1 //===-- Process.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <atomic> 10 #include <memory> 11 #include <mutex> 12 13 #include "llvm/Support/ScopedPrinter.h" 14 #include "llvm/Support/Threading.h" 15 16 #include "lldb/Breakpoint/BreakpointLocation.h" 17 #include "lldb/Breakpoint/StoppointCallbackContext.h" 18 #include "lldb/Core/Debugger.h" 19 #include "lldb/Core/Module.h" 20 #include "lldb/Core/ModuleSpec.h" 21 #include "lldb/Core/PluginManager.h" 22 #include "lldb/Core/StreamFile.h" 23 #include "lldb/Expression/DiagnosticManager.h" 24 #include "lldb/Expression/DynamicCheckerFunctions.h" 25 #include "lldb/Expression/UserExpression.h" 26 #include "lldb/Expression/UtilityFunction.h" 27 #include "lldb/Host/ConnectionFileDescriptor.h" 28 #include "lldb/Host/FileSystem.h" 29 #include "lldb/Host/Host.h" 30 #include "lldb/Host/HostInfo.h" 31 #include "lldb/Host/OptionParser.h" 32 #include "lldb/Host/Pipe.h" 33 #include "lldb/Host/Terminal.h" 34 #include "lldb/Host/ThreadLauncher.h" 35 #include "lldb/Interpreter/CommandInterpreter.h" 36 #include "lldb/Interpreter/OptionArgParser.h" 37 #include "lldb/Interpreter/OptionValueProperties.h" 38 #include "lldb/Symbol/Function.h" 39 #include "lldb/Symbol/Symbol.h" 40 #include "lldb/Target/ABI.h" 41 #include "lldb/Target/AssertFrameRecognizer.h" 42 #include "lldb/Target/DynamicLoader.h" 43 #include "lldb/Target/InstrumentationRuntime.h" 44 #include "lldb/Target/JITLoader.h" 45 #include "lldb/Target/JITLoaderList.h" 46 #include "lldb/Target/Language.h" 47 #include "lldb/Target/LanguageRuntime.h" 48 #include "lldb/Target/MemoryHistory.h" 49 #include "lldb/Target/MemoryRegionInfo.h" 50 #include "lldb/Target/OperatingSystem.h" 51 #include "lldb/Target/Platform.h" 52 #include "lldb/Target/Process.h" 53 #include "lldb/Target/RegisterContext.h" 54 #include "lldb/Target/StopInfo.h" 55 #include "lldb/Target/StructuredDataPlugin.h" 56 #include "lldb/Target/SystemRuntime.h" 57 #include "lldb/Target/Target.h" 58 #include "lldb/Target/TargetList.h" 59 #include "lldb/Target/Thread.h" 60 #include "lldb/Target/ThreadPlan.h" 61 #include "lldb/Target/ThreadPlanBase.h" 62 #include "lldb/Target/ThreadPlanCallFunction.h" 63 #include "lldb/Target/UnixSignals.h" 64 #include "lldb/Utility/Event.h" 65 #include "lldb/Utility/Log.h" 66 #include "lldb/Utility/NameMatches.h" 67 #include "lldb/Utility/ProcessInfo.h" 68 #include "lldb/Utility/SelectHelper.h" 69 #include "lldb/Utility/State.h" 70 71 using namespace lldb; 72 using namespace lldb_private; 73 using namespace std::chrono; 74 75 // Comment out line below to disable memory caching, overriding the process 76 // setting target.process.disable-memory-cache 77 #define ENABLE_MEMORY_CACHING 78 79 #ifdef ENABLE_MEMORY_CACHING 80 #define DISABLE_MEM_CACHE_DEFAULT false 81 #else 82 #define DISABLE_MEM_CACHE_DEFAULT true 83 #endif 84 85 class ProcessOptionValueProperties : public OptionValueProperties { 86 public: 87 ProcessOptionValueProperties(ConstString name) 88 : OptionValueProperties(name) {} 89 90 // This constructor is used when creating ProcessOptionValueProperties when 91 // it is part of a new lldb_private::Process instance. It will copy all 92 // current global property values as needed 93 ProcessOptionValueProperties(ProcessProperties *global_properties) 94 : OptionValueProperties(*global_properties->GetValueProperties()) {} 95 96 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 97 bool will_modify, 98 uint32_t idx) const override { 99 // When getting the value for a key from the process options, we will 100 // always try and grab the setting from the current process if there is 101 // one. Else we just use the one from this instance. 102 if (exe_ctx) { 103 Process *process = exe_ctx->GetProcessPtr(); 104 if (process) { 105 ProcessOptionValueProperties *instance_properties = 106 static_cast<ProcessOptionValueProperties *>( 107 process->GetValueProperties().get()); 108 if (this != instance_properties) 109 return instance_properties->ProtectedGetPropertyAtIndex(idx); 110 } 111 } 112 return ProtectedGetPropertyAtIndex(idx); 113 } 114 }; 115 116 #define LLDB_PROPERTIES_process 117 #include "TargetProperties.inc" 118 119 enum { 120 #define LLDB_PROPERTIES_process 121 #include "TargetPropertiesEnum.inc" 122 }; 123 124 ProcessProperties::ProcessProperties(lldb_private::Process *process) 125 : Properties(), 126 m_process(process) // Can be nullptr for global ProcessProperties 127 { 128 if (process == nullptr) { 129 // Global process properties, set them up one time 130 m_collection_sp = 131 std::make_shared<ProcessOptionValueProperties>(ConstString("process")); 132 m_collection_sp->Initialize(g_process_properties); 133 m_collection_sp->AppendProperty( 134 ConstString("thread"), ConstString("Settings specific to threads."), 135 true, Thread::GetGlobalProperties()->GetValueProperties()); 136 } else { 137 m_collection_sp = std::make_shared<ProcessOptionValueProperties>( 138 Process::GetGlobalProperties().get()); 139 m_collection_sp->SetValueChangedCallback( 140 ePropertyPythonOSPluginPath, 141 [this] { m_process->LoadOperatingSystemPlugin(true); }); 142 } 143 } 144 145 ProcessProperties::~ProcessProperties() = default; 146 147 bool ProcessProperties::GetDisableMemoryCache() const { 148 const uint32_t idx = ePropertyDisableMemCache; 149 return m_collection_sp->GetPropertyAtIndexAsBoolean( 150 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 151 } 152 153 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 154 const uint32_t idx = ePropertyMemCacheLineSize; 155 return m_collection_sp->GetPropertyAtIndexAsUInt64( 156 nullptr, idx, g_process_properties[idx].default_uint_value); 157 } 158 159 Args ProcessProperties::GetExtraStartupCommands() const { 160 Args args; 161 const uint32_t idx = ePropertyExtraStartCommand; 162 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 163 return args; 164 } 165 166 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 167 const uint32_t idx = ePropertyExtraStartCommand; 168 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 169 } 170 171 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 172 const uint32_t idx = ePropertyPythonOSPluginPath; 173 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 174 } 175 176 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 177 const uint32_t idx = ePropertyPythonOSPluginPath; 178 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 179 } 180 181 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 182 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 183 return m_collection_sp->GetPropertyAtIndexAsBoolean( 184 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 185 } 186 187 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 188 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 189 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 190 } 191 192 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 193 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 194 return m_collection_sp->GetPropertyAtIndexAsBoolean( 195 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 196 } 197 198 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 199 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 200 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 201 } 202 203 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 204 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 205 return m_collection_sp->GetPropertyAtIndexAsBoolean( 206 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 207 } 208 209 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 210 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 211 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 212 } 213 214 bool ProcessProperties::GetDetachKeepsStopped() const { 215 const uint32_t idx = ePropertyDetachKeepsStopped; 216 return m_collection_sp->GetPropertyAtIndexAsBoolean( 217 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 218 } 219 220 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 221 const uint32_t idx = ePropertyDetachKeepsStopped; 222 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 223 } 224 225 bool ProcessProperties::GetWarningsOptimization() const { 226 const uint32_t idx = ePropertyWarningOptimization; 227 return m_collection_sp->GetPropertyAtIndexAsBoolean( 228 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 229 } 230 231 bool ProcessProperties::GetStopOnExec() const { 232 const uint32_t idx = ePropertyStopOnExec; 233 return m_collection_sp->GetPropertyAtIndexAsBoolean( 234 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 235 } 236 237 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { 238 const uint32_t idx = ePropertyUtilityExpressionTimeout; 239 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 240 nullptr, idx, g_process_properties[idx].default_uint_value); 241 return std::chrono::seconds(value); 242 } 243 244 Status ProcessLaunchCommandOptions::SetOptionValue( 245 uint32_t option_idx, llvm::StringRef option_arg, 246 ExecutionContext *execution_context) { 247 Status error; 248 const int short_option = m_getopt_table[option_idx].val; 249 250 switch (short_option) { 251 case 's': // Stop at program entry point 252 launch_info.GetFlags().Set(eLaunchFlagStopAtEntry); 253 break; 254 255 case 'i': // STDIN for read only 256 { 257 FileAction action; 258 if (action.Open(STDIN_FILENO, FileSpec(option_arg), true, false)) 259 launch_info.AppendFileAction(action); 260 break; 261 } 262 263 case 'o': // Open STDOUT for write only 264 { 265 FileAction action; 266 if (action.Open(STDOUT_FILENO, FileSpec(option_arg), false, true)) 267 launch_info.AppendFileAction(action); 268 break; 269 } 270 271 case 'e': // STDERR for write only 272 { 273 FileAction action; 274 if (action.Open(STDERR_FILENO, FileSpec(option_arg), false, true)) 275 launch_info.AppendFileAction(action); 276 break; 277 } 278 279 case 'p': // Process plug-in name 280 launch_info.SetProcessPluginName(option_arg); 281 break; 282 283 case 'n': // Disable STDIO 284 { 285 FileAction action; 286 const FileSpec dev_null(FileSystem::DEV_NULL); 287 if (action.Open(STDIN_FILENO, dev_null, true, false)) 288 launch_info.AppendFileAction(action); 289 if (action.Open(STDOUT_FILENO, dev_null, false, true)) 290 launch_info.AppendFileAction(action); 291 if (action.Open(STDERR_FILENO, dev_null, false, true)) 292 launch_info.AppendFileAction(action); 293 break; 294 } 295 296 case 'w': 297 launch_info.SetWorkingDirectory(FileSpec(option_arg)); 298 break; 299 300 case 't': // Open process in new terminal window 301 launch_info.GetFlags().Set(eLaunchFlagLaunchInTTY); 302 break; 303 304 case 'a': { 305 TargetSP target_sp = 306 execution_context ? execution_context->GetTargetSP() : TargetSP(); 307 PlatformSP platform_sp = 308 target_sp ? target_sp->GetPlatform() : PlatformSP(); 309 launch_info.GetArchitecture() = 310 Platform::GetAugmentedArchSpec(platform_sp.get(), option_arg); 311 } break; 312 313 case 'A': // Disable ASLR. 314 { 315 bool success; 316 const bool disable_aslr_arg = 317 OptionArgParser::ToBoolean(option_arg, true, &success); 318 if (success) 319 disable_aslr = disable_aslr_arg ? eLazyBoolYes : eLazyBoolNo; 320 else 321 error.SetErrorStringWithFormat( 322 "Invalid boolean value for disable-aslr option: '%s'", 323 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 324 break; 325 } 326 327 case 'X': // shell expand args. 328 { 329 bool success; 330 const bool expand_args = 331 OptionArgParser::ToBoolean(option_arg, true, &success); 332 if (success) 333 launch_info.SetShellExpandArguments(expand_args); 334 else 335 error.SetErrorStringWithFormat( 336 "Invalid boolean value for shell-expand-args option: '%s'", 337 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 338 break; 339 } 340 341 case 'c': 342 if (!option_arg.empty()) 343 launch_info.SetShell(FileSpec(option_arg)); 344 else 345 launch_info.SetShell(HostInfo::GetDefaultShell()); 346 break; 347 348 case 'v': 349 launch_info.GetEnvironment().insert(option_arg); 350 break; 351 352 default: 353 error.SetErrorStringWithFormat("unrecognized short option character '%c'", 354 short_option); 355 break; 356 } 357 return error; 358 } 359 360 static constexpr OptionDefinition g_process_launch_options[] = { 361 {LLDB_OPT_SET_ALL, false, "stop-at-entry", 's', OptionParser::eNoArgument, 362 nullptr, {}, 0, eArgTypeNone, 363 "Stop at the entry point of the program when launching a process."}, 364 {LLDB_OPT_SET_ALL, false, "disable-aslr", 'A', 365 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeBoolean, 366 "Set whether to disable address space layout randomization when launching " 367 "a process."}, 368 {LLDB_OPT_SET_ALL, false, "plugin", 'p', OptionParser::eRequiredArgument, 369 nullptr, {}, 0, eArgTypePlugin, 370 "Name of the process plugin you want to use."}, 371 {LLDB_OPT_SET_ALL, false, "working-dir", 'w', 372 OptionParser::eRequiredArgument, nullptr, {}, 0, 373 eArgTypeDirectoryName, 374 "Set the current working directory to <path> when running the inferior."}, 375 {LLDB_OPT_SET_ALL, false, "arch", 'a', OptionParser::eRequiredArgument, 376 nullptr, {}, 0, eArgTypeArchitecture, 377 "Set the architecture for the process to launch when ambiguous."}, 378 {LLDB_OPT_SET_ALL, false, "environment", 'v', 379 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeNone, 380 "Specify an environment variable name/value string (--environment " 381 "NAME=VALUE). Can be specified multiple times for subsequent environment " 382 "entries."}, 383 {LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3, false, "shell", 'c', 384 OptionParser::eOptionalArgument, nullptr, {}, 0, eArgTypeFilename, 385 "Run the process in a shell (not supported on all platforms)."}, 386 387 {LLDB_OPT_SET_1, false, "stdin", 'i', OptionParser::eRequiredArgument, 388 nullptr, {}, 0, eArgTypeFilename, 389 "Redirect stdin for the process to <filename>."}, 390 {LLDB_OPT_SET_1, false, "stdout", 'o', OptionParser::eRequiredArgument, 391 nullptr, {}, 0, eArgTypeFilename, 392 "Redirect stdout for the process to <filename>."}, 393 {LLDB_OPT_SET_1, false, "stderr", 'e', OptionParser::eRequiredArgument, 394 nullptr, {}, 0, eArgTypeFilename, 395 "Redirect stderr for the process to <filename>."}, 396 397 {LLDB_OPT_SET_2, false, "tty", 't', OptionParser::eNoArgument, nullptr, 398 {}, 0, eArgTypeNone, 399 "Start the process in a terminal (not supported on all platforms)."}, 400 401 {LLDB_OPT_SET_3, false, "no-stdio", 'n', OptionParser::eNoArgument, nullptr, 402 {}, 0, eArgTypeNone, 403 "Do not set up for terminal I/O to go to running process."}, 404 {LLDB_OPT_SET_4, false, "shell-expand-args", 'X', 405 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeBoolean, 406 "Set whether to shell expand arguments to the process when launching."}, 407 }; 408 409 llvm::ArrayRef<OptionDefinition> ProcessLaunchCommandOptions::GetDefinitions() { 410 return llvm::makeArrayRef(g_process_launch_options); 411 } 412 413 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 414 llvm::StringRef plugin_name, 415 ListenerSP listener_sp, 416 const FileSpec *crash_file_path) { 417 static uint32_t g_process_unique_id = 0; 418 419 ProcessSP process_sp; 420 ProcessCreateInstance create_callback = nullptr; 421 if (!plugin_name.empty()) { 422 ConstString const_plugin_name(plugin_name); 423 create_callback = 424 PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name); 425 if (create_callback) { 426 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 427 if (process_sp) { 428 if (process_sp->CanDebug(target_sp, true)) { 429 process_sp->m_process_unique_id = ++g_process_unique_id; 430 } else 431 process_sp.reset(); 432 } 433 } 434 } else { 435 for (uint32_t idx = 0; 436 (create_callback = 437 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 438 ++idx) { 439 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 440 if (process_sp) { 441 if (process_sp->CanDebug(target_sp, false)) { 442 process_sp->m_process_unique_id = ++g_process_unique_id; 443 break; 444 } else 445 process_sp.reset(); 446 } 447 } 448 } 449 return process_sp; 450 } 451 452 ConstString &Process::GetStaticBroadcasterClass() { 453 static ConstString class_name("lldb.process"); 454 return class_name; 455 } 456 457 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 458 : Process(target_sp, listener_sp, 459 UnixSignals::Create(HostInfo::GetArchitecture())) { 460 // This constructor just delegates to the full Process constructor, 461 // defaulting to using the Host's UnixSignals. 462 } 463 464 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 465 const UnixSignalsSP &unix_signals_sp) 466 : ProcessProperties(this), UserID(LLDB_INVALID_PROCESS_ID), 467 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 468 Process::GetStaticBroadcasterClass().AsCString()), 469 m_target_wp(target_sp), m_public_state(eStateUnloaded), 470 m_private_state(eStateUnloaded), 471 m_private_state_broadcaster(nullptr, 472 "lldb.process.internal_state_broadcaster"), 473 m_private_state_control_broadcaster( 474 nullptr, "lldb.process.internal_state_control_broadcaster"), 475 m_private_state_listener_sp( 476 Listener::MakeListener("lldb.process.internal_state_listener")), 477 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 478 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 479 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 480 m_thread_list(this), m_extended_thread_list(this), 481 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 482 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 483 m_breakpoint_site_list(), m_dynamic_checkers_up(), 484 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 485 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 486 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 487 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 488 m_memory_cache(*this), m_allocated_memory_cache(*this), 489 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), 490 m_private_run_lock(), m_finalizing(false), m_finalize_called(false), 491 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 492 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 493 m_can_interpret_function_calls(false), m_warnings_issued(), 494 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 495 CheckInWithManager(); 496 497 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 498 LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this)); 499 500 if (!m_unix_signals_sp) 501 m_unix_signals_sp = std::make_shared<UnixSignals>(); 502 503 SetEventName(eBroadcastBitStateChanged, "state-changed"); 504 SetEventName(eBroadcastBitInterrupt, "interrupt"); 505 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 506 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 507 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 508 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 509 510 m_private_state_control_broadcaster.SetEventName( 511 eBroadcastInternalStateControlStop, "control-stop"); 512 m_private_state_control_broadcaster.SetEventName( 513 eBroadcastInternalStateControlPause, "control-pause"); 514 m_private_state_control_broadcaster.SetEventName( 515 eBroadcastInternalStateControlResume, "control-resume"); 516 517 m_listener_sp->StartListeningForEvents( 518 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 519 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 520 eBroadcastBitProfileData | eBroadcastBitStructuredData); 521 522 m_private_state_listener_sp->StartListeningForEvents( 523 &m_private_state_broadcaster, 524 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 525 526 m_private_state_listener_sp->StartListeningForEvents( 527 &m_private_state_control_broadcaster, 528 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 529 eBroadcastInternalStateControlResume); 530 // We need something valid here, even if just the default UnixSignalsSP. 531 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 532 533 // Allow the platform to override the default cache line size 534 OptionValueSP value_sp = 535 m_collection_sp 536 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 537 ->GetValue(); 538 uint32_t platform_cache_line_size = 539 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 540 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 541 value_sp->SetUInt64Value(platform_cache_line_size); 542 543 RegisterAssertFrameRecognizer(this); 544 } 545 546 Process::~Process() { 547 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 548 LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this)); 549 StopPrivateStateThread(); 550 551 // ThreadList::Clear() will try to acquire this process's mutex, so 552 // explicitly clear the thread list here to ensure that the mutex is not 553 // destroyed before the thread list. 554 m_thread_list.Clear(); 555 } 556 557 const ProcessPropertiesSP &Process::GetGlobalProperties() { 558 // NOTE: intentional leak so we don't crash if global destructor chain gets 559 // called as other threads still use the result of this function 560 static ProcessPropertiesSP *g_settings_sp_ptr = 561 new ProcessPropertiesSP(new ProcessProperties(nullptr)); 562 return *g_settings_sp_ptr; 563 } 564 565 void Process::Finalize() { 566 m_finalizing = true; 567 568 // Destroy this process if needed 569 switch (GetPrivateState()) { 570 case eStateConnected: 571 case eStateAttaching: 572 case eStateLaunching: 573 case eStateStopped: 574 case eStateRunning: 575 case eStateStepping: 576 case eStateCrashed: 577 case eStateSuspended: 578 Destroy(false); 579 break; 580 581 case eStateInvalid: 582 case eStateUnloaded: 583 case eStateDetached: 584 case eStateExited: 585 break; 586 } 587 588 // Clear our broadcaster before we proceed with destroying 589 Broadcaster::Clear(); 590 591 // Do any cleanup needed prior to being destructed... Subclasses that 592 // override this method should call this superclass method as well. 593 594 // We need to destroy the loader before the derived Process class gets 595 // destroyed since it is very likely that undoing the loader will require 596 // access to the real process. 597 m_dynamic_checkers_up.reset(); 598 m_abi_sp.reset(); 599 m_os_up.reset(); 600 m_system_runtime_up.reset(); 601 m_dyld_up.reset(); 602 m_jit_loaders_up.reset(); 603 m_thread_list_real.Destroy(); 604 m_thread_list.Destroy(); 605 m_extended_thread_list.Destroy(); 606 m_queue_list.Clear(); 607 m_queue_list_stop_id = 0; 608 std::vector<Notifications> empty_notifications; 609 m_notifications.swap(empty_notifications); 610 m_image_tokens.clear(); 611 m_memory_cache.Clear(); 612 m_allocated_memory_cache.Clear(); 613 { 614 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 615 m_language_runtimes.clear(); 616 } 617 m_instrumentation_runtimes.clear(); 618 m_next_event_action_up.reset(); 619 // Clear the last natural stop ID since it has a strong reference to this 620 // process 621 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 622 //#ifdef LLDB_CONFIGURATION_DEBUG 623 // StreamFile s(stdout, false); 624 // EventSP event_sp; 625 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 626 // { 627 // event_sp->Dump (&s); 628 // s.EOL(); 629 // } 630 //#endif 631 // We have to be very careful here as the m_private_state_listener might 632 // contain events that have ProcessSP values in them which can keep this 633 // process around forever. These events need to be cleared out. 634 m_private_state_listener_sp->Clear(); 635 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 636 m_public_run_lock.SetStopped(); 637 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 638 m_private_run_lock.SetStopped(); 639 m_structured_data_plugin_map.clear(); 640 m_finalize_called = true; 641 } 642 643 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 644 m_notifications.push_back(callbacks); 645 if (callbacks.initialize != nullptr) 646 callbacks.initialize(callbacks.baton, this); 647 } 648 649 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 650 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 651 for (pos = m_notifications.begin(); pos != end; ++pos) { 652 if (pos->baton == callbacks.baton && 653 pos->initialize == callbacks.initialize && 654 pos->process_state_changed == callbacks.process_state_changed) { 655 m_notifications.erase(pos); 656 return true; 657 } 658 } 659 return false; 660 } 661 662 void Process::SynchronouslyNotifyStateChanged(StateType state) { 663 std::vector<Notifications>::iterator notification_pos, 664 notification_end = m_notifications.end(); 665 for (notification_pos = m_notifications.begin(); 666 notification_pos != notification_end; ++notification_pos) { 667 if (notification_pos->process_state_changed) 668 notification_pos->process_state_changed(notification_pos->baton, this, 669 state); 670 } 671 } 672 673 // FIXME: We need to do some work on events before the general Listener sees 674 // them. 675 // For instance if we are continuing from a breakpoint, we need to ensure that 676 // we do the little "insert real insn, step & stop" trick. But we can't do 677 // that when the event is delivered by the broadcaster - since that is done on 678 // the thread that is waiting for new events, so if we needed more than one 679 // event for our handling, we would stall. So instead we do it when we fetch 680 // the event off of the queue. 681 // 682 683 StateType Process::GetNextEvent(EventSP &event_sp) { 684 StateType state = eStateInvalid; 685 686 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 687 std::chrono::seconds(0)) && 688 event_sp) 689 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 690 691 return state; 692 } 693 694 void Process::SyncIOHandler(uint32_t iohandler_id, 695 const Timeout<std::micro> &timeout) { 696 // don't sync (potentially context switch) in case where there is no process 697 // IO 698 if (!m_process_input_reader) 699 return; 700 701 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 702 703 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 704 if (Result) { 705 LLDB_LOG( 706 log, 707 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 708 iohandler_id, *Result); 709 } else { 710 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 711 iohandler_id); 712 } 713 } 714 715 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 716 EventSP *event_sp_ptr, bool wait_always, 717 ListenerSP hijack_listener_sp, 718 Stream *stream, bool use_run_lock) { 719 // We can't just wait for a "stopped" event, because the stopped event may 720 // have restarted the target. We have to actually check each event, and in 721 // the case of a stopped event check the restarted flag on the event. 