1 //===-- Memory.cpp ----------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/Target/Memory.h" 11 // C Includes 12 #include <inttypes.h> 13 // C++ Includes 14 // Other libraries and framework includes 15 // Project includes 16 #include "lldb/Core/DataBufferHeap.h" 17 #include "lldb/Core/State.h" 18 #include "lldb/Core/Log.h" 19 #include "lldb/Target/Process.h" 20 21 using namespace lldb; 22 using namespace lldb_private; 23 24 //---------------------------------------------------------------------- 25 // MemoryCache constructor 26 //---------------------------------------------------------------------- 27 MemoryCache::MemoryCache(Process &process) : 28 m_process (process), 29 m_cache_line_byte_size (512), 30 m_mutex (Mutex::eMutexTypeRecursive), 31 m_cache (), 32 m_invalid_ranges () 33 { 34 } 35 36 //---------------------------------------------------------------------- 37 // Destructor 38 //---------------------------------------------------------------------- 39 MemoryCache::~MemoryCache() 40 { 41 } 42 43 void 44 MemoryCache::Clear(bool clear_invalid_ranges) 45 { 46 Mutex::Locker locker (m_mutex); 47 m_cache.clear(); 48 if (clear_invalid_ranges) 49 m_invalid_ranges.Clear(); 50 } 51 52 void 53 MemoryCache::Flush (addr_t addr, size_t size) 54 { 55 if (size == 0) 56 return; 57 58 Mutex::Locker locker (m_mutex); 59 if (m_cache.empty()) 60 return; 61 62 const uint32_t cache_line_byte_size = m_cache_line_byte_size; 63 const addr_t end_addr = (addr + size - 1); 64 const addr_t first_cache_line_addr = addr - (addr % cache_line_byte_size); 65 const addr_t last_cache_line_addr = end_addr - (end_addr % cache_line_byte_size); 66 // Watch for overflow where size will cause us to go off the end of the 67 // 64 bit address space 68 uint32_t num_cache_lines; 69 if (last_cache_line_addr >= first_cache_line_addr) 70 num_cache_lines = ((last_cache_line_addr - first_cache_line_addr)/cache_line_byte_size) + 1; 71 else 72 num_cache_lines = (UINT64_MAX - first_cache_line_addr + 1)/cache_line_byte_size; 73 74 uint32_t cache_idx = 0; 75 for (addr_t curr_addr = first_cache_line_addr; 76 cache_idx < num_cache_lines; 77 curr_addr += cache_line_byte_size, ++cache_idx) 78 { 79 BlockMap::iterator pos = m_cache.find (curr_addr); 80 if (pos != m_cache.end()) 81 m_cache.erase(pos); 82 } 83 } 84 85 void 86 MemoryCache::AddInvalidRange (lldb::addr_t base_addr, lldb::addr_t byte_size) 87 { 88 if (byte_size > 0) 89 { 90 Mutex::Locker locker (m_mutex); 91 InvalidRanges::Entry range (base_addr, byte_size); 92 m_invalid_ranges.Append(range); 93 m_invalid_ranges.Sort(); 94 } 95 } 96 97 bool 98 MemoryCache::RemoveInvalidRange (lldb::addr_t base_addr, lldb::addr_t byte_size) 99 { 100 if (byte_size > 0) 101 { 102 Mutex::Locker locker (m_mutex); 103 const uint32_t idx = m_invalid_ranges.FindEntryIndexThatContains(base_addr); 104 if (idx != UINT32_MAX) 105 { 106 const InvalidRanges::Entry *entry = m_invalid_ranges.GetEntryAtIndex (idx); 107 if (entry->GetRangeBase() == base_addr && entry->GetByteSize() == byte_size) 108 return m_invalid_ranges.RemoveEntrtAtIndex (idx); 109 } 110 } 111 return false; 112 } 113 114 115 116 size_t 117 MemoryCache::Read (addr_t addr, 118 void *dst, 119 size_t dst_len, 120 Error &error) 121 { 122 size_t bytes_left = dst_len; 123 124 // If this memory read request is larger than the cache line size, then 125 // we (1) try to read as much of it at once as possible, and (2) don't 126 // add the data to the memory cache. We don't want to split a big read 127 // up into more separate reads than necessary, and with a large memory read 128 // request, it is unlikely that the caller function will ask for the next 129 // 4 bytes after the large memory read - so there's little benefit to saving 130 // it in the cache. 