan_sp->GetTarget() 4592 .GetProcessSP() 4593 ->GetThreadList() 4594 .FindThreadByID(thread_id); 4595 if (!thread_sp) { 4596 LLDB_LOG(log, 4597 "The thread on which we were running the " 4598 "expression: tid = {0}, exited while " 4599 "the expression was running.", 4600 thread_id); 4601 return eExpressionThreadVanished; 4602 } 4603 4604 ThreadPlanSP plan = thread_sp->GetCompletedPlan(); 4605 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4606 LLDB_LOG(log, "execution completed successfully"); 4607 4608 // Restore the plan state so it will get reported as intended when we are 4609 // done. 4610 restorer.Clean(); 4611 return eExpressionCompleted; 4612 } 4613 4614 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4615 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4616 stop_info_sp->ShouldNotify(event_sp.get())) { 4617 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4618 if (!options.DoesIgnoreBreakpoints()) { 4619 // Restore the plan state and then force Private to false. We are going 4620 // to stop because of this plan so we need it to become a public plan or 4621 // it won't report correctly when we continue to its termination later 4622 // on. 4623 restorer.Clean(); 4624 thread_plan_sp->SetPrivate(false); 4625 event_to_broadcast_sp = event_sp; 4626 } 4627 return eExpressionHitBreakpoint; 4628 } 4629 4630 if (!handle_interrupts && 4631 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4632 return llvm::None; 4633 4634 LLDB_LOG(log, "thread plan did not successfully complete"); 4635 if (!options.DoesUnwindOnError()) 4636 event_to_broadcast_sp = event_sp; 4637 return eExpressionInterrupted; 4638 } 4639 4640 ExpressionResults 4641 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4642 lldb::ThreadPlanSP &thread_plan_sp, 4643 const EvaluateExpressionOptions &options, 4644 DiagnosticManager &diagnostic_manager) { 4645 ExpressionResults return_value = eExpressionSetupError; 4646 4647 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4648 4649 if (!thread_plan_sp) { 4650 diagnostic_manager.PutString( 4651 eDiagnosticSeverityError, 4652 "RunThreadPlan called with empty thread plan."); 4653 return eExpressionSetupError; 4654 } 4655 4656 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4657 diagnostic_manager.PutString( 4658 eDiagnosticSeverityError, 4659 "RunThreadPlan called with an invalid thread plan."); 4660 return eExpressionSetupError; 4661 } 4662 4663 if (exe_ctx.GetProcessPtr() != this) { 4664 diagnostic_manager.PutString(eDiagnosticSeverityError, 4665 "RunThreadPlan called on wrong process."); 4666 return eExpressionSetupError; 4667 } 4668 4669 Thread *thread = exe_ctx.GetThreadPtr(); 4670 if (thread == nullptr) { 4671 diagnostic_manager.PutString(eDiagnosticSeverityError, 4672 "RunThreadPlan called with invalid thread."); 4673 return eExpressionSetupError; 4674 } 4675 4676 // Record the thread's id so we can tell when a thread we were using 4677 // to run the expression exits during the expression evaluation. 4678 lldb::tid_t expr_thread_id = thread->GetID(); 4679 4680 // We need to change some of the thread plan attributes for the thread plan 4681 // runner. This will restore them when we are done: 4682 4683 RestorePlanState thread_plan_restorer(thread_plan_sp); 4684 4685 // We rely on the thread plan we are running returning "PlanCompleted" if 4686 // when it successfully completes. For that to be true the plan can't be 4687 // private - since private plans suppress themselves in the GetCompletedPlan 4688 // call. 4689 4690 thread_plan_sp->SetPrivate(false); 4691 4692 // The plans run with RunThreadPlan also need to be terminal controlling plans 4693 // or when they are done we will end up asking the plan above us whether we 4694 // should stop, which may give the wrong answer. 4695 4696 thread_plan_sp->SetIsControllingPlan(true); 4697 thread_plan_sp->SetOkayToDiscard(false); 4698 4699 // If we are running some utility expression for LLDB, we now have to mark 4700 // this in the ProcesModID of this process. This RAII takes care of marking 4701 // and reverting the mark it once we are done running the expression. 4702 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); 4703 4704 if (m_private_state.GetValue() != eStateStopped) { 4705 diagnostic_manager.PutString( 4706 eDiagnosticSeverityError, 4707 "RunThreadPlan called while the private state was not stopped."); 4708 return eExpressionSetupError; 4709 } 4710 4711 // Save the thread & frame from the exe_ctx for restoration after we run 4712 const uint32_t thread_idx_id = thread->GetIndexID(); 4713 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4714 if (!selected_frame_sp) { 4715 thread->SetSelectedFrame(nullptr); 4716 selected_frame_sp = thread->GetSelectedFrame(); 4717 if (!selected_frame_sp) { 4718 diagnostic_manager.Printf( 4719 eDiagnosticSeverityError, 4720 "RunThreadPlan called without a selected frame on thread %d", 4721 thread_idx_id); 4722 return eExpressionSetupError; 4723 } 4724 } 4725 4726 // Make sure the timeout values make sense. The one thread timeout needs to 4727 // be smaller than the overall timeout. 4728 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4729 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4730 diagnostic_manager.PutString(eDiagnosticSeverityError, 4731 "RunThreadPlan called with one thread " 4732 "timeout greater than total timeout"); 4733 return eExpressionSetupError; 4734 } 4735 4736 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4737 4738 // N.B. Running the target may unset the currently selected thread and frame. 4739 // We don't want to do that either, so we should arrange to reset them as 4740 // well. 4741 4742 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4743 4744 uint32_t selected_tid; 4745 StackID selected_stack_id; 4746 if (selected_thread_sp) { 4747 selected_tid = selected_thread_sp->GetIndexID(); 4748 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4749 } else { 4750 selected_tid = LLDB_INVALID_THREAD_ID; 4751 } 4752 4753 HostThread backup_private_state_thread; 4754 lldb::StateType old_state = eStateInvalid; 4755 lldb::ThreadPlanSP stopper_base_plan_sp; 4756 4757 Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); 4758 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4759 // Yikes, we are running on the private state thread! So we can't wait for 4760 // public events on this thread, since we are the thread that is generating 4761 // public events. The simplest thing to do is to spin up a temporary thread 4762 // to handle private state thread events while we are fielding public 4763 // events here. 4764 LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " 4765 "another state thread to handle the events."); 4766 4767 backup_private_state_thread = m_private_state_thread; 4768 4769 // One other bit of business: we want to run just this thread plan and 4770 // anything it pushes, and then stop, returning control here. But in the 4771 // normal course of things, the plan above us on the stack would be given a 4772 // shot at the stop event before deciding to stop, and we don't want that. 4773 // So we insert a "stopper" base plan on the stack before the plan we want 4774 // to run. Since base plans always stop and return control to the user, 4775 // that will do just what we want. 4776 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4777 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4778 // Have to make sure our public state is stopped, since otherwise the 4779 // reporting logic below doesn't work correctly. 