1 //===-- Memory.cpp ----------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "lldb/Target/Memory.h"
10 
11 #include "lldb/Core/RangeMap.h"
12 #include "lldb/Target/Process.h"
13 #include "lldb/Utility/DataBufferHeap.h"
14 #include "lldb/Utility/Log.h"
15 #include "lldb/Utility/State.h"
16 
17 #include <cinttypes>
18 #include <memory>
19 
20 using namespace lldb;
21 using namespace lldb_private;
22 
23 //----------------------------------------------------------------------
24 // MemoryCache constructor
25 //----------------------------------------------------------------------
26 MemoryCache::MemoryCache(Process &process)
27     : m_mutex(), m_L1_cache(), m_L2_cache(), m_invalid_ranges(),
28       m_process(process),
29       m_L2_cache_line_byte_size(process.GetMemoryCacheLineSize()) {}
30 
31 //----------------------------------------------------------------------
32 // Destructor
33 //----------------------------------------------------------------------
34 MemoryCache::~MemoryCache() {}
35 
36 void MemoryCache::Clear(bool clear_invalid_ranges) {
37   std::lock_guard<std::recursive_mutex> guard(m_mutex);
38   m_L1_cache.clear();
39   m_L2_cache.clear();
40   if (clear_invalid_ranges)
41     m_invalid_ranges.Clear();
42   m_L2_cache_line_byte_size = m_process.GetMemoryCacheLineSize();
43 }
44 
45 void MemoryCache::AddL1CacheData(lldb::addr_t addr, const void *src,
46                                  size_t src_len) {
47   AddL1CacheData(
48       addr, DataBufferSP(new DataBufferHeap(DataBufferHeap(src, src_len))));
49 }
50 
51 void MemoryCache::AddL1CacheData(lldb::addr_t addr,
52                                  const DataBufferSP &data_buffer_sp) {
53   std::lock_guard<std::recursive_mutex> guard(m_mutex);
54   m_L1_cache[addr] = data_buffer_sp;
55 }
56 
57 void MemoryCache::Flush(addr_t addr, size_t size) {
58   if (size == 0)
59     return;
60 
61   std::lock_guard<std::recursive_mutex> guard(m_mutex);
62 
63   // Erase any blocks from the L1 cache that intersect with the flush range
64   if (!m_L1_cache.empty()) {
65     AddrRange flush_range(addr, size);
66     BlockMap::iterator pos = m_L1_cache.upper_bound(addr);
67     if (pos != m_L1_cache.begin()) {
68       --pos;
69     }
70     while (pos != m_L1_cache.end()) {
71       AddrRange chunk_range(pos->first, pos->second->GetByteSize());
72       if (!chunk_range.DoesIntersect(flush_range))
73         break;
74       pos = m_L1_cache.erase(pos);
75     }
76   }
77 
78   if (!m_L2_cache.empty()) {
79     const uint32_t cache_line_byte_size = m_L2_cache_line_byte_size;
80     const addr_t end_addr = (addr + size - 1);
81     const addr_t first_cache_line_addr = addr - (addr % cache_line_byte_size);
82     const addr_t last_cache_line_addr =
83         end_addr - (end_addr % cache_line_byte_size);
84     // Watch for overflow where size will cause us to go off the end of the
85     // 64 bit address space
86     uint32_t num_cache_lines;
87     if (last_cache_line_addr >= first_cache_line_addr)
88       num_cache_lines = ((last_cache_line_addr - first_cache_line_addr) /
89                          cache_line_byte_size) +
90                         1;
91     else
92       num_cache_lines =
93           (UINT64_MAX - first_cache_line_addr + 1) / cache_line_byte_size;
94 
95     uint32_t cache_idx = 0;
96     for (addr_t curr_addr = first_cache_line_addr; cache_idx < num_cache_lines;
97          curr_addr += cache_line_byte_size, ++cache_idx) {
98       BlockMap::iterator pos = m_L2_cache.find(curr_addr);
99       if (pos != m_L2_cache.end())
100         m_L2_cache.erase(pos);
101     }
102   }
103 }
104 
105 void MemoryCache::AddInvalidRange(lldb::addr_t base_addr,
106                                   lldb::addr_t byte_size) {
107   if (byte_size > 0) {
108     std::lock_guard<std::recursive_mutex> guard(m_mutex);
109     InvalidRanges::Entry range(base_addr, byte_size);
110     m_invalid_ranges.Append(range);
111     m_invalid_ranges.Sort();
112   }
113 }
114 
115 bool MemoryCache::RemoveInvalidRange(lldb::addr_t base_addr,
116                                      lldb::addr_t byte_size) {
117   if (byte_size > 0) {
118     std::lock_guard<std::recursive_mutex> guard(m_mutex);
119     const uint32_t idx = m_invalid_ranges.FindEntryIndexThatContains(base_addr);
120     if (idx != UINT32_MAX) {
