1 //===-- Memory.cpp ----------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Target/Memory.h" 10 #include "lldb/Target/Process.h" 11 #include "lldb/Utility/DataBufferHeap.h" 12 #include "lldb/Utility/Log.h" 13 #include "lldb/Utility/RangeMap.h" 14 #include "lldb/Utility/State.h" 15 16 #include <cinttypes> 17 #include <memory> 18 19 using namespace lldb; 20 using namespace lldb_private; 21 22 //---------------------------------------------------------------------- 23 // MemoryCache constructor 24 //---------------------------------------------------------------------- 25 MemoryCache::MemoryCache(Process &process) 26 : m_mutex(), m_L1_cache(), m_L2_cache(), m_invalid_ranges(), 27 m_process(process), 28 m_L2_cache_line_byte_size(process.GetMemoryCacheLineSize()) {} 29 30 //---------------------------------------------------------------------- 31 // Destructor 32 //---------------------------------------------------------------------- 33 MemoryCache::~MemoryCache() {} 34 35 void MemoryCache::Clear(bool clear_invalid_ranges) { 36 std::lock_guard<std::recursive_mutex> guard(m_mutex); 37 m_L1_cache.clear(); 38 m_L2_cache.clear(); 39 if (clear_invalid_ranges) 40 m_invalid_ranges.Clear(); 41 m_L2_cache_line_byte_size = m_process.GetMemoryCacheLineSize(); 42 } 43 44 void MemoryCache::AddL1CacheData(lldb::addr_t addr, const void *src, 45 size_t src_len) { 46 AddL1CacheData( 47 addr, DataBufferSP(new DataBufferHeap(DataBufferHeap(src, src_len)))); 48 } 49 50 void MemoryCache::AddL1CacheData(lldb::addr_t addr, 51 const DataBufferSP &data_buffer_sp) { 52 std::lock_guard<std::recursive_mutex> guard(m_mutex); 53 m_L1_cache[addr] = data_buffer_sp; 54 } 55 56 void MemoryCache::Flush(addr_t addr, size_t size) { 57 if (size == 0) 58 return; 59 60 std::lock_guard<std::recursive_mutex> guard(m_mutex); 61 62 // Erase any blocks from the L1 cache that intersect with the flush range 63 if (!m_L1_cache.empty()) { 64 AddrRange flush_range(addr, size); 65 BlockMap::iterator pos = m_L1_cache.upper_bound(addr); 66 if (pos != m_L1_cache.begin()) { 67 --pos; 68 } 69 while (pos != m_L1_cache.end()) { 70 AddrRange chunk_range(pos->first, pos->second->GetByteSize()); 71 if (!chunk_range.DoesIntersect(flush_range)) 72 break; 73 pos = m_L1_cache.erase(pos); 74 } 75 } 76 77 if (!m_L2_cache.empty()) { 78 const uint32_t cache_line_byte_size = m_L2_cache_line_byte_size; 79 const addr_t end_addr = (addr + size - 1); 80 const addr_t first_cache_line_addr = addr - (addr % cache_line_byte_size); 81 const addr_t last_cache_line_addr = 82 end_addr - (end_addr % cache_line_byte_size); 83 // Watch for overflow where size will cause us to go off the end of the 84 // 64 bit address space 85 uint32_t num_cache_lines; 86 if (last_cache_line_addr >= first_cache_line_addr) 87 num_cache_lines = ((last_cache_line_addr - first_cache_line_addr) / 88 cache_line_byte_size) + 89 1; 90 else 91 num_cache_lines = 92 (UINT64_MAX - first_cache_line_addr + 1) / cache_line_byte_size; 93 94 uint32_t cache_idx = 0; 95 for (addr_t curr_addr = first_cache_line_addr; cache_idx < num_cache_lines; 96 curr_addr += cache_line_byte_size, ++cache_idx) { 97 BlockMap::iterator pos = m_L2_cache.find(curr_addr); 98 if (pos != m_L2_cache.end()) 99 m_L2_cache.erase(pos); 100 } 101 } 102 } 103 104 void MemoryCache::AddInvalidRange(lldb::addr_t base_addr, 105 lldb::addr_t byte_size) { 106 if (byte_size > 0) { 107 std::lock_guard<std::recursive_mutex> guard(m_mutex); 108 InvalidRanges::Entry range(base_addr, byte_size); 109 m_invalid_ranges.Append(range); 110 m_invalid_ranges.Sort(); 111 } 112 } 113 114 bool MemoryCache::RemoveInvalidRange(lldb::addr_t base_addr, 115 lldb::addr_t byte_size) { 