1 //===-- Memory.cpp ----------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Target/Memory.h" 10 #include <inttypes.h> 11 #include "lldb/Core/RangeMap.h" 12 #include "lldb/Target/Process.h" 13 #include "lldb/Utility/DataBufferHeap.h" 14 #include "lldb/Utility/Log.h" 15 #include "lldb/Utility/State.h" 16 17 using namespace lldb; 18 using namespace lldb_private; 19 20 //---------------------------------------------------------------------- 21 // MemoryCache constructor 22 //---------------------------------------------------------------------- 23 MemoryCache::MemoryCache(Process &process) 24 : m_mutex(), m_L1_cache(), m_L2_cache(), m_invalid_ranges(), 25 m_process(process), 26 m_L2_cache_line_byte_size(process.GetMemoryCacheLineSize()) {} 27 28 //---------------------------------------------------------------------- 29 // Destructor 30 //---------------------------------------------------------------------- 31 MemoryCache::~MemoryCache() {} 32 33 void MemoryCache::Clear(bool clear_invalid_ranges) { 34 std::lock_guard<std::recursive_mutex> guard(m_mutex); 35 m_L1_cache.clear(); 36 m_L2_cache.clear(); 37 if (clear_invalid_ranges) 38 m_invalid_ranges.Clear(); 39 m_L2_cache_line_byte_size = m_process.GetMemoryCacheLineSize(); 40 } 41 42 void MemoryCache::AddL1CacheData(lldb::addr_t addr, const void *src, 43 size_t src_len) { 44 AddL1CacheData( 45 addr, DataBufferSP(new DataBufferHeap(DataBufferHeap(src, src_len)))); 46 } 47 48 void MemoryCache::AddL1CacheData(lldb::addr_t addr, 49 const DataBufferSP &data_buffer_sp) { 50 std::lock_guard<std::recursive_mutex> guard(m_mutex); 51 m_L1_cache[addr] = data_buffer_sp; 52 } 53 54 void MemoryCache::Flush(addr_t addr, size_t size) { 55 if (size == 0) 56 return; 57 58 std::lock_guard<std::recursive_mutex> guard(m_mutex); 59 60 // Erase any blocks from the L1 cache that intersect with the flush range 61 if (!m_L1_cache.empty()) { 62 AddrRange flush_range(addr, size); 63 BlockMap::iterator pos = m_L1_cache.upper_bound(addr); 64 if (pos != m_L1_cache.begin()) { 65 --pos; 66 } 67 while (pos != m_L1_cache.end()) { 68 AddrRange chunk_range(pos->first, pos->second->GetByteSize()); 69 if (!chunk_range.DoesIntersect(flush_range)) 70 break; 71 pos = m_L1_cache.erase(pos); 72 } 73 } 74 75 if (!m_L2_cache.empty()) { 76 const uint32_t cache_line_byte_size = m_L2_cache_line_byte_size; 77 const addr_t end_addr = (addr + size - 1); 78 const addr_t first_cache_line_addr = addr - (addr % cache_line_byte_size); 79 const addr_t last_cache_line_addr = 80 end_addr - (end_addr % cache_line_byte_size); 81 // Watch for overflow where size will cause us to go off the end of the 82 // 64 bit address space 83 uint32_t num_cache_lines; 84 if (last_cache_line_addr >= first_cache_line_addr) 85 num_cache_lines = ((last_cache_line_addr - first_cache_line_addr) / 86 cache_line_byte_size) + 87 1; 88 else 89 num_cache_lines = 90 (UINT64_MAX - first_cache_line_addr + 1) / cache_line_byte_size; 91 92 uint32_t cache_idx = 0; 93 for (addr_t curr_addr = first_cache_line_addr; cache_idx < num_cache_lines; 94 curr_addr += cache_line_byte_size, ++cache_idx) { 95 BlockMap::iterator pos = m_L2_cache.find(curr_addr); 96 if (pos != m_L2_cache.end()) 97 m_L2_cache.erase(pos); 98 } 99 } 100 } 101 102 void MemoryCache::AddInvalidRange(lldb::addr_t base_addr, 103 lldb::addr_t byte_size) { 104 if (byte_size > 0) { 105 std::lock_guard<std::recursive_mutex> guard(m_mutex); 106 InvalidRanges::Entry range(base_addr, byte_size); 107 m_invalid_ranges.Append(range); 108 m_invalid_ranges.Sort(); 109 } 110 } 111 112 bool MemoryCache::RemoveInvalidRange(lldb::addr_t base_addr, 113 lldb::addr_t byte_size) { 114 if (byte_size > 0) { 115 std::lock_guard<std::recursive_mutex> guard(m_mutex); 116 const uint32_t idx = m_invalid_ranges.FindEntryIndexThatContains(base_addr); 117 if (idx != UINT32_MAX) { 118 const InvalidRanges::Entry *entry = m_invalid_ranges.GetEntryAtIndex(idx); 119 if (entry->GetRangeBase() == base_addr && 120 entry->GetByteSize() == byte_size) 121 return m_invalid_ranges.RemoveEntrtAtIndex(idx); 122 } 123 } 124 return false; 125 } 126 127 size_t MemoryCache::Read(addr_t addr, void *dst, size_t dst_len, 128 Status &error) { 129 size_t bytes_left = dst_len; 130 131 // Check the L1 cache for a range that contain the entire memory read. If we 132 // find a range in the L1 cache that does, we use it. Else we fall back to 133 // reading memory in m_L2_cache_line_byte_size byte sized chunks. The L1 134 // cache contains chunks of memory that are not required to be 135 // m_L2_cache_line_byte_size bytes in size, so we don't try anything tricky 136 // when reading from them (no partial reads from the L1 cache). 137 138 std::lock_guard<std::recursive_mutex> guard(m_mutex); 139 if (!m_L1_cache.empty()) { 140 AddrRange read_range(addr, dst_len); 141 BlockMap::iterator pos = m_L1_cache.upper_bound(addr); 142 if (pos != m_L1_cache.begin()) { 143 --pos; 144 } 145 AddrRange chunk_range(pos->first, pos->second->GetByteSize()); 146 if (chunk_range.Contains(read_range)) { 147 memcpy(dst, pos->second->GetBytes() + addr - chunk_range.GetRangeBase(), 148 dst_len); 149 return dst_len; 150 } 151 } 152 153 // If this memory read request is larger than the cache line size, then we 154 // (1) try to read as much of it at once as possible, and (2) don't add the 155 // data to the memory cache. We don't want to split a big read up into more 156 // separate reads than necessary, and with a large memory read request, it is 157 // unlikely that the caller function will ask for the next 158 // 4 bytes after the large memory read - so there's little benefit to saving 159 // it in the cache. 160 if (dst && dst_len > m_L2_cache_line_byte_size) { 161 size_t bytes_read = 162 m_process.ReadMemoryFromInferior(addr, dst, dst_len, error); 163 // Add this non block sized range to the L1 cache if we actually read 164 // anything 165 if (bytes_read > 0) 166 AddL1CacheData(addr, dst, bytes_read); 167 return bytes_read; 168 } 169 170 if (dst && bytes_left > 0) { 171 const uint32_t cache_line_byte_size = m_L2_cache_line_byte_size; 172 uint8_t *dst_buf = (uint8_t *)dst; 173 addr_t curr_addr = addr - (addr % cache_line_byte_size); 174 addr_t cache_offset = addr - curr_addr; 175 176 while (bytes_left > 0) { 177 if (m_invalid_ranges.FindEntryThatContains(curr_addr)) { 178 error.SetErrorStringWithFormat("memory read failed for 0x%" PRIx64, 179 curr_addr); 180 return dst_len - bytes_left; 181 } 182 183 BlockMap::const_iterator pos = m_L2_cache.find(curr_addr); 184 BlockMap::const_iterator end = m_L2_cache.end(); 185 186 if (pos != end) { 187 size_t curr_read_size = cache_line_byte_size - cache_offset; 188 if (curr_read_size > bytes_left) 189 curr_read_size = bytes_left; 190 191 memcpy(dst_buf + dst_len - bytes_left, 192 pos->second->GetBytes() + cache_offset, curr_read_size); 193 194 bytes_left -= curr_read_size; 195 curr_addr += curr_read_size + cache_offset; 196 cache_offset = 0; 197 198 if (bytes_left > 0) { 199 // Get sequential cache page hits 200 for (++pos; (pos != end) && (bytes_left > 0); ++pos) { 201 assert((curr_addr % cache_line_byte_size) == 0); 202 203 if (pos->first != curr_addr) 204 break; 205 206 curr_read_size = pos->second->GetByteSize(); 207 if (curr_read_size > bytes_left) 208 curr_read_size = bytes_left; 209 210 memcpy(dst_buf + dst_len - bytes_left, pos->second->GetBytes(), 211 curr_read_size); 212 213 bytes_left -= curr_read_size; 214 curr_addr += curr_read_size; 215 216 // We have a cache page that succeeded to read some bytes but not 217 // an entire page. If this happens, we must cap off how much data 218 // we are able to read... 219 if (pos->second->GetByteSize() != cache_line_byte_size) 220 return dst_len - bytes_left; 221 } 222 } 223 } 224 225 // We need to read from the process 226 227 if (bytes_left > 0) { 228 assert((curr_addr % cache_line_byte_size) == 0); 229 std::unique_ptr<DataBufferHeap> data_buffer_heap_ap( 230 new DataBufferHeap(cache_line_byte_size, 0)); 231 size_t process_bytes_read = m_process.ReadMemoryFromInferior( 232 curr_addr, data_buffer_heap_ap->GetBytes(), 233 data_buffer_heap_ap->GetByteSize(), error); 234 if (process_bytes_read == 0) 235 return dst_len - bytes_left; 236 237 if (process_bytes_read != cache_line_byte_size) 238 data_buffer_heap_ap->SetByteSize(process_bytes_read); 239 m_L2_cache[curr_addr] = DataBufferSP(data_buffer_heap_ap.release()); 240 // We have read data and put it into the cache, continue through the 241 // loop again to get the data out of the cache... 242 } 243 } 244 } 245 246 return dst_len - bytes_left; 247 } 248 249 AllocatedBlock::AllocatedBlock(lldb::addr_t addr, uint32_t byte_size, 250 uint32_t permissions, uint32_t chunk_size) 251 : m_range(addr, byte_size), m_permissions(permissions), 252 m_chunk_size(chunk_size) 253 { 254 // The entire address range is free to start with. 255 m_free_blocks.Append(m_range); 256 assert(byte_size > chunk_size); 257 } 258 259 AllocatedBlock::~AllocatedBlock() {} 260 261 lldb::addr_t AllocatedBlock::ReserveBlock(uint32_t size) { 262 // We must return something valid for zero bytes. 263 if (size == 0) 264 size = 1; 265 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 266 267 const size_t free_count = m_free_blocks.GetSize(); 268 for (size_t i=0; i<free_count; ++i) 269 { 270 auto &free_block = m_free_blocks.GetEntryRef(i); 271 const lldb::addr_t range_size = free_block.GetByteSize(); 272 if (range_size >= size) 273 { 274 // We found a free block that is big enough for our data. Figure out how 275 // many chunks we will need and calculate the resulting block size we 276 // will reserve. 277 addr_t addr = free_block.GetRangeBase(); 278 size_t num_chunks = CalculateChunksNeededForSize(size); 279 lldb::addr_t block_size = num_chunks * m_chunk_size; 280 lldb::addr_t bytes_left = range_size - block_size; 281 if (bytes_left == 0) 282 { 283 // The newly allocated block will take all of the bytes in this 284 // available block, so we can just add it to the allocated ranges and 285 // remove the range from the free ranges. 286 m_reserved_blocks.Insert(free_block, false); 287 m_free_blocks.RemoveEntryAtIndex(i); 288 } 289 else 290 { 291 // Make the new allocated range and add it to the allocated ranges. 292 Range<lldb::addr_t, uint32_t> reserved_block(free_block); 293 reserved_block.SetByteSize(block_size); 294 // Insert the reserved range and don't combine it with other blocks in 295 // the reserved blocks list. 296 m_reserved_blocks.Insert(reserved_block, false); 297 // Adjust the free range in place since we won't change the sorted 298 // ordering of the m_free_blocks list. 299 free_block.SetRangeBase(reserved_block.GetRangeEnd()); 300 free_block.SetByteSize(bytes_left); 301 } 302 LLDB_LOGV(log, "({0}) (size = {1} ({1:x})) => {2:x}", this, size, addr); 303 return addr; 304 } 305 } 306 307 LLDB_LOGV(log, "({0}) (size = {1} ({1:x})) => {2:x}", this, size, 308 LLDB_INVALID_ADDRESS); 309 return LLDB_INVALID_ADDRESS; 310 } 311 312 bool AllocatedBlock::FreeBlock(addr_t