4780 old_state = m_public_state.GetValue(); 4781 m_public_state.SetValueNoLock(eStateStopped); 4782 4783 // Now spin up the private state thread: 4784 StartPrivateStateThread(true); 4785 } 4786 4787 thread->QueueThreadPlan( 4788 thread_plan_sp, false); // This used to pass "true" does that make sense? 4789 4790 if (options.GetDebug()) { 4791 // In this case, we aren't actually going to run, we just want to stop 4792 // right away. Flush this thread so we will refetch the stacks and show the 4793 // correct backtrace. 4794 // FIXME: To make this prettier we should invent some stop reason for this, 4795 // but that 4796 // is only cosmetic, and this functionality is only of use to lldb 4797 // developers who can live with not pretty... 4798 thread->Flush(); 4799 return eExpressionStoppedForDebug; 4800 } 4801 4802 ListenerSP listener_sp( 4803 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4804 4805 lldb::EventSP event_to_broadcast_sp; 4806 4807 { 4808 // This process event hijacker Hijacks the Public events and its destructor 4809 // makes sure that the process events get restored on exit to the function. 4810 // 4811 // If the event needs to propagate beyond the hijacker (e.g., the process 4812 // exits during execution), then the event is put into 4813 // event_to_broadcast_sp for rebroadcasting. 4814 4815 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 4816 4817 if (log) { 4818 StreamString s; 4819 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 4820 LLDB_LOGF(log, 4821 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 4822 " to run thread plan \"%s\".", 4823 thread_idx_id, expr_thread_id, s.GetData()); 4824 } 4825 4826 bool got_event; 4827 lldb::EventSP event_sp; 4828 lldb::StateType stop_state = lldb::eStateInvalid; 4829 4830 bool before_first_timeout = true; // This is set to false the first time 4831 // that we have to halt the target. 4832 bool do_resume = true; 4833 bool handle_running_event = true; 4834 4835 // This is just for accounting: 4836 uint32_t num_resumes = 0; 4837 4838 // If we are going to run all threads the whole time, or if we are only 4839 // going to run one thread, then we don't need the first timeout. So we 4840 // pretend we are after the first timeout already. 4841 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4842 before_first_timeout = false; 4843 4844 LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", 4845 options.GetStopOthers(), options.GetTryAllThreads(), 4846 before_first_timeout); 4847 4848 // This isn't going to work if there are unfetched events on the queue. Are 4849 // there cases where we might want to run the remaining events here, and 4850 // then try to call the function? That's probably being too tricky for our 4851 // own good. 4852 4853 Event *other_events = listener_sp->PeekAtNextEvent(); 4854 if (other_events != nullptr) { 4855 diagnostic_manager.PutString( 4856 eDiagnosticSeverityError, 4857 "RunThreadPlan called with pending events on the queue."); 4858 return eExpressionSetupError; 4859 } 4860 4861 // We also need to make sure that the next event is delivered. We might be 4862 // calling a function as part of a thread plan, in which case the last 4863 // delivered event could be the running event, and we don't want event 4864 // coalescing to cause us to lose OUR running event... 4865 ForceNextEventDelivery(); 4866 4867 // This while loop must exit out the bottom, there's cleanup that we need to do 4868 // when we are done. So don't call return anywhere within it. 4869 4870 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4871 // It's pretty much impossible to write test cases for things like: One 4872 // thread timeout expires, I go to halt, but the process already stopped on 4873 // the function call stop breakpoint. Turning on this define will make us 4874 // not fetch the first event till after the halt. So if you run a quick 4875 // function, it will have completed, and the completion event will be 4876 // waiting, when you interrupt for halt. The expression evaluation should 4877 // still succeed. 4878 bool miss_first_event = true; 4879 #endif 4880 while (true) { 4881 // We usually want to resume the process if we get to the top of the 4882 // loop. The only exception is if we get two running events with no 4883 // intervening stop, which can happen, we will just wait for then next 4884 // stop event. 4885 LLDB_LOGF(log, 4886 "Top of while loop: do_resume: %i handle_running_event: %i " 4887 "before_first_timeout: %i.", 4888 do_resume, handle_running_event, before_first_timeout); 4889 4890 if (do_resume || handle_running_event) { 4891 // Do the initial resume and wait for the running event before going 4892 // further. 