1 //===-- Memory.cpp ----------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/Target/Memory.h" 11 // C Includes 12 // C++ Includes 13 // Other libraries and framework includes 14 // Project includes 15 #include "lldb/Core/DataBufferHeap.h" 16 #include "lldb/Core/State.h" 17 #include "lldb/Core/Log.h" 18 #include "lldb/Target/Process.h" 19 20 using namespace lldb; 21 using namespace lldb_private; 22 23 //---------------------------------------------------------------------- 24 // MemoryCache constructor 25 //---------------------------------------------------------------------- 26 MemoryCache::MemoryCache(Process &process) : 27 m_process (process), 28 m_cache_line_byte_size (512), 29 m_mutex (Mutex::eMutexTypeRecursive), 30 m_cache (), 31 m_invalid_ranges () 32 { 33 } 34 35 //---------------------------------------------------------------------- 36 // Destructor 37 //---------------------------------------------------------------------- 38 MemoryCache::~MemoryCache() 39 { 40 } 41 42 void 43 MemoryCache::Clear() 44 { 45 Mutex::Locker locker (m_mutex); 46 m_cache.clear(); 47 } 48 49 void 50 MemoryCache::Flush (addr_t addr, size_t size) 51 { 52 if (size == 0) 53 return; 54 55 Mutex::Locker locker (m_mutex); 56 if (m_cache.empty()) 57 return; 58 59 const uint32_t cache_line_byte_size = m_cache_line_byte_size; 60 const addr_t end_addr = (addr + size - 1); 61 const addr_t first_cache_line_addr = addr - (addr % cache_line_byte_size); 62 const addr_t last_cache_line_addr = end_addr - (end_addr % cache_line_byte_size); 63 // Watch for overflow where size will cause us to go off the end of the 64 // 64 bit address space 65 uint32_t num_cache_lines; 66 if (last_cache_line_addr >= first_cache_line_addr) 67 num_cache_lines = ((last_cache_line_addr - first_cache_line_addr)/cache_line_byte_size) + 1; 68 else 69 num_cache_lines = (UINT64_MAX - first_cache_line_addr + 1)/cache_line_byte_size; 70 71 //printf ("MemoryCache::Flush (0x%16.16llx, %zu (0x%zx))\n", addr, size, size); 72 73 uint32_t cache_idx = 0; 74 for (addr_t curr_addr = first_cache_line_addr; 75 cache_idx < num_cache_lines; 76 curr_addr += cache_line_byte_size, ++cache_idx) 77 { 78 //printf ("flushing: 0x%16.16llx\n", curr_addr); /// REMOVE THIS PRIOR TO CHECKIN!!!! 79 BlockMap::iterator pos = m_cache.find (curr_addr); 80 if (pos != m_cache.end()) 81 m_cache.erase(pos); 82 } 83 } 84 85 void 86 MemoryCache::AddInvalidRange (lldb::addr_t base_addr, lldb::addr_t byte_size) 87 { 88 if (byte_size > 0) 89 { 90 Mutex::Locker locker (m_mutex); 91 InvalidRanges::Entry range (base_addr, byte_size); 92 m_invalid_ranges.Append(range); 93 m_invalid_ranges.Sort(); 94 } 95 } 96 97 bool 98 MemoryCache::RemoveInvalidRange (lldb::addr_t base_addr, lldb::addr_t byte_size) 99 { 100 if (byte_size > 0) 101 { 102 Mutex::Locker locker (m_mutex); 103 const uint32_t idx = m_invalid_ranges.FindEntryIndexThatContains(base_addr); 104 if (idx != UINT32_MAX) 105 { 106 const InvalidRanges::Entry *entry = m_invalid_ranges.GetEntryAtIndex (idx); 107 if (entry->GetRangeBase() == base_addr && entry->GetByteSize() == byte_size) 108 return m_invalid_ranges.RemoveEntrtAtIndex (idx); 109 } 110 } 111 return false; 112 } 113 114 115 116 size_t 117 MemoryCache::Read (addr_t addr, 118 void *dst, 119 size_t dst_len, 120 Error &error) 121 { 122 size_t bytes_left = dst_len; 123 if (dst && bytes_left > 0) 124 { 125 const uint32_t cache_line_byte_size = m_cache_line_byte_size; 