1 //===-- Memory.cpp ----------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Target/Memory.h" 10 11 #include "lldb/Core/RangeMap.h" 12 #include "lldb/Target/Process.h" 13 #include "lldb/Utility/DataBufferHeap.h" 14 #include "lldb/Utility/Log.h" 15 #include "lldb/Utility/State.h" 16 17 #include <cinttypes> 18 #include <memory> 19 20 using namespace lldb; 21 using namespace lldb_private; 22 23 //---------------------------------------------------------------------- 24 // MemoryCache constructor 25 //---------------------------------------------------------------------- 26 MemoryCache::MemoryCache(Process &process) 27 : m_mutex(), m_L1_cache(), m_L2_cache(), m_invalid_ranges(), 28 m_process(process), 29 m_L2_cache_line_byte_size(process.GetMemoryCacheLineSize()) {} 30 31 //---------------------------------------------------------------------- 32 // Destructor 33 //---------------------------------------------------------------------- 34 MemoryCache::~MemoryCache() {} 35 36 void MemoryCache::Clear(bool clear_invalid_ranges) { 37 std::lock_guard<std::recursive_mutex> guard(m_mutex); 38 m_L1_cache.clear(); 39 m_L2_cache.clear(); 40 if (clear_invalid_ranges) 41 m_invalid_ranges.Clear(); 42 m_L2_cache_line_byte_size = m_process.GetMemoryCacheLineSize(); 43 } 44 45 void MemoryCache::AddL1CacheData(lldb::addr_t addr, const void *src, 46 size_t src_len) { 47 AddL1CacheData( 48 addr, DataBufferSP(new DataBufferHeap(DataBufferHeap(src, src_len)))); 49 } 50 51 void MemoryCache::AddL1CacheData(lldb::addr_t addr, 52 const DataBufferSP &data_buffer_sp) { 53 std::lock_guard<std::recursive_mutex> guard(m_mutex); 54 m_L1_cache[addr] = data_buffer_sp; 55 } 56 57 void MemoryCache::Flush(addr_t addr, size_t size) { 58 if (size == 0) 59 return; 60 61 std::lock_guard<std::recursive_mutex> guard(m_mutex); 62 63 // Erase any blocks from the L1 cache that intersect with the flush range 64 if (!m_L1_cache.empty()) { 65 AddrRange flush_range(addr, size); 66 BlockMap::iterator pos = m_L1_cache.upper_bound(addr); 67 if (pos != m_L1_cache.begin()) { 68 --pos; 69 } 70 while (pos != m_L1_cache.end()) { 71 AddrRange chunk_range(pos->first, pos->second->GetByteSize()); 72 if (!chunk_range.DoesIntersect(flush_range)) 73 break; 74 pos = m_L1_cache.erase(pos); 75 } 76 } 77 78 if (!m_L2_cache.empty()) { 79 const uint32_t cache_line_byte_size = m_L2_cache_line_byte_size; 80 const addr_t end_addr = (addr + size - 1); 81 const addr_t first_cache_line_addr = addr - (addr % cache_line_byte_size); 82 const addr_t last_cache_line_addr = 83 end_addr - (end_addr % cache_line_byte_size); 84 // Watch for overflow where size will cause us to go off the end of the 85 // 64 bit address space 86 uint32_t num_cache_lines; 87 if (last_cache_line_addr >= first_cache_line_addr) 88 num_cache_lines = ((last_cache_line_addr - first_cache_line_addr) / 89 cache_line_byte_size) + 90 1; 91 else 92 num_cache_lines = 93 (UINT64_MAX - first_cache_line_addr + 1) / cache_line_byte_size; 94 95 uint32_t cache_idx = 0; 96 for (addr_t curr_addr = first_cache_line_addr; cache_idx < num_cache_lines; 97 curr_addr += cache_line_byte_size, ++cache_idx) { 98 BlockMap::iterator pos = m_L2_cache.find(curr_addr); 99 if (pos != m_L2_cache.end()) 100 m_L2_cache.erase(pos); 101 } 102 } 103 } 104 105 void MemoryCache::AddInvalidRange(lldb::addr_t base_addr, 106 lldb::addr_t byte_size) { 107 if (byte_size > 0) { 108 std::lock_guard<std::recursive_mutex> guard(m_mutex); 109 InvalidRanges::Entry range(base_addr, byte_size); 110 m_invalid_ranges.Append(range); 111 m_invalid_ranges.Sort(); 112 } 113 } 114 115 bool MemoryCache::RemoveInvalidRange(lldb::addr_t base_addr, 116 lldb::addr_t byte_size) { 