131 if (dst && dst_len > m_cache_line_byte_size) 132 { 133 return m_process.ReadMemoryFromInferior (addr, dst, dst_len, error); 134 } 135 136 if (dst && bytes_left > 0) 137 { 138 const uint32_t cache_line_byte_size = m_cache_line_byte_size; 139 uint8_t *dst_buf = (uint8_t *)dst; 140 addr_t curr_addr = addr - (addr % cache_line_byte_size); 141 addr_t cache_offset = addr - curr_addr; 142 Mutex::Locker locker (m_mutex); 143 144 while (bytes_left > 0) 145 { 146 if (m_invalid_ranges.FindEntryThatContains(curr_addr)) 147 { 148 error.SetErrorStringWithFormat("memory read failed for 0x%" PRIx64, curr_addr); 149 return dst_len - bytes_left; 150 } 151 152 BlockMap::const_iterator pos = m_cache.find (curr_addr); 153 BlockMap::const_iterator end = m_cache.end (); 154 155 if (pos != end) 156 { 157 size_t curr_read_size = cache_line_byte_size - cache_offset; 158 if (curr_read_size > bytes_left) 159 curr_read_size = bytes_left; 160 161 memcpy (dst_buf + dst_len - bytes_left, pos->second->GetBytes() + cache_offset, curr_read_size); 162 163 bytes_left -= curr_read_size; 164 curr_addr += curr_read_size + cache_offset; 165 cache_offset = 0; 166 167 if (bytes_left > 0) 168 { 169 // Get sequential cache page hits 170 for (++pos; (pos != end) && (bytes_left > 0); ++pos) 171 { 172 assert ((curr_addr % cache_line_byte_size) == 0); 173 174 if (pos->first != curr_addr) 175 break; 176 177 curr_read_size = pos->second->GetByteSize(); 178 if (curr_read_size > bytes_left) 179 curr_read_size = bytes_left; 180 181 memcpy (dst_buf + dst_len - bytes_left, pos->second->GetBytes(), curr_read_size); 182 183 bytes_left -= curr_read_size; 184 curr_addr += curr_read_size; 185 186 // We have a cache page that succeeded to read some bytes 187 // but not an entire page. If this happens, we must cap 188 // off how much data we are able to read... 189 if (pos->second->GetByteSize() != cache_line_byte_size) 190 return dst_len - bytes_left; 191 } 192 } 193 } 194 195 // We need to read from the process 196 197 if (bytes_left > 0) 198 { 199 assert ((curr_addr % cache_line_byte_size) == 0); 200 std::unique_ptr<DataBufferHeap> data_buffer_heap_ap(new DataBufferHeap (cache_line_byte_size, 0)); 201 size_t process_bytes_read = m_process.ReadMemoryFromInferior (curr_addr, 202 data_buffer_heap_ap->GetBytes(), 203 data_buffer_heap_ap->GetByteSize(), 204 error); 205 if (process_bytes_read == 0) 206 return dst_len - bytes_left; 207 208 if (process_bytes_read != cache_line_byte_size) 209 data_buffer_heap_ap->SetByteSize (process_bytes_read); 210 m_cache[curr_addr] = DataBufferSP (data_buffer_heap_ap.release()); 211 // We have read data and put it into the cache, continue through the 212 // loop again to get the data out of the cache... 213 } 214 } 215 } 216 217 return dst_len - bytes_left; 218 } 219 220 221 222 AllocatedBlock::AllocatedBlock (lldb::addr_t addr, 223 uint32_t byte_size, 224 uint32_t permissions, 225 uint32_t chunk_size) : 226 m_addr (addr), 227 m_byte_size (byte_size), 228 m_permissions (permissions), 229 m_chunk_size (chunk_size), 230 m_offset_to_chunk_size () 231 // m_allocated (byte_size / chunk_size) 232 { 233 assert (byte_size > chunk_size); 234 } 235 236 AllocatedBlock::~AllocatedBlock () 237 { 238 } 239 240 lldb::addr_t 241 AllocatedBlock::ReserveBlock (uint32_t size) 242 { 243 addr_t addr = LLDB_INVALID_ADDRESS; 244 if (size <= m_byte_size) 245 { 246 const uint32_t needed_chunks = CalculateChunksNeededForSize (size); 247 