1 //===-- Process.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <atomic> 10 #include <memory> 11 #include <mutex> 12 13 #include "llvm/Support/ScopedPrinter.h" 14 #include "llvm/Support/Threading.h" 15 16 #include "lldb/Breakpoint/BreakpointLocation.h" 17 #include "lldb/Breakpoint/StoppointCallbackContext.h" 18 #include "lldb/Core/Debugger.h" 19 #include "lldb/Core/Module.h" 20 #include "lldb/Core/ModuleSpec.h" 21 #include "lldb/Core/PluginManager.h" 22 #include "lldb/Core/StreamFile.h" 23 #include "lldb/Expression/DiagnosticManager.h" 24 #include "lldb/Expression/DynamicCheckerFunctions.h" 25 #include "lldb/Expression/UserExpression.h" 26 #include "lldb/Expression/UtilityFunction.h" 27 #include "lldb/Host/ConnectionFileDescriptor.h" 28 #include "lldb/Host/FileSystem.h" 29 #include "lldb/Host/Host.h" 30 #include "lldb/Host/HostInfo.h" 31 #include "lldb/Host/OptionParser.h" 32 #include "lldb/Host/Pipe.h" 33 #include "lldb/Host/Terminal.h" 34 #include "lldb/Host/ThreadLauncher.h" 35 #include "lldb/Interpreter/CommandInterpreter.h" 36 #include "lldb/Interpreter/OptionArgParser.h" 37 #include "lldb/Interpreter/OptionValueProperties.h" 38 #include "lldb/Symbol/Function.h" 39 #include "lldb/Symbol/Symbol.h" 40 #include "lldb/Target/ABI.h" 41 #include "lldb/Target/AssertFrameRecognizer.h" 42 #include "lldb/Target/DynamicLoader.h" 43 #include "lldb/Target/InstrumentationRuntime.h" 44 #include "lldb/Target/JITLoader.h" 45 #include "lldb/Target/JITLoaderList.h" 46 #include "lldb/Target/Language.h" 47 #include "lldb/Target/LanguageRuntime.h" 48 #include "lldb/Target/MemoryHistory.h" 49 #include "lldb/Target/MemoryRegionInfo.h" 50 #include "lldb/Target/OperatingSystem.h" 51 #include "lldb/Target/Platform.h" 52 #include "lldb/Target/Process.h" 53 #include "lldb/Target/RegisterContext.h" 54 #include "lldb/Target/StopInfo.h" 55 #include "lldb/Target/StructuredDataPlugin.h" 56 #include "lldb/Target/SystemRuntime.h" 57 #include "lldb/Target/Target.h" 58 #include "lldb/Target/TargetList.h" 59 #include "lldb/Target/Thread.h" 60 #include "lldb/Target/ThreadPlan.h" 61 #include "lldb/Target/ThreadPlanBase.h" 62 #include "lldb/Target/ThreadPlanCallFunction.h" 63 #include "lldb/Target/ThreadPlanStack.h" 64 #include "lldb/Target/UnixSignals.h" 65 #include "lldb/Utility/Event.h" 66 #include "lldb/Utility/Log.h" 67 #include "lldb/Utility/NameMatches.h" 68 #include "lldb/Utility/ProcessInfo.h" 69 #include "lldb/Utility/SelectHelper.h" 70 #include "lldb/Utility/State.h" 71 72 using namespace lldb; 73 using namespace lldb_private; 74 using namespace std::chrono; 75 76 // Comment out line below to disable memory caching, overriding the process 77 // setting target.process.disable-memory-cache 78 #define ENABLE_MEMORY_CACHING 79 80 #ifdef ENABLE_MEMORY_CACHING 81 #define DISABLE_MEM_CACHE_DEFAULT false 82 #else 83 #define DISABLE_MEM_CACHE_DEFAULT true 84 #endif 85 86 class ProcessOptionValueProperties : public OptionValueProperties { 87 public: 88 ProcessOptionValueProperties(ConstString name) 89 : OptionValueProperties(name) {} 90 91 // This constructor is used when creating ProcessOptionValueProperties when 92 // it is part of a new lldb_private::Process instance. It will copy all 93 // current global property values as needed 94 ProcessOptionValueProperties(ProcessProperties *global_properties) 95 : OptionValueProperties(*global_properties->GetValueProperties()) {} 96 97 const Property *GetPropertyAtIndex(const ExecutionContext *exe_ctx, 98 bool will_modify, 99 uint32_t idx) const override { 100 // When getting the value for a key from the process options, we will 101 // always try and grab the setting from the current process if there is 102 // one. Else we just use the one from this instance. 103 if (exe_ctx) { 104 Process *process = exe_ctx->GetProcessPtr(); 105 if (process) { 106 ProcessOptionValueProperties *instance_properties = 107 static_cast<ProcessOptionValueProperties *>( 108 process->GetValueProperties().get()); 109 if (this != instance_properties) 110 return instance_properties->ProtectedGetPropertyAtIndex(idx); 111 } 112 } 113 return ProtectedGetPropertyAtIndex(idx); 114 } 115 }; 116 117 #define LLDB_PROPERTIES_process 118 #include "TargetProperties.inc" 119 120 enum { 121 #define LLDB_PROPERTIES_process 122 #include "TargetPropertiesEnum.inc" 123 ePropertyExperimental, 124 }; 125 126 #define LLDB_PROPERTIES_process_experimental 127 #include "TargetProperties.inc" 128 129 enum { 130 #define LLDB_PROPERTIES_process_experimental 131 #include "TargetPropertiesEnum.inc" 132 }; 133 134 class ProcessExperimentalOptionValueProperties : public OptionValueProperties { 135 public: 136 ProcessExperimentalOptionValueProperties() 137 : OptionValueProperties( 138 ConstString(Properties::GetExperimentalSettingsName())) {} 139 }; 140 141 ProcessExperimentalProperties::ProcessExperimentalProperties() 142 : Properties(OptionValuePropertiesSP( 143 new ProcessExperimentalOptionValueProperties())) { 144 m_collection_sp->Initialize(g_process_experimental_properties); 145 } 146 147 ProcessProperties::ProcessProperties(lldb_private::Process *process) 148 : Properties(), 149 m_process(process) // Can be nullptr for global ProcessProperties 150 { 151 if (process == nullptr) { 152 // Global process properties, set them up one time 153 m_collection_sp = 154 std::make_shared<ProcessOptionValueProperties>(ConstString("process")); 155 m_collection_sp->Initialize(g_process_properties); 156 m_collection_sp->AppendProperty( 157 ConstString("thread"), ConstString("Settings specific to threads."), 158 true, Thread::GetGlobalProperties()->GetValueProperties()); 159 } else { 160 m_collection_sp = std::make_shared<ProcessOptionValueProperties>( 161 Process::GetGlobalProperties().get()); 162 m_collection_sp->SetValueChangedCallback( 163 ePropertyPythonOSPluginPath, 164 [this] { m_process->LoadOperatingSystemPlugin(true); }); 165 } 166 167 m_experimental_properties_up.reset(new ProcessExperimentalProperties()); 168 m_collection_sp->AppendProperty( 169 ConstString(Properties::GetExperimentalSettingsName()), 170 ConstString("Experimental settings - setting these won't produce " 171 "errors if the setting is not present."), 172 true, m_experimental_properties_up->GetValueProperties()); 173 } 174 175 ProcessProperties::~ProcessProperties() = default; 176 177 bool ProcessProperties::GetDisableMemoryCache() const { 178 const uint32_t idx = ePropertyDisableMemCache; 179 return m_collection_sp->GetPropertyAtIndexAsBoolean( 180 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 181 } 182 183 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 184 const uint32_t idx = ePropertyMemCacheLineSize; 185 return m_collection_sp->GetPropertyAtIndexAsUInt64( 186 nullptr, idx, g_process_properties[idx].default_uint_value); 187 } 188 189 Args ProcessProperties::GetExtraStartupCommands() const { 190 Args args; 191 const uint32_t idx = ePropertyExtraStartCommand; 192 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 193 return args; 194 } 195 196 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 197 const uint32_t idx = ePropertyExtraStartCommand; 198 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 199 } 200 201 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 202 const uint32_t idx = ePropertyPythonOSPluginPath; 203 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 204 } 205 206 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 207 const uint32_t idx = ePropertyPythonOSPluginPath; 208 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 209 } 210 211 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 212 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 213 return m_collection_sp->GetPropertyAtIndexAsBoolean( 214 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 215 } 216 217 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 218 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 219 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 220 } 221 222 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 223 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 224 return m_collection_sp->GetPropertyAtIndexAsBoolean( 225 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 226 } 227 228 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 229 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 230 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 231 } 232 233 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 234 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 235 return m_collection_sp->GetPropertyAtIndexAsBoolean( 236 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 237 } 238 239 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 240 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 241 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 242 } 243 244 bool ProcessProperties::GetDetachKeepsStopped() const { 245 const uint32_t idx = ePropertyDetachKeepsStopped; 246 return m_collection_sp->GetPropertyAtIndexAsBoolean( 247 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 248 } 249 250 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 251 const uint32_t idx = ePropertyDetachKeepsStopped; 252 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 253 } 254 255 bool ProcessProperties::GetWarningsOptimization() const { 256 const uint32_t idx = ePropertyWarningOptimization; 257 return m_collection_sp->GetPropertyAtIndexAsBoolean( 258 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 259 } 260 261 bool ProcessProperties::GetStopOnExec() const { 262 const uint32_t idx = ePropertyStopOnExec; 263 return m_collection_sp->GetPropertyAtIndexAsBoolean( 264 nullptr, idx, g_process_properties[idx].default_uint_value != 0); 265 } 266 267 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { 268 const uint32_t idx = ePropertyUtilityExpressionTimeout; 269 uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64( 270 nullptr, idx, g_process_properties[idx].default_uint_value); 271 return std::chrono::seconds(value); 272 } 273 274 bool ProcessProperties::GetOSPluginReportsAllThreads() const { 275 const bool fail_value = true; 276 const Property *exp_property = 277 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 278 OptionValueProperties *exp_values = 279 exp_property->GetValue()->GetAsProperties(); 280 if (!exp_values) 281 return fail_value; 282 283 return exp_values->GetPropertyAtIndexAsBoolean( 284 nullptr, ePropertyOSPluginReportsAllThreads, fail_value); 285 } 286 287 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) { 288 const Property *exp_property = 289 m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental); 290 OptionValueProperties *exp_values = 291 exp_property->GetValue()->GetAsProperties(); 292 if (exp_values) 293 exp_values->SetPropertyAtIndexAsBoolean( 294 nullptr, ePropertyOSPluginReportsAllThreads, does_report); 295 } 296 297 Status ProcessLaunchCommandOptions::SetOptionValue( 298 uint32_t option_idx, llvm::StringRef option_arg, 299 ExecutionContext *execution_context) { 300 Status error; 301 const int short_option = m_getopt_table[option_idx].val; 302 303 switch (short_option) { 304 case 's': // Stop at program entry point 305 launch_info.GetFlags().Set(eLaunchFlagStopAtEntry); 306 break; 307 308 case 'i': // STDIN for read only 309 { 310 FileAction action; 311 if (action.Open(STDIN_FILENO, FileSpec(option_arg), true, false)) 312 launch_info.AppendFileAction(action); 313 break; 314 } 315 316 case 'o': // Open STDOUT for write only 317 { 318 FileAction action; 319 if (action.Open(STDOUT_FILENO, FileSpec(option_arg), false, true)) 320 launch_info.AppendFileAction(action); 321 break; 322 } 323 324 case 'e': // STDERR for write only 325 { 326 FileAction action; 327 if (action.Open(STDERR_FILENO, FileSpec(option_arg), false, true)) 328 launch_info.AppendFileAction(action); 329 break; 330 } 331 332 case 'p': // Process plug-in name 333 launch_info.SetProcessPluginName(option_arg); 334 break; 335 336 case 'n': // Disable STDIO 337 { 338 FileAction action; 339 const FileSpec dev_null(FileSystem::DEV_NULL); 340 if (action.Open(STDIN_FILENO, dev_null, true, false)) 341 launch_info.AppendFileAction(action); 342 if (action.Open(STDOUT_FILENO, dev_null, false, true)) 343 launch_info.AppendFileAction(action); 344 if (action.Open(STDERR_FILENO, dev_null, false, true)) 345 launch_info.AppendFileAction(action); 346 break; 347 } 348 349 case 'w': 350 launch_info.SetWorkingDirectory(FileSpec(option_arg)); 351 break; 352 353 case 't': // Open process in new terminal window 354 launch_info.GetFlags().Set(eLaunchFlagLaunchInTTY); 355 break; 356 357 case 'a': { 358 TargetSP target_sp = 359 execution_context ? execution_context->GetTargetSP() : TargetSP(); 360 PlatformSP platform_sp = 361 target_sp ? target_sp->GetPlatform() : PlatformSP(); 362 launch_info.GetArchitecture() = 363 Platform::GetAugmentedArchSpec(platform_sp.get(), option_arg); 364 } break; 365 366 case 'A': // Disable ASLR. 367 { 368 bool success; 369 const bool disable_aslr_arg = 370 OptionArgParser::ToBoolean(option_arg, true, &success); 371 if (success) 372 disable_aslr = disable_aslr_arg ? eLazyBoolYes : eLazyBoolNo; 373 else 374 error.SetErrorStringWithFormat( 375 "Invalid boolean value for disable-aslr option: '%s'", 376 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 377 break; 378 } 379 380 case 'X': // shell expand args. 381 { 382 bool success; 383 const bool expand_args = 384 OptionArgParser::ToBoolean(option_arg, true, &success); 385 if (success) 386 launch_info.SetShellExpandArguments(expand_args); 387 else 388 error.SetErrorStringWithFormat( 389 "Invalid boolean value for shell-expand-args option: '%s'", 390 option_arg.empty() ? "<null>" : option_arg.str().c_str()); 391 break; 392 } 393 394 case 'c': 395 if (!option_arg.empty()) 396 launch_info.SetShell(FileSpec(option_arg)); 397 else 398 launch_info.SetShell(HostInfo::GetDefaultShell()); 399 break; 400 401 case 'v': 402 launch_info.GetEnvironment().insert(option_arg); 403 break; 404 405 default: 406 error.SetErrorStringWithFormat("unrecognized short option character '%c'", 407 short_option); 408 break; 409 } 410 return error; 411 } 412 413 static constexpr OptionDefinition g_process_launch_options[] = { 414 {LLDB_OPT_SET_ALL, false, "stop-at-entry", 's', OptionParser::eNoArgument, 415 nullptr, {}, 0, eArgTypeNone, 416 "Stop at the entry point of the program when launching a process."}, 417 {LLDB_OPT_SET_ALL, false, "disable-aslr", 'A', 418 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeBoolean, 419 "Set whether to disable address space layout randomization when launching " 420 "a process."}, 421 {LLDB_OPT_SET_ALL, false, "plugin", 'p', OptionParser::eRequiredArgument, 422 nullptr, {}, 0, eArgTypePlugin, 423 "Name of the process plugin you want to use."}, 424 {LLDB_OPT_SET_ALL, false, "working-dir", 'w', 425 OptionParser::eRequiredArgument, nullptr, {}, 0, 426 eArgTypeDirectoryName, 427 "Set the current working directory to <path> when running the inferior."}, 428 {LLDB_OPT_SET_ALL, false, "arch", 'a', OptionParser::eRequiredArgument, 429 nullptr, {}, 0, eArgTypeArchitecture, 430 "Set the architecture for the process to launch when ambiguous."}, 431 {LLDB_OPT_SET_ALL, false, "environment", 'v', 432 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeNone, 433 "Specify an environment variable name/value string (--environment " 434 "NAME=VALUE). Can be specified multiple times for subsequent environment " 435 "entries."}, 436 {LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3, false, "shell", 'c', 437 OptionParser::eOptionalArgument, nullptr, {}, 0, eArgTypeFilename, 438 "Run the process in a shell (not supported on all platforms)."}, 439 440 {LLDB_OPT_SET_1, false, "stdin", 'i', OptionParser::eRequiredArgument, 441 nullptr, {}, 0, eArgTypeFilename, 442 "Redirect stdin for the process to <filename>."}, 443 {LLDB_OPT_SET_1, false, "stdout", 'o', OptionParser::eRequiredArgument, 444 nullptr, {}, 0, eArgTypeFilename, 445 "Redirect stdout for the process to <filename>."}, 446 {LLDB_OPT_SET_1, false, "stderr", 'e', OptionParser::eRequiredArgument, 447 nullptr, {}, 0, eArgTypeFilename, 448 "Redirect stderr for the process to <filename>."}, 449 450 {LLDB_OPT_SET_2, false, "tty", 't', OptionParser::eNoArgument, nullptr, 451 {}, 0, eArgTypeNone, 452 "Start the process in a terminal (not supported on all platforms)."}, 453 454 {LLDB_OPT_SET_3, false, "no-stdio", 'n', OptionParser::eNoArgument, nullptr, 455 {}, 0, eArgTypeNone, 456 "Do not set up for terminal I/O to go to running process."}, 457 {LLDB_OPT_SET_4, false, "shell-expand-args", 'X', 458 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeBoolean, 459 "Set whether to shell expand arguments to the process when launching."}, 460 }; 461 462 llvm::ArrayRef<OptionDefinition> ProcessLaunchCommandOptions::GetDefinitions() { 463 return llvm::makeArrayRef(g_process_launch_options); 464 } 465 466 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 467 llvm::StringRef plugin_name, 468 ListenerSP listener_sp, 469 const FileSpec *crash_file_path) { 470 static uint32_t g_process_unique_id = 0; 471 472 ProcessSP process_sp; 473 ProcessCreateInstance create_callback = nullptr; 474 if (!plugin_name.empty()) { 475 ConstString const_plugin_name(plugin_name); 476 create_callback = 477 PluginManager::GetProcessCreateCallbackForPluginName(const_plugin_name); 478 if (create_callback) { 479 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 480 if (process_sp) { 481 if (process_sp->CanDebug(target_sp, true)) { 482 process_sp->m_process_unique_id = ++g_process_unique_id; 483 } else 484 process_sp.reset(); 485 } 486 } 487 } else { 488 for (uint32_t idx = 0; 489 (create_callback = 490 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 491 ++idx) { 492 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 493 if (process_sp) { 494 if (process_sp->CanDebug(target_sp, false)) { 495 process_sp->m_process_unique_id = ++g_process_unique_id; 496 break; 497 } else 498 process_sp.reset(); 499 } 500 } 501 } 502 return process_sp; 503 } 504 505 ConstString &Process::GetStaticBroadcasterClass() { 506 static ConstString class_name("lldb.process"); 507 return class_name; 508 } 509 510 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 511 : Process(target_sp, listener_sp, 512 UnixSignals::Create(HostInfo::GetArchitecture())) { 513 // This constructor just delegates to the full Process constructor, 514 // defaulting to using the Host's UnixSignals. 515 } 516 517 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 518 const UnixSignalsSP &unix_signals_sp) 519 : ProcessProperties(this), UserID(LLDB_INVALID_PROCESS_ID), 520 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 521 Process::GetStaticBroadcasterClass().AsCString()), 522 m_target_wp(target_sp), m_public_state(eStateUnloaded), 523 m_private_state(eStateUnloaded), 524 m_private_state_broadcaster(nullptr, 525 "lldb.process.internal_state_broadcaster"), 526 m_private_state_control_broadcaster( 527 nullptr, "lldb.process.internal_state_control_broadcaster"), 528 m_private_state_listener_sp( 529 Listener::MakeListener("lldb.process.internal_state_listener")), 530 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 531 m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(), 532 m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this), 533 m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this), 534 m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0), 535 m_notifications(), m_image_tokens(), m_listener_sp(listener_sp), 536 m_breakpoint_site_list(), m_dynamic_checkers_up(), 537 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 538 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 539 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 540 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 541 m_memory_cache(*this), m_allocated_memory_cache(*this), 542 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), 543 m_private_run_lock(), m_finalizing(false), m_finalize_called(false), 544 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 545 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 546 m_can_interpret_function_calls(false), m_warnings_issued(), 547 m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) { 548 CheckInWithManager(); 549 550 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 551 LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this)); 552 553 if (!m_unix_signals_sp) 554 m_unix_signals_sp = std::make_shared<UnixSignals>(); 555 556 SetEventName(eBroadcastBitStateChanged, "state-changed"); 557 SetEventName(eBroadcastBitInterrupt, "interrupt"); 558 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 559 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 560 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 561 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 562 563 m_private_state_control_broadcaster.SetEventName( 564 eBroadcastInternalStateControlStop, "control-stop"); 565 m_private_state_control_broadcaster.SetEventName( 566 eBroadcastInternalStateControlPause, "control-pause"); 567 m_private_state_control_broadcaster.SetEventName( 568 eBroadcastInternalStateControlResume, "control-resume"); 569 570 m_listener_sp->StartListeningForEvents( 571 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 572 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 573 eBroadcastBitProfileData | eBroadcastBitStructuredData); 574 575 m_private_state_listener_sp->StartListeningForEvents( 576 &m_private_state_broadcaster, 577 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 578 579 m_private_state_listener_sp->StartListeningForEvents( 580 &m_private_state_control_broadcaster, 581 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 582 eBroadcastInternalStateControlResume); 583 // We need something valid here, even if just the default UnixSignalsSP. 584 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 585 586 // Allow the platform to override the default cache line size 587 OptionValueSP value_sp = 588 m_collection_sp 589 ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize) 590 ->GetValue(); 591 uint32_t platform_cache_line_size = 592 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 593 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 594 value_sp->SetUInt64Value(platform_cache_line_size); 595 596 RegisterAssertFrameRecognizer(this); 597 } 598 599 Process::~Process() { 600 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 601 LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this)); 602 StopPrivateStateThread(); 603 604 // ThreadList::Clear() will try to acquire this process's mutex, so 605 // explicitly clear the thread list here to ensure that the mutex is not 606 // destroyed before the thread list. 607 m_thread_list.Clear(); 608 } 609 610 const ProcessPropertiesSP &Process::GetGlobalProperties() { 611 // NOTE: intentional leak so we don't crash if global destructor chain gets 612 // called as other threads still use the result of this function 613 static ProcessPropertiesSP *g_settings_sp_ptr = 614 new ProcessPropertiesSP(new ProcessProperties(nullptr)); 615 return *g_settings_sp_ptr; 616 } 617 618 void Process::Finalize() { 619 m_finalizing = true; 620 621 // Destroy this process if needed 622 switch (GetPrivateState()) { 623 case eStateConnected: 624 case eStateAttaching: 625 case eStateLaunching: 626 case eStateStopped: 627 case eStateRunning: 628 case eStateStepping: 629 case eStateCrashed: 630 case eStateSuspended: 631 Destroy(false); 632 break; 633 634 case eStateInvalid: 635 case eStateUnloaded: 636 case eStateDetached: 637 case eStateExited: 638 break; 639 } 640 641 // Clear our broadcaster before we proceed with destroying 642 Broadcaster::Clear(); 643 644 // Do any cleanup needed prior to being destructed... Subclasses that 645 // override this method should call this superclass method as well. 646 647 // We need to destroy the loader before the derived Process class gets 648 // destroyed since it is very likely that undoing the loader will require 649 // access to the real process. 650 m_dynamic_checkers_up.reset(); 651 m_abi_sp.reset(); 652 m_os_up.reset(); 653 m_system_runtime_up.reset(); 654 m_dyld_up.reset(); 655 m_jit_loaders_up.reset(); 656 m_thread_plans.Clear(); 657 m_thread_list_real.Destroy(); 658 m_thread_list.Destroy(); 659 m_extended_thread_list.Destroy(); 660 m_queue_list.Clear(); 661 m_queue_list_stop_id = 0; 662 std::vector<Notifications> empty_notifications; 663 m_notifications.swap(empty_notifications); 664 m_image_tokens.clear(); 665 m_memory_cache.Clear(); 666 m_allocated_memory_cache.Clear(); 667 { 668 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 669 m_language_runtimes.clear(); 670 } 671 m_instrumentation_runtimes.clear(); 672 m_next_event_action_up.reset(); 673 // Clear the last natural stop ID since it has a strong reference to this 674 // process 675 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 676 //#ifdef LLDB_CONFIGURATION_DEBUG 677 // StreamFile s(stdout, false); 678 // EventSP event_sp; 679 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 680 // { 681 // event_sp->Dump (&s); 682 // s.EOL(); 683 // } 684 //#endif 685 // We have to be very careful here as the m_private_state_listener might 686 // contain events that have ProcessSP values in them which can keep this 687 // process around forever. These events need to be cleared out. 688 m_private_state_listener_sp->Clear(); 689 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 690 m_public_run_lock.SetStopped(); 691 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 692 m_private_run_lock.SetStopped(); 693 m_structured_data_plugin_map.clear(); 694 m_finalize_called = true; 695 } 696 697 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 698 m_notifications.push_back(callbacks); 699 if (callbacks.initialize != nullptr) 700 callbacks.initialize(callbacks.baton, this); 701 } 702 703 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 704 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 705 for (pos = m_notifications.begin(); pos != end; ++pos) { 706 if (pos->baton == callbacks.baton && 707 pos->initialize == callbacks.initialize && 708 pos->process_state_changed == callbacks.process_state_changed) { 709 m_notifications.erase(pos); 710 return true; 711 } 712 } 713 return false; 714 } 715 716 void Process::SynchronouslyNotifyStateChanged(StateType state) { 717 std::vector<Notifications>::iterator notification_pos, 718 notification_end = m_notifications.end(); 719 for (notification_pos = m_notifications.begin(); 720 notification_pos != notification_end; ++notification_pos) { 721 if (notification_pos->process_state_changed) 722 notification_pos->process_state_changed(notification_pos->baton, this, 723 state); 724 } 725 } 726 727 // FIXME: We need to do some work on events before the general Listener sees 728 // them. 729 // For instance if we are continuing from a breakpoint, we need to ensure that 730 // we do the little "insert real insn, step & stop" trick. But we can't do 731 // that when the event is delivered by the broadcaster - since that is done on 732 // the thread that is waiting for new events, so if we needed more than one 733 // event for our handling, we would stall. So instead we do it when we fetch 734 // the event off of the queue. 