1 //===-- Type.cpp ------------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <stdio.h> 10 11 #include "lldb/Core/Module.h" 12 #include "lldb/Utility/DataBufferHeap.h" 13 #include "lldb/Utility/DataExtractor.h" 14 #include "lldb/Utility/Log.h" 15 #include "lldb/Utility/Scalar.h" 16 #include "lldb/Utility/StreamString.h" 17 18 #include "lldb/Symbol/CompilerType.h" 19 #include "lldb/Symbol/ObjectFile.h" 20 #include "lldb/Symbol/SymbolContextScope.h" 21 #include "lldb/Symbol/SymbolFile.h" 22 #include "lldb/Symbol/SymbolVendor.h" 23 #include "lldb/Symbol/Type.h" 24 #include "lldb/Symbol/TypeList.h" 25 #include "lldb/Symbol/TypeSystem.h" 26 27 #include "lldb/Target/ExecutionContext.h" 28 #include "lldb/Target/Process.h" 29 #include "lldb/Target/Target.h" 30 31 #include "llvm/ADT/StringRef.h" 32 33 using namespace lldb; 34 using namespace lldb_private; 35 36 bool lldb_private::contextMatches(llvm::ArrayRef<CompilerContext> context_chain, 37 llvm::ArrayRef<CompilerContext> pattern) { 38 auto ctx = context_chain.begin(); 39 auto ctx_end = context_chain.end(); 40 for (const CompilerContext &pat : pattern) { 41 // Early exit if the pattern is too long. 42 if (ctx == ctx_end) 43 return false; 44 if (*ctx != pat) { 45 // Skip any number of module matches. 46 if (pat.kind == CompilerContextKind::AnyModule) { 47 // Greedily match 0..n modules. 48 ctx = std::find_if(ctx, ctx_end, [](const CompilerContext &ctx) { 49 return ctx.kind != CompilerContextKind::Module; 50 }); 51 continue; 52 } 53 // See if there is a kind mismatch; they should have 1 bit in common. 54 if (((uint16_t)ctx->kind & (uint16_t)pat.kind) == 0) 55 return false; 56 // The name is ignored for AnyModule, but not for AnyType. 57 if (pat.kind != CompilerContextKind::AnyModule && ctx->name != pat.name) 58 return false; 59 } 60 ++ctx; 61 } 62 return true; 63 } 64 65 void CompilerContext::Dump() const { 66 switch (kind) { 67 default: 68 printf("Invalid"); 69 break; 70 case CompilerContextKind::TranslationUnit: 71 printf("TranslationUnit"); 72 break; 73 case CompilerContextKind::Module: 74 printf("Module"); 75 break; 76 case CompilerContextKind::Namespace: 77 printf("Namespace"); 78 break; 79 case CompilerContextKind::Class: 80 printf("Class"); 81 break; 82 case CompilerContextKind::Struct: 83 printf("Structure"); 84 break; 85 case CompilerContextKind::Union: 86 printf("Union"); 87 break; 88 case CompilerContextKind::Function: 89 printf("Function"); 90 break; 91 case CompilerContextKind::Variable: 92 printf("Variable"); 93 break; 94 case CompilerContextKind::Enum: 95 printf("Enumeration"); 96 break; 97 case CompilerContextKind::Typedef: 98 printf("Typedef"); 99 break; 100 case CompilerContextKind::AnyModule: 101 printf("AnyModule"); 102 break; 103 case CompilerContextKind::AnyType: 104 printf("AnyType"); 105 break; 106 } 107 printf("(\"%s\")\n", name.GetCString()); 108 } 109 110 class TypeAppendVisitor { 111 public: 112 TypeAppendVisitor(TypeListImpl &type_list) : m_type_list(type_list) {} 113 114 bool operator()(const lldb::TypeSP &type) { 115 m_type_list.Append(TypeImplSP(new TypeImpl(type))); 116 return true; 117 } 118 119 private: 120 TypeListImpl &m_type_list; 121 }; 122 123 void TypeListImpl::Append(const lldb_private::TypeList &type_list) { 124 TypeAppendVisitor cb(*this); 125 type_list.ForEach(cb); 126 } 127 128 SymbolFileType::SymbolFileType(SymbolFile &symbol_file, 129 const lldb::TypeSP &type_sp) 130 : UserID(type_sp ? type_sp->GetID() : LLDB_INVALID_UID), 131 m_symbol_file(symbol_file), m_type_sp(type_sp) {} 132 133 Type *SymbolFileType::GetType() { 134 if (!m_type_sp) { 135 Type *resolved_type = m_symbol_file.ResolveTypeUID(GetID()); 136 if (resolved_type) 137 m_type_sp = resolved_type->shared_from_this(); 138 } 139 return m_type_sp.get(); 140 } 141 142 Type::Type(lldb::user_id_t uid, SymbolFile *symbol_file, ConstString name, 143 llvm::Optional<uint64_t> byte_size, SymbolContextScope *context, 144 user_id_t