722 if (event_sp_ptr) 723 event_sp_ptr->reset(); 724 StateType state = GetState(); 725 // If we are exited or detached, we won't ever get back to any other valid 726 // state... 727 if (state == eStateDetached || state == eStateExited) 728 return state; 729 730 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 731 LLDB_LOG(log, "timeout = {0}", timeout); 732 733 if (!wait_always && StateIsStoppedState(state, true) && 734 StateIsStoppedState(GetPrivateState(), true)) { 735 LLDB_LOGF(log, 736 "Process::%s returning without waiting for events; process " 737 "private and public states are already 'stopped'.", 738 __FUNCTION__); 739 // We need to toggle the run lock as this won't get done in 740 // SetPublicState() if the process is hijacked. 741 if (hijack_listener_sp && use_run_lock) 742 m_public_run_lock.SetStopped(); 743 return state; 744 } 745 746 while (state != eStateInvalid) { 747 EventSP event_sp; 748 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 749 if (event_sp_ptr && event_sp) 750 *event_sp_ptr = event_sp; 751 752 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 753 Process::HandleProcessStateChangedEvent(event_sp, stream, 754 pop_process_io_handler); 755 756 switch (state) { 757 case eStateCrashed: 758 case eStateDetached: 759 case eStateExited: 760 case eStateUnloaded: 761 // We need to toggle the run lock as this won't get done in 762 // SetPublicState() if the process is hijacked. 763 if (hijack_listener_sp && use_run_lock) 764 m_public_run_lock.SetStopped(); 765 return state; 766 case eStateStopped: 767 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 768 continue; 769 else { 770 // We need to toggle the run lock as this won't get done in 771 // SetPublicState() if the process is hijacked. 772 if (hijack_listener_sp && use_run_lock) 773 m_public_run_lock.SetStopped(); 774 return state; 775 } 776 default: 777 continue; 778 } 779 } 780 return state; 781 } 782 783 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 784 Stream *stream, 785 bool &pop_process_io_handler) { 786 const bool handle_pop = pop_process_io_handler; 787 788 pop_process_io_handler = false; 789 ProcessSP process_sp = 790 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 791 792 if (!process_sp) 793 return false; 794 795 StateType event_state = 796 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 797 if (event_state == eStateInvalid) 798 return false; 799 800 switch (event_state) { 801 case eStateInvalid: 802 case eStateUnloaded: 803 case eStateAttaching: 804 case eStateLaunching: 805 case eStateStepping: 806 case eStateDetached: 807 if (stream) 808 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 809 StateAsCString(event_state)); 810 if (event_state == eStateDetached) 811 pop_process_io_handler = true; 812 break; 813 814 case eStateConnected: 815 case eStateRunning: 816 // Don't be chatty when we run... 817 break; 818 819 case eStateExited: 820 if (stream) 821 process_sp->GetStatus(*stream); 822 pop_process_io_handler = true; 823 break; 824 825 case eStateStopped: 826 case eStateCrashed: 827 case eStateSuspended: 828 // Make sure the program hasn't been auto-restarted: 829 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 830 if (stream) { 831 size_t num_reasons = 832 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 833 if (num_reasons > 0) { 834 // FIXME: Do we want to report this, or would that just be annoyingly 835 // chatty? 836 if (num_reasons == 1) { 837 const char *reason = 838 Process::ProcessEventData::GetRestartedReasonAtIndex( 839 event_sp.get(), 0); 840 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 841 process_sp->GetID(), 842 reason ? reason : "<UNKNOWN REASON>"); 843 } else { 844 stream->Printf("Process %" PRIu64 845 " stopped and restarted, reasons:\n", 846 process_sp->GetID()); 847 848 for (size_t i = 0; i < num_reasons; i++) { 849 const char *reason = 850 Process::ProcessEventData::GetRestartedReasonAtIndex( 851 event_sp.get(), i); 852 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 853 } 854 } 855 } 856 } 857 } else { 858 StopInfoSP curr_thread_stop_info_sp; 859 // Lock the thread list so it doesn't change on us, this is the scope for 860 // the locker: 861 { 862 ThreadList &thread_list = process_sp->GetThreadList(); 863 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 864 865 ThreadSP curr_thread(thread_list.GetSelectedThread()); 866 ThreadSP thread; 867 StopReason curr_thread_stop_reason = eStopReasonInvalid; 868 if (curr_thread) { 869 curr_thread_stop_reason = curr_thread->GetStopReason(); 870 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 871 } 872 if (!curr_thread || !curr_thread->IsValid() || 873 curr_thread_stop_reason == eStopReasonInvalid || 874 curr_thread_stop_reason == eStopReasonNone) { 875 // Prefer a thread that has just completed its plan over another 876 // thread as current thread. 877 ThreadSP plan_thread; 878 ThreadSP other_thread; 879 880 const size_t num_threads = thread_list.GetSize(); 881 size_t i; 882 for (i = 0; i < num_threads; ++i) { 883 thread = thread_list.GetThreadAtIndex(i); 884 StopReason thread_stop_reason = thread->GetStopReason(); 885 switch (thread_stop_reason) { 886 case eStopReasonInvalid: 887 case eStopReasonNone: 888 break; 889 890 case eStopReasonSignal: { 891 // Don't select a signal thread if we weren't going to stop at 892 // that signal. We have to have had another reason for stopping 893 // here, and the user doesn't want to see this thread. 894 uint64_t signo = thread->GetStopInfo()->GetValue(); 895 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 896 if (!other_thread) 897 other_thread = thread; 898 } 899 break; 900 } 901 case eStopReasonTrace: 902 case eStopReasonBreakpoint: 903 case eStopReasonWatchpoint: 904 case eStopReasonException: 905 case eStopReasonExec: 906 case eStopReasonThreadExiting: 907 case eStopReasonInstrumentation: 908 if (!other_thread) 909 other_thread = thread; 910 break; 911 case eStopReasonPlanComplete: 912 if (!plan_thread) 913 plan_thread = thread; 914 break; 915 } 916 } 917 if (plan_thread) 918 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 919 else if (other_thread) 920 thread_list.SetSelectedThreadByID(other_thread->GetID()); 921 else { 922 if (curr_thread && curr_thread->IsValid()) 923 thread = curr_thread; 924 else 925 thread = thread_list.GetThreadAtIndex(0); 926 927 if (thread) 928 thread_list.SetSelectedThreadByID(thread->GetID()); 929 } 930 } 931 } 932 // Drop the ThreadList mutex by here, since GetThreadStatus below might 933 // have to run code, e.g. for Data formatters, and if we hold the 934 // ThreadList mutex, then the process is going to have a hard time 935 // restarting the process. 936 if (stream) { 937 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 938 if (debugger.GetTargetList().GetSelectedTarget().get() == 939 &process_sp->GetTarget()) { 940 ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); 941 942 if (!thread_sp || !thread_sp->IsValid()) 943 return false; 944 945 const bool only_threads_with_stop_reason = true; 946 const uint32_t start_frame = thread_sp->GetSelectedFrameIndex(); 947 const uint32_t num_frames = 1; 948 const uint32_t num_frames_with_source = 1; 949 const bool stop_format = true; 950 951 process_sp->GetStatus(*stream); 952 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 953 start_frame, num_frames, 954 num_frames_with_source, 955 stop_format); 956 if (curr_thread_stop_info_sp) { 957 lldb::addr_t crashing_address; 958 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 959 curr_thread_stop_info_sp, &crashing_address); 960 if (valobj_sp) { 961 const bool qualify_cxx_base_classes = false; 962 963 const ValueObject::GetExpressionPathFormat format = 964 ValueObject::GetExpressionPathFormat:: 965 eGetExpressionPathFormatHonorPointers; 966 stream->PutCString("Likely cause: "); 967 valobj_sp->GetExpressionPath(*stream, qualify_cxx_base_classes, 968 format); 969 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 970 } 971 } 972 } else { 973 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 974 process_sp->GetTarget().shared_from_this()); 975 if (target_idx != UINT32_MAX) 976 stream->Printf("Target %d: (", target_idx); 977 else 978 stream->Printf("Target <unknown index>: ("); 979 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 980 stream->Printf(") stopped.\n"); 981 } 982 } 983 984 // Pop the process IO handler 985 pop_process_io_handler = true; 986 } 987 break; 988 } 989 990 if (handle_pop && pop_process_io_handler) 991 process_sp->PopProcessIOHandler(); 992 993 return true; 994 } 995 996 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 997 if (listener_sp) { 998 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 999 eBroadcastBitInterrupt); 1000 } else 1001 return false; 1002 } 1003 1004 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 1005 1006 StateType Process::GetStateChangedEvents(EventSP &event_sp, 1007 const Timeout<std::micro> &timeout, 1008 ListenerSP hijack_listener_sp) { 1009 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1010 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1011 1012 ListenerSP listener_sp = hijack_listener_sp; 1013 if (!listener_sp) 1014 listener_sp = m_listener_sp; 1015 1016 StateType state = eStateInvalid; 1017 if (listener_sp->GetEventForBroadcasterWithType( 1018 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1019 timeout)) { 1020 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1021 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1022 else 1023 LLDB_LOG(log, "got no event or was interrupted."); 1024 } 1025 1026 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 1027 return state; 1028 } 1029 1030 Event *Process::PeekAtStateChangedEvents() { 1031 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1032 1033 LLDB_LOGF(log, "Process::%s...", __FUNCTION__); 1034 1035 Event *event_ptr; 1036 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 1037 this, eBroadcastBitStateChanged); 1038 if (log) { 1039 if (event_ptr) { 1040 LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, 1041 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 1042 } else { 1043 LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); 1044 } 1045 } 1046 return event_ptr; 1047 } 1048 1049 StateType 1050 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 1051 const Timeout<std::micro> &timeout) { 1052 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1053 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1054 1055 StateType state = eStateInvalid; 1056 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1057 &m_private_state_broadcaster, 1058 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1059 timeout)) 1060 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1061 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1062 1063 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1064 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1065 return state; 1066 } 1067 1068 bool Process::GetEventsPrivate(EventSP &event_sp, 1069 const Timeout<std::micro> &timeout, 1070 bool control_only) { 1071 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1072 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1073 1074 if (control_only) 1075 return m_private_state_listener_sp->GetEventForBroadcaster( 1076 &m_private_state_control_broadcaster, event_sp, timeout); 1077 else 1078 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1079 } 1080 1081 bool Process::IsRunning() const { 1082 return StateIsRunningState(m_public_state.GetValue()); 1083 } 1084 1085 int Process::GetExitStatus() { 1086 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1087 1088 if (m_public_state.GetValue() == eStateExited) 1089 return m_exit_status; 1090 return -1; 1091 } 1092 1093 const char *Process::GetExitDescription() { 1094 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1095 1096 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1097 return m_exit_string.c_str(); 1098 return nullptr; 1099 } 1100 1101 bool Process::SetExitStatus(int status, const char *cstr) { 1102 // Use a mutex to protect setting the exit status. 1103 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1104 1105 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1106 LIBLLDB_LOG_PROCESS)); 1107 LLDB_LOGF( 1108 log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1109 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : ""); 1110 1111 // We were already in the exited state 1112 if (m_private_state.GetValue() == eStateExited) { 1113 LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because " 1114 "state was already set to eStateExited"); 1115 return false; 1116 } 1117 1118 m_exit_status = status; 1119 if (cstr) 1120 m_exit_string = cstr; 1121 else 1122 m_exit_string.clear(); 1123 1124 // Clear the last natural stop ID since it has a strong reference to this 1125 // process 1126 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1127 1128 SetPrivateState(eStateExited); 1129 1130 // Allow subclasses to do some cleanup 1131 DidExit(); 1132 1133 return true; 1134 } 1135 1136 bool Process::IsAlive() { 1137 switch (m_private_state.GetValue()) { 1138 case eStateConnected: 1139 case eStateAttaching: 1140 case eStateLaunching: 1141 case eStateStopped: 1142 case eStateRunning: 1143 case eStateStepping: 1144 case eStateCrashed: 1145 case eStateSuspended: 1146 return true; 1147 default: 1148 return false; 1149 } 1150 } 1151 1152 // This static callback can be used to watch for local child processes on the 1153 // current host. The child process exits, the process will be found in the 1154 // global target list (we want to be completely sure that the 1155 // lldb_private::Process doesn't go away before we can deliver the signal. 1156 bool Process::SetProcessExitStatus( 1157 lldb::pid_t pid, bool exited, 1158 int signo, // Zero for no signal 1159 int exit_status // Exit value of process if signal is zero 1160 ) { 1161 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 1162 LLDB_LOGF(log, 1163 "Process::SetProcessExitStatus (pid=%" PRIu64 1164 ", exited=%i, signal=%i, exit_status=%i)\n", 1165 pid, exited, signo, exit_status); 1166 1167 if (exited) { 1168 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1169 if (target_sp) { 1170 ProcessSP process_sp(target_sp->GetProcessSP()); 1171 if (process_sp) { 1172 const char *signal_cstr = nullptr; 1173 if (signo) 1174 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1175 1176 process_sp->SetExitStatus(exit_status, signal_cstr); 1177 } 1178 } 1179 return true; 1180 } 1181 return false; 1182 } 1183 1184 void Process::UpdateThreadListIfNeeded() { 1185 const uint32_t stop_id = GetStopID(); 1186 if (m_thread_list.GetSize(false) == 0 || 1187 stop_id != m_thread_list.GetStopID()) { 1188 const StateType state = GetPrivateState(); 1189 if (StateIsStoppedState(state, true)) { 1190 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1191 // m_thread_list does have its own mutex, but we need to hold onto the 1192 // mutex between the call to UpdateThreadList(...) and the 1193 // os->UpdateThreadList(...) so it doesn't change on us 1194 ThreadList &old_thread_list = m_thread_list; 1195 ThreadList real_thread_list(this); 1196 ThreadList new_thread_list(this); 1197 // Always update the thread list with the protocol specific thread list, 1198 // but only update if "true" is returned 1199 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1200 // Don't call into the OperatingSystem to update the thread list if we 1201 // are shutting down, since that may call back into the SBAPI's, 1202 // requiring the API lock which is already held by whoever is shutting 1203 // us down, causing a deadlock. 1204 OperatingSystem *os = GetOperatingSystem(); 1205 if (os && !m_destroy_in_process) { 1206 // Clear any old backing threads where memory threads might have been 1207 // backed by actual threads from the lldb_private::Process subclass 1208 size_t num_old_threads = old_thread_list.GetSize(false); 1209 for (size_t i = 0; i < num_old_threads; ++i) 1210 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1211 1212 // Turn off dynamic types to ensure we don't run any expressions. 1213 // Objective-C can run an expression to determine if a SBValue is a 1214 // dynamic type or not and we need to avoid this. OperatingSystem 1215 // plug-ins can't run expressions that require running code... 1216 1217 Target &target = GetTarget(); 1218 const lldb::DynamicValueType saved_prefer_dynamic = 1219 target.GetPreferDynamicValue(); 1220 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1221 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1222 1223 // Now let the OperatingSystem plug-in update the thread list 1224 1225 os->UpdateThreadList( 1226 old_thread_list, // Old list full of threads created by OS plug-in 1227 real_thread_list, // The actual thread list full of threads 1228 // created by each lldb_private::Process 1229 // subclass 1230 new_thread_list); // The new thread list that we will show to the 1231 // user that gets filled in 1232 1233 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1234 target.SetPreferDynamicValue(saved_prefer_dynamic); 1235 } else { 1236 // No OS plug-in, the new thread list is the same as the real thread 1237 // list 1238 new_thread_list = real_thread_list; 1239 } 1240 1241 m_thread_list_real.Update(real_thread_list); 1242 m_thread_list.Update(new_thread_list); 1243 m_thread_list.SetStopID(stop_id); 1244 1245 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1246 // Clear any extended threads that we may have accumulated previously 1247 m_extended_thread_list.Clear(); 1248 m_extended_thread_stop_id = GetLastNaturalStopID(); 1249 1250 m_queue_list.Clear(); 1251 m_queue_list_stop_id = GetLastNaturalStopID(); 1252 } 1253 } 1254 } 1255 } 1256 } 1257 1258 void Process::UpdateQueueListIfNeeded() { 1259 if (m_system_runtime_up) { 1260 if (m_queue_list.GetSize() == 0 || 1261 m_queue_list_stop_id != GetLastNaturalStopID()) { 1262 const StateType state = GetPrivateState(); 1263 if (StateIsStoppedState(state, true)) { 1264 m_system_runtime_up->PopulateQueueList(m_queue_list); 1265 m_queue_list_stop_id = GetLastNaturalStopID(); 1266 } 1267 } 1268 } 1269 } 1270 1271 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1272 OperatingSystem *os = GetOperatingSystem(); 1273 if (os) 1274 return os->CreateThread(tid, context); 1275 return ThreadSP(); 1276 } 1277 1278 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1279 return AssignIndexIDToThread(thread_id); 1280 } 1281 1282 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1283 return (m_thread_id_to_index_id_map.find(thread_id) != 1284 m_thread_id_to_index_id_map.end()); 1285 } 1286 1287 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1288 uint32_t result = 0; 1289 std::map<uint64_t, uint32_t>::iterator iterator = 1290 m_thread_id_to_index_id_map.find(thread_id); 1291 if (iterator == m_thread_id_to_index_id_map.end()) { 1292 result = ++m_thread_index_id; 1293 m_thread_id_to_index_id_map[thread_id] = result; 1294 } else { 1295 result = iterator->second; 1296 } 1297 1298 return result; 1299 } 1300 1301 StateType Process::GetState() { 1302 return m_public_state.GetValue(); 1303 } 1304 1305 void Process::SetPublicState(StateType new_state, bool restarted) { 1306 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1307 LIBLLDB_LOG_PROCESS)); 1308 LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)", 1309 StateAsCString(new_state), restarted); 1310 const StateType old_state = m_public_state.GetValue(); 1311 m_public_state.SetValue(new_state); 1312 1313 // On the transition from Run to Stopped, we unlock the writer end of the run 1314 // lock. The lock gets locked in Resume, which is the public API to tell the 1315 // program to run. 1316 if (!StateChangedIsExternallyHijacked()) { 1317 if (new_state == eStateDetached) { 1318 LLDB_LOGF(log, 1319 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1320 StateAsCString(new_state)); 1321 m_public_run_lock.SetStopped(); 1322 } else { 1323 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1324 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1325 if ((old_state_is_stopped != new_state_is_stopped)) { 1326 if (new_state_is_stopped && !restarted) { 1327 LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock", 1328 StateAsCString(new_state)); 1329 m_public_run_lock.SetStopped(); 1330 } 1331 } 1332 } 1333 } 1334 } 1335 1336 Status Process::Resume() { 1337 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1338 LIBLLDB_LOG_PROCESS)); 1339 LLDB_LOGF(log, "Process::Resume -- locking run lock"); 1340 if (!m_public_run_lock.TrySetRunning()) { 1341 Status error("Resume request failed - process still running."); 1342 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1343 return error; 1344 } 1345 Status error = PrivateResume(); 1346 if (!error.Success()) { 1347 // Undo running state change 1348 m_public_run_lock.SetStopped(); 1349 } 1350 return error; 1351 } 1352 1353 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack"; 1354 1355 Status Process::ResumeSynchronous(Stream *stream) { 1356 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1357 LIBLLDB_LOG_PROCESS)); 1358 LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); 1359 if (!m_public_run_lock.TrySetRunning()) { 1360 Status error("Resume request failed - process still running."); 1361 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1362 return error; 1363 } 1364 1365 ListenerSP listener_sp( 1366 Listener::MakeListener(g_resume_sync_name)); 1367 HijackProcessEvents(listener_sp); 1368 1369 Status error = PrivateResume(); 1370 if (error.Success()) { 1371 StateType state = 1372 WaitForProcessToStop(llvm::None, nullptr, true, listener_sp, stream); 1373 const bool must_be_alive = 1374 false; // eStateExited is ok, so this must be false 1375 if (!StateIsStoppedState(state, must_be_alive)) 1376 error.SetErrorStringWithFormat( 1377 "process not in stopped state after synchronous resume: %s", 1378 StateAsCString(state)); 1379 } else { 1380 // Undo running state change 1381 m_public_run_lock.SetStopped(); 1382 } 1383 1384 // Undo the hijacking of process events... 1385 RestoreProcessEvents(); 1386 1387 return error; 1388 } 1389 1390 bool Process::StateChangedIsExternallyHijacked() { 1391 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1392 const char *hijacking_name = GetHijackingListenerName(); 1393 if (hijacking_name && 1394 strcmp(hijacking_name, g_resume_sync_name)) 1395 return true; 1396 } 1397 return false; 1398 } 1399 1400 bool Process::StateChangedIsHijackedForSynchronousResume() { 1401 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1402 const char *hijacking_name = GetHijackingListenerName(); 1403 if (hijacking_name && 1404 strcmp(hijacking_name, g_resume_sync_name) == 0) 1405 return true; 1406 } 1407 return false; 1408 } 1409 1410 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1411 1412 void Process::SetPrivateState(StateType new_state) { 1413 if (m_finalize_called) 1414 return; 1415 1416 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1417 LIBLLDB_LOG_PROCESS)); 1418 bool state_changed = false; 1419 1420 LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state)); 1421 1422 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1423 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1424 1425 const StateType old_state = m_private_state.GetValueNoLock(); 1426 state_changed = old_state != new_state; 1427 1428 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1429 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1430 if (old_state_is_stopped != new_state_is_stopped) { 1431 if (new_state_is_stopped) 1432 m_private_run_lock.SetStopped(); 1433 else 1434 m_private_run_lock.SetRunning(); 1435 } 1436 1437 if (state_changed) { 1438 m_private_state.SetValueNoLock(new_state); 1439 EventSP event_sp( 1440 new Event(eBroadcastBitStateChanged, 1441 new ProcessEventData(shared_from_this(), new_state))); 1442 if (StateIsStoppedState(new_state, false)) { 1443 // Note, this currently assumes that all threads in the list stop when 1444 // the process stops. In the future we will want to support a debugging 1445 // model where some threads continue to run while others are stopped. 1446 // When that happens we will either need a way for the thread list to 1447 // identify which threads are stopping or create a special thread list 1448 // containing only threads which actually stopped. 1449 // 1450 // The process plugin is responsible for managing the actual behavior of 1451 // the threads and should have stopped any threads that are going to stop 1452 // before we get here. 1453 m_thread_list.DidStop(); 1454 1455 m_mod_id.BumpStopID(); 1456 if (!m_mod_id.IsLastResumeForUserExpression()) 1457 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1458 m_memory_cache.Clear(); 1459 LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u", 1460 StateAsCString(new_state), m_mod_id.GetStopID()); 1461 } 1462 1463 // Use our target to get a shared pointer to ourselves... 