735 // 736 737 StateType Process::GetNextEvent(EventSP &event_sp) { 738 StateType state = eStateInvalid; 739 740 if (m_listener_sp->GetEventForBroadcaster(this, event_sp, 741 std::chrono::seconds(0)) && 742 event_sp) 743 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 744 745 return state; 746 } 747 748 void Process::SyncIOHandler(uint32_t iohandler_id, 749 const Timeout<std::micro> &timeout) { 750 // don't sync (potentially context switch) in case where there is no process 751 // IO 752 if (!m_process_input_reader) 753 return; 754 755 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 756 757 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 758 if (Result) { 759 LLDB_LOG( 760 log, 761 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 762 iohandler_id, *Result); 763 } else { 764 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 765 iohandler_id); 766 } 767 } 768 769 StateType Process::WaitForProcessToStop(const Timeout<std::micro> &timeout, 770 EventSP *event_sp_ptr, bool wait_always, 771 ListenerSP hijack_listener_sp, 772 Stream *stream, bool use_run_lock) { 773 // We can't just wait for a "stopped" event, because the stopped event may 774 // have restarted the target. We have to actually check each event, and in 775 // the case of a stopped event check the restarted flag on the event. 776 if (event_sp_ptr) 777 event_sp_ptr->reset(); 778 StateType state = GetState(); 779 // If we are exited or detached, we won't ever get back to any other valid 780 // state... 781 if (state == eStateDetached || state == eStateExited) 782 return state; 783 784 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 785 LLDB_LOG(log, "timeout = {0}", timeout); 786 787 if (!wait_always && StateIsStoppedState(state, true) && 788 StateIsStoppedState(GetPrivateState(), true)) { 789 LLDB_LOGF(log, 790 "Process::%s returning without waiting for events; process " 791 "private and public states are already 'stopped'.", 792 __FUNCTION__); 793 // We need to toggle the run lock as this won't get done in 794 // SetPublicState() if the process is hijacked. 795 if (hijack_listener_sp && use_run_lock) 796 m_public_run_lock.SetStopped(); 797 return state; 798 } 799 800 while (state != eStateInvalid) { 801 EventSP event_sp; 802 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 803 if (event_sp_ptr && event_sp) 804 *event_sp_ptr = event_sp; 805 806 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 807 Process::HandleProcessStateChangedEvent(event_sp, stream, 808 pop_process_io_handler); 809 810 switch (state) { 811 case eStateCrashed: 812 case eStateDetached: 813 case eStateExited: 814 case eStateUnloaded: 815 // We need to toggle the run lock as this won't get done in 816 // SetPublicState() if the process is hijacked. 817 if (hijack_listener_sp && use_run_lock) 818 m_public_run_lock.SetStopped(); 819 return state; 820 case eStateStopped: 821 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 822 continue; 823 else { 824 // We need to toggle the run lock as this won't get done in 825 // SetPublicState() if the process is hijacked. 826 if (hijack_listener_sp && use_run_lock) 827 m_public_run_lock.SetStopped(); 828 return state; 829 } 830 default: 831 continue; 832 } 833 } 834 return state; 835 } 836 837 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp, 838 Stream *stream, 839 bool &pop_process_io_handler) { 840 const bool handle_pop = pop_process_io_handler; 841 842 pop_process_io_handler = false; 843 ProcessSP process_sp = 844 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 845 846 if (!process_sp) 847 return false; 848 849 StateType event_state = 850 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 851 if (event_state == eStateInvalid) 852 return false; 853 854 switch (event_state) { 855 case eStateInvalid: 856 case eStateUnloaded: 857 case eStateAttaching: 858 case eStateLaunching: 859 case eStateStepping: 860 case eStateDetached: 861 if (stream) 862 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 863 StateAsCString(event_state)); 864 if (event_state == eStateDetached) 865 pop_process_io_handler = true; 866 break; 867 868 case eStateConnected: 869 case eStateRunning: 870 // Don't be chatty when we run... 871 break; 872 873 case eStateExited: 874 if (stream) 875 process_sp->GetStatus(*stream); 876 pop_process_io_handler = true; 877 break; 878 879 case eStateStopped: 880 case eStateCrashed: 881 case eStateSuspended: 882 // Make sure the program hasn't been auto-restarted: 883 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 884 if (stream) { 885 size_t num_reasons = 886 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 887 if (num_reasons > 0) { 888 // FIXME: Do we want to report this, or would that just be annoyingly 889 // chatty? 890 if (num_reasons == 1) { 891 const char *reason = 892 Process::ProcessEventData::GetRestartedReasonAtIndex( 893 event_sp.get(), 0); 894 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 895 process_sp->GetID(), 896 reason ? reason : "<UNKNOWN REASON>"); 897 } else { 898 stream->Printf("Process %" PRIu64 899 " stopped and restarted, reasons:\n", 900 process_sp->GetID()); 901 902 for (size_t i = 0; i < num_reasons; i++) { 903 const char *reason = 904 Process::ProcessEventData::GetRestartedReasonAtIndex( 905 event_sp.get(), i); 906 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 907 } 908 } 909 } 910 } 911 } else { 912 StopInfoSP curr_thread_stop_info_sp; 913 // Lock the thread list so it doesn't change on us, this is the scope for 914 // the locker: 915 { 916 ThreadList &thread_list = process_sp->GetThreadList(); 917 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 918 919 ThreadSP curr_thread(thread_list.GetSelectedThread()); 920 ThreadSP thread; 921 StopReason curr_thread_stop_reason = eStopReasonInvalid; 922 if (curr_thread) { 923 curr_thread_stop_reason = curr_thread->GetStopReason(); 924 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 925 } 926 if (!curr_thread || !curr_thread->IsValid() || 927 curr_thread_stop_reason == eStopReasonInvalid || 928 curr_thread_stop_reason == eStopReasonNone) { 929 // Prefer a thread that has just completed its plan over another 930 // thread as current thread. 931 ThreadSP plan_thread; 932 ThreadSP other_thread; 933 934 const size_t num_threads = thread_list.GetSize(); 935 size_t i; 936 for (i = 0; i < num_threads; ++i) { 937 thread = thread_list.GetThreadAtIndex(i); 938 StopReason thread_stop_reason = thread->GetStopReason(); 939 switch (thread_stop_reason) { 940 case eStopReasonInvalid: 941 case eStopReasonNone: 942 break; 943 944 case eStopReasonSignal: { 945 // Don't select a signal thread if we weren't going to stop at 946 // that signal. We have to have had another reason for stopping 947 // here, and the user doesn't want to see this thread. 948 uint64_t signo = thread->GetStopInfo()->GetValue(); 949 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 950 if (!other_thread) 951 other_thread = thread; 952 } 953 break; 954 } 955 case eStopReasonTrace: 956 case eStopReasonBreakpoint: 957 case eStopReasonWatchpoint: 958 case eStopReasonException: 959 case eStopReasonExec: 960 case eStopReasonThreadExiting: 961 case eStopReasonInstrumentation: 962 if (!other_thread) 963 other_thread = thread; 964 break; 965 case eStopReasonPlanComplete: 966 if (!plan_thread) 967 plan_thread = thread; 968 break; 969 } 970 } 971 if (plan_thread) 972 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 973 else if (other_thread) 974 thread_list.SetSelectedThreadByID(other_thread->GetID()); 975 else { 976 if (curr_thread && curr_thread->IsValid()) 977 thread = curr_thread; 978 else 979 thread = thread_list.GetThreadAtIndex(0); 980 981 if (thread) 982 thread_list.SetSelectedThreadByID(thread->GetID()); 983 } 984 } 985 } 986 // Drop the ThreadList mutex by here, since GetThreadStatus below might 987 // have to run code, e.g. for Data formatters, and if we hold the 988 // ThreadList mutex, then the process is going to have a hard time 989 // restarting the process. 990 if (stream) { 991 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 992 if (debugger.GetTargetList().GetSelectedTarget().get() == 993 &process_sp->GetTarget()) { 994 ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); 995 996 if (!thread_sp || !thread_sp->IsValid()) 997 return false; 998 999 const bool only_threads_with_stop_reason = true; 1000 const uint32_t start_frame = thread_sp->GetSelectedFrameIndex(); 1001 const uint32_t num_frames = 1; 1002 const uint32_t num_frames_with_source = 1; 1003 const bool stop_format = true; 1004 1005 process_sp->GetStatus(*stream); 1006 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 1007 start_frame, num_frames, 1008 num_frames_with_source, 1009 stop_format); 1010 if (curr_thread_stop_info_sp) { 1011 lldb::addr_t crashing_address; 1012 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 1013 curr_thread_stop_info_sp, &crashing_address); 1014 if (valobj_sp) { 1015 const ValueObject::GetExpressionPathFormat format = 1016 ValueObject::GetExpressionPathFormat:: 1017 eGetExpressionPathFormatHonorPointers; 1018 stream->PutCString("Likely cause: "); 1019 valobj_sp->GetExpressionPath(*stream, format); 1020 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 1021 } 1022 } 1023 } else { 1024 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 1025 process_sp->GetTarget().shared_from_this()); 1026 if (target_idx != UINT32_MAX) 1027 stream->Printf("Target %d: (", target_idx); 1028 else 1029 stream->Printf("Target <unknown index>: ("); 1030 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 1031 stream->Printf(") stopped.\n"); 1032 } 1033 } 1034 1035 // Pop the process IO handler 1036 pop_process_io_handler = true; 1037 } 1038 break; 1039 } 1040 1041 if (handle_pop && pop_process_io_handler) 1042 process_sp->PopProcessIOHandler(); 1043 1044 return true; 1045 } 1046 1047 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 1048 if (listener_sp) { 1049 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 1050 eBroadcastBitInterrupt); 1051 } else 1052 return false; 1053 } 1054 1055 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 1056 1057 StateType Process::GetStateChangedEvents(EventSP &event_sp, 1058 const Timeout<std::micro> &timeout, 1059 ListenerSP hijack_listener_sp) { 1060 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1061 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1062 1063 ListenerSP listener_sp = hijack_listener_sp; 1064 if (!listener_sp) 1065 listener_sp = m_listener_sp; 1066 1067 StateType state = eStateInvalid; 1068 if (listener_sp->GetEventForBroadcasterWithType( 1069 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1070 timeout)) { 1071 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1072 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1073 else 1074 LLDB_LOG(log, "got no event or was interrupted."); 1075 } 1076 1077 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 1078 return state; 1079 } 1080 1081 Event *Process::PeekAtStateChangedEvents() { 1082 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1083 1084 LLDB_LOGF(log, "Process::%s...", __FUNCTION__); 1085 1086 Event *event_ptr; 1087 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType( 1088 this, eBroadcastBitStateChanged); 1089 if (log) { 1090 if (event_ptr) { 1091 LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, 1092 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 1093 } else { 1094 LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); 1095 } 1096 } 1097 return event_ptr; 1098 } 1099 1100 StateType 1101 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 1102 const Timeout<std::micro> &timeout) { 1103 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1104 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1105 1106 StateType state = eStateInvalid; 1107 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1108 &m_private_state_broadcaster, 1109 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1110 timeout)) 1111 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1112 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1113 1114 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1115 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1116 return state; 1117 } 1118 1119 bool Process::GetEventsPrivate(EventSP &event_sp, 1120 const Timeout<std::micro> &timeout, 1121 bool control_only) { 1122 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1123 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1124 1125 if (control_only) 1126 return m_private_state_listener_sp->GetEventForBroadcaster( 1127 &m_private_state_control_broadcaster, event_sp, timeout); 1128 else 1129 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1130 } 1131 1132 bool Process::IsRunning() const { 1133 return StateIsRunningState(m_public_state.GetValue()); 1134 } 1135 1136 int Process::GetExitStatus() { 1137 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1138 1139 if (m_public_state.GetValue() == eStateExited) 1140 return m_exit_status; 1141 return -1; 1142 } 1143 1144 const char *Process::GetExitDescription() { 1145 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1146 1147 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1148 return m_exit_string.c_str(); 1149 return nullptr; 1150 } 1151 1152 bool Process::SetExitStatus(int status, const char *cstr) { 1153 // Use a mutex to protect setting the exit status. 1154 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1155 1156 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1157 LIBLLDB_LOG_PROCESS)); 1158 LLDB_LOGF( 1159 log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1160 status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : ""); 1161 1162 // We were already in the exited state 1163 if (m_private_state.GetValue() == eStateExited) { 1164 LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because " 1165 "state was already set to eStateExited"); 1166 return false; 1167 } 1168 1169 m_exit_status = status; 1170 if (cstr) 1171 m_exit_string = cstr; 1172 else 1173 m_exit_string.clear(); 1174 1175 // Clear the last natural stop ID since it has a strong reference to this 1176 // process 1177 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1178 1179 SetPrivateState(eStateExited); 1180 1181 // Allow subclasses to do some cleanup 1182 DidExit(); 1183 1184 return true; 1185 } 1186 1187 bool Process::IsAlive() { 1188 switch (m_private_state.GetValue()) { 1189 case eStateConnected: 1190 case eStateAttaching: 1191 case eStateLaunching: 1192 case eStateStopped: 1193 case eStateRunning: 1194 case eStateStepping: 1195 case eStateCrashed: 1196 case eStateSuspended: 1197 return true; 1198 default: 1199 return false; 1200 } 1201 } 1202 1203 // This static callback can be used to watch for local child processes on the 1204 // current host. The child process exits, the process will be found in the 1205 // global target list (we want to be completely sure that the 1206 // lldb_private::Process doesn't go away before we can deliver the signal. 1207 bool Process::SetProcessExitStatus( 1208 lldb::pid_t pid, bool exited, 1209 int signo, // Zero for no signal 1210 int exit_status // Exit value of process if signal is zero 1211 ) { 1212 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 1213 LLDB_LOGF(log, 1214 "Process::SetProcessExitStatus (pid=%" PRIu64 1215 ", exited=%i, signal=%i, exit_status=%i)\n", 1216 pid, exited, signo, exit_status); 1217 1218 if (exited) { 1219 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1220 if (target_sp) { 1221 ProcessSP process_sp(target_sp->GetProcessSP()); 1222 if (process_sp) { 1223 const char *signal_cstr = nullptr; 1224 if (signo) 1225 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1226 1227 process_sp->SetExitStatus(exit_status, signal_cstr); 1228 } 1229 } 1230 return true; 1231 } 1232 return false; 1233 } 1234 1235 void Process::UpdateThreadListIfNeeded() { 1236 const uint32_t stop_id = GetStopID(); 1237 if (m_thread_list.GetSize(false) == 0 || 1238 stop_id != m_thread_list.GetStopID()) { 1239 bool clear_unused_threads = true; 1240 const StateType state = GetPrivateState(); 1241 if (StateIsStoppedState(state, true)) { 1242 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1243 m_thread_list.SetStopID(stop_id); 1244 1245 // m_thread_list does have its own mutex, but we need to hold onto the 1246 // mutex between the call to UpdateThreadList(...) and the 1247 // os->UpdateThreadList(...) so it doesn't change on us 1248 ThreadList &old_thread_list = m_thread_list; 1249 ThreadList real_thread_list(this); 1250 ThreadList new_thread_list(this); 1251 // Always update the thread list with the protocol specific thread list, 1252 // but only update if "true" is returned 1253 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1254 // Don't call into the OperatingSystem to update the thread list if we 1255 // are shutting down, since that may call back into the SBAPI's, 1256 // requiring the API lock which is already held by whoever is shutting 1257 // us down, causing a deadlock. 1258 OperatingSystem *os = GetOperatingSystem(); 1259 if (os && !m_destroy_in_process) { 1260 // Clear any old backing threads where memory threads might have been 1261 // backed by actual threads from the lldb_private::Process subclass 1262 size_t num_old_threads = old_thread_list.GetSize(false); 1263 for (size_t i = 0; i < num_old_threads; ++i) 1264 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1265 // See if the OS plugin reports all threads. If it does, then 1266 // it is safe to clear unseen thread's plans here. Otherwise we 1267 // should preserve them in case they show up again: 1268 clear_unused_threads = GetOSPluginReportsAllThreads(); 1269 1270 // Turn off dynamic types to ensure we don't run any expressions. 1271 // Objective-C can run an expression to determine if a SBValue is a 1272 // dynamic type or not and we need to avoid this. OperatingSystem 1273 // plug-ins can't run expressions that require running code... 1274 1275 Target &target = GetTarget(); 1276 const lldb::DynamicValueType saved_prefer_dynamic = 1277 target.GetPreferDynamicValue(); 1278 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1279 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1280 1281 // Now let the OperatingSystem plug-in update the thread list 1282 1283 os->UpdateThreadList( 1284 old_thread_list, // Old list full of threads created by OS plug-in 1285 real_thread_list, // The actual thread list full of threads 1286 // created by each lldb_private::Process 1287 // subclass 1288 new_thread_list); // The new thread list that we will show to the 1289 // user that gets filled in 1290 1291 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1292 target.SetPreferDynamicValue(saved_prefer_dynamic); 1293 } else { 1294 // No OS plug-in, the new thread list is the same as the real thread 1295 // list. 1296 new_thread_list = real_thread_list; 1297 } 1298 1299 m_thread_list_real.Update(real_thread_list); 1300 m_thread_list.Update(new_thread_list); 1301 m_thread_list.SetStopID(stop_id); 1302 1303 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1304 // Clear any extended threads that we may have accumulated previously 1305 m_extended_thread_list.Clear(); 1306 m_extended_thread_stop_id = GetLastNaturalStopID(); 1307 1308 m_queue_list.Clear(); 1309 m_queue_list_stop_id = GetLastNaturalStopID(); 1310 } 1311 } 1312 // Now update the plan stack map. 1313 // If we do have an OS plugin, any absent real threads in the 1314 // m_thread_list have already been removed from the ThreadPlanStackMap. 1315 // So any remaining threads are OS Plugin threads, and those we want to 1316 // preserve in case they show up again. 1317 m_thread_plans.Update(m_thread_list, clear_unused_threads); 1318 } 1319 } 1320 } 1321 1322 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) { 1323 return m_thread_plans.Find(tid); 1324 } 1325 1326 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) { 1327 return m_thread_plans.PrunePlansForTID(tid); 1328 } 1329 1330 void Process::PruneThreadPlans() { 1331 m_thread_plans.Update(GetThreadList(), true, false); 1332 } 1333 1334 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid, 1335 lldb::DescriptionLevel desc_level, 1336 bool internal, bool condense_trivial, 1337 bool skip_unreported_plans) { 1338 return m_thread_plans.DumpPlansForTID( 1339 strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans); 1340 } 1341 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level, 1342 bool internal, bool condense_trivial, 1343 bool skip_unreported_plans) { 1344 m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial, 1345 skip_unreported_plans); 1346 } 1347 1348 void Process::UpdateQueueListIfNeeded() { 1349 if (m_system_runtime_up) { 1350 if (m_queue_list.GetSize() == 0 || 1351 m_queue_list_stop_id != GetLastNaturalStopID()) { 1352 const StateType state = GetPrivateState(); 1353 if (StateIsStoppedState(state, true)) { 1354 m_system_runtime_up->PopulateQueueList(m_queue_list); 1355 m_queue_list_stop_id = GetLastNaturalStopID(); 1356 } 1357 } 1358 } 1359 } 1360 1361 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1362 OperatingSystem *os = GetOperatingSystem(); 1363 if (os) 1364 return os->CreateThread(tid, context); 1365 return ThreadSP(); 1366 } 1367 1368 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1369 return AssignIndexIDToThread(thread_id); 1370 } 1371 1372 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1373 return (m_thread_id_to_index_id_map.find(thread_id) != 1374 m_thread_id_to_index_id_map.end()); 1375 } 1376 1377 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1378 uint32_t result = 0; 1379 std::map<uint64_t, uint32_t>::iterator iterator = 1380 m_thread_id_to_index_id_map.find(thread_id); 1381 if (iterator == m_thread_id_to_index_id_map.end()) { 1382 result = ++m_thread_index_id; 1383 m_thread_id_to_index_id_map[thread_id] = result; 1384 } else { 1385 result = iterator->second; 1386 } 1387 1388 return result; 1389 } 1390 1391 StateType Process::GetState() { 1392 return m_public_state.GetValue(); 1393 } 1394 1395 void Process::SetPublicState(StateType new_state, bool restarted) { 1396 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1397 LIBLLDB_LOG_PROCESS)); 1398 LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)", 1399 StateAsCString(new_state), restarted); 1400 const StateType old_state = m_public_state.GetValue(); 1401 m_public_state.SetValue(new_state); 1402 1403 // On the transition from Run to Stopped, we unlock the writer end of the run 1404 // lock. The lock gets locked in Resume, which is the public API to tell the 1405 // program to run. 1406 if (!StateChangedIsExternallyHijacked()) { 1407 if (new_state == eStateDetached) { 1408 LLDB_LOGF(log, 1409 "Process::SetPublicState (%s) -- unlocking run lock for detach", 1410 StateAsCString(new_state)); 1411 m_public_run_lock.SetStopped(); 1412 } else { 1413 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1414 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1415 if ((old_state_is_stopped != new_state_is_stopped)) { 1416 if (new_state_is_stopped && !restarted) { 1417 LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock", 1418 StateAsCString(new_state)); 1419 m_public_run_lock.SetStopped(); 1420 } 1421 } 1422 } 1423 } 1424 } 1425 1426 Status Process::Resume() { 1427 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1428 LIBLLDB_LOG_PROCESS)); 1429 LLDB_LOGF(log, "Process::Resume -- locking run lock"); 1430 if (!m_public_run_lock.TrySetRunning()) { 1431 Status error("Resume request failed - process still running."); 1432 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1433 return error; 1434 } 1435 Status error = PrivateResume(); 1436 if (!error.Success()) { 1437 // Undo running state change 1438 m_public_run_lock.SetStopped(); 1439 } 1440 return error; 1441 } 1442 1443 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack"; 1444 1445 Status Process::ResumeSynchronous(Stream *stream) { 1446 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1447 LIBLLDB_LOG_PROCESS)); 1448 LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); 1449 if (!m_public_run_lock.TrySetRunning()) { 1450 Status error("Resume request failed - process still running."); 1451 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1452 return error; 1453 } 1454 1455 ListenerSP listener_sp( 1456 Listener::MakeListener(g_resume_sync_name)); 1457 HijackProcessEvents(listener_sp); 1458 1459 Status error = PrivateResume(); 1460 if (error.Success()) { 1461 StateType state = 1462 WaitForProcessToStop(llvm::None, nullptr, true, listener_sp, stream); 1463 const bool must_be_alive = 1464 false; // eStateExited is ok, so this must be false 1465 if (!StateIsStoppedState(state, must_be_alive)) 1466 error.SetErrorStringWithFormat( 1467 "process not in stopped state after synchronous resume: %s", 1468 StateAsCString(state)); 1469 } else { 1470 // Undo running state change 1471 m_public_run_lock.SetStopped(); 1472 } 1473 1474 // Undo the hijacking of process events... 