1 //===-- Process.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <atomic>
10 #include <memory>
11 #include <mutex>
12 
13 #include "llvm/ADT/ScopeExit.h"
14 #include "llvm/Support/ScopedPrinter.h"
15 #include "llvm/Support/Threading.h"
16 
17 #include "lldb/Breakpoint/BreakpointLocation.h"
18 #include "lldb/Breakpoint/StoppointCallbackContext.h"
19 #include "lldb/Core/Debugger.h"
20 #include "lldb/Core/Module.h"
21 #include "lldb/Core/ModuleSpec.h"
22 #include "lldb/Core/PluginManager.h"
23 #include "lldb/Core/StreamFile.h"
24 #include "lldb/Expression/DiagnosticManager.h"
25 #include "lldb/Expression/DynamicCheckerFunctions.h"
26 #include "lldb/Expression/UserExpression.h"
27 #include "lldb/Expression/UtilityFunction.h"
28 #include "lldb/Host/ConnectionFileDescriptor.h"
29 #include "lldb/Host/FileSystem.h"
30 #include "lldb/Host/Host.h"
31 #include "lldb/Host/HostInfo.h"
32 #include "lldb/Host/OptionParser.h"
33 #include "lldb/Host/Pipe.h"
34 #include "lldb/Host/Terminal.h"
35 #include "lldb/Host/ThreadLauncher.h"
36 #include "lldb/Interpreter/CommandInterpreter.h"
37 #include "lldb/Interpreter/OptionArgParser.h"
38 #include "lldb/Interpreter/OptionValueProperties.h"
39 #include "lldb/Symbol/Function.h"
40 #include "lldb/Symbol/Symbol.h"
41 #include "lldb/Target/ABI.h"
42 #include "lldb/Target/AssertFrameRecognizer.h"
43 #include "lldb/Target/DynamicLoader.h"
44 #include "lldb/Target/InstrumentationRuntime.h"
45 #include "lldb/Target/JITLoader.h"
46 #include "lldb/Target/JITLoaderList.h"
47 #include "lldb/Target/Language.h"
48 #include "lldb/Target/LanguageRuntime.h"
49 #include "lldb/Target/MemoryHistory.h"
50 #include "lldb/Target/MemoryRegionInfo.h"
51 #include "lldb/Target/OperatingSystem.h"
52 #include "lldb/Target/Platform.h"
53 #include "lldb/Target/Process.h"
54 #include "lldb/Target/RegisterContext.h"
55 #include "lldb/Target/StopInfo.h"
56 #include "lldb/Target/StructuredDataPlugin.h"
57 #include "lldb/Target/SystemRuntime.h"
58 #include "lldb/Target/Target.h"
59 #include "lldb/Target/TargetList.h"
60 #include "lldb/Target/Thread.h"
61 #include "lldb/Target/ThreadPlan.h"
62 #include "lldb/Target/ThreadPlanBase.h"
63 #include "lldb/Target/ThreadPlanCallFunction.h"
64 #include "lldb/Target/ThreadPlanStack.h"
65 #include "lldb/Target/UnixSignals.h"
66 #include "lldb/Utility/Event.h"
67 #include "lldb/Utility/LLDBLog.h"
68 #include "lldb/Utility/Log.h"
69 #include "lldb/Utility/NameMatches.h"
70 #include "lldb/Utility/ProcessInfo.h"
71 #include "lldb/Utility/SelectHelper.h"
72 #include "lldb/Utility/State.h"
73 #include "lldb/Utility/Timer.h"
74 
75 using namespace lldb;
76 using namespace lldb_private;
77 using namespace std::chrono;
78 
79 // Comment out line below to disable memory caching, overriding the process
80 // setting target.process.disable-memory-cache
81 #define ENABLE_MEMORY_CACHING
82 
83 #ifdef ENABLE_MEMORY_CACHING
84 #define DISABLE_MEM_CACHE_DEFAULT false
85 #else
86 #define DISABLE_MEM_CACHE_DEFAULT true
87 #endif
88 
89 class ProcessOptionValueProperties
90     : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> {
91 public:
92   ProcessOptionValueProperties(ConstString name) : Cloneable(name) {}
93 
94   const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx,
95                                      bool will_modify,
96                                      uint32_t idx) const override {
97     // When getting the value for a key from the process options, we will
98     // always try and grab the setting from the current process if there is
99     // one. Else we just use the one from this instance.
100     if (exe_ctx) {
101       Process *process = exe_ctx->GetProcessPtr();
102       if (process) {
103         ProcessOptionValueProperties *instance_properties =
104             static_cast<ProcessOptionValueProperties *>(
105                 process->GetValueProperties().get());
106         if (this != instance_properties)
107           return instance_properties->ProtectedGetPropertyAtIndex(idx);
108       }
109     }
110     return ProtectedGetPropertyAtIndex(idx);
111   }
112 };
113 
114 static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = {
115     {
116         eFollowParent,
117         "parent",
118         "Continue tracing the parent process and detach the child.",
119     },
120     {
121         eFollowChild,
122         "child",
123         "Trace the child process and detach the parent.",
124     },
125 };
126 
127 #define LLDB_PROPERTIES_process
128 #include "TargetProperties.inc"
129 
130 enum {
131 #define LLDB_PROPERTIES_process
132 #include "TargetPropertiesEnum.inc"
133   ePropertyExperimental,
134 };
135 
136 #define LLDB_PROPERTIES_process_experimental
137 #include "TargetProperties.inc"
138 
139 enum {
140 #define LLDB_PROPERTIES_process_experimental
141 #include "TargetPropertiesEnum.inc"
142 };
143 
144 class ProcessExperimentalOptionValueProperties
145     : public Cloneable<ProcessExperimentalOptionValueProperties,
146                        OptionValueProperties> {
147 public:
148   ProcessExperimentalOptionValueProperties()
149       : Cloneable(
150             ConstString(Properties::GetExperimentalSettingsName())) {}
151 };
152 
153 ProcessExperimentalProperties::ProcessExperimentalProperties()
154     : Properties(OptionValuePropertiesSP(
155           new ProcessExperimentalOptionValueProperties())) {
156   m_collection_sp->Initialize(g_process_experimental_properties);
157 }
158 
159 ProcessProperties::ProcessProperties(lldb_private::Process *process)
160     : Properties(),
161       m_process(process) // Can be nullptr for global ProcessProperties
162 {
163   if (process == nullptr) {
164     // Global process properties, set them up one time
165     m_collection_sp =
166         std::make_shared<ProcessOptionValueProperties>(ConstString("process"));
167     m_collection_sp->Initialize(g_process_properties);
168     m_collection_sp->AppendProperty(
169         ConstString("thread"), ConstString("Settings specific to threads."),
170         true, Thread::GetGlobalProperties().GetValueProperties());
171   } else {
172     m_collection_sp =
173         OptionValueProperties::CreateLocalCopy(Process::GetGlobalProperties());
174     m_collection_sp->SetValueChangedCallback(
175         ePropertyPythonOSPluginPath,
176         [this] { m_process->LoadOperatingSystemPlugin(true); });
177   }
178 
179   m_experimental_properties_up =
180       std::make_unique<ProcessExperimentalProperties>();
181   m_collection_sp->AppendProperty(
182       ConstString(Properties::GetExperimentalSettingsName()),
183       ConstString("Experimental settings - setting these won't produce "
184                   "errors if the setting is not present."),
185       true, m_experimental_properties_up->GetValueProperties());
186 }
187 
188 ProcessProperties::~ProcessProperties() = default;
189 
190 bool ProcessProperties::GetDisableMemoryCache() const {
191   const uint32_t idx = ePropertyDisableMemCache;
192   return m_collection_sp->GetPropertyAtIndexAsBoolean(
193       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
194 }
195 
196 uint64_t ProcessProperties::GetMemoryCacheLineSize() const {
197   const uint32_t idx = ePropertyMemCacheLineSize;
198   return m_collection_sp->GetPropertyAtIndexAsUInt64(
199       nullptr, idx, g_process_properties[idx].default_uint_value);
200 }
201 
202 Args ProcessProperties::GetExtraStartupCommands() const {
203   Args args;
204   const uint32_t idx = ePropertyExtraStartCommand;
205   m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args);
206   return args;
207 }
208 
209 void ProcessProperties::SetExtraStartupCommands(const Args &args) {
210   const uint32_t idx = ePropertyExtraStartCommand;
211   m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args);
212 }
213 
214 FileSpec ProcessProperties::GetPythonOSPluginPath() const {
215   const uint32_t idx = ePropertyPythonOSPluginPath;
216   return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx);
217 }
218 
219 uint32_t ProcessProperties::GetVirtualAddressableBits() const {
220   const uint32_t idx = ePropertyVirtualAddressableBits;
221   return m_collection_sp->GetPropertyAtIndexAsUInt64(
222       nullptr, idx, g_process_properties[idx].default_uint_value);
223 }
224 
225 void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) {
226   const uint32_t idx = ePropertyVirtualAddressableBits;
227   m_collection_sp->SetPropertyAtIndexAsUInt64(nullptr, idx, bits);
228 }
229 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) {
230   const uint32_t idx = ePropertyPythonOSPluginPath;
231   m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file);
232 }
233 
234 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const {
235   const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
236   return m_collection_sp->GetPropertyAtIndexAsBoolean(
237       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
238 }
239 
240 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) {
241   const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
242   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore);
243 }
244 
245 bool ProcessProperties::GetUnwindOnErrorInExpressions() const {
246   const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
247   return m_collection_sp->GetPropertyAtIndexAsBoolean(
248       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
249 }
250 
251 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) {
252   const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
253   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore);
254 }
255 
256 bool ProcessProperties::GetStopOnSharedLibraryEvents() const {
257   const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
258   return m_collection_sp->GetPropertyAtIndexAsBoolean(
259       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
260 }
261 
262 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) {
263   const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
264   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop);
265 }
266 
267 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const {
268   const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
269   return m_collection_sp->GetPropertyAtIndexAsBoolean(
270       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
271 }
272 
273 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) {
274   const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
275   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, disable);
276   m_process->Flush();
277 }
278 
279 bool ProcessProperties::GetDetachKeepsStopped() const {
280   const uint32_t idx = ePropertyDetachKeepsStopped;
281   return m_collection_sp->GetPropertyAtIndexAsBoolean(
282       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
283 }
284 
285 void ProcessProperties::SetDetachKeepsStopped(bool stop) {
286   const uint32_t idx = ePropertyDetachKeepsStopped;
287   m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop);
288 }
289 
290 bool ProcessProperties::GetWarningsOptimization() const {
291   const uint32_t idx = ePropertyWarningOptimization;
292   return m_collection_sp->GetPropertyAtIndexAsBoolean(
293       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
294 }
295 
296 bool ProcessProperties::GetWarningsUnsupportedLanguage() const {
297   const uint32_t idx = ePropertyWarningUnsupportedLanguage;
298   return m_collection_sp->GetPropertyAtIndexAsBoolean(
299       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
300 }
301 
302 bool ProcessProperties::GetStopOnExec() const {
303   const uint32_t idx = ePropertyStopOnExec;
304   return m_collection_sp->GetPropertyAtIndexAsBoolean(
305       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
306 }
307 
308 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const {
309   const uint32_t idx = ePropertyUtilityExpressionTimeout;
310   uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64(
311       nullptr, idx, g_process_properties[idx].default_uint_value);
312   return std::chrono::seconds(value);
313 }
314 
315 std::chrono::seconds ProcessProperties::GetInterruptTimeout() const {
316   const uint32_t idx = ePropertyInterruptTimeout;
317   uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64(
318       nullptr, idx, g_process_properties[idx].default_uint_value);
319   return std::chrono::seconds(value);
320 }
321 
322 bool ProcessProperties::GetSteppingRunsAllThreads() const {
323   const uint32_t idx = ePropertySteppingRunsAllThreads;
324   return m_collection_sp->GetPropertyAtIndexAsBoolean(
325       nullptr, idx, g_process_properties[idx].default_uint_value != 0);
326 }
327 
328 bool ProcessProperties::GetOSPluginReportsAllThreads() const {
329   const bool fail_value = true;
330   const Property *exp_property =
331       m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental);
332   OptionValueProperties *exp_values =
333       exp_property->GetValue()->GetAsProperties();
334   if (!exp_values)
335     return fail_value;
336 
337   return exp_values->GetPropertyAtIndexAsBoolean(
338       nullptr, ePropertyOSPluginReportsAllThreads, fail_value);
339 }
340 
341 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) {
342   const Property *exp_property =
343       m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental);
344   OptionValueProperties *exp_values =
345       exp_property->GetValue()->GetAsProperties();
346   if (exp_values)
347     exp_values->SetPropertyAtIndexAsBoolean(
348         nullptr, ePropertyOSPluginReportsAllThreads, does_report);
349 }
350 
351 FollowForkMode ProcessProperties::GetFollowForkMode() const {
352   const uint32_t idx = ePropertyFollowForkMode;
353   return (FollowForkMode)m_collection_sp->GetPropertyAtIndexAsEnumeration(
354       nullptr, idx, g_process_properties[idx].default_uint_value);
355 }
356 
357 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp,
358                               llvm::StringRef plugin_name,
359                               ListenerSP listener_sp,
360                               const FileSpec *crash_file_path,
361                               bool can_connect) {
362   static uint32_t g_process_unique_id = 0;
363 
364   ProcessSP process_sp;
365   ProcessCreateInstance create_callback = nullptr;
366   if (!plugin_name.empty()) {
367     create_callback =
368         PluginManager::GetProcessCreateCallbackForPluginName(plugin_name);
369     if (create_callback) {
370       process_sp = create_callback(target_sp, listener_sp, crash_file_path,
371                                    can_connect);
372       if (process_sp) {
373         if (process_sp->CanDebug(target_sp, true)) {
374           process_sp->m_process_unique_id = ++g_process_unique_id;
375         } else
376           process_sp.reset();
377       }
378     }
379   } else {
380     for (uint32_t idx = 0;
381          (create_callback =
382               PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr;
383          ++idx) {
384       process_sp = create_callback(target_sp, listener_sp, crash_file_path,
385                                    can_connect);
386       if (process_sp) {
387         if (process_sp->CanDebug(target_sp, false)) {
388           process_sp->m_process_unique_id = ++g_process_unique_id;
389           break;
390         } else
391           process_sp.reset();
392       }
393     }
394   }
395   return process_sp;
396 }
397 
398 ConstString &Process::GetStaticBroadcasterClass() {
399   static ConstString class_name("lldb.process");
400   return class_name;
401 }
402 
403 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp)
404     : Process(target_sp, listener_sp,
405               UnixSignals::Create(HostInfo::GetArchitecture())) {
406   // This constructor just delegates to the full Process constructor,
407   // defaulting to using the Host's UnixSignals.
408 }
409 
410 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp,
411                  const UnixSignalsSP &unix_signals_sp)
412     : ProcessProperties(this),
413       Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()),
414                   Process::GetStaticBroadcasterClass().AsCString()),
415       m_target_wp(target_sp), m_public_state(eStateUnloaded),
416       m_private_state(eStateUnloaded),
417       m_private_state_broadcaster(nullptr,
418                                   "lldb.process.internal_state_broadcaster"),
419       m_private_state_control_broadcaster(
420           nullptr, "lldb.process.internal_state_control_broadcaster"),
421       m_private_state_listener_sp(
422           Listener::MakeListener("lldb.process.internal_state_listener")),
423       m_mod_id(), m_process_unique_id(0), m_thread_index_id(0),
424       m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(),
425       m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this),
426       m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this),
427       m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0),
428       m_notifications(), m_image_tokens(), m_listener_sp(listener_sp),
429       m_breakpoint_site_list(), m_dynamic_checkers_up(),
430       m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(),
431       m_stdio_communication("process.stdio"), m_stdio_communication_mutex(),
432       m_stdin_forward(false), m_stdout_data(), m_stderr_data(),
433       m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0),
434       m_memory_cache(*this), m_allocated_memory_cache(*this),
435       m_should_detach(false), m_next_event_action_up(), m_public_run_lock(),
436       m_private_run_lock(), m_finalizing(false),
437       m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false),
438       m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false),
439       m_can_interpret_function_calls(false), m_run_thread_plan_lock(),
440       m_can_jit(eCanJITDontKnow) {
441   CheckInWithManager();
442 
443   Log *log = GetLog(LLDBLog::Object);
444   LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this));
445 
446   if (!m_unix_signals_sp)
447     m_unix_signals_sp = std::make_shared<UnixSignals>();
448 
449   SetEventName(eBroadcastBitStateChanged, "state-changed");
450   SetEventName(eBroadcastBitInterrupt, "interrupt");
451   SetEventName(eBroadcastBitSTDOUT, "stdout-available");
452   SetEventName(eBroadcastBitSTDERR, "stderr-available");
453   SetEventName(eBroadcastBitProfileData, "profile-data-available");
454   SetEventName(eBroadcastBitStructuredData, "structured-data-available");
455 
456   m_private_state_control_broadcaster.SetEventName(
457       eBroadcastInternalStateControlStop, "control-stop");
458   m_private_state_control_broadcaster.SetEventName(
459       eBroadcastInternalStateControlPause, "control-pause");
460   m_private_state_control_broadcaster.SetEventName(
461       eBroadcastInternalStateControlResume, "control-resume");
462 
463   m_listener_sp->StartListeningForEvents(
464       this, eBroadcastBitStateChanged | eBroadcastBitInterrupt |
465                 eBroadcastBitSTDOUT | eBroadcastBitSTDERR |
466                 eBroadcastBitProfileData | eBroadcastBitStructuredData);
467 
468   m_private_state_listener_sp->StartListeningForEvents(
469       &m_private_state_broadcaster,
470       eBroadcastBitStateChanged | eBroadcastBitInterrupt);
471 
472   m_private_state_listener_sp->StartListeningForEvents(
473       &m_private_state_control_broadcaster,
474       eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause |
475           eBroadcastInternalStateControlResume);
476   // We need something valid here, even if just the default UnixSignalsSP.
477   assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization");
478 
479   // Allow the platform to override the default cache line size
480   OptionValueSP value_sp =
481       m_collection_sp
482           ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize)
483           ->GetValue();
484   uint32_t platform_cache_line_size =
485       target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize();
486   if (!value_sp->OptionWasSet() && platform_cache_line_size != 0)
487     value_sp->SetUInt64Value(platform_cache_line_size);
488 
489   RegisterAssertFrameRecognizer(this);
490 }
491 
492 Process::~Process() {
493   Log *log = GetLog(LLDBLog::Object);
494   LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this));
495   StopPrivateStateThread();
496 
497   // ThreadList::Clear() will try to acquire this process's mutex, so
498   // explicitly clear the thread list here to ensure that the mutex is not
499   // destroyed before the thread list.
500   m_thread_list.Clear();
501 }
502 
503 ProcessProperties &Process::GetGlobalProperties() {
504   // NOTE: intentional leak so we don't crash if global destructor chain gets
505   // called as other threads still use the result of this function
506   static ProcessProperties *g_settings_ptr =
507       new ProcessProperties(nullptr);
508   return *g_settings_ptr;
509 }
510 
511 void Process::Finalize() {
512   if (m_finalizing.exchange(true))
513     return;
514 
515   // Destroy the process. This will call the virtual function DoDestroy under
516   // the hood, giving our derived class a chance to do the ncessary tear down.
517   DestroyImpl(false);
518 
519   // Clear our broadcaster before we proceed with destroying
520   Broadcaster::Clear();
521 
522   // Do any cleanup needed prior to being destructed... Subclasses that
523   // override this method should call this superclass method as well.
524 
525   // We need to destroy the loader before the derived Process class gets
526   // destroyed since it is very likely that undoing the loader will require
527   // access to the real process.
528   m_dynamic_checkers_up.reset();
529   m_abi_sp.reset();
530   m_os_up.reset();
531   m_system_runtime_up.reset();
532   m_dyld_up.reset();
533   m_jit_loaders_up.reset();
534   m_thread_plans.Clear();
535   m_thread_list_real.Destroy();
536   m_thread_list.Destroy();
537   m_extended_thread_list.Destroy();
538   m_queue_list.Clear();
539   m_queue_list_stop_id = 0;
540   std::vector<Notifications> empty_notifications;
541   m_notifications.swap(empty_notifications);
542   m_image_tokens.clear();
543   m_memory_cache.Clear();
544   m_allocated_memory_cache.Clear();
545   {
546     std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
547     m_language_runtimes.clear();
548   }
549   m_instrumentation_runtimes.clear();
550   m_next_event_action_up.reset();
551   // Clear the last natural stop ID since it has a strong reference to this
552   // process
553   m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
554   //#ifdef LLDB_CONFIGURATION_DEBUG
555   //    StreamFile s(stdout, false);
556   //    EventSP event_sp;
557   //    while (m_private_state_listener_sp->GetNextEvent(event_sp))
558   //    {
559   //        event_sp->Dump (&s);
560   //        s.EOL();
561   //    }
562   //#endif
563   // We have to be very careful here as the m_private_state_listener might
564   // contain events that have ProcessSP values in them which can keep this
565   // process around forever. These events need to be cleared out.
566   m_private_state_listener_sp->Clear();
567   m_public_run_lock.TrySetRunning(); // This will do nothing if already locked
568   m_public_run_lock.SetStopped();
569   m_private_run_lock.TrySetRunning(); // This will do nothing if already locked
570   m_private_run_lock.SetStopped();
571   m_structured_data_plugin_map.clear();
572 }
573 
574 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) {
575   m_notifications.push_back(callbacks);
576   if (callbacks.initialize != nullptr)
577     callbacks.initialize(callbacks.baton, this);
578 }
579 
580 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) {
581   std::vector<Notifications>::iterator pos, end = m_notifications.end();
582   for (pos = m_notifications.begin(); pos != end; ++pos) {
583     if (pos->baton == callbacks.baton &&
584         pos->initialize == callbacks.initialize &&
585         pos->process_state_changed == callbacks.process_state_changed) {
586       m_notifications.erase(pos);
587       return true;
588     }
589   }
590   return false;
591 }
592 
593 void Process::SynchronouslyNotifyStateChanged(StateType state) {
594   std::vector<Notifications>::iterator notification_pos,
595       notification_end = m_notifications.end();
596   for (notification_pos = m_notifications.begin();
597        notification_pos != notification_end; ++notification_pos) {
598     if (notification_pos->process_state_changed)
599       notification_pos->process_state_changed(notification_pos->baton, this,
600                                               state);
601   }
602 }
603 
604 // FIXME: We need to do some work on events before the general Listener sees
605 // them.
606 // For instance if we are continuing from a breakpoint, we need to ensure that
607 // we do the little "insert real insn, step & stop" trick.  But we can't do
608 // that when the event is delivered by the broadcaster - since that is done on
609 // the thread that is waiting for new events, so if we needed more than one
610 // event for our handling, we would stall.  So instead we do it when we fetch
611 // the event off of the queue.
612 //
613 
614 StateType Process::GetNextEvent(EventSP &event_sp) {
615   StateType state = eStateInvalid;
616 
617   if (m_listener_sp->GetEventForBroadcaster(this, event_sp,
618                                             std::chrono::seconds(0)) &&
619       event_sp)
620     state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
621 
622   return state;
623 }
624 
625 void Process::SyncIOHandler(uint32_t iohandler_id,
626                             const Timeout<std::micro> &timeout) {
627   // don't sync (potentially context switch) in case where there is no process
628   // IO
629   if (!m_process_input_reader)
630     return;
631 
632   auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout);
633 
634   Log *log = GetLog(LLDBLog::Process);
635   if (Result) {
636     LLDB_LOG(
637         log,
638         "waited from m_iohandler_sync to change from {0}. New value is {1}.",
639         iohandler_id, *Result);
640   } else {
641     LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.",
642              iohandler_id);
643   }
644 }
645 
646 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout,
647                                         EventSP *event_sp_ptr, bool wait_always,
648                                         ListenerSP hijack_listener_sp,
649                                         Stream *stream, bool use_run_lock) {
650   // We can't just wait for a "stopped" event, because the stopped event may
651   // have restarted the target. We have to actually check each event, and in
652   // the case of a stopped event check the restarted flag on the event.
653   if (event_sp_ptr)
654     event_sp_ptr->reset();
655   StateType state = GetState();
656   // If we are exited or detached, we won't ever get back to any other valid
657   // state...
658   if (state == eStateDetached || state == eStateExited)
659     return state;
660 
661   Log *log = GetLog(LLDBLog::Process);
662   LLDB_LOG(log, "timeout = {0}", timeout);
663 
664   if (!wait_always && StateIsStoppedState(state, true) &&
665       StateIsStoppedState(GetPrivateState(), true)) {
666     LLDB_LOGF(log,
667               "Process::%s returning without waiting for events; process "
668               "private and public states are already 'stopped'.",
669               __FUNCTION__);
670     // We need to toggle the run lock as this won't get done in
671     // SetPublicState() if the process is hijacked.
672     if (hijack_listener_sp && use_run_lock)
673       m_public_run_lock.SetStopped();
674     return state;
675   }
676 
677   while (state != eStateInvalid) {
678     EventSP event_sp;
679     state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp);
680     if (event_sp_ptr && event_sp)
681       *event_sp_ptr = event_sp;
682 
683     bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr);
684     Process::HandleProcessStateChangedEvent(event_sp, stream,
685                                             pop_process_io_handler);
686 
687     switch (state) {
688     case eStateCrashed:
689     case eStateDetached:
690     case eStateExited:
691     case eStateUnloaded:
692       // We need to toggle the run lock as this won't get done in
693       // SetPublicState() if the process is hijacked.
694       if (hijack_listener_sp && use_run_lock)
695         m_public_run_lock.SetStopped();
696       return state;
697     case eStateStopped:
698       if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get()))
699         continue;
700       else {
701         // We need to toggle the run lock as this won't get done in
702         // SetPublicState() if the process is hijacked.
703         if (hijack_listener_sp && use_run_lock)
704           m_public_run_lock.SetStopped();
705         return state;
706       }
707     default:
708       continue;
709     }
710   }
711   return state;
712 }
713 
714 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp,
715                                              Stream *stream,
716                                              bool &pop_process_io_handler) {
717   const bool handle_pop = pop_process_io_handler;
718 
719   pop_process_io_handler = false;
720   ProcessSP process_sp =
721       Process::ProcessEventData::GetProcessFromEvent(event_sp.get());
722 
723   if (!process_sp)
724     return false;
725 
726   StateType event_state =
727       Process::ProcessEventData::GetStateFromEvent(event_sp.get());
728   if (event_state == eStateInvalid)
729     return false;
730 
731   switch (event_state) {
732   case eStateInvalid:
733   case eStateUnloaded:
734   case eStateAttaching:
735   case eStateLaunching:
736   case eStateStepping:
737   case eStateDetached:
738     if (stream)
739       stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(),
740                      StateAsCString(event_state));
741     if (event_state == eStateDetached)
742       pop_process_io_handler = true;
743     break;
744 
745   case eStateConnected:
746   case eStateRunning:
747     // Don't be chatty when we run...
