1 //===-- Memory.cpp ----------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/Target/Memory.h" 11 // C Includes 12 #include <inttypes.h> 13 // C++ Includes 14 // Other libraries and framework includes 15 // Project includes 16 #include "lldb/Core/DataBufferHeap.h" 17 #include "lldb/Core/Log.h" 18 #include "lldb/Core/RangeMap.h" 19 #include "lldb/Core/State.h" 20 #include "lldb/Target/Process.h" 21 22 using namespace lldb; 23 using namespace lldb_private; 24 25 //---------------------------------------------------------------------- 26 // MemoryCache constructor 27 //---------------------------------------------------------------------- 28 MemoryCache::MemoryCache(Process &process) : 29 m_mutex (Mutex::eMutexTypeRecursive), 30 m_L1_cache (), 31 m_L2_cache (), 32 m_invalid_ranges (), 33 m_process (process), 34 m_L2_cache_line_byte_size (process.GetMemoryCacheLineSize()) 35 { 36 } 37 38 //---------------------------------------------------------------------- 39 // Destructor 40 //---------------------------------------------------------------------- 41 MemoryCache::~MemoryCache() 42 { 43 } 44 45 void 46 MemoryCache::Clear(bool clear_invalid_ranges) 47 { 48 Mutex::Locker locker (m_mutex); 49 m_L1_cache.clear(); 50 m_L2_cache.clear(); 51 if (clear_invalid_ranges) 52 m_invalid_ranges.Clear(); 53 m_L2_cache_line_byte_size = m_process.GetMemoryCacheLineSize(); 54 } 55 56 void 57 MemoryCache::AddL1CacheData(lldb::addr_t addr, const void *src, size_t src_len) 58 { 59 AddL1CacheData(addr,DataBufferSP (new DataBufferHeap(DataBufferHeap(src, src_len)))); 60 } 61 62 void 63 MemoryCache::AddL1CacheData(lldb::addr_t addr, const DataBufferSP &data_buffer_sp) 64 { 65 Mutex::Locker locker (m_mutex); 66 m_L1_cache[addr] = data_buffer_sp; 67 } 68 69 void 70 MemoryCache::Flush (addr_t addr, size_t size) 71 { 72 if (size == 0) 73 return; 74 75 Mutex::Locker locker (m_mutex); 76 77 // Erase any blocks from the L1 cache that intersect with the flush range 78 if (!m_L1_cache.empty()) 79 { 80 AddrRange flush_range(addr, size); 81 BlockMap::iterator pos = m_L1_cache.lower_bound(addr); 82 while (pos != m_L1_cache.end()) 83 { 84 AddrRange chunk_range(pos->first, pos->second->GetByteSize()); 85 if (!chunk_range.DoesIntersect(flush_range)) 86 break; 87 pos = m_L1_cache.erase(pos); 88 } 89 } 90 91 if (!m_L2_cache.empty()) 92 { 93 const uint32_t cache_line_byte_size = m_L2_cache_line_byte_size; 94 const addr_t end_addr = (addr + size - 1); 95 const addr_t first_cache_line_addr = addr - (addr % cache_line_byte_size); 96 const addr_t last_cache_line_addr = end_addr - (end_addr % cache_line_byte_size); 97 // Watch for overflow where size will cause us to go off the end of the 98 // 64 bit address space 99 uint32_t num_cache_lines; 100 if (last_cache_line_addr >= first_cache_line_addr) 101 num_cache_lines = ((last_cache_line_addr - first_cache_line_addr)/cache_line_byte_size) + 1; 102 else 103 num_cache_lines = (UINT64_MAX - first_cache_line_addr + 1)/cache_line_byte_size; 104 105 uint32_t cache_idx = 0; 106 for (addr_t curr_addr = first_cache_line_addr; 107 cache_idx < num_cache_lines; 108 curr_addr += cache_line_byte_size, ++cache_idx) 109 { 110 BlockMap::iterator pos = m_L2_cache.find (curr_addr); 111 if (pos != m_L2_cache.end()) 112 m_L2_cache.erase(pos); 113 } 114 } 115 } 116 117 void 118 MemoryCache::AddInvalidRange (lldb::addr_t base_addr, lldb::addr_t byte_size) 