1475 RestoreProcessEvents(); 1476 1477 return error; 1478 } 1479 1480 bool Process::StateChangedIsExternallyHijacked() { 1481 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1482 const char *hijacking_name = GetHijackingListenerName(); 1483 if (hijacking_name && 1484 strcmp(hijacking_name, g_resume_sync_name)) 1485 return true; 1486 } 1487 return false; 1488 } 1489 1490 bool Process::StateChangedIsHijackedForSynchronousResume() { 1491 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1492 const char *hijacking_name = GetHijackingListenerName(); 1493 if (hijacking_name && 1494 strcmp(hijacking_name, g_resume_sync_name) == 0) 1495 return true; 1496 } 1497 return false; 1498 } 1499 1500 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1501 1502 void Process::SetPrivateState(StateType new_state) { 1503 if (m_finalize_called) 1504 return; 1505 1506 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STATE | 1507 LIBLLDB_LOG_PROCESS)); 1508 bool state_changed = false; 1509 1510 LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state)); 1511 1512 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1513 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1514 1515 const StateType old_state = m_private_state.GetValueNoLock(); 1516 state_changed = old_state != new_state; 1517 1518 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1519 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1520 if (old_state_is_stopped != new_state_is_stopped) { 1521 if (new_state_is_stopped) 1522 m_private_run_lock.SetStopped(); 1523 else 1524 m_private_run_lock.SetRunning(); 1525 } 1526 1527 if (state_changed) { 1528 m_private_state.SetValueNoLock(new_state); 1529 EventSP event_sp( 1530 new Event(eBroadcastBitStateChanged, 1531 new ProcessEventData(shared_from_this(), new_state))); 1532 if (StateIsStoppedState(new_state, false)) { 1533 // Note, this currently assumes that all threads in the list stop when 1534 // the process stops. In the future we will want to support a debugging 1535 // model where some threads continue to run while others are stopped. 1536 // When that happens we will either need a way for the thread list to 1537 // identify which threads are stopping or create a special thread list 1538 // containing only threads which actually stopped. 1539 // 1540 // The process plugin is responsible for managing the actual behavior of 1541 // the threads and should have stopped any threads that are going to stop 1542 // before we get here. 1543 m_thread_list.DidStop(); 1544 1545 m_mod_id.BumpStopID(); 1546 if (!m_mod_id.IsLastResumeForUserExpression()) 1547 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1548 m_memory_cache.Clear(); 1549 LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u", 1550 StateAsCString(new_state), m_mod_id.GetStopID()); 1551 } 1552 1553 // Use our target to get a shared pointer to ourselves... 1554 if (m_finalize_called && !PrivateStateThreadIsValid()) 1555 BroadcastEvent(event_sp); 1556 else 1557 m_private_state_broadcaster.BroadcastEvent(event_sp); 1558 } else { 1559 LLDB_LOGF(log, 1560 "Process::SetPrivateState (%s) state didn't change. Ignoring...", 1561 StateAsCString(new_state)); 1562 } 1563 } 1564 1565 void Process::SetRunningUserExpression(bool on) { 1566 m_mod_id.SetRunningUserExpression(on); 1567 } 1568 1569 void Process::SetRunningUtilityFunction(bool on) { 1570 m_mod_id.SetRunningUtilityFunction(on); 1571 } 1572 1573 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1574 1575 const lldb::ABISP &Process::GetABI() { 1576 if (!m_abi_sp) 1577 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1578 return m_abi_sp; 1579 } 1580 1581 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { 1582 std::vector<LanguageRuntime *> language_runtimes; 1583 1584 if (m_finalizing) 1585 return language_runtimes; 1586 1587 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1588 // Before we pass off a copy of the language runtimes, we must make sure that 1589 // our collection is properly populated. It's possible that some of the 1590 // language runtimes were not loaded yet, either because nobody requested it 1591 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so 1592 // hadn't been loaded). 1593 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 1594 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 1595 language_runtimes.emplace_back(runtime); 1596 } 1597 1598 return language_runtimes; 1599 } 1600 1601 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { 1602 if (m_finalizing) 1603 return nullptr; 1604 1605 LanguageRuntime *runtime = nullptr; 1606 1607 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1608 LanguageRuntimeCollection::iterator pos; 1609 pos = m_language_runtimes.find(language); 1610 if (pos == m_language_runtimes.end() || !pos->second) { 1611 lldb::LanguageRuntimeSP runtime_sp( 1612 LanguageRuntime::FindPlugin(this, language)); 1613 1614 m_language_runtimes[language] = runtime_sp; 1615 runtime = runtime_sp.get(); 1616 } else 1617 runtime = pos->second.get(); 1618 1619 if (runtime) 1620 // It's possible that a language runtime can support multiple LanguageTypes, 1621 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, 1622 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the 1623 // primary language type and make sure that our runtime supports it. 1624 assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); 1625 1626 return runtime; 1627 } 1628 1629 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1630 if (m_finalizing) 1631 return false; 1632 1633 if (in_value.IsDynamic()) 1634 return false; 1635 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1636 1637 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1638 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1639 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1640 } 1641 1642 for (LanguageRuntime *runtime : GetLanguageRuntimes()) { 1643 if (runtime->CouldHaveDynamicValue(in_value)) 1644 return true; 1645 } 1646 1647 return false; 1648 } 1649 1650 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1651 m_dynamic_checkers_up.reset(dynamic_checkers); 1652 } 1653 1654 BreakpointSiteList &Process::GetBreakpointSiteList() { 1655 return m_breakpoint_site_list; 1656 } 1657 1658 const BreakpointSiteList &Process::GetBreakpointSiteList() const { 1659 return m_breakpoint_site_list; 1660 } 1661 1662 void Process::DisableAllBreakpointSites() { 1663 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1664 // bp_site->SetEnabled(true); 1665 DisableBreakpointSite(bp_site); 1666 }); 1667 } 1668 1669 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1670 Status error(DisableBreakpointSiteByID(break_id)); 1671 1672 if (error.Success()) 1673 m_breakpoint_site_list.Remove(break_id); 1674 1675 return error; 1676 } 1677 1678 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1679 Status error; 1680 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1681 if (bp_site_sp) { 1682 if (bp_site_sp->IsEnabled()) 1683 error = DisableBreakpointSite(bp_site_sp.get()); 1684 } else { 1685 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1686 break_id); 1687 } 1688 1689 return error; 1690 } 1691 1692 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1693 Status error; 1694 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1695 if (bp_site_sp) { 1696 if (!bp_site_sp->IsEnabled()) 1697 error = EnableBreakpointSite(bp_site_sp.get()); 1698 } else { 1699 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, 1700 break_id); 1701 } 1702 return error; 1703 } 1704 1705 lldb::break_id_t 1706 Process::CreateBreakpointSite(const BreakpointLocationSP &owner, 1707 bool use_hardware) { 1708 addr_t load_addr = LLDB_INVALID_ADDRESS; 1709 1710 bool show_error = true; 1711 switch (GetState()) { 1712 case eStateInvalid: 1713 case eStateUnloaded: 1714 case eStateConnected: 1715 case eStateAttaching: 1716 case eStateLaunching: 1717 case eStateDetached: 1718 case eStateExited: 1719 show_error = false; 1720 break; 1721 1722 case eStateStopped: 1723 case eStateRunning: 1724 case eStateStepping: 1725 case eStateCrashed: 1726 case eStateSuspended: 1727 show_error = IsAlive(); 1728 break; 1729 } 1730 1731 // Reset the IsIndirect flag here, in case the location changes from pointing 1732 // to a indirect symbol to a regular symbol. 1733 owner->SetIsIndirect(false); 1734 1735 if (owner->ShouldResolveIndirectFunctions()) { 1736 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 1737 if (symbol && symbol->IsIndirect()) { 1738 Status error; 1739 Address symbol_address = symbol->GetAddress(); 1740 load_addr = ResolveIndirectFunction(&symbol_address, error); 1741 if (!error.Success() && show_error) { 1742 GetTarget().GetDebugger().GetErrorStream().Printf( 1743 "warning: failed to resolve indirect function at 0x%" PRIx64 1744 " for breakpoint %i.%i: %s\n", 1745 symbol->GetLoadAddress(&GetTarget()), 1746 owner->GetBreakpoint().GetID(), owner->GetID(), 1747 error.AsCString() ? error.AsCString() : "unknown error"); 1748 return LLDB_INVALID_BREAK_ID; 1749 } 1750 Address resolved_address(load_addr); 1751 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1752 owner->SetIsIndirect(true); 1753 } else 1754 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1755 } else 1756 load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1757 1758 if (load_addr != LLDB_INVALID_ADDRESS) { 1759 BreakpointSiteSP bp_site_sp; 1760 1761 // Look up this breakpoint site. If it exists, then add this new owner, 1762 // otherwise create a new breakpoint site and add it. 1763 1764 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1765 1766 if (bp_site_sp) { 1767 bp_site_sp->AddOwner(owner); 1768 owner->SetBreakpointSite(bp_site_sp); 1769 return bp_site_sp->GetID(); 1770 } else { 1771 bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner, 1772 load_addr, use_hardware)); 1773 if (bp_site_sp) { 1774 Status error = EnableBreakpointSite(bp_site_sp.get()); 1775 if (error.Success()) { 1776 owner->SetBreakpointSite(bp_site_sp); 1777 return m_breakpoint_site_list.Add(bp_site_sp); 1778 } else { 1779 if (show_error || use_hardware) { 1780 // Report error for setting breakpoint... 1781 GetTarget().GetDebugger().GetErrorStream().Printf( 1782 "warning: failed to set breakpoint site at 0x%" PRIx64 1783 " for breakpoint %i.%i: %s\n", 1784 load_addr, owner->GetBreakpoint().GetID(), owner->GetID(), 1785 error.AsCString() ? error.AsCString() : "unknown error"); 1786 } 1787 } 1788 } 1789 } 1790 } 1791 // We failed to enable the breakpoint 1792 return LLDB_INVALID_BREAK_ID; 1793 } 1794 1795 void Process::RemoveOwnerFromBreakpointSite(lldb::user_id_t owner_id, 1796 lldb::user_id_t owner_loc_id, 1797 BreakpointSiteSP &bp_site_sp) { 1798 uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id); 1799 if (num_owners == 0) { 1800 // Don't try to disable the site if we don't have a live process anymore. 1801 if (IsAlive()) 1802 DisableBreakpointSite(bp_site_sp.get()); 1803 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1804 } 1805 } 1806 1807 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1808 uint8_t *buf) const { 1809 size_t bytes_removed = 0; 1810 BreakpointSiteList bp_sites_in_range; 1811 1812 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1813 bp_sites_in_range)) { 1814 bp_sites_in_range.ForEach([bp_addr, size, 1815 buf](BreakpointSite *bp_site) -> void { 1816 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1817 addr_t intersect_addr; 1818 size_t intersect_size; 1819 size_t opcode_offset; 1820 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1821 &intersect_size, &opcode_offset)) { 1822 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1823 assert(bp_addr < intersect_addr + intersect_size && 1824 intersect_addr + intersect_size <= bp_addr + size); 1825 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1826 size_t buf_offset = intersect_addr - bp_addr; 1827 ::memcpy(buf + buf_offset, 1828 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1829 intersect_size); 1830 } 1831 } 1832 }); 1833 } 1834 return bytes_removed; 1835 } 1836 1837 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1838 PlatformSP platform_sp(GetTarget().GetPlatform()); 1839 if (platform_sp) 1840 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1841 return 0; 1842 } 1843 1844 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1845 Status error; 1846 assert(bp_site != nullptr); 1847 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1848 const addr_t bp_addr = bp_site->GetLoadAddress(); 1849 LLDB_LOGF( 1850 log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1851 bp_site->GetID(), (uint64_t)bp_addr); 1852 if (bp_site->IsEnabled()) { 1853 LLDB_LOGF( 1854 log, 1855 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1856 " -- already enabled", 1857 bp_site->GetID(), (uint64_t)bp_addr); 1858 return error; 1859 } 1860 1861 if (bp_addr == LLDB_INVALID_ADDRESS) { 1862 error.SetErrorString("BreakpointSite contains an invalid load address."); 1863 return error; 1864 } 1865 // Ask the lldb::Process subclass to fill in the correct software breakpoint 1866 // trap for the breakpoint site 1867 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 1868 1869 if (bp_opcode_size == 0) { 1870 error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() " 1871 "returned zero, unable to get breakpoint " 1872 "trap for address 0x%" PRIx64, 1873 bp_addr); 1874 } else { 1875 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 1876 1877 if (bp_opcode_bytes == nullptr) { 1878 error.SetErrorString( 1879 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 1880 return error; 1881 } 1882 1883 // Save the original opcode by reading it 1884 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 1885 error) == bp_opcode_size) { 1886 // Write a software breakpoint in place of the original opcode 1887 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 1888 bp_opcode_size) { 1889 uint8_t verify_bp_opcode_bytes[64]; 1890 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 1891 error) == bp_opcode_size) { 1892 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 1893 bp_opcode_size) == 0) { 1894 bp_site->SetEnabled(true); 1895 bp_site->SetType(BreakpointSite::eSoftware); 1896 LLDB_LOGF(log, 1897 "Process::EnableSoftwareBreakpoint (site_id = %d) " 1898 "addr = 0x%" PRIx64 " -- SUCCESS", 1899 bp_site->GetID(), (uint64_t)bp_addr); 1900 } else 1901 error.SetErrorString( 1902 "failed to verify the breakpoint trap in memory."); 1903 } else 1904 error.SetErrorString( 1905 "Unable to read memory to verify breakpoint trap."); 1906 } else 1907 error.SetErrorString("Unable to write breakpoint trap to memory."); 1908 } else 1909 error.SetErrorString("Unable to read memory at breakpoint address."); 1910 } 1911 if (log && error.Fail()) 1912 LLDB_LOGF( 1913 log, 1914 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1915 " -- FAILED: %s", 1916 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1917 return error; 1918 } 1919 1920 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 1921 Status error; 1922 assert(bp_site != nullptr); 1923 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 1924 addr_t bp_addr = bp_site->GetLoadAddress(); 1925 lldb::user_id_t breakID = bp_site->GetID(); 1926 LLDB_LOGF(log, 1927 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 1928 ") addr = 0x%" PRIx64, 1929 breakID, (uint64_t)bp_addr); 1930 1931 if (bp_site->IsHardware()) { 1932 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 1933 } else if (bp_site->IsEnabled()) { 1934 const size_t break_op_size = bp_site->GetByteSize(); 1935 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 1936 if (break_op_size > 0) { 1937 // Clear a software breakpoint instruction 1938 uint8_t curr_break_op[8]; 1939 assert(break_op_size <= sizeof(curr_break_op)); 1940 bool break_op_found = false; 1941 1942 // Read the breakpoint opcode 1943 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 1944 break_op_size) { 1945 bool verify = false; 1946 // Make sure the breakpoint opcode exists at this address 1947 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 1948 break_op_found = true; 1949 // We found a valid breakpoint opcode at this address, now restore 1950 // the saved opcode. 1951 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 1952 break_op_size, error) == break_op_size) { 1953 verify = true; 1954 } else 1955 error.SetErrorString( 1956 "Memory write failed when restoring original opcode."); 1957 } else { 1958 error.SetErrorString( 1959 "Original breakpoint trap is no longer in memory."); 1960 // Set verify to true and so we can check if the original opcode has 1961 // already been restored 1962 verify = true; 1963 } 1964 1965 if (verify) { 1966 uint8_t verify_opcode[8]; 1967 assert(break_op_size < sizeof(verify_opcode)); 1968 // Verify that our original opcode made it back to the inferior 1969 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 1970 break_op_size) { 1971 // compare the memory we just read with the original opcode 1972 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 1973 break_op_size) == 0) { 1974 // SUCCESS 1975 bp_site->SetEnabled(false); 1976 LLDB_LOGF(log, 1977 "Process::DisableSoftwareBreakpoint (site_id = %d) " 1978 "addr = 0x%" PRIx64 " -- SUCCESS", 1979 bp_site->GetID(), (uint64_t)bp_addr); 1980 return error; 1981 } else { 1982 if (break_op_found) 1983 error.SetErrorString("Failed to restore original opcode."); 1984 } 1985 } else 1986 error.SetErrorString("Failed to read memory to verify that " 1987 "breakpoint trap was restored."); 1988 } 1989 } else 1990 error.SetErrorString( 1991 "Unable to read memory that should contain the breakpoint trap."); 1992 } 1993 } else { 1994 LLDB_LOGF( 1995 log, 1996 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1997 " -- already disabled", 1998 bp_site->GetID(), (uint64_t)bp_addr); 1999 return error; 2000 } 2001 2002 LLDB_LOGF( 2003 log, 2004 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 2005 " -- FAILED: %s", 2006 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 2007 return error; 2008 } 2009 2010 // Uncomment to verify memory caching works after making changes to caching 2011 // code 2012 //#define VERIFY_MEMORY_READS 2013 2014 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 2015 error.Clear(); 2016 if (!GetDisableMemoryCache()) { 2017 #if defined(VERIFY_MEMORY_READS) 2018 // Memory caching is enabled, with debug verification 2019 2020 if (buf && size) { 2021 // Uncomment the line below to make sure memory caching is working. 2022 // I ran this through the test suite and got no assertions, so I am 2023 // pretty confident this is working well. If any changes are made to 2024 // memory caching, uncomment the line below and test your changes! 2025 2026 // Verify all memory reads by using the cache first, then redundantly 2027 // reading the same memory from the inferior and comparing to make sure 2028 // everything is exactly the same. 2029 std::string verify_buf(size, '\0'); 2030 assert(verify_buf.size() == size); 2031 const size_t cache_bytes_read = 2032 m_memory_cache.Read(this, addr, buf, size, error); 2033 Status verify_error; 2034 const size_t verify_bytes_read = 2035 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 2036 verify_buf.size(), verify_error); 2037 assert(cache_bytes_read == verify_bytes_read); 2038 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 2039 assert(verify_error.Success() == error.Success()); 2040 return cache_bytes_read; 2041 } 2042 return 0; 2043 #else // !defined(VERIFY_MEMORY_READS) 2044 // Memory caching is enabled, without debug verification 2045 2046 return m_memory_cache.Read(addr, buf, size, error); 2047 #endif // defined (VERIFY_MEMORY_READS) 2048 } else { 2049 // Memory caching is disabled 2050 2051 return ReadMemoryFromInferior(addr, buf, size, error); 2052 } 2053 } 2054 2055 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 2056 Status &error) { 2057 char buf[256]; 2058 out_str.clear(); 2059 addr_t curr_addr = addr; 2060 while (true) { 2061 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 2062 if (length == 0) 2063 break; 2064 out_str.append(buf, length); 2065 // If we got "length - 1" bytes, we didn't get the whole C string, we need 2066 // to read some more characters 2067 if (length == sizeof(buf) - 1) 2068 curr_addr += length; 2069 else 2070 break; 2071 } 2072 return out_str.size(); 2073 } 2074 2075 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes, 2076 Status &error, size_t type_width) { 2077 size_t total_bytes_read = 0; 2078 if (dst && max_bytes && type_width && max_bytes >= type_width) { 2079 // Ensure a null terminator independent of the number of bytes that is 2080 // read. 2081 memset(dst, 0, max_bytes); 2082 size_t bytes_left = max_bytes - type_width; 2083 2084 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 2085 assert(sizeof(terminator) >= type_width && "Attempting to validate a " 2086 "string with more than 4 bytes " 2087 "per character!"); 2088 2089 addr_t curr_addr = addr; 2090 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2091 char *curr_dst = dst; 2092 2093 error.Clear(); 2094 while (bytes_left > 0 && error.Success()) { 2095 addr_t cache_line_bytes_left = 2096 cache_line_size - (curr_addr % cache_line_size); 2097 addr_t bytes_to_read = 2098 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2099 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2100 2101 if (bytes_read == 0) 2102 break; 2103 2104 // Search for a null terminator of correct size and alignment in 2105 // bytes_read 2106 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 2107 for (size_t i = aligned_start; 2108 i + type_width <= total_bytes_read + bytes_read; i += type_width) 2109 if (::memcmp(&dst[i], terminator, type_width) == 0) { 2110 error.Clear(); 2111 return i; 2112 } 2113 2114 total_bytes_read += bytes_read; 2115 curr_dst += bytes_read; 2116 curr_addr += bytes_read; 2117 bytes_left -= bytes_read; 2118 } 2119 } else { 2120 if (max_bytes) 2121 error.SetErrorString("invalid arguments"); 2122 } 2123 return total_bytes_read; 2124 } 2125 2126 // Deprecated in favor of ReadStringFromMemory which has wchar support and 2127 // correct code to find null terminators. 2128 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 2129 size_t dst_max_len, 2130 Status &result_error) { 2131 size_t total_cstr_len = 0; 2132 if (dst && dst_max_len) { 2133 result_error.Clear(); 2134 // NULL out everything just to be safe 2135 memset(dst, 0, dst_max_len); 2136 Status error; 2137 addr_t curr_addr = addr; 2138 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2139 size_t bytes_left = dst_max_len - 1; 2140 char *curr_dst = dst; 2141 2142 while (bytes_left > 0) { 2143 addr_t cache_line_bytes_left = 2144 cache_line_size - (curr_addr % cache_line_size); 2145 addr_t bytes_to_read = 2146 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2147 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2148 2149 if (bytes_read == 0) { 2150 result_error = error; 2151 dst[total_cstr_len] = '\0'; 2152 break; 2153 } 2154 const size_t len = strlen(curr_dst); 2155 2156 total_cstr_len += len; 2157 2158 if (len < bytes_to_read) 2159 break; 2160 2161 curr_dst += bytes_read; 2162 curr_addr += bytes_read; 2163 bytes_left -= bytes_read; 2164 } 2165 } else { 2166 if (dst == nullptr) 2167 result_error.SetErrorString("invalid arguments"); 2168 else 2169 result_error.Clear(); 2170 } 2171 return total_cstr_len; 2172 } 2173 2174 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2175 Status &error) { 2176 if (buf == nullptr || size == 0) 2177 return 0; 2178 2179 size_t bytes_read = 0; 2180 uint8_t *bytes = (uint8_t *)buf; 2181 2182 while (bytes_read < size) { 2183 const size_t curr_size = size - bytes_read; 2184 const size_t curr_bytes_read = 2185 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2186 bytes_read += curr_bytes_read; 2187 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2188 break; 2189 } 2190 2191 // Replace any software breakpoint opcodes that fall into this range back 2192 // into "buf" before we return 2193 if (bytes_read > 0) 2194 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2195 return bytes_read; 2196 } 2197 2198 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2199 size_t integer_byte_size, 2200 uint64_t fail_value, 2201 Status &error) { 2202 Scalar scalar; 2203 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2204 error)) 2205 return scalar.ULongLong(fail_value); 2206 return fail_value; 2207 } 2208 2209 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2210 size_t integer_byte_size, 2211 int64_t fail_value, 2212 Status &error) { 2213 Scalar scalar; 2214 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2215 error)) 2216 return scalar.SLongLong(fail_value); 2217 return fail_value; 2218 } 2219 2220 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2221 Scalar scalar; 2222 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2223 error)) 2224 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2225 return LLDB_INVALID_ADDRESS; 2226 } 2227 2228 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2229 Status &error) { 2230 Scalar scalar; 2231 const uint32_t addr_byte_size = GetAddressByteSize(); 2232 if (addr_byte_size <= 4) 2233 scalar = (uint32_t)ptr_value; 2234 else 2235 scalar = ptr_value; 2236 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2237 addr_byte_size; 2238 } 2239 2240 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2241 Status &error) { 2242 size_t bytes_written = 0; 2243 const uint8_t *bytes = (const uint8_t *)buf; 2244 2245 while (bytes_written < size) { 2246 const size_t curr_size = size - bytes_written; 2247 const size_t curr_bytes_written = DoWriteMemory( 2248 addr + bytes_written, bytes + bytes_written, curr_size, error); 2249 bytes_written += curr_bytes_written; 2250 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2251 break; 2252 } 2253 return bytes_written; 2254 } 2255 2256 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2257 Status &error) { 2258 #if defined(ENABLE_MEMORY_CACHING) 2259 m_memory_cache.Flush(addr, size); 2260 #endif 2261 2262 if (buf == nullptr || size == 0) 2263 return 0; 2264 2265 m_mod_id.BumpMemoryID(); 2266 2267 // We need to write any data that would go where any current software traps 2268 // (enabled software breakpoints) any software traps (breakpoints) that we 2269 // may have placed in our tasks memory. 