748     break;
749 
750   case eStateExited:
751     if (stream)
752       process_sp->GetStatus(*stream);
753     pop_process_io_handler = true;
754     break;
755 
756   case eStateStopped:
757   case eStateCrashed:
758   case eStateSuspended:
759     // Make sure the program hasn't been auto-restarted:
760     if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
761       if (stream) {
762         size_t num_reasons =
763             Process::ProcessEventData::GetNumRestartedReasons(event_sp.get());
764         if (num_reasons > 0) {
765           // FIXME: Do we want to report this, or would that just be annoyingly
766           // chatty?
767           if (num_reasons == 1) {
768             const char *reason =
769                 Process::ProcessEventData::GetRestartedReasonAtIndex(
770                     event_sp.get(), 0);
771             stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n",
772                            process_sp->GetID(),
773                            reason ? reason : "<UNKNOWN REASON>");
774           } else {
775             stream->Printf("Process %" PRIu64
776                            " stopped and restarted, reasons:\n",
777                            process_sp->GetID());
778 
779             for (size_t i = 0; i < num_reasons; i++) {
780               const char *reason =
781                   Process::ProcessEventData::GetRestartedReasonAtIndex(
782                       event_sp.get(), i);
783               stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>");
784             }
785           }
786         }
787       }
788     } else {
789       StopInfoSP curr_thread_stop_info_sp;
790       // Lock the thread list so it doesn't change on us, this is the scope for
791       // the locker:
792       {
793         ThreadList &thread_list = process_sp->GetThreadList();
794         std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex());
795 
796         ThreadSP curr_thread(thread_list.GetSelectedThread());
797         ThreadSP thread;
798         StopReason curr_thread_stop_reason = eStopReasonInvalid;
799         bool prefer_curr_thread = false;
800         if (curr_thread && curr_thread->IsValid()) {
801           curr_thread_stop_reason = curr_thread->GetStopReason();
802           switch (curr_thread_stop_reason) {
803           case eStopReasonNone:
804           case eStopReasonInvalid:
805             // Don't prefer the current thread if it didn't stop for a reason.
806             break;
807           case eStopReasonSignal: {
808             // We need to do the same computation we do for other threads
809             // below in case the current thread happens to be the one that
810             // stopped for the no-stop signal.
811             uint64_t signo = curr_thread->GetStopInfo()->GetValue();
812             if (process_sp->GetUnixSignals()->GetShouldStop(signo))
813               prefer_curr_thread = true;
814           } break;
815           default:
816             prefer_curr_thread = true;
817             break;
818           }
819           curr_thread_stop_info_sp = curr_thread->GetStopInfo();
820         }
821 
822         if (!prefer_curr_thread) {
823           // Prefer a thread that has just completed its plan over another
824           // thread as current thread.
825           ThreadSP plan_thread;
826           ThreadSP other_thread;
827 
828           const size_t num_threads = thread_list.GetSize();
829           size_t i;
830           for (i = 0; i < num_threads; ++i) {
831             thread = thread_list.GetThreadAtIndex(i);
832             StopReason thread_stop_reason = thread->GetStopReason();
833             switch (thread_stop_reason) {
834             case eStopReasonInvalid:
835             case eStopReasonNone:
836               break;
837 
838             case eStopReasonSignal: {
839               // Don't select a signal thread if we weren't going to stop at
840               // that signal.  We have to have had another reason for stopping
841               // here, and the user doesn't want to see this thread.
842               uint64_t signo = thread->GetStopInfo()->GetValue();
843               if (process_sp->GetUnixSignals()->GetShouldStop(signo)) {
844                 if (!other_thread)
845                   other_thread = thread;
846               }
847               break;
848             }
849             case eStopReasonTrace:
850             case eStopReasonBreakpoint:
851             case eStopReasonWatchpoint:
852             case eStopReasonException:
853             case eStopReasonExec:
854             case eStopReasonFork:
855             case eStopReasonVFork:
856             case eStopReasonVForkDone:
857             case eStopReasonThreadExiting:
858             case eStopReasonInstrumentation:
859             case eStopReasonProcessorTrace:
860               if (!other_thread)
861                 other_thread = thread;
862               break;
863             case eStopReasonPlanComplete:
864               if (!plan_thread)
865                 plan_thread = thread;
866               break;
867             }
868           }
869           if (plan_thread)
870             thread_list.SetSelectedThreadByID(plan_thread->GetID());
871           else if (other_thread)
872             thread_list.SetSelectedThreadByID(other_thread->GetID());
873           else {
874             if (curr_thread && curr_thread->IsValid())
875               thread = curr_thread;
876             else
877               thread = thread_list.GetThreadAtIndex(0);
878 
879             if (thread)
880               thread_list.SetSelectedThreadByID(thread->GetID());
881           }
882         }
883       }
884       // Drop the ThreadList mutex by here, since GetThreadStatus below might
885       // have to run code, e.g. for Data formatters, and if we hold the
886       // ThreadList mutex, then the process is going to have a hard time
887       // restarting the process.
888       if (stream) {
889         Debugger &debugger = process_sp->GetTarget().GetDebugger();
890         if (debugger.GetTargetList().GetSelectedTarget().get() ==
891             &process_sp->GetTarget()) {
892           ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread();
893 
894           if (!thread_sp || !thread_sp->IsValid())
895             return false;
896 
897           const bool only_threads_with_stop_reason = true;
898           const uint32_t start_frame = thread_sp->GetSelectedFrameIndex();
899           const uint32_t num_frames = 1;
900           const uint32_t num_frames_with_source = 1;
901           const bool stop_format = true;
902 
903           process_sp->GetStatus(*stream);
904           process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason,
905                                       start_frame, num_frames,
906                                       num_frames_with_source,
907                                       stop_format);
908           if (curr_thread_stop_info_sp) {
909             lldb::addr_t crashing_address;
910             ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference(
911                 curr_thread_stop_info_sp, &crashing_address);
912             if (valobj_sp) {
913               const ValueObject::GetExpressionPathFormat format =
914                   ValueObject::GetExpressionPathFormat::
915                       eGetExpressionPathFormatHonorPointers;
916               stream->PutCString("Likely cause: ");
917               valobj_sp->GetExpressionPath(*stream, format);
918               stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address);
919             }
920           }
921         } else {
922           uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget(
923               process_sp->GetTarget().shared_from_this());
924           if (target_idx != UINT32_MAX)
925             stream->Printf("Target %d: (", target_idx);
926           else
927             stream->Printf("Target <unknown index>: (");
928           process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief);
929           stream->Printf(") stopped.\n");
930         }
931       }
932 
933       // Pop the process IO handler
934       pop_process_io_handler = true;
935     }
936     break;
937   }
938 
939   if (handle_pop && pop_process_io_handler)
940     process_sp->PopProcessIOHandler();
941 
942   return true;
943 }
944 
945 bool Process::HijackProcessEvents(ListenerSP listener_sp) {
946   if (listener_sp) {
947     return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged |
948                                               eBroadcastBitInterrupt);
949   } else
950     return false;
951 }
952 
953 void Process::RestoreProcessEvents() { RestoreBroadcaster(); }
954 
955 StateType Process::GetStateChangedEvents(EventSP &event_sp,
956                                          const Timeout<std::micro> &timeout,
957                                          ListenerSP hijack_listener_sp) {
958   Log *log = GetLog(LLDBLog::Process);
959   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
960 
961   ListenerSP listener_sp = hijack_listener_sp;
962   if (!listener_sp)
963     listener_sp = m_listener_sp;
964 
965   StateType state = eStateInvalid;
966   if (listener_sp->GetEventForBroadcasterWithType(
967           this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
968           timeout)) {
969     if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
970       state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
971     else
972       LLDB_LOG(log, "got no event or was interrupted.");
973   }
974 
975   LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state);
976   return state;
977 }
978 
979 Event *Process::PeekAtStateChangedEvents() {
980   Log *log = GetLog(LLDBLog::Process);
981 
982   LLDB_LOGF(log, "Process::%s...", __FUNCTION__);
983 
984   Event *event_ptr;
985   event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType(
986       this, eBroadcastBitStateChanged);
987   if (log) {
988     if (event_ptr) {
989       LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__,
990                 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr)));
991     } else {
992       LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__);
993     }
994   }
995   return event_ptr;
996 }
997 
998 StateType
999 Process::GetStateChangedEventsPrivate(EventSP &event_sp,
1000                                       const Timeout<std::micro> &timeout) {
1001   Log *log = GetLog(LLDBLog::Process);
1002   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1003 
1004   StateType state = eStateInvalid;
1005   if (m_private_state_listener_sp->GetEventForBroadcasterWithType(
1006           &m_private_state_broadcaster,
1007           eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
1008           timeout))
1009     if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
1010       state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
1011 
1012   LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout,
1013            state == eStateInvalid ? "TIMEOUT" : StateAsCString(state));
1014   return state;
1015 }
1016 
1017 bool Process::GetEventsPrivate(EventSP &event_sp,
1018                                const Timeout<std::micro> &timeout,
1019                                bool control_only) {
1020   Log *log = GetLog(LLDBLog::Process);
1021   LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1022 
1023   if (control_only)
1024     return m_private_state_listener_sp->GetEventForBroadcaster(
1025         &m_private_state_control_broadcaster, event_sp, timeout);
1026   else
1027     return m_private_state_listener_sp->GetEvent(event_sp, timeout);
1028 }
1029 
1030 bool Process::IsRunning() const {
1031   return StateIsRunningState(m_public_state.GetValue());
1032 }
1033 
1034 int Process::GetExitStatus() {
1035   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1036 
1037   if (m_public_state.GetValue() == eStateExited)
1038     return m_exit_status;
1039   return -1;
1040 }
1041 
1042 const char *Process::GetExitDescription() {
1043   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1044 
1045   if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty())
1046     return m_exit_string.c_str();
1047   return nullptr;
1048 }
1049 
1050 bool Process::SetExitStatus(int status, const char *cstr) {
1051   // Use a mutex to protect setting the exit status.
1052   std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1053 
1054   Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1055   LLDB_LOGF(
1056       log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)",
1057       status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : "");
1058 
1059   // We were already in the exited state
1060   if (m_private_state.GetValue() == eStateExited) {
1061     LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because "
1062                    "state was already set to eStateExited");
1063     return false;
1064   }
1065 
1066   m_exit_status = status;
1067   if (cstr)
1068     m_exit_string = cstr;
1069   else
1070     m_exit_string.clear();
1071 
1072   // Clear the last natural stop ID since it has a strong reference to this
1073   // process
1074   m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
1075 
1076   SetPrivateState(eStateExited);
1077 
1078   // Allow subclasses to do some cleanup
1079   DidExit();
1080 
1081   return true;
1082 }
1083 
1084 bool Process::IsAlive() {
1085   switch (m_private_state.GetValue()) {
1086   case eStateConnected:
1087   case eStateAttaching:
1088   case eStateLaunching:
1089   case eStateStopped:
1090   case eStateRunning:
1091   case eStateStepping:
1092   case eStateCrashed:
1093   case eStateSuspended:
1094     return true;
1095   default:
1096     return false;
1097   }
1098 }
1099 
1100 // This static callback can be used to watch for local child processes on the
1101 // current host. The child process exits, the process will be found in the
1102 // global target list (we want to be completely sure that the
1103 // lldb_private::Process doesn't go away before we can deliver the signal.
1104 bool Process::SetProcessExitStatus(
1105     lldb::pid_t pid, bool exited,
1106     int signo,      // Zero for no signal
1107     int exit_status // Exit value of process if signal is zero
1108     ) {
1109   Log *log = GetLog(LLDBLog::Process);
1110   LLDB_LOGF(log,
1111             "Process::SetProcessExitStatus (pid=%" PRIu64
1112             ", exited=%i, signal=%i, exit_status=%i)\n",
1113             pid, exited, signo, exit_status);
1114 
1115   if (exited) {
1116     TargetSP target_sp(Debugger::FindTargetWithProcessID(pid));
1117     if (target_sp) {
1118       ProcessSP process_sp(target_sp->GetProcessSP());
1119       if (process_sp) {
1120         const char *signal_cstr = nullptr;
1121         if (signo)
1122           signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo);
1123 
1124         process_sp->SetExitStatus(exit_status, signal_cstr);
1125       }
1126     }
1127     return true;
1128   }
1129   return false;
1130 }
1131 
1132 bool Process::UpdateThreadList(ThreadList &old_thread_list,
1133                                ThreadList &new_thread_list) {
1134   m_thread_plans.ClearThreadCache();
1135   return DoUpdateThreadList(old_thread_list, new_thread_list);
1136 }
1137 
1138 void Process::UpdateThreadListIfNeeded() {
1139   const uint32_t stop_id = GetStopID();
1140   if (m_thread_list.GetSize(false) == 0 ||
1141       stop_id != m_thread_list.GetStopID()) {
1142     bool clear_unused_threads = true;
1143     const StateType state = GetPrivateState();
1144     if (StateIsStoppedState(state, true)) {
1145       std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex());
1146       m_thread_list.SetStopID(stop_id);
1147 
1148       // m_thread_list does have its own mutex, but we need to hold onto the
1149       // mutex between the call to UpdateThreadList(...) and the
1150       // os->UpdateThreadList(...) so it doesn't change on us
1151       ThreadList &old_thread_list = m_thread_list;
1152       ThreadList real_thread_list(this);
1153       ThreadList new_thread_list(this);
1154       // Always update the thread list with the protocol specific thread list,
1155       // but only update if "true" is returned
1156       if (UpdateThreadList(m_thread_list_real, real_thread_list)) {
1157         // Don't call into the OperatingSystem to update the thread list if we
1158         // are shutting down, since that may call back into the SBAPI's,
1159         // requiring the API lock which is already held by whoever is shutting
1160         // us down, causing a deadlock.
1161         OperatingSystem *os = GetOperatingSystem();
1162         if (os && !m_destroy_in_process) {
1163           // Clear any old backing threads where memory threads might have been
1164           // backed by actual threads from the lldb_private::Process subclass
1165           size_t num_old_threads = old_thread_list.GetSize(false);
1166           for (size_t i = 0; i < num_old_threads; ++i)
1167             old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread();
1168           // See if the OS plugin reports all threads.  If it does, then
1169           // it is safe to clear unseen thread's plans here.  Otherwise we
1170           // should preserve them in case they show up again:
1171           clear_unused_threads = GetOSPluginReportsAllThreads();
1172 
1173           // Turn off dynamic types to ensure we don't run any expressions.
1174           // Objective-C can run an expression to determine if a SBValue is a
1175           // dynamic type or not and we need to avoid this. OperatingSystem
1176           // plug-ins can't run expressions that require running code...
1177 
1178           Target &target = GetTarget();
1179           const lldb::DynamicValueType saved_prefer_dynamic =
1180               target.GetPreferDynamicValue();
1181           if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1182             target.SetPreferDynamicValue(lldb::eNoDynamicValues);
1183 
1184           // Now let the OperatingSystem plug-in update the thread list
1185 
1186           os->UpdateThreadList(
1187               old_thread_list, // Old list full of threads created by OS plug-in
1188               real_thread_list, // The actual thread list full of threads
1189                                 // created by each lldb_private::Process
1190                                 // subclass
1191               new_thread_list); // The new thread list that we will show to the
1192                                 // user that gets filled in
1193 
1194           if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1195             target.SetPreferDynamicValue(saved_prefer_dynamic);
1196         } else {
1197           // No OS plug-in, the new thread list is the same as the real thread
1198           // list.
1199           new_thread_list = real_thread_list;
1200         }
1201 
1202         m_thread_list_real.Update(real_thread_list);
1203         m_thread_list.Update(new_thread_list);
1204         m_thread_list.SetStopID(stop_id);
1205 
1206         if (GetLastNaturalStopID() != m_extended_thread_stop_id) {
1207           // Clear any extended threads that we may have accumulated previously
1208           m_extended_thread_list.Clear();
1209           m_extended_thread_stop_id = GetLastNaturalStopID();
1210 
1211           m_queue_list.Clear();
1212           m_queue_list_stop_id = GetLastNaturalStopID();
1213         }
1214       }
1215       // Now update the plan stack map.
1216       // If we do have an OS plugin, any absent real threads in the
1217       // m_thread_list have already been removed from the ThreadPlanStackMap.
1218       // So any remaining threads are OS Plugin threads, and those we want to
1219       // preserve in case they show up again.
1220       m_thread_plans.Update(m_thread_list, clear_unused_threads);
1221     }
1222   }
1223 }
1224 
1225 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) {
1226   return m_thread_plans.Find(tid);
1227 }
1228 
1229 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) {
1230   return m_thread_plans.PrunePlansForTID(tid);
1231 }
1232 
1233 void Process::PruneThreadPlans() {
1234   m_thread_plans.Update(GetThreadList(), true, false);
1235 }
1236 
1237 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid,
1238                                     lldb::DescriptionLevel desc_level,
1239                                     bool internal, bool condense_trivial,
1240                                     bool skip_unreported_plans) {
1241   return m_thread_plans.DumpPlansForTID(
1242       strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans);
1243 }
1244 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level,
1245                               bool internal, bool condense_trivial,
1246                               bool skip_unreported_plans) {
1247   m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial,
1248                            skip_unreported_plans);
1249 }
1250 
1251 void Process::UpdateQueueListIfNeeded() {
1252   if (m_system_runtime_up) {
1253     if (m_queue_list.GetSize() == 0 ||
1254         m_queue_list_stop_id != GetLastNaturalStopID()) {
1255       const StateType state = GetPrivateState();
1256       if (StateIsStoppedState(state, true)) {
1257         m_system_runtime_up->PopulateQueueList(m_queue_list);
1258         m_queue_list_stop_id = GetLastNaturalStopID();
1259       }
1260     }
1261   }
1262 }
1263 
1264 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) {
1265   OperatingSystem *os = GetOperatingSystem();
1266   if (os)
1267     return os->CreateThread(tid, context);
1268   return ThreadSP();
1269 }
1270 
1271 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) {
1272   return AssignIndexIDToThread(thread_id);
1273 }
1274 
1275 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) {
1276   return (m_thread_id_to_index_id_map.find(thread_id) !=
1277           m_thread_id_to_index_id_map.end());
1278 }
1279 
1280 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) {
1281   uint32_t result = 0;
1282   std::map<uint64_t, uint32_t>::iterator iterator =
1283       m_thread_id_to_index_id_map.find(thread_id);
1284   if (iterator == m_thread_id_to_index_id_map.end()) {
1285     result = ++m_thread_index_id;
1286     m_thread_id_to_index_id_map[thread_id] = result;
1287   } else {
1288     result = iterator->second;
1289   }
1290 
1291   return result;
1292 }
1293 
1294 StateType Process::GetState() {
1295   return m_public_state.GetValue();
1296 }
1297 
1298 void Process::SetPublicState(StateType new_state, bool restarted) {
1299   const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1300   if (new_state_is_stopped) {
1301     // This will only set the time if the public stop time has no value, so
1302     // it is ok to call this multiple times. With a public stop we can't look
1303     // at the stop ID because many private stops might have happened, so we
1304     // can't check for a stop ID of zero. This allows the "statistics" command
1305     // to dump the time it takes to reach somewhere in your code, like a
1306     // breakpoint you set.
1307     GetTarget().GetStatistics().SetFirstPublicStopTime();
1308   }
1309 
1310   Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1311   LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)",
1312             StateAsCString(new_state), restarted);
1313   const StateType old_state = m_public_state.GetValue();
1314   m_public_state.SetValue(new_state);
1315 
1316   // On the transition from Run to Stopped, we unlock the writer end of the run
1317   // lock.  The lock gets locked in Resume, which is the public API to tell the
1318   // program to run.
1319   if (!StateChangedIsExternallyHijacked()) {
1320     if (new_state == eStateDetached) {
1321       LLDB_LOGF(log,
1322                 "Process::SetPublicState (%s) -- unlocking run lock for detach",
1323                 StateAsCString(new_state));
1324       m_public_run_lock.SetStopped();
1325     } else {
1326       const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1327       if ((old_state_is_stopped != new_state_is_stopped)) {
1328         if (new_state_is_stopped && !restarted) {
1329           LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock",
1330                     StateAsCString(new_state));
1331           m_public_run_lock.SetStopped();
1332         }
1333       }
1334     }
1335   }
1336 }
1337 
1338 Status Process::Resume() {
1339   Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1340   LLDB_LOGF(log, "Process::Resume -- locking run lock");
1341   if (!m_public_run_lock.TrySetRunning()) {
1342     Status error("Resume request failed - process still running.");
1343     LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1344     return error;
1345   }
1346   Status error = PrivateResume();
1347   if (!error.Success()) {
1348     // Undo running state change
1349     m_public_run_lock.SetStopped();
1350   }
1351   return error;
1352 }
1353 
1354 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack";
1355 
1356 Status Process::ResumeSynchronous(Stream *stream) {
1357   Log *log(GetLog(LLDBLog::State | LLDBLog::Process));
1358   LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock");
1359   if (!m_public_run_lock.TrySetRunning()) {
1360     Status error("Resume request failed - process still running.");
1361     LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1362     return error;
1363   }
1364 
1365   ListenerSP listener_sp(
1366       Listener::MakeListener(g_resume_sync_name));
1367   HijackProcessEvents(listener_sp);
1368 
1369   Status error = PrivateResume();
1370   if (error.Success()) {
1371     StateType state = WaitForProcessToStop(llvm::None, nullptr, true,
1372                                            listener_sp, stream);
1373     const bool must_be_alive =
1374         false; // eStateExited is ok, so this must be false
1375     if (!StateIsStoppedState(state, must_be_alive))
1376       error.SetErrorStringWithFormat(
1377           "process not in stopped state after synchronous resume: %s",
1378           StateAsCString(state));
1379   } else {
1380     // Undo running state change
1381     m_public_run_lock.SetStopped();
1382   }
1383 
1384   // Undo the hijacking of process events...
1385   RestoreProcessEvents();
1386 
1387   return error;
1388 }
1389 
1390 bool Process::StateChangedIsExternallyHijacked() {
1391   if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1392     const char *hijacking_name = GetHijackingListenerName();
1393     if (hijacking_name &&
1394         strcmp(hijacking_name, g_resume_sync_name))
1395       return true;
1396   }
1397   return false;
1398 }
1399 
1400 bool Process::StateChangedIsHijackedForSynchronousResume() {
1401   if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1402     const char *hijacking_name = GetHijackingListenerName();
1403     if (hijacking_name &&
1404         strcmp(hijacking_name, g_resume_sync_name) == 0)
1405       return true;
1406   }
1407   return false;
1408 }
1409 
1410 StateType Process::GetPrivateState() { return m_private_state.GetValue(); }
1411 
1412 void Process::SetPrivateState(StateType new_state) {
1413   if (m_finalizing)
1414     return;
1415 
1416   Log *log(GetLog(LLDBLog::State | LLDBLog::Process | LLDBLog::Unwind));
1417   bool state_changed = false;
1418 
1419   LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state));
1420 
1421   std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex());
1422   std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex());
1423 
1424   const StateType old_state = m_private_state.GetValueNoLock();
1425   state_changed = old_state != new_state;
1426 
1427   const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1428   const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1429   if (old_state_is_stopped != new_state_is_stopped) {
1430     if (new_state_is_stopped)
1431       m_private_run_lock.SetStopped();
1432     else
1433       m_private_run_lock.SetRunning();
1434   }
1435 
1436   if (state_changed) {
1437     m_private_state.SetValueNoLock(new_state);
1438     EventSP event_sp(
1439         new Event(eBroadcastBitStateChanged,
1440                   new ProcessEventData(shared_from_this(), new_state)));
1441     if (StateIsStoppedState(new_state, false)) {
1442       // Note, this currently assumes that all threads in the list stop when
1443       // the process stops.  In the future we will want to support a debugging
1444       // model where some threads continue to run while others are stopped.
1445       // When that happens we will either need a way for the thread list to
1446       // identify which threads are stopping or create a special thread list
1447       // containing only threads which actually stopped.
1448       //
1449       // The process plugin is responsible for managing the actual behavior of
1450       // the threads and should have stopped any threads that are going to stop
1451       // before we get here.
1452       m_thread_list.DidStop();
1453 
1454       if (m_mod_id.BumpStopID() == 0)
1455         GetTarget().GetStatistics().SetFirstPrivateStopTime();
1456 
1457       if (!m_mod_id.IsLastResumeForUserExpression())
1458         m_mod_id.SetStopEventForLastNaturalStopID(event_sp);
1459       m_memory_cache.Clear();
1460       LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u",
1461                 StateAsCString(new_state), m_mod_id.GetStopID());
1462     }
1463 
1464     m_private_state_broadcaster.BroadcastEvent(event_sp);
1465   } else {
1466     LLDB_LOGF(log,
1467               "Process::SetPrivateState (%s) state didn't change. Ignoring...",
1468               StateAsCString(new_state));
1469   }
1470 }
1471 
1472 void Process::SetRunningUserExpression(bool on) {
1473   m_mod_id.SetRunningUserExpression(on);
1474 }
1475 
1476 void Process::SetRunningUtilityFunction(bool on) {
1477   m_mod_id.SetRunningUtilityFunction(on);
1478 }
1479 
1480 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; }
1481 
1482 const lldb::ABISP &Process::GetABI() {
1483   if (!m_abi_sp)
1484     m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture());
1485   return m_abi_sp;
1486 }
1487 
1488 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() {
1489   std::vector<LanguageRuntime *> language_runtimes;
1490 
1491   if (m_finalizing)
1492     return language_runtimes;
1493 
1494   std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1495   // Before we pass off a copy of the language runtimes, we must make sure that
1496   // our collection is properly populated. It's possible that some of the
1497   // language runtimes were not loaded yet, either because nobody requested it
1498   // yet or the proper condition for loading wasn't yet met (e.g. libc++.so
1499   // hadn't been loaded).
1500   for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
1501     if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
1502       language_runtimes.emplace_back(runtime);
1503   }
1504 
1505   return language_runtimes;
1506 }
1507 
1508 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) {
1509   if (m_finalizing)
1510     return nullptr;
1511 
1512   LanguageRuntime *runtime = nullptr;
1513 
1514   std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1515   LanguageRuntimeCollection::iterator pos;
1516   pos = m_language_runtimes.find(language);
1517   if (pos == m_language_runtimes.end() || !pos->second) {
1518     lldb::LanguageRuntimeSP runtime_sp(
1519         LanguageRuntime::FindPlugin(this, language));
1520 
1521     m_language_runtimes[language] = runtime_sp;
1522     runtime = runtime_sp.get();
1523   } else
1524     runtime = pos->second.get();
1525 
1526   if (runtime)
1527     // It's possible that a language runtime can support multiple LanguageTypes,
1528     // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus,
1529     // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the
1530     // primary language type and make sure that our runtime supports it.