119 { 120 if (byte_size > 0) 121 { 122 Mutex::Locker locker (m_mutex); 123 InvalidRanges::Entry range (base_addr, byte_size); 124 m_invalid_ranges.Append(range); 125 m_invalid_ranges.Sort(); 126 } 127 } 128 129 bool 130 MemoryCache::RemoveInvalidRange (lldb::addr_t base_addr, lldb::addr_t byte_size) 131 { 132 if (byte_size > 0) 133 { 134 Mutex::Locker locker (m_mutex); 135 const uint32_t idx = m_invalid_ranges.FindEntryIndexThatContains(base_addr); 136 if (idx != UINT32_MAX) 137 { 138 const InvalidRanges::Entry *entry = m_invalid_ranges.GetEntryAtIndex (idx); 139 if (entry->GetRangeBase() == base_addr && entry->GetByteSize() == byte_size) 140 return m_invalid_ranges.RemoveEntrtAtIndex (idx); 141 } 142 } 143 return false; 144 } 145 146 147 148 size_t 149 MemoryCache::Read (addr_t addr, 150 void *dst, 151 size_t dst_len, 152 Error &error) 153 { 154 size_t bytes_left = dst_len; 155 156 // Check the L1 cache for a range that contain the entire memory read. 157 // If we find a range in the L1 cache that does, we use it. Else we fall 158 // back to reading memory in m_L2_cache_line_byte_size byte sized chunks. 159 // The L1 cache contains chunks of memory that are not required to be 160 // m_L2_cache_line_byte_size bytes in size, so we don't try anything 161 // tricky when reading from them (no partial reads from the L1 cache). 162 163 Mutex::Locker locker(m_mutex); 164 if (!m_L1_cache.empty()) 165 { 166 AddrRange read_range(addr, dst_len); 167 BlockMap::iterator pos = m_L1_cache.lower_bound(addr); 168 if (pos != m_L1_cache.end()) 169 { 170 AddrRange chunk_range(pos->first, pos->second->GetByteSize()); 171 bool match = chunk_range.Contains(read_range); 172 if (!match && pos != m_L1_cache.begin()) 173 { 174 --pos; 175 chunk_range.SetRangeBase(pos->first); 176 chunk_range.SetByteSize(pos->second->GetByteSize()); 177 match = chunk_range.Contains(read_range); 178 } 179 180 if (match) 181 { 182 memcpy(dst, pos->second->GetBytes() + addr - chunk_range.GetRangeBase(), dst_len); 183 return dst_len; 184 } 185 } 186 } 187 188 189 // If this memory read request is larger than the cache line size, then 190 // we (1) try to read as much of it at once as possible, and (2) don't 191 // add the data to the memory cache. We don't want to split a big read 192 // up into more separate reads than necessary, and with a large memory read 193 // request, it is unlikely that the caller function will ask for the next 194 // 4 bytes after the large memory read - so there's little benefit to saving 195 // it in the cache. 196 if (dst && dst_len > m_L2_cache_line_byte_size) 197 { 198 size_t bytes_read = m_process.ReadMemoryFromInferior (addr, dst, dst_len, error); 199 // Add this non block sized range to the L1 cache if we actually read anything 200 if (bytes_read > 0) 201 AddL1CacheData(addr, dst, bytes_read); 202 return bytes_read; 203 } 204 205 if (dst && bytes_left > 0) 206 { 207 const uint32_t cache_line_byte_size = m_L2_cache_line_byte_size; 208 uint8_t *dst_buf = (uint8_t *)dst; 209 addr_t curr_addr = addr - (addr % cache_line_byte_size); 210 addr_t cache_offset = addr - curr_addr; 211 212 while (bytes_left > 0) 213 { 214 if (m_invalid_ranges.FindEntryThatContains(curr_addr)) 215 { 216 error.SetErrorStringWithFormat("memory read failed for 0x%" PRIx64, curr_addr); 217 return dst_len - bytes_left; 218 } 219 220 BlockMap::const_iterator pos = m_L2_cache.find (curr_addr); 