encoding_uid, EncodingDataType encoding_uid_type, 145 const Declaration &decl, const CompilerType &compiler_type, 146 ResolveState compiler_type_resolve_state) 147 : std::enable_shared_from_this<Type>(), UserID(uid), m_name(name), 148 m_symbol_file(symbol_file), m_context(context), m_encoding_type(nullptr), 149 m_encoding_uid(encoding_uid), m_encoding_uid_type(encoding_uid_type), 150 m_decl(decl), m_compiler_type(compiler_type), 151 m_compiler_type_resolve_state( 152 compiler_type ? compiler_type_resolve_state 153 : ResolveState::Unresolved), 154 m_is_complete_objc_class(false) { 155 if (byte_size) { 156 m_byte_size = *byte_size; 157 m_byte_size_has_value = true; 158 } else { 159 m_byte_size = 0; 160 m_byte_size_has_value = false; 161 } 162 } 163 164 Type::Type() 165 : std::enable_shared_from_this<Type>(), UserID(0), m_name("<INVALID TYPE>"), 166 m_symbol_file(nullptr), m_context(nullptr), m_encoding_type(nullptr), 167 m_encoding_uid(LLDB_INVALID_UID), m_encoding_uid_type(eEncodingInvalid), 168 m_compiler_type_resolve_state(ResolveState::Unresolved) { 169 m_byte_size = 0; 170 m_byte_size_has_value = false; 171 } 172 173 void Type::GetDescription(Stream *s, lldb::DescriptionLevel level, 174 bool show_name) { 175 *s << "id = " << (const UserID &)*this; 176 177 // Call the name accessor to make sure we resolve the type name 178 if (show_name) { 179 ConstString type_name = GetName(); 180 if (type_name) { 181 *s << ", name = \"" << type_name << '"'; 182 ConstString qualified_type_name(GetQualifiedName()); 183 if (qualified_type_name != type_name) { 184 *s << ", qualified = \"" << qualified_type_name << '"'; 185 } 186 } 187 } 188 189 // Call the get byte size accesor so we resolve our byte size 190 if (GetByteSize()) 191 s->Printf(", byte-size = %" PRIu64, m_byte_size); 192 bool show_fullpaths = (level == lldb::eDescriptionLevelVerbose); 193 m_decl.Dump(s, show_fullpaths); 194 195 if (m_compiler_type.IsValid()) { 196 *s << ", compiler_type = \""; 197 GetForwardCompilerType().DumpTypeDescription(s); 198 *s << '"'; 199 } else if (m_encoding_uid != LLDB_INVALID_UID) { 200 s->Printf(", type_uid = 0x%8.8" PRIx64, m_encoding_uid); 201 switch (m_encoding_uid_type) { 202 case eEncodingInvalid: 203 break; 204 case eEncodingIsUID: 205 s->PutCString(" (unresolved type)"); 206 break; 207 case eEncodingIsConstUID: 208 s->PutCString(" (unresolved const type)"); 209 break; 210 case eEncodingIsRestrictUID: 211 s->PutCString(" (unresolved restrict type)"); 212 break; 213 case eEncodingIsVolatileUID: 214 s->PutCString(" (unresolved volatile type)"); 215 break; 216 case eEncodingIsTypedefUID: 217 s->PutCString(" (unresolved typedef)"); 218 break; 219 case eEncodingIsPointerUID: 220 s->PutCString(" (unresolved pointer)"); 221 break; 222 case eEncodingIsLValueReferenceUID: 223 s->PutCString(" (unresolved L value reference)"); 224 break; 225 case eEncodingIsRValueReferenceUID: 226 s->PutCString(" (unresolved R value reference)"); 227 break; 228 case eEncodingIsSyntheticUID: 229 s->PutCString(" (synthetic type)"); 230 break; 231 } 232 } 233 } 234 235 void Type::Dump(Stream *s, bool show_context) { 236 s->Printf("%p: ", static_cast<void *>(this)); 237 s->Indent(); 238 *s << "Type" << static_cast<const UserID &>(*this) << ' '; 239 if (m_name) 240 *s << ", name = \"" << m_name << "\""; 241 242 if (m_byte_size_has_value) 243 s->Printf(", size = %" PRIu64, m_byte_size); 244 245 if (show_context && m_context != nullptr) { 246 s->PutCString(", context = ( "); 247 m_context->DumpSymbolContext(s); 248 s->PutCString(" )"); 249 } 250 251 bool show_fullpaths = false; 252 m_decl.Dump(s, show_fullpaths); 253 254 if (m_compiler_type.IsValid()) { 255 *s << ", compiler_type = " << m_compiler_type.GetOpaqueQualType() << ' '; 256 GetForwardCompilerType().DumpTypeDescription(s); 257 } else if (m_encoding_uid != LLDB_INVALID_UID) { 258 *s << ", type_data = " << (uint64_t)m_encoding_uid; 259 switch (m_encoding_uid_type) { 260 case