1531     assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language));
1532 
1533   return runtime;
1534 }
1535 
1536 bool Process::IsPossibleDynamicValue(ValueObject &in_value) {
1537   if (m_finalizing)
1538     return false;
1539 
1540   if (in_value.IsDynamic())
1541     return false;
1542   LanguageType known_type = in_value.GetObjectRuntimeLanguage();
1543 
1544   if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) {
1545     LanguageRuntime *runtime = GetLanguageRuntime(known_type);
1546     return runtime ? runtime->CouldHaveDynamicValue(in_value) : false;
1547   }
1548 
1549   for (LanguageRuntime *runtime : GetLanguageRuntimes()) {
1550     if (runtime->CouldHaveDynamicValue(in_value))
1551       return true;
1552   }
1553 
1554   return false;
1555 }
1556 
1557 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) {
1558   m_dynamic_checkers_up.reset(dynamic_checkers);
1559 }
1560 
1561 BreakpointSiteList &Process::GetBreakpointSiteList() {
1562   return m_breakpoint_site_list;
1563 }
1564 
1565 const BreakpointSiteList &Process::GetBreakpointSiteList() const {
1566   return m_breakpoint_site_list;
1567 }
1568 
1569 void Process::DisableAllBreakpointSites() {
1570   m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void {
1571     //        bp_site->SetEnabled(true);
1572     DisableBreakpointSite(bp_site);
1573   });
1574 }
1575 
1576 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) {
1577   Status error(DisableBreakpointSiteByID(break_id));
1578 
1579   if (error.Success())
1580     m_breakpoint_site_list.Remove(break_id);
1581 
1582   return error;
1583 }
1584 
1585 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) {
1586   Status error;
1587   BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1588   if (bp_site_sp) {
1589     if (bp_site_sp->IsEnabled())
1590       error = DisableBreakpointSite(bp_site_sp.get());
1591   } else {
1592     error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1593                                    break_id);
1594   }
1595 
1596   return error;
1597 }
1598 
1599 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) {
1600   Status error;
1601   BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1602   if (bp_site_sp) {
1603     if (!bp_site_sp->IsEnabled())
1604       error = EnableBreakpointSite(bp_site_sp.get());
1605   } else {
1606     error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1607                                    break_id);
1608   }
1609   return error;
1610 }
1611 
1612 lldb::break_id_t
1613 Process::CreateBreakpointSite(const BreakpointLocationSP &owner,
1614                               bool use_hardware) {
1615   addr_t load_addr = LLDB_INVALID_ADDRESS;
1616 
1617   bool show_error = true;
1618   switch (GetState()) {
1619   case eStateInvalid:
1620   case eStateUnloaded:
1621   case eStateConnected:
1622   case eStateAttaching:
1623   case eStateLaunching:
1624   case eStateDetached:
1625   case eStateExited:
1626     show_error = false;
1627     break;
1628 
1629   case eStateStopped:
1630   case eStateRunning:
1631   case eStateStepping:
1632   case eStateCrashed:
1633   case eStateSuspended:
1634     show_error = IsAlive();
1635     break;
1636   }
1637 
1638   // Reset the IsIndirect flag here, in case the location changes from pointing
1639   // to a indirect symbol to a regular symbol.
1640   owner->SetIsIndirect(false);
1641 
1642   if (owner->ShouldResolveIndirectFunctions()) {
1643     Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol();
1644     if (symbol && symbol->IsIndirect()) {
1645       Status error;
1646       Address symbol_address = symbol->GetAddress();
1647       load_addr = ResolveIndirectFunction(&symbol_address, error);
1648       if (!error.Success() && show_error) {
1649         GetTarget().GetDebugger().GetErrorStream().Printf(
1650             "warning: failed to resolve indirect function at 0x%" PRIx64
1651             " for breakpoint %i.%i: %s\n",
1652             symbol->GetLoadAddress(&GetTarget()),
1653             owner->GetBreakpoint().GetID(), owner->GetID(),
1654             error.AsCString() ? error.AsCString() : "unknown error");
1655         return LLDB_INVALID_BREAK_ID;
1656       }
1657       Address resolved_address(load_addr);
1658       load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget());
1659       owner->SetIsIndirect(true);
1660     } else
1661       load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1662   } else
1663     load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1664 
1665   if (load_addr != LLDB_INVALID_ADDRESS) {
1666     BreakpointSiteSP bp_site_sp;
1667 
1668     // Look up this breakpoint site.  If it exists, then add this new owner,
1669     // otherwise create a new breakpoint site and add it.
1670 
1671     bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr);
1672 
1673     if (bp_site_sp) {
1674       bp_site_sp->AddOwner(owner);
1675       owner->SetBreakpointSite(bp_site_sp);
1676       return bp_site_sp->GetID();
1677     } else {
1678       bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner,
1679                                           load_addr, use_hardware));
1680       if (bp_site_sp) {
1681         Status error = EnableBreakpointSite(bp_site_sp.get());
1682         if (error.Success()) {
1683           owner->SetBreakpointSite(bp_site_sp);
1684           return m_breakpoint_site_list.Add(bp_site_sp);
1685         } else {
1686           if (show_error || use_hardware) {
1687             // Report error for setting breakpoint...
1688             GetTarget().GetDebugger().GetErrorStream().Printf(
1689                 "warning: failed to set breakpoint site at 0x%" PRIx64
1690                 " for breakpoint %i.%i: %s\n",
1691                 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(),
1692                 error.AsCString() ? error.AsCString() : "unknown error");
1693           }
1694         }
1695       }
1696     }
1697   }
1698   // We failed to enable the breakpoint
1699   return LLDB_INVALID_BREAK_ID;
1700 }
1701 
1702 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id,
1703                                             lldb::user_id_t owner_loc_id,
1704                                             BreakpointSiteSP &bp_site_sp) {
1705   uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id);
1706   if (num_owners == 0) {
1707     // Don't try to disable the site if we don't have a live process anymore.
1708     if (IsAlive())
1709       DisableBreakpointSite(bp_site_sp.get());
1710     m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress());
1711   }
1712 }
1713 
1714 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size,
1715                                                   uint8_t *buf) const {
1716   size_t bytes_removed = 0;
1717   BreakpointSiteList bp_sites_in_range;
1718 
1719   if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size,
1720                                          bp_sites_in_range)) {
1721     bp_sites_in_range.ForEach([bp_addr, size,
1722                                buf](BreakpointSite *bp_site) -> void {
1723       if (bp_site->GetType() == BreakpointSite::eSoftware) {
1724         addr_t intersect_addr;
1725         size_t intersect_size;
1726         size_t opcode_offset;
1727         if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr,
1728                                      &intersect_size, &opcode_offset)) {
1729           assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size);
1730           assert(bp_addr < intersect_addr + intersect_size &&
1731                  intersect_addr + intersect_size <= bp_addr + size);
1732           assert(opcode_offset + intersect_size <= bp_site->GetByteSize());
1733           size_t buf_offset = intersect_addr - bp_addr;
1734           ::memcpy(buf + buf_offset,
1735                    bp_site->GetSavedOpcodeBytes() + opcode_offset,
1736                    intersect_size);
1737         }
1738       }
1739     });
1740   }
1741   return bytes_removed;
1742 }
1743 
1744 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) {
1745   PlatformSP platform_sp(GetTarget().GetPlatform());
1746   if (platform_sp)
1747     return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site);
1748   return 0;
1749 }
1750 
1751 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) {
1752   Status error;
1753   assert(bp_site != nullptr);
1754   Log *log = GetLog(LLDBLog::Breakpoints);
1755   const addr_t bp_addr = bp_site->GetLoadAddress();
1756   LLDB_LOGF(
1757       log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64,
1758       bp_site->GetID(), (uint64_t)bp_addr);
1759   if (bp_site->IsEnabled()) {
1760     LLDB_LOGF(
1761         log,
1762         "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1763         " -- already enabled",
1764         bp_site->GetID(), (uint64_t)bp_addr);
1765     return error;
1766   }
1767 
1768   if (bp_addr == LLDB_INVALID_ADDRESS) {
1769     error.SetErrorString("BreakpointSite contains an invalid load address.");
1770     return error;
1771   }
1772   // Ask the lldb::Process subclass to fill in the correct software breakpoint
1773   // trap for the breakpoint site
1774   const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site);
1775 
1776   if (bp_opcode_size == 0) {
1777     error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() "
1778                                    "returned zero, unable to get breakpoint "
1779                                    "trap for address 0x%" PRIx64,
1780                                    bp_addr);
1781   } else {
1782     const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes();
1783 
1784     if (bp_opcode_bytes == nullptr) {
1785       error.SetErrorString(
1786           "BreakpointSite doesn't contain a valid breakpoint trap opcode.");
1787       return error;
1788     }
1789 
1790     // Save the original opcode by reading it
1791     if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size,
1792                      error) == bp_opcode_size) {
1793       // Write a software breakpoint in place of the original opcode
1794       if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) ==
1795           bp_opcode_size) {
1796         uint8_t verify_bp_opcode_bytes[64];
1797         if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size,
1798                          error) == bp_opcode_size) {
1799           if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes,
1800                        bp_opcode_size) == 0) {
1801             bp_site->SetEnabled(true);
1802             bp_site->SetType(BreakpointSite::eSoftware);
1803             LLDB_LOGF(log,
1804                       "Process::EnableSoftwareBreakpoint (site_id = %d) "
1805                       "addr = 0x%" PRIx64 " -- SUCCESS",
1806                       bp_site->GetID(), (uint64_t)bp_addr);
1807           } else
1808             error.SetErrorString(
1809                 "failed to verify the breakpoint trap in memory.");
1810         } else
1811           error.SetErrorString(
1812               "Unable to read memory to verify breakpoint trap.");
1813       } else
1814         error.SetErrorString("Unable to write breakpoint trap to memory.");
1815     } else
1816       error.SetErrorString("Unable to read memory at breakpoint address.");
1817   }
1818   if (log && error.Fail())
1819     LLDB_LOGF(
1820         log,
1821         "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1822         " -- FAILED: %s",
1823         bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1824   return error;
1825 }
1826 
1827 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) {
1828   Status error;
1829   assert(bp_site != nullptr);
1830   Log *log = GetLog(LLDBLog::Breakpoints);
1831   addr_t bp_addr = bp_site->GetLoadAddress();
1832   lldb::user_id_t breakID = bp_site->GetID();
1833   LLDB_LOGF(log,
1834             "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64
1835             ") addr = 0x%" PRIx64,
1836             breakID, (uint64_t)bp_addr);
1837 
1838   if (bp_site->IsHardware()) {
1839     error.SetErrorString("Breakpoint site is a hardware breakpoint.");
1840   } else if (bp_site->IsEnabled()) {
1841     const size_t break_op_size = bp_site->GetByteSize();
1842     const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes();
1843     if (break_op_size > 0) {
1844       // Clear a software breakpoint instruction
1845       uint8_t curr_break_op[8];
1846       assert(break_op_size <= sizeof(curr_break_op));
1847       bool break_op_found = false;
1848 
1849       // Read the breakpoint opcode
1850       if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) ==
1851           break_op_size) {
1852         bool verify = false;
1853         // Make sure the breakpoint opcode exists at this address
1854         if (::memcmp(curr_break_op, break_op, break_op_size) == 0) {
1855           break_op_found = true;
1856           // We found a valid breakpoint opcode at this address, now restore
1857           // the saved opcode.
1858           if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(),
1859                             break_op_size, error) == break_op_size) {
1860             verify = true;
1861           } else
1862             error.SetErrorString(
1863                 "Memory write failed when restoring original opcode.");
1864         } else {
1865           error.SetErrorString(
1866               "Original breakpoint trap is no longer in memory.");
1867           // Set verify to true and so we can check if the original opcode has
1868           // already been restored
1869           verify = true;
1870         }
1871 
1872         if (verify) {
1873           uint8_t verify_opcode[8];
1874           assert(break_op_size < sizeof(verify_opcode));
1875           // Verify that our original opcode made it back to the inferior
1876           if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) ==
1877               break_op_size) {
1878             // compare the memory we just read with the original opcode
1879             if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode,
1880                          break_op_size) == 0) {
1881               // SUCCESS
1882               bp_site->SetEnabled(false);
1883               LLDB_LOGF(log,
1884                         "Process::DisableSoftwareBreakpoint (site_id = %d) "
1885                         "addr = 0x%" PRIx64 " -- SUCCESS",
1886                         bp_site->GetID(), (uint64_t)bp_addr);
1887               return error;
1888             } else {
1889               if (break_op_found)
1890                 error.SetErrorString("Failed to restore original opcode.");
1891             }
1892           } else
1893             error.SetErrorString("Failed to read memory to verify that "
1894                                  "breakpoint trap was restored.");
1895         }
1896       } else
1897         error.SetErrorString(
1898             "Unable to read memory that should contain the breakpoint trap.");
1899     }
1900   } else {
1901     LLDB_LOGF(
1902         log,
1903         "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1904         " -- already disabled",
1905         bp_site->GetID(), (uint64_t)bp_addr);
1906     return error;
1907   }
1908 
1909   LLDB_LOGF(
1910       log,
1911       "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1912       " -- FAILED: %s",
1913       bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1914   return error;
1915 }
1916 
1917 // Uncomment to verify memory caching works after making changes to caching
1918 // code
1919 //#define VERIFY_MEMORY_READS
1920 
1921 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) {
1922   if (ABISP abi_sp = GetABI())
1923     addr = abi_sp->FixAnyAddress(addr);
1924 
1925   error.Clear();
1926   if (!GetDisableMemoryCache()) {
1927 #if defined(VERIFY_MEMORY_READS)
1928     // Memory caching is enabled, with debug verification
1929 
1930     if (buf && size) {
1931       // Uncomment the line below to make sure memory caching is working.
1932       // I ran this through the test suite and got no assertions, so I am
1933       // pretty confident this is working well. If any changes are made to
1934       // memory caching, uncomment the line below and test your changes!
1935 
1936       // Verify all memory reads by using the cache first, then redundantly
1937       // reading the same memory from the inferior and comparing to make sure
1938       // everything is exactly the same.
1939       std::string verify_buf(size, '\0');
1940       assert(verify_buf.size() == size);
1941       const size_t cache_bytes_read =
1942           m_memory_cache.Read(this, addr, buf, size, error);
1943       Status verify_error;
1944       const size_t verify_bytes_read =
1945           ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()),
1946                                  verify_buf.size(), verify_error);
1947       assert(cache_bytes_read == verify_bytes_read);
1948       assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0);
1949       assert(verify_error.Success() == error.Success());
1950       return cache_bytes_read;
1951     }
1952     return 0;
1953 #else  // !defined(VERIFY_MEMORY_READS)
1954     // Memory caching is enabled, without debug verification
1955 
1956     return m_memory_cache.Read(addr, buf, size, error);
1957 #endif // defined (VERIFY_MEMORY_READS)
1958   } else {
1959     // Memory caching is disabled
1960 
1961     return ReadMemoryFromInferior(addr, buf, size, error);
1962   }
1963 }
1964 
1965 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str,
1966                                       Status &error) {
1967   char buf[256];
1968   out_str.clear();
1969   addr_t curr_addr = addr;
1970   while (true) {
1971     size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error);
1972     if (length == 0)
1973       break;
1974     out_str.append(buf, length);
1975     // If we got "length - 1" bytes, we didn't get the whole C string, we need
1976     // to read some more characters
1977     if (length == sizeof(buf) - 1)
1978       curr_addr += length;
1979     else
1980       break;
1981   }
1982   return out_str.size();
1983 }
1984 
1985 // Deprecated in favor of ReadStringFromMemory which has wchar support and
1986 // correct code to find null terminators.
1987 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst,
1988                                       size_t dst_max_len,
1989                                       Status &result_error) {
1990   size_t total_cstr_len = 0;
1991   if (dst && dst_max_len) {
1992     result_error.Clear();
1993     // NULL out everything just to be safe
1994     memset(dst, 0, dst_max_len);
1995     Status error;
1996     addr_t curr_addr = addr;
1997     const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
1998     size_t bytes_left = dst_max_len - 1;
1999     char *curr_dst = dst;
2000 
2001     while (bytes_left > 0) {
2002       addr_t cache_line_bytes_left =
2003           cache_line_size - (curr_addr % cache_line_size);
2004       addr_t bytes_to_read =
2005           std::min<addr_t>(bytes_left, cache_line_bytes_left);
2006       size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
2007 
2008       if (bytes_read == 0) {
2009         result_error = error;
2010         dst[total_cstr_len] = '\0';
2011         break;
2012       }
2013       const size_t len = strlen(curr_dst);
2014 
2015       total_cstr_len += len;
2016 
2017       if (len < bytes_to_read)
2018         break;
2019 
2020       curr_dst += bytes_read;
2021       curr_addr += bytes_read;
2022       bytes_left -= bytes_read;
2023     }
2024   } else {
2025     if (dst == nullptr)
2026       result_error.SetErrorString("invalid arguments");
2027     else
2028       result_error.Clear();
2029   }
2030   return total_cstr_len;
2031 }
2032 
2033 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size,
2034                                        Status &error) {
2035   LLDB_SCOPED_TIMER();
2036 
2037   if (ABISP abi_sp = GetABI())
2038     addr = abi_sp->FixAnyAddress(addr);
2039 
2040   if (buf == nullptr || size == 0)
2041     return 0;
2042 
2043   size_t bytes_read = 0;
2044   uint8_t *bytes = (uint8_t *)buf;
2045 
2046   while (bytes_read < size) {
2047     const size_t curr_size = size - bytes_read;
2048     const size_t curr_bytes_read =
2049         DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error);
2050     bytes_read += curr_bytes_read;
2051     if (curr_bytes_read == curr_size || curr_bytes_read == 0)
2052       break;
2053   }
2054 
2055   // Replace any software breakpoint opcodes that fall into this range back
2056   // into "buf" before we return
2057   if (bytes_read > 0)
2058     RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf);
2059   return bytes_read;
2060 }
2061 
2062 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr,
2063                                                 size_t integer_byte_size,
2064                                                 uint64_t fail_value,
2065                                                 Status &error) {
2066   Scalar scalar;
2067   if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar,
2068                                   error))
2069     return scalar.ULongLong(fail_value);
2070   return fail_value;
2071 }
2072 
2073 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr,
2074                                              size_t integer_byte_size,
2075                                              int64_t fail_value,
2076                                              Status &error) {
2077   Scalar scalar;
2078   if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar,
2079                                   error))
2080     return scalar.SLongLong(fail_value);
2081   return fail_value;
2082 }
2083 
2084 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) {
2085   Scalar scalar;
2086   if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar,
2087                                   error))
2088     return scalar.ULongLong(LLDB_INVALID_ADDRESS);
2089   return LLDB_INVALID_ADDRESS;
2090 }
2091 
2092 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value,
2093                                    Status &error) {
2094   Scalar scalar;
2095   const uint32_t addr_byte_size = GetAddressByteSize();
2096   if (addr_byte_size <= 4)
2097     scalar = (uint32_t)ptr_value;
2098   else
2099     scalar = ptr_value;
2100   return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) ==
2101          addr_byte_size;
2102 }
2103 
2104 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size,
2105                                    Status &error) {
2106   size_t bytes_written = 0;
2107   const uint8_t *bytes = (const uint8_t *)buf;
2108 
2109   while (bytes_written < size) {
2110     const size_t curr_size = size - bytes_written;
2111     const size_t curr_bytes_written = DoWriteMemory(
2112         addr + bytes_written, bytes + bytes_written, curr_size, error);
2113     bytes_written += curr_bytes_written;
2114     if (curr_bytes_written == curr_size || curr_bytes_written == 0)
2115       break;
2116   }
2117   return bytes_written;
2118 }
2119 
2120 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size,
2121                             Status &error) {
2122   if (ABISP abi_sp = GetABI())
2123     addr = abi_sp->FixAnyAddress(addr);
2124 
2125 #if defined(ENABLE_MEMORY_CACHING)
2126   m_memory_cache.Flush(addr, size);
2127 #endif
2128 
2129   if (buf == nullptr || size == 0)
2130     return 0;
2131 
2132   m_mod_id.BumpMemoryID();
2133 
2134   // We need to write any data that would go where any current software traps
2135   // (enabled software breakpoints) any software traps (breakpoints) that we
2136   // may have placed in our tasks memory.
2137 
2138   BreakpointSiteList bp_sites_in_range;
2139   if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range))
2140     return WriteMemoryPrivate(addr, buf, size, error);
2141 
2142   // No breakpoint sites overlap
2143   if (bp_sites_in_range.IsEmpty())
2144     return WriteMemoryPrivate(addr, buf, size, error);
2145 
2146   const uint8_t *ubuf = (const uint8_t *)buf;
2147   uint64_t bytes_written = 0;
2148 
2149   bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf,
2150                              &error](BreakpointSite *bp) -> void {
2151     if (error.Fail())
2152       return;
2153 
2154     if (bp->GetType() != BreakpointSite::eSoftware)
2155       return;
2156 
2157     addr_t intersect_addr;
2158     size_t intersect_size;
2159     size_t opcode_offset;
2160     const bool intersects = bp->IntersectsRange(
2161         addr, size, &intersect_addr, &intersect_size, &opcode_offset);
2162     UNUSED_IF_ASSERT_DISABLED(intersects);
2163     assert(intersects);
2164     assert(addr <= intersect_addr && intersect_addr < addr + size);
2165     assert(addr < intersect_addr + intersect_size &&
2166            intersect_addr + intersect_size <= addr + size);
2167     assert(opcode_offset + intersect_size <= bp->GetByteSize());
2168 
2169     // Check for bytes before this breakpoint
2170     const addr_t curr_addr = addr + bytes_written;
2171     if (intersect_addr > curr_addr) {
2172       // There are some bytes before this breakpoint that we need to just
2173       // write to memory
2174       size_t curr_size = intersect_addr - curr_addr;
2175       size_t curr_bytes_written =
2176           WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error);
2177       bytes_written += curr_bytes_written;
2178       if (curr_bytes_written != curr_size) {
2179         // We weren't able to write all of the requested bytes, we are
2180         // done looping and will return the number of bytes that we have
2181         // written so far.
2182         if (error.Success())
2183           error.SetErrorToGenericError();
2184       }
2185     }
2186     // Now write any bytes that would cover up any software breakpoints
2187     // directly into the breakpoint opcode buffer
2188     ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written,
2189              intersect_size);
2190     bytes_written += intersect_size;
2191   });
2192 
2193   // Write any remaining bytes after the last breakpoint if we have any left
2194   if (bytes_written < size)
2195     bytes_written +=
2196         WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written,
2197                            size - bytes_written, error);
2198 
2199   return bytes_written;
2200 }
2201 
2202 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar,
2203                                     size_t byte_size, Status &error) {
2204   if (byte_size == UINT32_MAX)
2205     byte_size = scalar.GetByteSize();
2206   if (byte_size > 0) {
2207     uint8_t buf[32];
2208     const size_t mem_size =
2209         scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error);
2210     if (mem_size > 0)
2211       return WriteMemory(addr, buf, mem_size, error);
2212     else
2213       error.SetErrorString("failed to get scalar as memory data");
2214   } else {
2215     error.SetErrorString("invalid scalar value");
2216   }
2217   return 0;
2218 }
2219 
2220 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size,
2221                                             bool is_signed, Scalar &scalar,
2222                                             Status &error) {
2223   uint64_t uval = 0;
2224   if (byte_size == 0) {
2225     error.SetErrorString("byte size is zero");
2226   } else if (byte_size & (byte_size - 1)) {
2227     error.SetErrorStringWithFormat("byte size %u is not a power of 2",
2228                                    byte_size);
2229   } else if (byte_size <= sizeof(uval)) {
2230     const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error);
2231     if (bytes_read == byte_size) {
2232       DataExtractor data(&uval, sizeof(uval), GetByteOrder(),
2233                          GetAddressByteSize());
2234       lldb::offset_t offset = 0;
2235       if (byte_size <= 4)
2236         scalar = data.GetMaxU32(&offset, byte_size);
2237       else
2238         scalar = data.GetMaxU64(&offset, byte_size);
2239       if (is_signed)
2240         scalar.SignExtend(byte_size * 8);
2241       return bytes_read;
2242     }
2243   } else {
2244     error.SetErrorStringWithFormat(
2245         "byte size of %u is too large for integer scalar type", byte_size);
2246   }
2247   return 0;
2248 }
2249 
2250 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) {
2251   Status error;
2252   for (const auto &Entry : entries) {
2253     WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(),
2254                 error);
2255     if (!error.Success())
2256       break;
2257   }
2258   return error;
2259 }
2260 
2261 #define USE_ALLOCATE_MEMORY_CACHE 1
2262 addr_t Process::AllocateMemory(size_t size, uint32_t permissions,
2263                                Status &error) {
2264   if (GetPrivateState() != eStateStopped) {
2265     error.SetErrorToGenericError();
2266     return LLDB_INVALID_ADDRESS;
2267   }
2268 
2269 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2270   return m_allocated_memory_cache.AllocateMemory(size, permissions, error);
2271 #else
2272   addr_t allocated_addr = DoAllocateMemory(size, permissions, error);
2273   Log *log = GetLog(LLDBLog::Process);
2274   LLDB_LOGF(log,
2275             "Process::AllocateMemory(size=%" PRIu64
2276             ", permissions=%s) => 0x%16.16" PRIx64
2277             " (m_stop_id = %u m_memory_id = %u)",
2278             (uint64_t)size, GetPermissionsAsCString(permissions),
2279             (uint64_t)allocated_addr, m_mod_id.GetStopID(),
2280             m_mod_id.GetMemoryID());
2281   return allocated_addr;
2282 #endif
2283 }
2284 
2285 addr_t Process::CallocateMemory(size_t size, uint32_t permissions,
2286                                 Status &error) {
2287   addr_t return_addr = AllocateMemory(size, permissions, error);
2288   if (error.Success()) {
2289     std::string buffer(size, 0);
2290     WriteMemory(return_addr, buffer.c_str(), size, error);
2291   }
2292   return return_addr;
2293 }
2294 
2295 bool Process::CanJIT() {
2296   if (m_can_jit == eCanJITDontKnow) {
2297     Log *log = GetLog(LLDBLog::Process);
2298     Status err;
2299 
2300     uint64_t allocated_memory = AllocateMemory(
2301         8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable,
2302         err);
2303 
2304     if (err.Success()) {
2305       m_can_jit = eCanJITYes;
2306       LLDB_LOGF(log,
2307                 "Process::%s pid %" PRIu64
2308                 " allocation test passed, CanJIT () is true",
2309                 __FUNCTION__, GetID());
2310     } else {
2311       m_can_jit = eCanJITNo;
2312       LLDB_LOGF(log,
2313                 "Process::%s pid %" PRIu64
2314                 " allocation test failed, CanJIT () is false: %s",
2315                 __FUNCTION__, GetID(), err.AsCString());
2316     }
2317 
2318     DeallocateMemory(allocated_memory);
2319   }
2320 
2321   return m_can_jit == eCanJITYes;
2322 }
2323 
2324 void Process::SetCanJIT(bool can_jit) {
2325   m_can_jit = (can_jit ? eCanJITYes : eCanJITNo);
2326 }
2327 
2328 void Process::SetCanRunCode(bool can_run_code) {
2329   SetCanJIT(can_run_code);
2330   m_can_interpret_function_calls = can_run_code;
2331 }
2332 
2333 Status Process::DeallocateMemory(addr_t ptr) {
2334   Status error;
2335 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2336   if (!m_allocated_memory_cache.DeallocateMemory(ptr)) {
2337     error.SetErrorStringWithFormat(
2338         "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr);
2339   }
2340 #else
2341   error = DoDeallocateMemory(ptr);
2342 
2343   Log *log = GetLog(LLDBLog::Process);
2344   LLDB_LOGF(log,
2345             "Process::DeallocateMemory(addr=0x%16.16" PRIx64
2346             ") => err = %s (m_stop_id = %u, m_memory_id = %u)",
2347             ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(),
2348             m_mod_id.GetMemoryID());
2349 #endif
2350   return error;
2351 }
2352 
2353 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec,
2354                                        lldb::addr_t header_addr,
2355                                        size_t size_to_read) {
2356   Log *log = GetLog(LLDBLog::Host);
2357   if (log) {
2358     LLDB_LOGF(log,
2359               "Process::ReadModuleFromMemory reading %s binary from memory",
2360               file_spec.GetPath().c_str());
2361   }
2362   ModuleSP module_sp(new Module(file_spec, ArchSpec()));
2363   if (module_sp) {
2364     Status error;
2365     ObjectFile *objfile = module_sp->GetMemoryObjectFile(
2366         shared_from_this(), header_addr, error, size_to_read);
2367     if (objfile)
2368       return module_sp;
2369   }
2370   return ModuleSP();
2371 }
2372 
2373 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr,
2374                                         uint32_t &permissions) {
2375   MemoryRegionInfo range_info;
2376   permissions = 0;
2377   Status error(GetMemoryRegionInfo(load_addr, range_info));
2378   if (!error.Success())
2379     return false;
2380   if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow ||
2381       range_info.GetWritable() == MemoryRegionInfo::eDontKnow ||
2382       range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) {
2383     return false;
2384   }
2385 
2386   if (range_info.GetReadable() == MemoryRegionInfo::eYes)
2387     permissions |= lldb::ePermissionsReadable;
2388 
2389   if (range_info.GetWritable() == MemoryRegionInfo::eYes)
2390     permissions |= lldb::ePermissionsWritable;
2391 
2392   if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
2393     permissions |= lldb::ePermissionsExecutable;
2394 
2395   return true;
2396 }
2397 
2398 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) {
2399   Status error;
2400   error.SetErrorString("watchpoints are not supported");
2401   return error;
2402 }
2403 
2404 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) {
2405   Status error;
2406   error.SetErrorString("watchpoints are not supported");
2407   return error;
2408 }
2409 
2410 StateType
2411 Process::WaitForProcessStopPrivate(EventSP &event_sp,
2412                                    const Timeout<std::micro> &timeout) {
2413   StateType state;
2414 
2415   while (true) {
2416     event_sp.reset();
2417     state = GetStateChangedEventsPrivate(event_sp, timeout);
2418 
2419     if (StateIsStoppedState(state, false))
2420       break;
2421 
2422     // If state is invalid, then we timed out
2423     if (state == eStateInvalid)
2424       break;
2425 
2426     if (event_sp)
2427       HandlePrivateEvent(event_sp);
2428   }
2429   return state;
2430 }
2431 
2432 void Process::LoadOperatingSystemPlugin(bool flush) {
2433   if (flush)
2434     m_thread_list.Clear();
2435   m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr));
2436   if (flush)
2437     Flush();
2438 }
2439 
2440 Status Process::Launch(ProcessLaunchInfo &launch_info) {
2441   StateType state_after_launch = eStateInvalid;
2442   EventSP first_stop_event_sp;
2443   Status status =
2444       LaunchPrivate(launch_info, state_after_launch, first_stop_event_sp);
2445   if (status.Fail())
2446     return status;
2447 
2448   if (state_after_launch != eStateStopped &&
2449       state_after_launch != eStateCrashed)
2450     return Status();
2451 
2452   // Note, the stop event was consumed above, but not handled. This
2453   // was done to give DidLaunch a chance to run. The target is either
2454   // stopped or crashed. Directly set the state.  This is done to
2455   // prevent a stop message with a bunch of spurious output on thread
2456   // status, as well as not pop a ProcessIOHandler.