4893 4894 if (do_resume) { 4895 num_resumes++; 4896 Status resume_error = PrivateResume(); 4897 if (!resume_error.Success()) { 4898 diagnostic_manager.Printf( 4899 eDiagnosticSeverityError, 4900 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 4901 resume_error.AsCString()); 4902 return_value = eExpressionSetupError; 4903 break; 4904 } 4905 } 4906 4907 got_event = 4908 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 4909 if (!got_event) { 4910 LLDB_LOGF(log, 4911 "Process::RunThreadPlan(): didn't get any event after " 4912 "resume %" PRIu32 ", exiting.", 4913 num_resumes); 4914 4915 diagnostic_manager.Printf(eDiagnosticSeverityError, 4916 "didn't get any event after resume %" PRIu32 4917 ", exiting.", 4918 num_resumes); 4919 return_value = eExpressionSetupError; 4920 break; 4921 } 4922 4923 stop_state = 4924 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4925 4926 if (stop_state != eStateRunning) { 4927 bool restarted = false; 4928 4929 if (stop_state == eStateStopped) { 4930 restarted = Process::ProcessEventData::GetRestartedFromEvent( 4931 event_sp.get()); 4932 LLDB_LOGF( 4933 log, 4934 "Process::RunThreadPlan(): didn't get running event after " 4935 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 4936 "handle_running_event: %i).", 4937 num_resumes, StateAsCString(stop_state), restarted, do_resume, 4938 handle_running_event); 4939 } 4940 4941 if (restarted) { 4942 // This is probably an overabundance of caution, I don't think I 4943 // should ever get a stopped & restarted event here. But if I do, 4944 // the best thing is to Halt and then get out of here. 4945 const bool clear_thread_plans = false; 4946 const bool use_run_lock = false; 4947 Halt(clear_thread_plans, use_run_lock); 4948 } 4949 4950 diagnostic_manager.Printf( 4951 eDiagnosticSeverityError, 4952 "didn't get running event after initial resume, got %s instead.", 4953 StateAsCString(stop_state)); 4954 return_value = eExpressionSetupError; 4955 break; 4956 } 4957 4958 if (log) 4959 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 4960 // We need to call the function synchronously, so spin waiting for it 4961 // to return. If we get interrupted while executing, we're going to 4962 // lose our context, and won't be able to gather the result at this 4963 // point. We set the timeout AFTER the resume, since the resume takes 4964 // some time and we don't want to charge that to the timeout. 4965 } else { 4966 if (log) 4967 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 4968 } 4969 4970 do_resume = true; 4971 handle_running_event = true; 4972 4973 // Now wait for the process to stop again: 4974 event_sp.reset(); 4975 4976 Timeout<std::micro> timeout = 4977 GetExpressionTimeout(options, before_first_timeout); 4978 if (log) { 4979 if (timeout) { 4980 auto now = system_clock::now(); 4981 LLDB_LOGF(log, 4982 "Process::RunThreadPlan(): about to wait - now is %s - " 4983 "endpoint is %s", 4984 llvm::to_string(now).c_str(), 4985 llvm::to_string(now + *timeout).c_str()); 4986 } else { 4987 LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); 4988 } 4989 } 4990 4991 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4992 // See comment above... 4993 if (miss_first_event) { 4994 std::this_thread::sleep_for(std::chrono::milliseconds(1)); 4995 miss_first_event = false; 4996 got_event = false; 4997 } else 4998 #endif 4999 got_event = listener_sp->GetEvent(event_sp, timeout); 5000 5001 if (got_event) { 5002 if (event_sp) { 5003 bool keep_going = false; 5004 if (event_sp->GetType() == eBroadcastBitInterrupt) { 5005 const bool clear_thread_plans = false; 5006 const bool use_run_lock = false; 5007 Halt(clear_thread_plans, use_run_lock); 5008 return_value = eExpressionInterrupted; 5009 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 5010 "execution halted by user interrupt."); 5011 LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " 5012 "eBroadcastBitInterrupted, exiting."); 5013 break; 5014 } else { 5015 stop_state = 5016 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5017 LLDB_LOGF(log, 5018 "Process::RunThreadPlan(): in while loop, got event: %s.", 5019 StateAsCString(stop_state)); 5020 5021 switch (stop_state) { 5022 case lldb::eStateStopped: { 5023 if (Process::ProcessEventData::GetRestartedFromEvent( 5024 event_sp.get())) { 5025 // If we were restarted, we just need to go back up to fetch 5026 // another event. 5027 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " 5028 "restart, so we'll continue waiting."); 5029 keep_going = true; 5030 do_resume = false; 5031 handle_running_event = true; 5032 } else { 5033 const bool handle_interrupts = true; 5034 return_value = *HandleStoppedEvent( 5035 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5036 event_sp, event_to_broadcast_sp, options, 5037 handle_interrupts); 5038 if (return_value == eExpressionThreadVanished) 5039 keep_going = false; 5040 } 5041 } break; 5042 5043 case lldb::eStateRunning: 5044 // This shouldn't really happen, but sometimes we do get two 5045 // running events without an intervening stop, and in that case 5046 // we should just go back to waiting for the stop. 5047 do_resume = false; 5048 keep_going = true; 5049 handle_running_event = false; 5050 break; 5051 5052 default: 5053 LLDB_LOGF(log, 5054 "Process::RunThreadPlan(): execution stopped with " 5055 "unexpected state: %s.", 5056 StateAsCString(stop_state)); 5057 5058 if (stop_state == eStateExited) 5059 event_to_broadcast_sp = event_sp; 5060 5061 diagnostic_manager.PutString( 5062 eDiagnosticSeverityError, 5063 "execution stopped with unexpected state."); 5064 return_value = eExpressionInterrupted; 5065 break; 5066 } 5067 } 5068 5069 if (keep_going) 5070 continue; 5071 else 5072 break; 5073 } else { 5074 if (log) 5075 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5076 "the event pointer was null. How odd..."); 5077 return_value = eExpressionInterrupted; 5078 break; 5079 } 5080 } else { 5081 // If we didn't get an event that means we've timed out... We will 5082 // interrupt the process here. Depending on what we were asked to do 5083 // we will either exit, or try with all threads running for the same 5084 // timeout. 5085 5086 if (log) { 5087 if (options.GetTryAllThreads()) { 5088 if (before_first_timeout) { 5089 LLDB_LOG(log, 5090 "Running function with one thread timeout timed out."); 5091 } else 5092 LLDB_LOG(log, "Restarting function with all threads enabled and " 5093 "timeout: {0} timed out, abandoning execution.", 5094 timeout); 5095 } else 5096 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5097 "abandoning execution.", 5098 timeout); 5099 } 5100 5101 // It is possible that between the time we issued the Halt, and we get 5102 // around to calling Halt the target could have stopped. That's fine, 5103 // Halt will figure that out and send the appropriate Stopped event. 