117 if (byte_size > 0) { 118 std::lock_guard<std::recursive_mutex> guard(m_mutex); 119 const uint32_t idx = m_invalid_ranges.FindEntryIndexThatContains(base_addr); 120 if (idx != UINT32_MAX) { 121 const InvalidRanges::Entry *entry = m_invalid_ranges.GetEntryAtIndex(idx); 122 if (entry->GetRangeBase() == base_addr && 123 entry->GetByteSize() == byte_size) 124 return m_invalid_ranges.RemoveEntrtAtIndex(idx); 125 } 126 } 127 return false; 128 } 129 130 size_t MemoryCache::Read(addr_t addr, void *dst, size_t dst_len, 131 Status &error) { 132 size_t bytes_left = dst_len; 133 134 // Check the L1 cache for a range that contain the entire memory read. If we 135 // find a range in the L1 cache that does, we use it. Else we fall back to 136 // reading memory in m_L2_cache_line_byte_size byte sized chunks. The L1 137 // cache contains chunks of memory that are not required to be 138 // m_L2_cache_line_byte_size bytes in size, so we don't try anything tricky 139 // when reading from them (no partial reads from the L1 cache). 140 141 std::lock_guard<std::recursive_mutex> guard(m_mutex); 142 if (!m_L1_cache.empty()) { 143 AddrRange read_range(addr, dst_len); 144 BlockMap::iterator pos = m_L1_cache.upper_bound(addr); 145 if (pos != m_L1_cache.begin()) { 146 --pos; 147 } 148 AddrRange chunk_range(pos->first, pos->second->GetByteSize()); 149 if (chunk_range.Contains(read_range)) { 150 memcpy(dst, pos->second->GetBytes() + addr - chunk_range.GetRangeBase(), 151 dst_len); 152 return dst_len; 153 } 154 } 155 156 // If this memory read request is larger than the cache line size, then we 157 // (1) try to read as much of it at once as possible, and (2) don't add the 158 // data to the memory cache. We don't want to split a big read up into more 159 // separate reads than necessary, and with a large memory read request, it is 160 // unlikely that the caller function will ask for the next 161 // 4 bytes after the large memory read - so there's little benefit to saving 162 // it in the cache. 163 if (dst && dst_len > m_L2_cache_line_byte_size) { 164 size_t bytes_read = 165 m_process.ReadMemoryFromInferior(addr, dst, dst_len, error); 166 // Add this non block sized range to the L1 cache if we actually read 167 // anything 168 if (bytes_read > 0) 169 AddL1CacheData(addr, dst, bytes_read); 170 return bytes_read; 171 } 172 173 if (dst && bytes_left > 0) { 174 const uint32_t cache_line_byte_size = m_L2_cache_line_byte_size; 175 uint8_t *dst_buf = (uint8_t *)dst; 176 addr_t curr_addr = addr - (addr % cache_line_byte_size); 177 addr_t cache_offset = addr - curr_addr; 178 179 while (bytes_left > 0) { 180 if (m_invalid_ranges.FindEntryThatContains(curr_addr)) { 181 error.SetErrorStringWithFormat("memory read failed for 0x%" PRIx64, 182 curr_addr); 183 return dst_len - bytes_left; 184 } 185 186 BlockMap::const_iterator pos = m_L2_cache.find(curr_addr); 187 BlockMap::const_iterator end = m_L2_cache.end(); 188 189 if (pos != end) { 190 size_t curr_read_size = cache_line_byte_size - cache_offset; 191 if (curr_read_size > bytes_left) 192 curr_read_size = bytes_left; 193 194 memcpy(dst_buf + dst_len - bytes_left, 195 pos->second->GetBytes() + cache_offset, curr_read_size); 196 197 bytes_left -= curr_read_size; 198 curr_addr += curr_read_size + cache_offset; 199 cache_offset = 0; 200 201 if (bytes_left > 0) { 202 // Get sequential cache page hits 203 for (++pos; (pos != end) && (bytes_left > 0); ++pos) { 204 assert((curr_addr % cache_line_byte_size) == 0); 205 206 if (pos->first != curr_addr) 207 break; 208 209 curr_read_size = pos->second->GetByteSize(); 210 if (curr_read_size > bytes_left) 211 curr_read_size = bytes_left; 212 213 memcpy(dst_buf + dst_len - bytes_left, pos->second->GetBytes(), 214 curr_read_size); 215 216 bytes_left -= curr_read_size; 217 curr_addr += curr_read_size; 218 219 // We have a cache page that succeeded to read some bytes but not 220 // an entire page. If this happens, we must cap off how much data 221 // we are able to read... 222 if (pos->second->GetByteSize() != cache_line_byte_size) 223 return dst_len - bytes_left; 224 } 225 } 226 } 227 228 // We need to read from the process 229 230 if (bytes_left > 0) { 231 assert((curr_addr % cache_line_byte_size) == 0); 232 std::unique_ptr<DataBufferHeap> data_buffer_heap_ap( 233 new DataBufferHeap(cache_line_byte_size, 0)); 234 size_t process_bytes_read = m_process.ReadMemoryFromInferior( 235 curr_addr, data_buffer_heap_ap->GetBytes(), 236 data_buffer_heap_ap->GetByteSize(), error); 237 if (process_bytes_read == 0) 238 return dst_len - bytes_left; 239 240 if (process_bytes_read != cache_line_byte_size) 241 data_buffer_heap_ap->SetByteSize(process_bytes_read); 242 m_L2_cache[curr_addr] = DataBufferSP(data_buffer_heap_ap.release()); 243 // We have read data and put it into the cache, continue through the 244 // loop again to get the data out of the cache... 245 } 246 } 247 } 248 249 return dst_len - bytes_left; 250 } 251 252 AllocatedBlock::AllocatedBlock(lldb::addr_t addr, uint32_t byte_size, 253 uint32_t permissions, uint32_t chunk_size) 254 : m_range(addr, byte_size), m_permissions(permissions), 255 m_chunk_size(chunk_size) 256 { 257 // The entire address range is free to start with. 258 m_free_blocks.Append(m_range); 259 assert(byte_size > chunk_size); 260 } 261 262 AllocatedBlock::~AllocatedBlock() {} 263 264 lldb::addr_t AllocatedBlock::ReserveBlock(uint32_t size) { 265 // We must return something valid for zero bytes. 266 if (size == 0) 267 size = 1; 268 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 269 270 const size_t free_count = m_free_blocks.GetSize(); 271 for (size_t i=0; i<free_count; ++i) 272 { 273 auto &free_block = m_free_blocks.GetEntryRef(i); 274 const lldb::addr_t range_size = free_block.GetByteSize(); 275 if (range_size >= size) 276 { 277 // We found a free block that is big enough for our data. Figure out how 278 // many chunks we will need and calculate the resulting block size we 279 // will reserve. 280 addr_t addr = free_block.GetRangeBase(); 281 size_t num_chunks = CalculateChunksNeededForSize(size); 282 lldb::addr_t block_size = num_chunks * m_chunk_size; 283 lldb::addr_t bytes_left = range_size - block_size; 284 if (bytes_left == 0) 285 { 286 // The newly allocated block will take all of the bytes in this 287 // available block, so we can just add it to the allocated ranges and 288 // remove the range from the free ranges. 289 m_reserved_blocks.Insert(free_block, false); 290 m_free_blocks.RemoveEntryAtIndex(i); 291 } 292 else 293 { 294 // Make the new allocated range and add it to the allocated ranges. 295 Range<lldb::addr_t, uint32_t> reserved_block(free_block); 296 reserved_block.SetByteSize(block_size); 297 // Insert the reserved range and don't combine it with other blocks in 298 // the reserved blocks list. 299 m_reserved_blocks.Insert(reserved_block, false); 300 // Adjust the free range in place since we won't change the sorted 301 // ordering of the m_free_blocks list. 302 free_block.SetRangeBase(reserved_block.GetRangeEnd()); 303 free_block.SetByteSize(bytes_left); 304 } 305 LLDB_LOGV(log, "({0}) (size = {1} ({1:x})) => {2:x}", this, size, addr); 306 return addr; 307 } 308 } 309 310 LLDB_LOGV(log, "({0}) (size = {1} ({1:x})) => {2:x}", this, size, 311 LLDB_INVALID_ADDRESS); 312 return LLDB_INVALID_ADDRESS; 313 } 314 315 bool AllocatedBlock::FreeBlock(addr_t