2457   SetPublicState(state_after_launch, false);
2458 
2459   if (PrivateStateThreadIsValid())
2460     ResumePrivateStateThread();
2461   else
2462     StartPrivateStateThread();
2463 
2464   // Target was stopped at entry as was intended. Need to notify the
2465   // listeners about it.
2466   if (launch_info.GetFlags().Test(eLaunchFlagStopAtEntry))
2467     HandlePrivateEvent(first_stop_event_sp);
2468 
2469   return Status();
2470 }
2471 
2472 Status Process::LaunchPrivate(ProcessLaunchInfo &launch_info, StateType &state,
2473                               EventSP &event_sp) {
2474   Status error;
2475   m_abi_sp.reset();
2476   m_dyld_up.reset();
2477   m_jit_loaders_up.reset();
2478   m_system_runtime_up.reset();
2479   m_os_up.reset();
2480   m_process_input_reader.reset();
2481 
2482   Module *exe_module = GetTarget().GetExecutableModulePointer();
2483 
2484   // The "remote executable path" is hooked up to the local Executable
2485   // module.  But we should be able to debug a remote process even if the
2486   // executable module only exists on the remote.  However, there needs to
2487   // be a way to express this path, without actually having a module.
2488   // The way to do that is to set the ExecutableFile in the LaunchInfo.
2489   // Figure that out here:
2490 
2491   FileSpec exe_spec_to_use;
2492   if (!exe_module) {
2493     if (!launch_info.GetExecutableFile()) {
2494       error.SetErrorString("executable module does not exist");
2495       return error;
2496     }
2497     exe_spec_to_use = launch_info.GetExecutableFile();
2498   } else
2499     exe_spec_to_use = exe_module->GetFileSpec();
2500 
2501   if (exe_module && FileSystem::Instance().Exists(exe_module->GetFileSpec())) {
2502     // Install anything that might need to be installed prior to launching.
2503     // For host systems, this will do nothing, but if we are connected to a
2504     // remote platform it will install any needed binaries
2505     error = GetTarget().Install(&launch_info);
2506     if (error.Fail())
2507       return error;
2508   }
2509 
2510   // Listen and queue events that are broadcasted during the process launch.
2511   ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack"));
2512   HijackProcessEvents(listener_sp);
2513   auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); });
2514 
2515   if (PrivateStateThreadIsValid())
2516     PausePrivateStateThread();
2517 
2518   error = WillLaunch(exe_module);
2519   if (error.Fail()) {
2520     std::string local_exec_file_path = exe_spec_to_use.GetPath();
2521     return Status("file doesn't exist: '%s'", local_exec_file_path.c_str());
2522   }
2523 
2524   const bool restarted = false;
2525   SetPublicState(eStateLaunching, restarted);
2526   m_should_detach = false;
2527 
2528   if (m_public_run_lock.TrySetRunning()) {
2529     // Now launch using these arguments.
2530     error = DoLaunch(exe_module, launch_info);
2531   } else {
2532     // This shouldn't happen
2533     error.SetErrorString("failed to acquire process run lock");
2534   }
2535 
2536   if (error.Fail()) {
2537     if (GetID() != LLDB_INVALID_PROCESS_ID) {
2538       SetID(LLDB_INVALID_PROCESS_ID);
2539       const char *error_string = error.AsCString();
2540       if (error_string == nullptr)
2541         error_string = "launch failed";
2542       SetExitStatus(-1, error_string);
2543     }
2544     return error;
2545   }
2546 
2547   // Now wait for the process to launch and return control to us, and then
2548   // call DidLaunch:
2549   state = WaitForProcessStopPrivate(event_sp, seconds(10));
2550 
2551   if (state == eStateInvalid || !event_sp) {
2552     // We were able to launch the process, but we failed to catch the
2553     // initial stop.
2554     error.SetErrorString("failed to catch stop after launch");
2555     SetExitStatus(0, error.AsCString());
2556     Destroy(false);
2557     return error;
2558   }
2559 
2560   if (state == eStateExited) {
2561     // We exited while trying to launch somehow.  Don't call DidLaunch
2562     // as that's not likely to work, and return an invalid pid.
2563     HandlePrivateEvent(event_sp);
2564     return Status();
2565   }
2566 
2567   if (state == eStateStopped || state == eStateCrashed) {
2568     DidLaunch();
2569 
2570     DynamicLoader *dyld = GetDynamicLoader();
2571     if (dyld)
2572       dyld->DidLaunch();
2573 
2574     GetJITLoaders().DidLaunch();
2575 
2576     SystemRuntime *system_runtime = GetSystemRuntime();
2577     if (system_runtime)
2578       system_runtime->DidLaunch();
2579 
2580     if (!m_os_up)
2581       LoadOperatingSystemPlugin(false);
2582 
2583     // We successfully launched the process and stopped, now it the
2584     // right time to set up signal filters before resuming.
2585     UpdateAutomaticSignalFiltering();
2586     return Status();
2587   }
2588 
2589   return Status("Unexpected process state after the launch: %s, expected %s, "
2590                 "%s, %s or %s",
2591                 StateAsCString(state), StateAsCString(eStateInvalid),
2592                 StateAsCString(eStateExited), StateAsCString(eStateStopped),
2593                 StateAsCString(eStateCrashed));
2594 }
2595 
2596 Status Process::LoadCore() {
2597   Status error = DoLoadCore();
2598   if (error.Success()) {
2599     ListenerSP listener_sp(
2600         Listener::MakeListener("lldb.process.load_core_listener"));
2601     HijackProcessEvents(listener_sp);
2602 
2603     if (PrivateStateThreadIsValid())
2604       ResumePrivateStateThread();
2605     else
2606       StartPrivateStateThread();
2607 
2608     DynamicLoader *dyld = GetDynamicLoader();
2609     if (dyld)
2610       dyld->DidAttach();
2611 
2612     GetJITLoaders().DidAttach();
2613 
2614     SystemRuntime *system_runtime = GetSystemRuntime();
2615     if (system_runtime)
2616       system_runtime->DidAttach();
2617 
2618     if (!m_os_up)
2619       LoadOperatingSystemPlugin(false);
2620 
2621     // We successfully loaded a core file, now pretend we stopped so we can
2622     // show all of the threads in the core file and explore the crashed state.
2623     SetPrivateState(eStateStopped);
2624 
2625     // Wait for a stopped event since we just posted one above...
2626     lldb::EventSP event_sp;
2627     StateType state =
2628         WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp);
2629 
2630     if (!StateIsStoppedState(state, false)) {
2631       Log *log = GetLog(LLDBLog::Process);
2632       LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s",
2633                 StateAsCString(state));
2634       error.SetErrorString(
2635           "Did not get stopped event after loading the core file.");
2636     }
2637     RestoreProcessEvents();
2638   }
2639   return error;
2640 }
2641 
2642 DynamicLoader *Process::GetDynamicLoader() {
2643   if (!m_dyld_up)
2644     m_dyld_up.reset(DynamicLoader::FindPlugin(this, ""));
2645   return m_dyld_up.get();
2646 }
2647 
2648 DataExtractor Process::GetAuxvData() { return DataExtractor(); }
2649 
2650 llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) {
2651   return false;
2652 }
2653 
2654 JITLoaderList &Process::GetJITLoaders() {
2655   if (!m_jit_loaders_up) {
2656     m_jit_loaders_up = std::make_unique<JITLoaderList>();
2657     JITLoader::LoadPlugins(this, *m_jit_loaders_up);
2658   }
2659   return *m_jit_loaders_up;
2660 }
2661 
2662 SystemRuntime *Process::GetSystemRuntime() {
2663   if (!m_system_runtime_up)
2664     m_system_runtime_up.reset(SystemRuntime::FindPlugin(this));
2665   return m_system_runtime_up.get();
2666 }
2667 
2668 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process,
2669                                                           uint32_t exec_count)
2670     : NextEventAction(process), m_exec_count(exec_count) {
2671   Log *log = GetLog(LLDBLog::Process);
2672   LLDB_LOGF(
2673       log,
2674       "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32,
2675       __FUNCTION__, static_cast<void *>(process), exec_count);
2676 }
2677 
2678 Process::NextEventAction::EventActionResult
2679 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) {
2680   Log *log = GetLog(LLDBLog::Process);
2681 
2682   StateType state = ProcessEventData::GetStateFromEvent(event_sp.get());
2683   LLDB_LOGF(log,
2684             "Process::AttachCompletionHandler::%s called with state %s (%d)",
2685             __FUNCTION__, StateAsCString(state), static_cast<int>(state));
2686 
2687   switch (state) {
2688   case eStateAttaching:
2689     return eEventActionSuccess;
2690 
2691   case eStateRunning:
2692   case eStateConnected:
2693     return eEventActionRetry;
2694 
2695   case eStateStopped:
2696   case eStateCrashed:
2697     // During attach, prior to sending the eStateStopped event,
2698     // lldb_private::Process subclasses must set the new process ID.
2699     assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID);
2700     // We don't want these events to be reported, so go set the
2701     // ShouldReportStop here:
2702     m_process->GetThreadList().SetShouldReportStop(eVoteNo);
2703 
2704     if (m_exec_count > 0) {
2705       --m_exec_count;
2706 
2707       LLDB_LOGF(log,
2708                 "Process::AttachCompletionHandler::%s state %s: reduced "
2709                 "remaining exec count to %" PRIu32 ", requesting resume",
2710                 __FUNCTION__, StateAsCString(state), m_exec_count);
2711 
2712       RequestResume();
2713       return eEventActionRetry;
2714     } else {
2715       LLDB_LOGF(log,
2716                 "Process::AttachCompletionHandler::%s state %s: no more "
2717                 "execs expected to start, continuing with attach",
2718                 __FUNCTION__, StateAsCString(state));
2719 
2720       m_process->CompleteAttach();
2721       return eEventActionSuccess;
2722     }
2723     break;
2724 
2725   default:
2726   case eStateExited:
2727   case eStateInvalid:
2728     break;
2729   }
2730 
2731   m_exit_string.assign("No valid Process");
2732   return eEventActionExit;
2733 }
2734 
2735 Process::NextEventAction::EventActionResult
2736 Process::AttachCompletionHandler::HandleBeingInterrupted() {
2737   return eEventActionSuccess;
2738 }
2739 
2740 const char *Process::AttachCompletionHandler::GetExitString() {
2741   return m_exit_string.c_str();
2742 }
2743 
2744 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) {
2745   if (m_listener_sp)
2746     return m_listener_sp;
2747   else
2748     return debugger.GetListener();
2749 }
2750 
2751 Status Process::Attach(ProcessAttachInfo &attach_info) {
2752   m_abi_sp.reset();
2753   m_process_input_reader.reset();
2754   m_dyld_up.reset();
2755   m_jit_loaders_up.reset();
2756   m_system_runtime_up.reset();
2757   m_os_up.reset();
2758 
2759   lldb::pid_t attach_pid = attach_info.GetProcessID();
2760   Status error;
2761   if (attach_pid == LLDB_INVALID_PROCESS_ID) {
2762     char process_name[PATH_MAX];
2763 
2764     if (attach_info.GetExecutableFile().GetPath(process_name,
2765                                                 sizeof(process_name))) {
2766       const bool wait_for_launch = attach_info.GetWaitForLaunch();
2767 
2768       if (wait_for_launch) {
2769         error = WillAttachToProcessWithName(process_name, wait_for_launch);
2770         if (error.Success()) {
2771           if (m_public_run_lock.TrySetRunning()) {
2772             m_should_detach = true;
2773             const bool restarted = false;
2774             SetPublicState(eStateAttaching, restarted);
2775             // Now attach using these arguments.
2776             error = DoAttachToProcessWithName(process_name, attach_info);
2777           } else {
2778             // This shouldn't happen
2779             error.SetErrorString("failed to acquire process run lock");
2780           }
2781 
2782           if (error.Fail()) {
2783             if (GetID() != LLDB_INVALID_PROCESS_ID) {
2784               SetID(LLDB_INVALID_PROCESS_ID);
2785               if (error.AsCString() == nullptr)
2786                 error.SetErrorString("attach failed");
2787 
2788               SetExitStatus(-1, error.AsCString());
2789             }
2790           } else {
2791             SetNextEventAction(new Process::AttachCompletionHandler(
2792                 this, attach_info.GetResumeCount()));
2793             StartPrivateStateThread();
2794           }
2795           return error;
2796         }
2797       } else {
2798         ProcessInstanceInfoList process_infos;
2799         PlatformSP platform_sp(GetTarget().GetPlatform());
2800 
2801         if (platform_sp) {
2802           ProcessInstanceInfoMatch match_info;
2803           match_info.GetProcessInfo() = attach_info;
2804           match_info.SetNameMatchType(NameMatch::Equals);
2805           platform_sp->FindProcesses(match_info, process_infos);
2806           const uint32_t num_matches = process_infos.size();
2807           if (num_matches == 1) {
2808             attach_pid = process_infos[0].GetProcessID();
2809             // Fall through and attach using the above process ID
2810           } else {
2811             match_info.GetProcessInfo().GetExecutableFile().GetPath(
2812                 process_name, sizeof(process_name));
2813             if (num_matches > 1) {
2814               StreamString s;
2815               ProcessInstanceInfo::DumpTableHeader(s, true, false);
2816               for (size_t i = 0; i < num_matches; i++) {
2817                 process_infos[i].DumpAsTableRow(
2818                     s, platform_sp->GetUserIDResolver(), true, false);
2819               }
2820               error.SetErrorStringWithFormat(
2821                   "more than one process named %s:\n%s", process_name,
2822                   s.GetData());
2823             } else
2824               error.SetErrorStringWithFormat(
2825                   "could not find a process named %s", process_name);
2826           }
2827         } else {
2828           error.SetErrorString(
2829               "invalid platform, can't find processes by name");
2830           return error;
2831         }
2832       }
2833     } else {
2834       error.SetErrorString("invalid process name");
2835     }
2836   }
2837 
2838   if (attach_pid != LLDB_INVALID_PROCESS_ID) {
2839     error = WillAttachToProcessWithID(attach_pid);
2840     if (error.Success()) {
2841 
2842       if (m_public_run_lock.TrySetRunning()) {
2843         // Now attach using these arguments.
2844         m_should_detach = true;
2845         const bool restarted = false;
2846         SetPublicState(eStateAttaching, restarted);
2847         error = DoAttachToProcessWithID(attach_pid, attach_info);
2848       } else {
2849         // This shouldn't happen
2850         error.SetErrorString("failed to acquire process run lock");
2851       }
2852 
2853       if (error.Success()) {
2854         SetNextEventAction(new Process::AttachCompletionHandler(
2855             this, attach_info.GetResumeCount()));
2856         StartPrivateStateThread();
2857       } else {
2858         if (GetID() != LLDB_INVALID_PROCESS_ID)
2859           SetID(LLDB_INVALID_PROCESS_ID);
2860 
2861         const char *error_string = error.AsCString();
2862         if (error_string == nullptr)
2863           error_string = "attach failed";
2864 
2865         SetExitStatus(-1, error_string);
2866       }
2867     }
2868   }
2869   return error;
2870 }
2871 
2872 void Process::CompleteAttach() {
2873   Log *log(GetLog(LLDBLog::Process | LLDBLog::Target));
2874   LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
2875 
2876   // Let the process subclass figure out at much as it can about the process
2877   // before we go looking for a dynamic loader plug-in.
2878   ArchSpec process_arch;
2879   DidAttach(process_arch);
2880 
2881   if (process_arch.IsValid()) {
2882     GetTarget().SetArchitecture(process_arch);
2883     if (log) {
2884       const char *triple_str = process_arch.GetTriple().getTriple().c_str();
2885       LLDB_LOGF(log,
2886                 "Process::%s replacing process architecture with DidAttach() "
2887                 "architecture: %s",
2888                 __FUNCTION__, triple_str ? triple_str : "<null>");
2889     }
2890   }
2891 
2892   // We just attached.  If we have a platform, ask it for the process
2893   // architecture, and if it isn't the same as the one we've already set,
2894   // switch architectures.
2895   PlatformSP platform_sp(GetTarget().GetPlatform());
2896   assert(platform_sp);
2897   ArchSpec process_host_arch = GetSystemArchitecture();
2898   if (platform_sp) {
2899     const ArchSpec &target_arch = GetTarget().GetArchitecture();
2900     if (target_arch.IsValid() &&
2901         !platform_sp->IsCompatibleArchitecture(target_arch, process_host_arch,
2902                                                false, nullptr)) {
2903       ArchSpec platform_arch;
2904       platform_sp = GetTarget().GetDebugger().GetPlatformList().GetOrCreate(
2905           target_arch, process_host_arch, &platform_arch);
2906       if (platform_sp) {
2907         GetTarget().SetPlatform(platform_sp);
2908         GetTarget().SetArchitecture(platform_arch);
2909         LLDB_LOG(log,
2910                  "switching platform to {0} and architecture to {1} based on "
2911                  "info from attach",
2912                  platform_sp->GetName(), platform_arch.GetTriple().getTriple());
2913       }
2914     } else if (!process_arch.IsValid()) {
2915       ProcessInstanceInfo process_info;
2916       GetProcessInfo(process_info);
2917       const ArchSpec &process_arch = process_info.GetArchitecture();
2918       const ArchSpec &target_arch = GetTarget().GetArchitecture();
2919       if (process_arch.IsValid() &&
2920           target_arch.IsCompatibleMatch(process_arch) &&
2921           !target_arch.IsExactMatch(process_arch)) {
2922         GetTarget().SetArchitecture(process_arch);
2923         LLDB_LOGF(log,
2924                   "Process::%s switching architecture to %s based on info "
2925                   "the platform retrieved for pid %" PRIu64,
2926                   __FUNCTION__, process_arch.GetTriple().getTriple().c_str(),
2927                   GetID());
2928       }
2929     }
2930   }
2931 
2932   // We have completed the attach, now it is time to find the dynamic loader
2933   // plug-in
2934   DynamicLoader *dyld = GetDynamicLoader();
2935   if (dyld) {
2936     dyld->DidAttach();
2937     if (log) {
2938       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2939       LLDB_LOG(log,
2940                "after DynamicLoader::DidAttach(), target "
2941                "executable is {0} (using {1} plugin)",
2942                exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
2943                dyld->GetPluginName());
2944     }
2945   }
2946 
2947   GetJITLoaders().DidAttach();
2948 
2949   SystemRuntime *system_runtime = GetSystemRuntime();
2950   if (system_runtime) {
2951     system_runtime->DidAttach();
2952     if (log) {
2953       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2954       LLDB_LOG(log,
2955                "after SystemRuntime::DidAttach(), target "
2956                "executable is {0} (using {1} plugin)",
2957                exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
2958                system_runtime->GetPluginName());
2959     }
2960   }
2961 
2962   if (!m_os_up) {
2963     LoadOperatingSystemPlugin(false);
2964     if (m_os_up) {
2965       // Somebody might have gotten threads before now, but we need to force the
2966       // update after we've loaded the OperatingSystem plugin or it won't get a
2967       // chance to process the threads.
2968       m_thread_list.Clear();
2969       UpdateThreadListIfNeeded();
2970     }
2971   }
2972   // Figure out which one is the executable, and set that in our target:
2973   ModuleSP new_executable_module_sp;
2974   for (ModuleSP module_sp : GetTarget().GetImages().Modules()) {
2975     if (module_sp && module_sp->IsExecutable()) {
2976       if (GetTarget().GetExecutableModulePointer() != module_sp.get())
2977         new_executable_module_sp = module_sp;
2978       break;
2979     }
2980   }
2981   if (new_executable_module_sp) {
2982     GetTarget().SetExecutableModule(new_executable_module_sp,
2983                                     eLoadDependentsNo);
2984     if (log) {
2985       ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2986       LLDB_LOGF(
2987           log,
2988           "Process::%s after looping through modules, target executable is %s",
2989           __FUNCTION__,
2990           exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
2991                         : "<none>");
2992     }
2993   }
2994 }
2995 
2996 Status Process::ConnectRemote(llvm::StringRef remote_url) {
2997   m_abi_sp.reset();
2998   m_process_input_reader.reset();
2999 
3000   // Find the process and its architecture.  Make sure it matches the
3001   // architecture of the current Target, and if not adjust it.
3002 
3003   Status error(DoConnectRemote(remote_url));
3004   if (error.Success()) {
3005     if (GetID() != LLDB_INVALID_PROCESS_ID) {
3006       EventSP event_sp;
3007       StateType state = WaitForProcessStopPrivate(event_sp, llvm::None);
3008 
3009       if (state == eStateStopped || state == eStateCrashed) {
3010         // If we attached and actually have a process on the other end, then
3011         // this ended up being the equivalent of an attach.
3012         CompleteAttach();
3013 
3014         // This delays passing the stopped event to listeners till
3015         // CompleteAttach gets a chance to complete...
3016         HandlePrivateEvent(event_sp);
3017       }
3018     }
3019 
3020     if (PrivateStateThreadIsValid())
3021       ResumePrivateStateThread();
3022     else
3023       StartPrivateStateThread();
3024   }
3025   return error;
3026 }
3027 
3028 Status Process::PrivateResume() {
3029   Log *log(GetLog(LLDBLog::Process | LLDBLog::Step));
3030   LLDB_LOGF(log,
3031             "Process::PrivateResume() m_stop_id = %u, public state: %s "
3032             "private state: %s",
3033             m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()),
3034             StateAsCString(m_private_state.GetValue()));
3035 
3036   // If signals handing status changed we might want to update our signal
3037   // filters before resuming.
3038   UpdateAutomaticSignalFiltering();
3039 
3040   Status error(WillResume());
3041   // Tell the process it is about to resume before the thread list
3042   if (error.Success()) {
3043     // Now let the thread list know we are about to resume so it can let all of
3044     // our threads know that they are about to be resumed. Threads will each be
3045     // called with Thread::WillResume(StateType) where StateType contains the
3046     // state that they are supposed to have when the process is resumed
3047     // (suspended/running/stepping). Threads should also check their resume
3048     // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to
3049     // start back up with a signal.
3050     if (m_thread_list.WillResume()) {
3051       // Last thing, do the PreResumeActions.
3052       if (!RunPreResumeActions()) {
3053         error.SetErrorString(
3054             "Process::PrivateResume PreResumeActions failed, not resuming.");
3055       } else {
3056         m_mod_id.BumpResumeID();
3057         error = DoResume();
3058         if (error.Success()) {
3059           DidResume();
3060           m_thread_list.DidResume();
3061           LLDB_LOGF(log, "Process thinks the process has resumed.");
3062         } else {
3063           LLDB_LOGF(log, "Process::PrivateResume() DoResume failed.");
3064           return error;
3065         }
3066       }
3067     } else {
3068       // Somebody wanted to run without running (e.g. we were faking a step
3069       // from one frame of a set of inlined frames that share the same PC to
3070       // another.)  So generate a continue & a stopped event, and let the world
3071       // handle them.
3072       LLDB_LOGF(log,
3073                 "Process::PrivateResume() asked to simulate a start & stop.");
3074 
3075       SetPrivateState(eStateRunning);
3076       SetPrivateState(eStateStopped);
3077     }
3078   } else
3079     LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".",
3080               error.AsCString("<unknown error>"));
3081   return error;
3082 }
3083 
3084 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) {
3085   if (!StateIsRunningState(m_public_state.GetValue()))
3086     return Status("Process is not running.");
3087 
3088   // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in
3089   // case it was already set and some thread plan logic calls halt on its own.
3090   m_clear_thread_plans_on_stop |= clear_thread_plans;
3091 
3092   ListenerSP halt_listener_sp(
3093       Listener::MakeListener("lldb.process.halt_listener"));
3094   HijackProcessEvents(halt_listener_sp);
3095 
3096   EventSP event_sp;
3097 
3098   SendAsyncInterrupt();
3099 
3100   if (m_public_state.GetValue() == eStateAttaching) {
3101     // Don't hijack and eat the eStateExited as the code that was doing the
3102     // attach will be waiting for this event...