116 if (byte_size > 0) { 117 std::lock_guard<std::recursive_mutex> guard(m_mutex); 118 const uint32_t idx = m_invalid_ranges.FindEntryIndexThatContains(base_addr); 119 if (idx != UINT32_MAX) { 120 const InvalidRanges::Entry *entry = m_invalid_ranges.GetEntryAtIndex(idx); 121 if (entry->GetRangeBase() == base_addr && 122 entry->GetByteSize() == byte_size) 123 return m_invalid_ranges.RemoveEntrtAtIndex(idx); 124 } 125 } 126 return false; 127 } 128 129 size_t MemoryCache::Read(addr_t addr, void *dst, size_t dst_len, 130 Status &error) { 131 size_t bytes_left = dst_len; 132 133 // Check the L1 cache for a range that contain the entire memory read. If we 134 // find a range in the L1 cache that does, we use it. Else we fall back to 135 // reading memory in m_L2_cache_line_byte_size byte sized chunks. The L1 136 // cache contains chunks of memory that are not required to be 137 // m_L2_cache_line_byte_size bytes in size, so we don't try anything tricky 138 // when reading from them (no partial reads from the L1 cache). 139 140 std::lock_guard<std::recursive_mutex> guard(m_mutex); 141 if (!m_L1_cache.empty()) { 142 AddrRange read_range(addr, dst_len); 143 BlockMap::iterator pos = m_L1_cache.upper_bound(addr); 144 if (pos != m_L1_cache.begin()) { 145 --pos; 146 } 147 AddrRange chunk_range(pos->first, pos->second->GetByteSize()); 148 if (chunk_range.Contains(read_range)) { 149 memcpy(dst, pos->second->GetBytes() + (addr - chunk_range.GetRangeBase()), 150 dst_len); 151 return dst_len; 152 } 153 } 154 155 // If this memory read request is larger than the cache line size, then we 156 // (1) try to read as much of it at once as possible, and (2) don't add the 157 // data to the memory cache. We don't want to split a big read up into more 158 // separate reads than necessary, and with a large memory read request, it is 159 // unlikely that the caller function will ask for the next 160 // 4 bytes after the large memory read - so there's little benefit to saving 161 // it in the cache. 162 if (dst && dst_len > m_L2_cache_line_byte_size) { 163 size_t bytes_read = 164 m_process.ReadMemoryFromInferior(addr, dst, dst_len, error); 165 // Add this non block sized range to the L1 cache if we actually read 166 // anything 167 if (bytes_read > 0) 168 AddL1CacheData(addr, dst, bytes_read); 169 return bytes_read; 170 } 171 172 if (dst && bytes_left > 0) { 173 const uint32_t cache_line_byte_size = m_L2_cache_line_byte_size; 174 uint8_t *dst_buf = (uint8_t *)dst; 175 addr_t curr_addr = addr - (addr % cache_line_byte_size); 176 addr_t cache_offset = addr - curr_addr; 177 178 while (bytes_left > 0) { 179 if (m_invalid_ranges.FindEntryThatContains(curr_addr)) { 180 error.SetErrorStringWithFormat("memory read failed for 0x%" PRIx64, 181 curr_addr); 182 return dst_len - bytes_left; 183 } 184 185 BlockMap::const_iterator pos = m_L2_cache.find(curr_addr); 186 BlockMap::const_iterator end = m_L2_cache.end(); 187 188 if (pos != end) { 189 size_t curr_read_size = cache_line_byte_size - cache_offset; 190 if (curr_read_size > bytes_left) 191 curr_read_size = bytes_left; 192 193 memcpy(dst_buf + dst_len - bytes_left, 194 pos->second->GetBytes() + cache_offset, curr_read_size); 195 196 bytes_left -= curr_read_size; 197 curr_addr += curr_read_size + cache_offset; 198 cache_offset = 0; 199 200 if (bytes_left > 0) { 201 // Get sequential cache page hits 202 for (++pos; (pos != end) && (bytes_left > 0); ++pos) { 203 assert((curr_addr % cache_line_byte_size) == 0); 204 205 if (pos->first != curr_addr) 206 break; 207 208 curr_read_size = pos->second->GetByteSize(); 209 if (curr_read_size > bytes_left) 210 curr_read_size = bytes_left; 211 212 memcpy(dst_buf + dst_len - bytes_left, pos->second->GetBytes(), 213 curr_read_size); 214 215 bytes_left -= curr_read_size; 216 curr_addr += curr_read_size; 217 218 // We have a cache page that succeeded to read some bytes but not 219 // an entire page. If this happens, we must cap off how much data 220 // we are able to read... 221 if (pos->second->GetByteSize() != cache_line_byte_size) 222 return dst_len - bytes_left; 223 } 224 } 225 } 226 227 // We need to read from the process 228 229 if (bytes_left > 0) { 230 assert((curr_addr % cache_line_byte_size) == 0); 231 std::unique_ptr<DataBufferHeap> data_buffer_heap_up( 232 new DataBufferHeap(cache_line_byte_size, 0)); 233 size_t process_bytes_read = m_process.ReadMemoryFromInferior( 234 curr_addr, data_buffer_heap_up->GetBytes(), 235 data_buffer_heap_up->GetByteSize(), error); 236 if (process_bytes_read == 0) 237 return dst_len - bytes_left; 238 239 if (process_bytes_read != cache_line_byte_size) 240 data_buffer_heap_up->SetByteSize(process_bytes_read); 241 m_L2_cache[curr_addr] = DataBufferSP(data_buffer_heap_up.release()); 242 // We have read data and put it into the cache, continue through the 243 // loop again to get the data out of the cache... 244 } 245 } 246 } 247 248 return dst_len - bytes_left; 249 } 250 251 AllocatedBlock::AllocatedBlock(lldb::addr_t addr, uint32_t byte_size, 252 uint32_t permissions, uint32_t chunk_size) 253 : m_range(addr, byte_size), m_permissions(permissions), 254 m_chunk_size(chunk_size) 255 { 256 // The entire address range is free to start with. 257 m_free_blocks.Append(m_range); 258 assert(byte_size > chunk_size); 259 } 260 261 AllocatedBlock::~AllocatedBlock() {} 262 263 lldb::addr_t AllocatedBlock::ReserveBlock(uint32_t size) { 264 // We must return something valid for zero bytes. 265 if (size == 0) 266 size = 1; 267 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 268 269 const size_t free_count = m_free_blocks.GetSize(); 270 for (size_t i=0; i<free_count; ++i) 271 { 272 auto &free_block = m_free_blocks.GetEntryRef(i); 273 const lldb::addr_t range_size = free_block.GetByteSize(); 274 if (range_size >= size) 275 { 276 // We found a free block that is big enough for our data. Figure out how 277 // many chunks we will need and calculate the resulting block size we 278 // will reserve. 279 addr_t addr = free_block.GetRangeBase(); 280 size_t num_chunks = CalculateChunksNeededForSize(size); 281 lldb::addr_t block_size = num_chunks * m_chunk_size; 282 lldb::addr_t bytes_left = range_size - block_size; 283 if (bytes_left == 0) 284 { 285 // The newly allocated block will take all of the bytes in this 286 // available block, so we can just add it to the allocated ranges and 287 // remove the range from the free ranges. 288 m_reserved_blocks.Insert(free_block, false); 289 m_free_blocks.RemoveEntryAtIndex(i); 290 } 291 else 292 { 293 // Make the new allocated range and add it to the allocated ranges. 294 Range<lldb::addr_t, uint32_t> reserved_block(free_block); 295 reserved_block.SetByteSize(block_size); 296 // Insert the reserved range and don't combine it with other blocks in 297 // the reserved blocks list. 298 m_reserved_blocks.Insert(reserved_block, false); 299 // Adjust the free range in place since we won't change the sorted 300 // ordering of the m_free_blocks list. 301 free_block.SetRangeBase(reserved_block.GetRangeEnd()); 302 free_block.SetByteSize(bytes_left); 303 } 304 LLDB_LOGV(log, "({0}) (size = {1} ({1:x})) => {2:x}", this, size, addr); 305 return addr; 306 } 307 } 308 309 LLDB_LOGV(log, "({0}) (size = {1} ({1:x})) => {2:x}", this, size, 310 LLDB_INVALID_ADDRESS); 311 return LLDB_INVALID_ADDRESS; 312 } 313 314 bool AllocatedBlock::FreeBlock(addr_t