126 uint8_t *dst_buf = (uint8_t *)dst; 127 addr_t curr_addr = addr - (addr % cache_line_byte_size); 128 addr_t cache_offset = addr - curr_addr; 129 Mutex::Locker locker (m_mutex); 130 131 while (bytes_left > 0) 132 { 133 if (m_invalid_ranges.FindEntryThatContains(curr_addr)) 134 return dst_len - bytes_left; 135 136 BlockMap::const_iterator pos = m_cache.find (curr_addr); 137 BlockMap::const_iterator end = m_cache.end (); 138 139 if (pos != end) 140 { 141 size_t curr_read_size = cache_line_byte_size - cache_offset; 142 if (curr_read_size > bytes_left) 143 curr_read_size = bytes_left; 144 145 memcpy (dst_buf + dst_len - bytes_left, pos->second->GetBytes() + cache_offset, curr_read_size); 146 147 bytes_left -= curr_read_size; 148 curr_addr += curr_read_size + cache_offset; 149 cache_offset = 0; 150 151 if (bytes_left > 0) 152 { 153 // Get sequential cache page hits 154 for (++pos; (pos != end) && (bytes_left > 0); ++pos) 155 { 156 assert ((curr_addr % cache_line_byte_size) == 0); 157 158 if (pos->first != curr_addr) 159 break; 160 161 curr_read_size = pos->second->GetByteSize(); 162 if (curr_read_size > bytes_left) 163 curr_read_size = bytes_left; 164 165 memcpy (dst_buf + dst_len - bytes_left, pos->second->GetBytes(), curr_read_size); 166 167 bytes_left -= curr_read_size; 168 curr_addr += curr_read_size; 169 170 // We have a cache page that succeeded to read some bytes 171 // but not an entire page. If this happens, we must cap 172 // off how much data we are able to read... 173 if (pos->second->GetByteSize() != cache_line_byte_size) 174 return dst_len - bytes_left; 175 } 176 } 177 } 178 179 // We need to read from the process 180 181 if (bytes_left > 0) 182 { 183 assert ((curr_addr % cache_line_byte_size) == 0); 184 std::auto_ptr<DataBufferHeap> data_buffer_heap_ap(new DataBufferHeap (cache_line_byte_size, 0)); 185 size_t process_bytes_read = m_process.ReadMemoryFromInferior (curr_addr, 186 data_buffer_heap_ap->GetBytes(), 187 data_buffer_heap_ap->GetByteSize(), 188 error); 189 if (process_bytes_read == 0) 190 return dst_len - bytes_left; 191 192 if (process_bytes_read != cache_line_byte_size) 193 data_buffer_heap_ap->SetByteSize (process_bytes_read); 194 m_cache[curr_addr] = DataBufferSP (data_buffer_heap_ap.release()); 195 // We have read data and put it into the cache, continue through the 196 // loop again to get the data out of the cache... 197 } 198 } 199 } 200 201 return dst_len - bytes_left; 202 } 203 204 205 206 AllocatedBlock::AllocatedBlock (lldb::addr_t addr, 207 uint32_t byte_size, 208 uint32_t permissions, 209 uint32_t chunk_size) : 210 m_addr (addr), 211 m_byte_size (byte_size), 212 m_permissions (permissions), 213 m_chunk_size (chunk_size), 214 m_offset_to_chunk_size () 215 // m_allocated (byte_size / chunk_size) 216 { 217 assert (byte_size > chunk_size); 218 } 219 220 AllocatedBlock::~AllocatedBlock () 221 { 222 } 223 224 lldb::addr_t 225 AllocatedBlock::ReserveBlock (uint32_t size) 226 { 227 addr_t addr = LLDB_INVALID_ADDRESS; 228 if (size <= m_byte_size) 229 { 230 const uint32_t needed_chunks = CalculateChunksNeededForSize (size); 231 LogSP log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_VERBOSE)); 232 233 if (m_offset_to_chunk_size.empty()) 234 { 235 m_offset_to_chunk_size[0] = needed_chunks; 236 if (log) 237 log->Printf ("[1] AllocatedBlock::ReserveBlock (size = %u (0x%x)) => offset = 0x%x, %u %u bit chunks", size, size, 0, needed_chunks, m_chunk_size); 