3103     RestoreProcessEvents();
3104     SetExitStatus(SIGKILL, "Cancelled async attach.");
3105     Destroy(false);
3106     return Status();
3107   }
3108 
3109   // Wait for the process halt timeout seconds for the process to stop.
3110   StateType state =
3111       WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true,
3112                            halt_listener_sp, nullptr, use_run_lock);
3113   RestoreProcessEvents();
3114 
3115   if (state == eStateInvalid || !event_sp) {
3116     // We timed out and didn't get a stop event...
3117     return Status("Halt timed out. State = %s", StateAsCString(GetState()));
3118   }
3119 
3120   BroadcastEvent(event_sp);
3121 
3122   return Status();
3123 }
3124 
3125 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) {
3126   Status error;
3127 
3128   // Check both the public & private states here.  If we're hung evaluating an
3129   // expression, for instance, then the public state will be stopped, but we
3130   // still need to interrupt.
3131   if (m_public_state.GetValue() == eStateRunning ||
3132       m_private_state.GetValue() == eStateRunning) {
3133     Log *log = GetLog(LLDBLog::Process);
3134     LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__);
3135 
3136     ListenerSP listener_sp(
3137         Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack"));
3138     HijackProcessEvents(listener_sp);
3139 
3140     SendAsyncInterrupt();
3141 
3142     // Consume the interrupt event.
3143     StateType state = WaitForProcessToStop(GetInterruptTimeout(),
3144                                            &exit_event_sp, true, listener_sp);
3145 
3146     RestoreProcessEvents();
3147 
3148     // If the process exited while we were waiting for it to stop, put the
3149     // exited event into the shared pointer passed in and return.  Our caller
3150     // doesn't need to do anything else, since they don't have a process
3151     // anymore...
3152 
3153     if (state == eStateExited || m_private_state.GetValue() == eStateExited) {
3154       LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.",
3155                 __FUNCTION__);
3156       return error;
3157     } else
3158       exit_event_sp.reset(); // It is ok to consume any non-exit stop events
3159 
3160     if (state != eStateStopped) {
3161       LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__,
3162                 StateAsCString(state));
3163       // If we really couldn't stop the process then we should just error out
3164       // here, but if the lower levels just bobbled sending the event and we
3165       // really are stopped, then continue on.
3166       StateType private_state = m_private_state.GetValue();
3167       if (private_state != eStateStopped) {
3168         return Status(
3169             "Attempt to stop the target in order to detach timed out. "
3170             "State = %s",
3171             StateAsCString(GetState()));
3172       }
3173     }
3174   }
3175   return error;
3176 }
3177 
3178 Status Process::Detach(bool keep_stopped) {
3179   EventSP exit_event_sp;
3180   Status error;
3181   m_destroy_in_process = true;
3182 
3183   error = WillDetach();
3184 
3185   if (error.Success()) {
3186     if (DetachRequiresHalt()) {
3187       error = StopForDestroyOrDetach(exit_event_sp);
3188       if (!error.Success()) {
3189         m_destroy_in_process = false;
3190         return error;
3191       } else if (exit_event_sp) {
3192         // We shouldn't need to do anything else here.  There's no process left
3193         // to detach from...
3194         StopPrivateStateThread();
3195         m_destroy_in_process = false;
3196         return error;
3197       }
3198     }
3199 
3200     m_thread_list.DiscardThreadPlans();
3201     DisableAllBreakpointSites();
3202 
3203     error = DoDetach(keep_stopped);
3204     if (error.Success()) {
3205       DidDetach();
3206       StopPrivateStateThread();
3207     } else {
3208       return error;
3209     }
3210   }
3211   m_destroy_in_process = false;
3212 
3213   // If we exited when we were waiting for a process to stop, then forward the
3214   // event here so we don't lose the event
3215   if (exit_event_sp) {
3216     // Directly broadcast our exited event because we shut down our private
3217     // state thread above
3218     BroadcastEvent(exit_event_sp);
3219   }
3220 
3221   // If we have been interrupted (to kill us) in the middle of running, we may
3222   // not end up propagating the last events through the event system, in which
3223   // case we might strand the write lock.  Unlock it here so when we do to tear
3224   // down the process we don't get an error destroying the lock.
3225 
3226   m_public_run_lock.SetStopped();
3227   return error;
3228 }
3229 
3230 Status Process::Destroy(bool force_kill) {
3231   // If we've already called Process::Finalize then there's nothing useful to
3232   // be done here.  Finalize has actually called Destroy already.
3233   if (m_finalizing)
3234     return {};
3235   return DestroyImpl(force_kill);
3236 }
3237 
3238 Status Process::DestroyImpl(bool force_kill) {
3239   // Tell ourselves we are in the process of destroying the process, so that we
3240   // don't do any unnecessary work that might hinder the destruction.  Remember
3241   // to set this back to false when we are done.  That way if the attempt
3242   // failed and the process stays around for some reason it won't be in a
3243   // confused state.
3244 
3245   if (force_kill)
3246     m_should_detach = false;
3247 
3248   if (GetShouldDetach()) {
3249     // FIXME: This will have to be a process setting:
3250     bool keep_stopped = false;
3251     Detach(keep_stopped);
3252   }
3253 
3254   m_destroy_in_process = true;
3255 
3256   Status error(WillDestroy());
3257   if (error.Success()) {
3258     EventSP exit_event_sp;
3259     if (DestroyRequiresHalt()) {
3260       error = StopForDestroyOrDetach(exit_event_sp);
3261     }
3262 
3263     if (m_public_state.GetValue() == eStateStopped) {
3264       // Ditch all thread plans, and remove all our breakpoints: in case we
3265       // have to restart the target to kill it, we don't want it hitting a
3266       // breakpoint... Only do this if we've stopped, however, since if we
3267       // didn't manage to halt it above, then we're not going to have much luck
3268       // doing this now.
3269       m_thread_list.DiscardThreadPlans();
3270       DisableAllBreakpointSites();
3271     }
3272 
3273     error = DoDestroy();
3274     if (error.Success()) {
3275       DidDestroy();
3276       StopPrivateStateThread();
3277     }
3278     m_stdio_communication.StopReadThread();
3279     m_stdio_communication.Disconnect();
3280     m_stdin_forward = false;
3281 
3282     if (m_process_input_reader) {
3283       m_process_input_reader->SetIsDone(true);
3284       m_process_input_reader->Cancel();
3285       m_process_input_reader.reset();
3286     }
3287 
3288     // If we exited when we were waiting for a process to stop, then forward
3289     // the event here so we don't lose the event
3290     if (exit_event_sp) {
3291       // Directly broadcast our exited event because we shut down our private
3292       // state thread above
3293       BroadcastEvent(exit_event_sp);
3294     }
3295 
3296     // If we have been interrupted (to kill us) in the middle of running, we
3297     // may not end up propagating the last events through the event system, in
3298     // which case we might strand the write lock.  Unlock it here so when we do
3299     // to tear down the process we don't get an error destroying the lock.
3300     m_public_run_lock.SetStopped();
3301   }
3302 
3303   m_destroy_in_process = false;
3304 
3305   return error;
3306 }
3307 
3308 Status Process::Signal(int signal) {
3309   Status error(WillSignal());
3310   if (error.Success()) {
3311     error = DoSignal(signal);
3312     if (error.Success())
3313       DidSignal();
3314   }
3315   return error;
3316 }
3317 
3318 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) {
3319   assert(signals_sp && "null signals_sp");
3320   m_unix_signals_sp = signals_sp;
3321 }
3322 
3323 const lldb::UnixSignalsSP &Process::GetUnixSignals() {
3324   assert(m_unix_signals_sp && "null m_unix_signals_sp");
3325   return m_unix_signals_sp;
3326 }
3327 
3328 lldb::ByteOrder Process::GetByteOrder() const {
3329   return GetTarget().GetArchitecture().GetByteOrder();
3330 }
3331 
3332 uint32_t Process::GetAddressByteSize() const {
3333   return GetTarget().GetArchitecture().GetAddressByteSize();
3334 }
3335 
3336 bool Process::ShouldBroadcastEvent(Event *event_ptr) {
3337   const StateType state =
3338       Process::ProcessEventData::GetStateFromEvent(event_ptr);
3339   bool return_value = true;
3340   Log *log(GetLog(LLDBLog::Events | LLDBLog::Process));
3341 
3342   switch (state) {
3343   case eStateDetached:
3344   case eStateExited:
3345   case eStateUnloaded:
3346     m_stdio_communication.SynchronizeWithReadThread();
3347     m_stdio_communication.StopReadThread();
3348     m_stdio_communication.Disconnect();
3349     m_stdin_forward = false;
3350 
3351     LLVM_FALLTHROUGH;
3352   case eStateConnected:
3353   case eStateAttaching:
3354   case eStateLaunching:
3355     // These events indicate changes in the state of the debugging session,
3356     // always report them.
3357     return_value = true;
3358     break;
3359   case eStateInvalid:
3360     // We stopped for no apparent reason, don't report it.
3361     return_value = false;
3362     break;
3363   case eStateRunning:
3364   case eStateStepping:
3365     // If we've started the target running, we handle the cases where we are
3366     // already running and where there is a transition from stopped to running
3367     // differently. running -> running: Automatically suppress extra running
3368     // events stopped -> running: Report except when there is one or more no
3369     // votes
3370     //     and no yes votes.
3371     SynchronouslyNotifyStateChanged(state);
3372     if (m_force_next_event_delivery)
3373       return_value = true;
3374     else {
3375       switch (m_last_broadcast_state) {
3376       case eStateRunning:
3377       case eStateStepping:
3378         // We always suppress multiple runnings with no PUBLIC stop in between.
3379         return_value = false;
3380         break;
3381       default:
3382         // TODO: make this work correctly. For now always report
3383         // run if we aren't running so we don't miss any running events. If I
3384         // run the lldb/test/thread/a.out file and break at main.cpp:58, run
3385         // and hit the breakpoints on multiple threads, then somehow during the
3386         // stepping over of all breakpoints no run gets reported.
3387 
3388         // This is a transition from stop to run.
3389         switch (m_thread_list.ShouldReportRun(event_ptr)) {
3390         case eVoteYes:
3391         case eVoteNoOpinion:
3392           return_value = true;
3393           break;
3394         case eVoteNo:
3395           return_value = false;
3396           break;
3397         }
3398         break;
3399       }
3400     }
3401     break;
3402   case eStateStopped:
3403   case eStateCrashed:
3404   case eStateSuspended:
3405     // We've stopped.  First see if we're going to restart the target. If we
3406     // are going to stop, then we always broadcast the event. If we aren't
3407     // going to stop, let the thread plans decide if we're going to report this
3408     // event. If no thread has an opinion, we don't report it.
3409 
3410     m_stdio_communication.SynchronizeWithReadThread();
3411     RefreshStateAfterStop();
3412     if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) {
3413       LLDB_LOGF(log,
3414                 "Process::ShouldBroadcastEvent (%p) stopped due to an "
3415                 "interrupt, state: %s",
3416                 static_cast<void *>(event_ptr), StateAsCString(state));
3417       // Even though we know we are going to stop, we should let the threads
3418       // have a look at the stop, so they can properly set their state.
3419       m_thread_list.ShouldStop(event_ptr);
3420       return_value = true;
3421     } else {
3422       bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr);
3423       bool should_resume = false;
3424 
3425       // It makes no sense to ask "ShouldStop" if we've already been
3426       // restarted... Asking the thread list is also not likely to go well,
3427       // since we are running again. So in that case just report the event.
3428 
3429       if (!was_restarted)
3430         should_resume = !m_thread_list.ShouldStop(event_ptr);
3431 
3432       if (was_restarted || should_resume || m_resume_requested) {
3433         Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr);
3434         LLDB_LOGF(log,
3435                   "Process::ShouldBroadcastEvent: should_resume: %i state: "
3436                   "%s was_restarted: %i report_stop_vote: %d.",
3437                   should_resume, StateAsCString(state), was_restarted,
3438                   report_stop_vote);
3439 
3440         switch (report_stop_vote) {
3441         case eVoteYes:
3442           return_value = true;
3443           break;
3444         case eVoteNoOpinion:
3445         case eVoteNo:
3446           return_value = false;
3447           break;
3448         }
3449 
3450         if (!was_restarted) {
3451           LLDB_LOGF(log,
3452                     "Process::ShouldBroadcastEvent (%p) Restarting process "
3453                     "from state: %s",
3454                     static_cast<void *>(event_ptr), StateAsCString(state));
3455           ProcessEventData::SetRestartedInEvent(event_ptr, true);
3456           PrivateResume();
3457         }
3458       } else {
3459         return_value = true;
3460         SynchronouslyNotifyStateChanged(state);
3461       }
3462     }
3463     break;
3464   }
3465 
3466   // Forcing the next event delivery is a one shot deal.  So reset it here.
3467   m_force_next_event_delivery = false;
3468 
3469   // We do some coalescing of events (for instance two consecutive running
3470   // events get coalesced.) But we only coalesce against events we actually
3471   // broadcast.  So we use m_last_broadcast_state to track that.  NB - you
3472   // can't use "m_public_state.GetValue()" for that purpose, as was originally
3473   // done, because the PublicState reflects the last event pulled off the
3474   // queue, and there may be several events stacked up on the queue unserviced.
3475   // So the PublicState may not reflect the last broadcasted event yet.
3476   // m_last_broadcast_state gets updated here.
3477 
3478   if (return_value)
3479     m_last_broadcast_state = state;
3480 
3481   LLDB_LOGF(log,
3482             "Process::ShouldBroadcastEvent (%p) => new state: %s, last "
3483             "broadcast state: %s - %s",
3484             static_cast<void *>(event_ptr), StateAsCString(state),
3485             StateAsCString(m_last_broadcast_state),
3486             return_value ? "YES" : "NO");
3487   return return_value;
3488 }
3489 
3490 bool Process::StartPrivateStateThread(bool is_secondary_thread) {
3491   Log *log = GetLog(LLDBLog::Events);
3492 
3493   bool already_running = PrivateStateThreadIsValid();
3494   LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__,
3495             already_running ? " already running"
3496                             : " starting private state thread");
3497 
3498   if (!is_secondary_thread && already_running)
3499     return true;
3500 
3501   // Create a thread that watches our internal state and controls which events
3502   // make it to clients (into the DCProcess event queue).
3503   char thread_name[1024];
3504   uint32_t max_len = llvm::get_max_thread_name_length();
3505   if (max_len > 0 && max_len <= 30) {
3506     // On platforms with abbreviated thread name lengths, choose thread names
3507     // that fit within the limit.
3508     if (already_running)
3509       snprintf(thread_name, sizeof(thread_name), "intern-state-OV");
3510     else
3511       snprintf(thread_name, sizeof(thread_name), "intern-state");
3512   } else {
3513     if (already_running)
3514       snprintf(thread_name, sizeof(thread_name),
3515                "<lldb.process.internal-state-override(pid=%" PRIu64 ")>",
3516                GetID());
3517     else
3518       snprintf(thread_name, sizeof(thread_name),
3519                "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID());
3520   }
3521 
3522   llvm::Expected<HostThread> private_state_thread =
3523       ThreadLauncher::LaunchThread(
3524           thread_name,
3525           [this, is_secondary_thread] {
3526             return RunPrivateStateThread(is_secondary_thread);
3527           },
3528           8 * 1024 * 1024);
3529   if (!private_state_thread) {
3530     LLDB_LOG(GetLog(LLDBLog::Host), "failed to launch host thread: {}",
3531              llvm::toString(private_state_thread.takeError()));
3532     return false;
3533   }
3534 
3535   assert(private_state_thread->IsJoinable());
3536   m_private_state_thread = *private_state_thread;
3537   ResumePrivateStateThread();
3538   return true;
3539 }
3540 
3541 void Process::PausePrivateStateThread() {
3542   ControlPrivateStateThread(eBroadcastInternalStateControlPause);
3543 }
3544 
3545 void Process::ResumePrivateStateThread() {
3546   ControlPrivateStateThread(eBroadcastInternalStateControlResume);
3547 }
3548 
3549 void Process::StopPrivateStateThread() {
3550   if (m_private_state_thread.IsJoinable())
3551     ControlPrivateStateThread(eBroadcastInternalStateControlStop);
3552   else {
3553     Log *log = GetLog(LLDBLog::Process);
3554     LLDB_LOGF(
3555         log,
3556         "Went to stop the private state thread, but it was already invalid.");
3557   }
3558 }
3559 
3560 void Process::ControlPrivateStateThread(uint32_t signal) {
3561   Log *log = GetLog(LLDBLog::Process);
3562 
3563   assert(signal == eBroadcastInternalStateControlStop ||
3564          signal == eBroadcastInternalStateControlPause ||
3565          signal == eBroadcastInternalStateControlResume);
3566 
3567   LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal);
3568 
3569   // Signal the private state thread
3570   if (m_private_state_thread.IsJoinable()) {
3571     // Broadcast the event.
3572     // It is important to do this outside of the if below, because it's
3573     // possible that the thread state is invalid but that the thread is waiting
3574     // on a control event instead of simply being on its way out (this should
3575     // not happen, but it apparently can).
3576     LLDB_LOGF(log, "Sending control event of type: %d.", signal);
3577     std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt());
3578     m_private_state_control_broadcaster.BroadcastEvent(signal,
3579                                                        event_receipt_sp);
3580 
3581     // Wait for the event receipt or for the private state thread to exit
3582     bool receipt_received = false;
3583     if (PrivateStateThreadIsValid()) {
3584       while (!receipt_received) {
3585         // Check for a receipt for n seconds and then check if the private
3586         // state thread is still around.
3587         receipt_received =
3588           event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout());
3589         if (!receipt_received) {
3590           // Check if the private state thread is still around. If it isn't
3591           // then we are done waiting
3592           if (!PrivateStateThreadIsValid())
3593             break; // Private state thread exited or is exiting, we are done
3594         }
3595       }
3596     }
3597 
3598     if (signal == eBroadcastInternalStateControlStop) {
3599       thread_result_t result = {};
3600       m_private_state_thread.Join(&result);
3601       m_private_state_thread.Reset();
3602     }
3603   } else {
3604     LLDB_LOGF(
3605         log,
3606         "Private state thread already dead, no need to signal it to stop.");
3607   }
3608 }
3609 
3610 void Process::SendAsyncInterrupt() {
3611   if (PrivateStateThreadIsValid())
3612     m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt,
3613                                                nullptr);
3614   else
3615     BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr);
3616 }
3617 
3618 void Process::HandlePrivateEvent(EventSP &event_sp) {
3619   Log *log = GetLog(LLDBLog::Process);
3620   m_resume_requested = false;
3621 
3622   const StateType new_state =
3623       Process::ProcessEventData::GetStateFromEvent(event_sp.get());
3624 
3625   // First check to see if anybody wants a shot at this event:
3626   if (m_next_event_action_up) {
3627     NextEventAction::EventActionResult action_result =
3628         m_next_event_action_up->PerformAction(event_sp);
3629     LLDB_LOGF(log, "Ran next event action, result was %d.", action_result);
3630 
3631     switch (action_result) {
3632     case NextEventAction::eEventActionSuccess:
3633       SetNextEventAction(nullptr);
3634       break;
3635 
3636     case NextEventAction::eEventActionRetry:
3637       break;
3638 
3639     case NextEventAction::eEventActionExit:
3640       // Handle Exiting Here.  If we already got an exited event, we should
3641       // just propagate it.  Otherwise, swallow this event, and set our state
3642       // to exit so the next event will kill us.
3643       if (new_state != eStateExited) {
3644         // FIXME: should cons up an exited event, and discard this one.
3645         SetExitStatus(0, m_next_event_action_up->GetExitString());
3646         SetNextEventAction(nullptr);
3647         return;
3648       }
3649       SetNextEventAction(nullptr);
3650       break;
3651     }
3652   }
3653 
3654   // See if we should broadcast this state to external clients?
3655   const bool should_broadcast = ShouldBroadcastEvent(event_sp.get());
3656 
3657   if (should_broadcast) {
3658     const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged);
3659     if (log) {
3660       LLDB_LOGF(log,
3661                 "Process::%s (pid = %" PRIu64
3662                 ") broadcasting new state %s (old state %s) to %s",
3663                 __FUNCTION__, GetID(), StateAsCString(new_state),
3664                 StateAsCString(GetState()),
3665                 is_hijacked ? "hijacked" : "public");
3666     }
3667     Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get());
3668     if (StateIsRunningState(new_state)) {
3669       // Only push the input handler if we aren't fowarding events, as this
3670       // means the curses GUI is in use... Or don't push it if we are launching
3671       // since it will come up stopped.
3672       if (!GetTarget().GetDebugger().IsForwardingEvents() &&
3673           new_state != eStateLaunching && new_state != eStateAttaching) {
3674         PushProcessIOHandler();
3675         m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1,
3676                                   eBroadcastAlways);
3677         LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d",
3678                   __FUNCTION__, m_iohandler_sync.GetValue());
3679       }
3680     } else if (StateIsStoppedState(new_state, false)) {
3681       if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
3682         // If the lldb_private::Debugger is handling the events, we don't want
3683         // to pop the process IOHandler here, we want to do it when we receive
3684         // the stopped event so we can carefully control when the process
3685         // IOHandler is popped because when we stop we want to display some
3686         // text stating how and why we stopped, then maybe some
3687         // process/thread/frame info, and then we want the "(lldb) " prompt to
3688         // show up. If we pop the process IOHandler here, then we will cause
3689         // the command interpreter to become the top IOHandler after the
3690         // process pops off and it will update its prompt right away... See the
3691         // Debugger.cpp file where it calls the function as
3692         // "process_sp->PopProcessIOHandler()" to see where I am talking about.
3693         // Otherwise we end up getting overlapping "(lldb) " prompts and
3694         // garbled output.
3695         //
3696         // If we aren't handling the events in the debugger (which is indicated
3697         // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or
3698         // we are hijacked, then we always pop the process IO handler manually.
3699         // Hijacking happens when the internal process state thread is running
3700         // thread plans, or when commands want to run in synchronous mode and
3701         // they call "process->WaitForProcessToStop()". An example of something
3702         // that will hijack the events is a simple expression:
3703         //
3704         //  (lldb) expr (int)puts("hello")
3705         //
3706         // This will cause the internal process state thread to resume and halt
3707         // the process (and _it_ will hijack the eBroadcastBitStateChanged
3708         // events) and we do need the IO handler to be pushed and popped
3709         // correctly.
3710 
3711         if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents())
3712           PopProcessIOHandler();
3713       }
3714     }
3715 
3716     BroadcastEvent(event_sp);
3717   } else {
3718     if (log) {
3719       LLDB_LOGF(
3720           log,
3721           "Process::%s (pid = %" PRIu64
3722           ") suppressing state %s (old state %s): should_broadcast == false",
3723           __FUNCTION__, GetID(), StateAsCString(new_state),
3724           StateAsCString(GetState()));
3725     }
3726   }
3727 }
3728 
3729 Status Process::HaltPrivate() {
3730   EventSP event_sp;
3731   Status error(WillHalt());
3732   if (error.Fail())
3733     return error;
3734 
3735   // Ask the process subclass to actually halt our process
3736   bool caused_stop;
3737   error = DoHalt(caused_stop);
3738 
3739   DidHalt();
3740   return error;
3741 }
3742 
3743 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) {
3744   bool control_only = true;
3745 
3746   Log *log = GetLog(LLDBLog::Process);
3747   LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...",
3748             __FUNCTION__, static_cast<void *>(this), GetID());
3749 
3750   bool exit_now = false;
3751   bool interrupt_requested = false;
3752   while (!exit_now) {
3753     EventSP event_sp;
3754     GetEventsPrivate(event_sp, llvm::None, control_only);
3755     if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) {
3756       LLDB_LOGF(log,
3757                 "Process::%s (arg = %p, pid = %" PRIu64
3758                 ") got a control event: %d",
3759                 __FUNCTION__, static_cast<void *>(this), GetID(),
3760                 event_sp->GetType());
3761 
3762       switch (event_sp->GetType()) {
3763       case eBroadcastInternalStateControlStop:
3764         exit_now = true;
3765         break; // doing any internal state management below
3766 
3767       case eBroadcastInternalStateControlPause:
3768         control_only = true;
3769         break;
3770 
3771       case eBroadcastInternalStateControlResume:
3772         control_only = false;
3773         break;
3774       }
3775 
3776       continue;
3777     } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
3778       if (m_public_state.GetValue() == eStateAttaching) {
3779         LLDB_LOGF(log,
3780                   "Process::%s (arg = %p, pid = %" PRIu64
3781                   ") woke up with an interrupt while attaching - "
3782                   "forwarding interrupt.",
3783                   __FUNCTION__, static_cast<void *>(this), GetID());
3784         BroadcastEvent(eBroadcastBitInterrupt, nullptr);
3785       } else if (StateIsRunningState(m_last_broadcast_state)) {
3786         LLDB_LOGF(log,
3787                   "Process::%s (arg = %p, pid = %" PRIu64
3788                   ") woke up with an interrupt - Halting.",
3789                   __FUNCTION__, static_cast<void *>(this), GetID());
3790         Status error = HaltPrivate();
3791         if (error.Fail() && log)
3792           LLDB_LOGF(log,
3793                     "Process::%s (arg = %p, pid = %" PRIu64
3794                     ") failed to halt the process: %s",
3795                     __FUNCTION__, static_cast<void *>(this), GetID(),
3796                     error.AsCString());
3797         // Halt should generate a stopped event. Make a note of the fact that
3798         // we were doing the interrupt, so we can set the interrupted flag
3799         // after we receive the event. We deliberately set this to true even if
3800         // HaltPrivate failed, so that we can interrupt on the next natural
3801         // stop.
3802         interrupt_requested = true;
3803       } else {
3804         // This can happen when someone (e.g. Process::Halt) sees that we are
3805         // running and sends an interrupt request, but the process actually
3806         // stops before we receive it. In that case, we can just ignore the
3807         // request. We use m_last_broadcast_state, because the Stopped event
3808         // may not have been popped of the event queue yet, which is when the
3809         // public state gets updated.
3810         LLDB_LOGF(log,
3811                   "Process::%s ignoring interrupt as we have already stopped.",
3812                   __FUNCTION__);
3813       }
3814       continue;
3815     }
3816 
3817     const StateType internal_state =
3818         Process::ProcessEventData::GetStateFromEvent(event_sp.get());
3819 
3820     if (internal_state != eStateInvalid) {
3821       if (m_clear_thread_plans_on_stop &&
3822           StateIsStoppedState(internal_state, true)) {
3823         m_clear_thread_plans_on_stop = false;
3824         m_thread_list.DiscardThreadPlans();
3825       }
3826 
3827       if (interrupt_requested) {
3828         if (StateIsStoppedState(internal_state, true)) {
3829           // We requested the interrupt, so mark this as such in the stop event
3830           // so clients can tell an interrupted process from a natural stop
3831           ProcessEventData::SetInterruptedInEvent(event_sp.get(), true);
3832           interrupt_requested = false;
3833         } else if (log) {
3834           LLDB_LOGF(log,
3835                     "Process::%s interrupt_requested, but a non-stopped "
3836                     "state '%s' received.",
3837                     __FUNCTION__, StateAsCString(internal_state));
3838         }
3839       }
3840 
3841       HandlePrivateEvent(event_sp);
3842     }
3843 
3844     if (internal_state == eStateInvalid || internal_state == eStateExited ||
3845         internal_state == eStateDetached) {
3846       LLDB_LOGF(log,
3847                 "Process::%s (arg = %p, pid = %" PRIu64
3848                 ") about to exit with internal state %s...",
3849                 __FUNCTION__, static_cast<void *>(this), GetID(),
3850                 StateAsCString(internal_state));
3851 
3852       break;
3853     }
3854   }
3855 
3856   // Verify log is still enabled before attempting to write to it...