addr) { 316 bool success = false; 317 auto entry_idx = m_reserved_blocks.FindEntryIndexThatContains(addr); 318 if (entry_idx != UINT32_MAX) 319 { 320 m_free_blocks.Insert(m_reserved_blocks.GetEntryRef(entry_idx), true); 321 m_reserved_blocks.RemoveEntryAtIndex(entry_idx); 322 success = true; 323 } 324 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 325 LLDB_LOGV(log, "({0}) (addr = {1:x}) => {2}", this, addr, success); 326 return success; 327 } 328 329 AllocatedMemoryCache::AllocatedMemoryCache(Process &process) 330 : m_process(process), m_mutex(), m_memory_map() {} 331 332 AllocatedMemoryCache::~AllocatedMemoryCache() {} 333 334 void AllocatedMemoryCache::Clear() { 335 std::lock_guard<std::recursive_mutex> guard(m_mutex); 336 if (m_process.IsAlive()) { 337 PermissionsToBlockMap::iterator pos, end = m_memory_map.end(); 338 for (pos = m_memory_map.begin(); pos != end; ++pos) 339 m_process.DoDeallocateMemory(pos->second->GetBaseAddress()); 340 } 341 m_memory_map.clear(); 342 } 343 344 AllocatedMemoryCache::AllocatedBlockSP 345 AllocatedMemoryCache::AllocatePage(uint32_t byte_size, uint32_t permissions, 346 uint32_t chunk_size, Status &error) { 347 AllocatedBlockSP block_sp; 348 const size_t page_size = 4096; 349 const size_t num_pages = (byte_size + page_size - 1) / page_size; 350 const size_t page_byte_size = num_pages * page_size; 351 352 addr_t addr = m_process.DoAllocateMemory(page_byte_size, permissions, error); 353 354 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 355 if (log) { 356 log->Printf("Process::DoAllocateMemory (byte_size = 0x%8.8" PRIx32 357 ", permissions = %s) => 0x%16.16" PRIx64, 358 (uint32_t)page_byte_size, GetPermissionsAsCString(permissions), 359 (uint64_t)addr); 360 } 361 362 if (addr != LLDB_INVALID_ADDRESS) { 363 block_sp = std::make_shared<AllocatedBlock>(addr, page_byte_size, 364 permissions, chunk_size); 365 m_memory_map.insert(std::make_pair(permissions, block_sp)); 366 } 367 return block_sp; 368 } 369 370 lldb::addr_t AllocatedMemoryCache::AllocateMemory(size_t byte_size, 371 uint32_t permissions, 372 Status &error) { 373 std::lock_guard<std::recursive_mutex> guard(m_mutex); 374 375 addr_t addr = LLDB_INVALID_ADDRESS; 376 std::pair<PermissionsToBlockMap::iterator, PermissionsToBlockMap::iterator> 377 range = m_memory_map.equal_range(permissions); 378 379 for (PermissionsToBlockMap::iterator pos = range.first; pos != range.second; 380 ++pos) { 381 addr = (*pos).second->ReserveBlock(byte_size); 382 if (addr != LLDB_INVALID_ADDRESS) 383 break; 384 } 385 386 if (addr == LLDB_INVALID_ADDRESS) { 387 AllocatedBlockSP block_sp(AllocatePage(byte_size, permissions, 16, error)); 388 389 if (block_sp) 390 addr = block_sp->ReserveBlock(byte_size); 391 } 392 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 393 if (log) 394 log->Printf( 395 "AllocatedMemoryCache::AllocateMemory (byte_size = 0x%8.8" PRIx32 396 ", permissions = %s) => 0x%16.16" PRIx64, 397 (uint32_t)byte_size, GetPermissionsAsCString(permissions), 398 (uint64_t)addr); 399 return addr; 400 } 401 402 bool AllocatedMemoryCache::DeallocateMemory(lldb::addr_t addr) { 403 std::lock_guard<std::recursive_mutex> guard(m_mutex); 404 405 PermissionsToBlockMap::iterator pos, end = m_memory_map.end(); 406 bool success = false; 407 for (pos = m_memory_map.begin(); pos != end; ++pos) { 408 if (pos->second->Contains(addr)) { 409 success = pos->second->FreeBlock(addr); 410 break; 411 } 412 } 413 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 414 if (log) 415 log->Printf("AllocatedMemoryCache::DeallocateMemory (addr = 0x%16.16" PRIx64 416 ") => %i", 417 (uint64_t)addr, success); 418 return success; 419 } 420