2270 2271 BreakpointSiteList bp_sites_in_range; 2272 if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range)) 2273 return WriteMemoryPrivate(addr, buf, size, error); 2274 2275 // No breakpoint sites overlap 2276 if (bp_sites_in_range.IsEmpty()) 2277 return WriteMemoryPrivate(addr, buf, size, error); 2278 2279 const uint8_t *ubuf = (const uint8_t *)buf; 2280 uint64_t bytes_written = 0; 2281 2282 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2283 &error](BreakpointSite *bp) -> void { 2284 if (error.Fail()) 2285 return; 2286 2287 addr_t intersect_addr; 2288 size_t intersect_size; 2289 size_t opcode_offset; 2290 const bool intersects = bp->IntersectsRange( 2291 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2292 UNUSED_IF_ASSERT_DISABLED(intersects); 2293 assert(intersects); 2294 assert(addr <= intersect_addr && intersect_addr < addr + size); 2295 assert(addr < intersect_addr + intersect_size && 2296 intersect_addr + intersect_size <= addr + size); 2297 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2298 2299 // Check for bytes before this breakpoint 2300 const addr_t curr_addr = addr + bytes_written; 2301 if (intersect_addr > curr_addr) { 2302 // There are some bytes before this breakpoint that we need to just 2303 // write to memory 2304 size_t curr_size = intersect_addr - curr_addr; 2305 size_t curr_bytes_written = 2306 WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error); 2307 bytes_written += curr_bytes_written; 2308 if (curr_bytes_written != curr_size) { 2309 // We weren't able to write all of the requested bytes, we are 2310 // done looping and will return the number of bytes that we have 2311 // written so far. 2312 if (error.Success()) 2313 error.SetErrorToGenericError(); 2314 } 2315 } 2316 // Now write any bytes that would cover up any software breakpoints 2317 // directly into the breakpoint opcode buffer 2318 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, 2319 intersect_size); 2320 bytes_written += intersect_size; 2321 }); 2322 2323 // Write any remaining bytes after the last breakpoint if we have any left 2324 if (bytes_written < size) 2325 bytes_written += 2326 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2327 size - bytes_written, error); 2328 2329 return bytes_written; 2330 } 2331 2332 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2333 size_t byte_size, Status &error) { 2334 if (byte_size == UINT32_MAX) 2335 byte_size = scalar.GetByteSize(); 2336 if (byte_size > 0) { 2337 uint8_t buf[32]; 2338 const size_t mem_size = 2339 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2340 if (mem_size > 0) 2341 return WriteMemory(addr, buf, mem_size, error); 2342 else 2343 error.SetErrorString("failed to get scalar as memory data"); 2344 } else { 2345 error.SetErrorString("invalid scalar value"); 2346 } 2347 return 0; 2348 } 2349 2350 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2351 bool is_signed, Scalar &scalar, 2352 Status &error) { 2353 uint64_t uval = 0; 2354 if (byte_size == 0) { 2355 error.SetErrorString("byte size is zero"); 2356 } else if (byte_size & (byte_size - 1)) { 2357 error.SetErrorStringWithFormat("byte size %u is not a power of 2", 2358 byte_size); 2359 } else if (byte_size <= sizeof(uval)) { 2360 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2361 if (bytes_read == byte_size) { 2362 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2363 GetAddressByteSize()); 2364 lldb::offset_t offset = 0; 2365 if (byte_size <= 4) 2366 scalar = data.GetMaxU32(&offset, byte_size); 2367 else 2368 scalar = data.GetMaxU64(&offset, byte_size); 2369 if (is_signed) 2370 scalar.SignExtend(byte_size * 8); 2371 return bytes_read; 2372 } 2373 } else { 2374 error.SetErrorStringWithFormat( 2375 "byte size of %u is too large for integer scalar type", byte_size); 2376 } 2377 return 0; 2378 } 2379 2380 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2381 Status error; 2382 for (const auto &Entry : entries) { 2383 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2384 error); 2385 if (!error.Success()) 2386 break; 2387 } 2388 return error; 2389 } 2390 2391 #define USE_ALLOCATE_MEMORY_CACHE 1 2392 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2393 Status &error) { 2394 if (GetPrivateState() != eStateStopped) { 2395 error.SetErrorToGenericError(); 2396 return LLDB_INVALID_ADDRESS; 2397 } 2398 2399 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2400 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2401 #else 2402 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2403 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2404 LLDB_LOGF(log, 2405 "Process::AllocateMemory(size=%" PRIu64 2406 ", permissions=%s) => 0x%16.16" PRIx64 2407 " (m_stop_id = %u m_memory_id = %u)", 2408 (uint64_t)size, GetPermissionsAsCString(permissions), 2409 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2410 m_mod_id.GetMemoryID()); 2411 return allocated_addr; 2412 #endif 2413 } 2414 2415 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2416 Status &error) { 2417 addr_t return_addr = AllocateMemory(size, permissions, error); 2418 if (error.Success()) { 2419 std::string buffer(size, 0); 2420 WriteMemory(return_addr, buffer.c_str(), size, error); 2421 } 2422 return return_addr; 2423 } 2424 2425 bool Process::CanJIT() { 2426 if (m_can_jit == eCanJITDontKnow) { 2427 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2428 Status err; 2429 2430 uint64_t allocated_memory = AllocateMemory( 2431 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2432 err); 2433 2434 if (err.Success()) { 2435 m_can_jit = eCanJITYes; 2436 LLDB_LOGF(log, 2437 "Process::%s pid %" PRIu64 2438 " allocation test passed, CanJIT () is true", 2439 __FUNCTION__, GetID()); 2440 } else { 2441 m_can_jit = eCanJITNo; 2442 LLDB_LOGF(log, 2443 "Process::%s pid %" PRIu64 2444 " allocation test failed, CanJIT () is false: %s", 2445 __FUNCTION__, GetID(), err.AsCString()); 2446 } 2447 2448 DeallocateMemory(allocated_memory); 2449 } 2450 2451 return m_can_jit == eCanJITYes; 2452 } 2453 2454 void Process::SetCanJIT(bool can_jit) { 2455 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2456 } 2457 2458 void Process::SetCanRunCode(bool can_run_code) { 2459 SetCanJIT(can_run_code); 2460 m_can_interpret_function_calls = can_run_code; 2461 } 2462 2463 Status Process::DeallocateMemory(addr_t ptr) { 2464 Status error; 2465 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2466 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2467 error.SetErrorStringWithFormat( 2468 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2469 } 2470 #else 2471 error = DoDeallocateMemory(ptr); 2472 2473 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2474 LLDB_LOGF(log, 2475 "Process::DeallocateMemory(addr=0x%16.16" PRIx64 2476 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2477 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2478 m_mod_id.GetMemoryID()); 2479 #endif 2480 return error; 2481 } 2482 2483 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2484 lldb::addr_t header_addr, 2485 size_t size_to_read) { 2486 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2487 if (log) { 2488 LLDB_LOGF(log, 2489 "Process::ReadModuleFromMemory reading %s binary from memory", 2490 file_spec.GetPath().c_str()); 2491 } 2492 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2493 if (module_sp) { 2494 Status error; 2495 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2496 shared_from_this(), header_addr, error, size_to_read); 2497 if (objfile) 2498 return module_sp; 2499 } 2500 return ModuleSP(); 2501 } 2502 2503 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2504 uint32_t &permissions) { 2505 MemoryRegionInfo range_info; 2506 permissions = 0; 2507 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2508 if (!error.Success()) 2509 return false; 2510 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2511 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2512 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2513 return false; 2514 } 2515 2516 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2517 permissions |= lldb::ePermissionsReadable; 2518 2519 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2520 permissions |= lldb::ePermissionsWritable; 2521 2522 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2523 permissions |= lldb::ePermissionsExecutable; 2524 2525 return true; 2526 } 2527 2528 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) { 2529 Status error; 2530 error.SetErrorString("watchpoints are not supported"); 2531 return error; 2532 } 2533 2534 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) { 2535 Status error; 2536 error.SetErrorString("watchpoints are not supported"); 2537 return error; 2538 } 2539 2540 StateType 2541 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2542 const Timeout<std::micro> &timeout) { 2543 StateType state; 2544 2545 while (true) { 2546 event_sp.reset(); 2547 state = GetStateChangedEventsPrivate(event_sp, timeout); 2548 2549 if (StateIsStoppedState(state, false)) 2550 break; 2551 2552 // If state is invalid, then we timed out 2553 if (state == eStateInvalid) 2554 break; 2555 2556 if (event_sp) 2557 HandlePrivateEvent(event_sp); 2558 } 2559 return state; 2560 } 2561 2562 void Process::LoadOperatingSystemPlugin(bool flush) { 2563 if (flush) 2564 m_thread_list.Clear(); 2565 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); 2566 if (flush) 2567 Flush(); 2568 } 2569 2570 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2571 Status error; 2572 m_abi_sp.reset(); 2573 m_dyld_up.reset(); 2574 m_jit_loaders_up.reset(); 2575 m_system_runtime_up.reset(); 2576 m_os_up.reset(); 2577 m_process_input_reader.reset(); 2578 2579 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2580 if (!exe_module) { 2581 error.SetErrorString("executable module does not exist"); 2582 return error; 2583 } 2584 2585 char local_exec_file_path[PATH_MAX]; 2586 char platform_exec_file_path[PATH_MAX]; 2587 exe_module->GetFileSpec().GetPath(local_exec_file_path, 2588 sizeof(local_exec_file_path)); 2589 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, 2590 sizeof(platform_exec_file_path)); 2591 if (FileSystem::Instance().Exists(exe_module->GetFileSpec())) { 2592 // Install anything that might need to be installed prior to launching. 2593 // For host systems, this will do nothing, but if we are connected to a 2594 // remote platform it will install any needed binaries 2595 error = GetTarget().Install(&launch_info); 2596 if (error.Fail()) 2597 return error; 2598 2599 if (PrivateStateThreadIsValid()) 2600 PausePrivateStateThread(); 2601 2602 error = WillLaunch(exe_module); 2603 if (error.Success()) { 2604 const bool restarted = false; 2605 SetPublicState(eStateLaunching, restarted); 2606 m_should_detach = false; 2607 2608 if (m_public_run_lock.TrySetRunning()) { 2609 // Now launch using these arguments. 2610 error = DoLaunch(exe_module, launch_info); 2611 } else { 2612 // This shouldn't happen 2613 error.SetErrorString("failed to acquire process run lock"); 2614 } 2615 2616 if (error.Fail()) { 2617 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2618 SetID(LLDB_INVALID_PROCESS_ID); 2619 const char *error_string = error.AsCString(); 2620 if (error_string == nullptr) 2621 error_string = "launch failed"; 2622 SetExitStatus(-1, error_string); 2623 } 2624 } else { 2625 EventSP event_sp; 2626 2627 // Now wait for the process to launch and return control to us, and then 2628 // call DidLaunch: 2629 StateType state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2630 2631 if (state == eStateInvalid || !event_sp) { 2632 // We were able to launch the process, but we failed to catch the 2633 // initial stop. 2634 error.SetErrorString("failed to catch stop after launch"); 2635 SetExitStatus(0, "failed to catch stop after launch"); 2636 Destroy(false); 2637 } else if (state == eStateStopped || state == eStateCrashed) { 2638 DidLaunch(); 2639 2640 DynamicLoader *dyld = GetDynamicLoader(); 2641 if (dyld) 2642 dyld->DidLaunch(); 2643 2644 GetJITLoaders().DidLaunch(); 2645 2646 SystemRuntime *system_runtime = GetSystemRuntime(); 2647 if (system_runtime) 2648 system_runtime->DidLaunch(); 2649 2650 if (!m_os_up) 2651 LoadOperatingSystemPlugin(false); 2652 2653 // We successfully launched the process and stopped, now it the 2654 // right time to set up signal filters before resuming. 2655 UpdateAutomaticSignalFiltering(); 2656 2657 // Note, the stop event was consumed above, but not handled. This 2658 // was done to give DidLaunch a chance to run. The target is either 2659 // stopped or crashed. Directly set the state. This is done to 2660 // prevent a stop message with a bunch of spurious output on thread 2661 // status, as well as not pop a ProcessIOHandler. 2662 SetPublicState(state, false); 2663 2664 if (PrivateStateThreadIsValid()) 2665 ResumePrivateStateThread(); 2666 else 2667 StartPrivateStateThread(); 2668 2669 // Target was stopped at entry as was intended. Need to notify the 2670 // listeners about it. 2671 if (state == eStateStopped && 2672 launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2673 HandlePrivateEvent(event_sp); 2674 } else if (state == eStateExited) { 2675 // We exited while trying to launch somehow. Don't call DidLaunch 2676 // as that's not likely to work, and return an invalid pid. 2677 HandlePrivateEvent(event_sp); 2678 } 2679 } 2680 } 2681 } else { 2682 error.SetErrorStringWithFormat("file doesn't exist: '%s'", 2683 local_exec_file_path); 2684 } 2685 2686 return error; 2687 } 2688 2689 Status Process::LoadCore() { 2690 Status error = DoLoadCore(); 2691 if (error.Success()) { 2692 ListenerSP listener_sp( 2693 Listener::MakeListener("lldb.process.load_core_listener")); 2694 HijackProcessEvents(listener_sp); 2695 2696 if (PrivateStateThreadIsValid()) 2697 ResumePrivateStateThread(); 2698 else 2699 StartPrivateStateThread(); 2700 2701 DynamicLoader *dyld = GetDynamicLoader(); 2702 if (dyld) 2703 dyld->DidAttach(); 2704 2705 GetJITLoaders().DidAttach(); 2706 2707 SystemRuntime *system_runtime = GetSystemRuntime(); 2708 if (system_runtime) 2709 system_runtime->DidAttach(); 2710 2711 if (!m_os_up) 2712 LoadOperatingSystemPlugin(false); 2713 2714 // We successfully loaded a core file, now pretend we stopped so we can 2715 // show all of the threads in the core file and explore the crashed state. 2716 SetPrivateState(eStateStopped); 2717 2718 // Wait for a stopped event since we just posted one above... 2719 lldb::EventSP event_sp; 2720 StateType state = 2721 WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp); 2722 2723 if (!StateIsStoppedState(state, false)) { 2724 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2725 LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", 2726 StateAsCString(state)); 2727 error.SetErrorString( 2728 "Did not get stopped event after loading the core file."); 2729 } 2730 RestoreProcessEvents(); 2731 } 2732 return error; 2733 } 2734 2735 DynamicLoader *Process::GetDynamicLoader() { 2736 if (!m_dyld_up) 2737 m_dyld_up.reset(DynamicLoader::FindPlugin(this, nullptr)); 2738 return m_dyld_up.get(); 2739 } 2740 2741 DataExtractor Process::GetAuxvData() { return DataExtractor(); } 2742 2743 JITLoaderList &Process::GetJITLoaders() { 2744 if (!m_jit_loaders_up) { 2745 m_jit_loaders_up.reset(new JITLoaderList()); 2746 JITLoader::LoadPlugins(this, *m_jit_loaders_up); 2747 } 2748 return *m_jit_loaders_up; 2749 } 2750 2751 SystemRuntime *Process::GetSystemRuntime() { 2752 if (!m_system_runtime_up) 2753 m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); 2754 return m_system_runtime_up.get(); 2755 } 2756 2757 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2758 uint32_t exec_count) 2759 : NextEventAction(process), m_exec_count(exec_count) { 2760 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2761 LLDB_LOGF( 2762 log, 2763 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2764 __FUNCTION__, static_cast<void *>(process), exec_count); 2765 } 2766 2767 Process::NextEventAction::EventActionResult 2768 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2769 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2770 2771 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2772 LLDB_LOGF(log, 2773 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2774 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2775 2776 switch (state) { 2777 case eStateAttaching: 2778 return eEventActionSuccess; 2779 2780 case eStateRunning: 2781 case eStateConnected: 2782 return eEventActionRetry; 2783 2784 case eStateStopped: 2785 case eStateCrashed: 2786 // During attach, prior to sending the eStateStopped event, 2787 // lldb_private::Process subclasses must set the new process ID. 2788 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2789 // We don't want these events to be reported, so go set the 2790 // ShouldReportStop here: 2791 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2792 2793 if (m_exec_count > 0) { 2794 --m_exec_count; 2795 2796 LLDB_LOGF(log, 2797 "Process::AttachCompletionHandler::%s state %s: reduced " 2798 "remaining exec count to %" PRIu32 ", requesting resume", 2799 __FUNCTION__, StateAsCString(state), m_exec_count); 2800 2801 RequestResume(); 2802 return eEventActionRetry; 2803 } else { 2804 LLDB_LOGF(log, 2805 "Process::AttachCompletionHandler::%s state %s: no more " 2806 "execs expected to start, continuing with attach", 2807 __FUNCTION__, StateAsCString(state)); 2808 2809 m_process->CompleteAttach(); 2810 return eEventActionSuccess; 2811 } 2812 break; 2813 2814 default: 2815 case eStateExited: 2816 case eStateInvalid: 2817 break; 2818 } 2819 2820 m_exit_string.assign("No valid Process"); 2821 return eEventActionExit; 2822 } 2823 2824 Process::NextEventAction::EventActionResult 2825 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2826 return eEventActionSuccess; 2827 } 2828 2829 const char *Process::AttachCompletionHandler::GetExitString() { 2830 return m_exit_string.c_str(); 2831 } 2832 2833 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2834 if (m_listener_sp) 2835 return m_listener_sp; 2836 else 2837 return debugger.GetListener(); 2838 } 2839 2840 Status Process::Attach(ProcessAttachInfo &attach_info) { 2841 m_abi_sp.reset(); 2842 m_process_input_reader.reset(); 2843 m_dyld_up.reset(); 2844 m_jit_loaders_up.reset(); 2845 m_system_runtime_up.reset(); 2846 m_os_up.reset(); 2847 2848 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2849 Status error; 2850 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2851 char process_name[PATH_MAX]; 2852 2853 if (attach_info.GetExecutableFile().GetPath(process_name, 2854 sizeof(process_name))) { 2855 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2856 2857 if (wait_for_launch) { 2858 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2859 if (error.Success()) { 2860 if (m_public_run_lock.TrySetRunning()) { 2861 m_should_detach = true; 2862 const bool restarted = false; 2863 SetPublicState(eStateAttaching, restarted); 2864 // Now attach using these arguments. 2865 error = DoAttachToProcessWithName(process_name, attach_info); 2866 } else { 2867 // This shouldn't happen 2868 error.SetErrorString("failed to acquire process run lock"); 2869 } 2870 2871 if (error.Fail()) { 2872 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2873 SetID(LLDB_INVALID_PROCESS_ID); 2874 if (error.AsCString() == nullptr) 2875 error.SetErrorString("attach failed"); 2876 2877 SetExitStatus(-1, error.AsCString()); 2878 } 2879 } else { 2880 SetNextEventAction(new Process::AttachCompletionHandler( 2881 this, attach_info.GetResumeCount())); 2882 StartPrivateStateThread(); 2883 } 2884 return error; 2885 } 2886 } else { 2887 ProcessInstanceInfoList process_infos; 2888 PlatformSP platform_sp(GetTarget().GetPlatform()); 2889 2890 if (platform_sp) { 2891 ProcessInstanceInfoMatch match_info; 2892 match_info.GetProcessInfo() = attach_info; 2893 match_info.SetNameMatchType(NameMatch::Equals); 2894 platform_sp->FindProcesses(match_info, process_infos); 2895 const uint32_t num_matches = process_infos.size(); 2896 if (num_matches == 1) { 2897 attach_pid = process_infos[0].GetProcessID(); 2898 // Fall through and attach using the above process ID 2899 } else { 2900 match_info.GetProcessInfo().GetExecutableFile().GetPath( 2901 process_name, sizeof(process_name)); 2902 if (num_matches > 1) { 2903 StreamString s; 2904 ProcessInstanceInfo::DumpTableHeader(s, true, false); 2905 for (size_t i = 0; i < num_matches; i++) { 2906 process_infos[i].DumpAsTableRow( 2907 s, platform_sp->GetUserIDResolver(), true, false); 2908 } 2909 error.SetErrorStringWithFormat( 2910 "more than one process named %s:\n%s", process_name, 2911 s.GetData()); 2912 } else 2913 error.SetErrorStringWithFormat( 2914 "could not find a process named %s", process_name); 2915 } 2916 } else { 2917 error.SetErrorString( 2918 "invalid platform, can't find processes by name"); 2919 return error; 2920 } 2921 } 2922 } else { 2923 error.SetErrorString("invalid process name"); 2924 } 2925 } 2926 2927 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 2928 error = WillAttachToProcessWithID(attach_pid); 2929 if (error.Success()) { 2930 2931 if (m_public_run_lock.TrySetRunning()) { 2932 // Now attach using these arguments. 2933 m_should_detach = true; 2934 const bool restarted = false; 2935 SetPublicState(eStateAttaching, restarted); 2936 error = DoAttachToProcessWithID(attach_pid, attach_info); 2937 } else { 2938 // This shouldn't happen 2939 error.SetErrorString("failed to acquire process run lock"); 2940 } 2941 2942 if (error.Success()) { 2943 SetNextEventAction(new Process::AttachCompletionHandler( 2944 this, attach_info.GetResumeCount())); 2945 StartPrivateStateThread(); 2946 } else { 2947 if (GetID() != LLDB_INVALID_PROCESS_ID) 2948 SetID(LLDB_INVALID_PROCESS_ID); 2949 2950 const char *error_string = error.AsCString(); 2951 if (error_string == nullptr) 2952 error_string = "attach failed"; 2953 2954 SetExitStatus(-1, error_string); 2955 } 2956 } 2957 } 2958 return error; 2959 } 2960 2961 void Process::CompleteAttach() { 2962 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 2963 LIBLLDB_LOG_TARGET)); 2964 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 2965 2966 // Let the process subclass figure out at much as it can about the process 2967 // before we go looking for a dynamic loader plug-in. 2968 ArchSpec process_arch; 2969 DidAttach(process_arch); 2970 2971 if (process_arch.IsValid()) { 2972 GetTarget().SetArchitecture(process_arch); 2973 if (log) { 2974 const char *triple_str = process_arch.GetTriple().getTriple().c_str(); 2975 LLDB_LOGF(log, 2976 "Process::%s replacing process architecture with DidAttach() " 2977 "architecture: %s", 2978 __FUNCTION__, triple_str ? triple_str : "<null>"); 2979 } 2980 } 2981 2982 // We just attached. If we have a platform, ask it for the process 2983 // architecture, and if it isn't the same as the one we've already set, 2984 // switch architectures. 2985 PlatformSP platform_sp(GetTarget().GetPlatform()); 2986 assert(platform_sp); 2987 if (platform_sp) { 2988 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 2989 if (target_arch.IsValid() && 2990 !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) { 2991 ArchSpec platform_arch; 2992 platform_sp = 2993 platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch); 2994 if (platform_sp) { 2995 GetTarget().SetPlatform(platform_sp); 2996 GetTarget().SetArchitecture(platform_arch); 2997 LLDB_LOGF(log, 2998 "Process::%s switching platform to %s and architecture " 2999 "to %s based on info from attach", 3000 __FUNCTION__, platform_sp->GetName().AsCString(""), 3001 platform_arch.GetTriple().getTriple().c_str()); 3002 } 3003 } else if (!process_arch.IsValid()) { 3004 ProcessInstanceInfo process_info; 3005 GetProcessInfo(process_info); 3006 const ArchSpec &process_arch = process_info.GetArchitecture(); 3007 if (process_arch.IsValid() && 3008 !GetTarget().GetArchitecture().IsExactMatch(process_arch)) { 3009 GetTarget().SetArchitecture(process_arch); 3010 LLDB_LOGF(log, 3011 "Process::%s switching architecture to %s based on info " 3012 "the platform retrieved for pid %" PRIu64, 3013 __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), 3014 GetID()); 3015 } 3016 } 3017 } 3018 3019 // We have completed the attach, now it is time to find the dynamic loader 3020 // plug-in 3021 DynamicLoader *dyld = GetDynamicLoader(); 3022 if (dyld) { 3023 dyld->DidAttach(); 3024 if (log) { 3025 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3026 LLDB_LOGF(log, 3027 "Process::%s after DynamicLoader::DidAttach(), target " 3028 "executable is %s (using %s plugin)", 3029 __FUNCTION__, 3030 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3031 : "<none>", 3032 dyld->GetPluginName().AsCString("<unnamed>")); 3033 } 3034 } 3035 3036 GetJITLoaders().DidAttach(); 3037 3038 SystemRuntime *system_runtime = GetSystemRuntime(); 3039 if (system_runtime) { 3040 system_runtime->DidAttach(); 3041 if (log) { 3042 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3043 LLDB_LOGF(log, 3044 "Process::%s after SystemRuntime::DidAttach(), target " 3045 "executable is %s (using %s plugin)", 3046 __FUNCTION__, 3047 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3048 : "<none>", 3049 system_runtime->GetPluginName().AsCString("<unnamed>")); 3050 } 3051 } 3052 3053 if (!m_os_up) { 3054 LoadOperatingSystemPlugin(false); 3055 if (m_os_up) { 3056 // Somebody might have gotten threads before now, but we need to force the 3057 // update after we've loaded the OperatingSystem plugin or it won't get a 3058 // chance to process the threads. 3059 m_thread_list.Clear(); 3060 UpdateThreadListIfNeeded(); 3061 } 3062 } 3063 // Figure out which one is the executable, and set that in our target: 3064 const ModuleList &target_modules = GetTarget().GetImages(); 3065 std::lock_guard<std::recursive_mutex> guard(target_modules.GetMutex()); 3066 size_t num_modules = target_modules.GetSize(); 3067 ModuleSP new_executable_module_sp; 3068 3069 for (size_t i = 0; i < num_modules; i++) { 3070 ModuleSP module_sp(target_modules.GetModuleAtIndexUnlocked(i)); 3071 if (module_sp && module_sp->IsExecutable()) { 3072 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 3073 new_executable_module_sp = module_sp; 3074 break; 3075 } 3076 } 3077 if (new_executable_module_sp) { 3078 GetTarget().SetExecutableModule(new_executable_module_sp, 3079 eLoadDependentsNo); 3080 if (log) { 3081 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3082 LLDB_LOGF( 3083 log, 3084 "Process::%s after looping through modules, target executable is %s", 3085 __FUNCTION__, 3086 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3087 : "<none>"); 3088 } 3089 } 3090 } 3091 3092 Status Process::ConnectRemote(Stream *strm, llvm::StringRef remote_url) { 3093 m_abi_sp.reset(); 3094 m_process_input_reader.reset(); 3095 3096 // Find the process and its architecture. Make sure it matches the 3097 // architecture of the current Target, and if not adjust it. 3098 3099 Status error(DoConnectRemote(strm, remote_url)); 3100 if (error.Success()) { 3101 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3102 EventSP event_sp; 3103 StateType state = WaitForProcessStopPrivate(event_sp, llvm::None); 3104 3105 if (state == eStateStopped || state == eStateCrashed) { 3106 // If we attached and actually have a process on the other end, then 3107 // this ended up being the equivalent of an attach. 