addr) { 315 bool success = false; 316 auto entry_idx = m_reserved_blocks.FindEntryIndexThatContains(addr); 317 if (entry_idx != UINT32_MAX) 318 { 319 m_free_blocks.Insert(m_reserved_blocks.GetEntryRef(entry_idx), true); 320 m_reserved_blocks.RemoveEntryAtIndex(entry_idx); 321 success = true; 322 } 323 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 324 LLDB_LOGV(log, "({0}) (addr = {1:x}) => {2}", this, addr, success); 325 return success; 326 } 327 328 AllocatedMemoryCache::AllocatedMemoryCache(Process &process) 329 : m_process(process), m_mutex(), m_memory_map() {} 330 331 AllocatedMemoryCache::~AllocatedMemoryCache() {} 332 333 void AllocatedMemoryCache::Clear() { 334 std::lock_guard<std::recursive_mutex> guard(m_mutex); 335 if (m_process.IsAlive()) { 336 PermissionsToBlockMap::iterator pos, end = m_memory_map.end(); 337 for (pos = m_memory_map.begin(); pos != end; ++pos) 338 m_process.DoDeallocateMemory(pos->second->GetBaseAddress()); 339 } 340 m_memory_map.clear(); 341 } 342 343 AllocatedMemoryCache::AllocatedBlockSP 344 AllocatedMemoryCache::AllocatePage(uint32_t byte_size, uint32_t permissions, 345 uint32_t chunk_size, Status &error) { 346 AllocatedBlockSP block_sp; 347 const size_t page_size = 4096; 348 const size_t num_pages = (byte_size + page_size - 1) / page_size; 349 const size_t page_byte_size = num_pages * page_size; 350 351 addr_t addr = m_process.DoAllocateMemory(page_byte_size, permissions, error); 352 353 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 354 if (log) { 355 log->Printf("Process::DoAllocateMemory (byte_size = 0x%8.8" PRIx32 356 ", permissions = %s) => 0x%16.16" PRIx64, 357 (uint32_t)page_byte_size, GetPermissionsAsCString(permissions), 358 (uint64_t)addr); 359 } 360 361 if (addr != LLDB_INVALID_ADDRESS) { 362 block_sp = std::make_shared<AllocatedBlock>(addr, page_byte_size, 363 permissions, chunk_size); 364 m_memory_map.insert(std::make_pair(permissions, block_sp)); 365 } 366 return block_sp; 367 } 368 369 lldb::addr_t AllocatedMemoryCache::AllocateMemory(size_t byte_size, 370 uint32_t permissions, 371 Status &error) { 372 std::lock_guard<std::recursive_mutex> guard(m_mutex); 373 374 addr_t addr = LLDB_INVALID_ADDRESS; 375 std::pair<PermissionsToBlockMap::iterator, PermissionsToBlockMap::iterator> 376 range = m_memory_map.equal_range(permissions); 377 378 for (PermissionsToBlockMap::iterator pos = range.first; pos != range.second; 379 ++pos) { 380 addr = (*pos).second->ReserveBlock(byte_size); 381 if (addr != LLDB_INVALID_ADDRESS) 382 break; 383 } 384 385 if (addr == LLDB_INVALID_ADDRESS) { 386 AllocatedBlockSP block_sp(AllocatePage(byte_size, permissions, 16, error)); 387 388 if (block_sp) 389 addr = block_sp->ReserveBlock(byte_size); 390 } 391 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 392 if (log) 393 log->Printf( 394 "AllocatedMemoryCache::AllocateMemory (byte_size = 0x%8.8" PRIx32 395 ", permissions = %s) => 0x%16.16" PRIx64, 396 (uint32_t)byte_size, GetPermissionsAsCString(permissions), 397 (uint64_t)addr); 398 return addr; 399 } 400 401 bool AllocatedMemoryCache::DeallocateMemory(lldb::addr_t addr) { 402 std::lock_guard<std::recursive_mutex> guard(m_mutex); 403 404 PermissionsToBlockMap::iterator pos, end = m_memory_map.end(); 405 bool success = false; 406 for (pos = m_memory_map.begin(); pos != end; ++pos) { 407 if (pos->second->Contains(addr)) { 408 success = pos->second->FreeBlock(addr); 409 break; 410 } 411 } 412 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 413 if (log) 414 log->Printf("AllocatedMemoryCache::DeallocateMemory (addr = 0x%16.16" PRIx64 415 ") => %i", 416 (uint64_t)addr, success); 417 return success; 418 } 419