1 //===-- Memory.cpp ----------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/Target/Memory.h" 11 // C Includes 12 #include <inttypes.h> 13 // C++ Includes 14 // Other libraries and framework includes 15 // Project includes 16 #include "lldb/Core/DataBufferHeap.h" 17 #include "lldb/Core/State.h" 18 #include "lldb/Core/Log.h" 19 #include "lldb/Target/Process.h" 20 21 using namespace lldb; 22 using namespace lldb_private; 23 24 //---------------------------------------------------------------------- 25 // MemoryCache constructor 26 //---------------------------------------------------------------------- 27 MemoryCache::MemoryCache(Process &process) : 28 m_process (process), 29 m_cache_line_byte_size (512), 30 m_mutex (Mutex::eMutexTypeRecursive), 31 m_cache (), 32 m_invalid_ranges () 33 { 34 } 35 36 //---------------------------------------------------------------------- 37 // Destructor 38 //---------------------------------------------------------------------- 39 MemoryCache::~MemoryCache() 40 { 41 } 42 43 void 44 MemoryCache::Clear(bool clear_invalid_ranges) 45 { 46 Mutex::Locker locker (m_mutex); 47 m_cache.clear(); 48 if (clear_invalid_ranges) 49 m_invalid_ranges.Clear(); 50 } 51 52 void 53 MemoryCache::Flush (addr_t addr, size_t size) 54 { 55 if (size == 0) 56 return; 57 58 Mutex::Locker locker (m_mutex); 59 if (m_cache.empty()) 60 return; 61 62 const uint32_t cache_line_byte_size = m_cache_line_byte_size; 63 const addr_t end_addr = (addr + size - 1); 64 const addr_t first_cache_line_addr = addr - (addr % cache_line_byte_size); 65 const addr_t last_cache_line_addr = end_addr - (end_addr % cache_line_byte_size); 66 // Watch for overflow where size will cause us to go off the end of the 67 // 64 bit address space 68 uint32_t num_cache_lines; 69 if (last_cache_line_addr >= first_cache_line_addr) 70 num_cache_lines = ((last_cache_line_addr - first_cache_line_addr)/cache_line_byte_size) + 1; 71 else 72 num_cache_lines = (UINT64_MAX - first_cache_line_addr + 1)/cache_line_byte_size; 73 74 uint32_t cache_idx = 0; 75 for (addr_t curr_addr = first_cache_line_addr; 76 cache_idx < num_cache_lines; 77 curr_addr += cache_line_byte_size, ++cache_idx) 78 { 79 BlockMap::iterator pos = m_cache.find (curr_addr); 80 if (pos != m_cache.end()) 81 m_cache.erase(pos); 82 } 83 } 84 85 void 86 MemoryCache::AddInvalidRange (lldb::addr_t base_addr, lldb::addr_t byte_size) 87 { 88 if (byte_size > 0) 89 { 90 Mutex::Locker locker (m_mutex); 91 InvalidRanges::Entry range (base_addr, byte_size); 92 m_invalid_ranges.Append(range); 93 m_invalid_ranges.Sort(); 94 } 95 } 96 97 bool 98 MemoryCache::RemoveInvalidRange (lldb::addr_t base_addr, lldb::addr_t byte_size) 99 { 100 if (byte_size > 0) 101 { 102 Mutex::Locker locker (m_mutex); 103 const uint32_t idx = m_invalid_ranges.FindEntryIndexThatContains(base_addr); 104 if (idx != UINT32_MAX) 105 { 106 const InvalidRanges::Entry *entry = m_invalid_ranges.GetEntryAtIndex (idx); 107 if (entry->GetRangeBase() == base_addr && entry->GetByteSize() == byte_size) 108 return m_invalid_ranges.RemoveEntrtAtIndex (idx); 109 } 110 } 111 return false; 112 } 113 114 115 116 size_t 117 MemoryCache::Read (addr_t addr, 118 void *dst, 119 size_t dst_len, 120 Error &error) 121 { 122 size_t bytes_left = dst_len; 123 if (dst && bytes_left > 0) 124 { 125 const uint32_t cache_line_byte_size = m_cache_line_byte_size; 126 uint8_t *dst_buf = (uint8_t *)dst; 127 addr_t curr_addr = addr - (addr % cache_line_byte_size); 128 addr_t cache_offset = addr - curr_addr; 129 Mutex::Locker locker (m_mutex); 130 131 while (bytes_left > 0) 132 { 133 if (m_invalid_ranges.FindEntryThatContains(curr_addr)) 134 { 135 error.SetErrorStringWithFormat("memory read failed for 0x%" PRIx64, curr_addr); 136 return dst_len - bytes_left; 137 } 138 139 BlockMap::const_iterator pos = m_cache.find (curr_addr); 140 BlockMap::const_iterator end = m_cache.end (); 141 142 if (pos != end) 143 { 144 size_t curr_read_size = cache_line_byte_size - cache_offset; 145 if (curr_read_size > bytes_left) 146 curr_read_size = bytes_left; 147 148 memcpy (dst_buf + dst_len - bytes_left, pos->second->GetBytes() + cache_offset, curr_read_size); 149 150 bytes_left -= curr_read_size; 151 curr_addr += curr_read_size + cache_offset; 152 cache_offset = 0; 153 154 if (bytes_left > 0) 155 { 156 // Get sequential cache page hits 157 for (++pos; (pos != end) && (bytes_left > 0); ++pos) 158 { 159 assert ((curr_addr % cache_line_byte_size) == 0); 160 161 if (pos->first != curr_addr) 162 break; 163 164 curr_read_size = pos->second->GetByteSize(); 165 if (curr_read_size > bytes_left) 166 curr_read_size = bytes_left; 167 168 memcpy (dst_buf + dst_len - bytes_left, pos->second->GetBytes(), curr_read_size); 169 170 bytes_left -= curr_read_size; 171 curr_addr += curr_read_size; 172 173 // We have a cache page that succeeded to read some bytes 174 // but not an entire page. If this happens, we must cap 175 // off how much data we are able to read... 176 if (pos->second->GetByteSize() != cache_line_byte_size) 177 return dst_len - bytes_left; 178 } 179 } 180 } 181 182 // We need to read from the process 183 184 if (bytes_left > 0) 185 { 186 assert ((curr_addr % cache_line_byte_size) == 0); 187 std::unique_ptr<DataBufferHeap> data_buffer_heap_ap(new DataBufferHeap (cache_line_byte_size, 0)); 188 size_t process_bytes_read = m_process.ReadMemoryFromInferior (curr_addr, 189 data_buffer_heap_ap->GetBytes(), 190 data_buffer_heap_ap->GetByteSize(), 191 error); 192 if (process_bytes_read == 0) 193 return dst_len - bytes_left; 194 195 if (process_bytes_read != cache_line_byte_size) 196 data_buffer_heap_ap->SetByteSize (process_bytes_read); 197 m_cache[curr_addr] = DataBufferSP (data_buffer_heap_ap.release()); 198 // We have read data and put it into the cache, continue through the 199 // loop again to get the data out of the cache... 200 } 201 } 202 } 203 204 return dst_len - bytes_left; 205 } 206 207 208 209 AllocatedBlock::AllocatedBlock (lldb::addr_t addr, 210 uint32_t byte_size, 211 uint32_t permissions, 212 uint32_t chunk_size) : 213 m_addr (addr), 214 m_byte_size (byte_size), 215 m_permissions (permissions), 216 m_chunk_size (chunk_size), 217 m_offset_to_chunk_size () 218 // m_allocated (byte_size / chunk_size) 219 { 220 assert (byte_size > chunk_size); 221 } 222 223 AllocatedBlock::~AllocatedBlock () 224 { 225 } 226 227 lldb::addr_t 228 AllocatedBlock::ReserveBlock (uint32_t size) 229 { 230 addr_t addr = LLDB_INVALID_ADDRESS; 231 if (size <= m_byte_size) 232 { 233 const uint32_t needed_chunks = CalculateChunksNeededForSize (size); 234 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_VERBOSE)); 235 236 if (m_offset_to_chunk_size.empty()) 237 { 238 m_offset_to_chunk_size[0] = needed_chunks; 239 if (log) 240 log->Printf ("[1] AllocatedBlock::ReserveBlock (size = %u (0x%x)) => offset = 0x%x, %u %u bit chunks", size, size, 0, needed_chunks, m_chunk_size); 