1 //===-- Memory.cpp ----------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/Target/Memory.h" 11 #include <inttypes.h> 12 #include "lldb/Core/RangeMap.h" 13 #include "lldb/Target/Process.h" 14 #include "lldb/Utility/DataBufferHeap.h" 15 #include "lldb/Utility/Log.h" 16 #include "lldb/Utility/State.h" 17 18 using namespace lldb; 19 using namespace lldb_private; 20 21 //---------------------------------------------------------------------- 22 // MemoryCache constructor 23 //---------------------------------------------------------------------- 24 MemoryCache::MemoryCache(Process &process) 25 : m_mutex(), m_L1_cache(), m_L2_cache(), m_invalid_ranges(), 26 m_process(process), 27 m_L2_cache_line_byte_size(process.GetMemoryCacheLineSize()) {} 28 29 //---------------------------------------------------------------------- 30 // Destructor 31 //---------------------------------------------------------------------- 32 MemoryCache::~MemoryCache() {} 33 34 void MemoryCache::Clear(bool clear_invalid_ranges) { 35 std::lock_guard<std::recursive_mutex> guard(m_mutex); 36 m_L1_cache.clear(); 37 m_L2_cache.clear(); 38 if (clear_invalid_ranges) 39 m_invalid_ranges.Clear(); 40 m_L2_cache_line_byte_size = m_process.GetMemoryCacheLineSize(); 41 } 42 43 void MemoryCache::AddL1CacheData(lldb::addr_t addr, const void *src, 44 size_t src_len) { 45 AddL1CacheData( 46 addr, DataBufferSP(new DataBufferHeap(DataBufferHeap(src, src_len)))); 47 } 48 49 void MemoryCache::AddL1CacheData(lldb::addr_t addr, 50 const DataBufferSP &data_buffer_sp) { 51 std::lock_guard<std::recursive_mutex> guard(m_mutex); 52 m_L1_cache[addr] = data_buffer_sp; 53 } 54 55 void MemoryCache::Flush(addr_t addr, size_t size) { 56 if (size == 0) 57 return; 58 59 std::lock_guard<std::recursive_mutex> guard(m_mutex); 60 61 // Erase any blocks from the L1 cache that intersect with the flush range 62 if (!m_L1_cache.empty()) { 63 AddrRange flush_range(addr, size); 64 BlockMap::iterator pos = m_L1_cache.upper_bound(addr); 65 if (pos != m_L1_cache.begin()) { 66 --pos; 67 } 68 while (pos != m_L1_cache.end()) { 69 AddrRange chunk_range(pos->first, pos->second->GetByteSize()); 70 if (!chunk_range.DoesIntersect(flush_range)) 71 break; 72 pos = m_L1_cache.erase(pos); 73 } 74 } 75 76 if (!m_L2_cache.empty()) { 77 const uint32_t cache_line_byte_size = m_L2_cache_line_byte_size; 78 const addr_t end_addr = (addr + size - 1); 79 const addr_t first_cache_line_addr = addr - (addr % cache_line_byte_size); 80 const addr_t last_cache_line_addr = 81 end_addr - (end_addr % cache_line_byte_size); 82 // Watch for overflow where size will cause us to go off the end of the 83 // 64 bit address space 84 uint32_t num_cache_lines; 85 if (last_cache_line_addr >= first_cache_line_addr) 86 num_cache_lines = ((last_cache_line_addr - first_cache_line_addr) / 87 cache_line_byte_size) + 88 1; 89 else 90 num_cache_lines = 91 (UINT64_MAX - first_cache_line_addr + 1) / cache_line_byte_size; 92 93 uint32_t cache_idx = 0; 94 for (addr_t curr_addr = first_cache_line_addr; cache_idx < num_cache_lines; 95 curr_addr += cache_line_byte_size, ++cache_idx) { 96 BlockMap::iterator pos = m_L2_cache.find(curr_addr); 97 if (pos != m_L2_cache.end()) 98 m_L2_cache.erase(pos); 99 } 100 } 101 } 102 103 void MemoryCache::AddInvalidRange(lldb::addr_t base_addr, 104 lldb::addr_t byte_size) { 105 if (byte_size > 0) { 106 std::lock_guard<std::recursive_mutex> guard(m_mutex); 107 InvalidRanges::Entry range(base_addr, byte_size); 108 m_invalid_ranges.Append(range); 109 m_invalid_ranges.Sort(); 110 } 111 } 112 113 bool MemoryCache::RemoveInvalidRange(lldb::addr_t base_addr, 114 lldb::addr_t byte_size) { 115 if (byte_size > 0) { 116 std::lock_guard<std::recursive_mutex> guard(m_mutex); 117 const uint32_t idx = m_invalid_ranges.FindEntryIndexThatContains(base_addr); 118 if (idx != UINT32_MAX) { 119 const InvalidRanges::Entry *entry = m_invalid_ranges.GetEntryAtIndex(idx); 120 if (entry->GetRangeBase() == base_addr && 121 entry->GetByteSize() == byte_size) 122 return m_invalid_ranges.RemoveEntrtAtIndex(idx); 123 } 124 } 125 return false; 126 } 127 128 size_t MemoryCache::Read(addr_t addr, void *dst, size_t dst_len, 129 Status &error) { 130 size_t bytes_left = dst_len; 131 132 // Check the L1 cache for a range that contain the entire memory read. If we 133 // find a range in the L1 cache that does, we use it. Else we fall back to 134 // reading memory in m_L2_cache_line_byte_size byte sized chunks. The L1 135 // cache contains chunks of memory that are not required to be 136 // m_L2_cache_line_byte_size bytes in size, so we don't try anything tricky 137 // when reading from them (no partial reads from the L1 cache). 138 139 std::lock_guard<std::recursive_mutex> guard(m_mutex); 140 if (!m_L1_cache.empty()) { 141 AddrRange read_range(addr, dst_len); 142 BlockMap::iterator pos = m_L1_cache.upper_bound(addr); 143 if (pos != m_L1_cache.begin()) { 144 --pos; 145 } 146 AddrRange chunk_range(pos->first, pos->second->GetByteSize()); 147 if (chunk_range.Contains(read_range)) { 148 memcpy(dst, pos->second->GetBytes() + addr - chunk_range.GetRangeBase(), 149 dst_len); 150 return dst_len; 151 } 152 } 153 154 // If this memory read request is larger than the cache line size, then we 155 // (1) try to read as much of it at once as possible, and (2) don't add the 156 // data to the memory cache. We don't want to split a big read up into more 157 // separate reads than necessary, and with a large memory read request, it is 158 // unlikely that the caller function will ask for the next 159 // 4 bytes after the large memory read - so there's little benefit to saving 160 // it in the cache. 161 if (dst && dst_len > m_L2_cache_line_byte_size) { 162 size_t bytes_read = 163 m_process.ReadMemoryFromInferior(addr, dst, dst_len, error); 164 // Add this non block sized range to the L1 cache if we actually read 165 // anything 166 if (bytes_read > 0) 167 AddL1CacheData(addr, dst, bytes_read); 168 return bytes_read; 169 } 170 171 if (dst && bytes_left > 0) { 172 const uint32_t cache_line_byte_size = m_L2_cache_line_byte_size; 173 uint8_t *dst_buf = (uint8_t *)dst; 174 addr_t curr_addr = addr - (addr % cache_line_byte_size); 175 addr_t cache_offset = addr - curr_addr; 176 177 while (bytes_left > 0) { 178 if (m_invalid_ranges.FindEntryThatContains(curr_addr)) { 179 error.SetErrorStringWithFormat("memory read failed for 0x%" PRIx64, 180 curr_addr); 181 return dst_len - bytes_left; 182 } 183 184 BlockMap::const_iterator pos = m_L2_cache.find(curr_addr); 185 BlockMap::const_iterator end = m_L2_cache.end(); 186 187 if (pos != end) { 188 size_t curr_read_size = cache_line_byte_size - cache_offset; 189 if (curr_read_size > bytes_left) 190 curr_read_size = bytes_left; 191 192 memcpy(dst_buf + dst_len - bytes_left, 193 pos->second->GetBytes() + cache_offset, curr_read_size); 194 195 bytes_left -= curr_read_size; 196 curr_addr += curr_read_size + cache_offset; 197 cache_offset = 0; 198 199 if (bytes_left > 0) { 200 // Get sequential cache page hits 201 for (++pos; (pos != end) && (bytes_left > 0); ++pos) { 202 assert((curr_addr % cache_line_byte_size) == 0); 203 204 if (pos->first != curr_addr) 205 break; 206 207 curr_read_size = pos->second->GetByteSize(); 208 if (curr_read_size > bytes_left) 209 curr_read_size = bytes_left; 210 211 memcpy(dst_buf + dst_len - bytes_left, pos->second->GetBytes(), 212 curr_read_size); 213 214 bytes_left -= curr_read_size; 215 curr_addr += curr_read_size; 216 217 // We have a cache page that succeeded to read some bytes but not 218 // an entire page. If this happens, we must cap off how much data 219 // we are able to read... 220 if (pos->second->GetByteSize() != cache_line_byte_size) 221 return dst_len - bytes_left; 222 } 223 } 224 } 225 226 // We need to read from the process 227 228 if (bytes_left > 0) { 229 assert((curr_addr % cache_line_byte_size) == 0); 230 std::unique_ptr<DataBufferHeap> data_buffer_heap_ap( 231 new DataBufferHeap(cache_line_byte_size, 0)); 232 size_t process_bytes_read = m_process.ReadMemoryFromInferior( 233 curr_addr, data_buffer_heap_ap->GetBytes(), 234 data_buffer_heap_ap->GetByteSize(), error); 235 if (process_bytes_read == 0) 236 return dst_len - bytes_left; 237 238 if (process_bytes_read != cache_line_byte_size) 239 data_buffer_heap_ap->SetByteSize(process_bytes_read); 240 m_L2_cache[curr_addr] = DataBufferSP(data_buffer_heap_ap.release()); 241 // We have read data and put it into the cache, continue through the 242 // loop again to get the data out of the cache... 243 } 244 } 245 } 246 247 return dst_len - bytes_left; 248 } 249 250 AllocatedBlock::AllocatedBlock(lldb::addr_t addr, uint32_t byte_size, 251 uint32_t permissions, uint32_t chunk_size) 252 : m_range(addr, byte_size), m_permissions(permissions), 253 m_chunk_size(chunk_size) 254 { 255 // The entire address range is free to start with. 256 m_free_blocks.Append(m_range); 257 assert(byte_size > chunk_size); 258 } 259 260 AllocatedBlock::~AllocatedBlock() {} 261 262 lldb::addr_t AllocatedBlock::ReserveBlock(uint32_t size) { 263 // We must return something valid for zero bytes. 264 if (size == 0) 265 size = 1; 266 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 267 268 const size_t free_count = m_free_blocks.GetSize(); 269 for (size_t i=0; i<free_count; ++i) 270 { 271 auto &free_block = m_free_blocks.GetEntryRef(i); 272 const lldb::addr_t range_size = free_block.GetByteSize(); 273 if (range_size >= size) 274 { 275 // We found a free block that is big enough for our data. Figure out how 276 // many chunks we will need and calculate the resulting block size we 277 // will reserve. 278 addr_t addr = free_block.GetRangeBase(); 279 size_t num_chunks = CalculateChunksNeededForSize(size); 280 lldb::addr_t block_size = num_chunks * m_chunk_size; 281 lldb::addr_t bytes_left = range_size - block_size; 282 if (bytes_left == 0) 283 { 284 // The newly allocated block will take all of the bytes in this 285 // available block, so we can just add it to the allocated ranges and 286 // remove the range from the free ranges. 287 m_reserved_blocks.Insert(free_block, false); 288 m_free_blocks.RemoveEntryAtIndex(i); 289 } 290 else 291 { 292 // Make the new allocated range and add it to the allocated ranges. 293 Range<lldb::addr_t, uint32_t> reserved_block(free_block); 294 reserved_block.SetByteSize(block_size); 295 // Insert the reserved range and don't combine it with other blocks in 296 // the reserved blocks list. 297 m_reserved_blocks.Insert(reserved_block, false); 298 // Adjust the free range in place since we won't change the sorted 299 // ordering of the m_free_blocks list. 300 free_block.SetRangeBase(reserved_block.GetRangeEnd()); 301 free_block.SetByteSize(bytes_left); 302 } 303 LLDB_LOGV(log, "({0}) (size = {1} ({1:x})) => {2:x}", this, size, addr); 304 return addr; 305 } 306 } 307 308 LLDB_LOGV(log, "({0}) (size = {1} ({1:x})) => {2:x}", this, size, 309 LLDB_INVALID_ADDRESS); 310 return LLDB_INVALID_ADDRESS; 311 } 312 313 bool AllocatedBlock::FreeBlock(addr_t