1464 if (m_finalize_called && !PrivateStateThreadIsValid()) 1465 BroadcastEvent(event_sp); 1466 else 1467 m_private_state_broadcaster.BroadcastEvent(event_sp); 1468 } else { 1469 LLDB_LOGF(log, 1470 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1471 StateAsCString(new_state)); 1472 } 1473 } 1474 1475 void Process::SetRunningUserExpression(bool on) { 1476 m_mod_id.SetRunningUserExpression(on); 1477 } 1478 1479 void Process::SetRunningUtilityFunction(bool on) { 1480 m_mod_id.SetRunningUtilityFunction(on); 1481 } 1482 1483 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1484 1485 const lldb::ABISP &Process::GetABI() { 1486 if (!m_abi_sp) 1487 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1488 return m_abi_sp; 1489 } 1490 1491 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { 1492 std::vector<LanguageRuntime *> language_runtimes; 1493 1494 if (m_finalizing) 1495 return language_runtimes; 1496 1497 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1498 // Before we pass off a copy of the language runtimes, we must make sure that 1499 // our collection is properly populated. It's possible that some of the 1500 // language runtimes were not loaded yet, either because nobody requested it 1501 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so 1502 // hadn't been loaded). 1503 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 1504 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 1505 language_runtimes.emplace_back(runtime); 1506 } 1507 1508 return language_runtimes; 1509 } 1510 1511 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { 1512 if (m_finalizing) 1513 return nullptr; 1514 1515 LanguageRuntime *runtime = nullptr; 1516 1517 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1518 LanguageRuntimeCollection::iterator pos; 1519 pos = m_language_runtimes.find(language); 1520 if (pos == m_language_runtimes.end() || !pos->second) { 1521 lldb::LanguageRuntimeSP runtime_sp( 1522 LanguageRuntime::FindPlugin(this, language)); 1523 1524 m_language_runtimes[language] = runtime_sp; 1525 runtime = runtime_sp.get(); 1526 } else 1527 runtime = pos->second.get(); 1528 1529 if (runtime) 1530 // It's possible that a language runtime can support multiple LanguageTypes, 1531 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, 1532 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the 1533 // primary language type and make sure that our runtime supports it. 1534 assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); 1535 1536 return runtime; 1537 } 1538 1539 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1540 if (m_finalizing) 1541 return false; 1542 1543 if (in_value.IsDynamic()) 1544 return false; 1545 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1546 1547 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1548 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1549 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1550 } 1551 1552 for (LanguageRuntime *runtime : GetLanguageRuntimes()) { 1553 if (runtime->CouldHaveDynamicValue(in_value)) 1554 return true; 1555 } 1556 1557 return false; 1558 } 1559 1560 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1561 m_dynamic_checkers_up.reset(dynamic_checkers); 1562 } 1563 1564 BreakpointSiteList &Process::GetBreakpointSiteList() { 1565 return m_breakpoint_site_list; 1566 } 1567 1568 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1569 return m_breakpoint_site_list; 1570 } 1571 1572 void Process::DisableAllBreakpointSites() { 1573 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1574 // bp_site->SetEnabled(true); 1575 DisableBreakpointSite(bp_site); 1576 }); 1577 } 1578 1579 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1580 Status error(DisableBreakpointSiteByID(break_id)); 1581 1582 if (error.Success()) 1583 m_breakpoint_site_list.Remove(break_id); 1584 1585 return error; 1586 } 1587 1588 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1589 Status error; 1590 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1591 if (bp_site_sp) { 1592 if (bp_site_sp->IsEnabled()) 1593 error = DisableBreakpointSite(bp_site_sp.get()); 1594 } else { 1595 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1596 break_id); 1597 } 1598 1599 return error; 1600 } 1601 1602 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1603 Status error; 1604 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1605 if (bp_site_sp) { 1606 if (!bp_site_sp->IsEnabled()) 1607 error = EnableBreakpointSite(bp_site_sp.get()); 1608 } else { 1609 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1610 break_id); 1611 } 1612 return error; 1613 } 1614 1615 lldb::break_id_t 1616 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1617 bool use_hardware) { 1618 addr_t load_addr = LLDB_INVALID_ADDRESS; 1619 1620 bool show_error = true; 1621 switch (GetState()) { 1622 case eStateInvalid: 1623 case eStateUnloaded: 1624 case eStateConnected: 1625 case eStateAttaching: 1626 case eStateLaunching: 1627 case eStateDetached: 1628 case eStateExited: 1629 show_error = false; 1630 break; 1631 1632 case eStateStopped: 1633 case eStateRunning: 1634 case eStateStepping: 1635 case eStateCrashed: 1636 case eStateSuspended: 1637 show_error = IsAlive(); 1638 break; 1639 } 1640 1641 // Reset the IsIndirect flag here, in case the location changes from pointing 1642 // to a indirect symbol to a regular symbol. 1643 owner->SetIsIndirect(false); 1644 1645 if (owner->ShouldResolveIndirectFunctions()) { 1646 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1647 if (symbol && symbol->IsIndirect()) { 1648 Status error; 1649 Address symbol_address = symbol->GetAddress(); 1650 load_addr = ResolveIndirectFunction(&symbol_address, error); 1651 if (!error.Success() && show_error) { 1652 GetTarget().GetDebugger().GetErrorStream().Printf( 1653 "warning: failed to resolve indirect function at 0x%" PRIx64 1654 " for breakpoint %i.%i: %s\n", 1655 symbol->GetLoadAddress(&GetTarget()), 1656 owner->GetBreakpoint().GetID(), owner->GetID(), 1657 error.AsCString() ? error.AsCString() : "unknown error"); 1658 return LLDB_INVALID_BREAK_ID; 1659 } 1660 Address resolved_address(load_addr); 1661 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1662 owner->SetIsIndirect(true); 1663 } else 1664 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1665 } else 1666 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1667 1668 if (load_addr != LLDB_INVALID_ADDRESS) { 1669 BreakpointSiteSP bp_site_sp; 1670 1671 // Look up this breakpoint site. If it exists, then add this new owner, 1672 // otherwise create a new breakpoint site and add it. 1673 1674 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1675 1676 if (bp_site_sp) { 1677 bp_site_sp->AddOwner(owner); 1678 owner->SetBreakpointSite(bp_site_sp); 1679 return bp_site_sp->GetID(); 1680 } else { 1681 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1682 load_addr, use_hardware)); 1683 if (bp_site_sp) { 1684 Status error = EnableBreakpointSite(bp_site_sp.get()); 1685 if (error.Success()) { 1686 owner->SetBreakpointSite(bp_site_sp); 1687 return m_breakpoint_site_list.Add(bp_site_sp); 1688 } else { 1689 if (show_error || use_hardware) { 1690 // Report error for setting breakpoint... 1691 GetTarget().GetDebugger().GetErrorStream().Printf( 1692 "warning: failed to set breakpoint site at 0x%" PRIx64 1693 " for breakpoint %i.%i: %s\n", 1694 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1695 error.AsCString() ? error.AsCString() : "unknown error"); 1696 } 1697 } 1698 } 1699 } 1700 } 1701 // We failed to enable the breakpoint 1702 return LLDB_INVALID_BREAK_ID; 1703 } 1704 1705 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1706 lldb::user_id_t owner_loc_id, 1707 BreakpointSiteSP &bp_site_sp) { 1708 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1709 if (num_owners == 0) { 1710 // Don't try to disable the site if we don't have a live process anymore. 1711 if (IsAlive()) 1712 DisableBreakpointSite(bp_site_sp.get()); 1713 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1714 } 1715 } 1716 1717 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1718 uint8_t *buf) const { 1719 size_t bytes_removed = 0; 1720 BreakpointSiteList bp_sites_in_range; 1721 1722 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1723 bp_sites_in_range)) { 1724 bp_sites_in_range.ForEach([bp_addr, size, 1725 buf](BreakpointSite *bp_site) -> void { 1726 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1727 addr_t intersect_addr; 1728 size_t intersect_size; 1729 size_t opcode_offset; 1730 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1731 &intersect_size, &opcode_offset)) { 1732 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1733 assert(bp_addr < intersect_addr + intersect_size && 1734 intersect_addr + intersect_size <= bp_addr + size); 1735 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1736 size_t buf_offset = intersect_addr - bp_addr; 1737 ::memcpy(buf + buf_offset, 1738 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1739 intersect_size); 1740 } 1741 } 1742 }); 1743 } 1744 return bytes_removed; 1745 } 1746 1747 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1748 PlatformSP platform_sp(GetTarget().GetPlatform()); 1749 if (platform_sp) 1750 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1751 return 0; 1752 } 1753 1754 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1755 Status error; 1756 assert(bp_site != nullptr); 1757 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1758 const addr_t bp_addr = bp_site->GetLoadAddress(); 1759 LLDB_LOGF( 1760 log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1761 bp_site->GetID(), (uint64_t)bp_addr); 1762 if (bp_site->IsEnabled()) { 1763 LLDB_LOGF( 1764 log, 1765 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1766 " -- already enabled", 1767 bp_site->GetID(), (uint64_t)bp_addr); 1768 return error; 1769 } 1770 1771 if (bp_addr == LLDB_INVALID_ADDRESS) { 1772 error.SetErrorString("BreakpointSite contains an invalid load address."); 1773 return error; 1774 } 1775 // Ask the lldb::Process subclass to fill in the correct software breakpoint 1776 // trap for the breakpoint site 1777 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 1778 1779 if (bp_opcode_size == 0) { 1780 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 1781 "returned zero, unable to get breakpoint " 1782 "trap for address 0x%" PRIx64, 1783 bp_addr); 1784 } else { 1785 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 1786 1787 if (bp_opcode_bytes == nullptr) { 1788 error.SetErrorString( 1789 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 1790 return error; 1791 } 1792 1793 // Save the original opcode by reading it 1794 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 1795 error) == bp_opcode_size) { 1796 // Write a software breakpoint in place of the original opcode 1797 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 1798 bp_opcode_size) { 1799 uint8_t verify_bp_opcode_bytes[64]; 1800 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 1801 error) == bp_opcode_size) { 1802 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 1803 bp_opcode_size) == 0) { 1804 bp_site->SetEnabled(true); 1805 bp_site->SetType(BreakpointSite::eSoftware); 1806 LLDB_LOGF(log, 1807 "Process::EnableSoftwareBreakpoint (site_id = %d) " 1808 "addr = 0x%" PRIx64 " -- SUCCESS", 1809 bp_site->GetID(), (uint64_t)bp_addr); 1810 } else 1811 error.SetErrorString( 1812 "failed to verify the breakpoint trap in memory."); 1813 } else 1814 error.SetErrorString( 1815 "Unable to read memory to verify breakpoint trap."); 1816 } else 1817 error.SetErrorString("Unable to write breakpoint trap to memory."); 1818 } else 1819 error.SetErrorString("Unable to read memory at breakpoint address."); 1820 } 1821 if (log && error.Fail()) 1822 LLDB_LOGF( 1823 log, 1824 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1825 " -- FAILED: %s", 1826 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1827 return error; 1828 } 1829 1830 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 1831 Status error; 1832 assert(bp_site != nullptr); 1833 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1834 addr_t bp_addr = bp_site->GetLoadAddress(); 1835 lldb::user_id_t breakID = bp_site->GetID(); 1836 LLDB_LOGF(log, 1837 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 1838 ") addr = 0x%" PRIx64, 1839 breakID, (uint64_t)bp_addr); 1840 1841 if (bp_site->IsHardware()) { 1842 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 1843 } else if (bp_site->IsEnabled()) { 1844 const size_t break_op_size = bp_site->GetByteSize(); 1845 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 1846 if (break_op_size > 0) { 1847 // Clear a software breakpoint instruction 1848 uint8_t curr_break_op[8]; 1849 assert(break_op_size <= sizeof(curr_break_op)); 1850 bool break_op_found = false; 1851 1852 // Read the breakpoint opcode 1853 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 1854 break_op_size) { 1855 bool verify = false; 1856 // Make sure the breakpoint opcode exists at this address 1857 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 1858 break_op_found = true; 1859 // We found a valid breakpoint opcode at this address, now restore 1860 // the saved opcode. 1861 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 1862 break_op_size, error) == break_op_size) { 1863 verify = true; 1864 } else 1865 error.SetErrorString( 1866 "Memory write failed when restoring original opcode."); 1867 } else { 1868 error.SetErrorString( 1869 "Original breakpoint trap is no longer in memory."); 1870 // Set verify to true and so we can check if the original opcode has 1871 // already been restored 1872 verify = true; 1873 } 1874 1875 if (verify) { 1876 uint8_t verify_opcode[8]; 1877 assert(break_op_size < sizeof(verify_opcode)); 1878 // Verify that our original opcode made it back to the inferior 1879 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 1880 break_op_size) { 1881 // compare the memory we just read with the original opcode 1882 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 1883 break_op_size) == 0) { 1884 // SUCCESS 1885 bp_site->SetEnabled(false); 1886 LLDB_LOGF(log, 1887 "Process::DisableSoftwareBreakpoint (site_id = %d) " 1888 "addr = 0x%" PRIx64 " -- SUCCESS", 1889 bp_site->GetID(), (uint64_t)bp_addr); 1890 return error; 1891 } else { 1892 if (break_op_found) 1893 error.SetErrorString("Failed to restore original opcode."); 1894 } 1895 } else 1896 error.SetErrorString("Failed to read memory to verify that " 1897 "breakpoint trap was restored."); 1898 } 1899 } else 1900 error.SetErrorString( 1901 "Unable to read memory that should contain the breakpoint trap."); 1902 } 1903 } else { 1904 LLDB_LOGF( 1905 log, 1906 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1907 " -- already disabled", 1908 bp_site->GetID(), (uint64_t)bp_addr); 1909 return error; 1910 } 1911 1912 LLDB_LOGF( 1913 log, 1914 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1915 " -- FAILED: %s", 1916 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1917 return error; 1918 } 1919 1920 // Uncomment to verify memory caching works after making changes to caching 1921 // code 1922 //#define VERIFY_MEMORY_READS 1923 1924 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 1925 error.Clear(); 1926 if (!GetDisableMemoryCache()) { 1927 #if defined(VERIFY_MEMORY_READS) 1928 // Memory caching is enabled, with debug verification 1929 1930 if (buf && size) { 1931 // Uncomment the line below to make sure memory caching is working. 1932 // I ran this through the test suite and got no assertions, so I am 1933 // pretty confident this is working well. If any changes are made to 1934 // memory caching, uncomment the line below and test your changes! 1935 1936 // Verify all memory reads by using the cache first, then redundantly 1937 // reading the same memory from the inferior and comparing to make sure 1938 // everything is exactly the same. 1939 std::string verify_buf(size, '\0'); 1940 assert(verify_buf.size() == size); 1941 const size_t cache_bytes_read = 1942 m_memory_cache.Read(this, addr, buf, size, error); 1943 Status verify_error; 1944 const size_t verify_bytes_read = 1945 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 1946 verify_buf.size(), verify_error); 1947 assert(cache_bytes_read == verify_bytes_read); 1948 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 1949 assert(verify_error.Success() == error.Success()); 1950 return cache_bytes_read; 1951 } 1952 return 0; 1953 #else // !defined(VERIFY_MEMORY_READS) 1954 // Memory caching is enabled, without debug verification 1955 1956 return m_memory_cache.Read(addr, buf, size, error); 1957 #endif // defined (VERIFY_MEMORY_READS) 1958 } else { 1959 // Memory caching is disabled 1960 1961 return ReadMemoryFromInferior(addr, buf, size, error); 1962 } 1963 } 1964 1965 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 1966 Status &error) { 1967 char buf[256]; 1968 out_str.clear(); 1969 addr_t curr_addr = addr; 1970 while (true) { 1971 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 1972 if (length == 0) 1973 break; 1974 out_str.append(buf, length); 1975 // If we got "length - 1" bytes, we didn't get the whole C string, we need 1976 // to read some more characters 1977 if (length == sizeof(buf) - 1) 1978 curr_addr += length; 1979 else 1980 break; 1981 } 1982 return out_str.size(); 1983 } 1984 1985 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes, 1986 Status &error, size_t type_width) { 1987 size_t total_bytes_read = 0; 1988 if (dst && max_bytes && type_width && max_bytes >= type_width) { 1989 // Ensure a null terminator independent of the number of bytes that is 1990 // read. 1991 memset(dst, 0, max_bytes); 1992 size_t bytes_left = max_bytes - type_width; 1993 1994 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 1995 assert(sizeof(terminator) >= type_width && "Attempting to validate a " 1996 "string with more than 4 bytes " 1997 "per character!"); 1998 1999 addr_t curr_addr = addr; 2000 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2001 char *curr_dst = dst; 2002 2003 error.Clear(); 2004 while (bytes_left > 0 && error.Success()) { 2005 addr_t cache_line_bytes_left = 2006 cache_line_size - (curr_addr % cache_line_size); 2007 addr_t bytes_to_read = 2008 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2009 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2010 2011 if (bytes_read == 0) 2012 break; 2013 2014 // Search for a null terminator of correct size and alignment in 2015 // bytes_read 2016 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 2017 for (size_t i = aligned_start; 2018 i + type_width <= total_bytes_read + bytes_read; i += type_width) 2019 if (::memcmp(&dst[i], terminator, type_width) == 0) { 2020 error.Clear(); 2021 return i; 2022 } 2023 2024 total_bytes_read += bytes_read; 2025 curr_dst += bytes_read; 2026 curr_addr += bytes_read; 2027 bytes_left -= bytes_read; 2028 } 2029 } else { 2030 if (max_bytes) 2031 error.SetErrorString("invalid arguments"); 2032 } 2033 return total_bytes_read; 2034 } 2035 2036 // Deprecated in favor of ReadStringFromMemory which has wchar support and 2037 // correct code to find null terminators. 2038 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 2039 size_t dst_max_len, 2040 Status &result_error) { 2041 size_t total_cstr_len = 0; 2042 if (dst && dst_max_len) { 2043 result_error.Clear(); 2044 // NULL out everything just to be safe 2045 memset(dst, 0, dst_max_len); 2046 Status error; 2047 addr_t curr_addr = addr; 2048 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2049 size_t bytes_left = dst_max_len - 1; 2050 char *curr_dst = dst; 2051 2052 while (bytes_left > 0) { 2053 addr_t cache_line_bytes_left = 2054 cache_line_size - (curr_addr % cache_line_size); 2055 addr_t bytes_to_read = 2056 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2057 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2058 2059 if (bytes_read == 0) { 2060 result_error = error; 2061 dst[total_cstr_len] = '\0'; 2062 break; 2063 } 2064 const size_t len = strlen(curr_dst); 2065 2066 total_cstr_len += len; 2067 2068 if (len < bytes_to_read) 2069 break; 2070 2071 curr_dst += bytes_read; 2072 curr_addr += bytes_read; 2073 bytes_left -= bytes_read; 2074 } 2075 } else { 2076 if (dst == nullptr) 2077 result_error.SetErrorString("invalid arguments"); 2078 else 2079 result_error.Clear(); 2080 } 2081 return total_cstr_len; 2082 } 2083 2084 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2085 Status &error) { 2086 if (buf == nullptr || size == 0) 2087 return 0; 2088 2089 size_t bytes_read = 0; 2090 uint8_t *bytes = (uint8_t *)buf; 2091 2092 while (bytes_read < size) { 2093 const size_t curr_size = size - bytes_read; 2094 const size_t curr_bytes_read = 2095 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2096 bytes_read += curr_bytes_read; 2097 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2098 break; 2099 } 2100 2101 // Replace any software breakpoint opcodes that fall into this range back 2102 // into "buf" before we return 2103 if (bytes_read > 0) 2104 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2105 return bytes_read; 2106 } 2107 2108 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2109 size_t integer_byte_size, 2110 uint64_t fail_value, 2111 Status &error) { 2112 Scalar scalar; 2113 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2114 error)) 2115 return scalar.ULongLong(fail_value); 2116 return fail_value; 2117 } 2118 2119 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2120 size_t integer_byte_size, 2121 int64_t fail_value, 2122 Status &error) { 2123 Scalar scalar; 2124 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2125 error)) 2126 return scalar.SLongLong(fail_value); 2127 return fail_value; 2128 } 2129 2130 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2131 Scalar scalar; 2132 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2133 error)) 2134 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2135 return LLDB_INVALID_ADDRESS; 2136 } 2137 2138 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2139 Status &error) { 2140 Scalar scalar; 2141 const uint32_t addr_byte_size = GetAddressByteSize(); 2142 if (addr_byte_size <= 4) 2143 scalar = (uint32_t)ptr_value; 2144 else 2145 scalar = ptr_value; 2146 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2147 addr_byte_size; 2148 } 2149 2150 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2151 Status &error) { 2152 size_t bytes_written = 0; 2153 const uint8_t *bytes = (const uint8_t *)buf; 2154 2155 while (bytes_written < size) { 2156 const size_t curr_size = size - bytes_written; 2157 const size_t curr_bytes_written = DoWriteMemory( 2158 addr + bytes_written, bytes + bytes_written, curr_size, error); 2159 bytes_written += curr_bytes_written; 2160 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2161 break; 2162 } 2163 return bytes_written; 2164 } 2165 2166 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2167 Status &error) { 2168 #if defined(ENABLE_MEMORY_CACHING) 2169 m_memory_cache.Flush(addr, size); 2170 #endif 2171 2172 if (buf == nullptr || size == 0) 2173 return 0; 2174 2175 m_mod_id.BumpMemoryID(); 2176 2177 // We need to write any data that would go where any current software traps 2178 // (enabled software breakpoints) any software traps (breakpoints) that we 2179 // may have placed in our tasks memory. 