5104 // BUT it is also possible that we stopped & restarted (e.g. hit a 5105 // signal with "stop" set to false.) In 5106 // that case, we'll get the stopped & restarted event, and we should go 5107 // back to waiting for the Halt's stopped event. That's what this 5108 // while loop does. 5109 5110 bool back_to_top = true; 5111 uint32_t try_halt_again = 0; 5112 bool do_halt = true; 5113 const uint32_t num_retries = 5; 5114 while (try_halt_again < num_retries) { 5115 Status halt_error; 5116 if (do_halt) { 5117 LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); 5118 const bool clear_thread_plans = false; 5119 const bool use_run_lock = false; 5120 Halt(clear_thread_plans, use_run_lock); 5121 } 5122 if (halt_error.Success()) { 5123 if (log) 5124 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5125 5126 got_event = 5127 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5128 5129 if (got_event) { 5130 stop_state = 5131 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5132 if (log) { 5133 LLDB_LOGF(log, 5134 "Process::RunThreadPlan(): Stopped with event: %s", 5135 StateAsCString(stop_state)); 5136 if (stop_state == lldb::eStateStopped && 5137 Process::ProcessEventData::GetInterruptedFromEvent( 5138 event_sp.get())) 5139 log->PutCString(" Event was the Halt interruption event."); 5140 } 5141 5142 if (stop_state == lldb::eStateStopped) { 5143 if (Process::ProcessEventData::GetRestartedFromEvent( 5144 event_sp.get())) { 5145 if (log) 5146 log->PutCString("Process::RunThreadPlan(): Went to halt " 5147 "but got a restarted event, there must be " 5148 "an un-restarted stopped event so try " 5149 "again... " 5150 "Exiting wait loop."); 5151 try_halt_again++; 5152 do_halt = false; 5153 continue; 5154 } 5155 5156 // Between the time we initiated the Halt and the time we 5157 // delivered it, the process could have already finished its 5158 // job. Check that here: 5159 const bool handle_interrupts = false; 5160 if (auto result = HandleStoppedEvent( 5161 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5162 event_sp, event_to_broadcast_sp, options, 5163 handle_interrupts)) { 5164 return_value = *result; 5165 back_to_top = false; 5166 break; 5167 } 5168 5169 if (!options.GetTryAllThreads()) { 5170 if (log) 5171 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5172 "was false, we stopped so now we're " 5173 "quitting."); 5174 return_value = eExpressionInterrupted; 5175 back_to_top = false; 5176 break; 5177 } 5178 5179 if (before_first_timeout) { 5180 // Set all the other threads to run, and return to the top of 5181 // the loop, which will continue; 5182 before_first_timeout = false; 5183 thread_plan_sp->SetStopOthers(false); 5184 if (log) 5185 log->PutCString( 5186 "Process::RunThreadPlan(): about to resume."); 5187 5188 back_to_top = true; 5189 break; 5190 } else { 5191 // Running all threads failed, so return Interrupted. 5192 if (log) 5193 log->PutCString("Process::RunThreadPlan(): running all " 5194 "threads timed out."); 5195 return_value = eExpressionInterrupted; 5196 back_to_top = false; 5197 break; 5198 } 5199 } 5200 } else { 5201 if (log) 5202 log->PutCString("Process::RunThreadPlan(): halt said it " 5203 "succeeded, but I got no event. " 5204 "I'm getting out of here passing Interrupted."); 5205 return_value = eExpressionInterrupted; 5206 back_to_top = false; 5207 break; 5208 } 5209 } else { 5210 try_halt_again++; 5211 continue; 5212 } 5213 } 5214 5215 if (!back_to_top || try_halt_again > num_retries) 5216 break; 5217 else 5218 continue; 5219 } 5220 } // END WAIT LOOP 5221 5222 // If we had to start up a temporary private state thread to run this 5223 // thread plan, shut it down now. 5224 if (backup_private_state_thread.IsJoinable()) { 5225 StopPrivateStateThread(); 5226 Status error; 5227 m_private_state_thread = backup_private_state_thread; 5228 if (stopper_base_plan_sp) { 5229 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5230 } 5231 if (old_state != eStateInvalid) 5232 m_public_state.SetValueNoLock(old_state); 5233 } 5234 5235 // If our thread went away on us, we need to get out of here without 5236 // doing any more work. We don't have to clean up the thread plan, that 5237 // will have happened when the Thread was destroyed. 5238 if (return_value == eExpressionThreadVanished) { 5239 return return_value; 5240 } 5241 5242 if (return_value != eExpressionCompleted && log) { 5243 // Print a backtrace into the log so we can figure out where we are: 5244 StreamString s; 5245 s.PutCString("Thread state after unsuccessful completion: \n"); 5246 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5247 log->PutString(s.GetString()); 5248 } 5249 // Restore the thread state if we are going to discard the plan execution. 5250 // There are three cases where this could happen: 1) The execution 5251 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5252 // was true 3) We got some other error, and discard_on_error was true 5253 bool should_unwind = (return_value == eExpressionInterrupted && 5254 options.DoesUnwindOnError()) || 5255 (return_value == eExpressionHitBreakpoint && 5256 options.DoesIgnoreBreakpoints()); 5257 5258 if (return_value == eExpressionCompleted || should_unwind) { 5259 thread_plan_sp->RestoreThreadState(); 5260 } 5261 5262 // Now do some processing on the results of the run: 5263 if (return_value == eExpressionInterrupted || 5264 return_value == eExpressionHitBreakpoint) { 5265 if (log) { 5266 StreamString s; 5267 if (event_sp) 5268 event_sp->Dump(&s); 5269 else { 5270 log->PutCString("Process::RunThreadPlan(): Stop event that " 5271 "interrupted us is NULL."); 5272 } 5273 5274 StreamString ts; 5275 5276 const char *event_explanation = nullptr; 5277 5278 do { 5279 if (!event_sp) { 5280 event_explanation = "<no event>"; 5281 break; 5282 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5283 event_explanation = "<user interrupt>"; 5284 break; 5285 } else { 5286 const Process::ProcessEventData *event_data = 5287 Process::ProcessEventData::GetEventDataFromEvent( 5288 event_sp.get()); 5289 5290 if (!event_data) { 5291 event_explanation = "<no event data>"; 5292 break; 5293 } 5294 5295 Process *process = event_data->GetProcessSP().get(); 5296 5297 if (!process) { 5298 event_explanation = "<no process>"; 5299 break; 5300 } 5301 5302 ThreadList &thread_list = process->GetThreadList(); 5303 5304 uint32_t num_threads = thread_list.GetSize(); 5305 uint32_t thread_index; 5306 5307 ts.Printf("<%u threads> ", num_threads); 5308 5309 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5310 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5311 5312 if (!thread) { 5313 ts.Printf("<?