3857   LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...",
3858             __FUNCTION__, static_cast<void *>(this), GetID());
3859 
3860   // If we are a secondary thread, then the primary thread we are working for
3861   // will have already acquired the public_run_lock, and isn't done with what
3862   // it was doing yet, so don't try to change it on the way out.
3863   if (!is_secondary_thread)
3864     m_public_run_lock.SetStopped();
3865   return {};
3866 }
3867 
3868 // Process Event Data
3869 
3870 Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {}
3871 
3872 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp,
3873                                             StateType state)
3874     : EventData(), m_process_wp(), m_state(state) {
3875   if (process_sp)
3876     m_process_wp = process_sp;
3877 }
3878 
3879 Process::ProcessEventData::~ProcessEventData() = default;
3880 
3881 ConstString Process::ProcessEventData::GetFlavorString() {
3882   static ConstString g_flavor("Process::ProcessEventData");
3883   return g_flavor;
3884 }
3885 
3886 ConstString Process::ProcessEventData::GetFlavor() const {
3887   return ProcessEventData::GetFlavorString();
3888 }
3889 
3890 bool Process::ProcessEventData::ShouldStop(Event *event_ptr,
3891                                            bool &found_valid_stopinfo) {
3892   found_valid_stopinfo = false;
3893 
3894   ProcessSP process_sp(m_process_wp.lock());
3895   if (!process_sp)
3896     return false;
3897 
3898   ThreadList &curr_thread_list = process_sp->GetThreadList();
3899   uint32_t num_threads = curr_thread_list.GetSize();
3900   uint32_t idx;
3901 
3902   // The actions might change one of the thread's stop_info's opinions about
3903   // whether we should stop the process, so we need to query that as we go.
3904 
3905   // One other complication here, is that we try to catch any case where the
3906   // target has run (except for expressions) and immediately exit, but if we
3907   // get that wrong (which is possible) then the thread list might have
3908   // changed, and that would cause our iteration here to crash.  We could
3909   // make a copy of the thread list, but we'd really like to also know if it
3910   // has changed at all, so we make up a vector of the thread ID's and check
3911   // what we get back against this list & bag out if anything differs.
3912   ThreadList not_suspended_thread_list(process_sp.get());
3913   std::vector<uint32_t> thread_index_array(num_threads);
3914   uint32_t not_suspended_idx = 0;
3915   for (idx = 0; idx < num_threads; ++idx) {
3916     lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx);
3917 
3918     /*
3919      Filter out all suspended threads, they could not be the reason
3920      of stop and no need to perform any actions on them.
3921      */
3922     if (thread_sp->GetResumeState() != eStateSuspended) {
3923       not_suspended_thread_list.AddThread(thread_sp);
3924       thread_index_array[not_suspended_idx] = thread_sp->GetIndexID();
3925       not_suspended_idx++;
3926     }
3927   }
3928 
3929   // Use this to track whether we should continue from here.  We will only
3930   // continue the target running if no thread says we should stop.  Of course
3931   // if some thread's PerformAction actually sets the target running, then it
3932   // doesn't matter what the other threads say...
3933 
3934   bool still_should_stop = false;
3935 
3936   // Sometimes - for instance if we have a bug in the stub we are talking to,
3937   // we stop but no thread has a valid stop reason.  In that case we should
3938   // just stop, because we have no way of telling what the right thing to do
3939   // is, and it's better to let the user decide than continue behind their
3940   // backs.
3941 
3942   for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) {
3943     curr_thread_list = process_sp->GetThreadList();
3944     if (curr_thread_list.GetSize() != num_threads) {
3945       Log *log(GetLog(LLDBLog::Step | LLDBLog::Process));
3946       LLDB_LOGF(
3947           log,
3948           "Number of threads changed from %u to %u while processing event.",
3949           num_threads, curr_thread_list.GetSize());
3950       break;
3951     }
3952 
3953     lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx);
3954 
3955     if (thread_sp->GetIndexID() != thread_index_array[idx]) {
3956       Log *log(GetLog(LLDBLog::Step | LLDBLog::Process));
3957       LLDB_LOGF(log,
3958                 "The thread at position %u changed from %u to %u while "
3959                 "processing event.",
3960                 idx, thread_index_array[idx], thread_sp->GetIndexID());
3961       break;
3962     }
3963 
3964     StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
3965     if (stop_info_sp && stop_info_sp->IsValid()) {
3966       found_valid_stopinfo = true;
3967       bool this_thread_wants_to_stop;
3968       if (stop_info_sp->GetOverrideShouldStop()) {
3969         this_thread_wants_to_stop =
3970             stop_info_sp->GetOverriddenShouldStopValue();
3971       } else {
3972         stop_info_sp->PerformAction(event_ptr);
3973         // The stop action might restart the target.  If it does, then we
3974         // want to mark that in the event so that whoever is receiving it
3975         // will know to wait for the running event and reflect that state
3976         // appropriately. We also need to stop processing actions, since they
3977         // aren't expecting the target to be running.
3978 
3979         // FIXME: we might have run.
3980         if (stop_info_sp->HasTargetRunSinceMe()) {
3981           SetRestarted(true);
3982           break;
3983         }
3984 
3985         this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr);
3986       }
3987 
3988       if (!still_should_stop)
3989         still_should_stop = this_thread_wants_to_stop;
3990     }
3991   }
3992 
3993   return still_should_stop;
3994 }
3995 
3996 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) {
3997   ProcessSP process_sp(m_process_wp.lock());
3998 
3999   if (!process_sp)
4000     return;
4001 
4002   // This function gets called twice for each event, once when the event gets
4003   // pulled off of the private process event queue, and then any number of
4004   // times, first when it gets pulled off of the public event queue, then other
4005   // times when we're pretending that this is where we stopped at the end of
4006   // expression evaluation.  m_update_state is used to distinguish these three
4007   // cases; it is 0 when we're just pulling it off for private handling, and >
4008   // 1 for expression evaluation, and we don't want to do the breakpoint
4009   // command handling then.
4010   if (m_update_state != 1)
4011     return;
4012 
4013   process_sp->SetPublicState(
4014       m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr));
4015 
4016   if (m_state == eStateStopped && !m_restarted) {
4017     // Let process subclasses know we are about to do a public stop and do
4018     // anything they might need to in order to speed up register and memory
4019     // accesses.
4020     process_sp->WillPublicStop();
4021   }
4022 
4023   // If this is a halt event, even if the halt stopped with some reason other
4024   // than a plain interrupt (e.g. we had already stopped for a breakpoint when
4025   // the halt request came through) don't do the StopInfo actions, as they may
4026   // end up restarting the process.
4027   if (m_interrupted)
4028     return;
4029 
4030   // If we're not stopped or have restarted, then skip the StopInfo actions:
4031   if (m_state != eStateStopped || m_restarted) {
4032     return;
4033   }
4034 
4035   bool does_anybody_have_an_opinion = false;
4036   bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion);
4037 
4038   if (GetRestarted()) {
4039     return;
4040   }
4041 
4042   if (!still_should_stop && does_anybody_have_an_opinion) {
4043     // We've been asked to continue, so do that here.
4044     SetRestarted(true);
4045     // Use the public resume method here, since this is just extending a
4046     // public resume.
4047     process_sp->PrivateResume();
4048   } else {
4049     bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) &&
4050                     !process_sp->StateChangedIsHijackedForSynchronousResume();
4051 
4052     if (!hijacked) {
4053       // If we didn't restart, run the Stop Hooks here.
4054       // Don't do that if state changed events aren't hooked up to the
4055       // public (or SyncResume) broadcasters.  StopHooks are just for
4056       // real public stops.  They might also restart the target,
4057       // so watch for that.
4058       if (process_sp->GetTarget().RunStopHooks())
4059         SetRestarted(true);
4060     }
4061   }
4062 }
4063 
4064 void Process::ProcessEventData::Dump(Stream *s) const {
4065   ProcessSP process_sp(m_process_wp.lock());
4066 
4067   if (process_sp)
4068     s->Printf(" process = %p (pid = %" PRIu64 "), ",
4069               static_cast<void *>(process_sp.get()), process_sp->GetID());
4070   else
4071     s->PutCString(" process = NULL, ");
4072 
4073   s->Printf("state = %s", StateAsCString(GetState()));
4074 }
4075 
4076 const Process::ProcessEventData *
4077 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) {
4078   if (event_ptr) {
4079     const EventData *event_data = event_ptr->GetData();
4080     if (event_data &&
4081         event_data->GetFlavor() == ProcessEventData::GetFlavorString())
4082       return static_cast<const ProcessEventData *>(event_ptr->GetData());
4083   }
4084   return nullptr;
4085 }
4086 
4087 ProcessSP
4088 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) {
4089   ProcessSP process_sp;
4090   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4091   if (data)
4092     process_sp = data->GetProcessSP();
4093   return process_sp;
4094 }
4095 
4096 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) {
4097   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4098   if (data == nullptr)
4099     return eStateInvalid;
4100   else
4101     return data->GetState();
4102 }
4103 
4104 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) {
4105   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4106   if (data == nullptr)
4107     return false;
4108   else
4109     return data->GetRestarted();
4110 }
4111 
4112 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr,
4113                                                     bool new_value) {
4114   ProcessEventData *data =
4115       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4116   if (data != nullptr)
4117     data->SetRestarted(new_value);
4118 }
4119 
4120 size_t
4121 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) {
4122   ProcessEventData *data =
4123       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4124   if (data != nullptr)
4125     return data->GetNumRestartedReasons();
4126   else
4127     return 0;
4128 }
4129 
4130 const char *
4131 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr,
4132                                                      size_t idx) {
4133   ProcessEventData *data =
4134       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4135   if (data != nullptr)
4136     return data->GetRestartedReasonAtIndex(idx);
4137   else
4138     return nullptr;
4139 }
4140 
4141 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr,
4142                                                    const char *reason) {
4143   ProcessEventData *data =
4144       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4145   if (data != nullptr)
4146     data->AddRestartedReason(reason);
4147 }
4148 
4149 bool Process::ProcessEventData::GetInterruptedFromEvent(
4150     const Event *event_ptr) {
4151   const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4152   if (data == nullptr)
4153     return false;
4154   else
4155     return data->GetInterrupted();
4156 }
4157 
4158 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr,
4159                                                       bool new_value) {
4160   ProcessEventData *data =
4161       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4162   if (data != nullptr)
4163     data->SetInterrupted(new_value);
4164 }
4165 
4166 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) {
4167   ProcessEventData *data =
4168       const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4169   if (data) {
4170     data->SetUpdateStateOnRemoval();
4171     return true;
4172   }
4173   return false;
4174 }
4175 
4176 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); }
4177 
4178 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) {
4179   exe_ctx.SetTargetPtr(&GetTarget());
4180   exe_ctx.SetProcessPtr(this);
4181   exe_ctx.SetThreadPtr(nullptr);
4182   exe_ctx.SetFramePtr(nullptr);
4183 }
4184 
4185 // uint32_t
4186 // Process::ListProcessesMatchingName (const char *name, StringList &matches,
4187 // std::vector<lldb::pid_t> &pids)
4188 //{
4189 //    return 0;
4190 //}
4191 //
4192 // ArchSpec
4193 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid)
4194 //{
4195 //    return Host::GetArchSpecForExistingProcess (pid);
4196 //}
4197 //
4198 // ArchSpec
4199 // Process::GetArchSpecForExistingProcess (const char *process_name)
4200 //{
4201 //    return Host::GetArchSpecForExistingProcess (process_name);
4202 //}
4203 
4204 void Process::AppendSTDOUT(const char *s, size_t len) {
4205   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4206   m_stdout_data.append(s, len);
4207   BroadcastEventIfUnique(eBroadcastBitSTDOUT,
4208                          new ProcessEventData(shared_from_this(), GetState()));
4209 }
4210 
4211 void Process::AppendSTDERR(const char *s, size_t len) {
4212   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4213   m_stderr_data.append(s, len);
4214   BroadcastEventIfUnique(eBroadcastBitSTDERR,
4215                          new ProcessEventData(shared_from_this(), GetState()));
4216 }
4217 
4218 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) {
4219   std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4220   m_profile_data.push_back(one_profile_data);
4221   BroadcastEventIfUnique(eBroadcastBitProfileData,
4222                          new ProcessEventData(shared_from_this(), GetState()));
4223 }
4224 
4225 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp,
4226                                       const StructuredDataPluginSP &plugin_sp) {
4227   BroadcastEvent(
4228       eBroadcastBitStructuredData,
4229       new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp));
4230 }
4231 
4232 StructuredDataPluginSP
4233 Process::GetStructuredDataPlugin(ConstString type_name) const {
4234   auto find_it = m_structured_data_plugin_map.find(type_name);
4235   if (find_it != m_structured_data_plugin_map.end())
4236     return find_it->second;
4237   else
4238     return StructuredDataPluginSP();
4239 }
4240 
4241 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) {
4242   std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4243   if (m_profile_data.empty())
4244     return 0;
4245 
4246   std::string &one_profile_data = m_profile_data.front();
4247   size_t bytes_available = one_profile_data.size();
4248   if (bytes_available > 0) {
4249     Log *log = GetLog(LLDBLog::Process);
4250     LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")",
4251               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4252     if (bytes_available > buf_size) {
4253       memcpy(buf, one_profile_data.c_str(), buf_size);
4254       one_profile_data.erase(0, buf_size);
4255       bytes_available = buf_size;
4256     } else {
4257       memcpy(buf, one_profile_data.c_str(), bytes_available);
4258       m_profile_data.erase(m_profile_data.begin());
4259     }
4260   }
4261   return bytes_available;
4262 }
4263 
4264 // Process STDIO
4265 
4266 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) {
4267   std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4268   size_t bytes_available = m_stdout_data.size();
4269   if (bytes_available > 0) {
4270     Log *log = GetLog(LLDBLog::Process);
4271     LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")",
4272               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4273     if (bytes_available > buf_size) {
4274       memcpy(buf, m_stdout_data.c_str(), buf_size);
4275       m_stdout_data.erase(0, buf_size);
4276       bytes_available = buf_size;
4277     } else {
4278       memcpy(buf, m_stdout_data.c_str(), bytes_available);
4279       m_stdout_data.clear();
4280     }
4281   }
4282   return bytes_available;
4283 }
4284 
4285 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) {
4286   std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex);
4287   size_t bytes_available = m_stderr_data.size();
4288   if (bytes_available > 0) {
4289     Log *log = GetLog(LLDBLog::Process);
4290     LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")",
4291               static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4292     if (bytes_available > buf_size) {
4293       memcpy(buf, m_stderr_data.c_str(), buf_size);
4294       m_stderr_data.erase(0, buf_size);
4295       bytes_available = buf_size;
4296     } else {
4297       memcpy(buf, m_stderr_data.c_str(), bytes_available);
4298       m_stderr_data.clear();
4299     }
4300   }
4301   return bytes_available;
4302 }
4303 
4304 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src,
4305                                            size_t src_len) {
4306   Process *process = (Process *)baton;
4307   process->AppendSTDOUT(static_cast<const char *>(src), src_len);
4308 }
4309 
4310 class IOHandlerProcessSTDIO : public IOHandler {
4311 public:
4312   IOHandlerProcessSTDIO(Process *process, int write_fd)
4313       : IOHandler(process->GetTarget().GetDebugger(),
4314                   IOHandler::Type::ProcessIO),
4315         m_process(process),
4316         m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false),
4317         m_write_file(write_fd, File::eOpenOptionWriteOnly, false) {
4318     m_pipe.CreateNew(false);
4319   }
4320 
4321   ~IOHandlerProcessSTDIO() override = default;
4322 
4323   void SetIsRunning(bool running) {
4324     std::lock_guard<std::mutex> guard(m_mutex);
4325     SetIsDone(!running);
4326     m_is_running = running;
4327   }
4328 
4329   // Each IOHandler gets to run until it is done. It should read data from the
4330   // "in" and place output into "out" and "err and return when done.
4331   void Run() override {
4332     if (!m_read_file.IsValid() || !m_write_file.IsValid() ||
4333         !m_pipe.CanRead() || !m_pipe.CanWrite()) {
4334       SetIsDone(true);
4335       return;
4336     }
4337 
4338     SetIsDone(false);
4339     const int read_fd = m_read_file.GetDescriptor();
4340     Terminal terminal(read_fd);
4341     TerminalState terminal_state(terminal, false);
4342     // FIXME: error handling?
4343     llvm::consumeError(terminal.SetCanonical(false));
4344     llvm::consumeError(terminal.SetEcho(false));
4345 // FD_ZERO, FD_SET are not supported on windows
4346 #ifndef _WIN32
4347     const int pipe_read_fd = m_pipe.GetReadFileDescriptor();
4348     SetIsRunning(true);
4349     while (true) {
4350       {
4351         std::lock_guard<std::mutex> guard(m_mutex);
4352         if (GetIsDone())
4353           break;
4354       }
4355 
4356       SelectHelper select_helper;
4357       select_helper.FDSetRead(read_fd);
4358       select_helper.FDSetRead(pipe_read_fd);
4359       Status error = select_helper.Select();
4360 
4361       if (error.Fail())
4362         break;
4363 
4364       char ch = 0;
4365       size_t n;
4366       if (select_helper.FDIsSetRead(read_fd)) {
4367         n = 1;
4368         if (m_read_file.Read(&ch, n).Success() && n == 1) {
4369           if (m_write_file.Write(&ch, n).Fail() || n != 1)
4370             break;
4371         } else
4372           break;
4373       }
4374 
4375       if (select_helper.FDIsSetRead(pipe_read_fd)) {
4376         size_t bytes_read;
4377         // Consume the interrupt byte
4378         Status error = m_pipe.Read(&ch, 1, bytes_read);
4379         if (error.Success()) {
4380           if (ch == 'q')
4381             break;
4382           if (ch == 'i')
4383             if (StateIsRunningState(m_process->GetState()))
4384               m_process->SendAsyncInterrupt();
4385         }
4386       }
4387     }
4388     SetIsRunning(false);
4389 #endif
4390   }
4391 
4392   void Cancel() override {
4393     std::lock_guard<std::mutex> guard(m_mutex);
4394     SetIsDone(true);
4395     // Only write to our pipe to cancel if we are in
4396     // IOHandlerProcessSTDIO::Run(). We can end up with a python command that
4397     // is being run from the command interpreter:
4398     //
4399     // (lldb) step_process_thousands_of_times
4400     //
4401     // In this case the command interpreter will be in the middle of handling
4402     // the command and if the process pushes and pops the IOHandler thousands
4403     // of times, we can end up writing to m_pipe without ever consuming the
4404     // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up
4405     // deadlocking when the pipe gets fed up and blocks until data is consumed.
4406     if (m_is_running) {
4407       char ch = 'q'; // Send 'q' for quit
4408       size_t bytes_written = 0;
4409       m_pipe.Write(&ch, 1, bytes_written);
4410     }
4411   }
4412 
4413   bool Interrupt() override {
4414     // Do only things that are safe to do in an interrupt context (like in a
4415     // SIGINT handler), like write 1 byte to a file descriptor. This will
4416     // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte
4417     // that was written to the pipe and then call
4418     // m_process->SendAsyncInterrupt() from a much safer location in code.
4419     if (m_active) {
4420       char ch = 'i'; // Send 'i' for interrupt
4421       size_t bytes_written = 0;
4422       Status result = m_pipe.Write(&ch, 1, bytes_written);
4423       return result.Success();
4424     } else {
4425       // This IOHandler might be pushed on the stack, but not being run
4426       // currently so do the right thing if we aren't actively watching for
4427       // STDIN by sending the interrupt to the process. Otherwise the write to
4428       // the pipe above would do nothing. This can happen when the command
4429       // interpreter is running and gets a "expression ...". It will be on the
4430       // IOHandler thread and sending the input is complete to the delegate
4431       // which will cause the expression to run, which will push the process IO
4432       // handler, but not run it.
4433 
4434       if (StateIsRunningState(m_process->GetState())) {
4435         m_process->SendAsyncInterrupt();
4436         return true;
4437       }
4438     }
4439     return false;
4440   }
4441 
4442   void GotEOF() override {}
4443 
4444 protected:
4445   Process *m_process;
4446   NativeFile m_read_file;  // Read from this file (usually actual STDIN for LLDB
4447   NativeFile m_write_file; // Write to this file (usually the primary pty for
4448                            // getting io to debuggee)
4449   Pipe m_pipe;
4450   std::mutex m_mutex;
4451   bool m_is_running = false;
4452 };
4453 
4454 void Process::SetSTDIOFileDescriptor(int fd) {
4455   // First set up the Read Thread for reading/handling process I/O
4456   m_stdio_communication.SetConnection(
4457       std::make_unique<ConnectionFileDescriptor>(fd, true));
4458   if (m_stdio_communication.IsConnected()) {
4459     m_stdio_communication.SetReadThreadBytesReceivedCallback(
4460         STDIOReadThreadBytesReceived, this);
4461     m_stdio_communication.StartReadThread();
4462 
4463     // Now read thread is set up, set up input reader.
4464 
4465     if (!m_process_input_reader)
4466       m_process_input_reader =
4467           std::make_shared<IOHandlerProcessSTDIO>(this, fd);
4468   }
4469 }
4470 
4471 bool Process::ProcessIOHandlerIsActive() {
4472   IOHandlerSP io_handler_sp(m_process_input_reader);
4473   if (io_handler_sp)
4474     return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp);
4475   return false;
4476 }
4477 bool Process::PushProcessIOHandler() {
4478   IOHandlerSP io_handler_sp(m_process_input_reader);
4479   if (io_handler_sp) {
4480     Log *log = GetLog(LLDBLog::Process);
4481     LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__);
4482 
4483     io_handler_sp->SetIsDone(false);
4484     // If we evaluate an utility function, then we don't cancel the current
4485     // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the
4486     // existing IOHandler that potentially provides the user interface (e.g.
4487     // the IOHandler for Editline).
4488     bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction();
4489     GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp,
4490                                                 cancel_top_handler);
4491     return true;
4492   }
4493   return false;
4494 }
4495 
4496 bool Process::PopProcessIOHandler() {
4497   IOHandlerSP io_handler_sp(m_process_input_reader);
4498   if (io_handler_sp)
4499     return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp);
4500   return false;
4501 }
4502 
4503 // The process needs to know about installed plug-ins
4504 void Process::SettingsInitialize() { Thread::SettingsInitialize(); }
4505 
4506 void Process::SettingsTerminate() { Thread::SettingsTerminate(); }
4507 
4508 namespace {
4509 // RestorePlanState is used to record the "is private", "is controlling" and
4510 // "okay
4511 // to discard" fields of the plan we are running, and reset it on Clean or on
4512 // destruction. It will only reset the state once, so you can call Clean and
4513 // then monkey with the state and it won't get reset on you again.
4514 
4515 class RestorePlanState {
4516 public:
4517   RestorePlanState(lldb::ThreadPlanSP thread_plan_sp)
4518       : m_thread_plan_sp(thread_plan_sp) {
4519     if (m_thread_plan_sp) {
4520       m_private = m_thread_plan_sp->GetPrivate();
4521       m_is_controlling = m_thread_plan_sp->IsControllingPlan();
4522       m_okay_to_discard = m_thread_plan_sp->OkayToDiscard();
4523     }
4524   }
4525 
4526   ~RestorePlanState() { Clean(); }
4527 
4528   void Clean() {
4529     if (!m_already_reset && m_thread_plan_sp) {
4530       m_already_reset = true;
4531       m_thread_plan_sp->SetPrivate(m_private);
4532       m_thread_plan_sp->SetIsControllingPlan(m_is_controlling);
4533       m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard);
4534     }
4535   }
4536 
4537 private:
4538   lldb::ThreadPlanSP m_thread_plan_sp;
4539   bool m_already_reset = false;
4540   bool m_private;
4541   bool m_is_controlling;
4542   bool m_okay_to_discard;
4543 };
4544 } // anonymous namespace
4545 
4546 static microseconds
4547 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) {
4548   const milliseconds default_one_thread_timeout(250);
4549 
4550   // If the overall wait is forever, then we don't need to worry about it.
4551   if (!options.GetTimeout()) {
4552     return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout()
4553                                          : default_one_thread_timeout;
4554   }
4555 
4556   // If the one thread timeout is set, use it.
4557   if (options.GetOneThreadTimeout())
4558     return *options.GetOneThreadTimeout();
4559 
4560   // Otherwise use half the total timeout, bounded by the
4561   // default_one_thread_timeout.
4562   return std::min<microseconds>(default_one_thread_timeout,
4563                                 *options.GetTimeout() / 2);
4564 }
4565 
4566 static Timeout<std::micro>
4567 GetExpressionTimeout(const EvaluateExpressionOptions &options,
4568                      bool before_first_timeout) {
4569   // If we are going to run all threads the whole time, or if we are only going
4570   // to run one thread, we can just return the overall timeout.
4571   if (!options.GetStopOthers() || !options.GetTryAllThreads())
4572     return options.GetTimeout();
4573 
4574   if (before_first_timeout)
4575     return GetOneThreadExpressionTimeout(options);
4576 
4577   if (!options.GetTimeout())
4578     return llvm::None;
4579   else
4580     return *options.GetTimeout() - GetOneThreadExpressionTimeout(options);
4581 }
4582 
4583 static llvm::Optional<ExpressionResults>
4584 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp,
4585                    RestorePlanState &restorer, const EventSP &event_sp,
4586                    EventSP &event_to_broadcast_sp,
4587                    const EvaluateExpressionOptions &options,
4588                    bool handle_interrupts) {
4589   Log *log = GetLog(LLDBLog::Step | LLDBLog::Process);
4590 
4591   ThreadSP thread_sp = thread_plan_sp->GetTarget()
4592                            .GetProcessSP()
4593                            ->GetThreadList()
4594                            .FindThreadByID(thread_id);
4595   if (!thread_sp) {
4596     LLDB_LOG(log,
4597              "The thread on which we were running the "
4598              "expression: tid = {0}, exited while "
4599              "the expression was running.",
4600              thread_id);
4601     return eExpressionThreadVanished;
4602   }
4603 
4604   ThreadPlanSP plan = thread_sp->GetCompletedPlan();
4605   if (plan == thread_plan_sp && plan->PlanSucceeded()) {
4606     LLDB_LOG(log, "execution completed successfully");
4607 
4608     // Restore the plan state so it will get reported as intended when we are
4609     // done.
4610     restorer.Clean();
4611     return eExpressionCompleted;
4612   }
4613 
4614   StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
4615   if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint &&
4616       stop_info_sp->ShouldNotify(event_sp.get())) {
4617     LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription());
4618     if (!options.DoesIgnoreBreakpoints()) {
4619       // Restore the plan state and then force Private to false.  We are going
4620       // to stop because of this plan so we need it to become a public plan or
4621       // it won't report correctly when we continue to its termination later
4622       // on.