238 addr = m_addr; 239 } 240 else 241 { 242 uint32_t last_offset = 0; 243 OffsetToChunkSize::const_iterator pos = m_offset_to_chunk_size.begin(); 244 OffsetToChunkSize::const_iterator end = m_offset_to_chunk_size.end(); 245 while (pos != end) 246 { 247 if (pos->first > last_offset) 248 { 249 const uint32_t bytes_available = pos->first - last_offset; 250 const uint32_t num_chunks = CalculateChunksNeededForSize (bytes_available); 251 if (num_chunks >= needed_chunks) 252 { 253 m_offset_to_chunk_size[last_offset] = needed_chunks; 254 if (log) 255 log->Printf ("[2] AllocatedBlock::ReserveBlock (size = %u (0x%x)) => offset = 0x%x, %u %u bit chunks", size, size, last_offset, needed_chunks, m_chunk_size); 256 addr = m_addr + last_offset; 257 break; 258 } 259 } 260 261 last_offset = pos->first + pos->second * m_chunk_size; 262 263 if (++pos == end) 264 { 265 // Last entry... 266 const uint32_t chunks_left = CalculateChunksNeededForSize (m_byte_size - last_offset); 267 if (chunks_left >= needed_chunks) 268 { 269 m_offset_to_chunk_size[last_offset] = needed_chunks; 270 if (log) 271 log->Printf ("[3] AllocatedBlock::ReserveBlock (size = %u (0x%x)) => offset = 0x%x, %u %u bit chunks", size, size, last_offset, needed_chunks, m_chunk_size); 272 addr = m_addr + last_offset; 273 break; 274 } 275 } 276 } 277 } 278 // const uint32_t total_chunks = m_allocated.size (); 279 // uint32_t unallocated_idx = 0; 280 // uint32_t allocated_idx = m_allocated.find_first(); 281 // uint32_t first_chunk_idx = UINT32_MAX; 282 // uint32_t num_chunks; 283 // while (1) 284 // { 285 // if (allocated_idx == UINT32_MAX) 286 // { 287 // // No more bits are set starting from unallocated_idx, so we 288 // // either have enough chunks for the request, or we don't. 289 // // Eiter way we break out of the while loop... 290 // num_chunks = total_chunks - unallocated_idx; 291 // if (needed_chunks <= num_chunks) 292 // first_chunk_idx = unallocated_idx; 293 // break; 294 // } 295 // else if (allocated_idx > unallocated_idx) 296 // { 297 // // We have some allocated chunks, check if there are enough 298 // // free chunks to satisfy the request? 299 // num_chunks = allocated_idx - unallocated_idx; 300 // if (needed_chunks <= num_chunks) 301 // { 302 // // Yep, we have enough! 303 // first_chunk_idx = unallocated_idx; 304 // break; 305 // } 306 // } 307 // 308 // while (unallocated_idx < total_chunks) 309 // { 310 // if (m_allocated[unallocated_idx]) 311 // ++unallocated_idx; 312 // else 313 // break; 314 // } 315 // 316 // if (unallocated_idx >= total_chunks) 317 // break; 318 // 319 // allocated_idx = m_allocated.find_next(unallocated_idx); 320 // } 321 // 322 // if (first_chunk_idx != UINT32_MAX) 323 // { 324 // const uint32_t end_bit_idx = unallocated_idx + needed_chunks; 325 // for (uint32_t idx = first_chunk_idx; idx < end_bit_idx; ++idx) 326 // m_allocated.set(idx); 327 // return m_addr + m_chunk_size * first_chunk_idx; 328 // } 329 } 330 LogSP log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_VERBOSE)); 331 if (log) 332 log->Printf ("AllocatedBlock::ReserveBlock (size = %u (0x%x)) => 0x%16.16llx", size, size, (uint64_t)addr); 333 return addr; 334 } 335 336 bool 337 AllocatedBlock::FreeBlock (addr_t addr) 338 { 339 uint32_t offset = addr - m_addr; 340 OffsetToChunkSize::iterator pos = m_offset_to_chunk_size.find (offset); 341 bool success = false; 342 if (pos != m_offset_to_chunk_size.end()) 343 { 344 