3108 CompleteAttach(); 3109 3110 // This delays passing the stopped event to listeners till 3111 // CompleteAttach gets a chance to complete... 3112 HandlePrivateEvent(event_sp); 3113 } 3114 } 3115 3116 if (PrivateStateThreadIsValid()) 3117 ResumePrivateStateThread(); 3118 else 3119 StartPrivateStateThread(); 3120 } 3121 return error; 3122 } 3123 3124 Status Process::PrivateResume() { 3125 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | 3126 LIBLLDB_LOG_STEP)); 3127 LLDB_LOGF(log, 3128 "Process::PrivateResume() m_stop_id = %u, public state: %s " 3129 "private state: %s", 3130 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3131 StateAsCString(m_private_state.GetValue())); 3132 3133 // If signals handing status changed we might want to update our signal 3134 // filters before resuming. 3135 UpdateAutomaticSignalFiltering(); 3136 3137 Status error(WillResume()); 3138 // Tell the process it is about to resume before the thread list 3139 if (error.Success()) { 3140 // Now let the thread list know we are about to resume so it can let all of 3141 // our threads know that they are about to be resumed. Threads will each be 3142 // called with Thread::WillResume(StateType) where StateType contains the 3143 // state that they are supposed to have when the process is resumed 3144 // (suspended/running/stepping). Threads should also check their resume 3145 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3146 // start back up with a signal. 3147 if (m_thread_list.WillResume()) { 3148 // Last thing, do the PreResumeActions. 3149 if (!RunPreResumeActions()) { 3150 error.SetErrorStringWithFormat( 3151 "Process::PrivateResume PreResumeActions failed, not resuming."); 3152 } else { 3153 m_mod_id.BumpResumeID(); 3154 error = DoResume(); 3155 if (error.Success()) { 3156 DidResume(); 3157 m_thread_list.DidResume(); 3158 LLDB_LOGF(log, "Process thinks the process has resumed."); 3159 } else { 3160 LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); 3161 return error; 3162 } 3163 } 3164 } else { 3165 // Somebody wanted to run without running (e.g. we were faking a step 3166 // from one frame of a set of inlined frames that share the same PC to 3167 // another.) So generate a continue & a stopped event, and let the world 3168 // handle them. 3169 LLDB_LOGF(log, 3170 "Process::PrivateResume() asked to simulate a start & stop."); 3171 3172 SetPrivateState(eStateRunning); 3173 SetPrivateState(eStateStopped); 3174 } 3175 } else 3176 LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", 3177 error.AsCString("<unknown error>")); 3178 return error; 3179 } 3180 3181 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3182 if (!StateIsRunningState(m_public_state.GetValue())) 3183 return Status("Process is not running."); 3184 3185 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3186 // case it was already set and some thread plan logic calls halt on its own. 3187 m_clear_thread_plans_on_stop |= clear_thread_plans; 3188 3189 ListenerSP halt_listener_sp( 3190 Listener::MakeListener("lldb.process.halt_listener")); 3191 HijackProcessEvents(halt_listener_sp); 3192 3193 EventSP event_sp; 3194 3195 SendAsyncInterrupt(); 3196 3197 if (m_public_state.GetValue() == eStateAttaching) { 3198 // Don't hijack and eat the eStateExited as the code that was doing the 3199 // attach will be waiting for this event... 3200 RestoreProcessEvents(); 3201 SetExitStatus(SIGKILL, "Cancelled async attach."); 3202 Destroy(false); 3203 return Status(); 3204 } 3205 3206 // Wait for 10 second for the process to stop. 3207 StateType state = WaitForProcessToStop( 3208 seconds(10), &event_sp, true, halt_listener_sp, nullptr, use_run_lock); 3209 RestoreProcessEvents(); 3210 3211 if (state == eStateInvalid || !event_sp) { 3212 // We timed out and didn't get a stop event... 3213 return Status("Halt timed out. State = %s", StateAsCString(GetState())); 3214 } 3215 3216 BroadcastEvent(event_sp); 3217 3218 return Status(); 3219 } 3220 3221 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3222 Status error; 3223 3224 // Check both the public & private states here. If we're hung evaluating an 3225 // expression, for instance, then the public state will be stopped, but we 3226 // still need to interrupt. 3227 if (m_public_state.GetValue() == eStateRunning || 3228 m_private_state.GetValue() == eStateRunning) { 3229 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3230 LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); 3231 3232 ListenerSP listener_sp( 3233 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3234 HijackProcessEvents(listener_sp); 3235 3236 SendAsyncInterrupt(); 3237 3238 // Consume the interrupt event. 3239 StateType state = 3240 WaitForProcessToStop(seconds(10), &exit_event_sp, true, listener_sp); 3241 3242 RestoreProcessEvents(); 3243 3244 // If the process exited while we were waiting for it to stop, put the 3245 // exited event into the shared pointer passed in and return. Our caller 3246 // doesn't need to do anything else, since they don't have a process 3247 // anymore... 3248 3249 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3250 LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", 3251 __FUNCTION__); 3252 return error; 3253 } else 3254 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3255 3256 if (state != eStateStopped) { 3257 LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, 3258 StateAsCString(state)); 3259 // If we really couldn't stop the process then we should just error out 3260 // here, but if the lower levels just bobbled sending the event and we 3261 // really are stopped, then continue on. 3262 StateType private_state = m_private_state.GetValue(); 3263 if (private_state != eStateStopped) { 3264 return Status( 3265 "Attempt to stop the target in order to detach timed out. " 3266 "State = %s", 3267 StateAsCString(GetState())); 3268 } 3269 } 3270 } 3271 return error; 3272 } 3273 3274 Status Process::Detach(bool keep_stopped) { 3275 EventSP exit_event_sp; 3276 Status error; 3277 m_destroy_in_process = true; 3278 3279 error = WillDetach(); 3280 3281 if (error.Success()) { 3282 if (DetachRequiresHalt()) { 3283 error = StopForDestroyOrDetach(exit_event_sp); 3284 if (!error.Success()) { 3285 m_destroy_in_process = false; 3286 return error; 3287 } else if (exit_event_sp) { 3288 // We shouldn't need to do anything else here. There's no process left 3289 // to detach from... 3290 StopPrivateStateThread(); 3291 m_destroy_in_process = false; 3292 return error; 3293 } 3294 } 3295 3296 m_thread_list.DiscardThreadPlans(); 3297 DisableAllBreakpointSites(); 3298 3299 error = DoDetach(keep_stopped); 3300 if (error.Success()) { 3301 DidDetach(); 3302 StopPrivateStateThread(); 3303 } else { 3304 return error; 3305 } 3306 } 3307 m_destroy_in_process = false; 3308 3309 // If we exited when we were waiting for a process to stop, then forward the 3310 // event here so we don't lose the event 3311 if (exit_event_sp) { 3312 // Directly broadcast our exited event because we shut down our private 3313 // state thread above 3314 BroadcastEvent(exit_event_sp); 3315 } 3316 3317 // If we have been interrupted (to kill us) in the middle of running, we may 3318 // not end up propagating the last events through the event system, in which 3319 // case we might strand the write lock. Unlock it here so when we do to tear 3320 // down the process we don't get an error destroying the lock. 3321 3322 m_public_run_lock.SetStopped(); 3323 return error; 3324 } 3325 3326 Status Process::Destroy(bool force_kill) { 3327 // If we've already called Process::Finalize then there's nothing useful to 3328 // be done here. Finalize has actually called Destroy already. 3329 if (m_finalize_called) 3330 return {}; 3331 3332 // Tell ourselves we are in the process of destroying the process, so that we 3333 // don't do any unnecessary work that might hinder the destruction. Remember 3334 // to set this back to false when we are done. That way if the attempt 3335 // failed and the process stays around for some reason it won't be in a 3336 // confused state. 3337 3338 if (force_kill) 3339 m_should_detach = false; 3340 3341 if (GetShouldDetach()) { 3342 // FIXME: This will have to be a process setting: 3343 bool keep_stopped = false; 3344 Detach(keep_stopped); 3345 } 3346 3347 m_destroy_in_process = true; 3348 3349 Status error(WillDestroy()); 3350 if (error.Success()) { 3351 EventSP exit_event_sp; 3352 if (DestroyRequiresHalt()) { 3353 error = StopForDestroyOrDetach(exit_event_sp); 3354 } 3355 3356 if (m_public_state.GetValue() != eStateRunning) { 3357 // Ditch all thread plans, and remove all our breakpoints: in case we 3358 // have to restart the target to kill it, we don't want it hitting a 3359 // breakpoint... Only do this if we've stopped, however, since if we 3360 // didn't manage to halt it above, then we're not going to have much luck 3361 // doing this now. 3362 m_thread_list.DiscardThreadPlans(); 3363 DisableAllBreakpointSites(); 3364 } 3365 3366 error = DoDestroy(); 3367 if (error.Success()) { 3368 DidDestroy(); 3369 StopPrivateStateThread(); 3370 } 3371 m_stdio_communication.StopReadThread(); 3372 m_stdio_communication.Disconnect(); 3373 m_stdin_forward = false; 3374 3375 if (m_process_input_reader) { 3376 m_process_input_reader->SetIsDone(true); 3377 m_process_input_reader->Cancel(); 3378 m_process_input_reader.reset(); 3379 } 3380 3381 // If we exited when we were waiting for a process to stop, then forward 3382 // the event here so we don't lose the event 3383 if (exit_event_sp) { 3384 // Directly broadcast our exited event because we shut down our private 3385 // state thread above 3386 BroadcastEvent(exit_event_sp); 3387 } 3388 3389 // If we have been interrupted (to kill us) in the middle of running, we 3390 // may not end up propagating the last events through the event system, in 3391 // which case we might strand the write lock. Unlock it here so when we do 3392 // to tear down the process we don't get an error destroying the lock. 3393 m_public_run_lock.SetStopped(); 3394 } 3395 3396 m_destroy_in_process = false; 3397 3398 return error; 3399 } 3400 3401 Status Process::Signal(int signal) { 3402 Status error(WillSignal()); 3403 if (error.Success()) { 3404 error = DoSignal(signal); 3405 if (error.Success()) 3406 DidSignal(); 3407 } 3408 return error; 3409 } 3410 3411 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3412 assert(signals_sp && "null signals_sp"); 3413 m_unix_signals_sp = signals_sp; 3414 } 3415 3416 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3417 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3418 return m_unix_signals_sp; 3419 } 3420 3421 lldb::ByteOrder Process::GetByteOrder() const { 3422 return GetTarget().GetArchitecture().GetByteOrder(); 3423 } 3424 3425 uint32_t Process::GetAddressByteSize() const { 3426 return GetTarget().GetArchitecture().GetAddressByteSize(); 3427 } 3428 3429 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3430 const StateType state = 3431 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3432 bool return_value = true; 3433 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | 3434 LIBLLDB_LOG_PROCESS)); 3435 3436 switch (state) { 3437 case eStateDetached: 3438 case eStateExited: 3439 case eStateUnloaded: 3440 m_stdio_communication.SynchronizeWithReadThread(); 3441 m_stdio_communication.StopReadThread(); 3442 m_stdio_communication.Disconnect(); 3443 m_stdin_forward = false; 3444 3445 LLVM_FALLTHROUGH; 3446 case eStateConnected: 3447 case eStateAttaching: 3448 case eStateLaunching: 3449 // These events indicate changes in the state of the debugging session, 3450 // always report them. 3451 return_value = true; 3452 break; 3453 case eStateInvalid: 3454 // We stopped for no apparent reason, don't report it. 3455 return_value = false; 3456 break; 3457 case eStateRunning: 3458 case eStateStepping: 3459 // If we've started the target running, we handle the cases where we are 3460 // already running and where there is a transition from stopped to running 3461 // differently. running -> running: Automatically suppress extra running 3462 // events stopped -> running: Report except when there is one or more no 3463 // votes 3464 // and no yes votes. 3465 SynchronouslyNotifyStateChanged(state); 3466 if (m_force_next_event_delivery) 3467 return_value = true; 3468 else { 3469 switch (m_last_broadcast_state) { 3470 case eStateRunning: 3471 case eStateStepping: 3472 // We always suppress multiple runnings with no PUBLIC stop in between. 3473 return_value = false; 3474 break; 3475 default: 3476 // TODO: make this work correctly. For now always report 3477 // run if we aren't running so we don't miss any running events. If I 3478 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3479 // and hit the breakpoints on multiple threads, then somehow during the 3480 // stepping over of all breakpoints no run gets reported. 3481 3482 // This is a transition from stop to run. 3483 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3484 case eVoteYes: 3485 case eVoteNoOpinion: 3486 return_value = true; 3487 break; 3488 case eVoteNo: 3489 return_value = false; 3490 break; 3491 } 3492 break; 3493 } 3494 } 3495 break; 3496 case eStateStopped: 3497 case eStateCrashed: 3498 case eStateSuspended: 3499 // We've stopped. First see if we're going to restart the target. If we 3500 // are going to stop, then we always broadcast the event. If we aren't 3501 // going to stop, let the thread plans decide if we're going to report this 3502 // event. If no thread has an opinion, we don't report it. 3503 3504 m_stdio_communication.SynchronizeWithReadThread(); 3505 RefreshStateAfterStop(); 3506 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3507 LLDB_LOGF(log, 3508 "Process::ShouldBroadcastEvent (%p) stopped due to an " 3509 "interrupt, state: %s", 3510 static_cast<void *>(event_ptr), StateAsCString(state)); 3511 // Even though we know we are going to stop, we should let the threads 3512 // have a look at the stop, so they can properly set their state. 3513 m_thread_list.ShouldStop(event_ptr); 3514 return_value = true; 3515 } else { 3516 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3517 bool should_resume = false; 3518 3519 // It makes no sense to ask "ShouldStop" if we've already been 3520 // restarted... Asking the thread list is also not likely to go well, 3521 // since we are running again. So in that case just report the event. 3522 3523 if (!was_restarted) 3524 should_resume = !m_thread_list.ShouldStop(event_ptr); 3525 3526 if (was_restarted || should_resume || m_resume_requested) { 3527 Vote stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3528 LLDB_LOGF(log, 3529 "Process::ShouldBroadcastEvent: should_resume: %i state: " 3530 "%s was_restarted: %i stop_vote: %d.", 3531 should_resume, StateAsCString(state), was_restarted, 3532 stop_vote); 3533 3534 switch (stop_vote) { 3535 case eVoteYes: 3536 return_value = true; 3537 break; 3538 case eVoteNoOpinion: 3539 case eVoteNo: 3540 return_value = false; 3541 break; 3542 } 3543 3544 if (!was_restarted) { 3545 LLDB_LOGF(log, 3546 "Process::ShouldBroadcastEvent (%p) Restarting process " 3547 "from state: %s", 3548 static_cast<void *>(event_ptr), StateAsCString(state)); 3549 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3550 PrivateResume(); 3551 } 3552 } else { 3553 return_value = true; 3554 SynchronouslyNotifyStateChanged(state); 3555 } 3556 } 3557 break; 3558 } 3559 3560 // Forcing the next event delivery is a one shot deal. So reset it here. 3561 m_force_next_event_delivery = false; 3562 3563 // We do some coalescing of events (for instance two consecutive running 3564 // events get coalesced.) But we only coalesce against events we actually 3565 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3566 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3567 // done, because the PublicState reflects the last event pulled off the 3568 // queue, and there may be several events stacked up on the queue unserviced. 3569 // So the PublicState may not reflect the last broadcasted event yet. 3570 // m_last_broadcast_state gets updated here. 3571 3572 if (return_value) 3573 m_last_broadcast_state = state; 3574 3575 LLDB_LOGF(log, 3576 "Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3577 "broadcast state: %s - %s", 3578 static_cast<void *>(event_ptr), StateAsCString(state), 3579 StateAsCString(m_last_broadcast_state), 3580 return_value ? "YES" : "NO"); 3581 return return_value; 3582 } 3583 3584 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3585 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 3586 3587 bool already_running = PrivateStateThreadIsValid(); 3588 LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, 3589 already_running ? " already running" 3590 : " starting private state thread"); 3591 3592 if (!is_secondary_thread && already_running) 3593 return true; 3594 3595 // Create a thread that watches our internal state and controls which events 3596 // make it to clients (into the DCProcess event queue). 3597 char thread_name[1024]; 3598 uint32_t max_len = llvm::get_max_thread_name_length(); 3599 if (max_len > 0 && max_len <= 30) { 3600 // On platforms with abbreviated thread name lengths, choose thread names 3601 // that fit within the limit. 3602 if (already_running) 3603 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3604 else 3605 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3606 } else { 3607 if (already_running) 3608 snprintf(thread_name, sizeof(thread_name), 3609 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3610 GetID()); 3611 else 3612 snprintf(thread_name, sizeof(thread_name), 3613 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3614 } 3615 3616 // Create the private state thread, and start it running. 3617 PrivateStateThreadArgs *args_ptr = 3618 new PrivateStateThreadArgs(this, is_secondary_thread); 3619 llvm::Expected<HostThread> private_state_thread = 3620 ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, 3621 (void *)args_ptr, 8 * 1024 * 1024); 3622 if (!private_state_thread) { 3623 LLDB_LOG(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST), 3624 "failed to launch host thread: {}", 3625 llvm::toString(private_state_thread.takeError())); 3626 return false; 3627 } 3628 3629 assert(private_state_thread->IsJoinable()); 3630 m_private_state_thread = *private_state_thread; 3631 ResumePrivateStateThread(); 3632 return true; 3633 } 3634 3635 void Process::PausePrivateStateThread() { 3636 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3637 } 3638 3639 void Process::ResumePrivateStateThread() { 3640 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3641 } 3642 3643 void Process::StopPrivateStateThread() { 3644 if (m_private_state_thread.IsJoinable()) 3645 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3646 else { 3647 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3648 LLDB_LOGF( 3649 log, 3650 "Went to stop the private state thread, but it was already invalid."); 3651 } 3652 } 3653 3654 void Process::ControlPrivateStateThread(uint32_t signal) { 3655 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3656 3657 assert(signal == eBroadcastInternalStateControlStop || 3658 signal == eBroadcastInternalStateControlPause || 3659 signal == eBroadcastInternalStateControlResume); 3660 3661 LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); 3662 3663 // Signal the private state thread 3664 if (m_private_state_thread.IsJoinable()) { 3665 // Broadcast the event. 3666 // It is important to do this outside of the if below, because it's 3667 // possible that the thread state is invalid but that the thread is waiting 3668 // on a control event instead of simply being on its way out (this should 3669 // not happen, but it apparently can). 3670 LLDB_LOGF(log, "Sending control event of type: %d.", signal); 3671 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3672 m_private_state_control_broadcaster.BroadcastEvent(signal, 3673 event_receipt_sp); 3674 3675 // Wait for the event receipt or for the private state thread to exit 3676 bool receipt_received = false; 3677 if (PrivateStateThreadIsValid()) { 3678 while (!receipt_received) { 3679 // Check for a receipt for n seconds and then check if the private 3680 // state thread is still around. 3681 receipt_received = 3682 event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout()); 3683 if (!receipt_received) { 3684 // Check if the private state thread is still around. If it isn't 3685 // then we are done waiting 3686 if (!PrivateStateThreadIsValid()) 3687 break; // Private state thread exited or is exiting, we are done 3688 } 3689 } 3690 } 3691 3692 if (signal == eBroadcastInternalStateControlStop) { 3693 thread_result_t result = {}; 3694 m_private_state_thread.Join(&result); 3695 m_private_state_thread.Reset(); 3696 } 3697 } else { 3698 LLDB_LOGF( 3699 log, 3700 "Private state thread already dead, no need to signal it to stop."); 3701 } 3702 } 3703 3704 void Process::SendAsyncInterrupt() { 3705 if (PrivateStateThreadIsValid()) 3706 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3707 nullptr); 3708 else 3709 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3710 } 3711 3712 void Process::HandlePrivateEvent(EventSP &event_sp) { 3713 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3714 m_resume_requested = false; 3715 3716 const StateType new_state = 3717 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3718 3719 // First check to see if anybody wants a shot at this event: 3720 if (m_next_event_action_up) { 3721 NextEventAction::EventActionResult action_result = 3722 m_next_event_action_up->PerformAction(event_sp); 3723 LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); 3724 3725 switch (action_result) { 3726 case NextEventAction::eEventActionSuccess: 3727 SetNextEventAction(nullptr); 3728 break; 3729 3730 case NextEventAction::eEventActionRetry: 3731 break; 3732 3733 case NextEventAction::eEventActionExit: 3734 // Handle Exiting Here. If we already got an exited event, we should 3735 // just propagate it. Otherwise, swallow this event, and set our state 3736 // to exit so the next event will kill us. 3737 if (new_state != eStateExited) { 3738 // FIXME: should cons up an exited event, and discard this one. 3739 SetExitStatus(0, m_next_event_action_up->GetExitString()); 3740 SetNextEventAction(nullptr); 3741 return; 3742 } 3743 SetNextEventAction(nullptr); 3744 break; 3745 } 3746 } 3747 3748 // See if we should broadcast this state to external clients? 3749 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3750 3751 if (should_broadcast) { 3752 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3753 if (log) { 3754 LLDB_LOGF(log, 3755 "Process::%s (pid = %" PRIu64 3756 ") broadcasting new state %s (old state %s) to %s", 3757 __FUNCTION__, GetID(), StateAsCString(new_state), 3758 StateAsCString(GetState()), 3759 is_hijacked ? "hijacked" : "public"); 3760 } 3761 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3762 if (StateIsRunningState(new_state)) { 3763 // Only push the input handler if we aren't fowarding events, as this 3764 // means the curses GUI is in use... Or don't push it if we are launching 3765 // since it will come up stopped. 3766 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3767 new_state != eStateLaunching && new_state != eStateAttaching) { 3768 PushProcessIOHandler(); 3769 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3770 eBroadcastAlways); 3771 LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", 3772 __FUNCTION__, m_iohandler_sync.GetValue()); 3773 } 3774 } else if (StateIsStoppedState(new_state, false)) { 3775 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3776 // If the lldb_private::Debugger is handling the events, we don't want 3777 // to pop the process IOHandler here, we want to do it when we receive 3778 // the stopped event so we can carefully control when the process 3779 // IOHandler is popped because when we stop we want to display some 3780 // text stating how and why we stopped, then maybe some 3781 // process/thread/frame info, and then we want the "(lldb) " prompt to 3782 // show up. If we pop the process IOHandler here, then we will cause 3783 // the command interpreter to become the top IOHandler after the 3784 // process pops off and it will update its prompt right away... See the 3785 // Debugger.cpp file where it calls the function as 3786 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3787 // Otherwise we end up getting overlapping "(lldb) " prompts and 3788 // garbled output. 3789 // 3790 // If we aren't handling the events in the debugger (which is indicated 3791 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3792 // we are hijacked, then we always pop the process IO handler manually. 3793 // Hijacking happens when the internal process state thread is running 3794 // thread plans, or when commands want to run in synchronous mode and 3795 // they call "process->WaitForProcessToStop()". An example of something 3796 // that will hijack the events is a simple expression: 3797 // 3798 // (lldb) expr (int)puts("hello") 3799 // 3800 // This will cause the internal process state thread to resume and halt 3801 // the process (and _it_ will hijack the eBroadcastBitStateChanged 3802 // events) and we do need the IO handler to be pushed and popped 3803 // correctly. 