2180 2181 BreakpointSiteList bp_sites_in_range; 2182 if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range)) 2183 return WriteMemoryPrivate(addr, buf, size, error); 2184 2185 // No breakpoint sites overlap 2186 if (bp_sites_in_range.IsEmpty()) 2187 return WriteMemoryPrivate(addr, buf, size, error); 2188 2189 const uint8_t *ubuf = (const uint8_t *)buf; 2190 uint64_t bytes_written = 0; 2191 2192 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2193 &error](BreakpointSite *bp) -> void { 2194 if (error.Fail()) 2195 return; 2196 2197 addr_t intersect_addr; 2198 size_t intersect_size; 2199 size_t opcode_offset; 2200 const bool intersects = bp->IntersectsRange( 2201 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2202 UNUSED_IF_ASSERT_DISABLED(intersects); 2203 assert(intersects); 2204 assert(addr <= intersect_addr && intersect_addr < addr + size); 2205 assert(addr < intersect_addr + intersect_size && 2206 intersect_addr + intersect_size <= addr + size); 2207 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2208 2209 // Check for bytes before this breakpoint 2210 const addr_t curr_addr = addr + bytes_written; 2211 if (intersect_addr > curr_addr) { 2212 // There are some bytes before this breakpoint that we need to just 2213 // write to memory 2214 size_t curr_size = intersect_addr - curr_addr; 2215 size_t curr_bytes_written = 2216 WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error); 2217 bytes_written += curr_bytes_written; 2218 if (curr_bytes_written != curr_size) { 2219 // We weren't able to write all of the requested bytes, we are 2220 // done looping and will return the number of bytes that we have 2221 // written so far. 2222 if (error.Success()) 2223 error.SetErrorToGenericError(); 2224 } 2225 } 2226 // Now write any bytes that would cover up any software breakpoints 2227 // directly into the breakpoint opcode buffer 2228 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, 2229 intersect_size); 2230 bytes_written += intersect_size; 2231 }); 2232 2233 // Write any remaining bytes after the last breakpoint if we have any left 2234 if (bytes_written < size) 2235 bytes_written += 2236 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2237 size - bytes_written, error); 2238 2239 return bytes_written; 2240 } 2241 2242 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2243 size_t byte_size, Status &error) { 2244 if (byte_size == UINT32_MAX) 2245 byte_size = scalar.GetByteSize(); 2246 if (byte_size > 0) { 2247 uint8_t buf[32]; 2248 const size_t mem_size = 2249 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2250 if (mem_size > 0) 2251 return WriteMemory(addr, buf, mem_size, error); 2252 else 2253 error.SetErrorString("failed to get scalar as memory data"); 2254 } else { 2255 error.SetErrorString("invalid scalar value"); 2256 } 2257 return 0; 2258 } 2259 2260 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2261 bool is_signed, Scalar &scalar, 2262 Status &error) { 2263 uint64_t uval = 0; 2264 if (byte_size == 0) { 2265 error.SetErrorString("byte size is zero"); 2266 } else if (byte_size & (byte_size - 1)) { 2267 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2268 byte_size); 2269 } else if (byte_size <= sizeof(uval)) { 2270 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2271 if (bytes_read == byte_size) { 2272 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2273 GetAddressByteSize()); 2274 lldb::offset_t offset = 0; 2275 if (byte_size <= 4) 2276 scalar = data.GetMaxU32(&offset, byte_size); 2277 else 2278 scalar = data.GetMaxU64(&offset, byte_size); 2279 if (is_signed) 2280 scalar.SignExtend(byte_size * 8); 2281 return bytes_read; 2282 } 2283 } else { 2284 error.SetErrorStringWithFormat( 2285 "byte size of %u is too large for integer scalar type", byte_size); 2286 } 2287 return 0; 2288 } 2289 2290 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2291 Status error; 2292 for (const auto &Entry : entries) { 2293 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2294 error); 2295 if (!error.Success()) 2296 break; 2297 } 2298 return error; 2299 } 2300 2301 #define USE_ALLOCATE_MEMORY_CACHE 1 2302 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2303 Status &error) { 2304 if (GetPrivateState() != eStateStopped) { 2305 error.SetErrorToGenericError(); 2306 return LLDB_INVALID_ADDRESS; 2307 } 2308 2309 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2310 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2311 #else 2312 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2313 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2314 LLDB_LOGF(log, 2315 "Process::AllocateMemory(size=%" PRIu64 2316 ", permissions=%s) => 0x%16.16" PRIx64 2317 " (m_stop_id = %u m_memory_id = %u)", 2318 (uint64_t)size, GetPermissionsAsCString(permissions), 2319 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2320 m_mod_id.GetMemoryID()); 2321 return allocated_addr; 2322 #endif 2323 } 2324 2325 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2326 Status &error) { 2327 addr_t return_addr = AllocateMemory(size, permissions, error); 2328 if (error.Success()) { 2329 std::string buffer(size, 0); 2330 WriteMemory(return_addr, buffer.c_str(), size, error); 2331 } 2332 return return_addr; 2333 } 2334 2335 bool Process::CanJIT() { 2336 if (m_can_jit == eCanJITDontKnow) { 2337 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2338 Status err; 2339 2340 uint64_t allocated_memory = AllocateMemory( 2341 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2342 err); 2343 2344 if (err.Success()) { 2345 m_can_jit = eCanJITYes; 2346 LLDB_LOGF(log, 2347 "Process::%s pid %" PRIu64 2348 " allocation test passed, CanJIT () is true", 2349 __FUNCTION__, GetID()); 2350 } else { 2351 m_can_jit = eCanJITNo; 2352 LLDB_LOGF(log, 2353 "Process::%s pid %" PRIu64 2354 " allocation test failed, CanJIT () is false: %s", 2355 __FUNCTION__, GetID(), err.AsCString()); 2356 } 2357 2358 DeallocateMemory(allocated_memory); 2359 } 2360 2361 return m_can_jit == eCanJITYes; 2362 } 2363 2364 void Process::SetCanJIT(bool can_jit) { 2365 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2366 } 2367 2368 void Process::SetCanRunCode(bool can_run_code) { 2369 SetCanJIT(can_run_code); 2370 m_can_interpret_function_calls = can_run_code; 2371 } 2372 2373 Status Process::DeallocateMemory(addr_t ptr) { 2374 Status error; 2375 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2376 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2377 error.SetErrorStringWithFormat( 2378 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2379 } 2380 #else 2381 error = DoDeallocateMemory(ptr); 2382 2383 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2384 LLDB_LOGF(log, 2385 "Process::DeallocateMemory(addr=0x%16.16" PRIx64 2386 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2387 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2388 m_mod_id.GetMemoryID()); 2389 #endif 2390 return error; 2391 } 2392 2393 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2394 lldb::addr_t header_addr, 2395 size_t size_to_read) { 2396 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2397 if (log) { 2398 LLDB_LOGF(log, 2399 "Process::ReadModuleFromMemory reading %s binary from memory", 2400 file_spec.GetPath().c_str()); 2401 } 2402 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2403 if (module_sp) { 2404 Status error; 2405 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2406 shared_from_this(), header_addr, error, size_to_read); 2407 if (objfile) 2408 return module_sp; 2409 } 2410 return ModuleSP(); 2411 } 2412 2413 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2414 uint32_t &permissions) { 2415 MemoryRegionInfo range_info; 2416 permissions = 0; 2417 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2418 if (!error.Success()) 2419 return false; 2420 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2421 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2422 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2423 return false; 2424 } 2425 2426 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2427 permissions |= lldb::ePermissionsReadable; 2428 2429 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2430 permissions |= lldb::ePermissionsWritable; 2431 2432 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2433 permissions |= lldb::ePermissionsExecutable; 2434 2435 return true; 2436 } 2437 2438 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2439 Status error; 2440 error.SetErrorString("watchpoints are not supported"); 2441 return error; 2442 } 2443 2444 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2445 Status error; 2446 error.SetErrorString("watchpoints are not supported"); 2447 return error; 2448 } 2449 2450 StateType 2451 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2452 const Timeout<std::micro> &timeout) { 2453 StateType state; 2454 2455 while (true) { 2456 event_sp.reset(); 2457 state = GetStateChangedEventsPrivate(event_sp, timeout); 2458 2459 if (StateIsStoppedState(state, false)) 2460 break; 2461 2462 // If state is invalid, then we timed out 2463 if (state == eStateInvalid) 2464 break; 2465 2466 if (event_sp) 2467 HandlePrivateEvent(event_sp); 2468 } 2469 return state; 2470 } 2471 2472 void Process::LoadOperatingSystemPlugin(bool flush) { 2473 if (flush) 2474 m_thread_list.Clear(); 2475 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); 2476 if (flush) 2477 Flush(); 2478 } 2479 2480 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2481 Status error; 2482 m_abi_sp.reset(); 2483 m_dyld_up.reset(); 2484 m_jit_loaders_up.reset(); 2485 m_system_runtime_up.reset(); 2486 m_os_up.reset(); 2487 m_process_input_reader.reset(); 2488 2489 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2490 if (!exe_module) { 2491 error.SetErrorString("executable module does not exist"); 2492 return error; 2493 } 2494 2495 char local_exec_file_path[PATH_MAX]; 2496 char platform_exec_file_path[PATH_MAX]; 2497 exe_module->GetFileSpec().GetPath(local_exec_file_path, 2498 sizeof(local_exec_file_path)); 2499 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, 2500 sizeof(platform_exec_file_path)); 2501 if (FileSystem::Instance().Exists(exe_module->GetFileSpec())) { 2502 // Install anything that might need to be installed prior to launching. 2503 // For host systems, this will do nothing, but if we are connected to a 2504 // remote platform it will install any needed binaries 2505 error = GetTarget().Install(&launch_info); 2506 if (error.Fail()) 2507 return error; 2508 2509 if (PrivateStateThreadIsValid()) 2510 PausePrivateStateThread(); 2511 2512 error = WillLaunch(exe_module); 2513 if (error.Success()) { 2514 const bool restarted = false; 2515 SetPublicState(eStateLaunching, restarted); 2516 m_should_detach = false; 2517 2518 if (m_public_run_lock.TrySetRunning()) { 2519 // Now launch using these arguments. 2520 error = DoLaunch(exe_module, launch_info); 2521 } else { 2522 // This shouldn't happen 2523 error.SetErrorString("failed to acquire process run lock"); 2524 } 2525 2526 if (error.Fail()) { 2527 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2528 SetID(LLDB_INVALID_PROCESS_ID); 2529 const char *error_string = error.AsCString(); 2530 if (error_string == nullptr) 2531 error_string = "launch failed"; 2532 SetExitStatus(-1, error_string); 2533 } 2534 } else { 2535 EventSP event_sp; 2536 2537 // Now wait for the process to launch and return control to us, and then 2538 // call DidLaunch: 2539 StateType state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2540 2541 if (state == eStateInvalid || !event_sp) { 2542 // We were able to launch the process, but we failed to catch the 2543 // initial stop. 2544 error.SetErrorString("failed to catch stop after launch"); 2545 SetExitStatus(0, "failed to catch stop after launch"); 2546 Destroy(false); 2547 } else if (state == eStateStopped || state == eStateCrashed) { 2548 DidLaunch(); 2549 2550 DynamicLoader *dyld = GetDynamicLoader(); 2551 if (dyld) 2552 dyld->DidLaunch(); 2553 2554 GetJITLoaders().DidLaunch(); 2555 2556 SystemRuntime *system_runtime = GetSystemRuntime(); 2557 if (system_runtime) 2558 system_runtime->DidLaunch(); 2559 2560 if (!m_os_up) 2561 LoadOperatingSystemPlugin(false); 2562 2563 // We successfully launched the process and stopped, now it the 2564 // right time to set up signal filters before resuming. 2565 UpdateAutomaticSignalFiltering(); 2566 2567 // Note, the stop event was consumed above, but not handled. This 2568 // was done to give DidLaunch a chance to run. The target is either 2569 // stopped or crashed. Directly set the state. This is done to 2570 // prevent a stop message with a bunch of spurious output on thread 2571 // status, as well as not pop a ProcessIOHandler. 2572 SetPublicState(state, false); 2573 2574 if (PrivateStateThreadIsValid()) 2575 ResumePrivateStateThread(); 2576 else 2577 StartPrivateStateThread(); 2578 2579 // Target was stopped at entry as was intended. Need to notify the 2580 // listeners about it. 2581 if (state == eStateStopped && 2582 launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2583 HandlePrivateEvent(event_sp); 2584 } else if (state == eStateExited) { 2585 // We exited while trying to launch somehow. Don't call DidLaunch 2586 // as that's not likely to work, and return an invalid pid. 2587 HandlePrivateEvent(event_sp); 2588 } 2589 } 2590 } 2591 } else { 2592 error.SetErrorStringWithFormat("file doesn't exist: '%s'", 2593 local_exec_file_path); 2594 } 2595 2596 return error; 2597 } 2598 2599 Status Process::LoadCore() { 2600 Status error = DoLoadCore(); 2601 if (error.Success()) { 2602 ListenerSP listener_sp( 2603 Listener::MakeListener("lldb.process.load_core_listener")); 2604 HijackProcessEvents(listener_sp); 2605 2606 if (PrivateStateThreadIsValid()) 2607 ResumePrivateStateThread(); 2608 else 2609 StartPrivateStateThread(); 2610 2611 DynamicLoader *dyld = GetDynamicLoader(); 2612 if (dyld) 2613 dyld->DidAttach(); 2614 2615 GetJITLoaders().DidAttach(); 2616 2617 SystemRuntime *system_runtime = GetSystemRuntime(); 2618 if (system_runtime) 2619 system_runtime->DidAttach(); 2620 2621 if (!m_os_up) 2622 LoadOperatingSystemPlugin(false); 2623 2624 // We successfully loaded a core file, now pretend we stopped so we can 2625 // show all of the threads in the core file and explore the crashed state. 2626 SetPrivateState(eStateStopped); 2627 2628 // Wait for a stopped event since we just posted one above... 2629 lldb::EventSP event_sp; 2630 StateType state = 2631 WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp); 2632 2633 if (!StateIsStoppedState(state, false)) { 2634 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2635 LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", 2636 StateAsCString(state)); 2637 error.SetErrorString( 2638 "Did not get stopped event after loading the core file."); 2639 } 2640 RestoreProcessEvents(); 2641 } 2642 return error; 2643 } 2644 2645 DynamicLoader *Process::GetDynamicLoader() { 2646 if (!m_dyld_up) 2647 m_dyld_up.reset(DynamicLoader::FindPlugin(this, nullptr)); 2648 return m_dyld_up.get(); 2649 } 2650 2651 DataExtractor Process::GetAuxvData() { return DataExtractor(); } 2652 2653 JITLoaderList &Process::GetJITLoaders() { 2654 if (!m_jit_loaders_up) { 2655 m_jit_loaders_up.reset(new JITLoaderList()); 2656 JITLoader::LoadPlugins(this, *m_jit_loaders_up); 2657 } 2658 return *m_jit_loaders_up; 2659 } 2660 2661 SystemRuntime *Process::GetSystemRuntime() { 2662 if (!m_system_runtime_up) 2663 m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); 2664 return m_system_runtime_up.get(); 2665 } 2666 2667 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2668 uint32_t exec_count) 2669 : NextEventAction(process), m_exec_count(exec_count) { 2670 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2671 LLDB_LOGF( 2672 log, 2673 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2674 __FUNCTION__, static_cast<void *>(process), exec_count); 2675 } 2676 2677 Process::NextEventAction::EventActionResult 2678 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2679 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2680 2681 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2682 LLDB_LOGF(log, 2683 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2684 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2685 2686 switch (state) { 2687 case eStateAttaching: 2688 return eEventActionSuccess; 2689 2690 case eStateRunning: 2691 case eStateConnected: 2692 return eEventActionRetry; 2693 2694 case eStateStopped: 2695 case eStateCrashed: 2696 // During attach, prior to sending the eStateStopped event, 2697 // lldb_private::Process subclasses must set the new process ID. 2698 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2699 // We don't want these events to be reported, so go set the 2700 // ShouldReportStop here: 2701 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2702 2703 if (m_exec_count > 0) { 2704 --m_exec_count; 2705 2706 LLDB_LOGF(log, 2707 "Process::AttachCompletionHandler::%s state %s: reduced " 2708 "remaining exec count to %" PRIu32 ", requesting resume", 2709 __FUNCTION__, StateAsCString(state), m_exec_count); 2710 2711 RequestResume(); 2712 return eEventActionRetry; 2713 } else { 2714 LLDB_LOGF(log, 2715 "Process::AttachCompletionHandler::%s state %s: no more " 2716 "execs expected to start, continuing with attach", 2717 __FUNCTION__, StateAsCString(state)); 2718 2719 m_process->CompleteAttach(); 2720 return eEventActionSuccess; 2721 } 2722 break; 2723 2724 default: 2725 case eStateExited: 2726 case eStateInvalid: 2727 break; 2728 } 2729 2730 m_exit_string.assign("No valid Process"); 2731 return eEventActionExit; 2732 } 2733 2734 Process::NextEventAction::EventActionResult 2735 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2736 return eEventActionSuccess; 2737 } 2738 2739 const char *Process::AttachCompletionHandler::GetExitString() { 2740 return m_exit_string.c_str(); 2741 } 2742 2743 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2744 if (m_listener_sp) 2745 return m_listener_sp; 2746 else 2747 return debugger.GetListener(); 2748 } 2749 2750 Status Process::Attach(ProcessAttachInfo &attach_info) { 2751 m_abi_sp.reset(); 2752 m_process_input_reader.reset(); 2753 m_dyld_up.reset(); 2754 m_jit_loaders_up.reset(); 2755 m_system_runtime_up.reset(); 2756 m_os_up.reset(); 2757 2758 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2759 Status error; 2760 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2761 char process_name[PATH_MAX]; 2762 2763 if (attach_info.GetExecutableFile().GetPath(process_name, 2764 sizeof(process_name))) { 2765 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2766 2767 if (wait_for_launch) { 2768 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2769 if (error.Success()) { 2770 if (m_public_run_lock.TrySetRunning()) { 2771 m_should_detach = true; 2772 const bool restarted = false; 2773 SetPublicState(eStateAttaching, restarted); 2774 // Now attach using these arguments. 2775 error = DoAttachToProcessWithName(process_name, attach_info); 2776 } else { 2777 // This shouldn't happen 2778 error.SetErrorString("failed to acquire process run lock"); 2779 } 2780 2781 if (error.Fail()) { 2782 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2783 SetID(LLDB_INVALID_PROCESS_ID); 2784 if (error.AsCString() == nullptr) 2785 error.SetErrorString("attach failed"); 2786 2787 SetExitStatus(-1, error.AsCString()); 2788 } 2789 } else { 2790 SetNextEventAction(new Process::AttachCompletionHandler( 2791 this, attach_info.GetResumeCount())); 2792 StartPrivateStateThread(); 2793 } 2794 return error; 2795 } 2796 } else { 2797 ProcessInstanceInfoList process_infos; 2798 PlatformSP platform_sp(GetTarget().GetPlatform()); 2799 2800 if (platform_sp) { 2801 ProcessInstanceInfoMatch match_info; 2802 match_info.GetProcessInfo() = attach_info; 2803 match_info.SetNameMatchType(NameMatch::Equals); 2804 platform_sp->FindProcesses(match_info, process_infos); 2805 const uint32_t num_matches = process_infos.GetSize(); 2806 if (num_matches == 1) { 2807 attach_pid = process_infos.GetProcessIDAtIndex(0); 2808 // Fall through and attach using the above process ID 2809 } else { 2810 match_info.GetProcessInfo().GetExecutableFile().GetPath( 2811 process_name, sizeof(process_name)); 2812 if (num_matches > 1) { 2813 StreamString s; 2814 ProcessInstanceInfo::DumpTableHeader(s, true, false); 2815 for (size_t i = 0; i < num_matches; i++) { 2816 process_infos.GetProcessInfoAtIndex(i).DumpAsTableRow( 2817 s, platform_sp->GetUserIDResolver(), true, false); 2818 } 2819 error.SetErrorStringWithFormat( 2820 "more than one process named %s:\n%s", process_name, 2821 s.GetData()); 2822 } else 2823 error.SetErrorStringWithFormat( 2824 "could not find a process named %s", process_name); 2825 } 2826 } else { 2827 error.SetErrorString( 2828 "invalid platform, can't find processes by name"); 2829 return error; 2830 } 2831 } 2832 } else { 2833 error.SetErrorString("invalid process name"); 2834 } 2835 } 2836 2837 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 2838 error = WillAttachToProcessWithID(attach_pid); 2839 if (error.Success()) { 2840 2841 if (m_public_run_lock.TrySetRunning()) { 2842 // Now attach using these arguments. 2843 m_should_detach = true; 2844 const bool restarted = false; 2845 SetPublicState(eStateAttaching, restarted); 2846 error = DoAttachToProcessWithID(attach_pid, attach_info); 2847 } else { 2848 // This shouldn't happen 2849 error.SetErrorString("failed to acquire process run lock"); 2850 } 2851 2852 if (error.Success()) { 2853 SetNextEventAction(new Process::AttachCompletionHandler( 2854 this, attach_info.GetResumeCount())); 2855 StartPrivateStateThread(); 2856 } else { 2857 if (GetID() != LLDB_INVALID_PROCESS_ID) 2858 SetID(LLDB_INVALID_PROCESS_ID); 2859 2860 const char *error_string = error.AsCString(); 2861 if (error_string == nullptr) 2862 error_string = "attach failed"; 2863 2864 SetExitStatus(-1, error_string); 2865 } 2866 } 2867 } 2868 return error; 2869 } 2870 2871 void Process::CompleteAttach() { 2872 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 2873 LIBLLDB_LOG_TARGET)); 2874 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 2875 2876 // Let the process subclass figure out at much as it can about the process 2877 // before we go looking for a dynamic loader plug-in. 2878 ArchSpec process_arch; 2879 DidAttach(process_arch); 2880 2881 if (process_arch.IsValid()) { 2882 GetTarget().SetArchitecture(process_arch); 2883 if (log) { 2884 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 2885 LLDB_LOGF(log, 2886 "Process::%s replacing process architecture with DidAttach() " 2887 "architecture: %s", 2888 __FUNCTION__, triple_str ? triple_str : "<null>"); 2889 } 2890 } 2891 2892 // We just attached. If we have a platform, ask it for the process 2893 // architecture, and if it isn't the same as the one we've already set, 2894 // switch architectures. 2895 PlatformSP platform_sp(GetTarget().GetPlatform()); 2896 assert(platform_sp); 2897 if (platform_sp) { 2898 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2899 if (target_arch.IsValid() && 2900 !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) { 2901 ArchSpec platform_arch; 2902 platform_sp = 2903 platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch); 2904 if (platform_sp) { 2905 GetTarget().SetPlatform(platform_sp); 2906 GetTarget().SetArchitecture(platform_arch); 2907 LLDB_LOGF(log, 2908 "Process::%s switching platform to %s and architecture " 2909 "to %s based on info from attach", 2910 __FUNCTION__, platform_sp->GetName().AsCString(""), 2911 platform_arch.GetTriple().getTriple().c_str()); 2912 } 2913 } else if (!process_arch.IsValid()) { 2914 ProcessInstanceInfo process_info; 2915 GetProcessInfo(process_info); 2916 const ArchSpec &process_arch = process_info.GetArchitecture(); 2917 if (process_arch.IsValid() && 2918 !GetTarget().GetArchitecture().IsExactMatch(process_arch)) { 2919 GetTarget().SetArchitecture(process_arch); 2920 LLDB_LOGF(log, 2921 "Process::%s switching architecture to %s based on info " 2922 "the platform retrieved for pid %" PRIu64, 2923 __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), 2924 GetID()); 2925 } 2926 } 2927 } 2928 2929 // We have completed the attach, now it is time to find the dynamic loader 2930 // plug-in 2931 DynamicLoader *dyld = GetDynamicLoader(); 2932 if (dyld) { 2933 dyld->DidAttach(); 2934 if (log) { 2935 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2936 LLDB_LOGF(log, 2937 "Process::%s after DynamicLoader::DidAttach(), target " 2938 "executable is %s (using %s plugin)", 2939 __FUNCTION__, 2940 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2941 : "<none>", 2942 dyld->GetPluginName().AsCString("<unnamed>")); 2943 } 2944 } 2945 2946 GetJITLoaders().DidAttach(); 2947 2948 SystemRuntime *system_runtime = GetSystemRuntime(); 2949 if (system_runtime) { 2950 system_runtime->DidAttach(); 2951 if (log) { 2952 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2953 LLDB_LOGF(log, 2954 "Process::%s after SystemRuntime::DidAttach(), target " 2955 "executable is %s (using %s plugin)", 2956 __FUNCTION__, 2957 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2958 : "<none>", 2959 system_runtime->GetPluginName().AsCString("<unnamed>")); 2960 } 2961 } 2962 2963 if (!m_os_up) { 2964 LoadOperatingSystemPlugin(false); 2965 if (m_os_up) { 2966 // Somebody might have gotten threads before now, but we need to force the 2967 // update after we've loaded the OperatingSystem plugin or it won't get a 2968 // chance to process the threads. 2969 m_thread_list.Clear(); 2970 UpdateThreadListIfNeeded(); 2971 } 2972 } 2973 // Figure out which one is the executable, and set that in our target: 2974 const ModuleList &target_modules = GetTarget().GetImages(); 2975 std::lock_guard<std::recursive_mutex> guard(target_modules.GetMutex()); 2976 size_t num_modules = target_modules.GetSize(); 2977 ModuleSP new_executable_module_sp; 2978 2979 for (size_t i = 0; i < num_modules; i++) { 2980 ModuleSP module_sp(target_modules.GetModuleAtIndexUnlocked(i)); 2981 if (module_sp && module_sp->IsExecutable()) { 2982 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 2983 new_executable_module_sp = module_sp; 2984 break; 2985 } 2986 } 2987 if (new_executable_module_sp) { 2988 GetTarget().SetExecutableModule(new_executable_module_sp, 2989 eLoadDependentsNo); 2990 if (log) { 2991 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 2992 LLDB_LOGF( 2993 log, 2994 "Process::%s after looping through modules, target executable is %s", 2995 __FUNCTION__, 2996 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 2997 : "<none>"); 2998 } 2999 } 3000 } 3001 3002 Status Process::ConnectRemote(Stream *strm, llvm::StringRef remote_url) { 3003 m_abi_sp.reset(); 3004 m_process_input_reader.reset(); 3005 3006 // Find the process and its architecture. Make sure it matches the 3007 // architecture of the current Target, and if not adjust it. 3008 3009 Status error(DoConnectRemote(strm, remote_url)); 3010 if (error.Success()) { 3011 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3012 EventSP event_sp; 3013 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 3014 3015 if (state == eStateStopped || state == eStateCrashed) { 3016 // If we attached and actually have a process on the other end, then 3017 // this ended up being the equivalent of an attach. 3018 CompleteAttach(); 3019 3020 // This delays passing the stopped event to listeners till 3021 // CompleteAttach gets a chance to complete... 3022 HandlePrivateEvent(event_sp); 3023 } 3024 } 3025 3026 if (PrivateStateThreadIsValid()) 3027 ResumePrivateStateThread(); 3028 else 3029 StartPrivateStateThread(); 3030 } 3031 return error; 3032 } 3033 3034 Status Process::PrivateResume() { 3035 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3036 LIBLLDB_LOG_STEP)); 3037 LLDB_LOGF(log, 3038 "Process::PrivateResume() m_stop_id = %u, public state: %s " 3039 "private state: %s", 3040 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3041 StateAsCString(m_private_state.GetValue())); 3042 3043 // If signals handing status changed we might want to update our signal 3044 // filters before resuming. 3045 UpdateAutomaticSignalFiltering(); 3046 3047 Status error(WillResume()); 3048 // Tell the process it is about to resume before the thread list 3049 if (error.Success()) { 3050 // Now let the thread list know we are about to resume so it can let all of 3051 // our threads know that they are about to be resumed. Threads will each be 3052 // called with Thread::WillResume(StateType) where StateType contains the 3053 // state that they are supposed to have when the process is resumed 3054 // (suspended/running/stepping). Threads should also check their resume 3055 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3056 // start back up with a signal. 