> "); 5314 continue; 5315 } 5316 5317 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5318 RegisterContext *register_context = 5319 thread->GetRegisterContext().get(); 5320 5321 if (register_context) 5322 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5323 else 5324 ts.Printf("[ip unknown] "); 5325 5326 // Show the private stop info here, the public stop info will be 5327 // from the last natural stop. 5328 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5329 if (stop_info_sp) { 5330 const char *stop_desc = stop_info_sp->GetDescription(); 5331 if (stop_desc) 5332 ts.PutCString(stop_desc); 5333 } 5334 ts.Printf(">"); 5335 } 5336 5337 event_explanation = ts.GetData(); 5338 } 5339 } while (false); 5340 5341 if (event_explanation) 5342 LLDB_LOGF(log, 5343 "Process::RunThreadPlan(): execution interrupted: %s %s", 5344 s.GetData(), event_explanation); 5345 else 5346 LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", 5347 s.GetData()); 5348 } 5349 5350 if (should_unwind) { 5351 LLDB_LOGF(log, 5352 "Process::RunThreadPlan: ExecutionInterrupted - " 5353 "discarding thread plans up to %p.", 5354 static_cast<void *>(thread_plan_sp.get())); 5355 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5356 } else { 5357 LLDB_LOGF(log, 5358 "Process::RunThreadPlan: ExecutionInterrupted - for " 5359 "plan: %p not discarding.", 5360 static_cast<void *>(thread_plan_sp.get())); 5361 } 5362 } else if (return_value == eExpressionSetupError) { 5363 if (log) 5364 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5365 5366 if (options.DoesUnwindOnError()) { 5367 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5368 } 5369 } else { 5370 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5371 if (log) 5372 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5373 return_value = eExpressionCompleted; 5374 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5375 if (log) 5376 log->PutCString( 5377 "Process::RunThreadPlan(): thread plan was discarded"); 5378 return_value = eExpressionDiscarded; 5379 } else { 5380 if (log) 5381 log->PutCString( 5382 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5383 if (options.DoesUnwindOnError() && thread_plan_sp) { 5384 if (log) 5385 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5386 "'cause unwind_on_error is set."); 5387 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5388 } 5389 } 5390 } 5391 5392 // Thread we ran the function in may have gone away because we ran the 5393 // target Check that it's still there, and if it is put it back in the 5394 // context. Also restore the frame in the context if it is still present. 5395 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5396 if (thread) { 5397 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5398 } 5399 5400 // Also restore the current process'es selected frame & thread, since this 5401 // function calling may be done behind the user's back. 5402 5403 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5404 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5405 selected_stack_id.IsValid()) { 5406 // We were able to restore the selected thread, now restore the frame: 5407 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5408 StackFrameSP old_frame_sp = 5409 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5410 selected_stack_id); 5411 if (old_frame_sp) 5412 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5413 old_frame_sp.get()); 5414 } 5415 } 5416 } 5417 5418 // If the process exited during the run of the thread plan, notify everyone. 5419 5420 if (event_to_broadcast_sp) { 5421 if (log) 5422 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5423 BroadcastEvent(event_to_broadcast_sp); 5424 } 5425 5426 return return_value; 5427 } 5428 5429 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5430 const char *result_name = "<unknown>"; 5431 5432 switch (result) { 5433 case eExpressionCompleted: 5434 result_name = "eExpressionCompleted"; 5435 break; 5436 case eExpressionDiscarded: 5437 result_name = "eExpressionDiscarded"; 5438 break; 5439 case eExpressionInterrupted: 5440 result_name = "eExpressionInterrupted"; 5441 break; 5442 case eExpressionHitBreakpoint: 5443 result_name = "eExpressionHitBreakpoint"; 5444 break; 5445 case eExpressionSetupError: 5446 result_name = "eExpressionSetupError"; 5447 break; 5448 case eExpressionParseError: 5449 result_name = "eExpressionParseError"; 5450 break; 5451 case eExpressionResultUnavailable: 5452 result_name = "eExpressionResultUnavailable"; 5453 break; 5454 case eExpressionTimedOut: 5455 result_name = "eExpressionTimedOut"; 5456 break; 5457 case eExpressionStoppedForDebug: 5458 result_name = "eExpressionStoppedForDebug"; 5459 break; 5460 case eExpressionThreadVanished: 5461 result_name = "eExpressionThreadVanished"; 5462 } 5463 return result_name; 5464 } 5465 5466 void Process::GetStatus(Stream &strm) { 5467 const StateType state = GetState(); 5468 if (StateIsStoppedState(state, false)) { 5469 if (state == eStateExited) { 5470 int exit_status = GetExitStatus(); 5471 const char *exit_description = GetExitDescription(); 5472 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5473 GetID(), exit_status, exit_status, 5474 exit_description ? exit_description : ""); 5475 } else { 5476 if (state == eStateConnected) 5477 strm.Printf("Connected to remote target.\n"); 5478 else 5479 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5480 } 5481 } else { 5482 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5483 } 5484 } 5485 5486 size_t Process::GetThreadStatus(Stream &strm, 5487 bool only_threads_with_stop_reason, 5488 uint32_t start_frame, uint32_t num_frames, 5489 uint32_t num_frames_with_source, 5490 bool stop_format) { 5491 size_t num_thread_infos_dumped = 0; 5492 5493 // You can't hold the thread list lock while calling Thread::GetStatus. That 5494 // very well might run code (e.g. if we need it to get return values or 5495 // arguments.) For that to work the process has to be able to acquire it. 5496 // So instead copy the thread ID's, and look them up one by one: 5497 5498 uint32_t num_threads; 5499 std::vector<lldb::tid_t> thread_id_array; 5500 // Scope for thread list locker; 5501 { 5502 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5503 ThreadList &curr_thread_list = GetThreadList(); 5504 num_threads = curr_thread_list.GetSize(); 5505 uint32_t idx; 5506 thread_id_array.resize(num_threads); 5507 for (idx = 0; idx < num_threads; ++idx) 5508 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5509 } 5510 5511 for (uint32_t i = 0; i < num_threads; i++) { 5512 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5513 if (thread_sp) { 5514 if (only_threads_with_stop_reason) { 5515 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5516 if (!stop_info_sp || !stop_info_sp->IsValid()) 5517 continue; 5518 } 5519 thread_sp->GetStatus(strm, start_frame, num_frames, 5520 num_frames_with_source, 5521 stop_format); 5522 ++num_thread_infos_dumped; 5523 } else { 5524 Log *log = GetLog(LLDBLog::Process); 5525 LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 5526 " vanished while running Thread::GetStatus."); 5527 } 5528 } 5529 return num_thread_infos_dumped; 5530 } 5531 