m_offset_to_chunk_size.erase (pos); 345 success = true; 346 } 347 LogSP log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_VERBOSE)); 348 if (log) 349 log->Printf ("AllocatedBlock::FreeBlock (addr = 0x%16.16llx) => %i", (uint64_t)addr, success); 350 return success; 351 } 352 353 354 AllocatedMemoryCache::AllocatedMemoryCache (Process &process) : 355 m_process (process), 356 m_mutex (Mutex::eMutexTypeRecursive), 357 m_memory_map() 358 { 359 } 360 361 AllocatedMemoryCache::~AllocatedMemoryCache () 362 { 363 } 364 365 366 void 367 AllocatedMemoryCache::Clear() 368 { 369 Mutex::Locker locker (m_mutex); 370 if (m_process.IsAlive()) 371 { 372 PermissionsToBlockMap::iterator pos, end = m_memory_map.end(); 373 for (pos = m_memory_map.begin(); pos != end; ++pos) 374 m_process.DoDeallocateMemory(pos->second->GetBaseAddress()); 375 } 376 m_memory_map.clear(); 377 } 378 379 380 AllocatedMemoryCache::AllocatedBlockSP 381 AllocatedMemoryCache::AllocatePage (uint32_t byte_size, 382 uint32_t permissions, 383 uint32_t chunk_size, 384 Error &error) 385 { 386 AllocatedBlockSP block_sp; 387 const size_t page_size = 4096; 388 const size_t num_pages = (byte_size + page_size - 1) / page_size; 389 const size_t page_byte_size = num_pages * page_size; 390 391 addr_t addr = m_process.DoAllocateMemory(page_byte_size, permissions, error); 392 393 LogSP log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 394 if (log) 395 { 396 log->Printf ("Process::DoAllocateMemory (byte_size = 0x%8.8zx, permissions = %s) => 0x%16.16llx", 397 page_byte_size, 398 GetPermissionsAsCString(permissions), 399 (uint64_t)addr); 400 } 401 402 if (addr != LLDB_INVALID_ADDRESS) 403 { 404 block_sp.reset (new AllocatedBlock (addr, page_byte_size, permissions, chunk_size)); 405 m_memory_map.insert (std::make_pair (permissions, block_sp)); 406 } 407 return block_sp; 408 } 409 410 lldb::addr_t 411 AllocatedMemoryCache::AllocateMemory (size_t byte_size, 412 uint32_t permissions, 413 Error &error) 414 { 415 Mutex::Locker locker (m_mutex); 416 417 addr_t addr = LLDB_INVALID_ADDRESS; 418 std::pair<PermissionsToBlockMap::iterator, PermissionsToBlockMap::iterator> range = m_memory_map.equal_range (permissions); 419 420 for (PermissionsToBlockMap::iterator pos = range.first; pos != range.second; ++pos) 421 { 422 addr = (*pos).second->ReserveBlock (byte_size); 423 } 424 425 if (addr == LLDB_INVALID_ADDRESS) 426 { 427 AllocatedBlockSP block_sp (AllocatePage (byte_size, permissions, 16, error)); 428 429 if (block_sp) 430 addr = block_sp->ReserveBlock (byte_size); 431 } 432 LogSP log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 433 if (log) 434 log->Printf ("AllocatedMemoryCache::AllocateMemory (byte_size = 0x%8.8zx, permissions = %s) => 0x%16.16llx", byte_size, GetPermissionsAsCString(permissions), (uint64_t)addr); 435 return addr; 436 } 437 438 bool 439 AllocatedMemoryCache::DeallocateMemory (lldb::addr_t addr) 440 { 441 Mutex::Locker locker (m_mutex); 442 443 PermissionsToBlockMap::iterator pos, end = m_memory_map.end(); 444 bool success = false; 445 for (pos = m_memory_map.begin(); pos != end; ++pos) 446 { 447 if (pos->second->Contains (addr)) 448 { 449 success = pos->second->FreeBlock (addr); 450 break; 451 } 452 } 453 LogSP log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 454 if (log) 455 log->Printf("AllocatedMemoryCache::DeallocateMemory (addr = 0x%16.16llx) => %i", (uint64_t)addr, success); 456 return success; 457 } 458 459 460