3057 if (m_thread_list.WillResume()) { 3058 // Last thing, do the PreResumeActions. 3059 if (!RunPreResumeActions()) { 3060 error.SetErrorStringWithFormat( 3061 "Process::PrivateResume PreResumeActions failed, not resuming."); 3062 } else { 3063 m_mod_id.BumpResumeID(); 3064 error = DoResume(); 3065 if (error.Success()) { 3066 DidResume(); 3067 m_thread_list.DidResume(); 3068 LLDB_LOGF(log, "Process thinks the process has resumed."); 3069 } else { 3070 LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); 3071 return error; 3072 } 3073 } 3074 } else { 3075 // Somebody wanted to run without running (e.g. we were faking a step 3076 // from one frame of a set of inlined frames that share the same PC to 3077 // another.) So generate a continue & a stopped event, and let the world 3078 // handle them. 3079 LLDB_LOGF(log, 3080 "Process::PrivateResume() asked to simulate a start & stop."); 3081 3082 SetPrivateState(eStateRunning); 3083 SetPrivateState(eStateStopped); 3084 } 3085 } else 3086 LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", 3087 error.AsCString("<unknown error>")); 3088 return error; 3089 } 3090 3091 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3092 if (!StateIsRunningState(m_public_state.GetValue())) 3093 return Status("Process is not running."); 3094 3095 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3096 // case it was already set and some thread plan logic calls halt on its own. 3097 m_clear_thread_plans_on_stop |= clear_thread_plans; 3098 3099 ListenerSP halt_listener_sp( 3100 Listener::MakeListener("lldb.process.halt_listener")); 3101 HijackProcessEvents(halt_listener_sp); 3102 3103 EventSP event_sp; 3104 3105 SendAsyncInterrupt(); 3106 3107 if (m_public_state.GetValue() == eStateAttaching) { 3108 // Don't hijack and eat the eStateExited as the code that was doing the 3109 // attach will be waiting for this event... 3110 RestoreProcessEvents(); 3111 SetExitStatus(SIGKILL, "Cancelled async attach."); 3112 Destroy(false); 3113 return Status(); 3114 } 3115 3116 // Wait for 10 second for the process to stop. 3117 StateType state = WaitForProcessToStop( 3118 seconds(10), &event_sp, true, halt_listener_sp, nullptr, use_run_lock); 3119 RestoreProcessEvents(); 3120 3121 if (state == eStateInvalid || !event_sp) { 3122 // We timed out and didn't get a stop event... 3123 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3124 } 3125 3126 BroadcastEvent(event_sp); 3127 3128 return Status(); 3129 } 3130 3131 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3132 Status error; 3133 3134 // Check both the public & private states here. If we're hung evaluating an 3135 // expression, for instance, then the public state will be stopped, but we 3136 // still need to interrupt. 3137 if (m_public_state.GetValue() == eStateRunning || 3138 m_private_state.GetValue() == eStateRunning) { 3139 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3140 LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); 3141 3142 ListenerSP listener_sp( 3143 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3144 HijackProcessEvents(listener_sp); 3145 3146 SendAsyncInterrupt(); 3147 3148 // Consume the interrupt event. 3149 StateType state = 3150 WaitForProcessToStop(seconds(10), &exit_event_sp, true, listener_sp); 3151 3152 RestoreProcessEvents(); 3153 3154 // If the process exited while we were waiting for it to stop, put the 3155 // exited event into the shared pointer passed in and return. Our caller 3156 // doesn't need to do anything else, since they don't have a process 3157 // anymore... 3158 3159 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3160 LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", 3161 __FUNCTION__); 3162 return error; 3163 } else 3164 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3165 3166 if (state != eStateStopped) { 3167 LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, 3168 StateAsCString(state)); 3169 // If we really couldn't stop the process then we should just error out 3170 // here, but if the lower levels just bobbled sending the event and we 3171 // really are stopped, then continue on. 3172 StateType private_state = m_private_state.GetValue(); 3173 if (private_state != eStateStopped) { 3174 return Status( 3175 "Attempt to stop the target in order to detach timed out. " 3176 "State = %s", 3177 StateAsCString(GetState())); 3178 } 3179 } 3180 } 3181 return error; 3182 } 3183 3184 Status Process::Detach(bool keep_stopped) { 3185 EventSP exit_event_sp; 3186 Status error; 3187 m_destroy_in_process = true; 3188 3189 error = WillDetach(); 3190 3191 if (error.Success()) { 3192 if (DetachRequiresHalt()) { 3193 error = StopForDestroyOrDetach(exit_event_sp); 3194 if (!error.Success()) { 3195 m_destroy_in_process = false; 3196 return error; 3197 } else if (exit_event_sp) { 3198 // We shouldn't need to do anything else here. There's no process left 3199 // to detach from... 3200 StopPrivateStateThread(); 3201 m_destroy_in_process = false; 3202 return error; 3203 } 3204 } 3205 3206 m_thread_list.DiscardThreadPlans(); 3207 DisableAllBreakpointSites(); 3208 3209 error = DoDetach(keep_stopped); 3210 if (error.Success()) { 3211 DidDetach(); 3212 StopPrivateStateThread(); 3213 } else { 3214 return error; 3215 } 3216 } 3217 m_destroy_in_process = false; 3218 3219 // If we exited when we were waiting for a process to stop, then forward the 3220 // event here so we don't lose the event 3221 if (exit_event_sp) { 3222 // Directly broadcast our exited event because we shut down our private 3223 // state thread above 3224 BroadcastEvent(exit_event_sp); 3225 } 3226 3227 // If we have been interrupted (to kill us) in the middle of running, we may 3228 // not end up propagating the last events through the event system, in which 3229 // case we might strand the write lock. Unlock it here so when we do to tear 3230 // down the process we don't get an error destroying the lock. 3231 3232 m_public_run_lock.SetStopped(); 3233 return error; 3234 } 3235 3236 Status Process::Destroy(bool force_kill) { 3237 3238 // Tell ourselves we are in the process of destroying the process, so that we 3239 // don't do any unnecessary work that might hinder the destruction. Remember 3240 // to set this back to false when we are done. That way if the attempt 3241 // failed and the process stays around for some reason it won't be in a 3242 // confused state. 3243 3244 if (force_kill) 3245 m_should_detach = false; 3246 3247 if (GetShouldDetach()) { 3248 // FIXME: This will have to be a process setting: 3249 bool keep_stopped = false; 3250 Detach(keep_stopped); 3251 } 3252 3253 m_destroy_in_process = true; 3254 3255 Status error(WillDestroy()); 3256 if (error.Success()) { 3257 EventSP exit_event_sp; 3258 if (DestroyRequiresHalt()) { 3259 error = StopForDestroyOrDetach(exit_event_sp); 3260 } 3261 3262 if (m_public_state.GetValue() != eStateRunning) { 3263 // Ditch all thread plans, and remove all our breakpoints: in case we 3264 // have to restart the target to kill it, we don't want it hitting a 3265 // breakpoint... Only do this if we've stopped, however, since if we 3266 // didn't manage to halt it above, then we're not going to have much luck 3267 // doing this now. 3268 m_thread_list.DiscardThreadPlans(); 3269 DisableAllBreakpointSites(); 3270 } 3271 3272 error = DoDestroy(); 3273 if (error.Success()) { 3274 DidDestroy(); 3275 StopPrivateStateThread(); 3276 } 3277 m_stdio_communication.Disconnect(); 3278 m_stdio_communication.StopReadThread(); 3279 m_stdin_forward = false; 3280 3281 if (m_process_input_reader) { 3282 m_process_input_reader->SetIsDone(true); 3283 m_process_input_reader->Cancel(); 3284 m_process_input_reader.reset(); 3285 } 3286 3287 // If we exited when we were waiting for a process to stop, then forward 3288 // the event here so we don't lose the event 3289 if (exit_event_sp) { 3290 // Directly broadcast our exited event because we shut down our private 3291 // state thread above 3292 BroadcastEvent(exit_event_sp); 3293 } 3294 3295 // If we have been interrupted (to kill us) in the middle of running, we 3296 // may not end up propagating the last events through the event system, in 3297 // which case we might strand the write lock. Unlock it here so when we do 3298 // to tear down the process we don't get an error destroying the lock. 3299 m_public_run_lock.SetStopped(); 3300 } 3301 3302 m_destroy_in_process = false; 3303 3304 return error; 3305 } 3306 3307 Status Process::Signal(int signal) { 3308 Status error(WillSignal()); 3309 if (error.Success()) { 3310 error = DoSignal(signal); 3311 if (error.Success()) 3312 DidSignal(); 3313 } 3314 return error; 3315 } 3316 3317 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3318 assert(signals_sp && "null signals_sp"); 3319 m_unix_signals_sp = signals_sp; 3320 } 3321 3322 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3323 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3324 return m_unix_signals_sp; 3325 } 3326 3327 lldb::ByteOrder Process::GetByteOrder() const { 3328 return GetTarget().GetArchitecture().GetByteOrder(); 3329 } 3330 3331 uint32_t Process::GetAddressByteSize() const { 3332 return GetTarget().GetArchitecture().GetAddressByteSize(); 3333 } 3334 3335 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3336 const StateType state = 3337 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3338 bool return_value = true; 3339 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | 3340 LIBLLDB_LOG_PROCESS)); 3341 3342 switch (state) { 3343 case eStateDetached: 3344 case eStateExited: 3345 case eStateUnloaded: 3346 m_stdio_communication.SynchronizeWithReadThread(); 3347 m_stdio_communication.Disconnect(); 3348 m_stdio_communication.StopReadThread(); 3349 m_stdin_forward = false; 3350 3351 LLVM_FALLTHROUGH; 3352 case eStateConnected: 3353 case eStateAttaching: 3354 case eStateLaunching: 3355 // These events indicate changes in the state of the debugging session, 3356 // always report them. 3357 return_value = true; 3358 break; 3359 case eStateInvalid: 3360 // We stopped for no apparent reason, don't report it. 3361 return_value = false; 3362 break; 3363 case eStateRunning: 3364 case eStateStepping: 3365 // If we've started the target running, we handle the cases where we are 3366 // already running and where there is a transition from stopped to running 3367 // differently. running -> running: Automatically suppress extra running 3368 // events stopped -> running: Report except when there is one or more no 3369 // votes 3370 // and no yes votes. 3371 SynchronouslyNotifyStateChanged(state); 3372 if (m_force_next_event_delivery) 3373 return_value = true; 3374 else { 3375 switch (m_last_broadcast_state) { 3376 case eStateRunning: 3377 case eStateStepping: 3378 // We always suppress multiple runnings with no PUBLIC stop in between. 3379 return_value = false; 3380 break; 3381 default: 3382 // TODO: make this work correctly. For now always report 3383 // run if we aren't running so we don't miss any running events. If I 3384 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3385 // and hit the breakpoints on multiple threads, then somehow during the 3386 // stepping over of all breakpoints no run gets reported. 3387 3388 // This is a transition from stop to run. 3389 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3390 case eVoteYes: 3391 case eVoteNoOpinion: 3392 return_value = true; 3393 break; 3394 case eVoteNo: 3395 return_value = false; 3396 break; 3397 } 3398 break; 3399 } 3400 } 3401 break; 3402 case eStateStopped: 3403 case eStateCrashed: 3404 case eStateSuspended: 3405 // We've stopped. First see if we're going to restart the target. If we 3406 // are going to stop, then we always broadcast the event. If we aren't 3407 // going to stop, let the thread plans decide if we're going to report this 3408 // event. If no thread has an opinion, we don't report it. 3409 3410 m_stdio_communication.SynchronizeWithReadThread(); 3411 RefreshStateAfterStop(); 3412 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3413 LLDB_LOGF(log, 3414 "Process::ShouldBroadcastEvent (%p) stopped due to an " 3415 "interrupt, state: %s", 3416 static_cast<void *>(event_ptr), StateAsCString(state)); 3417 // Even though we know we are going to stop, we should let the threads 3418 // have a look at the stop, so they can properly set their state. 3419 m_thread_list.ShouldStop(event_ptr); 3420 return_value = true; 3421 } else { 3422 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3423 bool should_resume = false; 3424 3425 // It makes no sense to ask "ShouldStop" if we've already been 3426 // restarted... Asking the thread list is also not likely to go well, 3427 // since we are running again. So in that case just report the event. 3428 3429 if (!was_restarted) 3430 should_resume = !m_thread_list.ShouldStop(event_ptr); 3431 3432 if (was_restarted || should_resume || m_resume_requested) { 3433 Vote stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3434 LLDB_LOGF(log, 3435 "Process::ShouldBroadcastEvent: should_resume: %i state: " 3436 "%s was_restarted: %i stop_vote: %d.", 3437 should_resume, StateAsCString(state), was_restarted, 3438 stop_vote); 3439 3440 switch (stop_vote) { 3441 case eVoteYes: 3442 return_value = true; 3443 break; 3444 case eVoteNoOpinion: 3445 case eVoteNo: 3446 return_value = false; 3447 break; 3448 } 3449 3450 if (!was_restarted) { 3451 LLDB_LOGF(log, 3452 "Process::ShouldBroadcastEvent (%p) Restarting process " 3453 "from state: %s", 3454 static_cast<void *>(event_ptr), StateAsCString(state)); 3455 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3456 PrivateResume(); 3457 } 3458 } else { 3459 return_value = true; 3460 SynchronouslyNotifyStateChanged(state); 3461 } 3462 } 3463 break; 3464 } 3465 3466 // Forcing the next event delivery is a one shot deal. So reset it here. 3467 m_force_next_event_delivery = false; 3468 3469 // We do some coalescing of events (for instance two consecutive running 3470 // events get coalesced.) But we only coalesce against events we actually 3471 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3472 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3473 // done, because the PublicState reflects the last event pulled off the 3474 // queue, and there may be several events stacked up on the queue unserviced. 3475 // So the PublicState may not reflect the last broadcasted event yet. 3476 // m_last_broadcast_state gets updated here. 3477 3478 if (return_value) 3479 m_last_broadcast_state = state; 3480 3481 LLDB_LOGF(log, 3482 "Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3483 "broadcast state: %s - %s", 3484 static_cast<void *>(event_ptr), StateAsCString(state), 3485 StateAsCString(m_last_broadcast_state), 3486 return_value ? "YES" : "NO"); 3487 return return_value; 3488 } 3489 3490 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3491 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 3492 3493 bool already_running = PrivateStateThreadIsValid(); 3494 LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, 3495 already_running ? " already running" 3496 : " starting private state thread"); 3497 3498 if (!is_secondary_thread && already_running) 3499 return true; 3500 3501 // Create a thread that watches our internal state and controls which events 3502 // make it to clients (into the DCProcess event queue). 3503 char thread_name[1024]; 3504 uint32_t max_len = llvm::get_max_thread_name_length(); 3505 if (max_len > 0 && max_len <= 30) { 3506 // On platforms with abbreviated thread name lengths, choose thread names 3507 // that fit within the limit. 3508 if (already_running) 3509 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3510 else 3511 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3512 } else { 3513 if (already_running) 3514 snprintf(thread_name, sizeof(thread_name), 3515 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3516 GetID()); 3517 else 3518 snprintf(thread_name, sizeof(thread_name), 3519 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3520 } 3521 3522 // Create the private state thread, and start it running. 3523 PrivateStateThreadArgs *args_ptr = 3524 new PrivateStateThreadArgs(this, is_secondary_thread); 3525 llvm::Expected<HostThread> private_state_thread = 3526 ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, 3527 (void *)args_ptr, 8 * 1024 * 1024); 3528 if (!private_state_thread) { 3529 LLDB_LOG(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST), 3530 "failed to launch host thread: {}", 3531 llvm::toString(private_state_thread.takeError())); 3532 return false; 3533 } 3534 3535 assert(private_state_thread->IsJoinable()); 3536 m_private_state_thread = *private_state_thread; 3537 ResumePrivateStateThread(); 3538 return true; 3539 } 3540 3541 void Process::PausePrivateStateThread() { 3542 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3543 } 3544 3545 void Process::ResumePrivateStateThread() { 3546 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3547 } 3548 3549 void Process::StopPrivateStateThread() { 3550 if (m_private_state_thread.IsJoinable()) 3551 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3552 else { 3553 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3554 LLDB_LOGF( 3555 log, 3556 "Went to stop the private state thread, but it was already invalid."); 3557 } 3558 } 3559 3560 void Process::ControlPrivateStateThread(uint32_t signal) { 3561 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3562 3563 assert(signal == eBroadcastInternalStateControlStop || 3564 signal == eBroadcastInternalStateControlPause || 3565 signal == eBroadcastInternalStateControlResume); 3566 3567 LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); 3568 3569 // Signal the private state thread 3570 if (m_private_state_thread.IsJoinable()) { 3571 // Broadcast the event. 3572 // It is important to do this outside of the if below, because it's 3573 // possible that the thread state is invalid but that the thread is waiting 3574 // on a control event instead of simply being on its way out (this should 3575 // not happen, but it apparently can). 3576 LLDB_LOGF(log, "Sending control event of type: %d.", signal); 3577 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3578 m_private_state_control_broadcaster.BroadcastEvent(signal, 3579 event_receipt_sp); 3580 3581 // Wait for the event receipt or for the private state thread to exit 3582 bool receipt_received = false; 3583 if (PrivateStateThreadIsValid()) { 3584 while (!receipt_received) { 3585 // Check for a receipt for n seconds and then check if the private 3586 // state thread is still around. 3587 receipt_received = 3588 event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout()); 3589 if (!receipt_received) { 3590 // Check if the private state thread is still around. If it isn't 3591 // then we are done waiting 3592 if (!PrivateStateThreadIsValid()) 3593 break; // Private state thread exited or is exiting, we are done 3594 } 3595 } 3596 } 3597 3598 if (signal == eBroadcastInternalStateControlStop) { 3599 thread_result_t result = {}; 3600 m_private_state_thread.Join(&result); 3601 m_private_state_thread.Reset(); 3602 } 3603 } else { 3604 LLDB_LOGF( 3605 log, 3606 "Private state thread already dead, no need to signal it to stop."); 3607 } 3608 } 3609 3610 void Process::SendAsyncInterrupt() { 3611 if (PrivateStateThreadIsValid()) 3612 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3613 nullptr); 3614 else 3615 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3616 } 3617 3618 void Process::HandlePrivateEvent(EventSP &event_sp) { 3619 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3620 m_resume_requested = false; 3621 3622 const StateType new_state = 3623 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3624 3625 // First check to see if anybody wants a shot at this event: 3626 if (m_next_event_action_up) { 3627 NextEventAction::EventActionResult action_result = 3628 m_next_event_action_up->PerformAction(event_sp); 3629 LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); 3630 3631 switch (action_result) { 3632 case NextEventAction::eEventActionSuccess: 3633 SetNextEventAction(nullptr); 3634 break; 3635 3636 case NextEventAction::eEventActionRetry: 3637 break; 3638 3639 case NextEventAction::eEventActionExit: 3640 // Handle Exiting Here. If we already got an exited event, we should 3641 // just propagate it. Otherwise, swallow this event, and set our state 3642 // to exit so the next event will kill us. 3643 if (new_state != eStateExited) { 3644 // FIXME: should cons up an exited event, and discard this one. 3645 SetExitStatus(0, m_next_event_action_up->GetExitString()); 3646 SetNextEventAction(nullptr); 3647 return; 3648 } 3649 SetNextEventAction(nullptr); 3650 break; 3651 } 3652 } 3653 3654 // See if we should broadcast this state to external clients? 3655 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3656 3657 if (should_broadcast) { 3658 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3659 if (log) { 3660 LLDB_LOGF(log, 3661 "Process::%s (pid = %" PRIu64 3662 ") broadcasting new state %s (old state %s) to %s", 3663 __FUNCTION__, GetID(), StateAsCString(new_state), 3664 StateAsCString(GetState()), 3665 is_hijacked ? "hijacked" : "public"); 3666 } 3667 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3668 if (StateIsRunningState(new_state)) { 3669 // Only push the input handler if we aren't fowarding events, as this 3670 // means the curses GUI is in use... Or don't push it if we are launching 3671 // since it will come up stopped. 3672 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3673 new_state != eStateLaunching && new_state != eStateAttaching) { 3674 PushProcessIOHandler(); 3675 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3676 eBroadcastAlways); 3677 LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", 3678 __FUNCTION__, m_iohandler_sync.GetValue()); 3679 } 3680 } else if (StateIsStoppedState(new_state, false)) { 3681 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3682 // If the lldb_private::Debugger is handling the events, we don't want 3683 // to pop the process IOHandler here, we want to do it when we receive 3684 // the stopped event so we can carefully control when the process 3685 // IOHandler is popped because when we stop we want to display some 3686 // text stating how and why we stopped, then maybe some 3687 // process/thread/frame info, and then we want the "(lldb) " prompt to 3688 // show up. If we pop the process IOHandler here, then we will cause 3689 // the command interpreter to become the top IOHandler after the 3690 // process pops off and it will update its prompt right away... See the 3691 // Debugger.cpp file where it calls the function as 3692 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3693 // Otherwise we end up getting overlapping "(lldb) " prompts and 3694 // garbled output. 3695 // 3696 // If we aren't handling the events in the debugger (which is indicated 3697 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3698 // we are hijacked, then we always pop the process IO handler manually. 3699 // Hijacking happens when the internal process state thread is running 3700 // thread plans, or when commands want to run in synchronous mode and 3701 // they call "process->WaitForProcessToStop()". An example of something 3702 // that will hijack the events is a simple expression: 3703 // 3704 // (lldb) expr (int)puts("hello") 3705 // 3706 // This will cause the internal process state thread to resume and halt 3707 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3708 // events) and we do need the IO handler to be pushed and popped 3709 // correctly. 3710 3711 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3712 PopProcessIOHandler(); 3713 } 3714 } 3715 3716 BroadcastEvent(event_sp); 3717 } else { 3718 if (log) { 3719 LLDB_LOGF( 3720 log, 3721 "Process::%s (pid = %" PRIu64 3722 ") suppressing state %s (old state %s): should_broadcast == false", 3723 __FUNCTION__, GetID(), StateAsCString(new_state), 3724 StateAsCString(GetState())); 3725 } 3726 } 3727 } 3728 3729 Status Process::HaltPrivate() { 3730 EventSP event_sp; 3731 Status error(WillHalt()); 3732 if (error.Fail()) 3733 return error; 3734 3735 // Ask the process subclass to actually halt our process 3736 bool caused_stop; 3737 error = DoHalt(caused_stop); 3738 3739 DidHalt(); 3740 return error; 3741 } 3742 3743 thread_result_t Process::PrivateStateThread(void *arg) { 3744 std::unique_ptr<PrivateStateThreadArgs> args_up( 3745 static_cast<PrivateStateThreadArgs *>(arg)); 3746 thread_result_t result = 3747 args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 3748 return result; 3749 } 3750 3751 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3752 bool control_only = true; 3753 3754 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3755 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3756 __FUNCTION__, static_cast<void *>(this), GetID()); 3757 3758 bool exit_now = false; 3759 bool interrupt_requested = false; 3760 while (!exit_now) { 3761 EventSP event_sp; 3762 GetEventsPrivate(event_sp, llvm::None, control_only); 3763 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3764 LLDB_LOGF(log, 3765 "Process::%s (arg = %p, pid = %" PRIu64 3766 ") got a control event: %d", 3767 __FUNCTION__, static_cast<void *>(this), GetID(), 3768 event_sp->GetType()); 3769 3770 switch (event_sp->GetType()) { 3771 case eBroadcastInternalStateControlStop: 3772 exit_now = true; 3773 break; // doing any internal state management below 3774 3775 case eBroadcastInternalStateControlPause: 3776 control_only = true; 3777 break; 3778 3779 case eBroadcastInternalStateControlResume: 3780 control_only = false; 3781 break; 3782 } 3783 3784 continue; 3785 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 3786 if (m_public_state.GetValue() == eStateAttaching) { 3787 LLDB_LOGF(log, 3788 "Process::%s (arg = %p, pid = %" PRIu64 3789 ") woke up with an interrupt while attaching - " 3790 "forwarding interrupt.", 3791 __FUNCTION__, static_cast<void *>(this), GetID()); 3792 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 3793 } else if (StateIsRunningState(m_last_broadcast_state)) { 3794 LLDB_LOGF(log, 3795 "Process::%s (arg = %p, pid = %" PRIu64 3796 ") woke up with an interrupt - Halting.", 3797 __FUNCTION__, static_cast<void *>(this), GetID()); 3798 Status error = HaltPrivate(); 3799 if (error.Fail() && log) 3800 LLDB_LOGF(log, 3801 "Process::%s (arg = %p, pid = %" PRIu64 3802 ") failed to halt the process: %s", 3803 __FUNCTION__, static_cast<void *>(this), GetID(), 3804 error.AsCString()); 3805 // Halt should generate a stopped event. Make a note of the fact that 3806 // we were doing the interrupt, so we can set the interrupted flag 3807 // after we receive the event. We deliberately set this to true even if 3808 // HaltPrivate failed, so that we can interrupt on the next natural 3809 // stop. 3810 interrupt_requested = true; 3811 } else { 3812 // This can happen when someone (e.g. Process::Halt) sees that we are 3813 // running and sends an interrupt request, but the process actually 3814 // stops before we receive it. In that case, we can just ignore the 3815 // request. We use m_last_broadcast_state, because the Stopped event 3816 // may not have been popped of the event queue yet, which is when the 3817 // public state gets updated. 