5532 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5533 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5534 } 5535 5536 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5537 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5538 region.GetByteSize()); 5539 } 5540 5541 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5542 void *baton) { 5543 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5544 } 5545 5546 bool Process::RunPreResumeActions() { 5547 bool result = true; 5548 while (!m_pre_resume_actions.empty()) { 5549 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5550 m_pre_resume_actions.pop_back(); 5551 bool this_result = action.callback(action.baton); 5552 if (result) 5553 result = this_result; 5554 } 5555 return result; 5556 } 5557 5558 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5559 5560 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5561 { 5562 PreResumeCallbackAndBaton element(callback, baton); 5563 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5564 if (found_iter != m_pre_resume_actions.end()) 5565 { 5566 m_pre_resume_actions.erase(found_iter); 5567 } 5568 } 5569 5570 ProcessRunLock &Process::GetRunLock() { 5571 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5572 return m_private_run_lock; 5573 else 5574 return m_public_run_lock; 5575 } 5576 5577 bool Process::CurrentThreadIsPrivateStateThread() 5578 { 5579 return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); 5580 } 5581 5582 5583 void Process::Flush() { 5584 m_thread_list.Flush(); 5585 m_extended_thread_list.Flush(); 5586 m_extended_thread_stop_id = 0; 5587 m_queue_list.Clear(); 5588 m_queue_list_stop_id = 0; 5589 } 5590 5591 lldb::addr_t Process::GetCodeAddressMask() { 5592 if (m_code_address_mask == 0) { 5593 if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) { 5594 lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1); 5595 SetCodeAddressMask(address_mask); 5596 } 5597 } 5598 return m_code_address_mask; 5599 } 5600 5601 lldb::addr_t Process::GetDataAddressMask() { 5602 if (m_data_address_mask == 0) { 5603 if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) { 5604 lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1); 5605 SetDataAddressMask(address_mask); 5606 } 5607 } 5608 return m_data_address_mask; 5609 } 5610 5611 void Process::DidExec() { 5612 Log *log = GetLog(LLDBLog::Process); 5613 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 5614 5615 Target &target = GetTarget(); 5616 target.CleanupProcess(); 5617 target.ClearModules(false); 5618 m_dynamic_checkers_up.reset(); 5619 m_abi_sp.reset(); 5620 m_system_runtime_up.reset(); 5621 m_os_up.reset(); 5622 m_dyld_up.reset(); 5623 m_jit_loaders_up.reset(); 5624 m_image_tokens.clear(); 5625 m_allocated_memory_cache.Clear(); 5626 { 5627 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5628 m_language_runtimes.clear(); 5629 } 5630 m_instrumentation_runtimes.clear(); 5631 m_thread_list.DiscardThreadPlans(); 5632 m_memory_cache.Clear(true); 5633 DoDidExec(); 5634 CompleteAttach(); 5635 // Flush the process (threads and all stack frames) after running 5636 // CompleteAttach() in case the dynamic loader loaded things in new 5637 // locations. 5638 Flush(); 5639 5640 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5641 // let the target know so it can do any cleanup it needs to. 5642 target.DidExec(); 5643 } 5644 5645 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5646 if (address == nullptr) { 5647 error.SetErrorString("Invalid address argument"); 5648 return LLDB_INVALID_ADDRESS; 5649 } 5650 5651 addr_t function_addr = LLDB_INVALID_ADDRESS; 5652 5653 addr_t addr = address->GetLoadAddress(&GetTarget()); 5654 std::map<addr_t, addr_t>::const_iterator iter = 5655 m_resolved_indirect_addresses.find(addr); 5656 if (iter != m_resolved_indirect_addresses.end()) { 5657 function_addr = (*iter).second; 5658 } else { 5659 if (!CallVoidArgVoidPtrReturn(address, function_addr)) { 5660 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5661 error.SetErrorStringWithFormat( 5662 "Unable to call resolver for indirect function %s", 5663 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5664 function_addr = LLDB_INVALID_ADDRESS; 5665 } else { 5666 if (ABISP abi_sp = GetABI()) 5667 function_addr = abi_sp->FixCodeAddress(function_addr); 5668 m_resolved_indirect_addresses.insert( 5669 std::pair<addr_t, addr_t>(addr, function_addr)); 5670 } 5671 } 5672 return function_addr; 5673 } 5674 5675 void Process::ModulesDidLoad(ModuleList &module_list) { 5676 // Inform the system runtime of the modified modules. 5677 SystemRuntime *sys_runtime = GetSystemRuntime(); 5678 if (sys_runtime) 5679 sys_runtime->ModulesDidLoad(module_list); 5680 5681 GetJITLoaders().ModulesDidLoad(module_list); 5682 5683 // Give the instrumentation runtimes a chance to be created before informing 5684 // them of the modified modules. 5685 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5686 m_instrumentation_runtimes); 5687 for (auto &runtime : m_instrumentation_runtimes) 5688 runtime.second->ModulesDidLoad(module_list); 5689 5690 // Give the language runtimes a chance to be created before informing them of 5691 // the modified modules. 5692 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 5693 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 5694 runtime->ModulesDidLoad(module_list); 5695 } 5696 5697 // If we don't have an operating system plug-in, try to load one since 5698 // loading shared libraries might cause a new one to try and load 5699 if (!m_os_up) 5700 LoadOperatingSystemPlugin(false); 5701 5702 // Inform the structured-data plugins of the modified modules. 