121       const InvalidRanges::Entry *entry = m_invalid_ranges.GetEntryAtIndex(idx);
122       if (entry->GetRangeBase() == base_addr &&
123           entry->GetByteSize() == byte_size)
124         return m_invalid_ranges.RemoveEntrtAtIndex(idx);
125     }
126   }
127   return false;
128 }
129 
130 size_t MemoryCache::Read(addr_t addr, void *dst, size_t dst_len,
131                          Status &error) {
132   size_t bytes_left = dst_len;
133 
134   // Check the L1 cache for a range that contain the entire memory read. If we
135   // find a range in the L1 cache that does, we use it. Else we fall back to
136   // reading memory in m_L2_cache_line_byte_size byte sized chunks. The L1
137   // cache contains chunks of memory that are not required to be
138   // m_L2_cache_line_byte_size bytes in size, so we don't try anything tricky
139   // when reading from them (no partial reads from the L1 cache).
140 
141   std::lock_guard<std::recursive_mutex> guard(m_mutex);
142   if (!m_L1_cache.empty()) {
143     AddrRange read_range(addr, dst_len);
144     BlockMap::iterator pos = m_L1_cache.upper_bound(addr);
145     if (pos != m_L1_cache.begin()) {
146       --pos;
147     }
148     AddrRange chunk_range(pos->first, pos->second->GetByteSize());
149     if (chunk_range.Contains(read_range)) {
150       memcpy(dst, pos->second->GetBytes() + addr - chunk_range.GetRangeBase(),
151              dst_len);
152       return dst_len;
153     }
154   }
155 
156   // If this memory read request is larger than the cache line size, then we
157   // (1) try to read as much of it at once as possible, and (2) don't add the
158   // data to the memory cache.  We don't want to split a big read up into more
159   // separate reads than necessary, and with a large memory read request, it is
160   // unlikely that the caller function will ask for the next
161   // 4 bytes after the large memory read - so there's little benefit to saving
162   // it in the cache.
163   if (dst && dst_len > m_L2_cache_line_byte_size) {
164     size_t bytes_read =
165         m_process.ReadMemoryFromInferior(addr, dst, dst_len, error);
166     // Add this non block sized range to the L1 cache if we actually read
167     // anything
168     if (bytes_read > 0)
169       AddL1CacheData(addr, dst, bytes_read);
170     return bytes_read;
171   }
172 
173   if (dst && bytes_left > 0) {
174     const uint32_t cache_line_byte_size = m_L2_cache_line_byte_size;
175     uint8_t *dst_buf = (uint8_t *)dst;
176     addr_t curr_addr = addr - (addr % cache_line_byte_size);
177     addr_t cache_offset = addr - curr_addr;
178 
179     while (bytes_left > 0) {
180       if (m_invalid_ranges.FindEntryThatContains(curr_addr)) {
181         error.SetErrorStringWithFormat("memory read failed for 0x%" PRIx64,
182                                        curr_addr);
183         return dst_len - bytes_left;
184       }
185 
186       BlockMap::const_iterator pos = m_L2_cache.find(curr_addr);
187       BlockMap::const_iterator end = m_L2_cache.end();
188 
189       if (pos != end) {
190         size_t curr_read_size = cache_line_byte_size - cache_offset;
191         if (curr_read_size > bytes_left)
192           curr_read_size = bytes_left;
193 
194         memcpy(dst_buf + dst_len - bytes_left,
195                pos->second->GetBytes() + cache_offset, curr_read_size);
196 
197         bytes_left -= curr_read_size;
198         curr_addr += curr_read_size + cache_offset;
199         cache_offset = 0;
200 
201         if (bytes_left > 0) {
202           // Get sequential cache page hits
203           for (++pos; (pos != end) && (bytes_left > 0); ++pos) {
204             assert((curr_addr % cache_line_byte_size) == 0);
205 
206             if (pos->first != curr_addr)
207               break;
208 
209             curr_read_size = pos->second->GetByteSize();
210             if (curr_read_size > bytes_left)
211               curr_read_size = bytes_left;
212 
213             memcpy(dst_buf + dst_len - bytes_left, pos->second->GetBytes(),
214                    curr_read_size);
215 
216             bytes_left -= curr_read_size;
217             curr_addr += curr_read_size;
218 
219             // We have a cache page that succeeded to read some bytes but not
220             // an entire page. If this happens, we must cap off how much data
221             // we are able to read...