3818 LLDB_LOGF(log, 3819 "Process::%s ignoring interrupt as we have already stopped.", 3820 __FUNCTION__); 3821 } 3822 continue; 3823 } 3824 3825 const StateType internal_state = 3826 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3827 3828 if (internal_state != eStateInvalid) { 3829 if (m_clear_thread_plans_on_stop && 3830 StateIsStoppedState(internal_state, true)) { 3831 m_clear_thread_plans_on_stop = false; 3832 m_thread_list.DiscardThreadPlans(); 3833 } 3834 3835 if (interrupt_requested) { 3836 if (StateIsStoppedState(internal_state, true)) { 3837 // We requested the interrupt, so mark this as such in the stop event 3838 // so clients can tell an interrupted process from a natural stop 3839 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 3840 interrupt_requested = false; 3841 } else if (log) { 3842 LLDB_LOGF(log, 3843 "Process::%s interrupt_requested, but a non-stopped " 3844 "state '%s' received.", 3845 __FUNCTION__, StateAsCString(internal_state)); 3846 } 3847 } 3848 3849 HandlePrivateEvent(event_sp); 3850 } 3851 3852 if (internal_state == eStateInvalid || internal_state == eStateExited || 3853 internal_state == eStateDetached) { 3854 LLDB_LOGF(log, 3855 "Process::%s (arg = %p, pid = %" PRIu64 3856 ") about to exit with internal state %s...", 3857 __FUNCTION__, static_cast<void *>(this), GetID(), 3858 StateAsCString(internal_state)); 3859 3860 break; 3861 } 3862 } 3863 3864 // Verify log is still enabled before attempting to write to it... 3865 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 3866 __FUNCTION__, static_cast<void *>(this), GetID()); 3867 3868 // If we are a secondary thread, then the primary thread we are working for 3869 // will have already acquired the public_run_lock, and isn't done with what 3870 // it was doing yet, so don't try to change it on the way out. 3871 if (!is_secondary_thread) 3872 m_public_run_lock.SetStopped(); 3873 return {}; 3874 } 3875 3876 // Process Event Data 3877 3878 Process::ProcessEventData::ProcessEventData() 3879 : EventData(), m_process_wp(), m_state(eStateInvalid), m_restarted(false), 3880 m_update_state(0), m_interrupted(false) {} 3881 3882 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 3883 StateType state) 3884 : EventData(), m_process_wp(), m_state(state), m_restarted(false), 3885 m_update_state(0), m_interrupted(false) { 3886 if (process_sp) 3887 m_process_wp = process_sp; 3888 } 3889 3890 Process::ProcessEventData::~ProcessEventData() = default; 3891 3892 ConstString Process::ProcessEventData::GetFlavorString() { 3893 static ConstString g_flavor("Process::ProcessEventData"); 3894 return g_flavor; 3895 } 3896 3897 ConstString Process::ProcessEventData::GetFlavor() const { 3898 return ProcessEventData::GetFlavorString(); 3899 } 3900 3901 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 3902 ProcessSP process_sp(m_process_wp.lock()); 3903 3904 if (!process_sp) 3905 return; 3906 3907 // This function gets called twice for each event, once when the event gets 3908 // pulled off of the private process event queue, and then any number of 3909 // times, first when it gets pulled off of the public event queue, then other 3910 // times when we're pretending that this is where we stopped at the end of 3911 // expression evaluation. m_update_state is used to distinguish these three 3912 // cases; it is 0 when we're just pulling it off for private handling, and > 3913 // 1 for expression evaluation, and we don't want to do the breakpoint 3914 // command handling then. 3915 if (m_update_state != 1) 3916 return; 3917 3918 process_sp->SetPublicState( 3919 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 3920 3921 if (m_state == eStateStopped && !m_restarted) { 3922 // Let process subclasses know we are about to do a public stop and do 3923 // anything they might need to in order to speed up register and memory 3924 // accesses. 3925 process_sp->WillPublicStop(); 3926 } 3927 3928 // If this is a halt event, even if the halt stopped with some reason other 3929 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 3930 // the halt request came through) don't do the StopInfo actions, as they may 3931 // end up restarting the process. 3932 if (m_interrupted) 3933 return; 3934 3935 // If we're stopped and haven't restarted, then do the StopInfo actions here: 3936 if (m_state == eStateStopped && !m_restarted) { 3937 ThreadList &curr_thread_list = process_sp->GetThreadList(); 3938 uint32_t num_threads = curr_thread_list.GetSize(); 3939 uint32_t idx; 3940 3941 // The actions might change one of the thread's stop_info's opinions about 3942 // whether we should stop the process, so we need to query that as we go. 3943 3944 // One other complication here, is that we try to catch any case where the 3945 // target has run (except for expressions) and immediately exit, but if we 3946 // get that wrong (which is possible) then the thread list might have 3947 // changed, and that would cause our iteration here to crash. We could 3948 // make a copy of the thread list, but we'd really like to also know if it 3949 // has changed at all, so we make up a vector of the thread ID's and check 3950 // what we get back against this list & bag out if anything differs. 3951 std::vector<uint32_t> thread_index_array(num_threads); 3952 for (idx = 0; idx < num_threads; ++idx) 3953 thread_index_array[idx] = 3954 curr_thread_list.GetThreadAtIndex(idx)->GetIndexID(); 3955 3956 // Use this to track whether we should continue from here. We will only 3957 // continue the target running if no thread says we should stop. Of course 3958 // if some thread's PerformAction actually sets the target running, then it 3959 // doesn't matter what the other threads say... 3960 3961 bool still_should_stop = false; 3962 3963 // Sometimes - for instance if we have a bug in the stub we are talking to, 3964 // we stop but no thread has a valid stop reason. In that case we should 3965 // just stop, because we have no way of telling what the right thing to do 3966 // is, and it's better to let the user decide than continue behind their 3967 // backs. 3968 3969 bool does_anybody_have_an_opinion = false; 3970 3971 for (idx = 0; idx < num_threads; ++idx) { 3972 curr_thread_list = process_sp->GetThreadList(); 3973 if (curr_thread_list.GetSize() != num_threads) { 3974 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 3975 LIBLLDB_LOG_PROCESS)); 3976 LLDB_LOGF( 3977 log, 3978 "Number of threads changed from %u to %u while processing event.", 3979 num_threads, curr_thread_list.GetSize()); 3980 break; 3981 } 3982 3983 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 3984 3985 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 3986 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 3987 LIBLLDB_LOG_PROCESS)); 3988 LLDB_LOGF(log, 3989 "The thread at position %u changed from %u to %u while " 3990 "processing event.", 3991 idx, thread_index_array[idx], thread_sp->GetIndexID()); 3992 break; 3993 } 3994 3995 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 3996 if (stop_info_sp && stop_info_sp->IsValid()) { 3997 does_anybody_have_an_opinion = true; 3998 bool this_thread_wants_to_stop; 3999 if (stop_info_sp->GetOverrideShouldStop()) { 4000 this_thread_wants_to_stop = 4001 stop_info_sp->GetOverriddenShouldStopValue(); 4002 } else { 4003 stop_info_sp->PerformAction(event_ptr); 4004 // The stop action might restart the target. If it does, then we 4005 // want to mark that in the event so that whoever is receiving it 4006 // will know to wait for the running event and reflect that state 4007 // appropriately. We also need to stop processing actions, since they 4008 // aren't expecting the target to be running. 4009 4010 // FIXME: we might have run. 4011 if (stop_info_sp->HasTargetRunSinceMe()) { 4012 SetRestarted(true); 4013 break; 4014 } 4015 4016 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4017 } 4018 4019 if (!still_should_stop) 4020 still_should_stop = this_thread_wants_to_stop; 4021 } 4022 } 4023 4024 if (!GetRestarted()) { 4025 if (!still_should_stop && does_anybody_have_an_opinion) { 4026 // We've been asked to continue, so do that here. 4027 SetRestarted(true); 4028 // Use the public resume method here, since this is just extending a 4029 // public resume. 4030 process_sp->PrivateResume(); 4031 } else { 4032 bool hijacked = 4033 process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) && 4034 !process_sp->StateChangedIsHijackedForSynchronousResume(); 4035 4036 if (!hijacked) { 4037 // If we didn't restart, run the Stop Hooks here. 4038 // Don't do that if state changed events aren't hooked up to the 4039 // public (or SyncResume) broadcasters. StopHooks are just for 4040 // real public stops. They might also restart the target, 4041 // so watch for that. 4042 process_sp->GetTarget().RunStopHooks(); 4043 if (process_sp->GetPrivateState() == eStateRunning) 4044 SetRestarted(true); 4045 } 4046 } 4047 } 4048 } 4049 } 4050 4051 void Process::ProcessEventData::Dump(Stream *s) const { 4052 ProcessSP process_sp(m_process_wp.lock()); 4053 4054 if (process_sp) 4055 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4056 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4057 else 4058 s->PutCString(" process = NULL, "); 4059 4060 s->Printf("state = %s", StateAsCString(GetState())); 4061 } 4062 4063 const Process::ProcessEventData * 4064 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4065 if (event_ptr) { 4066 const EventData *event_data = event_ptr->GetData(); 4067 if (event_data && 4068 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4069 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4070 } 4071 return nullptr; 4072 } 4073 4074 ProcessSP 4075 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4076 ProcessSP process_sp; 4077 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4078 if (data) 4079 process_sp = data->GetProcessSP(); 4080 return process_sp; 4081 } 4082 4083 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4084 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4085 if (data == nullptr) 4086 return eStateInvalid; 4087 else 4088 return data->GetState(); 4089 } 4090 4091 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4092 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4093 if (data == nullptr) 4094 return false; 4095 else 4096 return data->GetRestarted(); 4097 } 4098 4099 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4100 bool new_value) { 4101 ProcessEventData *data = 4102 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4103 if (data != nullptr) 4104 data->SetRestarted(new_value); 4105 } 4106 4107 size_t 4108 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4109 ProcessEventData *data = 4110 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4111 if (data != nullptr) 4112 return data->GetNumRestartedReasons(); 4113 else 4114 return 0; 4115 } 4116 4117 const char * 4118 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4119 size_t idx) { 4120 ProcessEventData *data = 4121 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4122 if (data != nullptr) 4123 return data->GetRestartedReasonAtIndex(idx); 4124 else 4125 return nullptr; 4126 } 4127 4128 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4129 const char *reason) { 4130 ProcessEventData *data = 4131 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4132 if (data != nullptr) 4133 data->AddRestartedReason(reason); 4134 } 4135 4136 bool Process::ProcessEventData::GetInterruptedFromEvent( 4137 const Event *event_ptr) { 4138 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4139 if (data == nullptr) 4140 return false; 4141 else 4142 return data->GetInterrupted(); 4143 } 4144 4145 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4146 bool new_value) { 4147 ProcessEventData *data = 4148 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4149 if (data != nullptr) 4150 data->SetInterrupted(new_value); 4151 } 4152 4153 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4154 ProcessEventData *data = 4155 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4156 if (data) { 4157 data->SetUpdateStateOnRemoval(); 4158 return true; 4159 } 4160 return false; 4161 } 4162 4163 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4164 4165 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4166 exe_ctx.SetTargetPtr(&GetTarget()); 4167 exe_ctx.SetProcessPtr(this); 4168 exe_ctx.SetThreadPtr(nullptr); 4169 exe_ctx.SetFramePtr(nullptr); 4170 } 4171 4172 // uint32_t 4173 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4174 // std::vector<lldb::pid_t> &pids) 4175 //{ 4176 // return 0; 4177 //} 4178 // 4179 // ArchSpec 4180 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4181 //{ 4182 // return Host::GetArchSpecForExistingProcess (pid); 4183 //} 4184 // 4185 // ArchSpec 4186 // Process::GetArchSpecForExistingProcess (const char *process_name) 4187 //{ 4188 // return Host::GetArchSpecForExistingProcess (process_name); 4189 //} 4190 4191 void Process::AppendSTDOUT(const char *s, size_t len) { 4192 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4193 m_stdout_data.append(s, len); 4194 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4195 new ProcessEventData(shared_from_this(), GetState())); 4196 } 4197 4198 void Process::AppendSTDERR(const char *s, size_t len) { 4199 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4200 m_stderr_data.append(s, len); 4201 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4202 new ProcessEventData(shared_from_this(), GetState())); 4203 } 4204 4205 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4206 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4207 m_profile_data.push_back(one_profile_data); 4208 BroadcastEventIfUnique(eBroadcastBitProfileData, 4209 new ProcessEventData(shared_from_this(), GetState())); 4210 } 4211 4212 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4213 const StructuredDataPluginSP &plugin_sp) { 4214 BroadcastEvent( 4215 eBroadcastBitStructuredData, 4216 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4217 } 4218 4219 StructuredDataPluginSP 4220 Process::GetStructuredDataPlugin(ConstString type_name) const { 4221 auto find_it = m_structured_data_plugin_map.find(type_name); 4222 if (find_it != m_structured_data_plugin_map.end()) 4223 return find_it->second; 4224 else 4225 return StructuredDataPluginSP(); 4226 } 4227 4228 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4229 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4230 if (m_profile_data.empty()) 4231 return 0; 4232 4233 std::string &one_profile_data = m_profile_data.front(); 4234 size_t bytes_available = one_profile_data.size(); 4235 if (bytes_available > 0) { 4236 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4237 LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4238 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4239 if (bytes_available > buf_size) { 4240 memcpy(buf, one_profile_data.c_str(), buf_size); 4241 one_profile_data.erase(0, buf_size); 4242 bytes_available = buf_size; 4243 } else { 4244 memcpy(buf, one_profile_data.c_str(), bytes_available); 4245 m_profile_data.erase(m_profile_data.begin()); 4246 } 4247 } 4248 return bytes_available; 4249 } 4250 4251 // Process STDIO 4252 4253 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4254 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4255 size_t bytes_available = m_stdout_data.size(); 4256 if (bytes_available > 0) { 4257 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4258 LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4259 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4260 if (bytes_available > buf_size) { 4261 memcpy(buf, m_stdout_data.c_str(), buf_size); 4262 m_stdout_data.erase(0, buf_size); 4263 bytes_available = buf_size; 4264 } else { 4265 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4266 m_stdout_data.clear(); 4267 } 4268 } 4269 return bytes_available; 4270 } 4271 4272 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4273 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4274 size_t bytes_available = m_stderr_data.size(); 4275 if (bytes_available > 0) { 4276 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4277 LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4278 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4279 if (bytes_available > buf_size) { 4280 memcpy(buf, m_stderr_data.c_str(), buf_size); 4281 m_stderr_data.erase(0, buf_size); 4282 bytes_available = buf_size; 4283 } else { 4284 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4285 m_stderr_data.clear(); 4286 } 4287 } 4288 return bytes_available; 4289 } 4290 4291 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4292 size_t src_len) { 4293 Process *process = (Process *)baton; 4294 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4295 } 4296 4297 class IOHandlerProcessSTDIO : public IOHandler { 4298 public: 4299 IOHandlerProcessSTDIO(Process *process, int write_fd) 4300 : IOHandler(process->GetTarget().GetDebugger(), 4301 IOHandler::Type::ProcessIO), 4302 m_process(process), 4303 m_read_file(GetInputFD(), File::eOpenOptionRead, false), 4304 m_write_file(write_fd, File::eOpenOptionWrite, false) { 4305 m_pipe.CreateNew(false); 4306 } 4307 4308 ~IOHandlerProcessSTDIO() override = default; 4309 4310 // Each IOHandler gets to run until it is done. It should read data from the 4311 // "in" and place output into "out" and "err and return when done. 4312 void Run() override { 4313 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4314 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4315 SetIsDone(true); 4316 return; 4317 } 4318 4319 SetIsDone(false); 4320 const int read_fd = m_read_file.GetDescriptor(); 4321 TerminalState terminal_state; 4322 terminal_state.Save(read_fd, false); 4323 Terminal terminal(read_fd); 4324 terminal.SetCanonical(false); 4325 terminal.SetEcho(false); 4326 // FD_ZERO, FD_SET are not supported on windows 4327 #ifndef _WIN32 4328 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4329 m_is_running = true; 4330 while (!GetIsDone()) { 4331 SelectHelper select_helper; 4332 select_helper.FDSetRead(read_fd); 4333 select_helper.FDSetRead(pipe_read_fd); 4334 Status error = select_helper.Select(); 4335 4336 if (error.Fail()) { 4337 SetIsDone(true); 4338 } else { 4339 char ch = 0; 4340 size_t n; 4341 if (select_helper.FDIsSetRead(read_fd)) { 4342 n = 1; 4343 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4344 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4345 SetIsDone(true); 4346 } else 4347 SetIsDone(true); 4348 } 4349 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4350 size_t bytes_read; 4351 // Consume the interrupt byte 4352 Status error = m_pipe.Read(&ch, 1, bytes_read); 4353 if (error.Success()) { 4354 switch (ch) { 4355 case 'q': 4356 SetIsDone(true); 4357 break; 4358 case 'i': 4359 if (StateIsRunningState(m_process->GetState())) 4360 m_process->SendAsyncInterrupt(); 4361 break; 4362 } 4363 } 4364 } 4365 } 4366 } 4367 m_is_running = false; 4368 #endif 4369 terminal_state.Restore(); 4370 } 4371 4372 void Cancel() override { 4373 SetIsDone(true); 4374 // Only write to our pipe to cancel if we are in 4375 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4376 // is being run from the command interpreter: 4377 // 4378 // (lldb) step_process_thousands_of_times 4379 // 4380 // In this case the command interpreter will be in the middle of handling 4381 // the command and if the process pushes and pops the IOHandler thousands 4382 // of times, we can end up writing to m_pipe without ever consuming the 4383 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4384 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4385 if (m_is_running) { 4386 char ch = 'q'; // Send 'q' for quit 4387 size_t bytes_written = 0; 4388 m_pipe.Write(&ch, 1, bytes_written); 4389 } 4390 } 4391 4392 bool Interrupt() override { 4393 // Do only things that are safe to do in an interrupt context (like in a 4394 // SIGINT handler), like write 1 byte to a file descriptor. This will 4395 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4396 // that was written to the pipe and then call 4397 // m_process->SendAsyncInterrupt() from a much safer location in code. 4398 if (m_active) { 4399 char ch = 'i'; // Send 'i' for interrupt 4400 size_t bytes_written = 0; 4401 Status result = m_pipe.Write(&ch, 1, bytes_written); 4402 return result.Success(); 4403 } else { 4404 // This IOHandler might be pushed on the stack, but not being run 4405 // currently so do the right thing if we aren't actively watching for 4406 // STDIN by sending the interrupt to the process. Otherwise the write to 4407 // the pipe above would do nothing. This can happen when the command 4408 // interpreter is running and gets a "expression ...". It will be on the 4409 // IOHandler thread and sending the input is complete to the delegate 4410 // which will cause the expression to run, which will push the process IO 4411 // handler, but not run it. 4412 4413 if (StateIsRunningState(m_process->GetState())) { 4414 m_process->SendAsyncInterrupt(); 4415 return true; 4416 } 4417 } 4418 return false; 4419 } 4420 4421 void GotEOF() override {} 4422 4423 protected: 4424 Process *m_process; 4425 NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB 4426 NativeFile m_write_file; // Write to this file (usually the master pty for 4427 // getting io to debuggee) 4428 Pipe m_pipe; 4429 std::atomic<bool> m_is_running{false}; 4430 }; 4431 4432 void Process::SetSTDIOFileDescriptor(int fd) { 4433 // First set up the Read Thread for reading/handling process I/O 4434 4435 std::unique_ptr<ConnectionFileDescriptor> conn_up( 4436 new ConnectionFileDescriptor(fd, true)); 4437 4438 if (conn_up) { 4439 m_stdio_communication.SetConnection(conn_up.release()); 4440 if (m_stdio_communication.IsConnected()) { 4441 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4442 STDIOReadThreadBytesReceived, this); 4443 m_stdio_communication.StartReadThread(); 4444 4445 // Now read thread is set up, set up input reader. 4446 4447 if (!m_process_input_reader) 4448 m_process_input_reader = 4449 std::make_shared<IOHandlerProcessSTDIO>(this, fd); 4450 } 4451 } 4452 } 4453 4454 bool Process::ProcessIOHandlerIsActive() { 4455 IOHandlerSP io_handler_sp(m_process_input_reader); 4456 if (io_handler_sp) 4457 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4458 return false; 4459 } 4460 bool Process::PushProcessIOHandler() { 4461 IOHandlerSP io_handler_sp(m_process_input_reader); 4462 if (io_handler_sp) { 4463 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4464 LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); 4465 4466 io_handler_sp->SetIsDone(false); 4467 // If we evaluate an utility function, then we don't cancel the current 4468 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the 4469 // existing IOHandler that potentially provides the user interface (e.g. 4470 // the IOHandler for Editline). 4471 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); 4472 GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp, 4473 cancel_top_handler); 4474 return true; 4475 } 4476 return false; 4477 } 4478 4479 bool Process::PopProcessIOHandler() { 4480 IOHandlerSP io_handler_sp(m_process_input_reader); 4481 if (io_handler_sp) 4482 return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp); 4483 return false; 4484 } 4485 4486 // The process needs to know about installed plug-ins 4487 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4488 4489 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4490 4491 namespace { 4492 // RestorePlanState is used to record the "is private", "is master" and "okay 4493 // to discard" fields of the plan we are running, and reset it on Clean or on 4494 // destruction. It will only reset the state once, so you can call Clean and 4495 // then monkey with the state and it won't get reset on you again. 