5703 for (auto pair : m_structured_data_plugin_map) { 5704 if (pair.second) 5705 pair.second->ModulesDidLoad(*this, module_list); 5706 } 5707 } 5708 5709 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5710 if (!GetWarningsOptimization()) 5711 return; 5712 if (!sc.module_sp || !sc.function || !sc.function->GetIsOptimized()) 5713 return; 5714 sc.module_sp->ReportWarningOptimization(GetTarget().GetDebugger().GetID()); 5715 } 5716 5717 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) { 5718 if (!GetWarningsUnsupportedLanguage()) 5719 return; 5720 if (!sc.module_sp) 5721 return; 5722 LanguageType language = sc.GetLanguage(); 5723 if (language == eLanguageTypeUnknown) 5724 return; 5725 LanguageSet plugins = 5726 PluginManager::GetAllTypeSystemSupportedLanguagesForTypes(); 5727 if (plugins[language]) 5728 return; 5729 sc.module_sp->ReportWarningUnsupportedLanguage( 5730 language, GetTarget().GetDebugger().GetID()); 5731 } 5732 5733 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5734 info.Clear(); 5735 5736 PlatformSP platform_sp = GetTarget().GetPlatform(); 5737 if (!platform_sp) 5738 return false; 5739 5740 return platform_sp->GetProcessInfo(GetID(), info); 5741 } 5742 5743 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5744 ThreadCollectionSP threads; 5745 5746 const MemoryHistorySP &memory_history = 5747 MemoryHistory::FindPlugin(shared_from_this()); 5748 5749 if (!memory_history) { 5750 return threads; 5751 } 5752 5753 threads = std::make_shared<ThreadCollection>( 5754 memory_history->GetHistoryThreads(addr)); 5755 5756 return threads; 5757 } 5758 5759 InstrumentationRuntimeSP 5760 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5761 InstrumentationRuntimeCollection::iterator pos; 5762 pos = m_instrumentation_runtimes.find(type); 5763 if (pos == m_instrumentation_runtimes.end()) { 5764 return InstrumentationRuntimeSP(); 5765 } else 5766 return (*pos).second; 5767 } 5768 5769 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5770 const ArchSpec &arch, ModuleSpec &module_spec) { 5771 module_spec.Clear(); 5772 return false; 5773 } 5774 5775 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5776 m_image_tokens.push_back(image_ptr); 5777 return m_image_tokens.size() - 1; 5778 } 5779 5780 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5781 if (token < m_image_tokens.size()) 5782 return m_image_tokens[token]; 5783 return LLDB_INVALID_ADDRESS; 5784 } 5785 5786 void Process::ResetImageToken(size_t token) { 5787 if (token < m_image_tokens.size()) 5788 m_image_tokens[token] = LLDB_INVALID_ADDRESS; 5789 } 5790 5791 Address 5792 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5793 AddressRange range_bounds) { 5794 Target &target = GetTarget(); 5795 DisassemblerSP disassembler_sp; 5796 InstructionList *insn_list = nullptr; 5797 5798 Address retval = default_stop_addr; 5799 5800 if (!target.GetUseFastStepping()) 5801 return retval; 5802 if (!default_stop_addr.IsValid()) 5803 return retval; 5804 5805 const char *plugin_name = nullptr; 5806 const char *flavor = nullptr; 5807 disassembler_sp = Disassembler::DisassembleRange( 5808 target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds); 5809 if (disassembler_sp) 5810 insn_list = &disassembler_sp->GetInstructionList(); 5811 5812 if (insn_list == nullptr) { 5813 return retval; 5814 } 5815 5816 size_t insn_offset = 5817 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 5818 if (insn_offset == UINT32_MAX) { 5819 return retval; 5820 } 5821 5822 uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction( 5823 insn_offset, false /* ignore_calls*/, nullptr); 5824 if (branch_index == UINT32_MAX) { 5825 return retval; 5826 } 5827 5828 if (branch_index > insn_offset) { 5829 Address next_branch_insn_address = 5830 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 5831 if (next_branch_insn_address.IsValid() && 5832 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 5833 retval = next_branch_insn_address; 5834 } 5835 } 5836 5837 return retval; 5838 } 5839 5840 Status Process::GetMemoryRegionInfo(lldb::addr_t load_addr, 5841 MemoryRegionInfo &range_info) { 5842 if (const lldb::ABISP &abi = GetABI()) 5843 load_addr = abi->FixAnyAddress(load_addr); 5844 return DoGetMemoryRegionInfo(load_addr, range_info); 5845 } 5846 5847 Status Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { 5848 Status error; 5849 5850 lldb::addr_t range_end = 0; 5851 const lldb::ABISP &abi = GetABI(); 5852 5853 region_list.clear(); 5854 do { 5855 lldb_private::MemoryRegionInfo region_info; 5856 error = GetMemoryRegionInfo(range_end, region_info); 5857 // GetMemoryRegionInfo should only return an error if it is unimplemented. 5858 if (error.Fail()) { 5859 region_list.clear(); 5860 break; 5861 } 5862 5863 // We only check the end address, not start and end, because we assume that 5864 // the start will not have non-address bits until the first unmappable 5865 // region. We will have exited the loop by that point because the previous 5866 // region, the last mappable region, will have non-address bits in its end 5867 // address. 5868 range_end = region_info.GetRange().GetRangeEnd(); 5869 if (region_info.GetMapped() == MemoryRegionInfo::eYes) { 5870 region_list.push_back(std::move(region_info)); 5871 } 5872 } while ( 5873 // For a process with no non-address bits, all address bits 5874 // set means the end of memory. 5875 range_end != LLDB_INVALID_ADDRESS && 5876 // If we have non-address bits and some are set then the end 5877 // is at or beyond the end of mappable memory. 5878 !(abi && (abi->FixAnyAddress(range_end) != range_end))); 5879 5880 return error; 5881 } 5882 5883 Status 5884 Process::ConfigureStructuredData(ConstString type_name, 5885 const StructuredData::ObjectSP &config_sp) { 5886 // If you get this, the Process-derived class needs to implement a method to 5887 // enable an already-reported asynchronous structured data feature. See 5888 // ProcessGDBRemote for an example implementation over gdb-remote. 5889 return Status("unimplemented"); 5890 } 5891 5892 void Process::MapSupportedStructuredDataPlugins( 5893 const StructuredData::Array &supported_type_names) { 5894 Log *log = GetLog(LLDBLog::Process); 5895 5896 // Bail out early if there are no type names to map. 5897 if (supported_type_names.GetSize() == 0) { 5898 LLDB_LOGF(log, "Process::%s(): no structured data types supported", 5899 __FUNCTION__); 5900 return; 5901 } 5902 5903 // Convert StructuredData type names to ConstString instances. 5904 std::set<ConstString> const_type_names; 5905 5906 LLDB_LOGF(log, 5907 "Process::%s(): the process supports the following async " 5908 "structured data types:", 5909 __FUNCTION__); 5910 5911 supported_type_names.ForEach( 5912 [&const_type_names, &log](StructuredData::Object *object) { 5913 if (!object) { 5914 // Invalid - shouldn't be null objects in the array. 5915 return false; 5916 } 5917 5918 auto type_name = object->GetAsString(); 5919 if (!type_name) { 5920 // Invalid format - all type names should be strings. 5921 return false; 5922 } 5923 5924 const_type_names.insert(ConstString(type_name->GetValue())); 5925 LLDB_LOG(log, "- {0}", type_name->GetValue()); 5926 return true; 5927 }); 5928 5929 // For each StructuredDataPlugin, if the plugin handles any of the types in 5930 // the supported_type_names, map that type name to that plugin. Stop when 5931 // we've consumed all the type names. 5932 // FIXME: should we return an error if there are type names nobody 5933 // supports? 