3804 3805 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 3806 PopProcessIOHandler(); 3807 } 3808 } 3809 3810 BroadcastEvent(event_sp); 3811 } else { 3812 if (log) { 3813 LLDB_LOGF( 3814 log, 3815 "Process::%s (pid = %" PRIu64 3816 ") suppressing state %s (old state %s): should_broadcast == false", 3817 __FUNCTION__, GetID(), StateAsCString(new_state), 3818 StateAsCString(GetState())); 3819 } 3820 } 3821 } 3822 3823 Status Process::HaltPrivate() { 3824 EventSP event_sp; 3825 Status error(WillHalt()); 3826 if (error.Fail()) 3827 return error; 3828 3829 // Ask the process subclass to actually halt our process 3830 bool caused_stop; 3831 error = DoHalt(caused_stop); 3832 3833 DidHalt(); 3834 return error; 3835 } 3836 3837 thread_result_t Process::PrivateStateThread(void *arg) { 3838 std::unique_ptr<PrivateStateThreadArgs> args_up( 3839 static_cast<PrivateStateThreadArgs *>(arg)); 3840 thread_result_t result = 3841 args_up->process->RunPrivateStateThread(args_up->is_secondary_thread); 3842 return result; 3843 } 3844 3845 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 3846 bool control_only = true; 3847 3848 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 3849 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 3850 __FUNCTION__, static_cast<void *>(this), GetID()); 3851 3852 bool exit_now = false; 3853 bool interrupt_requested = false; 3854 while (!exit_now) { 3855 EventSP event_sp; 3856 GetEventsPrivate(event_sp, llvm::None, control_only); 3857 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 3858 LLDB_LOGF(log, 3859 "Process::%s (arg = %p, pid = %" PRIu64 3860 ") got a control event: %d", 3861 __FUNCTION__, static_cast<void *>(this), GetID(), 3862 event_sp->GetType()); 3863 3864 switch (event_sp->GetType()) { 3865 case eBroadcastInternalStateControlStop: 3866 exit_now = true; 3867 break; // doing any internal state management below 3868 3869 case eBroadcastInternalStateControlPause: 3870 control_only = true; 3871 break; 3872 3873 case eBroadcastInternalStateControlResume: 3874 control_only = false; 3875 break; 3876 } 3877 3878 continue; 3879 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 3880 if (m_public_state.GetValue() == eStateAttaching) { 3881 LLDB_LOGF(log, 3882 "Process::%s (arg = %p, pid = %" PRIu64 3883 ") woke up with an interrupt while attaching - " 3884 "forwarding interrupt.", 3885 __FUNCTION__, static_cast<void *>(this), GetID()); 3886 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 3887 } else if (StateIsRunningState(m_last_broadcast_state)) { 3888 LLDB_LOGF(log, 3889 "Process::%s (arg = %p, pid = %" PRIu64 3890 ") woke up with an interrupt - Halting.", 3891 __FUNCTION__, static_cast<void *>(this), GetID()); 3892 Status error = HaltPrivate(); 3893 if (error.Fail() && log) 3894 LLDB_LOGF(log, 3895 "Process::%s (arg = %p, pid = %" PRIu64 3896 ") failed to halt the process: %s", 3897 __FUNCTION__, static_cast<void *>(this), GetID(), 3898 error.AsCString()); 3899 // Halt should generate a stopped event. Make a note of the fact that 3900 // we were doing the interrupt, so we can set the interrupted flag 3901 // after we receive the event. We deliberately set this to true even if 3902 // HaltPrivate failed, so that we can interrupt on the next natural 3903 // stop. 3904 interrupt_requested = true; 3905 } else { 3906 // This can happen when someone (e.g. Process::Halt) sees that we are 3907 // running and sends an interrupt request, but the process actually 3908 // stops before we receive it. In that case, we can just ignore the 3909 // request. We use m_last_broadcast_state, because the Stopped event 3910 // may not have been popped of the event queue yet, which is when the 3911 // public state gets updated. 3912 LLDB_LOGF(log, 3913 "Process::%s ignoring interrupt as we have already stopped.", 3914 __FUNCTION__); 3915 } 3916 continue; 3917 } 3918 3919 const StateType internal_state = 3920 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3921 3922 if (internal_state != eStateInvalid) { 3923 if (m_clear_thread_plans_on_stop && 3924 StateIsStoppedState(internal_state, true)) { 3925 m_clear_thread_plans_on_stop = false; 3926 m_thread_list.DiscardThreadPlans(); 3927 } 3928 3929 if (interrupt_requested) { 3930 if (StateIsStoppedState(internal_state, true)) { 3931 // We requested the interrupt, so mark this as such in the stop event 3932 // so clients can tell an interrupted process from a natural stop 3933 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 3934 interrupt_requested = false; 3935 } else if (log) { 3936 LLDB_LOGF(log, 3937 "Process::%s interrupt_requested, but a non-stopped " 3938 "state '%s' received.", 3939 __FUNCTION__, StateAsCString(internal_state)); 3940 } 3941 } 3942 3943 HandlePrivateEvent(event_sp); 3944 } 3945 3946 if (internal_state == eStateInvalid || internal_state == eStateExited || 3947 internal_state == eStateDetached) { 3948 LLDB_LOGF(log, 3949 "Process::%s (arg = %p, pid = %" PRIu64 3950 ") about to exit with internal state %s...", 3951 __FUNCTION__, static_cast<void *>(this), GetID(), 3952 StateAsCString(internal_state)); 3953 3954 break; 3955 } 3956 } 3957 3958 // Verify log is still enabled before attempting to write to it... 3959 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 3960 __FUNCTION__, static_cast<void *>(this), GetID()); 3961 3962 // If we are a secondary thread, then the primary thread we are working for 3963 // will have already acquired the public_run_lock, and isn't done with what 3964 // it was doing yet, so don't try to change it on the way out. 3965 if (!is_secondary_thread) 3966 m_public_run_lock.SetStopped(); 3967 return {}; 3968 } 3969 3970 // Process Event Data 3971 3972 Process::ProcessEventData::ProcessEventData() 3973 : EventData(), m_process_wp(), m_state(eStateInvalid), m_restarted(false), 3974 m_update_state(0), m_interrupted(false) {} 3975 3976 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 3977 StateType state) 3978 : EventData(), m_process_wp(), m_state(state), m_restarted(false), 3979 m_update_state(0), m_interrupted(false) { 3980 if (process_sp) 3981 m_process_wp = process_sp; 3982 } 3983 3984 Process::ProcessEventData::~ProcessEventData() = default; 3985 3986 ConstString Process::ProcessEventData::GetFlavorString() { 3987 static ConstString g_flavor("Process::ProcessEventData"); 3988 return g_flavor; 3989 } 3990 3991 ConstString Process::ProcessEventData::GetFlavor() const { 3992 return ProcessEventData::GetFlavorString(); 3993 } 3994 3995 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 3996 ProcessSP process_sp(m_process_wp.lock()); 3997 3998 if (!process_sp) 3999 return; 4000 4001 // This function gets called twice for each event, once when the event gets 4002 // pulled off of the private process event queue, and then any number of 4003 // times, first when it gets pulled off of the public event queue, then other 4004 // times when we're pretending that this is where we stopped at the end of 4005 // expression evaluation. m_update_state is used to distinguish these three 4006 // cases; it is 0 when we're just pulling it off for private handling, and > 4007 // 1 for expression evaluation, and we don't want to do the breakpoint 4008 // command handling then. 4009 if (m_update_state != 1) 4010 return; 4011 4012 process_sp->SetPublicState( 4013 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4014 4015 if (m_state == eStateStopped && !m_restarted) { 4016 // Let process subclasses know we are about to do a public stop and do 4017 // anything they might need to in order to speed up register and memory 4018 // accesses. 4019 process_sp->WillPublicStop(); 4020 } 4021 4022 // If this is a halt event, even if the halt stopped with some reason other 4023 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 4024 // the halt request came through) don't do the StopInfo actions, as they may 4025 // end up restarting the process. 4026 if (m_interrupted) 4027 return; 4028 4029 // If we're stopped and haven't restarted, then do the StopInfo actions here: 4030 if (m_state == eStateStopped && !m_restarted) { 4031 ThreadList &curr_thread_list = process_sp->GetThreadList(); 4032 uint32_t num_threads = curr_thread_list.GetSize(); 4033 uint32_t idx; 4034 4035 // The actions might change one of the thread's stop_info's opinions about 4036 // whether we should stop the process, so we need to query that as we go. 4037 4038 // One other complication here, is that we try to catch any case where the 4039 // target has run (except for expressions) and immediately exit, but if we 4040 // get that wrong (which is possible) then the thread list might have 4041 // changed, and that would cause our iteration here to crash. We could 4042 // make a copy of the thread list, but we'd really like to also know if it 4043 // has changed at all, so we make up a vector of the thread ID's and check 4044 // what we get back against this list & bag out if anything differs. 4045 std::vector<uint32_t> thread_index_array(num_threads); 4046 for (idx = 0; idx < num_threads; ++idx) 4047 thread_index_array[idx] = 4048 curr_thread_list.GetThreadAtIndex(idx)->GetIndexID(); 4049 4050 // Use this to track whether we should continue from here. We will only 4051 // continue the target running if no thread says we should stop. Of course 4052 // if some thread's PerformAction actually sets the target running, then it 4053 // doesn't matter what the other threads say... 4054 4055 bool still_should_stop = false; 4056 4057 // Sometimes - for instance if we have a bug in the stub we are talking to, 4058 // we stop but no thread has a valid stop reason. In that case we should 4059 // just stop, because we have no way of telling what the right thing to do 4060 // is, and it's better to let the user decide than continue behind their 4061 // backs. 4062 4063 bool does_anybody_have_an_opinion = false; 4064 4065 for (idx = 0; idx < num_threads; ++idx) { 4066 curr_thread_list = process_sp->GetThreadList(); 4067 if (curr_thread_list.GetSize() != num_threads) { 4068 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4069 LIBLLDB_LOG_PROCESS)); 4070 LLDB_LOGF( 4071 log, 4072 "Number of threads changed from %u to %u while processing event.", 4073 num_threads, curr_thread_list.GetSize()); 4074 break; 4075 } 4076 4077 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 4078 4079 if (thread_sp->GetIndexID() != thread_index_array[idx]) { 4080 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4081 LIBLLDB_LOG_PROCESS)); 4082 LLDB_LOGF(log, 4083 "The thread at position %u changed from %u to %u while " 4084 "processing event.", 4085 idx, thread_index_array[idx], thread_sp->GetIndexID()); 4086 break; 4087 } 4088 4089 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4090 if (stop_info_sp && stop_info_sp->IsValid()) { 4091 does_anybody_have_an_opinion = true; 4092 bool this_thread_wants_to_stop; 4093 if (stop_info_sp->GetOverrideShouldStop()) { 4094 this_thread_wants_to_stop = 4095 stop_info_sp->GetOverriddenShouldStopValue(); 4096 } else { 4097 stop_info_sp->PerformAction(event_ptr); 4098 // The stop action might restart the target. If it does, then we 4099 // want to mark that in the event so that whoever is receiving it 4100 // will know to wait for the running event and reflect that state 4101 // appropriately. We also need to stop processing actions, since they 4102 // aren't expecting the target to be running. 4103 4104 // FIXME: we might have run. 4105 if (stop_info_sp->HasTargetRunSinceMe()) { 4106 SetRestarted(true); 4107 break; 4108 } 4109 4110 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4111 } 4112 4113 if (!still_should_stop) 4114 still_should_stop = this_thread_wants_to_stop; 4115 } 4116 } 4117 4118 if (!GetRestarted()) { 4119 if (!still_should_stop && does_anybody_have_an_opinion) { 4120 // We've been asked to continue, so do that here. 4121 SetRestarted(true); 4122 // Use the public resume method here, since this is just extending a 4123 // public resume. 4124 process_sp->PrivateResume(); 4125 } else { 4126 bool hijacked = 4127 process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) && 4128 !process_sp->StateChangedIsHijackedForSynchronousResume(); 4129 4130 if (!hijacked) { 4131 // If we didn't restart, run the Stop Hooks here. 4132 // Don't do that if state changed events aren't hooked up to the 4133 // public (or SyncResume) broadcasters. StopHooks are just for 4134 // real public stops. They might also restart the target, 4135 // so watch for that. 4136 process_sp->GetTarget().RunStopHooks(); 4137 if (process_sp->GetPrivateState() == eStateRunning) 4138 SetRestarted(true); 4139 } 4140 } 4141 } 4142 } 4143 } 4144 4145 void Process::ProcessEventData::Dump(Stream *s) const { 4146 ProcessSP process_sp(m_process_wp.lock()); 4147 4148 if (process_sp) 4149 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4150 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4151 else 4152 s->PutCString(" process = NULL, "); 4153 4154 s->Printf("state = %s", StateAsCString(GetState())); 4155 } 4156 4157 const Process::ProcessEventData * 4158 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4159 if (event_ptr) { 4160 const EventData *event_data = event_ptr->GetData(); 4161 if (event_data && 4162 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4163 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4164 } 4165 return nullptr; 4166 } 4167 4168 ProcessSP 4169 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4170 ProcessSP process_sp; 4171 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4172 if (data) 4173 process_sp = data->GetProcessSP(); 4174 return process_sp; 4175 } 4176 4177 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4178 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4179 if (data == nullptr) 4180 return eStateInvalid; 4181 else 4182 return data->GetState(); 4183 } 4184 4185 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4186 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4187 if (data == nullptr) 4188 return false; 4189 else 4190 return data->GetRestarted(); 4191 } 4192 4193 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4194 bool new_value) { 4195 ProcessEventData *data = 4196 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4197 if (data != nullptr) 4198 data->SetRestarted(new_value); 4199 } 4200 4201 size_t 4202 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4203 ProcessEventData *data = 4204 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4205 if (data != nullptr) 4206 return data->GetNumRestartedReasons(); 4207 else 4208 return 0; 4209 } 4210 4211 const char * 4212 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4213 size_t idx) { 4214 ProcessEventData *data = 4215 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4216 if (data != nullptr) 4217 return data->GetRestartedReasonAtIndex(idx); 4218 else 4219 return nullptr; 4220 } 4221 4222 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4223 const char *reason) { 4224 ProcessEventData *data = 4225 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4226 if (data != nullptr) 4227 data->AddRestartedReason(reason); 4228 } 4229 4230 bool Process::ProcessEventData::GetInterruptedFromEvent( 4231 const Event *event_ptr) { 4232 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4233 if (data == nullptr) 4234 return false; 4235 else 4236 return data->GetInterrupted(); 4237 } 4238 4239 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4240 bool new_value) { 4241 ProcessEventData *data = 4242 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4243 if (data != nullptr) 4244 data->SetInterrupted(new_value); 4245 } 4246 4247 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4248 ProcessEventData *data = 4249 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4250 if (data) { 4251 data->SetUpdateStateOnRemoval(); 4252 return true; 4253 } 4254 return false; 4255 } 4256 4257 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4258 4259 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4260 exe_ctx.SetTargetPtr(&GetTarget()); 4261 exe_ctx.SetProcessPtr(this); 4262 exe_ctx.SetThreadPtr(nullptr); 4263 exe_ctx.SetFramePtr(nullptr); 4264 } 4265 4266 // uint32_t 4267 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4268 // std::vector<lldb::pid_t> &pids) 4269 //{ 4270 // return 0; 4271 //} 4272 // 4273 // ArchSpec 4274 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4275 //{ 4276 // return Host::GetArchSpecForExistingProcess (pid); 4277 //} 4278 // 4279 // ArchSpec 4280 // Process::GetArchSpecForExistingProcess (const char *process_name) 4281 //{ 4282 // return Host::GetArchSpecForExistingProcess (process_name); 4283 //} 4284 4285 void Process::AppendSTDOUT(const char *s, size_t len) { 4286 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4287 m_stdout_data.append(s, len); 4288 BroadcastEventIfUnique(eBroadcastBitSTDOUT, 4289 new ProcessEventData(shared_from_this(), GetState())); 4290 } 4291 4292 void Process::AppendSTDERR(const char *s, size_t len) { 4293 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4294 m_stderr_data.append(s, len); 4295 BroadcastEventIfUnique(eBroadcastBitSTDERR, 4296 new ProcessEventData(shared_from_this(), GetState())); 4297 } 4298 4299 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4300 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4301 m_profile_data.push_back(one_profile_data); 4302 BroadcastEventIfUnique(eBroadcastBitProfileData, 4303 new ProcessEventData(shared_from_this(), GetState())); 4304 } 4305 4306 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4307 const StructuredDataPluginSP &plugin_sp) { 4308 BroadcastEvent( 4309 eBroadcastBitStructuredData, 4310 new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp)); 4311 } 4312 4313 StructuredDataPluginSP 4314 Process::GetStructuredDataPlugin(ConstString type_name) const { 4315 auto find_it = m_structured_data_plugin_map.find(type_name); 4316 if (find_it != m_structured_data_plugin_map.end()) 4317 return find_it->second; 4318 else 4319 return StructuredDataPluginSP(); 4320 } 4321 4322 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4323 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4324 if (m_profile_data.empty()) 4325 return 0; 4326 4327 std::string &one_profile_data = m_profile_data.front(); 4328 size_t bytes_available = one_profile_data.size(); 4329 if (bytes_available > 0) { 4330 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4331 LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4332 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4333 if (bytes_available > buf_size) { 4334 memcpy(buf, one_profile_data.c_str(), buf_size); 4335 one_profile_data.erase(0, buf_size); 4336 bytes_available = buf_size; 4337 } else { 4338 memcpy(buf, one_profile_data.c_str(), bytes_available); 4339 m_profile_data.erase(m_profile_data.begin()); 4340 } 4341 } 4342 return bytes_available; 4343 } 4344 4345 // Process STDIO 4346 4347 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4348 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4349 size_t bytes_available = m_stdout_data.size(); 4350 if (bytes_available > 0) { 4351 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4352 LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4353 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4354 if (bytes_available > buf_size) { 4355 memcpy(buf, m_stdout_data.c_str(), buf_size); 4356 m_stdout_data.erase(0, buf_size); 4357 bytes_available = buf_size; 4358 } else { 4359 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4360 m_stdout_data.clear(); 4361 } 4362 } 4363 return bytes_available; 4364 } 4365 4366 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4367 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4368 size_t bytes_available = m_stderr_data.size(); 4369 if (bytes_available > 0) { 4370 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4371 LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4372 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4373 if (bytes_available > buf_size) { 4374 memcpy(buf, m_stderr_data.c_str(), buf_size); 4375 m_stderr_data.erase(0, buf_size); 4376 bytes_available = buf_size; 4377 } else { 4378 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4379 m_stderr_data.clear(); 4380 } 4381 } 4382 return bytes_available; 4383 } 4384 4385 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4386 size_t src_len) { 4387 Process *process = (Process *)baton; 4388 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4389 } 4390 4391 class IOHandlerProcessSTDIO : public IOHandler { 4392 public: 4393 IOHandlerProcessSTDIO(Process *process, int write_fd) 4394 : IOHandler(process->GetTarget().GetDebugger(), 4395 IOHandler::Type::ProcessIO), 4396 m_process(process), 4397 m_read_file(GetInputFD(), File::eOpenOptionRead, false), 4398 m_write_file(write_fd, File::eOpenOptionWrite, false) { 4399 m_pipe.CreateNew(false); 4400 } 4401 4402 ~IOHandlerProcessSTDIO() override = default; 4403 4404 // Each IOHandler gets to run until it is done. It should read data from the 4405 // "in" and place output into "out" and "err and return when done. 4406 void Run() override { 4407 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4408 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4409 SetIsDone(true); 4410 return; 4411 } 4412 4413 SetIsDone(false); 4414 const int read_fd = m_read_file.GetDescriptor(); 4415 TerminalState terminal_state; 4416 terminal_state.Save(read_fd, false); 4417 Terminal terminal(read_fd); 4418 terminal.SetCanonical(false); 4419 terminal.SetEcho(false); 4420 // FD_ZERO, FD_SET are not supported on windows 4421 #ifndef _WIN32 4422 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4423 m_is_running = true; 4424 while (!GetIsDone()) { 4425 SelectHelper select_helper; 4426 select_helper.FDSetRead(read_fd); 4427 select_helper.FDSetRead(pipe_read_fd); 4428 Status error = select_helper.Select(); 4429 4430 if (error.Fail()) { 4431 SetIsDone(true); 4432 } else { 4433 char ch = 0; 4434 size_t n; 4435 if (select_helper.FDIsSetRead(read_fd)) { 4436 n = 1; 4437 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4438 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4439 SetIsDone(true); 4440 } else 4441 SetIsDone(true); 4442 } 4443 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4444 size_t bytes_read; 4445 // Consume the interrupt byte 4446 Status error = m_pipe.Read(&ch, 1, bytes_read); 4447 if (error.Success()) { 4448 switch (ch) { 4449 case 'q': 4450 SetIsDone(true); 4451 break; 4452 case 'i': 4453 if (StateIsRunningState(m_process->GetState())) 4454 m_process->SendAsyncInterrupt(); 4455 break; 4456 } 4457 } 4458 } 4459 } 4460 } 4461 m_is_running = false; 4462 #endif 4463 terminal_state.Restore(); 4464 } 4465 4466 void Cancel() override { 4467 SetIsDone(true); 4468 // Only write to our pipe to cancel if we are in 4469 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4470 // is being run from the command interpreter: 4471 // 4472 // (lldb) step_process_thousands_of_times 4473 // 4474 // In this case the command interpreter will be in the middle of handling 4475 // the command and if the process pushes and pops the IOHandler thousands 4476 // of times, we can end up writing to m_pipe without ever consuming the 4477 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4478 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4479 if (m_is_running) { 4480 char ch = 'q'; // Send 'q' for quit 4481 size_t bytes_written = 0; 4482 m_pipe.Write(&ch, 1, bytes_written); 4483 } 4484 } 4485 4486 bool Interrupt() override { 4487 // Do only things that are safe to do in an interrupt context (like in a 4488 // SIGINT handler), like write 1 byte to a file descriptor. This will 4489 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4490 // that was written to the pipe and then call 4491 // m_process->SendAsyncInterrupt() from a much safer location in code. 4492 if (m_active) { 4493 char ch = 'i'; // Send 'i' for interrupt 4494 size_t bytes_written = 0; 4495 Status result = m_pipe.Write(&ch, 1, bytes_written); 4496 return result.Success(); 4497 } else { 4498 // This IOHandler might be pushed on the stack, but not being run 4499 // currently so do the right thing if we aren't actively watching for 4500 // STDIN by sending the interrupt to the process. Otherwise the write to 4501 // the pipe above would do nothing. This can happen when the command 4502 // interpreter is running and gets a "expression ...". It will be on the 4503 // IOHandler thread and sending the input is complete to the delegate 4504 // which will cause the expression to run, which will push the process IO 4505 // handler, but not run it. 4506 4507 if (StateIsRunningState(m_process->GetState())) { 4508 m_process->SendAsyncInterrupt(); 4509 return true; 4510 } 4511 } 4512 return false; 4513 } 4514 4515 void GotEOF() override {} 4516 4517 protected: 4518 Process *m_process; 4519 NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB 4520 NativeFile m_write_file; // Write to this file (usually the master pty for 4521 // getting io to debuggee) 4522 Pipe m_pipe; 4523 std::atomic<bool> m_is_running{false}; 4524 }; 4525 4526 void Process::SetSTDIOFileDescriptor(int fd) { 4527 // First set up the Read Thread for reading/handling process I/O 4528 m_stdio_communication.SetConnection( 4529 std::make_unique<ConnectionFileDescriptor>(fd, true)); 4530 if (m_stdio_communication.IsConnected()) { 4531 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4532 STDIOReadThreadBytesReceived, this); 4533 m_stdio_communication.StartReadThread(); 4534 4535 // Now read thread is set up, set up input reader. 4536 4537 if (!m_process_input_reader) 4538 m_process_input_reader = 4539 std::make_shared<IOHandlerProcessSTDIO>(this, fd); 4540 } 4541 } 4542 4543 bool Process::ProcessIOHandlerIsActive() { 4544 IOHandlerSP io_handler_sp(m_process_input_reader); 4545 if (io_handler_sp) 4546 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4547 return false; 4548 } 4549 bool Process::PushProcessIOHandler() { 4550 IOHandlerSP io_handler_sp(m_process_input_reader); 4551 if (io_handler_sp) { 4552 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4553 LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); 4554 4555 io_handler_sp->SetIsDone(false); 4556 // If we evaluate an utility function, then we don't cancel the current 4557 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the 4558 // existing IOHandler that potentially provides the user interface (e.g. 4559 // the IOHandler for Editline). 4560 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); 4561 GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp, 4562 cancel_top_handler); 4563 return true; 4564 } 4565 return false; 4566 } 4567 4568 bool Process::PopProcessIOHandler() { 4569 IOHandlerSP io_handler_sp(m_process_input_reader); 4570 if (io_handler_sp) 4571 return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp); 4572 return false; 4573 } 4574 4575 // The process needs to know about installed plug-ins 4576 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4577 4578 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4579 4580 namespace { 4581 // RestorePlanState is used to record the "is private", "is master" and "okay 4582 // to discard" fields of the plan we are running, and reset it on Clean or on 4583 // destruction. It will only reset the state once, so you can call Clean and 4584 // then monkey with the state and it won't get reset on you again. 