222             if (pos->second->GetByteSize() != cache_line_byte_size)
223               return dst_len - bytes_left;
224           }
225         }
226       }
227 
228       // We need to read from the process
229 
230       if (bytes_left > 0) {
231         assert((curr_addr % cache_line_byte_size) == 0);
232         std::unique_ptr<DataBufferHeap> data_buffer_heap_ap(
233             new DataBufferHeap(cache_line_byte_size, 0));
234         size_t process_bytes_read = m_process.ReadMemoryFromInferior(
235             curr_addr, data_buffer_heap_ap->GetBytes(),
236             data_buffer_heap_ap->GetByteSize(), error);
237         if (process_bytes_read == 0)
238           return dst_len - bytes_left;
239 
240         if (process_bytes_read != cache_line_byte_size)
241           data_buffer_heap_ap->SetByteSize(process_bytes_read);
242         m_L2_cache[curr_addr] = DataBufferSP(data_buffer_heap_ap.release());
243         // We have read data and put it into the cache, continue through the
244         // loop again to get the data out of the cache...
245       }
246     }
247   }
248 
249   return dst_len - bytes_left;
250 }
251 
252 AllocatedBlock::AllocatedBlock(lldb::addr_t addr, uint32_t byte_size,
253                                uint32_t permissions, uint32_t chunk_size)
254     : m_range(addr, byte_size), m_permissions(permissions),
255       m_chunk_size(chunk_size)
256 {
257   // The entire address range is free to start with.
258   m_free_blocks.Append(m_range);
259   assert(byte_size > chunk_size);
260 }
261 
262 AllocatedBlock::~AllocatedBlock() {}
263 
264 lldb::addr_t AllocatedBlock::ReserveBlock(uint32_t size) {
265   // We must return something valid for zero bytes.
266   if (size == 0)
267     size = 1;
268   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
269 
270   const size_t free_count = m_free_blocks.GetSize();
271   for (size_t i=0; i<free_count; ++i)
272   {
273     auto &free_block = m_free_blocks.GetEntryRef(i);
274     const lldb::addr_t range_size = free_block.GetByteSize();
275     if (range_size >= size)
276     {
277       // We found a free block that is big enough for our data. Figure out how
278       // many chunks we will need and calculate the resulting block size we
279       // will reserve.
280       addr_t addr = free_block.GetRangeBase();
281       size_t num_chunks = CalculateChunksNeededForSize(size);
282       lldb::addr_t block_size = num_chunks * m_chunk_size;
283       lldb::addr_t bytes_left = range_size - block_size;
284       if (bytes_left == 0)
285       {
286         // The newly allocated block will take all of the bytes in this
287         // available block, so we can just add it to the allocated ranges and
288         // remove the range from the free ranges.
289         m_reserved_blocks.Insert(free_block, false);
290         m_free_blocks.RemoveEntryAtIndex(i);
291       }
292       else
293       {
294         // Make the new allocated range and add it to the allocated ranges.
295         Range<lldb::addr_t, uint32_t> reserved_block(free_block);
296         reserved_block.SetByteSize(block_size);
297         // Insert the reserved range and don't combine it with other blocks in
298         // the reserved blocks list.
299         m_reserved_blocks.Insert(reserved_block, false);
300         // Adjust the free range in place since we won't change the sorted
301         // ordering of the m_free_blocks list.