4623       restorer.Clean();
4624       thread_plan_sp->SetPrivate(false);
4625       event_to_broadcast_sp = event_sp;
4626     }
4627     return eExpressionHitBreakpoint;
4628   }
4629 
4630   if (!handle_interrupts &&
4631       Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get()))
4632     return llvm::None;
4633 
4634   LLDB_LOG(log, "thread plan did not successfully complete");
4635   if (!options.DoesUnwindOnError())
4636     event_to_broadcast_sp = event_sp;
4637   return eExpressionInterrupted;
4638 }
4639 
4640 ExpressionResults
4641 Process::RunThreadPlan(ExecutionContext &exe_ctx,
4642                        lldb::ThreadPlanSP &thread_plan_sp,
4643                        const EvaluateExpressionOptions &options,
4644                        DiagnosticManager &diagnostic_manager) {
4645   ExpressionResults return_value = eExpressionSetupError;
4646 
4647   std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock);
4648 
4649   if (!thread_plan_sp) {
4650     diagnostic_manager.PutString(
4651         eDiagnosticSeverityError,
4652         "RunThreadPlan called with empty thread plan.");
4653     return eExpressionSetupError;
4654   }
4655 
4656   if (!thread_plan_sp->ValidatePlan(nullptr)) {
4657     diagnostic_manager.PutString(
4658         eDiagnosticSeverityError,
4659         "RunThreadPlan called with an invalid thread plan.");
4660     return eExpressionSetupError;
4661   }
4662 
4663   if (exe_ctx.GetProcessPtr() != this) {
4664     diagnostic_manager.PutString(eDiagnosticSeverityError,
4665                                  "RunThreadPlan called on wrong process.");
4666     return eExpressionSetupError;
4667   }
4668 
4669   Thread *thread = exe_ctx.GetThreadPtr();
4670   if (thread == nullptr) {
4671     diagnostic_manager.PutString(eDiagnosticSeverityError,
4672                                  "RunThreadPlan called with invalid thread.");
4673     return eExpressionSetupError;
4674   }
4675 
4676   // Record the thread's id so we can tell when a thread we were using
4677   // to run the expression exits during the expression evaluation.
4678   lldb::tid_t expr_thread_id = thread->GetID();
4679 
4680   // We need to change some of the thread plan attributes for the thread plan
4681   // runner.  This will restore them when we are done:
4682 
4683   RestorePlanState thread_plan_restorer(thread_plan_sp);
4684 
4685   // We rely on the thread plan we are running returning "PlanCompleted" if
4686   // when it successfully completes. For that to be true the plan can't be
4687   // private - since private plans suppress themselves in the GetCompletedPlan
4688   // call.
4689 
4690   thread_plan_sp->SetPrivate(false);
4691 
4692   // The plans run with RunThreadPlan also need to be terminal controlling plans
4693   // or when they are done we will end up asking the plan above us whether we
4694   // should stop, which may give the wrong answer.
4695 
4696   thread_plan_sp->SetIsControllingPlan(true);
4697   thread_plan_sp->SetOkayToDiscard(false);
4698 
4699   // If we are running some utility expression for LLDB, we now have to mark
4700   // this in the ProcesModID of this process. This RAII takes care of marking
4701   // and reverting the mark it once we are done running the expression.
4702   UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr);
4703 
4704   if (m_private_state.GetValue() != eStateStopped) {
4705     diagnostic_manager.PutString(
4706         eDiagnosticSeverityError,
4707         "RunThreadPlan called while the private state was not stopped.");
4708     return eExpressionSetupError;
4709   }
4710 
4711   // Save the thread & frame from the exe_ctx for restoration after we run
4712   const uint32_t thread_idx_id = thread->GetIndexID();
4713   StackFrameSP selected_frame_sp = thread->GetSelectedFrame();
4714   if (!selected_frame_sp) {
4715     thread->SetSelectedFrame(nullptr);
4716     selected_frame_sp = thread->GetSelectedFrame();
4717     if (!selected_frame_sp) {
4718       diagnostic_manager.Printf(
4719           eDiagnosticSeverityError,
4720           "RunThreadPlan called without a selected frame on thread %d",
4721           thread_idx_id);
4722       return eExpressionSetupError;
4723     }
4724   }
4725 
4726   // Make sure the timeout values make sense. The one thread timeout needs to
4727   // be smaller than the overall timeout.
4728   if (options.GetOneThreadTimeout() && options.GetTimeout() &&
4729       *options.GetTimeout() < *options.GetOneThreadTimeout()) {
4730     diagnostic_manager.PutString(eDiagnosticSeverityError,
4731                                  "RunThreadPlan called with one thread "
4732                                  "timeout greater than total timeout");
4733     return eExpressionSetupError;
4734   }
4735 
4736   StackID ctx_frame_id = selected_frame_sp->GetStackID();
4737 
4738   // N.B. Running the target may unset the currently selected thread and frame.
4739   // We don't want to do that either, so we should arrange to reset them as
4740   // well.
4741 
4742   lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread();
4743 
4744   uint32_t selected_tid;
4745   StackID selected_stack_id;
4746   if (selected_thread_sp) {
4747     selected_tid = selected_thread_sp->GetIndexID();
4748     selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID();
4749   } else {
4750     selected_tid = LLDB_INVALID_THREAD_ID;
4751   }
4752 
4753   HostThread backup_private_state_thread;
4754   lldb::StateType old_state = eStateInvalid;
4755   lldb::ThreadPlanSP stopper_base_plan_sp;
4756 
4757   Log *log(GetLog(LLDBLog::Step | LLDBLog::Process));
4758   if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) {
4759     // Yikes, we are running on the private state thread!  So we can't wait for
4760     // public events on this thread, since we are the thread that is generating
4761     // public events. The simplest thing to do is to spin up a temporary thread
4762     // to handle private state thread events while we are fielding public
4763     // events here.
4764     LLDB_LOGF(log, "Running thread plan on private state thread, spinning up "
4765                    "another state thread to handle the events.");
4766 
4767     backup_private_state_thread = m_private_state_thread;
4768 
4769     // One other bit of business: we want to run just this thread plan and
4770     // anything it pushes, and then stop, returning control here. But in the
4771     // normal course of things, the plan above us on the stack would be given a
4772     // shot at the stop event before deciding to stop, and we don't want that.
4773     // So we insert a "stopper" base plan on the stack before the plan we want
4774     // to run.  Since base plans always stop and return control to the user,
4775     // that will do just what we want.
4776     stopper_base_plan_sp.reset(new ThreadPlanBase(*thread));
4777     thread->QueueThreadPlan(stopper_base_plan_sp, false);
4778     // Have to make sure our public state is stopped, since otherwise the
4779     // reporting logic below doesn't work correctly.
4780     old_state = m_public_state.GetValue();
4781     m_public_state.SetValueNoLock(eStateStopped);
4782 
4783     // Now spin up the private state thread:
4784     StartPrivateStateThread(true);
4785   }
4786 
4787   thread->QueueThreadPlan(
4788       thread_plan_sp, false); // This used to pass "true" does that make sense?
4789 
4790   if (options.GetDebug()) {
4791     // In this case, we aren't actually going to run, we just want to stop
4792     // right away. Flush this thread so we will refetch the stacks and show the
4793     // correct backtrace.
4794     // FIXME: To make this prettier we should invent some stop reason for this,
4795     // but that
4796     // is only cosmetic, and this functionality is only of use to lldb
4797     // developers who can live with not pretty...
4798     thread->Flush();
4799     return eExpressionStoppedForDebug;
4800   }
4801 
4802   ListenerSP listener_sp(
4803       Listener::MakeListener("lldb.process.listener.run-thread-plan"));
4804 
4805   lldb::EventSP event_to_broadcast_sp;
4806 
4807   {
4808     // This process event hijacker Hijacks the Public events and its destructor
4809     // makes sure that the process events get restored on exit to the function.
4810     //
4811     // If the event needs to propagate beyond the hijacker (e.g., the process
4812     // exits during execution), then the event is put into
4813     // event_to_broadcast_sp for rebroadcasting.
4814 
4815     ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp);
4816 
4817     if (log) {
4818       StreamString s;
4819       thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose);
4820       LLDB_LOGF(log,
4821                 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64
4822                 " to run thread plan \"%s\".",
4823                 thread_idx_id, expr_thread_id, s.GetData());
4824     }
4825 
4826     bool got_event;
4827     lldb::EventSP event_sp;
4828     lldb::StateType stop_state = lldb::eStateInvalid;
4829 
4830     bool before_first_timeout = true; // This is set to false the first time
4831                                       // that we have to halt the target.
4832     bool do_resume = true;
4833     bool handle_running_event = true;
4834 
4835     // This is just for accounting:
4836     uint32_t num_resumes = 0;
4837 
4838     // If we are going to run all threads the whole time, or if we are only
4839     // going to run one thread, then we don't need the first timeout.  So we
4840     // pretend we are after the first timeout already.
4841     if (!options.GetStopOthers() || !options.GetTryAllThreads())
4842       before_first_timeout = false;
4843 
4844     LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n",
4845               options.GetStopOthers(), options.GetTryAllThreads(),
4846               before_first_timeout);
4847 
4848     // This isn't going to work if there are unfetched events on the queue. Are
4849     // there cases where we might want to run the remaining events here, and
4850     // then try to call the function?  That's probably being too tricky for our
4851     // own good.
4852 
4853     Event *other_events = listener_sp->PeekAtNextEvent();
4854     if (other_events != nullptr) {
4855       diagnostic_manager.PutString(
4856           eDiagnosticSeverityError,
4857           "RunThreadPlan called with pending events on the queue.");
4858       return eExpressionSetupError;
4859     }
4860 
4861     // We also need to make sure that the next event is delivered.  We might be
4862     // calling a function as part of a thread plan, in which case the last
4863     // delivered event could be the running event, and we don't want event
4864     // coalescing to cause us to lose OUR running event...
4865     ForceNextEventDelivery();
4866 
4867 // This while loop must exit out the bottom, there's cleanup that we need to do
4868 // when we are done. So don't call return anywhere within it.
4869 
4870 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
4871     // It's pretty much impossible to write test cases for things like: One
4872     // thread timeout expires, I go to halt, but the process already stopped on
4873     // the function call stop breakpoint.  Turning on this define will make us
4874     // not fetch the first event till after the halt.  So if you run a quick
4875     // function, it will have completed, and the completion event will be
4876     // waiting, when you interrupt for halt. The expression evaluation should
4877     // still succeed.
4878     bool miss_first_event = true;
4879 #endif
4880     while (true) {
4881       // We usually want to resume the process if we get to the top of the
4882       // loop. The only exception is if we get two running events with no
4883       // intervening stop, which can happen, we will just wait for then next
4884       // stop event.
4885       LLDB_LOGF(log,
4886                 "Top of while loop: do_resume: %i handle_running_event: %i "
4887                 "before_first_timeout: %i.",
4888                 do_resume, handle_running_event, before_first_timeout);
4889 
4890       if (do_resume || handle_running_event) {
4891         // Do the initial resume and wait for the running event before going
4892         // further.
4893 
4894         if (do_resume) {
4895           num_resumes++;
4896           Status resume_error = PrivateResume();
4897           if (!resume_error.Success()) {
4898             diagnostic_manager.Printf(
4899                 eDiagnosticSeverityError,
4900                 "couldn't resume inferior the %d time: \"%s\".", num_resumes,
4901                 resume_error.AsCString());
4902             return_value = eExpressionSetupError;
4903             break;
4904           }
4905         }
4906 
4907         got_event =
4908             listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
4909         if (!got_event) {
4910           LLDB_LOGF(log,
4911                     "Process::RunThreadPlan(): didn't get any event after "
4912                     "resume %" PRIu32 ", exiting.",
4913                     num_resumes);
4914 
4915           diagnostic_manager.Printf(eDiagnosticSeverityError,
4916                                     "didn't get any event after resume %" PRIu32
4917                                     ", exiting.",
4918                                     num_resumes);
4919           return_value = eExpressionSetupError;
4920           break;
4921         }
4922 
4923         stop_state =
4924             Process::ProcessEventData::GetStateFromEvent(event_sp.get());
4925 
4926         if (stop_state != eStateRunning) {
4927           bool restarted = false;
4928 
4929           if (stop_state == eStateStopped) {
4930             restarted = Process::ProcessEventData::GetRestartedFromEvent(
4931                 event_sp.get());
4932             LLDB_LOGF(
4933                 log,
4934                 "Process::RunThreadPlan(): didn't get running event after "
4935                 "resume %d, got %s instead (restarted: %i, do_resume: %i, "
4936                 "handle_running_event: %i).",
4937                 num_resumes, StateAsCString(stop_state), restarted, do_resume,
4938                 handle_running_event);
4939           }
4940 
4941           if (restarted) {
4942             // This is probably an overabundance of caution, I don't think I
4943             // should ever get a stopped & restarted event here.  But if I do,
4944             // the best thing is to Halt and then get out of here.
4945             const bool clear_thread_plans = false;
4946             const bool use_run_lock = false;
4947             Halt(clear_thread_plans, use_run_lock);
4948           }
4949 
4950           diagnostic_manager.Printf(
4951               eDiagnosticSeverityError,
4952               "didn't get running event after initial resume, got %s instead.",
4953               StateAsCString(stop_state));
4954           return_value = eExpressionSetupError;
4955           break;
4956         }
4957 
4958         if (log)
4959           log->PutCString("Process::RunThreadPlan(): resuming succeeded.");
4960         // We need to call the function synchronously, so spin waiting for it
4961         // to return. If we get interrupted while executing, we're going to
4962         // lose our context, and won't be able to gather the result at this
4963         // point. We set the timeout AFTER the resume, since the resume takes
4964         // some time and we don't want to charge that to the timeout.
4965       } else {
4966         if (log)
4967           log->PutCString("Process::RunThreadPlan(): waiting for next event.");
4968       }
4969 
4970       do_resume = true;
4971       handle_running_event = true;
4972 
4973       // Now wait for the process to stop again:
4974       event_sp.reset();
4975 
4976       Timeout<std::micro> timeout =
4977           GetExpressionTimeout(options, before_first_timeout);
4978       if (log) {
4979         if (timeout) {
4980           auto now = system_clock::now();
4981           LLDB_LOGF(log,
4982                     "Process::RunThreadPlan(): about to wait - now is %s - "
4983                     "endpoint is %s",
4984                     llvm::to_string(now).c_str(),
4985                     llvm::to_string(now + *timeout).c_str());
4986         } else {
4987           LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever.");
4988         }
4989       }
4990 
4991 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
4992       // See comment above...
4993       if (miss_first_event) {
4994         std::this_thread::sleep_for(std::chrono::milliseconds(1));
4995         miss_first_event = false;
4996         got_event = false;
4997       } else
4998 #endif
4999         got_event = listener_sp->GetEvent(event_sp, timeout);
5000 
5001       if (got_event) {
5002         if (event_sp) {
5003           bool keep_going = false;
5004           if (event_sp->GetType() == eBroadcastBitInterrupt) {
5005             const bool clear_thread_plans = false;
5006             const bool use_run_lock = false;
5007             Halt(clear_thread_plans, use_run_lock);
5008             return_value = eExpressionInterrupted;
5009             diagnostic_manager.PutString(eDiagnosticSeverityRemark,
5010                                          "execution halted by user interrupt.");
5011             LLDB_LOGF(log, "Process::RunThreadPlan(): Got  interrupted by "
5012                            "eBroadcastBitInterrupted, exiting.");
5013             break;
5014           } else {
5015             stop_state =
5016                 Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5017             LLDB_LOGF(log,
5018                       "Process::RunThreadPlan(): in while loop, got event: %s.",
5019                       StateAsCString(stop_state));
5020 
5021             switch (stop_state) {
5022             case lldb::eStateStopped: {
5023               if (Process::ProcessEventData::GetRestartedFromEvent(
5024                       event_sp.get())) {
5025                 // If we were restarted, we just need to go back up to fetch
5026                 // another event.
5027                 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and "
5028                                "restart, so we'll continue waiting.");
5029                 keep_going = true;
5030                 do_resume = false;
5031                 handle_running_event = true;
5032               } else {
5033                 const bool handle_interrupts = true;
5034                 return_value = *HandleStoppedEvent(
5035                     expr_thread_id, thread_plan_sp, thread_plan_restorer,
5036                     event_sp, event_to_broadcast_sp, options,
5037                     handle_interrupts);
5038                 if (return_value == eExpressionThreadVanished)
5039                   keep_going = false;
5040               }
5041             } break;
5042 
5043             case lldb::eStateRunning:
5044               // This shouldn't really happen, but sometimes we do get two
5045               // running events without an intervening stop, and in that case
5046               // we should just go back to waiting for the stop.
5047               do_resume = false;
5048               keep_going = true;
5049               handle_running_event = false;
5050               break;
5051 
5052             default:
5053               LLDB_LOGF(log,
5054                         "Process::RunThreadPlan(): execution stopped with "
5055                         "unexpected state: %s.",
5056                         StateAsCString(stop_state));
5057 
5058               if (stop_state == eStateExited)
5059                 event_to_broadcast_sp = event_sp;
5060 
5061               diagnostic_manager.PutString(
5062                   eDiagnosticSeverityError,
5063                   "execution stopped with unexpected state.");
5064               return_value = eExpressionInterrupted;
5065               break;
5066             }
5067           }
5068 
5069           if (keep_going)
5070             continue;
5071           else
5072             break;
5073         } else {
5074           if (log)
5075             log->PutCString("Process::RunThreadPlan(): got_event was true, but "
5076                             "the event pointer was null.  How odd...");
5077           return_value = eExpressionInterrupted;
5078           break;
5079         }
5080       } else {
5081         // If we didn't get an event that means we've timed out... We will
5082         // interrupt the process here.  Depending on what we were asked to do
5083         // we will either exit, or try with all threads running for the same
5084         // timeout.
5085 
5086         if (log) {
5087           if (options.GetTryAllThreads()) {
5088             if (before_first_timeout) {
5089               LLDB_LOG(log,
5090                        "Running function with one thread timeout timed out.");
5091             } else
5092               LLDB_LOG(log, "Restarting function with all threads enabled and "
5093                             "timeout: {0} timed out, abandoning execution.",
5094                        timeout);
5095           } else
5096             LLDB_LOG(log, "Running function with timeout: {0} timed out, "
5097                           "abandoning execution.",
5098                      timeout);
5099         }
5100 
5101         // It is possible that between the time we issued the Halt, and we get
5102         // around to calling Halt the target could have stopped.  That's fine,
5103         // Halt will figure that out and send the appropriate Stopped event.
5104         // BUT it is also possible that we stopped & restarted (e.g. hit a
5105         // signal with "stop" set to false.)  In
5106         // that case, we'll get the stopped & restarted event, and we should go
5107         // back to waiting for the Halt's stopped event.  That's what this
5108         // while loop does.
5109 
5110         bool back_to_top = true;
5111         uint32_t try_halt_again = 0;
5112         bool do_halt = true;
5113         const uint32_t num_retries = 5;
5114         while (try_halt_again < num_retries) {
5115           Status halt_error;
5116           if (do_halt) {
5117             LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt.");
5118             const bool clear_thread_plans = false;
5119             const bool use_run_lock = false;
5120             Halt(clear_thread_plans, use_run_lock);
5121           }
5122           if (halt_error.Success()) {
5123             if (log)
5124               log->PutCString("Process::RunThreadPlan(): Halt succeeded.");
5125 
5126             got_event =
5127                 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
5128 
5129             if (got_event) {
5130               stop_state =
5131                   Process::ProcessEventData::GetStateFromEvent(event_sp.get());
5132               if (log) {
5133                 LLDB_LOGF(log,
5134                           "Process::RunThreadPlan(): Stopped with event: %s",
5135                           StateAsCString(stop_state));
5136                 if (stop_state == lldb::eStateStopped &&
5137                     Process::ProcessEventData::GetInterruptedFromEvent(
5138                         event_sp.get()))
5139                   log->PutCString("    Event was the Halt interruption event.");
5140               }
5141 
5142               if (stop_state == lldb::eStateStopped) {
5143                 if (Process::ProcessEventData::GetRestartedFromEvent(
5144                         event_sp.get())) {
5145                   if (log)
5146                     log->PutCString("Process::RunThreadPlan(): Went to halt "
5147                                     "but got a restarted event, there must be "
5148                                     "an un-restarted stopped event so try "
5149                                     "again...  "
5150                                     "Exiting wait loop.");
5151                   try_halt_again++;
5152                   do_halt = false;
5153                   continue;
5154                 }
5155 
5156                 // Between the time we initiated the Halt and the time we
5157                 // delivered it, the process could have already finished its
5158                 // job.  Check that here:
5159                 const bool handle_interrupts = false;
5160                 if (auto result = HandleStoppedEvent(
5161                         expr_thread_id, thread_plan_sp, thread_plan_restorer,
5162                         event_sp, event_to_broadcast_sp, options,
5163                         handle_interrupts)) {
5164                   return_value = *result;
5165                   back_to_top = false;
5166                   break;
5167                 }
5168 
5169                 if (!options.GetTryAllThreads()) {
5170                   if (log)
5171                     log->PutCString("Process::RunThreadPlan(): try_all_threads "
5172                                     "was false, we stopped so now we're "
5173                                     "quitting.");
5174                   return_value = eExpressionInterrupted;
5175                   back_to_top = false;
5176                   break;
5177                 }
5178 
5179                 if (before_first_timeout) {
5180                   // Set all the other threads to run, and return to the top of
5181                   // the loop, which will continue;
5182                   before_first_timeout = false;
5183                   thread_plan_sp->SetStopOthers(false);
5184                   if (log)
5185                     log->PutCString(
5186                         "Process::RunThreadPlan(): about to resume.");
5187 
5188                   back_to_top = true;
5189                   break;
5190                 } else {
5191                   // Running all threads failed, so return Interrupted.
5192                   if (log)
5193                     log->PutCString("Process::RunThreadPlan(): running all "
5194                                     "threads timed out.");
5195                   return_value = eExpressionInterrupted;
5196                   back_to_top = false;
5197                   break;
5198                 }
5199               }
5200             } else {
5201               if (log)
5202                 log->PutCString("Process::RunThreadPlan(): halt said it "
5203                                 "succeeded, but I got no event.  "
5204                                 "I'm getting out of here passing Interrupted.");
5205               return_value = eExpressionInterrupted;
5206               back_to_top = false;
5207               break;
5208             }
5209           } else {
5210             try_halt_again++;
5211             continue;
5212           }
5213         }
5214 
5215         if (!back_to_top || try_halt_again > num_retries)
5216           break;
5217         else
5218           continue;
5219       }
5220     } // END WAIT LOOP
5221 
5222     // If we had to start up a temporary private state thread to run this
5223     // thread plan, shut it down now.
5224     if (backup_private_state_thread.IsJoinable()) {
5225       StopPrivateStateThread();
5226       Status error;
5227       m_private_state_thread = backup_private_state_thread;
5228       if (stopper_base_plan_sp) {
5229         thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp);
5230       }
5231       if (old_state != eStateInvalid)
5232         m_public_state.SetValueNoLock(old_state);
5233     }
5234 
5235     // If our thread went away on us, we need to get out of here without
5236     // doing any more work.  We don't have to clean up the thread plan, that
5237     // will have happened when the Thread was destroyed.
5238     if (return_value == eExpressionThreadVanished) {
5239       return return_value;
5240     }
5241 
5242     if (return_value != eExpressionCompleted && log) {
5243       // Print a backtrace into the log so we can figure out where we are:
5244       StreamString s;
5245       s.PutCString("Thread state after unsuccessful completion: \n");
5246       thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX);
5247       log->PutString(s.GetString());
5248     }
5249     // Restore the thread state if we are going to discard the plan execution.
5250     // There are three cases where this could happen: 1) The execution
5251     // successfully completed 2) We hit a breakpoint, and ignore_breakpoints
5252     // was true 3) We got some other error, and discard_on_error was true
5253     bool should_unwind = (return_value == eExpressionInterrupted &&
5254                           options.DoesUnwindOnError()) ||
5255                          (return_value == eExpressionHitBreakpoint &&
5256                           options.DoesIgnoreBreakpoints());
5257 
5258     if (return_value == eExpressionCompleted || should_unwind) {
5259       thread_plan_sp->RestoreThreadState();
5260     }
5261 
5262     // Now do some processing on the results of the run:
5263     if (return_value == eExpressionInterrupted ||
5264         return_value == eExpressionHitBreakpoint) {
5265       if (log) {
5266         StreamString s;
5267         if (event_sp)
5268           event_sp->Dump(&s);
5269         else {
5270           log->PutCString("Process::RunThreadPlan(): Stop event that "
5271                           "interrupted us is NULL.");
5272         }
5273 
5274         StreamString ts;
5275 
5276         const char *event_explanation = nullptr;
5277 
5278         do {
5279           if (!event_sp) {
5280             event_explanation = "<no event>";
5281             break;
5282           } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
5283             event_explanation = "<user interrupt>";
5284             break;
5285           } else {
5286             const Process::ProcessEventData *event_data =
5287                 Process::ProcessEventData::GetEventDataFromEvent(
5288                     event_sp.get());
5289 
5290             if (!event_data) {
5291               event_explanation = "<no event data>";
5292               break;
5293             }
5294 
5295             Process *process = event_data->GetProcessSP().get();
5296 
5297             if (!process) {
5298               event_explanation = "<no process>";
5299               break;
5300             }
5301 
5302             ThreadList &thread_list = process->GetThreadList();
5303 
5304             uint32_t num_threads = thread_list.GetSize();
5305             uint32_t thread_index;
5306 
5307             ts.Printf("<%u threads> ", num_threads);
5308 
5309             for (thread_index = 0; thread_index < num_threads; ++thread_index) {
5310               Thread *thread = thread_list.GetThreadAtIndex(thread_index).get();
5311 
5312               if (!thread) {
5313                 ts.Printf("<?> ");
5314                 continue;
5315               }
5316 
5317               ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID());
5318               RegisterContext *register_context =
5319                   thread->GetRegisterContext().get();
5320 
5321               if (register_context)
5322                 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC());
5323               else
5324                 ts.Printf("[ip unknown] ");
5325 
5326               // Show the private stop info here, the public stop info will be
5327               // from the last natural stop.