4585 4586 class RestorePlanState { 4587 public: 4588 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4589 : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) { 4590 if (m_thread_plan_sp) { 4591 m_private = m_thread_plan_sp->GetPrivate(); 4592 m_is_master = m_thread_plan_sp->IsMasterPlan(); 4593 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4594 } 4595 } 4596 4597 ~RestorePlanState() { Clean(); } 4598 4599 void Clean() { 4600 if (!m_already_reset && m_thread_plan_sp) { 4601 m_already_reset = true; 4602 m_thread_plan_sp->SetPrivate(m_private); 4603 m_thread_plan_sp->SetIsMasterPlan(m_is_master); 4604 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4605 } 4606 } 4607 4608 private: 4609 lldb::ThreadPlanSP m_thread_plan_sp; 4610 bool m_already_reset; 4611 bool m_private; 4612 bool m_is_master; 4613 bool m_okay_to_discard; 4614 }; 4615 } // anonymous namespace 4616 4617 static microseconds 4618 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4619 const milliseconds default_one_thread_timeout(250); 4620 4621 // If the overall wait is forever, then we don't need to worry about it. 4622 if (!options.GetTimeout()) { 4623 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4624 : default_one_thread_timeout; 4625 } 4626 4627 // If the one thread timeout is set, use it. 4628 if (options.GetOneThreadTimeout()) 4629 return *options.GetOneThreadTimeout(); 4630 4631 // Otherwise use half the total timeout, bounded by the 4632 // default_one_thread_timeout. 4633 return std::min<microseconds>(default_one_thread_timeout, 4634 *options.GetTimeout() / 2); 4635 } 4636 4637 static Timeout<std::micro> 4638 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4639 bool before_first_timeout) { 4640 // If we are going to run all threads the whole time, or if we are only going 4641 // to run one thread, we can just return the overall timeout. 4642 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4643 return options.GetTimeout(); 4644 4645 if (before_first_timeout) 4646 return GetOneThreadExpressionTimeout(options); 4647 4648 if (!options.GetTimeout()) 4649 return llvm::None; 4650 else 4651 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4652 } 4653 4654 static llvm::Optional<ExpressionResults> 4655 HandleStoppedEvent(Thread &thread, const ThreadPlanSP &thread_plan_sp, 4656 RestorePlanState &restorer, const EventSP &event_sp, 4657 EventSP &event_to_broadcast_sp, 4658 const EvaluateExpressionOptions &options, bool handle_interrupts) { 4659 Log *log = GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS); 4660 4661 ThreadPlanSP plan = thread.GetCompletedPlan(); 4662 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4663 LLDB_LOG(log, "execution completed successfully"); 4664 4665 // Restore the plan state so it will get reported as intended when we are 4666 // done. 4667 restorer.Clean(); 4668 return eExpressionCompleted; 4669 } 4670 4671 StopInfoSP stop_info_sp = thread.GetStopInfo(); 4672 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4673 stop_info_sp->ShouldNotify(event_sp.get())) { 4674 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4675 if (!options.DoesIgnoreBreakpoints()) { 4676 // Restore the plan state and then force Private to false. We are going 4677 // to stop because of this plan so we need it to become a public plan or 4678 // it won't report correctly when we continue to its termination later 4679 // on. 4680 restorer.Clean(); 4681 thread_plan_sp->SetPrivate(false); 4682 event_to_broadcast_sp = event_sp; 4683 } 4684 return eExpressionHitBreakpoint; 4685 } 4686 4687 if (!handle_interrupts && 4688 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4689 return llvm::None; 4690 4691 LLDB_LOG(log, "thread plan did not successfully complete"); 4692 if (!options.DoesUnwindOnError()) 4693 event_to_broadcast_sp = event_sp; 4694 return eExpressionInterrupted; 4695 } 4696 4697 ExpressionResults 4698 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4699 lldb::ThreadPlanSP &thread_plan_sp, 4700 const EvaluateExpressionOptions &options, 4701 DiagnosticManager &diagnostic_manager) { 4702 ExpressionResults return_value = eExpressionSetupError; 4703 4704 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4705 4706 if (!thread_plan_sp) { 4707 diagnostic_manager.PutString( 4708 eDiagnosticSeverityError, 4709 "RunThreadPlan called with empty thread plan."); 4710 return eExpressionSetupError; 4711 } 4712 4713 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4714 diagnostic_manager.PutString( 4715 eDiagnosticSeverityError, 4716 "RunThreadPlan called with an invalid thread plan."); 4717 return eExpressionSetupError; 4718 } 4719 4720 if (exe_ctx.GetProcessPtr() != this) { 4721 diagnostic_manager.PutString(eDiagnosticSeverityError, 4722 "RunThreadPlan called on wrong process."); 4723 return eExpressionSetupError; 4724 } 4725 4726 Thread *thread = exe_ctx.GetThreadPtr(); 4727 if (thread == nullptr) { 4728 diagnostic_manager.PutString(eDiagnosticSeverityError, 4729 "RunThreadPlan called with invalid thread."); 4730 return eExpressionSetupError; 4731 } 4732 4733 // We need to change some of the thread plan attributes for the thread plan 4734 // runner. This will restore them when we are done: 4735 4736 RestorePlanState thread_plan_restorer(thread_plan_sp); 4737 4738 // We rely on the thread plan we are running returning "PlanCompleted" if 4739 // when it successfully completes. For that to be true the plan can't be 4740 // private - since private plans suppress themselves in the GetCompletedPlan 4741 // call. 4742 4743 thread_plan_sp->SetPrivate(false); 4744 4745 // The plans run with RunThreadPlan also need to be terminal master plans or 4746 // when they are done we will end up asking the plan above us whether we 4747 // should stop, which may give the wrong answer. 4748 4749 thread_plan_sp->SetIsMasterPlan(true); 4750 thread_plan_sp->SetOkayToDiscard(false); 4751 4752 // If we are running some utility expression for LLDB, we now have to mark 4753 // this in the ProcesModID of this process. This RAII takes care of marking 4754 // and reverting the mark it once we are done running the expression. 4755 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); 4756 4757 if (m_private_state.GetValue() != eStateStopped) { 4758 diagnostic_manager.PutString( 4759 eDiagnosticSeverityError, 4760 "RunThreadPlan called while the private state was not stopped."); 4761 return eExpressionSetupError; 4762 } 4763 4764 // Save the thread & frame from the exe_ctx for restoration after we run 4765 const uint32_t thread_idx_id = thread->GetIndexID(); 4766 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 4767 if (!selected_frame_sp) { 4768 thread->SetSelectedFrame(nullptr); 4769 selected_frame_sp = thread->GetSelectedFrame(); 4770 if (!selected_frame_sp) { 4771 diagnostic_manager.Printf( 4772 eDiagnosticSeverityError, 4773 "RunThreadPlan called without a selected frame on thread %d", 4774 thread_idx_id); 4775 return eExpressionSetupError; 4776 } 4777 } 4778 4779 // Make sure the timeout values make sense. The one thread timeout needs to 4780 // be smaller than the overall timeout. 4781 if (options.GetOneThreadTimeout() && options.GetTimeout() && 4782 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 4783 diagnostic_manager.PutString(eDiagnosticSeverityError, 4784 "RunThreadPlan called with one thread " 4785 "timeout greater than total timeout"); 4786 return eExpressionSetupError; 4787 } 4788 4789 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 4790 4791 // N.B. Running the target may unset the currently selected thread and frame. 4792 // We don't want to do that either, so we should arrange to reset them as 4793 // well. 4794 4795 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 4796 4797 uint32_t selected_tid; 4798 StackID selected_stack_id; 4799 if (selected_thread_sp) { 4800 selected_tid = selected_thread_sp->GetIndexID(); 4801 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 4802 } else { 4803 selected_tid = LLDB_INVALID_THREAD_ID; 4804 } 4805 4806 HostThread backup_private_state_thread; 4807 lldb::StateType old_state = eStateInvalid; 4808 lldb::ThreadPlanSP stopper_base_plan_sp; 4809 4810 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_STEP | 4811 LIBLLDB_LOG_PROCESS)); 4812 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 4813 // Yikes, we are running on the private state thread! So we can't wait for 4814 // public events on this thread, since we are the thread that is generating 4815 // public events. The simplest thing to do is to spin up a temporary thread 4816 // to handle private state thread events while we are fielding public 4817 // events here. 4818 LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " 4819 "another state thread to handle the events."); 4820 4821 backup_private_state_thread = m_private_state_thread; 4822 4823 // One other bit of business: we want to run just this thread plan and 4824 // anything it pushes, and then stop, returning control here. But in the 4825 // normal course of things, the plan above us on the stack would be given a 4826 // shot at the stop event before deciding to stop, and we don't want that. 4827 // So we insert a "stopper" base plan on the stack before the plan we want 4828 // to run. Since base plans always stop and return control to the user, 4829 // that will do just what we want. 4830 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 4831 thread->QueueThreadPlan(stopper_base_plan_sp, false); 4832 // Have to make sure our public state is stopped, since otherwise the 4833 // reporting logic below doesn't work correctly. 4834 old_state = m_public_state.GetValue(); 4835 m_public_state.SetValueNoLock(eStateStopped); 4836 4837 // Now spin up the private state thread: 4838 StartPrivateStateThread(true); 4839 } 4840 4841 thread->QueueThreadPlan( 4842 thread_plan_sp, false); // This used to pass "true" does that make sense? 4843 4844 if (options.GetDebug()) { 4845 // In this case, we aren't actually going to run, we just want to stop 4846 // right away. Flush this thread so we will refetch the stacks and show the 4847 // correct backtrace. 4848 // FIXME: To make this prettier we should invent some stop reason for this, 4849 // but that 4850 // is only cosmetic, and this functionality is only of use to lldb 4851 // developers who can live with not pretty... 4852 thread->Flush(); 4853 return eExpressionStoppedForDebug; 4854 } 4855 4856 ListenerSP listener_sp( 4857 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 4858 4859 lldb::EventSP event_to_broadcast_sp; 4860 4861 { 4862 // This process event hijacker Hijacks the Public events and its destructor 4863 // makes sure that the process events get restored on exit to the function. 4864 // 4865 // If the event needs to propagate beyond the hijacker (e.g., the process 4866 // exits during execution), then the event is put into 4867 // event_to_broadcast_sp for rebroadcasting. 4868 4869 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 4870 4871 if (log) { 4872 StreamString s; 4873 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 4874 LLDB_LOGF(log, 4875 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 4876 " to run thread plan \"%s\".", 4877 thread->GetIndexID(), thread->GetID(), s.GetData()); 4878 } 4879 4880 bool got_event; 4881 lldb::EventSP event_sp; 4882 lldb::StateType stop_state = lldb::eStateInvalid; 4883 4884 bool before_first_timeout = true; // This is set to false the first time 4885 // that we have to halt the target. 4886 bool do_resume = true; 4887 bool handle_running_event = true; 4888 4889 // This is just for accounting: 4890 uint32_t num_resumes = 0; 4891 4892 // If we are going to run all threads the whole time, or if we are only 4893 // going to run one thread, then we don't need the first timeout. So we 4894 // pretend we are after the first timeout already. 4895 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4896 before_first_timeout = false; 4897 4898 LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", 4899 options.GetStopOthers(), options.GetTryAllThreads(), 4900 before_first_timeout); 4901 4902 // This isn't going to work if there are unfetched events on the queue. Are 4903 // there cases where we might want to run the remaining events here, and 4904 // then try to call the function? That's probably being too tricky for our 4905 // own good. 4906 4907 Event *other_events = listener_sp->PeekAtNextEvent(); 4908 if (other_events != nullptr) { 4909 diagnostic_manager.PutString( 4910 eDiagnosticSeverityError, 4911 "RunThreadPlan called with pending events on the queue."); 4912 return eExpressionSetupError; 4913 } 4914 4915 // We also need to make sure that the next event is delivered. We might be 4916 // calling a function as part of a thread plan, in which case the last 4917 // delivered event could be the running event, and we don't want event 4918 // coalescing to cause us to lose OUR running event... 4919 ForceNextEventDelivery(); 4920 4921 // This while loop must exit out the bottom, there's cleanup that we need to do 4922 // when we are done. So don't call return anywhere within it. 4923 4924 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 4925 // It's pretty much impossible to write test cases for things like: One 4926 // thread timeout expires, I go to halt, but the process already stopped on 4927 // the function call stop breakpoint. Turning on this define will make us 4928 // not fetch the first event till after the halt. So if you run a quick 4929 // function, it will have completed, and the completion event will be 4930 // waiting, when you interrupt for halt. The expression evaluation should 4931 // still succeed. 4932 bool miss_first_event = true; 4933 #endif 4934 while (true) { 4935 // We usually want to resume the process if we get to the top of the 4936 // loop. The only exception is if we get two running events with no 4937 // intervening stop, which can happen, we will just wait for then next 4938 // stop event. 4939 LLDB_LOGF(log, 4940 "Top of while loop: do_resume: %i handle_running_event: %i " 4941 "before_first_timeout: %i.", 4942 do_resume, handle_running_event, before_first_timeout); 4943 4944 if (do_resume || handle_running_event) { 4945 // Do the initial resume and wait for the running event before going 4946 // further. 4947 4948 if (do_resume) { 4949 num_resumes++; 4950 Status resume_error = PrivateResume(); 4951 if (!resume_error.Success()) { 4952 diagnostic_manager.Printf( 4953 eDiagnosticSeverityError, 4954 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 4955 resume_error.AsCString()); 4956 return_value = eExpressionSetupError; 4957 break; 4958 } 4959 } 4960 4961 got_event = 4962 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 4963 if (!got_event) { 4964 LLDB_LOGF(log, 4965 "Process::RunThreadPlan(): didn't get any event after " 4966 "resume %" PRIu32 ", exiting.", 4967 num_resumes); 4968 4969 diagnostic_manager.Printf(eDiagnosticSeverityError, 4970 "didn't get any event after resume %" PRIu32 4971 ", exiting.", 4972 num_resumes); 4973 return_value = eExpressionSetupError; 4974 break; 4975 } 4976 4977 stop_state = 4978 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4979 4980 if (stop_state != eStateRunning) { 4981 bool restarted = false; 4982 4983 if (stop_state == eStateStopped) { 4984 restarted = Process::ProcessEventData::GetRestartedFromEvent( 4985 event_sp.get()); 4986 LLDB_LOGF( 4987 log, 4988 "Process::RunThreadPlan(): didn't get running event after " 4989 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 4990 "handle_running_event: %i).", 4991 num_resumes, StateAsCString(stop_state), restarted, do_resume, 4992 handle_running_event); 4993 } 4994 4995 if (restarted) { 4996 // This is probably an overabundance of caution, I don't think I 4997 // should ever get a stopped & restarted event here. But if I do, 4998 // the best thing is to Halt and then get out of here. 4999 const bool clear_thread_plans = false; 5000 const bool use_run_lock = false; 5001 Halt(clear_thread_plans, use_run_lock); 5002 } 5003 5004 diagnostic_manager.Printf( 5005 eDiagnosticSeverityError, 5006 "didn't get running event after initial resume, got %s instead.", 5007 StateAsCString(stop_state)); 5008 return_value = eExpressionSetupError; 5009 break; 5010 } 5011 5012 if (log) 5013 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 5014 // We need to call the function synchronously, so spin waiting for it 5015 // to return. If we get interrupted while executing, we're going to 5016 // lose our context, and won't be able to gather the result at this 5017 // point. We set the timeout AFTER the resume, since the resume takes 5018 // some time and we don't want to charge that to the timeout. 5019 } else { 5020 if (log) 5021 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 5022 } 5023 5024 do_resume = true; 5025 handle_running_event = true; 5026 5027 // Now wait for the process to stop again: 5028 event_sp.reset(); 5029 5030 Timeout<std::micro> timeout = 5031 GetExpressionTimeout(options, before_first_timeout); 5032 if (log) { 5033 if (timeout) { 5034 auto now = system_clock::now(); 5035 LLDB_LOGF(log, 5036 "Process::RunThreadPlan(): about to wait - now is %s - " 5037 "endpoint is %s", 5038 llvm::to_string(now).c_str(), 5039 llvm::to_string(now + *timeout).c_str()); 5040 } else { 5041 LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); 5042 } 5043 } 5044 5045 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5046 // See comment above... 5047 if (miss_first_event) { 5048 std::this_thread::sleep_for(std::chrono::milliseconds(1)); 5049 miss_first_event = false; 5050 got_event = false; 5051 } else 5052 #endif 5053 got_event = listener_sp->GetEvent(event_sp, timeout); 5054 5055 if (got_event) { 5056 if (event_sp) { 5057 bool keep_going = false; 5058 if (event_sp->GetType() == eBroadcastBitInterrupt) { 5059 const bool clear_thread_plans = false; 5060 const bool use_run_lock = false; 5061 Halt(clear_thread_plans, use_run_lock); 5062 return_value = eExpressionInterrupted; 5063 diagnostic_manager.PutString(eDiagnosticSeverityRemark, 5064 "execution halted by user interrupt."); 5065 LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " 5066 "eBroadcastBitInterrupted, exiting."); 5067 break; 5068 } else { 5069 stop_state = 5070 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5071 LLDB_LOGF(log, 5072 "Process::RunThreadPlan(): in while loop, got event: %s.", 5073 StateAsCString(stop_state)); 5074 5075 switch (stop_state) { 5076 case lldb::eStateStopped: { 5077 // We stopped, figure out what we are going to do now. 5078 ThreadSP thread_sp = 5079 GetThreadList().FindThreadByIndexID(thread_idx_id); 5080 if (!thread_sp) { 5081 // Ooh, our thread has vanished. Unlikely that this was 5082 // successful execution... 5083 LLDB_LOGF(log, 5084 "Process::RunThreadPlan(): execution completed " 5085 "but our thread (index-id=%u) has vanished.", 5086 thread_idx_id); 5087 return_value = eExpressionInterrupted; 5088 } else if (Process::ProcessEventData::GetRestartedFromEvent( 5089 event_sp.get())) { 5090 // If we were restarted, we just need to go back up to fetch 5091 // another event. 5092 if (log) { 5093 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " 5094 "restart, so we'll continue waiting."); 5095 } 5096 keep_going = true; 5097 do_resume = false; 5098 handle_running_event = true; 5099 } else { 5100 const bool handle_interrupts = true; 5101 return_value = *HandleStoppedEvent( 5102 *thread, thread_plan_sp, thread_plan_restorer, event_sp, 5103 event_to_broadcast_sp, options, handle_interrupts); 5104 } 5105 } break; 5106 5107 case lldb::eStateRunning: 5108 // This shouldn't really happen, but sometimes we do get two 5109 // running events without an intervening stop, and in that case 5110 // we should just go back to waiting for the stop. 5111 do_resume = false; 5112 keep_going = true; 5113 handle_running_event = false; 5114 break; 5115 5116 default: 5117 LLDB_LOGF(log, 5118 "Process::RunThreadPlan(): execution stopped with " 5119 "unexpected state: %s.", 5120 StateAsCString(stop_state)); 5121 5122 if (stop_state == eStateExited) 5123 event_to_broadcast_sp = event_sp; 5124 5125 diagnostic_manager.PutString( 5126 eDiagnosticSeverityError, 5127 "execution stopped with unexpected state."); 5128 return_value = eExpressionInterrupted; 5129 break; 5130 } 5131 } 5132 5133 if (keep_going) 5134 continue; 5135 else 5136 break; 5137 } else { 5138 if (log) 5139 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5140 "the event pointer was null. How odd..."); 5141 return_value = eExpressionInterrupted; 5142 break; 5143 } 5144 } else { 5145 // If we didn't get an event that means we've timed out... We will 5146 // interrupt the process here. Depending on what we were asked to do 5147 // we will either exit, or try with all threads running for the same 5148 // timeout. 5149 5150 if (log) { 5151 if (options.GetTryAllThreads()) { 5152 if (before_first_timeout) { 5153 LLDB_LOG(log, 5154 "Running function with one thread timeout timed out."); 5155 } else 5156 LLDB_LOG(log, "Restarting function with all threads enabled and " 5157 "timeout: {0} timed out, abandoning execution.", 5158 timeout); 5159 } else 5160 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5161 "abandoning execution.", 5162 timeout); 5163 } 5164 5165 // It is possible that between the time we issued the Halt, and we get 5166 // around to calling Halt the target could have stopped. That's fine, 5167 // Halt will figure that out and send the appropriate Stopped event. 5168 // BUT it is also possible that we stopped & restarted (e.g. hit a 5169 // signal with "stop" set to false.) In 5170 // that case, we'll get the stopped & restarted event, and we should go 5171 // back to waiting for the Halt's stopped event. That's what this 5172 // while loop does. 5173 5174 bool back_to_top = true; 5175 uint32_t try_halt_again = 0; 5176 bool do_halt = true; 5177 const uint32_t num_retries = 5; 5178 while (try_halt_again < num_retries) { 5179 Status halt_error; 5180 if (do_halt) { 5181 LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); 5182 const bool clear_thread_plans = false; 5183 const bool use_run_lock = false; 5184 Halt(clear_thread_plans, use_run_lock); 5185 } 5186 if (halt_error.Success()) { 5187 if (log) 5188 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5189 5190 got_event = 5191 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5192 5193 if (got_event) { 5194 stop_state = 5195 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5196 if (log) { 5197 LLDB_LOGF(log, 5198 "Process::RunThreadPlan(): Stopped with event: %s", 5199 StateAsCString(stop_state)); 5200 if (stop_state == lldb::eStateStopped && 5201 Process::ProcessEventData::GetInterruptedFromEvent( 5202 event_sp.get())) 5203 log->PutCString(" Event was the Halt interruption event."); 5204 } 5205 5206 if (stop_state == lldb::eStateStopped) { 5207 if (Process::ProcessEventData::GetRestartedFromEvent( 5208 event_sp.get())) { 5209 if (log) 5210 log->PutCString("Process::RunThreadPlan(): Went to halt " 5211 "but got a restarted event, there must be " 5212 "an un-restarted stopped event so try " 5213 "again... " 5214 "Exiting wait loop."); 5215 try_halt_again++; 5216 do_halt = false; 5217 continue; 5218 } 5219 5220 // Between the time we initiated the Halt and the time we 5221 // delivered it, the process could have already finished its 5222 // job. Check that here: 5223 const bool handle_interrupts = false; 5224 if (auto result = HandleStoppedEvent( 5225 *thread, thread_plan_sp, thread_plan_restorer, event_sp, 5226 event_to_broadcast_sp, options, handle_interrupts)) { 5227 return_value = *result; 5228 back_to_top = false; 5229 break; 5230 } 5231 5232 if (!options.GetTryAllThreads()) { 5233 if (log) 5234 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5235 "was false, we stopped so now we're " 5236 "quitting."); 5237 return_value = eExpressionInterrupted; 5238 back_to_top = false; 5239 break; 5240 } 5241 5242 if (before_first_timeout) { 5243 // Set all the other threads to run, and return to the top of 5244 // the loop, which will continue; 5245 before_first_timeout = false; 5246 thread_plan_sp->SetStopOthers(false); 5247 if (log) 5248 log->PutCString( 5249 "Process::RunThreadPlan(): about to resume."); 5250 5251 back_to_top = true; 5252 break; 5253 } else { 5254 // Running all threads failed, so return Interrupted. 5255 if (log) 5256 log->PutCString("Process::RunThreadPlan(): running all " 5257 "threads timed out."); 5258 return_value = eExpressionInterrupted; 5259 back_to_top = false; 5260 break; 5261 } 5262 } 5263 } else { 5264 if (log) 5265 log->PutCString("Process::RunThreadPlan(): halt said it " 5266 "succeeded, but I got no event. " 5267 "I'm getting out of here passing Interrupted."); 5268 return_value = eExpressionInterrupted; 5269 back_to_top = false; 5270 break; 5271 } 5272 } else { 5273 try_halt_again++; 5274 continue; 5275 } 5276 } 5277 5278 if (!back_to_top || try_halt_again > num_retries) 5279 break; 5280 else 5281 continue; 5282 } 5283 } // END WAIT LOOP 5284 5285 // If we had to start up a temporary private state thread to run this 5286 // thread plan, shut it down now. 5287 if (backup_private_state_thread.IsJoinable()) { 5288 StopPrivateStateThread(); 5289 Status error; 5290 m_private_state_thread = backup_private_state_thread; 5291 if (stopper_base_plan_sp) { 5292 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5293 } 5294 if (old_state != eStateInvalid) 5295 m_public_state.SetValueNoLock(old_state); 5296 } 5297 5298 if (return_value != eExpressionCompleted && log) { 5299 // Print a backtrace into the log so we can figure out where we are: 5300 StreamString s; 5301 s.PutCString("Thread state after unsuccessful completion: \n"); 5302 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX); 5303 log->PutString(s.GetString()); 5304 } 5305 // Restore the thread state if we are going to discard the plan execution. 