241 addr = m_addr; 242 } 243 else 244 { 245 uint32_t last_offset = 0; 246 OffsetToChunkSize::const_iterator pos = m_offset_to_chunk_size.begin(); 247 OffsetToChunkSize::const_iterator end = m_offset_to_chunk_size.end(); 248 while (pos != end) 249 { 250 if (pos->first > last_offset) 251 { 252 const uint32_t bytes_available = pos->first - last_offset; 253 const uint32_t num_chunks = CalculateChunksNeededForSize (bytes_available); 254 if (num_chunks >= needed_chunks) 255 { 256 m_offset_to_chunk_size[last_offset] = needed_chunks; 257 if (log) 258 log->Printf ("[2] AllocatedBlock::ReserveBlock (size = %u (0x%x)) => offset = 0x%x, %u %u bit chunks", size, size, last_offset, needed_chunks, m_chunk_size); 259 addr = m_addr + last_offset; 260 break; 261 } 262 } 263 264 last_offset = pos->first + pos->second * m_chunk_size; 265 266 if (++pos == end) 267 { 268 // Last entry... 269 const uint32_t chunks_left = CalculateChunksNeededForSize (m_byte_size - last_offset); 270 if (chunks_left >= needed_chunks) 271 { 272 m_offset_to_chunk_size[last_offset] = needed_chunks; 273 if (log) 274 log->Printf ("[3] AllocatedBlock::ReserveBlock (size = %u (0x%x)) => offset = 0x%x, %u %u bit chunks", size, size, last_offset, needed_chunks, m_chunk_size); 275 addr = m_addr + last_offset; 276 break; 277 } 278 } 279 } 280 } 281 // const uint32_t total_chunks = m_allocated.size (); 282 // uint32_t unallocated_idx = 0; 283 // uint32_t allocated_idx = m_allocated.find_first(); 284 // uint32_t first_chunk_idx = UINT32_MAX; 285 // uint32_t num_chunks; 286 // while (1) 287 // { 288 // if (allocated_idx == UINT32_MAX) 289 // { 290 // // No more bits are set starting from unallocated_idx, so we 291 // // either have enough chunks for the request, or we don't. 292 // // Eiter way we break out of the while loop... 293 // num_chunks = total_chunks - unallocated_idx; 294 // if (needed_chunks <= num_chunks) 295 // first_chunk_idx = unallocated_idx; 296 // break; 297 // } 298 // else if (allocated_idx > unallocated_idx) 299 // { 300 // // We have some allocated chunks, check if there are enough 301 // // free chunks to satisfy the request? 302 // num_chunks = allocated_idx - unallocated_idx; 303 // if (needed_chunks <= num_chunks) 304 // { 305 // // Yep, we have enough! 306 // first_chunk_idx = unallocated_idx; 307 // break; 308 // } 309 // } 310 // 311 // while (unallocated_idx < total_chunks) 312 // { 313 // if (m_allocated[unallocated_idx]) 314 // ++unallocated_idx; 315 // else 316 // break; 317 // } 318 // 319 // if (unallocated_idx >= total_chunks) 320 // break; 321 // 322 // allocated_idx = m_allocated.find_next(unallocated_idx); 323 // } 324 // 325 // if (first_chunk_idx != UINT32_MAX) 326 // { 327 // const uint32_t end_bit_idx = unallocated_idx + needed_chunks; 328 // for (uint32_t idx = first_chunk_idx; idx < end_bit_idx; ++idx) 329 // m_allocated.set(idx); 330 // return m_addr + m_chunk_size * first_chunk_idx; 331 // } 332 } 333 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_VERBOSE)); 334 if (log) 335 log->Printf ("AllocatedBlock::ReserveBlock (size = %u (0x%x)) => 0x%16.16" PRIx64, size, size, (uint64_t)addr); 336 return addr; 337 } 338 339 bool 340 AllocatedBlock::FreeBlock (addr_t addr) 341 { 342 uint32_t offset = addr - m_addr; 343 OffsetToChunkSize::iterator pos = m_offset_to_chunk_size.find (offset); 344 bool success = false; 345 if (pos != m_offset_to_chunk_size.end()) 346 { 347 m_offset_to_chunk_size.erase (pos); 348 success = true; 349 } 350 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_VERBOSE)); 351 if (log) 352 log->Printf ("AllocatedBlock::FreeBlock (addr = 0x%16.16" PRIx64 ") => %i", (uint64_t)addr, success); 353 return success; 354 } 355 356 357 AllocatedMemoryCache::AllocatedMemoryCache (Process &process) : 358 m_process (process), 359 m_mutex (Mutex::eMutexTypeRecursive), 360 m_memory_map() 361 { 362 } 363 364 AllocatedMemoryCache::~AllocatedMemoryCache () 365 { 366 } 367 368 369 void 370 AllocatedMemoryCache::Clear() 371 { 372 Mutex::Locker locker (m_mutex); 373 if (m_process.IsAlive()) 374 { 375 PermissionsToBlockMap::iterator pos, end = m_memory_map.end(); 376 for (pos = m_memory_map.begin(); pos != end; ++pos) 377 m_process.DoDeallocateMemory(pos->second->GetBaseAddress()); 378 } 379 m_memory_map.clear(); 380 } 381 382 383 AllocatedMemoryCache::AllocatedBlockSP 384 AllocatedMemoryCache::AllocatePage (uint32_t byte_size, 385 uint32_t permissions, 386 uint32_t chunk_size, 387 Error &error) 388 { 389 AllocatedBlockSP block_sp; 390 const size_t page_size = 4096; 391 const size_t num_pages = (byte_size + page_size - 1) / page_size; 392 const size_t page_byte_size = num_pages * page_size; 393 394 addr_t addr = m_process.DoAllocateMemory(page_byte_size, permissions, error); 395 396 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 397 if (log) 398 { 399 log->Printf ("Process::DoAllocateMemory (byte_size = 0x%8.8" PRIx32 ", permissions = %s) => 0x%16.16" PRIx64, 400 (uint32_t)page_byte_size, 401 GetPermissionsAsCString(permissions), 402 (uint64_t)addr); 403 } 404 405 if (addr != LLDB_INVALID_ADDRESS) 406 { 407 block_sp.reset (new AllocatedBlock (addr, page_byte_size, permissions, chunk_size)); 408 m_memory_map.insert (std::make_pair (permissions, block_sp)); 409 } 410 return block_sp; 411 } 412 413 lldb::addr_t 414 AllocatedMemoryCache::AllocateMemory (size_t byte_size, 415 uint32_t permissions, 416 Error &error) 417 { 418 Mutex::Locker locker (m_mutex); 419 420 addr_t addr = LLDB_INVALID_ADDRESS; 421 std::pair<PermissionsToBlockMap::iterator, PermissionsToBlockMap::iterator> range = m_memory_map.equal_range (permissions); 422 423 for (PermissionsToBlockMap::iterator pos = range.first; pos != range.second; ++pos) 424 { 425 addr = (*pos).second->ReserveBlock (byte_size); 426 } 427 428 if (addr == LLDB_INVALID_ADDRESS) 429 { 430 AllocatedBlockSP block_sp (AllocatePage (byte_size, permissions, 16, error)); 431 432 if (block_sp) 433 addr = block_sp->ReserveBlock (byte_size); 434 } 435 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 436 if (log) 437 log->Printf ("AllocatedMemoryCache::AllocateMemory (byte_size = 0x%8.8" PRIx32 ", permissions = %s) => 0x%16.16" PRIx64, (uint32_t)byte_size, GetPermissionsAsCString(permissions), (uint64_t)addr); 438 return addr; 439 } 440 441 bool 442 AllocatedMemoryCache::DeallocateMemory (lldb::addr_t addr) 443 { 444 Mutex::Locker locker (m_mutex); 445 446 PermissionsToBlockMap::iterator pos, end = m_memory_map.end(); 447 bool success = false; 448 for (pos = m_memory_map.begin(); pos != end; ++pos) 449 { 450 if (pos->second->Contains (addr)) 451 { 452 success = pos->second->FreeBlock (addr); 453 break; 454 } 455 } 456 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 457 if (log) 458 log->Printf("AllocatedMemoryCache::DeallocateMemory (addr = 0x%16.16" PRIx64 ") => %i", (uint64_t)addr, success); 459 return success; 460 } 461 462 463