302         free_block.SetRangeBase(reserved_block.GetRangeEnd());
303         free_block.SetByteSize(bytes_left);
304       }
305       LLDB_LOGV(log, "({0}) (size = {1} ({1:x})) => {2:x}", this, size, addr);
306       return addr;
307     }
308   }
309 
310   LLDB_LOGV(log, "({0}) (size = {1} ({1:x})) => {2:x}", this, size,
311             LLDB_INVALID_ADDRESS);
312   return LLDB_INVALID_ADDRESS;
313 }
314 
315 bool AllocatedBlock::FreeBlock(addr_t addr) {
316   bool success = false;
317   auto entry_idx = m_reserved_blocks.FindEntryIndexThatContains(addr);
318   if (entry_idx != UINT32_MAX)
319   {
320     m_free_blocks.Insert(m_reserved_blocks.GetEntryRef(entry_idx), true);
321     m_reserved_blocks.RemoveEntryAtIndex(entry_idx);
322     success = true;
323   }
324   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
325   LLDB_LOGV(log, "({0}) (addr = {1:x}) => {2}", this, addr, success);
326   return success;
327 }
328 
329 AllocatedMemoryCache::AllocatedMemoryCache(Process &process)
330     : m_process(process), m_mutex(), m_memory_map() {}
331 
332 AllocatedMemoryCache::~AllocatedMemoryCache() {}
333 
334 void AllocatedMemoryCache::Clear() {
335   std::lock_guard<std::recursive_mutex> guard(m_mutex);
336   if (m_process.IsAlive()) {
337     PermissionsToBlockMap::iterator pos, end = m_memory_map.end();
338     for (pos = m_memory_map.begin(); pos != end; ++pos)
339       m_process.DoDeallocateMemory(pos->second->GetBaseAddress());
340   }
341   m_memory_map.clear();
342 }
343 
344 AllocatedMemoryCache::AllocatedBlockSP
345 AllocatedMemoryCache::AllocatePage(uint32_t byte_size, uint32_t permissions,
346                                    uint32_t chunk_size, Status &error) {
347   AllocatedBlockSP block_sp;
348   const size_t page_size = 4096;
349   const size_t num_pages = (byte_size + page_size - 1) / page_size;
350   const size_t page_byte_size = num_pages * page_size;
351 
352   addr_t addr = m_process.DoAllocateMemory(page_byte_size, permissions, error);
353 
354   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
355   if (log) {
356     log->Printf("Process::DoAllocateMemory (byte_size = 0x%8.8" PRIx32
357                 ", permissions = %s) => 0x%16.16" PRIx64,
358                 (uint32_t)page_byte_size, GetPermissionsAsCString(permissions),
359                 (uint64_t)addr);
360   }
361 
362   if (addr != LLDB_INVALID_ADDRESS) {
363     block_sp = std::make_shared<AllocatedBlock>(addr, page_byte_size,
364                                                 permissions, chunk_size);
365     m_memory_map.insert(std::make_pair(permissions, block_sp));
366   }
367   return block_sp;
368 }
369 
370 lldb::addr_t AllocatedMemoryCache::AllocateMemory(size_t byte_size,
371                                                   uint32_t permissions,
372                                                   Status &error) {
373   std::lock_guard<std::recursive_mutex> guard(m_mutex);
374 
375   addr_t addr = LLDB_INVALID_ADDRESS;
376   std::pair<PermissionsToBlockMap::iterator, PermissionsToBlockMap::iterator>
377       range = m_memory_map.equal_range(permissions);
378 
379   for (PermissionsToBlockMap::iterator pos = range.first; pos != range.second;
380        ++pos) {
381     addr = (*pos).second->ReserveBlock(byte_size);
382     if (addr != LLDB_INVALID_ADDRESS)
383       break;
384   }
385 
386   if (addr == LLDB_INVALID_ADDRESS) {
387     AllocatedBlockSP block_sp(AllocatePage(byte_size, permissions, 16, error));
388 
389     if (block_sp)
390       addr = block_sp->ReserveBlock(byte_size);
391   }
392   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
393   if (log)
394     log->Printf(
395         "AllocatedMemoryCache::AllocateMemory (byte_size = 0x%8.8" PRIx32
396         ", permissions = %s) => 0x%16.16" PRIx64,
397         (uint32_t)byte_size, GetPermissionsAsCString(permissions),
398         (uint64_t)addr);
399   return addr;
400 }
401 
402 bool AllocatedMemoryCache::DeallocateMemory(lldb::addr_t addr) {
403   std::lock_guard<std::recursive_mutex> guard(m_mutex);
404 
405   PermissionsToBlockMap::iterator pos, end = m_memory_map.end();
406   bool success = false;
407   for (pos = m_memory_map.begin(); pos != end; ++pos) {
408     if (pos->second->Contains(addr)) {
409       success = pos->second->FreeBlock(addr);
410       break;
411     }
412   }
413   Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
414   if (log)
415     log->Printf("AllocatedMemoryCache::DeallocateMemory (addr = 0x%16.16" PRIx64
416                 ") => %i",
417                 (uint64_t)addr, success);
418   return success;
419 }
420