5328               lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo();
5329               if (stop_info_sp) {
5330                 const char *stop_desc = stop_info_sp->GetDescription();
5331                 if (stop_desc)
5332                   ts.PutCString(stop_desc);
5333               }
5334               ts.Printf(">");
5335             }
5336 
5337             event_explanation = ts.GetData();
5338           }
5339         } while (false);
5340 
5341         if (event_explanation)
5342           LLDB_LOGF(log,
5343                     "Process::RunThreadPlan(): execution interrupted: %s %s",
5344                     s.GetData(), event_explanation);
5345         else
5346           LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s",
5347                     s.GetData());
5348       }
5349 
5350       if (should_unwind) {
5351         LLDB_LOGF(log,
5352                   "Process::RunThreadPlan: ExecutionInterrupted - "
5353                   "discarding thread plans up to %p.",
5354                   static_cast<void *>(thread_plan_sp.get()));
5355         thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5356       } else {
5357         LLDB_LOGF(log,
5358                   "Process::RunThreadPlan: ExecutionInterrupted - for "
5359                   "plan: %p not discarding.",
5360                   static_cast<void *>(thread_plan_sp.get()));
5361       }
5362     } else if (return_value == eExpressionSetupError) {
5363       if (log)
5364         log->PutCString("Process::RunThreadPlan(): execution set up error.");
5365 
5366       if (options.DoesUnwindOnError()) {
5367         thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5368       }
5369     } else {
5370       if (thread->IsThreadPlanDone(thread_plan_sp.get())) {
5371         if (log)
5372           log->PutCString("Process::RunThreadPlan(): thread plan is done");
5373         return_value = eExpressionCompleted;
5374       } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) {
5375         if (log)
5376           log->PutCString(
5377               "Process::RunThreadPlan(): thread plan was discarded");
5378         return_value = eExpressionDiscarded;
5379       } else {
5380         if (log)
5381           log->PutCString(
5382               "Process::RunThreadPlan(): thread plan stopped in mid course");
5383         if (options.DoesUnwindOnError() && thread_plan_sp) {
5384           if (log)
5385             log->PutCString("Process::RunThreadPlan(): discarding thread plan "
5386                             "'cause unwind_on_error is set.");
5387           thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5388         }
5389       }
5390     }
5391 
5392     // Thread we ran the function in may have gone away because we ran the
5393     // target Check that it's still there, and if it is put it back in the
5394     // context. Also restore the frame in the context if it is still present.
5395     thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get();
5396     if (thread) {
5397       exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id));
5398     }
5399 
5400     // Also restore the current process'es selected frame & thread, since this
5401     // function calling may be done behind the user's back.
5402 
5403     if (selected_tid != LLDB_INVALID_THREAD_ID) {
5404       if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) &&
5405           selected_stack_id.IsValid()) {
5406         // We were able to restore the selected thread, now restore the frame:
5407         std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5408         StackFrameSP old_frame_sp =
5409             GetThreadList().GetSelectedThread()->GetFrameWithStackID(
5410                 selected_stack_id);
5411         if (old_frame_sp)
5412           GetThreadList().GetSelectedThread()->SetSelectedFrame(
5413               old_frame_sp.get());
5414       }
5415     }
5416   }
5417 
5418   // If the process exited during the run of the thread plan, notify everyone.
5419 
5420   if (event_to_broadcast_sp) {
5421     if (log)
5422       log->PutCString("Process::RunThreadPlan(): rebroadcasting event.");
5423     BroadcastEvent(event_to_broadcast_sp);
5424   }
5425 
5426   return return_value;
5427 }
5428 
5429 const char *Process::ExecutionResultAsCString(ExpressionResults result) {
5430   const char *result_name = "<unknown>";
5431 
5432   switch (result) {
5433   case eExpressionCompleted:
5434     result_name = "eExpressionCompleted";
5435     break;
5436   case eExpressionDiscarded:
5437     result_name = "eExpressionDiscarded";
5438     break;
5439   case eExpressionInterrupted:
5440     result_name = "eExpressionInterrupted";
5441     break;
5442   case eExpressionHitBreakpoint:
5443     result_name = "eExpressionHitBreakpoint";
5444     break;
5445   case eExpressionSetupError:
5446     result_name = "eExpressionSetupError";
5447     break;
5448   case eExpressionParseError:
5449     result_name = "eExpressionParseError";
5450     break;
5451   case eExpressionResultUnavailable:
5452     result_name = "eExpressionResultUnavailable";
5453     break;
5454   case eExpressionTimedOut:
5455     result_name = "eExpressionTimedOut";
5456     break;
5457   case eExpressionStoppedForDebug:
5458     result_name = "eExpressionStoppedForDebug";
5459     break;
5460   case eExpressionThreadVanished:
5461     result_name = "eExpressionThreadVanished";
5462   }
5463   return result_name;
5464 }
5465 
5466 void Process::GetStatus(Stream &strm) {
5467   const StateType state = GetState();
5468   if (StateIsStoppedState(state, false)) {
5469     if (state == eStateExited) {
5470       int exit_status = GetExitStatus();
5471       const char *exit_description = GetExitDescription();
5472       strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n",
5473                   GetID(), exit_status, exit_status,
5474                   exit_description ? exit_description : "");
5475     } else {
5476       if (state == eStateConnected)
5477         strm.Printf("Connected to remote target.\n");
5478       else
5479         strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state));
5480     }
5481   } else {
5482     strm.Printf("Process %" PRIu64 " is running.\n", GetID());
5483   }
5484 }
5485 
5486 size_t Process::GetThreadStatus(Stream &strm,
5487                                 bool only_threads_with_stop_reason,
5488                                 uint32_t start_frame, uint32_t num_frames,
5489                                 uint32_t num_frames_with_source,
5490                                 bool stop_format) {
5491   size_t num_thread_infos_dumped = 0;
5492 
5493   // You can't hold the thread list lock while calling Thread::GetStatus.  That
5494   // very well might run code (e.g. if we need it to get return values or
5495   // arguments.)  For that to work the process has to be able to acquire it.
5496   // So instead copy the thread ID's, and look them up one by one:
5497 
5498   uint32_t num_threads;
5499   std::vector<lldb::tid_t> thread_id_array;
5500   // Scope for thread list locker;
5501   {
5502     std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5503     ThreadList &curr_thread_list = GetThreadList();
5504     num_threads = curr_thread_list.GetSize();
5505     uint32_t idx;
5506     thread_id_array.resize(num_threads);
5507     for (idx = 0; idx < num_threads; ++idx)
5508       thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID();
5509   }
5510 
5511   for (uint32_t i = 0; i < num_threads; i++) {
5512     ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i]));
5513     if (thread_sp) {
5514       if (only_threads_with_stop_reason) {
5515         StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
5516         if (!stop_info_sp || !stop_info_sp->IsValid())
5517           continue;
5518       }
5519       thread_sp->GetStatus(strm, start_frame, num_frames,
5520                            num_frames_with_source,
5521                            stop_format);
5522       ++num_thread_infos_dumped;
5523     } else {
5524       Log *log = GetLog(LLDBLog::Process);
5525       LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64
5526                      " vanished while running Thread::GetStatus.");
5527     }
5528   }
5529   return num_thread_infos_dumped;
5530 }
5531 
5532 void Process::AddInvalidMemoryRegion(const LoadRange &region) {
5533   m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize());
5534 }
5535 
5536 bool Process::RemoveInvalidMemoryRange(const LoadRange &region) {
5537   return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(),
5538                                            region.GetByteSize());
5539 }
5540 
5541 void Process::AddPreResumeAction(PreResumeActionCallback callback,
5542                                  void *baton) {
5543   m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton));
5544 }
5545 
5546 bool Process::RunPreResumeActions() {
5547   bool result = true;
5548   while (!m_pre_resume_actions.empty()) {
5549     struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back();
5550     m_pre_resume_actions.pop_back();
5551     bool this_result = action.callback(action.baton);
5552     if (result)
5553       result = this_result;
5554   }
5555   return result;
5556 }
5557 
5558 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); }
5559 
5560 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton)
5561 {
5562     PreResumeCallbackAndBaton element(callback, baton);
5563     auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element);
5564     if (found_iter != m_pre_resume_actions.end())
5565     {
5566         m_pre_resume_actions.erase(found_iter);
5567     }
5568 }
5569 
5570 ProcessRunLock &Process::GetRunLock() {
5571   if (m_private_state_thread.EqualsThread(Host::GetCurrentThread()))
5572     return m_private_run_lock;
5573   else
5574     return m_public_run_lock;
5575 }
5576 
5577 bool Process::CurrentThreadIsPrivateStateThread()
5578 {
5579   return m_private_state_thread.EqualsThread(Host::GetCurrentThread());
5580 }
5581 
5582 
5583 void Process::Flush() {
5584   m_thread_list.Flush();
5585   m_extended_thread_list.Flush();
5586   m_extended_thread_stop_id = 0;
5587   m_queue_list.Clear();
5588   m_queue_list_stop_id = 0;
5589 }
5590 
5591 lldb::addr_t Process::GetCodeAddressMask() {
5592   if (m_code_address_mask == 0) {
5593     if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) {
5594       lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1);
5595       SetCodeAddressMask(address_mask);
5596     }
5597   }
5598   return m_code_address_mask;
5599 }
5600 
5601 lldb::addr_t Process::GetDataAddressMask() {
5602   if (m_data_address_mask == 0) {
5603     if (uint32_t number_of_addressable_bits = GetVirtualAddressableBits()) {
5604       lldb::addr_t address_mask = ~((1ULL << number_of_addressable_bits) - 1);
5605       SetDataAddressMask(address_mask);
5606     }
5607   }
5608   return m_data_address_mask;
5609 }
5610 
5611 void Process::DidExec() {
5612   Log *log = GetLog(LLDBLog::Process);
5613   LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
5614 
5615   Target &target = GetTarget();
5616   target.CleanupProcess();
5617   target.ClearModules(false);
5618   m_dynamic_checkers_up.reset();
5619   m_abi_sp.reset();
5620   m_system_runtime_up.reset();
5621   m_os_up.reset();
5622   m_dyld_up.reset();
5623   m_jit_loaders_up.reset();
5624   m_image_tokens.clear();
5625   m_allocated_memory_cache.Clear();
5626   {
5627     std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
5628     m_language_runtimes.clear();
5629   }
5630   m_instrumentation_runtimes.clear();
5631   m_thread_list.DiscardThreadPlans();
5632   m_memory_cache.Clear(true);
5633   DoDidExec();
5634   CompleteAttach();
5635   // Flush the process (threads and all stack frames) after running
5636   // CompleteAttach() in case the dynamic loader loaded things in new
5637   // locations.
5638   Flush();
5639 
5640   // After we figure out what was loaded/unloaded in CompleteAttach, we need to
5641   // let the target know so it can do any cleanup it needs to.
5642   target.DidExec();
5643 }
5644 
5645 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) {
5646   if (address == nullptr) {
5647     error.SetErrorString("Invalid address argument");
5648     return LLDB_INVALID_ADDRESS;
5649   }
5650 
5651   addr_t function_addr = LLDB_INVALID_ADDRESS;
5652 
5653   addr_t addr = address->GetLoadAddress(&GetTarget());
5654   std::map<addr_t, addr_t>::const_iterator iter =
5655       m_resolved_indirect_addresses.find(addr);
5656   if (iter != m_resolved_indirect_addresses.end()) {
5657     function_addr = (*iter).second;
5658   } else {
5659     if (!CallVoidArgVoidPtrReturn(address, function_addr)) {
5660       Symbol *symbol = address->CalculateSymbolContextSymbol();
5661       error.SetErrorStringWithFormat(
5662           "Unable to call resolver for indirect function %s",
5663           symbol ? symbol->GetName().AsCString() : "<UNKNOWN>");
5664       function_addr = LLDB_INVALID_ADDRESS;
5665     } else {
5666       if (ABISP abi_sp = GetABI())
5667         function_addr = abi_sp->FixCodeAddress(function_addr);
5668       m_resolved_indirect_addresses.insert(
5669           std::pair<addr_t, addr_t>(addr, function_addr));
5670     }
5671   }
5672   return function_addr;
5673 }
5674 
5675 void Process::ModulesDidLoad(ModuleList &module_list) {
5676   // Inform the system runtime of the modified modules.
5677   SystemRuntime *sys_runtime = GetSystemRuntime();
5678   if (sys_runtime)
5679     sys_runtime->ModulesDidLoad(module_list);
5680 
5681   GetJITLoaders().ModulesDidLoad(module_list);
5682 
5683   // Give the instrumentation runtimes a chance to be created before informing
5684   // them of the modified modules.
5685   InstrumentationRuntime::ModulesDidLoad(module_list, this,
5686                                          m_instrumentation_runtimes);
5687   for (auto &runtime : m_instrumentation_runtimes)
5688     runtime.second->ModulesDidLoad(module_list);
5689 
5690   // Give the language runtimes a chance to be created before informing them of
5691   // the modified modules.
5692   for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
5693     if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
5694       runtime->ModulesDidLoad(module_list);
5695   }
5696 
5697   // If we don't have an operating system plug-in, try to load one since
5698   // loading shared libraries might cause a new one to try and load
5699   if (!m_os_up)
5700     LoadOperatingSystemPlugin(false);
5701 
5702   // Inform the structured-data plugins of the modified modules.
5703   for (auto pair : m_structured_data_plugin_map) {
5704     if (pair.second)
5705       pair.second->ModulesDidLoad(*this, module_list);
5706   }
5707 }
5708 
5709 void Process::PrintWarningOptimization(const SymbolContext &sc) {
5710   if (!GetWarningsOptimization())
5711     return;
5712   if (!sc.module_sp || !sc.function || !sc.function->GetIsOptimized())
5713     return;
5714   sc.module_sp->ReportWarningOptimization(GetTarget().GetDebugger().GetID());
5715 }
5716 
5717 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) {
5718   if (!GetWarningsUnsupportedLanguage())
5719     return;
5720   if (!sc.module_sp)
5721     return;
5722   LanguageType language = sc.GetLanguage();
5723   if (language == eLanguageTypeUnknown)
5724     return;
5725   LanguageSet plugins =
5726       PluginManager::GetAllTypeSystemSupportedLanguagesForTypes();
5727   if (plugins[language])
5728     return;
5729   sc.module_sp->ReportWarningUnsupportedLanguage(
5730       language, GetTarget().GetDebugger().GetID());
5731 }
5732 
5733 bool Process::GetProcessInfo(ProcessInstanceInfo &info) {
5734   info.Clear();
5735 
5736   PlatformSP platform_sp = GetTarget().GetPlatform();
5737   if (!platform_sp)
5738     return false;
5739 
5740   return platform_sp->GetProcessInfo(GetID(), info);
5741 }
5742 
5743 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) {
5744   ThreadCollectionSP threads;
5745 
5746   const MemoryHistorySP &memory_history =
5747       MemoryHistory::FindPlugin(shared_from_this());
5748 
5749   if (!memory_history) {
5750     return threads;
5751   }
5752 
5753   threads = std::make_shared<ThreadCollection>(
5754       memory_history->GetHistoryThreads(addr));
5755 
5756   return threads;
5757 }
5758 
5759 InstrumentationRuntimeSP
5760 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) {
5761   InstrumentationRuntimeCollection::iterator pos;
5762   pos = m_instrumentation_runtimes.find(type);
5763   if (pos == m_instrumentation_runtimes.end()) {
5764     return InstrumentationRuntimeSP();
5765   } else
5766     return (*pos).second;
5767 }
5768 
5769 bool Process::GetModuleSpec(const FileSpec &module_file_spec,
5770                             const ArchSpec &arch, ModuleSpec &module_spec) {
5771   module_spec.Clear();
5772   return false;
5773 }
5774 
5775 size_t Process::AddImageToken(lldb::addr_t image_ptr) {
5776   m_image_tokens.push_back(image_ptr);
5777   return m_image_tokens.size() - 1;
5778 }
5779 
5780 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const {
5781   if (token < m_image_tokens.size())
5782     return m_image_tokens[token];
5783   return LLDB_INVALID_ADDRESS;
5784 }
5785 
5786 void Process::ResetImageToken(size_t token) {
5787   if (token < m_image_tokens.size())
5788     m_image_tokens[token] = LLDB_INVALID_ADDRESS;
5789 }
5790 
5791 Address
5792 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr,
5793                                                AddressRange range_bounds) {
5794   Target &target = GetTarget();
5795   DisassemblerSP disassembler_sp;
5796   InstructionList *insn_list = nullptr;
5797 
5798   Address retval = default_stop_addr;
5799 
5800   if (!target.GetUseFastStepping())
5801     return retval;
5802   if (!default_stop_addr.IsValid())
5803     return retval;
5804 
5805   const char *plugin_name = nullptr;
5806   const char *flavor = nullptr;
5807   disassembler_sp = Disassembler::DisassembleRange(
5808       target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds);
5809   if (disassembler_sp)
5810     insn_list = &disassembler_sp->GetInstructionList();
5811 
5812   if (insn_list == nullptr) {
5813     return retval;
5814   }
5815 
5816   size_t insn_offset =
5817       insn_list->GetIndexOfInstructionAtAddress(default_stop_addr);
5818   if (insn_offset == UINT32_MAX) {
5819     return retval;
5820   }
5821 
5822   uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction(
5823       insn_offset, false /* ignore_calls*/, nullptr);
5824   if (branch_index == UINT32_MAX) {
5825     return retval;
5826   }
5827 
5828   if (branch_index > insn_offset) {
5829     Address next_branch_insn_address =
5830         insn_list->GetInstructionAtIndex(branch_index)->GetAddress();
5831     if (next_branch_insn_address.IsValid() &&
5832         range_bounds.ContainsFileAddress(next_branch_insn_address)) {
5833       retval = next_branch_insn_address;
5834     }
5835   }
5836 
5837   return retval;
5838 }
5839 
5840 Status Process::GetMemoryRegionInfo(lldb::addr_t load_addr,
5841                                     MemoryRegionInfo &range_info) {
5842   if (const lldb::ABISP &abi = GetABI())
5843     load_addr = abi->FixAnyAddress(load_addr);
5844   return DoGetMemoryRegionInfo(load_addr, range_info);
5845 }
5846 
5847 Status Process::GetMemoryRegions(lldb_private::MemoryRegionInfos &region_list) {
5848   Status error;
5849 
5850   lldb::addr_t range_end = 0;
5851   const lldb::ABISP &abi = GetABI();
5852 
5853   region_list.clear();
5854   do {
5855     lldb_private::MemoryRegionInfo region_info;
5856     error = GetMemoryRegionInfo(range_end, region_info);
5857     // GetMemoryRegionInfo should only return an error if it is unimplemented.
5858     if (error.Fail()) {
5859       region_list.clear();
5860       break;
5861     }
5862 
5863     // We only check the end address, not start and end, because we assume that
5864     // the start will not have non-address bits until the first unmappable
5865     // region. We will have exited the loop by that point because the previous
5866     // region, the last mappable region, will have non-address bits in its end
5867     // address.
5868     range_end = region_info.GetRange().GetRangeEnd();
5869     if (region_info.GetMapped() == MemoryRegionInfo::eYes) {
5870       region_list.push_back(std::move(region_info));
5871     }
5872   } while (
5873       // For a process with no non-address bits, all address bits
5874       // set means the end of memory.
5875       range_end != LLDB_INVALID_ADDRESS &&
5876       // If we have non-address bits and some are set then the end
5877       // is at or beyond the end of mappable memory.
5878       !(abi && (abi->FixAnyAddress(range_end) != range_end)));
5879 
5880   return error;
5881 }
5882 
5883 Status
5884 Process::ConfigureStructuredData(ConstString type_name,
5885                                  const StructuredData::ObjectSP &config_sp) {
5886   // If you get this, the Process-derived class needs to implement a method to
5887   // enable an already-reported asynchronous structured data feature. See
5888   // ProcessGDBRemote for an example implementation over gdb-remote.
5889   return Status("unimplemented");
5890 }
5891 
5892 void Process::MapSupportedStructuredDataPlugins(
5893     const StructuredData::Array &supported_type_names) {
5894   Log *log = GetLog(LLDBLog::Process);
5895 
5896   // Bail out early if there are no type names to map.
5897   if (supported_type_names.GetSize() == 0) {
5898     LLDB_LOGF(log, "Process::%s(): no structured data types supported",
5899               __FUNCTION__);
5900     return;
5901   }
5902 
5903   // Convert StructuredData type names to ConstString instances.
5904   std::set<ConstString> const_type_names;
5905 
5906   LLDB_LOGF(log,
5907             "Process::%s(): the process supports the following async "
5908             "structured data types:",
5909             __FUNCTION__);
5910 
5911   supported_type_names.ForEach(
5912       [&const_type_names, &log](StructuredData::Object *object) {
5913         if (!object) {
5914           // Invalid - shouldn't be null objects in the array.
5915           return false;
5916         }
5917 
5918         auto type_name = object->GetAsString();
5919         if (!type_name) {
5920           // Invalid format - all type names should be strings.
5921           return false;
5922         }
5923 
5924         const_type_names.insert(ConstString(type_name->GetValue()));
5925         LLDB_LOG(log, "- {0}", type_name->GetValue());
5926         return true;
5927       });
5928 
5929   // For each StructuredDataPlugin, if the plugin handles any of the types in
5930   // the supported_type_names, map that type name to that plugin. Stop when
5931   // we've consumed all the type names.
5932   // FIXME: should we return an error if there are type names nobody
5933   // supports?
5934   for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) {
5935     auto create_instance =
5936            PluginManager::GetStructuredDataPluginCreateCallbackAtIndex(
5937                plugin_index);
5938     if (!create_instance)
5939       break;
5940 
5941     // Create the plugin.
5942     StructuredDataPluginSP plugin_sp = (*create_instance)(*this);
5943     if (!plugin_sp) {
5944       // This plugin doesn't think it can work with the process. Move on to the
5945       // next.
5946       continue;
5947     }
5948 
5949     // For any of the remaining type names, map any that this plugin supports.
5950     std::vector<ConstString> names_to_remove;
5951     for (auto &type_name : const_type_names) {
5952       if (plugin_sp->SupportsStructuredDataType(type_name)) {
5953         m_structured_data_plugin_map.insert(
5954             std::make_pair(type_name, plugin_sp));
5955         names_to_remove.push_back(type_name);
5956         LLDB_LOG(log, "using plugin {0} for type name {1}",
5957                  plugin_sp->GetPluginName(), type_name);
5958       }
5959     }
5960 
5961     // Remove the type names that were consumed by this plugin.
5962     for (auto &type_name : names_to_remove)
5963       const_type_names.erase(type_name);
5964   }
5965 }
5966 
5967 bool Process::RouteAsyncStructuredData(
5968     const StructuredData::ObjectSP object_sp) {
5969   // Nothing to do if there's no data.
5970   if (!object_sp)
5971     return false;
5972 
5973   // The contract is this must be a dictionary, so we can look up the routing
5974   // key via the top-level 'type' string value within the dictionary.
5975   StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary();
5976   if (!dictionary)
5977     return false;
5978 
5979   // Grab the async structured type name (i.e. the feature/plugin name).
5980   ConstString type_name;
5981   if (!dictionary->GetValueForKeyAsString("type", type_name))
5982     return false;
5983 
5984   // Check if there's a plugin registered for this type name.
5985   auto find_it = m_structured_data_plugin_map.find(type_name);
5986   if (find_it == m_structured_data_plugin_map.end()) {
5987     // We don't have a mapping for this structured data type.
5988     return false;
5989   }
5990 
5991   // Route the structured data to the plugin.
5992   find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp);
5993   return true;
5994 }
5995 
5996 Status Process::UpdateAutomaticSignalFiltering() {
5997   // Default implementation does nothign.
5998   // No automatic signal filtering to speak of.
5999   return Status();
6000 }
6001 
6002 UtilityFunction *Process::GetLoadImageUtilityFunction(
6003     Platform *platform,
6004     llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) {
6005   if (platform != GetTarget().GetPlatform().get())
6006     return nullptr;
6007   llvm::call_once(m_dlopen_utility_func_flag_once,
6008                   [&] { m_dlopen_utility_func_up = factory(); });
6009   return m_dlopen_utility_func_up.get();
6010 }
6011 
6012 llvm::Expected<TraceSupportedResponse> Process::TraceSupported() {
6013   if (!IsLiveDebugSession())
6014     return llvm::createStringError(llvm::inconvertibleErrorCode(),
6015                                    "Can't trace a non-live process.");
6016   return llvm::make_error<UnimplementedError>();
6017 }
6018 
6019 bool Process::CallVoidArgVoidPtrReturn(const Address *address,
6020                                        addr_t &returned_func,
6021                                        bool trap_exceptions) {
6022   Thread *thread = GetThreadList().GetExpressionExecutionThread().get();
6023   if (thread == nullptr || address == nullptr)
6024     return false;
6025 
6026   EvaluateExpressionOptions options;
6027   options.SetStopOthers(true);
6028   options.SetUnwindOnError(true);
6029   options.SetIgnoreBreakpoints(true);
6030   options.SetTryAllThreads(true);
6031   options.SetDebug(false);
6032   options.SetTimeout(GetUtilityExpressionTimeout());
6033   options.SetTrapExceptions(trap_exceptions);
6034 
6035   auto type_system_or_err =
6036       GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC);
6037   if (!type_system_or_err) {
6038     llvm::consumeError(type_system_or_err.takeError());
6039     return false;
6040   }
6041   CompilerType void_ptr_type =
6042       type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType();
6043   lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction(
6044       *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options));
6045   if (call_plan_sp) {
6046     DiagnosticManager diagnostics;
6047 
6048     StackFrame *frame = thread->GetStackFrameAtIndex(0).get();
6049     if (frame) {
6050       ExecutionContext exe_ctx;
6051       frame->CalculateExecutionContext(exe_ctx);
6052       ExpressionResults result =
6053           RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics);
6054       if (result == eExpressionCompleted) {
6055         returned_func =
6056             call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned(
6057                 LLDB_INVALID_ADDRESS);
6058 
6059         if (GetAddressByteSize() == 4) {
6060           if (returned_func == UINT32_MAX)
6061             return false;
6062         } else if (GetAddressByteSize() == 8) {
6063           if (returned_func == UINT64_MAX)
6064             return false;
6065         }
6066         return true;
6067       }
6068     }
6069   }
6070 
6071   return false;
6072 }
6073 
6074 llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() {
6075   Architecture *arch = GetTarget().GetArchitecturePlugin();
6076   const MemoryTagManager *tag_manager =
6077       arch ? arch->GetMemoryTagManager() : nullptr;
6078   if (!arch || !tag_manager) {
6079     return llvm::createStringError(
6080         llvm::inconvertibleErrorCode(),
6081         "This architecture does not support memory tagging");
6082   }
6083 
6084   if (!SupportsMemoryTagging()) {
6085     return llvm::createStringError(llvm::inconvertibleErrorCode(),
6086                                    "Process does not support memory tagging");
6087   }
6088 
6089   return tag_manager;
6090 }
6091 
6092 llvm::Expected<std::vector<lldb::addr_t>>
6093 Process::ReadMemoryTags(lldb::addr_t addr, size_t len) {
6094   llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
6095       GetMemoryTagManager();
6096   if (!tag_manager_or_err)
6097     return tag_manager_or_err.takeError();
6098 
6099   const MemoryTagManager *tag_manager = *tag_manager_or_err;
6100   llvm::Expected<std::vector<uint8_t>> tag_data =
6101       DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType());
6102   if (!tag_data)
6103     return tag_data.takeError();
6104 
6105   return tag_manager->UnpackTagsData(*tag_data,
6106                                      len / tag_manager->GetGranuleSize());
6107 }
6108 
6109 Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len,
6110                                 const std::vector<lldb::addr_t> &tags) {
6111   llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
6112       GetMemoryTagManager();
6113   if (!tag_manager_or_err)
6114     return Status(tag_manager_or_err.takeError());
6115 
6116   const MemoryTagManager *tag_manager = *tag_manager_or_err;
6117   llvm::Expected<std::vector<uint8_t>> packed_tags =
6118       tag_manager->PackTags(tags);
6119   if (!packed_tags) {
6120     return Status(packed_tags.takeError());
6121   }
6122 
6123   return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(),
6124                            *packed_tags);
6125 }
6126