4496 4497 class RestorePlanState { 4498 public: 4499 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4500 : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) { 4501 if (m_thread_plan_sp) { 4502 m_private = m_thread_plan_sp->GetPrivate(); 4503 m_is_master = m_thread_plan_sp->IsMasterPlan(); 4504 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4505 } 4506 } 4507 4508 ~RestorePlanState() { Clean(); } 4509 4510 void Clean() { 4511 if (!m_already_reset && m_thread_plan_sp) { 4512 m_already_reset = true; 4513 m_thread_plan_sp->SetPrivate(m_private); 4514 m_thread_plan_sp->SetIsMasterPlan(m_is_master); 4515 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4516 } 4517 } 4518 4519 private: 4520 lldb::ThreadPlanSP m_thread_plan_sp; 4521 bool m_already_reset; 4522 bool m_private; 4523 bool m_is_master; 4524 bool m_okay_to_discard; 4525 }; 4526 } // anonymous namespace 4527 4528 static microseconds 4529 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4530 const milliseconds default_one_thread_timeout(250); 4531 4532 // If the overall wait is forever, then we don't need to worry about it. 4533 if (!options.GetTimeout()) { 4534 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4535 : default_one_thread_timeout; 4536 } 4537 4538 // If the one thread timeout is set, use it. 4539 if (options.GetOneThreadTimeout()) 4540 return *options.GetOneThreadTimeout(); 4541 4542 // Otherwise use half the total timeout, bounded by the 4543 // default_one_thread_timeout. 4544 return std::min<microseconds>(default_one_thread_timeout, 4545 *options.GetTimeout() / 2); 4546 } 4547 4548 static Timeout<std::micro> 4549 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4550 bool before_first_timeout) { 4551 // If we are going to run all threads the whole time, or if we are only going 4552 // to run one thread, we can just return the overall timeout. 4553 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4554 return options.GetTimeout(); 4555 4556 if (before_first_timeout) 4557 return GetOneThreadExpressionTimeout(options); 4558 4559 if (!options.GetTimeout()) 4560 return llvm::None; 4561 else 4562 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4563 } 4564 4565 static llvm::Optional<ExpressionResults> 4566 HandleStoppedEvent(Thread &thread, const ThreadPlanSP &thread_plan_sp, 4567 RestorePlanState &restorer, const EventSP &event_sp, 4568 EventSP &event_to_broadcast_sp, 4569 const EvaluateExpressionOptions &options, bool handle_interrupts) { 4570 Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS); 4571 4572 ThreadPlanSP plan = thread.GetCompletedPlan(); 4573 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4574 LLDB_LOG(log, "execution completed successfully"); 4575 4576 // Restore the plan state so it will get reported as intended when we are 4577 // done. 4578 restorer.Clean(); 4579 return eExpressionCompleted; 4580 } 4581 4582 StopInfoSP stop_info_sp = thread.GetStopInfo(); 4583 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4584 stop_info_sp->ShouldNotify(event_sp.get())) { 4585 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4586 if (!options.DoesIgnoreBreakpoints()) { 4587 // Restore the plan state and then force Private to false. We are going 4588 // to stop because of this plan so we need it to become a public plan or 4589 // it won't report correctly when we continue to its termination later 4590 // on. 4591 restorer.Clean(); 4592 thread_plan_sp->SetPrivate(false); 4593 event_to_broadcast_sp = event_sp; 4594 } 4595 return eExpressionHitBreakpoint; 4596 } 4597 4598 if (!handle_interrupts && 4599 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4600 return llvm::None; 4601 4602 LLDB_LOG(log, "thread plan did not successfully complete"); 4603 if (!options.DoesUnwindOnError()) 4604 event_to_broadcast_sp = event_sp; 4605 return eExpressionInterrupted; 4606 } 4607 4608 ExpressionResults 4609 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4610 lldb::ThreadPlanSP &thread_plan_sp, 4611 const EvaluateExpressionOptions &options, 4612 DiagnosticManager &diagnostic_manager) { 4613 ExpressionResults return_value = eExpressionSetupError; 4614 4615 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4616 4617 if (!thread_plan_sp) { 4618 diagnostic_manager.PutString( 4619 eDiagnosticSeverityError, 4620 "RunThreadPlan called with empty thread plan."); 4621 return eExpressionSetupError; 4622 } 4623 4624 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4625 diagnostic_manager.PutString( 4626 eDiagnosticSeverityError, 4627 "RunThreadPlan called with an invalid thread plan."); 4628 return eExpressionSetupError; 4629 } 4630 4631 if (exe_ctx.GetProcessPtr() != this) { 4632 diagnostic_manager.PutString(eDiagnosticSeverityError, 4633 "RunThreadPlan called on wrong process."); 4634 return eExpressionSetupError; 4635 } 4636 4637 Thread *thread = exe_ctx.GetThreadPtr(); 4638 if (thread == nullptr) { 4639 diagnostic_manager.PutString(eDiagnosticSeverityError, 4640 "RunThreadPlan called with invalid thread."); 4641 return eExpressionSetupError; 4642 } 4643 4644 // We need to change some of the thread plan attributes for the thread plan 4645 // runner. This will restore them when we are done: 4646 4647 RestorePlanState thread_plan_restorer(thread_plan_sp); 4648 4649 // We rely on the thread plan we are running returning "PlanCompleted" if 4650 // when it successfully completes. For that to be true the plan can't be 4651 // private - since private plans suppress themselves in the GetCompletedPlan 4652 // call. 4653 4654 thread_plan_sp->SetPrivate(false); 4655 4656 // The plans run with RunThreadPlan also need to be terminal master plans or 4657 // when they are done we will end up asking the plan above us whether we 4658 // should stop, which may give the wrong answer. 4659 4660 thread_plan_sp->SetIsMasterPlan(true); 4661 thread_plan_sp->SetOkayToDiscard(false); 4662 4663 // If we are running some utility expression for LLDB, we now have to mark 4664 // this in the ProcesModID of this process. This RAII takes care of marking 4665 // and reverting the mark it once we are done running the expression. 4666 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); 4667 4668 if (m_private_state.GetValue() != eStateStopped) { 4669 diagnostic_manager.PutString( 4670 eDiagnosticSeverityError, 4671 "RunThreadPlan called while the private state was not stopped."); 4672 return eExpressionSetupError; 4673 } 4674 4675 // Save the thread & frame from the exe_ctx for restoration after we run 4676 const uint32_t thread_idx_id = thread->GetIndexID(); 4677 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4678 if (!selected_frame_sp) { 4679 thread->SetSelectedFrame(nullptr); 4680 selected_frame_sp = thread->GetSelectedFrame(); 4681 if (!selected_frame_sp) { 4682 diagnostic_manager.Printf( 4683 eDiagnosticSeverityError, 4684 "RunThreadPlan called without a selected frame on thread %d", 4685 thread_idx_id); 4686 return eExpressionSetupError; 4687 } 4688 } 4689 4690 // Make sure the timeout values make sense. The one thread timeout needs to 4691 // be smaller than the overall timeout. 4692 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4693 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4694 diagnostic_manager.PutString(eDiagnosticSeverityError, 4695 "RunThreadPlan called with one thread " 4696 "timeout greater than total timeout"); 4697 return eExpressionSetupError; 4698 } 4699 4700 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4701 4702 // N.B. Running the target may unset the currently selected thread and frame. 4703 // We don't want to do that either, so we should arrange to reset them as 4704 // well. 4705 4706 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4707 4708 uint32_t selected_tid; 4709 StackID selected_stack_id; 4710 if (selected_thread_sp) { 4711 selected_tid = selected_thread_sp->GetIndexID(); 4712 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4713 } else { 4714 selected_tid = LLDB_INVALID_THREAD_ID; 4715 } 4716 4717 HostThread backup_private_state_thread; 4718 lldb::StateType old_state = eStateInvalid; 4719 lldb::ThreadPlanSP stopper_base_plan_sp; 4720 4721 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4722 LIBLLDB_LOG_PROCESS)); 4723 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4724 // Yikes, we are running on the private state thread! So we can't wait for 4725 // public events on this thread, since we are the thread that is generating 4726 // public events. The simplest thing to do is to spin up a temporary thread 4727 // to handle private state thread events while we are fielding public 4728 // events here. 4729 LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " 4730 "another state thread to handle the events."); 4731 4732 backup_private_state_thread = m_private_state_thread; 4733 4734 // One other bit of business: we want to run just this thread plan and 4735 // anything it pushes, and then stop, returning control here. But in the 4736 // normal course of things, the plan above us on the stack would be given a 4737 // shot at the stop event before deciding to stop, and we don't want that. 4738 // So we insert a "stopper" base plan on the stack before the plan we want 4739 // to run. Since base plans always stop and return control to the user, 4740 // that will do just what we want. 4741 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4742 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4743 // Have to make sure our public state is stopped, since otherwise the 4744 // reporting logic below doesn't work correctly. 4745 old_state = m_public_state.GetValue(); 4746 m_public_state.SetValueNoLock(eStateStopped); 4747 4748 // Now spin up the private state thread: 4749 StartPrivateStateThread(true); 4750 } 4751 4752 thread->QueueThreadPlan( 4753 thread_plan_sp, false); // This used to pass "true" does that make sense? 4754 4755 if (options.GetDebug()) { 4756 // In this case, we aren't actually going to run, we just want to stop 4757 // right away. Flush this thread so we will refetch the stacks and show the 4758 // correct backtrace. 4759 // FIXME: To make this prettier we should invent some stop reason for this, 4760 // but that 4761 // is only cosmetic, and this functionality is only of use to lldb 4762 // developers who can live with not pretty... 4763 thread->Flush(); 4764 return eExpressionStoppedForDebug; 4765 } 4766 4767 ListenerSP listener_sp( 4768 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4769 4770 lldb::EventSP event_to_broadcast_sp; 4771 4772 { 4773 // This process event hijacker Hijacks the Public events and its destructor 4774 // makes sure that the process events get restored on exit to the function. 4775 // 4776 // If the event needs to propagate beyond the hijacker (e.g., the process 4777 // exits during execution), then the event is put into 4778 // event_to_broadcast_sp for rebroadcasting. 4779 4780 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 4781 4782 if (log) { 4783 StreamString s; 4784 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 4785 LLDB_LOGF(log, 4786 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 4787 " to run thread plan \"%s\".", 4788 thread->GetIndexID(), thread->GetID(), s.GetData()); 4789 } 4790 4791 bool got_event; 4792 lldb::EventSP event_sp; 4793 lldb::StateType stop_state = lldb::eStateInvalid; 4794 4795 bool before_first_timeout = true; // This is set to false the first time 4796 // that we have to halt the target. 4797 bool do_resume = true; 4798 bool handle_running_event = true; 4799 4800 // This is just for accounting: 4801 uint32_t num_resumes = 0; 4802 4803 // If we are going to run all threads the whole time, or if we are only 4804 // going to run one thread, then we don't need the first timeout. So we 4805 // pretend we are after the first timeout already. 4806 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4807 before_first_timeout = false; 4808 4809 LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", 4810 options.GetStopOthers(), options.GetTryAllThreads(), 4811 before_first_timeout); 4812 4813 // This isn't going to work if there are unfetched events on the queue. Are 4814 // there cases where we might want to run the remaining events here, and 4815 // then try to call the function? That's probably being too tricky for our 4816 // own good. 4817 4818 Event *other_events = listener_sp->PeekAtNextEvent(); 4819 if (other_events != nullptr) { 4820 diagnostic_manager.PutString( 4821 eDiagnosticSeverityError, 4822 "RunThreadPlan called with pending events on the queue."); 4823 return eExpressionSetupError; 4824 } 4825 4826 // We also need to make sure that the next event is delivered. We might be 4827 // calling a function as part of a thread plan, in which case the last 4828 // delivered event could be the running event, and we don't want event 4829 // coalescing to cause us to lose OUR running event... 4830 ForceNextEventDelivery(); 4831 4832 // This while loop must exit out the bottom, there's cleanup that we need to do 4833 // when we are done. So don't call return anywhere within it. 4834 4835 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4836 // It's pretty much impossible to write test cases for things like: One 4837 // thread timeout expires, I go to halt, but the process already stopped on 4838 // the function call stop breakpoint. Turning on this define will make us 4839 // not fetch the first event till after the halt. So if you run a quick 4840 // function, it will have completed, and the completion event will be 4841 // waiting, when you interrupt for halt. The expression evaluation should 4842 // still succeed. 4843 bool miss_first_event = true; 4844 #endif 4845 while (true) { 4846 // We usually want to resume the process if we get to the top of the 4847 // loop. The only exception is if we get two running events with no 4848 // intervening stop, which can happen, we will just wait for then next 4849 // stop event. 4850 LLDB_LOGF(log, 4851 "Top of while loop: do_resume: %i handle_running_event: %i " 4852 "before_first_timeout: %i.", 4853 do_resume, handle_running_event, before_first_timeout); 4854 4855 if (do_resume || handle_running_event) { 4856 // Do the initial resume and wait for the running event before going 4857 // further. 4858 4859 if (do_resume) { 4860 num_resumes++; 4861 Status resume_error = PrivateResume(); 4862 if (!resume_error.Success()) { 4863 diagnostic_manager.Printf( 4864 eDiagnosticSeverityError, 4865 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 4866 resume_error.AsCString()); 4867 return_value = eExpressionSetupError; 4868 break; 4869 } 4870 } 4871 4872 got_event = 4873 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 4874 if (!got_event) { 4875 LLDB_LOGF(log, 4876 "Process::RunThreadPlan(): didn't get any event after " 4877 "resume %" PRIu32 ", exiting.", 4878 num_resumes); 4879 4880 diagnostic_manager.Printf(eDiagnosticSeverityError, 4881 "didn't get any event after resume %" PRIu32 4882 ", exiting.", 4883 num_resumes); 4884 return_value = eExpressionSetupError; 4885 break; 4886 } 4887 4888 stop_state = 4889 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4890 4891 if (stop_state != eStateRunning) { 4892 bool restarted = false; 4893 4894 if (stop_state == eStateStopped) { 4895 restarted = Process::ProcessEventData::GetRestartedFromEvent( 4896 event_sp.get()); 4897 LLDB_LOGF( 4898 log, 4899 "Process::RunThreadPlan(): didn't get running event after " 4900 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 4901 "handle_running_event: %i).", 4902 num_resumes, StateAsCString(stop_state), restarted, do_resume, 4903 handle_running_event); 4904 } 4905 4906 if (restarted) { 4907 // This is probably an overabundance of caution, I don't think I 4908 // should ever get a stopped & restarted event here. But if I do, 4909 // the best thing is to Halt and then get out of here. 4910 const bool clear_thread_plans = false; 4911 const bool use_run_lock = false; 4912 Halt(clear_thread_plans, use_run_lock); 4913 } 4914 4915 diagnostic_manager.Printf( 4916 eDiagnosticSeverityError, 4917 "didn't get running event after initial resume, got %s instead.", 4918 StateAsCString(stop_state)); 4919 return_value = eExpressionSetupError; 4920 break; 4921 } 4922 4923 if (log) 4924 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 4925 // We need to call the function synchronously, so spin waiting for it 4926 // to return. If we get interrupted while executing, we're going to 4927 // lose our context, and won't be able to gather the result at this 4928 // point. We set the timeout AFTER the resume, since the resume takes 4929 // some time and we don't want to charge that to the timeout. 4930 } else { 4931 if (log) 4932 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 4933 } 4934 4935 do_resume = true; 4936 handle_running_event = true; 4937 4938 // Now wait for the process to stop again: 4939 event_sp.reset(); 4940 4941 Timeout<std::micro> timeout = 4942 GetExpressionTimeout(options, before_first_timeout); 4943 if (log) { 4944 if (timeout) { 4945 auto now = system_clock::now(); 4946 LLDB_LOGF(log, 4947 "Process::RunThreadPlan(): about to wait - now is %s - " 4948 "endpoint is %s", 4949 llvm::to_string(now).c_str(), 4950 llvm::to_string(now + *timeout).c_str()); 4951 } else { 4952 LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); 4953 } 4954 } 4955 4956 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4957 // See comment above... 4958 if (miss_first_event) { 4959 std::this_thread::sleep_for(std::chrono::milliseconds(1)); 4960 miss_first_event = false; 4961 got_event = false; 4962 } else 4963 #endif 4964 got_event = listener_sp->GetEvent(event_sp, timeout); 4965 4966 if (got_event) { 4967 if (event_sp) { 4968 bool keep_going = false; 4969 if (event_sp->GetType() == eBroadcastBitInterrupt) { 4970 const bool clear_thread_plans = false; 4971 const bool use_run_lock = false; 4972 Halt(clear_thread_plans, use_run_lock); 4973 return_value = eExpressionInterrupted; 4974 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 4975 "execution halted by user interrupt."); 4976 LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " 4977 "eBroadcastBitInterrupted, exiting."); 4978 break; 4979 } else { 4980 stop_state = 4981 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4982 LLDB_LOGF(log, 4983 "Process::RunThreadPlan(): in while loop, got event: %s.", 4984 StateAsCString(stop_state)); 4985 4986 switch (stop_state) { 4987 case lldb::eStateStopped: { 4988 // We stopped, figure out what we are going to do now. 4989 ThreadSP thread_sp = 4990 GetThreadList().FindThreadByIndexID(thread_idx_id); 4991 if (!thread_sp) { 4992 // Ooh, our thread has vanished. Unlikely that this was 4993 // successful execution... 4994 LLDB_LOGF(log, 4995 "Process::RunThreadPlan(): execution completed " 4996 "but our thread (index-id=%u) has vanished.", 4997 thread_idx_id); 4998 return_value = eExpressionInterrupted; 4999 } else if (Process::ProcessEventData::GetRestartedFromEvent( 5000 event_sp.get())) { 5001 // If we were restarted, we just need to go back up to fetch 5002 // another event. 5003 if (log) { 5004 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " 5005 "restart, so we'll continue waiting."); 5006 } 5007 keep_going = true; 5008 do_resume = false; 5009 handle_running_event = true; 5010 } else { 5011 const bool handle_interrupts = true; 5012 return_value = *HandleStoppedEvent( 5013 *thread, thread_plan_sp, thread_plan_restorer, event_sp, 5014 event_to_broadcast_sp, options, handle_interrupts); 5015 } 5016 } break; 5017 5018 case lldb::eStateRunning: 5019 // This shouldn't really happen, but sometimes we do get two 5020 // running events without an intervening stop, and in that case 5021 // we should just go back to waiting for the stop. 5022 do_resume = false; 5023 keep_going = true; 5024 handle_running_event = false; 5025 break; 5026 5027 default: 5028 LLDB_LOGF(log, 5029 "Process::RunThreadPlan(): execution stopped with " 5030 "unexpected state: %s.", 5031 StateAsCString(stop_state)); 5032 5033 if (stop_state == eStateExited) 5034 event_to_broadcast_sp = event_sp; 5035 5036 diagnostic_manager.PutString( 5037 eDiagnosticSeverityError, 5038 "execution stopped with unexpected state."); 5039 return_value = eExpressionInterrupted; 5040 break; 5041 } 5042 } 5043 5044 if (keep_going) 5045 continue; 5046 else 5047 break; 5048 } else { 5049 if (log) 5050 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5051 "the event pointer was null. How odd..."); 5052 return_value = eExpressionInterrupted; 5053 break; 5054 } 5055 } else { 5056 // If we didn't get an event that means we've timed out... We will 5057 // interrupt the process here. Depending on what we were asked to do 5058 // we will either exit, or try with all threads running for the same 5059 // timeout. 5060 5061 if (log) { 5062 if (options.GetTryAllThreads()) { 5063 if (before_first_timeout) { 5064 LLDB_LOG(log, 5065 "Running function with one thread timeout timed out."); 5066 } else 5067 LLDB_LOG(log, "Restarting function with all threads enabled and " 5068 "timeout: {0} timed out, abandoning execution.", 5069 timeout); 5070 } else 5071 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5072 "abandoning execution.", 5073 timeout); 5074 } 5075 5076 // It is possible that between the time we issued the Halt, and we get 5077 // around to calling Halt the target could have stopped. That's fine, 5078 // Halt will figure that out and send the appropriate Stopped event. 5079 // BUT it is also possible that we stopped & restarted (e.g. hit a 5080 // signal with "stop" set to false.) In 5081 // that case, we'll get the stopped & restarted event, and we should go 5082 // back to waiting for the Halt's stopped event. That's what this 5083 // while loop does. 5084 5085 bool back_to_top = true; 5086 uint32_t try_halt_again = 0; 5087 bool do_halt = true; 5088 const uint32_t num_retries = 5; 5089 while (try_halt_again < num_retries) { 5090 Status halt_error; 5091 if (do_halt) { 5092 LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); 5093 const bool clear_thread_plans = false; 5094 const bool use_run_lock = false; 5095 Halt(clear_thread_plans, use_run_lock); 5096 } 5097 if (halt_error.Success()) { 5098 if (log) 5099 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5100 5101 got_event = 5102 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5103 5104 if (got_event) { 5105 stop_state = 5106 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5107 if (log) { 5108 LLDB_LOGF(log, 5109 "Process::RunThreadPlan(): Stopped with event: %s", 5110 StateAsCString(stop_state)); 5111 if (stop_state == lldb::eStateStopped && 5112 Process::ProcessEventData::GetInterruptedFromEvent( 5113 event_sp.get())) 5114 log->PutCString(" Event was the Halt interruption event."); 5115 } 5116 5117 if (stop_state == lldb::eStateStopped) { 5118 if (Process::ProcessEventData::GetRestartedFromEvent( 5119 event_sp.get())) { 5120 if (log) 5121 log->PutCString("Process::RunThreadPlan(): Went to halt " 5122 "but got a restarted event, there must be " 5123 "an un-restarted stopped event so try " 5124 "again... " 5125 "Exiting wait loop."); 5126 try_halt_again++; 5127 do_halt = false; 5128 continue; 5129 } 5130 5131 // Between the time we initiated the Halt and the time we 5132 // delivered it, the process could have already finished its 5133 // job. Check that here: 5134 const bool handle_interrupts = false; 5135 if (auto result = HandleStoppedEvent( 5136 *thread, thread_plan_sp, thread_plan_restorer, event_sp, 5137 event_to_broadcast_sp, options, handle_interrupts)) { 5138 return_value = *result; 5139 back_to_top = false; 5140 break; 5141 } 5142 5143 if (!options.GetTryAllThreads()) { 5144 if (log) 5145 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5146 "was false, we stopped so now we're " 5147 "quitting."); 5148 return_value = eExpressionInterrupted; 5149 back_to_top = false; 5150 break; 5151 } 5152 5153 if (before_first_timeout) { 5154 // Set all the other threads to run, and return to the top of 5155 // the loop, which will continue; 5156 before_first_timeout = false; 5157 thread_plan_sp->SetStopOthers(false); 5158 if (log) 5159 log->PutCString( 5160 "Process::RunThreadPlan(): about to resume."); 5161 5162 back_to_top = true; 5163 break; 5164 } else { 5165 // Running all threads failed, so return Interrupted. 5166 if (log) 5167 log->PutCString("Process::RunThreadPlan(): running all " 5168 "threads timed out."); 5169 return_value = eExpressionInterrupted; 5170 back_to_top = false; 5171 break; 5172 } 5173 } 5174 } else { 5175 if (log) 5176 log->PutCString("Process::RunThreadPlan(): halt said it " 5177 "succeeded, but I got no event. " 5178 "I'm getting out of here passing Interrupted."); 5179 return_value = eExpressionInterrupted; 5180 back_to_top = false; 5181 break; 5182 } 5183 } else { 5184 try_halt_again++; 5185 continue; 5186 } 5187 } 5188 5189 if (!back_to_top || try_halt_again > num_retries) 5190 break; 5191 else 5192 continue; 5193 } 5194 } // END WAIT LOOP 5195 5196 // If we had to start up a temporary private state thread to run this 5197 // thread plan, shut it down now. 5198 if (backup_private_state_thread.IsJoinable()) { 5199 StopPrivateStateThread(); 5200 Status error; 5201 m_private_state_thread = backup_private_state_thread; 5202 if (stopper_base_plan_sp) { 5203 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5204 } 5205 if (old_state != eStateInvalid) 5206 m_public_state.SetValueNoLock(old_state); 5207 } 5208 5209 if (return_value != eExpressionCompleted && log) { 5210 // Print a backtrace into the log so we can figure out where we are: 5211 StreamString s; 5212 s.PutCString("Thread state after unsuccessful completion: \n"); 5213 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5214 log->PutString(s.GetString()); 5215 } 5216 // Restore the thread state if we are going to discard the plan execution. 