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_VERBOSE)); 248 249 if (m_offset_to_chunk_size.empty()) 250 { 251 m_offset_to_chunk_size[0] = needed_chunks; 252 if (log) 253 log->Printf ("[1] AllocatedBlock::ReserveBlock (size = %u (0x%x)) => offset = 0x%x, %u %u bit chunks", size, size, 0, needed_chunks, m_chunk_size); 254 addr = m_addr; 255 } 256 else 257 { 258 uint32_t last_offset = 0; 259 OffsetToChunkSize::const_iterator pos = m_offset_to_chunk_size.begin(); 260 OffsetToChunkSize::const_iterator end = m_offset_to_chunk_size.end(); 261 while (pos != end) 262 { 263 if (pos->first > last_offset) 264 { 265 const uint32_t bytes_available = pos->first - last_offset; 266 const uint32_t num_chunks = CalculateChunksNeededForSize (bytes_available); 267 if (num_chunks >= needed_chunks) 268 { 269 m_offset_to_chunk_size[last_offset] = needed_chunks; 270 if (log) 271 log->Printf ("[2] AllocatedBlock::ReserveBlock (size = %u (0x%x)) => offset = 0x%x, %u %u bit chunks", size, size, last_offset, needed_chunks, m_chunk_size); 272 addr = m_addr + last_offset; 273 break; 274 } 275 } 276 277 last_offset = pos->first + pos->second * m_chunk_size; 278 279 if (++pos == end) 280 { 281 // Last entry... 282 const uint32_t chunks_left = CalculateChunksNeededForSize (m_byte_size - last_offset); 283 if (chunks_left >= needed_chunks) 284 { 285 m_offset_to_chunk_size[last_offset] = needed_chunks; 286 if (log) 287 log->Printf ("[3] AllocatedBlock::ReserveBlock (size = %u (0x%x)) => offset = 0x%x, %u %u bit chunks", size, size, last_offset, needed_chunks, m_chunk_size); 288 addr = m_addr + last_offset; 289 break; 290 } 291 } 292 } 293 } 294 // const uint32_t total_chunks = m_allocated.size (); 295 // uint32_t unallocated_idx = 0; 296 // uint32_t allocated_idx = m_allocated.find_first(); 297 // uint32_t first_chunk_idx = UINT32_MAX; 298 // uint32_t num_chunks; 299 // while (1) 300 // { 301 // if (allocated_idx == UINT32_MAX) 302 // { 303 // // No more bits are set starting from unallocated_idx, so we 304 // // either have enough chunks for the request, or we don't. 305 // // Eiter way we break out of the while loop... 306 // num_chunks = total_chunks - unallocated_idx; 307 // if (needed_chunks <= num_chunks) 308 // first_chunk_idx = unallocated_idx; 309 // break; 310 // } 311 // else if (allocated_idx > unallocated_idx) 312 // { 313 // // We have some allocated chunks, check if there are enough 314 // // free chunks to satisfy the request? 315 // num_chunks = allocated_idx - unallocated_idx; 316 // if (needed_chunks <= num_chunks) 317 // { 318 // // Yep, we have enough! 319 // first_chunk_idx = unallocated_idx; 320 // break; 321 // } 322 // } 323 // 324 // while (unallocated_idx < total_chunks) 325 // { 326 // if (m_allocated[unallocated_idx]) 327 // ++unallocated_idx; 328 // else 329 // break; 330 // } 331 // 332 // if (unallocated_idx >= total_chunks) 333 // break; 334 // 335 // allocated_idx = m_allocated.find_next(unallocated_idx); 336 // } 337 // 338 // if (first_chunk_idx != UINT32_MAX) 339 // { 340 // const uint32_t end_bit_idx = unallocated_idx + needed_chunks; 341 // for (uint32_t idx = first_chunk_idx; idx < end_bit_idx; ++idx) 342 // m_allocated.set(idx); 343 // return m_addr + m_chunk_size * first_chunk_idx; 344 // } 345 } 346 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_VERBOSE)); 347 if (log) 348 log->Printf ("AllocatedBlock::ReserveBlock (size = %u (0x%x)) => 0x%16.16" PRIx64, size, size, (uint64_t)addr); 349 return addr; 350 } 351 352 bool 353 AllocatedBlock::FreeBlock (addr_t addr) 354 { 355 uint32_t offset = addr - m_addr; 356 OffsetToChunkSize::iterator