addr) { 314 bool success = false; 315 auto entry_idx = m_reserved_blocks.FindEntryIndexThatContains(addr); 316 if (entry_idx != UINT32_MAX) 317 { 318 m_free_blocks.Insert(m_reserved_blocks.GetEntryRef(entry_idx), true); 319 m_reserved_blocks.RemoveEntryAtIndex(entry_idx); 320 success = true; 321 } 322 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 323 LLDB_LOGV(log, "({0}) (addr = {1:x}) => {2}", this, addr, success); 324 return success; 325 } 326 327 AllocatedMemoryCache::AllocatedMemoryCache(Process &process) 328 : m_process(process), m_mutex(), m_memory_map() {} 329 330 AllocatedMemoryCache::~AllocatedMemoryCache() {} 331 332 void AllocatedMemoryCache::Clear() { 333 std::lock_guard<std::recursive_mutex> guard(m_mutex); 334 if (m_process.IsAlive()) { 335 PermissionsToBlockMap::iterator pos, end = m_memory_map.end(); 336 for (pos = m_memory_map.begin(); pos != end; ++pos) 337 m_process.DoDeallocateMemory(pos->second->GetBaseAddress()); 338 } 339 m_memory_map.clear(); 340 } 341 342 AllocatedMemoryCache::AllocatedBlockSP 343 AllocatedMemoryCache::AllocatePage(uint32_t byte_size, uint32_t permissions, 344 uint32_t chunk_size, Status &error) { 345 AllocatedBlockSP block_sp; 346 const size_t page_size = 4096; 347 const size_t num_pages = (byte_size + page_size - 1) / page_size; 348 const size_t page_byte_size = num_pages * page_size; 349 350 addr_t addr = m_process.DoAllocateMemory(page_byte_size, permissions, error); 351 352 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 353 if (log) { 354 log->Printf("Process::DoAllocateMemory (byte_size = 0x%8.8" PRIx32 355 ", permissions = %s) => 0x%16.16" PRIx64, 356 (uint32_t)page_byte_size, GetPermissionsAsCString(permissions), 357 (uint64_t)addr); 358 } 359 360 if (addr != LLDB_INVALID_ADDRESS) { 361 block_sp.reset( 362 new AllocatedBlock(addr, page_byte_size, permissions, chunk_size)); 363 m_memory_map.insert(std::make_pair(permissions, block_sp)); 364 } 365 return block_sp; 366 } 367 368 lldb::addr_t AllocatedMemoryCache::AllocateMemory(size_t byte_size, 369 uint32_t permissions, 370 Status &error) { 371 std::lock_guard<std::recursive_mutex> guard(m_mutex); 372 373 addr_t addr = LLDB_INVALID_ADDRESS; 374 std::pair<PermissionsToBlockMap::iterator, PermissionsToBlockMap::iterator> 375 range = m_memory_map.equal_range(permissions); 376 377 for (PermissionsToBlockMap::iterator pos = range.first; pos != range.second; 378 ++pos) { 379 addr = (*pos).second->ReserveBlock(byte_size); 380 if (addr != LLDB_INVALID_ADDRESS) 381 break; 382 } 383 384 if (addr == LLDB_INVALID_ADDRESS) { 385 AllocatedBlockSP block_sp(AllocatePage(byte_size, permissions, 16, error)); 386 387 if (block_sp) 388 addr = block_sp->ReserveBlock(byte_size); 389 } 390 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 391 if (log) 392 log->Printf( 393 "AllocatedMemoryCache::AllocateMemory (byte_size = 0x%8.8" PRIx32 394 ", permissions = %s) => 0x%16.16" PRIx64, 395 (uint32_t)byte_size, GetPermissionsAsCString(permissions), 396 (uint64_t)addr); 397 return addr; 398 } 399 400 bool AllocatedMemoryCache::DeallocateMemory(lldb::addr_t addr) { 401 std::lock_guard<std::recursive_mutex> guard(m_mutex); 402 403 PermissionsToBlockMap::iterator pos, end = m_memory_map.end(); 404 bool success = false; 405 for (pos = m_memory_map.begin(); pos != end; ++pos) { 406 if (pos->second->Contains(addr)) { 407 success = pos->second->FreeBlock(addr); 408 break; 409 } 410 } 411 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 412 if (log) 413 log->Printf("AllocatedMemoryCache::DeallocateMemory (addr = 0x%16.16" PRIx64 414 ") => %i", 415 (uint64_t)addr, success); 416 return success; 417 } 418