5217 // There are three cases where this could happen: 1) The execution 5218 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5219 // was true 3) We got some other error, and discard_on_error was true 5220 bool should_unwind = (return_value == eExpressionInterrupted && 5221 options.DoesUnwindOnError()) || 5222 (return_value == eExpressionHitBreakpoint && 5223 options.DoesIgnoreBreakpoints()); 5224 5225 if (return_value == eExpressionCompleted || should_unwind) { 5226 thread_plan_sp->RestoreThreadState(); 5227 } 5228 5229 // Now do some processing on the results of the run: 5230 if (return_value == eExpressionInterrupted || 5231 return_value == eExpressionHitBreakpoint) { 5232 if (log) { 5233 StreamString s; 5234 if (event_sp) 5235 event_sp->Dump(&s); 5236 else { 5237 log->PutCString("Process::RunThreadPlan(): Stop event that " 5238 "interrupted us is NULL."); 5239 } 5240 5241 StreamString ts; 5242 5243 const char *event_explanation = nullptr; 5244 5245 do { 5246 if (!event_sp) { 5247 event_explanation = "<no event>"; 5248 break; 5249 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5250 event_explanation = "<user interrupt>"; 5251 break; 5252 } else { 5253 const Process::ProcessEventData *event_data = 5254 Process::ProcessEventData::GetEventDataFromEvent( 5255 event_sp.get()); 5256 5257 if (!event_data) { 5258 event_explanation = "<no event data>"; 5259 break; 5260 } 5261 5262 Process *process = event_data->GetProcessSP().get(); 5263 5264 if (!process) { 5265 event_explanation = "<no process>"; 5266 break; 5267 } 5268 5269 ThreadList &thread_list = process->GetThreadList(); 5270 5271 uint32_t num_threads = thread_list.GetSize(); 5272 uint32_t thread_index; 5273 5274 ts.Printf("<%u threads> ", num_threads); 5275 5276 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5277 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5278 5279 if (!thread) { 5280 ts.Printf("<?> "); 5281 continue; 5282 } 5283 5284 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5285 RegisterContext *register_context = 5286 thread->GetRegisterContext().get(); 5287 5288 if (register_context) 5289 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5290 else 5291 ts.Printf("[ip unknown] "); 5292 5293 // Show the private stop info here, the public stop info will be 5294 // from the last natural stop. 5295 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5296 if (stop_info_sp) { 5297 const char *stop_desc = stop_info_sp->GetDescription(); 5298 if (stop_desc) 5299 ts.PutCString(stop_desc); 5300 } 5301 ts.Printf(">"); 5302 } 5303 5304 event_explanation = ts.GetData(); 5305 } 5306 } while (false); 5307 5308 if (event_explanation) 5309 LLDB_LOGF(log, 5310 "Process::RunThreadPlan(): execution interrupted: %s %s", 5311 s.GetData(), event_explanation); 5312 else 5313 LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", 5314 s.GetData()); 5315 } 5316 5317 if (should_unwind) { 5318 LLDB_LOGF(log, 5319 "Process::RunThreadPlan: ExecutionInterrupted - " 5320 "discarding thread plans up to %p.", 5321 static_cast<void *>(thread_plan_sp.get())); 5322 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5323 } else { 5324 LLDB_LOGF(log, 5325 "Process::RunThreadPlan: ExecutionInterrupted - for " 5326 "plan: %p not discarding.", 5327 static_cast<void *>(thread_plan_sp.get())); 5328 } 5329 } else if (return_value == eExpressionSetupError) { 5330 if (log) 5331 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5332 5333 if (options.DoesUnwindOnError()) { 5334 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5335 } 5336 } else { 5337 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5338 if (log) 5339 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5340 return_value = eExpressionCompleted; 5341 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5342 if (log) 5343 log->PutCString( 5344 "Process::RunThreadPlan(): thread plan was discarded"); 5345 return_value = eExpressionDiscarded; 5346 } else { 5347 if (log) 5348 log->PutCString( 5349 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5350 if (options.DoesUnwindOnError() && thread_plan_sp) { 5351 if (log) 5352 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5353 "'cause unwind_on_error is set."); 5354 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5355 } 5356 } 5357 } 5358 5359 // Thread we ran the function in may have gone away because we ran the 5360 // target Check that it's still there, and if it is put it back in the 5361 // context. Also restore the frame in the context if it is still present. 5362 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5363 if (thread) { 5364 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5365 } 5366 5367 // Also restore the current process'es selected frame & thread, since this 5368 // function calling may be done behind the user's back. 5369 5370 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5371 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5372 selected_stack_id.IsValid()) { 5373 // We were able to restore the selected thread, now restore the frame: 5374 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5375 StackFrameSP old_frame_sp = 5376 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5377 selected_stack_id); 5378 if (old_frame_sp) 5379 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5380 old_frame_sp.get()); 5381 } 5382 } 5383 } 5384 5385 // If the process exited during the run of the thread plan, notify everyone. 5386 5387 if (event_to_broadcast_sp) { 5388 if (log) 5389 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5390 BroadcastEvent(event_to_broadcast_sp); 5391 } 5392 5393 return return_value; 5394 } 5395 5396 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5397 const char *result_name; 5398 5399 switch (result) { 5400 case eExpressionCompleted: 5401 result_name = "eExpressionCompleted"; 5402 break; 5403 case eExpressionDiscarded: 5404 result_name = "eExpressionDiscarded"; 5405 break; 5406 case eExpressionInterrupted: 5407 result_name = "eExpressionInterrupted"; 5408 break; 5409 case eExpressionHitBreakpoint: 5410 result_name = "eExpressionHitBreakpoint"; 5411 break; 5412 case eExpressionSetupError: 5413 result_name = "eExpressionSetupError"; 5414 break; 5415 case eExpressionParseError: 5416 result_name = "eExpressionParseError"; 5417 break; 5418 case eExpressionResultUnavailable: 5419 result_name = "eExpressionResultUnavailable"; 5420 break; 5421 case eExpressionTimedOut: 5422 result_name = "eExpressionTimedOut"; 5423 break; 5424 case eExpressionStoppedForDebug: 5425 result_name = "eExpressionStoppedForDebug"; 5426 break; 5427 } 5428 return result_name; 5429 } 5430 5431 void Process::GetStatus(Stream &strm) { 5432 const StateType state = GetState(); 5433 if (StateIsStoppedState(state, false)) { 5434 if (state == eStateExited) { 5435 int exit_status = GetExitStatus(); 5436 const char *exit_description = GetExitDescription(); 5437 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5438 GetID(), exit_status, exit_status, 5439 exit_description ? exit_description : ""); 5440 } else { 5441 if (state == eStateConnected) 5442 strm.Printf("Connected to remote target.\n"); 5443 else 5444 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5445 } 5446 } else { 5447 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5448 } 5449 } 5450 5451 size_t Process::GetThreadStatus(Stream &strm, 5452 bool only_threads_with_stop_reason, 5453 uint32_t start_frame, uint32_t num_frames, 5454 uint32_t num_frames_with_source, 5455 bool stop_format) { 5456 size_t num_thread_infos_dumped = 0; 5457 5458 // You can't hold the thread list lock while calling Thread::GetStatus. That 5459 // very well might run code (e.g. if we need it to get return values or 5460 // arguments.) For that to work the process has to be able to acquire it. 5461 // So instead copy the thread ID's, and look them up one by one: 5462 5463 uint32_t num_threads; 5464 std::vector<lldb::tid_t> thread_id_array; 5465 // Scope for thread list locker; 5466 { 5467 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5468 ThreadList &curr_thread_list = GetThreadList(); 5469 num_threads = curr_thread_list.GetSize(); 5470 uint32_t idx; 5471 thread_id_array.resize(num_threads); 5472 for (idx = 0; idx < num_threads; ++idx) 5473 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5474 } 5475 5476 for (uint32_t i = 0; i < num_threads; i++) { 5477 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5478 if (thread_sp) { 5479 if (only_threads_with_stop_reason) { 5480 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5481 if (!stop_info_sp || !stop_info_sp->IsValid()) 5482 continue; 5483 } 5484 thread_sp->GetStatus(strm, start_frame, num_frames, 5485 num_frames_with_source, 5486 stop_format); 5487 ++num_thread_infos_dumped; 5488 } else { 5489 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5490 LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 5491 " vanished while running Thread::GetStatus."); 5492 } 5493 } 5494 return num_thread_infos_dumped; 5495 } 5496 5497 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5498 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5499 } 5500 5501 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5502 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5503 region.GetByteSize()); 5504 } 5505 5506 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5507 void *baton) { 5508 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5509 } 5510 5511 bool Process::RunPreResumeActions() { 5512 bool result = true; 5513 while (!m_pre_resume_actions.empty()) { 5514 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5515 m_pre_resume_actions.pop_back(); 5516 bool this_result = action.callback(action.baton); 5517 if (result) 5518 result = this_result; 5519 } 5520 return result; 5521 } 5522 5523 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5524 5525 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5526 { 5527 PreResumeCallbackAndBaton element(callback, baton); 5528 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5529 if (found_iter != m_pre_resume_actions.end()) 5530 { 5531 m_pre_resume_actions.erase(found_iter); 5532 } 5533 } 5534 5535 ProcessRunLock &Process::GetRunLock() { 5536 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5537 return m_private_run_lock; 5538 else 5539 return m_public_run_lock; 5540 } 5541 5542 bool Process::CurrentThreadIsPrivateStateThread() 5543 { 5544 return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); 5545 } 5546 5547 5548 void Process::Flush() { 5549 m_thread_list.Flush(); 5550 m_extended_thread_list.Flush(); 5551 m_extended_thread_stop_id = 0; 5552 m_queue_list.Clear(); 5553 m_queue_list_stop_id = 0; 5554 } 5555 5556 void Process::DidExec() { 5557 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 5558 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 5559 5560 Target &target = GetTarget(); 5561 target.CleanupProcess(); 5562 target.ClearModules(false); 5563 m_dynamic_checkers_up.reset(); 5564 m_abi_sp.reset(); 5565 m_system_runtime_up.reset(); 5566 m_os_up.reset(); 5567 m_dyld_up.reset(); 5568 m_jit_loaders_up.reset(); 5569 m_image_tokens.clear(); 5570 m_allocated_memory_cache.Clear(); 5571 { 5572 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5573 m_language_runtimes.clear(); 5574 } 5575 m_instrumentation_runtimes.clear(); 5576 m_thread_list.DiscardThreadPlans(); 5577 m_memory_cache.Clear(true); 5578 DoDidExec(); 5579 CompleteAttach(); 5580 // Flush the process (threads and all stack frames) after running 5581 // CompleteAttach() in case the dynamic loader loaded things in new 5582 // locations. 5583 Flush(); 5584 5585 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5586 // let the target know so it can do any cleanup it needs to. 5587 target.DidExec(); 5588 } 5589 5590 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5591 if (address == nullptr) { 5592 error.SetErrorString("Invalid address argument"); 5593 return LLDB_INVALID_ADDRESS; 5594 } 5595 5596 addr_t function_addr = LLDB_INVALID_ADDRESS; 5597 5598 addr_t addr = address->GetLoadAddress(&GetTarget()); 5599 std::map<addr_t, addr_t>::const_iterator iter = 5600 m_resolved_indirect_addresses.find(addr); 5601 if (iter != m_resolved_indirect_addresses.end()) { 5602 function_addr = (*iter).second; 5603 } else { 5604 if (!CallVoidArgVoidPtrReturn(address, function_addr)) { 5605 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5606 error.SetErrorStringWithFormat( 5607 "Unable to call resolver for indirect function %s", 5608 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5609 function_addr = LLDB_INVALID_ADDRESS; 5610 } else { 5611 m_resolved_indirect_addresses.insert( 5612 std::pair<addr_t, addr_t>(addr, function_addr)); 5613 } 5614 } 5615 return function_addr; 5616 } 5617 5618 void Process::ModulesDidLoad(ModuleList &module_list) { 5619 SystemRuntime *sys_runtime = GetSystemRuntime(); 5620 if (sys_runtime) { 5621 sys_runtime->ModulesDidLoad(module_list); 5622 } 5623 5624 GetJITLoaders().ModulesDidLoad(module_list); 5625 5626 // Give runtimes a chance to be created. 5627 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5628 m_instrumentation_runtimes); 5629 5630 // Tell runtimes about new modules. 5631 for (auto pos = m_instrumentation_runtimes.begin(); 5632 pos != m_instrumentation_runtimes.end(); ++pos) { 5633 InstrumentationRuntimeSP runtime = pos->second; 5634 runtime->ModulesDidLoad(module_list); 5635 } 5636 5637 // Let any language runtimes we have already created know about the modules 5638 // that loaded. 5639 5640 // Iterate over a copy of this language runtime list in case the language 5641 // runtime ModulesDidLoad somehow causes the language runtime to be 5642 // unloaded. 5643 { 5644 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5645 LanguageRuntimeCollection language_runtimes(m_language_runtimes); 5646 for (const auto &pair : language_runtimes) { 5647 // We must check language_runtime_sp to make sure it is not nullptr as we 5648 // might cache the fact that we didn't have a language runtime for a 5649 // language. 5650 LanguageRuntimeSP language_runtime_sp = pair.second; 5651 if (language_runtime_sp) 5652 language_runtime_sp->ModulesDidLoad(module_list); 5653 } 5654 } 5655 5656 // If we don't have an operating system plug-in, try to load one since 5657 // loading shared libraries might cause a new one to try and load 5658 if (!m_os_up) 5659 LoadOperatingSystemPlugin(false); 5660 5661 // Give structured-data plugins a chance to see the modified modules. 5662 for (auto pair : m_structured_data_plugin_map) { 5663 if (pair.second) 5664 pair.second->ModulesDidLoad(*this, module_list); 5665 } 5666 } 5667 5668 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5669 const char *fmt, ...) { 5670 bool print_warning = true; 5671 5672 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5673 if (!stream_sp) 5674 return; 5675 if (warning_type == eWarningsOptimization && !GetWarningsOptimization()) { 5676 return; 5677 } 5678 5679 if (repeat_key != nullptr) { 5680 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5681 if (it == m_warnings_issued.end()) { 5682 m_warnings_issued[warning_type] = WarningsPointerSet(); 5683 m_warnings_issued[warning_type].insert(repeat_key); 5684 } else { 5685 if (it->second.find(repeat_key) != it->second.end()) { 5686 print_warning = false; 5687 } else { 5688 it->second.insert(repeat_key); 5689 } 5690 } 5691 } 5692 5693 if (print_warning) { 5694 va_list args; 5695 va_start(args, fmt); 5696 stream_sp->PrintfVarArg(fmt, args); 5697 va_end(args); 5698 } 5699 } 5700 5701 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5702 if (GetWarningsOptimization() && sc.module_sp && 5703 !sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5704 sc.function->GetIsOptimized()) { 5705 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5706 "%s was compiled with optimization - stepping may behave " 5707 "oddly; variables may not be available.\n", 5708 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5709 } 5710 } 5711 5712 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5713 info.Clear(); 5714 5715 PlatformSP platform_sp = GetTarget().GetPlatform(); 5716 if (!platform_sp) 5717 return false; 5718 5719 return platform_sp->GetProcessInfo(GetID(), info); 5720 } 5721 5722 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5723 ThreadCollectionSP threads; 5724 5725 const MemoryHistorySP &memory_history = 5726 MemoryHistory::FindPlugin(shared_from_this()); 5727 5728 if (!memory_history) { 5729 return threads; 5730 } 5731 5732 threads = std::make_shared<ThreadCollection>( 5733 memory_history->GetHistoryThreads(addr)); 5734 5735 return threads; 5736 } 5737 5738 InstrumentationRuntimeSP 5739 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5740 InstrumentationRuntimeCollection::iterator pos; 5741 pos = m_instrumentation_runtimes.find(type); 5742 if (pos == m_instrumentation_runtimes.end()) { 5743 return InstrumentationRuntimeSP(); 5744 } else 5745 return (*pos).second; 5746 } 5747 5748 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5749 const ArchSpec &arch, ModuleSpec &module_spec) { 5750 module_spec.Clear(); 5751 return false; 5752 } 5753 5754 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5755 m_image_tokens.push_back(image_ptr); 5756 return m_image_tokens.size() - 1; 5757 } 5758 5759 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5760 if (token < m_image_tokens.size()) 5761 return m_image_tokens[token]; 5762 return LLDB_INVALID_IMAGE_TOKEN; 5763 } 5764 5765 void Process::ResetImageToken(size_t token) { 5766 if (token < m_image_tokens.size()) 5767 m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN; 5768 } 5769 5770 Address 5771 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5772 AddressRange range_bounds) { 5773 Target &target = GetTarget(); 5774 DisassemblerSP disassembler_sp; 5775 InstructionList *insn_list = nullptr; 5776 5777 Address retval = default_stop_addr; 5778 5779 if (!target.GetUseFastStepping()) 5780 return retval; 5781 if (!default_stop_addr.IsValid()) 5782 return retval; 5783 5784 ExecutionContext exe_ctx(this); 5785 const char *plugin_name = nullptr; 5786 const char *flavor = nullptr; 5787 const bool prefer_file_cache = true; 5788 disassembler_sp = Disassembler::DisassembleRange( 5789 target.GetArchitecture(), plugin_name, flavor, exe_ctx, range_bounds, 5790 prefer_file_cache); 5791 if (disassembler_sp) 5792 insn_list = &disassembler_sp->GetInstructionList(); 5793 5794 if (insn_list == nullptr) { 5795 return retval; 5796 } 5797 5798 size_t insn_offset = 5799 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 5800 if (insn_offset == UINT32_MAX) { 5801 return retval; 5802 } 5803 5804 uint32_t branch_index = 5805 insn_list->GetIndexOfNextBranchInstruction(insn_offset, target, 5806 false /* ignore_calls*/, 5807 nullptr); 5808 if (branch_index == UINT32_MAX) { 5809 return retval; 5810 } 5811 5812 if (branch_index > insn_offset) { 5813 Address next_branch_insn_address = 5814 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 5815 if (next_branch_insn_address.IsValid() && 5816 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 5817 retval = next_branch_insn_address; 5818 } 5819 } 5820 5821 return retval; 5822 } 5823 5824 Status 5825 Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { 5826 5827 Status error; 5828 5829 lldb::addr_t range_end = 0; 5830 5831 region_list.clear(); 5832 do { 5833 lldb_private::MemoryRegionInfo region_info; 5834 error = GetMemoryRegionInfo(range_end, region_info); 5835 // GetMemoryRegionInfo should only return an error if it is unimplemented. 5836 if (error.Fail()) { 5837 region_list.clear(); 5838 break; 5839 } 5840 5841 range_end = region_info.GetRange().GetRangeEnd(); 5842 if (region_info.GetMapped() == MemoryRegionInfo::eYes) { 5843 region_list.push_back(std::move(region_info)); 5844 } 5845 } while (range_end != LLDB_INVALID_ADDRESS); 5846 5847 return error; 5848 } 5849 5850 Status 5851 Process::ConfigureStructuredData(ConstString type_name, 5852 const StructuredData::ObjectSP &config_sp) { 5853 // If you get this, the Process-derived class needs to implement a method to 5854 // enable an already-reported asynchronous structured data feature. See 5855 // ProcessGDBRemote for an example implementation over gdb-remote. 5856 return Status("unimplemented"); 5857 } 5858 5859 void Process::MapSupportedStructuredDataPlugins( 5860 const StructuredData::Array &supported_type_names) { 5861 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5862 5863 // Bail out early if there are no type names to map. 5864 if (supported_type_names.GetSize() == 0) { 5865 LLDB_LOGF(log, "Process::%s(): no structured data types supported", 5866 __FUNCTION__); 5867 return; 5868 } 5869 5870 // Convert StructuredData type names to ConstString instances. 5871 std::set<ConstString> const_type_names; 5872 5873 LLDB_LOGF(log, 5874 "Process::%s(): the process supports the following async " 5875 "structured data types:", 5876 __FUNCTION__); 5877 5878 supported_type_names.ForEach( 5879 [&const_type_names, &log](StructuredData::Object *object) { 5880 if (!object) { 5881 // Invalid - shouldn't be null objects in the array. 5882 return false; 5883 } 5884 5885 auto type_name = object->GetAsString(); 5886 if (!type_name) { 5887 // Invalid format - all type names should be strings. 5888 return false; 5889 } 5890 5891 const_type_names.insert(ConstString(type_name->GetValue())); 5892 LLDB_LOG(log, "- {0}", type_name->GetValue()); 5893 return true; 5894 }); 5895 5896 // For each StructuredDataPlugin, if the plugin handles any of the types in 5897 // the supported_type_names, map that type name to that plugin. Stop when 5898 // we've consumed all the type names. 5899 // FIXME: should we return an error if there are type names nobody 5900 // supports? 5901 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 5902 auto create_instance = 5903 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 5904 plugin_index); 5905 if (!create_instance) 5906 break; 5907 5908 // Create the plugin. 5909 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 5910 if (!plugin_sp) { 5911 // This plugin doesn't think it can work with the process. Move on to the 5912 // next. 5913 continue; 5914 } 5915 5916 // For any of the remaining type names, map any that this plugin supports. 5917 std::vector<ConstString> names_to_remove; 5918 for (auto &type_name : const_type_names) { 5919 if (plugin_sp->SupportsStructuredDataType(type_name)) { 5920 m_structured_data_plugin_map.insert( 5921 std::make_pair(type_name, plugin_sp)); 5922 names_to_remove.push_back(type_name); 5923 LLDB_LOGF(log, 5924 "Process::%s(): using plugin %s for type name " 5925 "%s", 5926 __FUNCTION__, plugin_sp->GetPluginName().GetCString(), 5927 type_name.GetCString()); 5928 } 5929 } 5930 5931 // Remove the type names that were consumed by this plugin. 5932 for (auto &type_name : names_to_remove) 5933 const_type_names.erase(type_name); 5934 } 5935 } 5936 5937 bool Process::RouteAsyncStructuredData( 5938 const StructuredData::ObjectSP object_sp) { 5939 // Nothing to do if there's no data. 5940 if (!object_sp) 5941 return false; 5942 5943 // The contract is this must be a dictionary, so we can look up the routing 5944 // key via the top-level 'type' string value within the dictionary. 5945 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 5946 if (!dictionary) 5947 return false; 5948 5949 // Grab the async structured type name (i.e. the feature/plugin name). 5950 ConstString type_name; 5951 if (!dictionary->GetValueForKeyAsString("type", type_name)) 5952 return false; 5953 5954 // Check if there's a plugin registered for this type name. 5955 auto find_it = m_structured_data_plugin_map.find(type_name); 5956 if (find_it == m_structured_data_plugin_map.end()) { 5957 // We don't have a mapping for this structured data type. 5958 return false; 5959 } 5960 5961 // Route the structured data to the plugin. 5962 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 5963 return true; 5964 } 5965 5966 Status Process::UpdateAutomaticSignalFiltering() { 5967 // Default implementation does nothign. 5968 // No automatic signal filtering to speak of. 5969 return Status(); 5970 } 5971 5972 UtilityFunction *Process::GetLoadImageUtilityFunction( 5973 Platform *platform, 5974 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 5975 if (platform != GetTarget().GetPlatform().get()) 5976 return nullptr; 5977 llvm::call_once(m_dlopen_utility_func_flag_once, 5978 [&] { m_dlopen_utility_func_up = factory(); }); 5979 return m_dlopen_utility_func_up.get(); 5980 } 5981 5982 bool Process::CallVoidArgVoidPtrReturn(const Address *address, 5983 addr_t &returned_func, 5984 bool trap_exceptions) { 5985 Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); 5986 if (thread == nullptr || address == nullptr) 5987 return false; 5988 5989 EvaluateExpressionOptions options; 5990 options.SetStopOthers(true); 5991 options.SetUnwindOnError(true); 5992 options.SetIgnoreBreakpoints(true); 5993 options.SetTryAllThreads(true); 5994 options.SetDebug(false); 5995 options.SetTimeout(GetUtilityExpressionTimeout()); 5996 options.SetTrapExceptions(trap_exceptions); 5997 5998 auto type_system_or_err = 5999 GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC); 6000 if (!type_system_or_err) { 6001 llvm::consumeError(type_system_or_err.takeError()); 6002 return false; 6003 } 6004 CompilerType void_ptr_type = 6005 type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType(); 6006 lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( 6007 *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); 6008 if (call_plan_sp) { 6009 DiagnosticManager diagnostics; 6010 6011 StackFrame *frame = thread->GetStackFrameAtIndex(0).get(); 6012 if (frame) { 6013 ExecutionContext exe_ctx; 6014 frame->CalculateExecutionContext(exe_ctx); 6015 ExpressionResults result = 6016 RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics); 6017 if (result == eExpressionCompleted) { 6018 returned_func = 6019 call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( 6020 LLDB_INVALID_ADDRESS); 6021 6022 if (GetAddressByteSize() == 4) { 6023 if (returned_func == UINT32_MAX) 6024 return false; 6025 } else if (GetAddressByteSize() == 8) { 6026 if (returned_func == UINT64_MAX) 6027 return false; 6028 } 6029 return true; 6030 } 6031 } 6032 } 6033 6034 return false; 6035 } 6036