pos = m_offset_to_chunk_size.find (offset); 357 bool success = false; 358 if (pos != m_offset_to_chunk_size.end()) 359 { 360 m_offset_to_chunk_size.erase (pos); 361 success = true; 362 } 363 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_VERBOSE)); 364 if (log) 365 log->Printf ("AllocatedBlock::FreeBlock (addr = 0x%16.16" PRIx64 ") => %i", (uint64_t)addr, success); 366 return success; 367 } 368 369 370 AllocatedMemoryCache::AllocatedMemoryCache (Process &process) : 371 m_process (process), 372 m_mutex (Mutex::eMutexTypeRecursive), 373 m_memory_map() 374 { 375 } 376 377 AllocatedMemoryCache::~AllocatedMemoryCache () 378 { 379 } 380 381 382 void 383 AllocatedMemoryCache::Clear() 384 { 385 Mutex::Locker locker (m_mutex); 386 if (m_process.IsAlive()) 387 { 388 PermissionsToBlockMap::iterator pos, end = m_memory_map.end(); 389 for (pos = m_memory_map.begin(); pos != end; ++pos) 390 m_process.DoDeallocateMemory(pos->second->GetBaseAddress()); 391 } 392 m_memory_map.clear(); 393 } 394 395 396 AllocatedMemoryCache::AllocatedBlockSP 397 AllocatedMemoryCache::AllocatePage (uint32_t byte_size, 398 uint32_t permissions, 399 uint32_t chunk_size, 400 Error &error) 401 { 402 AllocatedBlockSP block_sp; 403 const size_t page_size = 4096; 404 const size_t num_pages = (byte_size + page_size - 1) / page_size; 405 const size_t page_byte_size = num_pages * page_size; 406 407 addr_t addr = m_process.DoAllocateMemory(page_byte_size, permissions, error); 408 409 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 410 if (log) 411 { 412 log->Printf ("Process::DoAllocateMemory (byte_size = 0x%8.8" PRIx32 ", permissions = %s) => 0x%16.16" PRIx64, 413 (uint32_t)page_byte_size, 414 GetPermissionsAsCString(permissions), 415 (uint64_t)addr); 416 } 417 418 if (addr != LLDB_INVALID_ADDRESS) 419 { 420 block_sp.reset (new AllocatedBlock (addr, page_byte_size, permissions, chunk_size)); 421 m_memory_map.insert (std::make_pair (permissions, block_sp)); 422 } 423 return block_sp; 424 } 425 426 lldb::addr_t 427 AllocatedMemoryCache::AllocateMemory (size_t byte_size, 428 uint32_t permissions, 429 Error &error) 430 { 431 Mutex::Locker locker (m_mutex); 432 433 addr_t addr = LLDB_INVALID_ADDRESS; 434 std::pair<PermissionsToBlockMap::iterator, PermissionsToBlockMap::iterator> range = m_memory_map.equal_range (permissions); 435 436 for (PermissionsToBlockMap::iterator pos = range.first; pos != range.second; ++pos) 437 { 438 addr = (*pos).second->ReserveBlock (byte_size); 439 } 440 441 if (addr == LLDB_INVALID_ADDRESS) 442 { 443 AllocatedBlockSP block_sp (AllocatePage (byte_size, permissions, 16, error)); 444 445 if (block_sp) 446 addr = block_sp->ReserveBlock (byte_size); 447 } 448 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 449 if (log) 450 log->Printf ("AllocatedMemoryCache::AllocateMemory (byte_size = 0x%8.8" PRIx32 ", permissions = %s) => 0x%16.16" PRIx64, (uint32_t)byte_size, GetPermissionsAsCString(permissions), (uint64_t)addr); 451 return addr; 452 } 453 454 bool 455 AllocatedMemoryCache::DeallocateMemory (lldb::addr_t addr) 456 { 457 Mutex::Locker locker (m_mutex); 458 459 PermissionsToBlockMap::iterator pos, end = m_memory_map.end(); 460 bool success = false; 461 for (pos = m_memory_map.begin(); pos != end; ++pos) 462 { 463 if (pos->second->Contains (addr)) 464 { 465 success = pos->second->FreeBlock (addr); 466 break; 467 } 468 } 469 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 470 if (log) 471 log->Printf("AllocatedMemoryCache::DeallocateMemory (addr = 0x%16.16" PRIx64 ") => %i", (uint64_t)addr, success); 472 return success; 473 } 474 475 476