221 BlockMap::const_iterator end = m_L2_cache.end (); 222 223 if (pos != end) 224 { 225 size_t curr_read_size = cache_line_byte_size - cache_offset; 226 if (curr_read_size > bytes_left) 227 curr_read_size = bytes_left; 228 229 memcpy (dst_buf + dst_len - bytes_left, pos->second->GetBytes() + cache_offset, curr_read_size); 230 231 bytes_left -= curr_read_size; 232 curr_addr += curr_read_size + cache_offset; 233 cache_offset = 0; 234 235 if (bytes_left > 0) 236 { 237 // Get sequential cache page hits 238 for (++pos; (pos != end) && (bytes_left > 0); ++pos) 239 { 240 assert ((curr_addr % cache_line_byte_size) == 0); 241 242 if (pos->first != curr_addr) 243 break; 244 245 curr_read_size = pos->second->GetByteSize(); 246 if (curr_read_size > bytes_left) 247 curr_read_size = bytes_left; 248 249 memcpy (dst_buf + dst_len - bytes_left, pos->second->GetBytes(), curr_read_size); 250 251 bytes_left -= curr_read_size; 252 curr_addr += curr_read_size; 253 254 // We have a cache page that succeeded to read some bytes 255 // but not an entire page. If this happens, we must cap 256 // off how much data we are able to read... 257 if (pos->second->GetByteSize() != cache_line_byte_size) 258 return dst_len - bytes_left; 259 } 260 } 261 } 262 263 // We need to read from the process 264 265 if (bytes_left > 0) 266 { 267 assert ((curr_addr % cache_line_byte_size) == 0); 268 std::unique_ptr<DataBufferHeap> data_buffer_heap_ap(new DataBufferHeap (cache_line_byte_size, 0)); 269 size_t process_bytes_read = m_process.ReadMemoryFromInferior (curr_addr, 270 data_buffer_heap_ap->GetBytes(), 271 data_buffer_heap_ap->GetByteSize(), 272 error); 273 if (process_bytes_read == 0) 274 return dst_len - bytes_left; 275 276 if (process_bytes_read != cache_line_byte_size) 277 data_buffer_heap_ap->SetByteSize (process_bytes_read); 278 m_L2_cache[curr_addr] = DataBufferSP (data_buffer_heap_ap.release()); 279 // We have read data and put it into the cache, continue through the 280 // loop again to get the data out of the cache... 281 } 282 } 283 } 284 285 return dst_len - bytes_left; 286 } 287 288 289 290 AllocatedBlock::AllocatedBlock (lldb::addr_t addr, 291 uint32_t byte_size, 292 uint32_t permissions, 293 uint32_t chunk_size) : 294 m_addr (addr), 295 m_byte_size (byte_size), 296 m_permissions (permissions), 297 m_chunk_size (chunk_size), 298 m_offset_to_chunk_size () 299 // m_allocated (byte_size / chunk_size) 300 { 301 assert (byte_size > chunk_size); 302 } 303 304 AllocatedBlock::~AllocatedBlock () 305 { 306 } 307 308 lldb::addr_t 309 AllocatedBlock::ReserveBlock (uint32_t size) 310 { 311 addr_t addr = LLDB_INVALID_ADDRESS; 312 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_VERBOSE)); 313 if (size <= m_byte_size) 314 { 315 const uint32_t needed_chunks = CalculateChunksNeededForSize (size); 316 317 if (m_offset_to_chunk_size.empty()) 318 { 319 m_offset_to_chunk_size[0] = needed_chunks; 320 if (log) 321 log->Printf("[1] AllocatedBlock::ReserveBlock(%p) (size = %u (0x%x)) => offset = 0x%x, %u %u bit chunks", (void *)this, 322 size, size, 0, needed_chunks, m_chunk_size); 323 addr = m_addr; 324 } 325 else 326 { 327 uint32_t last_offset = 0; 328 OffsetToChunkSize::const_iterator pos = m_offset_to_chunk_size.begin(); 329 OffsetToChunkSize::const_iterator end = m_offset_to_chunk_size.end(); 330 while (pos != end) 331 { 332 if (pos->first > last_offset) 333 { 334 const uint32_t