addr) { 313 bool success = false; 314 auto entry_idx = m_reserved_blocks.FindEntryIndexThatContains(addr); 315 if (entry_idx != UINT32_MAX) 316 { 317 m_free_blocks.Insert(m_reserved_blocks.GetEntryRef(entry_idx), true); 318 m_reserved_blocks.RemoveEntryAtIndex(entry_idx); 319 success = true; 320 } 321 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 322 LLDB_LOGV(log, "({0}) (addr = {1:x}) => {2}", this, addr, success); 323 return success; 324 } 325 326 AllocatedMemoryCache::AllocatedMemoryCache(Process &process) 327 : m_process(process), m_mutex(), m_memory_map() {} 328 329 AllocatedMemoryCache::~AllocatedMemoryCache() {} 330 331 void AllocatedMemoryCache::Clear() { 332 std::lock_guard<std::recursive_mutex> guard(m_mutex); 333 if (m_process.IsAlive()) { 334 PermissionsToBlockMap::iterator pos, end = m_memory_map.end(); 335 for (pos = m_memory_map.begin(); pos != end; ++pos) 336 m_process.DoDeallocateMemory(pos->second->GetBaseAddress()); 337 } 338 m_memory_map.clear(); 339 } 340 341 AllocatedMemoryCache::AllocatedBlockSP 342 AllocatedMemoryCache::AllocatePage(uint32_t byte_size, uint32_t permissions, 343 uint32_t chunk_size, Status &error) { 344 AllocatedBlockSP block_sp; 345 const size_t page_size = 4096; 346 const size_t num_pages = (byte_size + page_size - 1) / page_size; 347 const size_t page_byte_size = num_pages * page_size; 348 349 addr_t addr = m_process.DoAllocateMemory(page_byte_size, permissions, error); 350 351 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 352 if (log) { 353 log->Printf("Process::DoAllocateMemory (byte_size = 0x%8.8" PRIx32 354 ", permissions = %s) => 0x%16.16" PRIx64, 355 (uint32_t)page_byte_size, GetPermissionsAsCString(permissions), 356 (uint64_t)addr); 357 } 358 359 if (addr != LLDB_INVALID_ADDRESS) { 360 block_sp.reset( 361 new AllocatedBlock(addr, page_byte_size, permissions, chunk_size)); 362 m_memory_map.insert(std::make_pair(permissions, block_sp)); 363 } 364 return block_sp; 365 } 366 367 lldb::addr_t AllocatedMemoryCache::AllocateMemory(size_t byte_size, 368 uint32_t permissions, 369 Status &error) { 370 std::lock_guard<std::recursive_mutex> guard(m_mutex); 371 372 addr_t addr = LLDB_INVALID_ADDRESS; 373 std::pair<PermissionsToBlockMap::iterator, PermissionsToBlockMap::iterator> 374 range = m_memory_map.equal_range(permissions); 375 376 for (PermissionsToBlockMap::iterator pos = range.first; pos != range.second; 377 ++pos) { 378 addr = (*pos).second->ReserveBlock(byte_size); 379 if (addr != LLDB_INVALID_ADDRESS) 380 break; 381 } 382 383 if (addr == LLDB_INVALID_ADDRESS) { 384 AllocatedBlockSP block_sp(AllocatePage(byte_size, permissions, 16, error)); 385 386 if (block_sp) 387 addr = block_sp->ReserveBlock(byte_size); 388 } 389 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 390 if (log) 391 log->Printf( 392 "AllocatedMemoryCache::AllocateMemory (byte_size = 0x%8.8" PRIx32 393 ", permissions = %s) => 0x%16.16" PRIx64, 394 (uint32_t)byte_size, GetPermissionsAsCString(permissions), 395 (uint64_t)addr); 396 return addr; 397 } 398 399 bool AllocatedMemoryCache::DeallocateMemory(lldb::addr_t addr) { 400 std::lock_guard<std::recursive_mutex> guard(m_mutex); 401 402 PermissionsToBlockMap::iterator pos, end = m_memory_map.end(); 403 bool success = false; 404 for (pos = m_memory_map.begin(); pos != end; ++pos) { 405 if (pos->second->Contains(addr)) { 406 success = pos->second->FreeBlock(addr); 407 break; 408 } 409 } 410 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 411 if (log) 412 log->Printf("AllocatedMemoryCache::DeallocateMemory (addr = 0x%16.16" PRIx64 413 ") => %i", 414 (uint64_t)addr, success); 415 return success; 416 } 417