5306 // There are three cases where this could happen: 1) The execution 5307 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5308 // was true 3) We got some other error, and discard_on_error was true 5309 bool should_unwind = (return_value == eExpressionInterrupted && 5310 options.DoesUnwindOnError()) || 5311 (return_value == eExpressionHitBreakpoint && 5312 options.DoesIgnoreBreakpoints()); 5313 5314 if (return_value == eExpressionCompleted || should_unwind) { 5315 thread_plan_sp->RestoreThreadState(); 5316 } 5317 5318 // Now do some processing on the results of the run: 5319 if (return_value == eExpressionInterrupted || 5320 return_value == eExpressionHitBreakpoint) { 5321 if (log) { 5322 StreamString s; 5323 if (event_sp) 5324 event_sp->Dump(&s); 5325 else { 5326 log->PutCString("Process::RunThreadPlan(): Stop event that " 5327 "interrupted us is NULL."); 5328 } 5329 5330 StreamString ts; 5331 5332 const char *event_explanation = nullptr; 5333 5334 do { 5335 if (!event_sp) { 5336 event_explanation = "<no event>"; 5337 break; 5338 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5339 event_explanation = "<user interrupt>"; 5340 break; 5341 } else { 5342 const Process::ProcessEventData *event_data = 5343 Process::ProcessEventData::GetEventDataFromEvent( 5344 event_sp.get()); 5345 5346 if (!event_data) { 5347 event_explanation = "<no event data>"; 5348 break; 5349 } 5350 5351 Process *process = event_data->GetProcessSP().get(); 5352 5353 if (!process) { 5354 event_explanation = "<no process>"; 5355 break; 5356 } 5357 5358 ThreadList &thread_list = process->GetThreadList(); 5359 5360 uint32_t num_threads = thread_list.GetSize(); 5361 uint32_t thread_index; 5362 5363 ts.Printf("<%u threads> ", num_threads); 5364 5365 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5366 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5367 5368 if (!thread) { 5369 ts.Printf("<?> "); 5370 continue; 5371 } 5372 5373 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5374 RegisterContext *register_context = 5375 thread->GetRegisterContext().get(); 5376 5377 if (register_context) 5378 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5379 else 5380 ts.Printf("[ip unknown] "); 5381 5382 // Show the private stop info here, the public stop info will be 5383 // from the last natural stop. 5384 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5385 if (stop_info_sp) { 5386 const char *stop_desc = stop_info_sp->GetDescription(); 5387 if (stop_desc) 5388 ts.PutCString(stop_desc); 5389 } 5390 ts.Printf(">"); 5391 } 5392 5393 event_explanation = ts.GetData(); 5394 } 5395 } while (false); 5396 5397 if (event_explanation) 5398 LLDB_LOGF(log, 5399 "Process::RunThreadPlan(): execution interrupted: %s %s", 5400 s.GetData(), event_explanation); 5401 else 5402 LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", 5403 s.GetData()); 5404 } 5405 5406 if (should_unwind) { 5407 LLDB_LOGF(log, 5408 "Process::RunThreadPlan: ExecutionInterrupted - " 5409 "discarding thread plans up to %p.", 5410 static_cast<void *>(thread_plan_sp.get())); 5411 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5412 } else { 5413 LLDB_LOGF(log, 5414 "Process::RunThreadPlan: ExecutionInterrupted - for " 5415 "plan: %p not discarding.", 5416 static_cast<void *>(thread_plan_sp.get())); 5417 } 5418 } else if (return_value == eExpressionSetupError) { 5419 if (log) 5420 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5421 5422 if (options.DoesUnwindOnError()) { 5423 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5424 } 5425 } else { 5426 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5427 if (log) 5428 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5429 return_value = eExpressionCompleted; 5430 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5431 if (log) 5432 log->PutCString( 5433 "Process::RunThreadPlan(): thread plan was discarded"); 5434 return_value = eExpressionDiscarded; 5435 } else { 5436 if (log) 5437 log->PutCString( 5438 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5439 if (options.DoesUnwindOnError() && thread_plan_sp) { 5440 if (log) 5441 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5442 "'cause unwind_on_error is set."); 5443 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5444 } 5445 } 5446 } 5447 5448 // Thread we ran the function in may have gone away because we ran the 5449 // target Check that it's still there, and if it is put it back in the 5450 // context. Also restore the frame in the context if it is still present. 5451 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5452 if (thread) { 5453 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5454 } 5455 5456 // Also restore the current process'es selected frame & thread, since this 5457 // function calling may be done behind the user's back. 5458 5459 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5460 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5461 selected_stack_id.IsValid()) { 5462 // We were able to restore the selected thread, now restore the frame: 5463 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5464 StackFrameSP old_frame_sp = 5465 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5466 selected_stack_id); 5467 if (old_frame_sp) 5468 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5469 old_frame_sp.get()); 5470 } 5471 } 5472 } 5473 5474 // If the process exited during the run of the thread plan, notify everyone. 5475 5476 if (event_to_broadcast_sp) { 5477 if (log) 5478 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5479 BroadcastEvent(event_to_broadcast_sp); 5480 } 5481 5482 return return_value; 5483 } 5484 5485 const char *Process::ExecutionResultAsCString(ExpressionResults result) { 5486 const char *result_name; 5487 5488 switch (result) { 5489 case eExpressionCompleted: 5490 result_name = "eExpressionCompleted"; 5491 break; 5492 case eExpressionDiscarded: 5493 result_name = "eExpressionDiscarded"; 5494 break; 5495 case eExpressionInterrupted: 5496 result_name = "eExpressionInterrupted"; 5497 break; 5498 case eExpressionHitBreakpoint: 5499 result_name = "eExpressionHitBreakpoint"; 5500 break; 5501 case eExpressionSetupError: 5502 result_name = "eExpressionSetupError"; 5503 break; 5504 case eExpressionParseError: 5505 result_name = "eExpressionParseError"; 5506 break; 5507 case eExpressionResultUnavailable: 5508 result_name = "eExpressionResultUnavailable"; 5509 break; 5510 case eExpressionTimedOut: 5511 result_name = "eExpressionTimedOut"; 5512 break; 5513 case eExpressionStoppedForDebug: 5514 result_name = "eExpressionStoppedForDebug"; 5515 break; 5516 } 5517 return result_name; 5518 } 5519 5520 void Process::GetStatus(Stream &strm) { 5521 const StateType state = GetState(); 5522 if (StateIsStoppedState(state, false)) { 5523 if (state == eStateExited) { 5524 int exit_status = GetExitStatus(); 5525 const char *exit_description = GetExitDescription(); 5526 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5527 GetID(), exit_status, exit_status, 5528 exit_description ? exit_description : ""); 5529 } else { 5530 if (state == eStateConnected) 5531 strm.Printf("Connected to remote target.\n"); 5532 else 5533 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5534 } 5535 } else { 5536 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5537 } 5538 } 5539 5540 size_t Process::GetThreadStatus(Stream &strm, 5541 bool only_threads_with_stop_reason, 5542 uint32_t start_frame, uint32_t num_frames, 5543 uint32_t num_frames_with_source, 5544 bool stop_format) { 5545 size_t num_thread_infos_dumped = 0; 5546 5547 // You can't hold the thread list lock while calling Thread::GetStatus. That 5548 // very well might run code (e.g. if we need it to get return values or 5549 // arguments.) For that to work the process has to be able to acquire it. 5550 // So instead copy the thread ID's, and look them up one by one: 5551 5552 uint32_t num_threads; 5553 std::vector<lldb::tid_t> thread_id_array; 5554 // Scope for thread list locker; 5555 { 5556 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5557 ThreadList &curr_thread_list = GetThreadList(); 5558 num_threads = curr_thread_list.GetSize(); 5559 uint32_t idx; 5560 thread_id_array.resize(num_threads); 5561 for (idx = 0; idx < num_threads; ++idx) 5562 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5563 } 5564 5565 for (uint32_t i = 0; i < num_threads; i++) { 5566 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5567 if (thread_sp) { 5568 if (only_threads_with_stop_reason) { 5569 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5570 if (!stop_info_sp || !stop_info_sp->IsValid()) 5571 continue; 5572 } 5573 thread_sp->GetStatus(strm, start_frame, num_frames, 5574 num_frames_with_source, 5575 stop_format); 5576 ++num_thread_infos_dumped; 5577 } else { 5578 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5579 LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 5580 " vanished while running Thread::GetStatus."); 5581 } 5582 } 5583 return num_thread_infos_dumped; 5584 } 5585 5586 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5587 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5588 } 5589 5590 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5591 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5592 region.GetByteSize()); 5593 } 5594 5595 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5596 void *baton) { 5597 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5598 } 5599 5600 bool Process::RunPreResumeActions() { 5601 bool result = true; 5602 while (!m_pre_resume_actions.empty()) { 5603 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5604 m_pre_resume_actions.pop_back(); 5605 bool this_result = action.callback(action.baton); 5606 if (result) 5607 result = this_result; 5608 } 5609 return result; 5610 } 5611 5612 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5613 5614 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5615 { 5616 PreResumeCallbackAndBaton element(callback, baton); 5617 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5618 if (found_iter != m_pre_resume_actions.end()) 5619 { 5620 m_pre_resume_actions.erase(found_iter); 5621 } 5622 } 5623 5624 ProcessRunLock &Process::GetRunLock() { 5625 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5626 return m_private_run_lock; 5627 else 5628 return m_public_run_lock; 5629 } 5630 5631 bool Process::CurrentThreadIsPrivateStateThread() 5632 { 5633 return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); 5634 } 5635 5636 5637 void Process::Flush() { 5638 m_thread_list.Flush(); 5639 m_extended_thread_list.Flush(); 5640 m_extended_thread_stop_id = 0; 5641 m_queue_list.Clear(); 5642 m_queue_list_stop_id = 0; 5643 } 5644 5645 void Process::DidExec() { 5646 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 5647 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 5648 5649 Target &target = GetTarget(); 5650 target.CleanupProcess(); 5651 target.ClearModules(false); 5652 m_dynamic_checkers_up.reset(); 5653 m_abi_sp.reset(); 5654 m_system_runtime_up.reset(); 5655 m_os_up.reset(); 5656 m_dyld_up.reset(); 5657 m_jit_loaders_up.reset(); 5658 m_image_tokens.clear(); 5659 m_allocated_memory_cache.Clear(); 5660 { 5661 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5662 m_language_runtimes.clear(); 5663 } 5664 m_instrumentation_runtimes.clear(); 5665 m_thread_list.DiscardThreadPlans(); 5666 m_memory_cache.Clear(true); 5667 DoDidExec(); 5668 CompleteAttach(); 5669 // Flush the process (threads and all stack frames) after running 5670 // CompleteAttach() in case the dynamic loader loaded things in new 5671 // locations. 5672 Flush(); 5673 5674 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5675 // let the target know so it can do any cleanup it needs to. 5676 target.DidExec(); 5677 } 5678 5679 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5680 if (address == nullptr) { 5681 error.SetErrorString("Invalid address argument"); 5682 return LLDB_INVALID_ADDRESS; 5683 } 5684 5685 addr_t function_addr = LLDB_INVALID_ADDRESS; 5686 5687 addr_t addr = address->GetLoadAddress(&GetTarget()); 5688 std::map<addr_t, addr_t>::const_iterator iter = 5689 m_resolved_indirect_addresses.find(addr); 5690 if (iter != m_resolved_indirect_addresses.end()) { 5691 function_addr = (*iter).second; 5692 } else { 5693 if (!CallVoidArgVoidPtrReturn(address, function_addr)) { 5694 Symbol *symbol = address->CalculateSymbolContextSymbol(); 5695 error.SetErrorStringWithFormat( 5696 "Unable to call resolver for indirect function %s", 5697 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 5698 function_addr = LLDB_INVALID_ADDRESS; 5699 } else { 5700 m_resolved_indirect_addresses.insert( 5701 std::pair<addr_t, addr_t>(addr, function_addr)); 5702 } 5703 } 5704 return function_addr; 5705 } 5706 5707 void Process::ModulesDidLoad(ModuleList &module_list) { 5708 SystemRuntime *sys_runtime = GetSystemRuntime(); 5709 if (sys_runtime) { 5710 sys_runtime->ModulesDidLoad(module_list); 5711 } 5712 5713 GetJITLoaders().ModulesDidLoad(module_list); 5714 5715 // Give runtimes a chance to be created. 5716 InstrumentationRuntime::ModulesDidLoad(module_list, this, 5717 m_instrumentation_runtimes); 5718 5719 // Tell runtimes about new modules. 5720 for (auto pos = m_instrumentation_runtimes.begin(); 5721 pos != m_instrumentation_runtimes.end(); ++pos) { 5722 InstrumentationRuntimeSP runtime = pos->second; 5723 runtime->ModulesDidLoad(module_list); 5724 } 5725 5726 // Let any language runtimes we have already created know about the modules 5727 // that loaded. 5728 5729 // Iterate over a copy of this language runtime list in case the language 5730 // runtime ModulesDidLoad somehow causes the language runtime to be 5731 // unloaded. 5732 { 5733 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5734 LanguageRuntimeCollection language_runtimes(m_language_runtimes); 5735 for (const auto &pair : language_runtimes) { 5736 // We must check language_runtime_sp to make sure it is not nullptr as we 5737 // might cache the fact that we didn't have a language runtime for a 5738 // language. 5739 LanguageRuntimeSP language_runtime_sp = pair.second; 5740 if (language_runtime_sp) 5741 language_runtime_sp->ModulesDidLoad(module_list); 5742 } 5743 } 5744 5745 // If we don't have an operating system plug-in, try to load one since 5746 // loading shared libraries might cause a new one to try and load 5747 if (!m_os_up) 5748 LoadOperatingSystemPlugin(false); 5749 5750 // Give structured-data plugins a chance to see the modified modules. 5751 for (auto pair : m_structured_data_plugin_map) { 5752 if (pair.second) 5753 pair.second->ModulesDidLoad(*this, module_list); 5754 } 5755 } 5756 5757 void Process::PrintWarning(uint64_t warning_type, const void *repeat_key, 5758 const char *fmt, ...) { 5759 bool print_warning = true; 5760 5761 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 5762 if (!stream_sp) 5763 return; 5764 if (warning_type == eWarningsOptimization && !GetWarningsOptimization()) { 5765 return; 5766 } 5767 5768 if (repeat_key != nullptr) { 5769 WarningsCollection::iterator it = m_warnings_issued.find(warning_type); 5770 if (it == m_warnings_issued.end()) { 5771 m_warnings_issued[warning_type] = WarningsPointerSet(); 5772 m_warnings_issued[warning_type].insert(repeat_key); 5773 } else { 5774 if (it->second.find(repeat_key) != it->second.end()) { 5775 print_warning = false; 5776 } else { 5777 it->second.insert(repeat_key); 5778 } 5779 } 5780 } 5781 5782 if (print_warning) { 5783 va_list args; 5784 va_start(args, fmt); 5785 stream_sp->PrintfVarArg(fmt, args); 5786 va_end(args); 5787 } 5788 } 5789 5790 void Process::PrintWarningOptimization(const SymbolContext &sc) { 5791 if (GetWarningsOptimization() && sc.module_sp && 5792 !sc.module_sp->GetFileSpec().GetFilename().IsEmpty() && sc.function && 5793 sc.function->GetIsOptimized()) { 5794 PrintWarning(Process::Warnings::eWarningsOptimization, sc.module_sp.get(), 5795 "%s was compiled with optimization - stepping may behave " 5796 "oddly; variables may not be available.\n", 5797 sc.module_sp->GetFileSpec().GetFilename().GetCString()); 5798 } 5799 } 5800 5801 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 5802 info.Clear(); 5803 5804 PlatformSP platform_sp = GetTarget().GetPlatform(); 5805 if (!platform_sp) 5806 return false; 5807 5808 return platform_sp->GetProcessInfo(GetID(), info); 5809 } 5810 5811 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 5812 ThreadCollectionSP threads; 5813 5814 const MemoryHistorySP &memory_history = 5815 MemoryHistory::FindPlugin(shared_from_this()); 5816 5817 if (!memory_history) { 5818 return threads; 5819 } 5820 5821 threads = std::make_shared<ThreadCollection>( 5822 memory_history->GetHistoryThreads(addr)); 5823 5824 return threads; 5825 } 5826 5827 InstrumentationRuntimeSP 5828 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 5829 InstrumentationRuntimeCollection::iterator pos; 5830 pos = m_instrumentation_runtimes.find(type); 5831 if (pos == m_instrumentation_runtimes.end()) { 5832 return InstrumentationRuntimeSP(); 5833 } else 5834 return (*pos).second; 5835 } 5836 5837 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 5838 const ArchSpec &arch, ModuleSpec &module_spec) { 5839 module_spec.Clear(); 5840 return false; 5841 } 5842 5843 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 5844 m_image_tokens.push_back(image_ptr); 5845 return m_image_tokens.size() - 1; 5846 } 5847 5848 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 5849 if (token < m_image_tokens.size()) 5850 return m_image_tokens[token]; 5851 return LLDB_INVALID_ADDRESS; 5852 } 5853 5854 void Process::ResetImageToken(size_t token) { 5855 if (token < m_image_tokens.size()) 5856 m_image_tokens[token] = LLDB_INVALID_ADDRESS; 5857 } 5858 5859 Address 5860 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 5861 AddressRange range_bounds) { 5862 Target &target = GetTarget(); 5863 DisassemblerSP disassembler_sp; 5864 InstructionList *insn_list = nullptr; 5865 5866 Address retval = default_stop_addr; 5867 5868 if (!target.GetUseFastStepping()) 5869 return retval; 5870 if (!default_stop_addr.IsValid()) 5871 return retval; 5872 5873 const char *plugin_name = nullptr; 5874 const char *flavor = nullptr; 5875 const bool prefer_file_cache = true; 5876 disassembler_sp = Disassembler::DisassembleRange( 5877 target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds, 5878 prefer_file_cache); 5879 if (disassembler_sp) 5880 insn_list = &disassembler_sp->GetInstructionList(); 5881 5882 if (insn_list == nullptr) { 5883 return retval; 5884 } 5885 5886 size_t insn_offset = 5887 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 5888 if (insn_offset == UINT32_MAX) { 5889 return retval; 5890 } 5891 5892 uint32_t branch_index = 5893 insn_list->GetIndexOfNextBranchInstruction(insn_offset, target, 5894 false /* ignore_calls*/, 5895 nullptr); 5896 if (branch_index == UINT32_MAX) { 5897 return retval; 5898 } 5899 5900 if (branch_index > insn_offset) { 5901 Address next_branch_insn_address = 5902 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 5903 if (next_branch_insn_address.IsValid() && 5904 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 5905 retval = next_branch_insn_address; 5906 } 5907 } 5908 5909 return retval; 5910 } 5911 5912 Status 5913 Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { 5914 5915 Status error; 5916 5917 lldb::addr_t range_end = 0; 5918 5919 region_list.clear(); 5920 do { 5921 lldb_private::MemoryRegionInfo region_info; 5922 error = GetMemoryRegionInfo(range_end, region_info); 5923 // GetMemoryRegionInfo should only return an error if it is unimplemented. 5924 if (error.Fail()) { 5925 region_list.clear(); 5926 break; 5927 } 5928 5929 range_end = region_info.GetRange().GetRangeEnd(); 5930 if (region_info.GetMapped() == MemoryRegionInfo::eYes) { 5931 region_list.push_back(std::move(region_info)); 5932 } 5933 } while (range_end != LLDB_INVALID_ADDRESS); 5934 5935 return error; 5936 } 5937 5938 Status 5939 Process::ConfigureStructuredData(ConstString type_name, 5940 const StructuredData::ObjectSP &config_sp) { 5941 // If you get this, the Process-derived class needs to implement a method to 5942 // enable an already-reported asynchronous structured data feature. See 5943 // ProcessGDBRemote for an example implementation over gdb-remote. 5944 return Status("unimplemented"); 5945 } 5946 5947 void Process::MapSupportedStructuredDataPlugins( 5948 const StructuredData::Array &supported_type_names) { 5949 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 5950 5951 // Bail out early if there are no type names to map. 5952 if (supported_type_names.GetSize() == 0) { 5953 LLDB_LOGF(log, "Process::%s(): no structured data types supported", 5954 __FUNCTION__); 5955 return; 5956 } 5957 5958 // Convert StructuredData type names to ConstString instances. 5959 std::set<ConstString> const_type_names; 5960 5961 LLDB_LOGF(log, 5962 "Process::%s(): the process supports the following async " 5963 "structured data types:", 5964 __FUNCTION__); 5965 5966 supported_type_names.ForEach( 5967 [&const_type_names, &log](StructuredData::Object *object) { 5968 if (!object) { 5969 // Invalid - shouldn't be null objects in the array. 5970 return false; 5971 } 5972 5973 auto type_name = object->GetAsString(); 5974 if (!type_name) { 5975 // Invalid format - all type names should be strings. 5976 return false; 5977 } 5978 5979 const_type_names.insert(ConstString(type_name->GetValue())); 5980 LLDB_LOG(log, "- {0}", type_name->GetValue()); 5981 return true; 5982 }); 5983 5984 // For each StructuredDataPlugin, if the plugin handles any of the types in 5985 // the supported_type_names, map that type name to that plugin. Stop when 5986 // we've consumed all the type names. 5987 // FIXME: should we return an error if there are type names nobody 5988 // supports? 5989 for (uint32_t plugin_index = 0; !const_type_names.empty(); plugin_index++) { 5990 auto create_instance = 5991 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 5992 plugin_index); 5993 if (!create_instance) 5994 break; 5995 5996 // Create the plugin. 5997 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 5998 if (!plugin_sp) { 5999 // This plugin doesn't think it can work with the process. Move on to the 6000 // next. 6001 continue; 6002 } 6003 6004 // For any of the remaining type names, map any that this plugin supports. 6005 std::vector<ConstString> names_to_remove; 6006 for (auto &type_name : const_type_names) { 6007 if (plugin_sp->SupportsStructuredDataType(type_name)) { 6008 m_structured_data_plugin_map.insert( 6009 std::make_pair(type_name, plugin_sp)); 6010 names_to_remove.push_back(type_name); 6011 LLDB_LOGF(log, 6012 "Process::%s(): using plugin %s for type name " 6013 "%s", 6014 __FUNCTION__, plugin_sp->GetPluginName().GetCString(), 6015 type_name.GetCString()); 6016 } 6017 } 6018 6019 // Remove the type names that were consumed by this plugin. 6020 for (auto &type_name : names_to_remove) 6021 const_type_names.erase(type_name); 6022 } 6023 } 6024 6025 bool Process::RouteAsyncStructuredData( 6026 const StructuredData::ObjectSP object_sp) { 6027 // Nothing to do if there's no data. 6028 if (!object_sp) 6029 return false; 6030 6031 // The contract is this must be a dictionary, so we can look up the routing 6032 // key via the top-level 'type' string value within the dictionary. 6033 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 6034 if (!dictionary) 6035 return false; 6036 6037 // Grab the async structured type name (i.e. the feature/plugin name). 6038 ConstString type_name; 6039 if (!dictionary->GetValueForKeyAsString("type", type_name)) 6040 return false; 6041 6042 // Check if there's a plugin registered for this type name. 6043 auto find_it = m_structured_data_plugin_map.find(type_name); 6044 if (find_it == m_structured_data_plugin_map.end()) { 6045 // We don't have a mapping for this structured data type. 6046 return false; 6047 } 6048 6049 // Route the structured data to the plugin. 6050 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 6051 return true; 6052 } 6053 6054 Status Process::UpdateAutomaticSignalFiltering() { 6055 // Default implementation does nothign. 6056 // No automatic signal filtering to speak of. 6057 return Status(); 6058 } 6059 6060 UtilityFunction *Process::GetLoadImageUtilityFunction( 6061 Platform *platform, 6062 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 6063 if (platform != GetTarget().GetPlatform().get()) 6064 return nullptr; 6065 llvm::call_once(m_dlopen_utility_func_flag_once, 6066 [&] { m_dlopen_utility_func_up = factory(); }); 6067 return m_dlopen_utility_func_up.get(); 6068 } 6069 6070 bool Process::CallVoidArgVoidPtrReturn(const Address *address, 6071 addr_t &returned_func, 6072 bool trap_exceptions) { 6073 Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); 6074 if (thread == nullptr || address == nullptr) 6075 return false; 6076 6077 EvaluateExpressionOptions options; 6078 options.SetStopOthers(true); 6079 options.SetUnwindOnError(true); 6080 options.SetIgnoreBreakpoints(true); 6081 options.SetTryAllThreads(true); 6082 options.SetDebug(false); 6083 options.SetTimeout(GetUtilityExpressionTimeout()); 6084 options.SetTrapExceptions(trap_exceptions); 6085 6086 auto type_system_or_err = 6087 GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC); 6088 if (!type_system_or_err) { 6089 llvm::consumeError(type_system_or_err.takeError()); 6090 return false; 6091 } 6092 CompilerType void_ptr_type = 6093 type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType(); 6094 lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( 6095 *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); 6096 if (call_plan_sp) { 6097 DiagnosticManager diagnostics; 6098 6099 StackFrame *frame = thread->GetStackFrameAtIndex(0).get(); 6100 if (frame) { 6101 ExecutionContext exe_ctx; 6102 frame->CalculateExecutionContext(exe_ctx); 6103 ExpressionResults result = 6104 RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics); 6105 if (result == eExpressionCompleted) { 6106 returned_func = 6107 call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( 6108 LLDB_INVALID_ADDRESS); 6109 6110 if (GetAddressByteSize() == 4) { 6111 if (returned_func == UINT32_MAX) 6112 return false; 6113 } else if (GetAddressByteSize() == 8) { 6114 if (returned_func == UINT64_MAX) 6115 return false; 6116 } 6117 return true; 6118 } 6119 } 6120 } 6121 6122 return false; 6123 } 6124