bytes_available = pos->first - last_offset; 335 const uint32_t num_chunks = CalculateChunksNeededForSize (bytes_available); 336 if (num_chunks >= needed_chunks) 337 { 338 m_offset_to_chunk_size[last_offset] = needed_chunks; 339 if (log) 340 log->Printf("[2] AllocatedBlock::ReserveBlock(%p) (size = %u (0x%x)) => offset = 0x%x, %u %u bit chunks - " 341 "num_chunks %lu", 342 (void *)this, size, size, last_offset, needed_chunks, m_chunk_size, m_offset_to_chunk_size.size()); 343 addr = m_addr + last_offset; 344 break; 345 } 346 } 347 348 last_offset = pos->first + pos->second * m_chunk_size; 349 350 if (++pos == end) 351 { 352 // Last entry... 353 const uint32_t chunks_left = CalculateChunksNeededForSize (m_byte_size - last_offset); 354 if (chunks_left >= needed_chunks) 355 { 356 m_offset_to_chunk_size[last_offset] = needed_chunks; 357 if (log) 358 log->Printf("[3] AllocatedBlock::ReserveBlock(%p) (size = %u (0x%x)) => offset = 0x%x, %u %u bit chunks - " 359 "num_chunks %lu", 360 (void *)this, size, size, last_offset, needed_chunks, m_chunk_size, m_offset_to_chunk_size.size()); 361 addr = m_addr + last_offset; 362 break; 363 } 364 } 365 } 366 } 367 // const uint32_t total_chunks = m_allocated.size (); 368 // uint32_t unallocated_idx = 0; 369 // uint32_t allocated_idx = m_allocated.find_first(); 370 // uint32_t first_chunk_idx = UINT32_MAX; 371 // uint32_t num_chunks; 372 // while (1) 373 // { 374 // if (allocated_idx == UINT32_MAX) 375 // { 376 // // No more bits are set starting from unallocated_idx, so we 377 // // either have enough chunks for the request, or we don't. 378 // // Eiter way we break out of the while loop... 379 // num_chunks = total_chunks - unallocated_idx; 380 // if (needed_chunks <= num_chunks) 381 // first_chunk_idx = unallocated_idx; 382 // break; 383 // } 384 // else if (allocated_idx > unallocated_idx) 385 // { 386 // // We have some allocated chunks, check if there are enough 387 // // free chunks to satisfy the request? 388 // num_chunks = allocated_idx - unallocated_idx; 389 // if (needed_chunks <= num_chunks) 390 // { 391 // // Yep, we have enough! 392 // first_chunk_idx = unallocated_idx; 393 // break; 394 // } 395 // } 396 // 397 // while (unallocated_idx < total_chunks) 398 // { 399 // if (m_allocated[unallocated_idx]) 400 // ++unallocated_idx; 401 // else 402 // break; 403 // } 404 // 405 // if (unallocated_idx >= total_chunks) 406 // break; 407 // 408 // allocated_idx = m_allocated.find_next(unallocated_idx); 409 // } 410 // 411 // if (first_chunk_idx != UINT32_MAX) 412 // { 413 // const uint32_t end_bit_idx = unallocated_idx + needed_chunks; 414 // for (uint32_t idx = first_chunk_idx; idx < end_bit_idx; ++idx) 415 // m_allocated.set(idx); 416 // return m_addr + m_chunk_size * first_chunk_idx; 417 // } 418 } 419 420 if (log) 421 log->Printf("AllocatedBlock::ReserveBlock(%p) (size = %u (0x%x)) => 0x%16.16" PRIx64, (void *)this, size, size, (uint64_t)addr); 422 return addr; 423 } 424 425 bool 426 AllocatedBlock::FreeBlock (addr_t addr) 427 { 428 uint32_t offset = addr - m_addr; 429 OffsetToChunkSize::iterator pos = m_offset_to_chunk_size.find (offset); 430 bool success = false; 431 if (pos != m_offset_to_chunk_size.end()) 432 { 433 m_offset_to_chunk_size.erase (pos); 434 success = true; 435 } 436 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_VERBOSE)); 437 if (log) 438 log->Printf("AllocatedBlock::FreeBlock(%p) (addr = 0x%16.16" PRIx64 ") => %i, num_chunks: %lu", (void *)this, (uint64_t)addr, 439 success, m_offset_to_chunk_size.size()); 440 return success; 441 } 442 443 444 AllocatedMemoryCache::AllocatedMemoryCache (Process &process) : 445 m_process (process), 446 m_mutex (Mutex::eMutexTypeRecursive), 447 m_memory_map() 448 { 449 } 450 451 AllocatedMemoryCache::~AllocatedMemoryCache () 452 { 453 } 454 455 456 void 457 AllocatedMemoryCache::Clear() 458 { 459 Mutex::Locker locker (m_mutex); 460 if (m_process.IsAlive()) 461 { 462 PermissionsToBlockMap::iterator pos, end = m_memory_map.end(); 463 for (pos = m_memory_map.begin(); pos != end; ++pos) 464 m_process.DoDeallocateMemory(pos->second->GetBaseAddress()); 465 } 466 m_memory_map.clear(); 467 } 468 469 470 AllocatedMemoryCache::AllocatedBlockSP 471 AllocatedMemoryCache::AllocatePage (uint32_t byte_size, 472 uint32_t permissions, 473 uint32_t chunk_size, 474 Error &error) 475 { 476 AllocatedBlockSP block_sp; 477 const size_t page_size = 4096; 478 const size_t num_pages = (byte_size + page_size - 1) / page_size; 479 const size_t page_byte_size = num_pages * page_size; 480 481 addr_t addr = m_process.DoAllocateMemory(page_byte_size, permissions, error); 482 483 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 484 if (log) 485 { 486 log->Printf ("Process::DoAllocateMemory (byte_size = 0x%8.8" PRIx32 ", permissions = %s) => 0x%16.16" PRIx64, 487 (uint32_t)page_byte_size, 488 GetPermissionsAsCString(permissions), 489 (uint64_t)addr); 490 } 491 492 if (addr != LLDB_INVALID_ADDRESS) 493 { 494 block_sp.reset (new AllocatedBlock (addr, page_byte_size, permissions, chunk_size)); 495 m_memory_map.insert (std::make_pair (permissions, block_sp)); 496 } 497 return block_sp; 498 } 499 500 lldb::addr_t 501 AllocatedMemoryCache::AllocateMemory (size_t byte_size, 502 uint32_t permissions, 503 Error &error) 504 { 505 Mutex::Locker locker (m_mutex); 506 507 addr_t addr = LLDB_INVALID_ADDRESS; 508 std::pair<PermissionsToBlockMap::iterator, PermissionsToBlockMap::iterator> range = m_memory_map.equal_range (permissions); 509 510 for (PermissionsToBlockMap::iterator pos = range.first; pos != range.second; ++pos) 511 { 512 addr = (*pos).second->ReserveBlock (byte_size); 513 if (addr != LLDB_INVALID_ADDRESS) 514 break; 515 } 516 517 if (addr == LLDB_INVALID_ADDRESS) 518 { 519 AllocatedBlockSP block_sp (AllocatePage (byte_size, permissions, 16, error)); 520 521 if (block_sp) 522 addr = block_sp->ReserveBlock (byte_size); 523 } 524 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 525 if (log) 526 log->Printf ("AllocatedMemoryCache::AllocateMemory (byte_size = 0x%8.8" PRIx32 ", permissions = %s) => 0x%16.16" PRIx64, (uint32_t)byte_size, GetPermissionsAsCString(permissions), (uint64_t)addr); 527 return addr; 528 } 529 530 bool 531 AllocatedMemoryCache::DeallocateMemory (lldb::addr_t addr) 532 { 533 Mutex::Locker locker (m_mutex); 534 535 PermissionsToBlockMap::iterator pos, end = m_memory_map.end(); 536 bool success = false; 537 for (pos = m_memory_map.begin(); pos != end; ++pos) 538 { 539 if (pos->second->Contains (addr)) 540 { 541 success = pos->second->FreeBlock (addr); 542 break; 543 } 544 } 545 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 546 if (log) 547 log->Printf("AllocatedMemoryCache::DeallocateMemory (addr = 0x%16.16" PRIx64 ") => %i", (uint64_t)addr, success); 548 return success; 549 } 550 551 552