5934 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 5935 auto create_instance = 5936 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 5937 plugin_index); 5938 if (!create_instance) 5939 break; 5940 5941 // Create the plugin. 5942 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 5943 if (!plugin_sp) { 5944 // This plugin doesn't think it can work with the process. Move on to the 5945 // next. 5946 continue; 5947 } 5948 5949 // For any of the remaining type names, map any that this plugin supports. 5950 std::vector<ConstString> names_to_remove; 5951 for (auto &type_name : const_type_names) { 5952 if (plugin_sp->SupportsStructuredDataType(type_name)) { 5953 m_structured_data_plugin_map.insert( 5954 std::make_pair(type_name, plugin_sp)); 5955 names_to_remove.push_back(type_name); 5956 LLDB_LOG(log, "using plugin {0} for type name {1}", 5957 plugin_sp->GetPluginName(), type_name); 5958 } 5959 } 5960 5961 // Remove the type names that were consumed by this plugin. 5962 for (auto &type_name : names_to_remove) 5963 const_type_names.erase(type_name); 5964 } 5965 } 5966 5967 bool Process::RouteAsyncStructuredData( 5968 const StructuredData::ObjectSP object_sp) { 5969 // Nothing to do if there's no data. 5970 if (!object_sp) 5971 return false; 5972 5973 // The contract is this must be a dictionary, so we can look up the routing 5974 // key via the top-level 'type' string value within the dictionary. 5975 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 5976 if (!dictionary) 5977 return false; 5978 5979 // Grab the async structured type name (i.e. the feature/plugin name). 5980 ConstString type_name; 5981 if (!dictionary->GetValueForKeyAsString("type", type_name)) 5982 return false; 5983 5984 // Check if there's a plugin registered for this type name. 5985 auto find_it = m_structured_data_plugin_map.find(type_name); 5986 if (find_it == m_structured_data_plugin_map.end()) { 5987 // We don't have a mapping for this structured data type. 5988 return false; 5989 } 5990 5991 // Route the structured data to the plugin. 5992 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 5993 return true; 5994 } 5995 5996 Status Process::UpdateAutomaticSignalFiltering() { 5997 // Default implementation does nothign. 5998 // No automatic signal filtering to speak of. 5999 return Status(); 6000 } 6001 6002 UtilityFunction *Process::GetLoadImageUtilityFunction( 6003 Platform *platform, 6004 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 6005 if (platform != GetTarget().GetPlatform().get()) 6006 return nullptr; 6007 llvm::call_once(m_dlopen_utility_func_flag_once, 6008 [&] { m_dlopen_utility_func_up = factory(); }); 6009 return m_dlopen_utility_func_up.get(); 6010 } 6011 6012 llvm::Expected<TraceSupportedResponse> Process::TraceSupported() { 6013 if (!IsLiveDebugSession()) 6014 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6015 "Can't trace a non-live process."); 6016 return llvm::make_error<UnimplementedError>(); 6017 } 6018 6019 bool Process::CallVoidArgVoidPtrReturn(const Address *address, 6020 addr_t &returned_func, 6021 bool trap_exceptions) { 6022 Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); 6023 if (thread == nullptr || address == nullptr) 6024 return false; 6025 6026 EvaluateExpressionOptions options; 6027 options.SetStopOthers(true); 6028 options.SetUnwindOnError(true); 6029 options.SetIgnoreBreakpoints(true); 6030 options.SetTryAllThreads(true); 6031 options.SetDebug(false); 6032 options.SetTimeout(GetUtilityExpressionTimeout()); 6033 options.SetTrapExceptions(trap_exceptions); 6034 6035 auto type_system_or_err = 6036 GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC); 6037 if (!type_system_or_err) { 6038 llvm::consumeError(type_system_or_err.takeError()); 6039 return false; 6040 } 6041 CompilerType void_ptr_type = 6042 type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType(); 6043 lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( 6044 *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); 6045 if (call_plan_sp) { 6046 DiagnosticManager diagnostics; 6047 6048 StackFrame *frame = thread->GetStackFrameAtIndex(0).get(); 6049 if (frame) { 6050 ExecutionContext exe_ctx; 6051 frame->CalculateExecutionContext(exe_ctx); 6052 ExpressionResults result = 6053 RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics); 6054 if (result == eExpressionCompleted) { 6055 returned_func = 6056 call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( 6057 LLDB_INVALID_ADDRESS); 6058 6059 if (GetAddressByteSize() == 4) { 6060 if (returned_func == UINT32_MAX) 6061 return false; 6062 } else if (GetAddressByteSize() == 8) { 6063 if (returned_func == UINT64_MAX) 6064 return false; 6065 } 6066 return true; 6067 } 6068 } 6069 } 6070 6071 return false; 6072 } 6073 6074 llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() { 6075 Architecture *arch = GetTarget().GetArchitecturePlugin(); 6076 const MemoryTagManager *tag_manager = 6077 arch ? arch->GetMemoryTagManager() : nullptr; 6078 if (!arch || !tag_manager) { 6079 return llvm::createStringError( 6080 llvm::inconvertibleErrorCode(), 6081 "This architecture does not support memory tagging"); 6082 } 6083 6084 if (!SupportsMemoryTagging()) { 6085 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6086 "Process does not support memory tagging"); 6087 } 6088 6089 return tag_manager; 6090 } 6091 6092 llvm::Expected<std::vector<lldb::addr_t>> 6093 Process::ReadMemoryTags(lldb::addr_t addr, size_t len) { 6094 llvm::Expected<const MemoryTagManager *> tag_manager_or_err = 6095 GetMemoryTagManager(); 6096 if (!tag_manager_or_err) 6097 return tag_manager_or_err.takeError(); 6098 6099 const MemoryTagManager *tag_manager = *tag_manager_or_err; 6100 llvm::Expected<std::vector<uint8_t>> tag_data = 6101 DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType()); 6102 if (!tag_data) 6103 return tag_data.takeError(); 6104 6105 return tag_manager->UnpackTagsData(*tag_data, 6106 len / tag_manager->GetGranuleSize()); 6107 } 6108 6109 Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len, 6110 const std::vector<lldb::addr_t> &tags) { 6111 llvm::Expected<const MemoryTagManager *> tag_manager_or_err = 6112 GetMemoryTagManager(); 6113 if (!tag_manager_or_err) 6114 return Status(tag_manager_or_err.takeError()); 6115 6116 const MemoryTagManager *tag_manager = *tag_manager_or_err; 6117 llvm::Expected<std::vector<uint8_t>> packed_tags = 6118 tag_manager->PackTags(tags); 6119 if (!packed_tags) { 6120 return Status(packed_tags.takeError()); 6121 } 6122 6123 return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(), 6124 *packed_tags); 6125 } 6126