eEncodingInvalid: 261 break; 262 case eEncodingIsUID: 263 s->PutCString(" (unresolved type)"); 264 break; 265 case eEncodingIsConstUID: 266 s->PutCString(" (unresolved const type)"); 267 break; 268 case eEncodingIsRestrictUID: 269 s->PutCString(" (unresolved restrict type)"); 270 break; 271 case eEncodingIsVolatileUID: 272 s->PutCString(" (unresolved volatile type)"); 273 break; 274 case eEncodingIsTypedefUID: 275 s->PutCString(" (unresolved typedef)"); 276 break; 277 case eEncodingIsPointerUID: 278 s->PutCString(" (unresolved pointer)"); 279 break; 280 case eEncodingIsLValueReferenceUID: 281 s->PutCString(" (unresolved L value reference)"); 282 break; 283 case eEncodingIsRValueReferenceUID: 284 s->PutCString(" (unresolved R value reference)"); 285 break; 286 case eEncodingIsSyntheticUID: 287 s->PutCString(" (synthetic type)"); 288 break; 289 } 290 } 291 292 // 293 // if (m_access) 294 // s->Printf(", access = %u", m_access); 295 s->EOL(); 296 } 297 298 ConstString Type::GetName() { 299 if (!m_name) 300 m_name = GetForwardCompilerType().GetConstTypeName(); 301 return m_name; 302 } 303 304 void Type::DumpTypeName(Stream *s) { GetName().Dump(s, "<invalid-type-name>"); } 305 306 void Type::DumpValue(ExecutionContext *exe_ctx, Stream *s, 307 const DataExtractor &data, uint32_t data_byte_offset, 308 bool show_types, bool show_summary, bool verbose, 309 lldb::Format format) { 310 if (ResolveClangType(ResolveState::Forward)) { 311 if (show_types) { 312 s->PutChar('('); 313 if (verbose) 314 s->Printf("Type{0x%8.8" PRIx64 "} ", GetID()); 315 DumpTypeName(s); 316 s->PutCString(") "); 317 } 318 319 GetForwardCompilerType().DumpValue( 320 exe_ctx, s, format == lldb::eFormatDefault ? GetFormat() : format, data, 321 data_byte_offset, GetByteSize().getValueOr(0), 322 0, // Bitfield bit size 323 0, // Bitfield bit offset 324 show_types, show_summary, verbose, 0); 325 } 326 } 327 328 Type *Type::GetEncodingType() { 329 if (m_encoding_type == nullptr && m_encoding_uid != LLDB_INVALID_UID) 330 m_encoding_type = m_symbol_file->ResolveTypeUID(m_encoding_uid); 331 return m_encoding_type; 332 } 333 334 llvm::Optional<uint64_t> Type::GetByteSize() { 335 if (m_byte_size_has_value) 336 return m_byte_size; 337 338 switch (m_encoding_uid_type) { 339 case eEncodingInvalid: 340 case eEncodingIsSyntheticUID: 341 break; 342 case eEncodingIsUID: 343 case eEncodingIsConstUID: 344 case eEncodingIsRestrictUID: 345 case eEncodingIsVolatileUID: 346 case eEncodingIsTypedefUID: { 347 Type *encoding_type = GetEncodingType(); 348 if (encoding_type) 349 if (llvm::Optional<uint64_t> size = encoding_type->GetByteSize()) { 350 m_byte_size = *size; 351 m_byte_size_has_value = true; 352 return m_byte_size; 353 } 354 355 if (llvm::Optional<uint64_t> size = 356 GetLayoutCompilerType().GetByteSize(nullptr)) { 357 m_byte_size = *size; 358 m_byte_size_has_value = true; 359 return m_byte_size; 360 } 361 } break; 362 363 // If we are a pointer or reference, then this is just a pointer size; 364 case eEncodingIsPointerUID: 365 case eEncodingIsLValueReferenceUID: 366 case eEncodingIsRValueReferenceUID: { 367 if (ArchSpec arch = m_symbol_file->GetObjectFile()->GetArchitecture()) { 368 m_byte_size = arch.GetAddressByteSize(); 369 m_byte_size_has_value = true; 370 } 371 } break; 372 } 373 return {}; 374 } 375 376 uint32_t Type::GetNumChildren(bool omit_empty_base_classes) { 377 return GetForwardCompilerType().GetNumChildren(omit_empty_base_classes, nullptr); 378 } 379 380 bool Type::IsAggregateType() { 381 return GetForwardCompilerType().IsAggregateType(); 382 } 383 384 lldb::TypeSP Type::GetTypedefType() { 385 lldb::TypeSP type_sp; 386 if (IsTypedef()) { 387 Type *typedef_type = m_symbol_file->ResolveTypeUID(m_encoding_uid); 388 if (typedef_type) 389 type_sp = typedef_type->shared_from_this(); 390 } 391 return type_sp; 392 } 393 394 lldb::Format Type::GetFormat() { return GetForwardCompilerType().GetFormat(); } 395 396 lldb::Encoding Type::GetEncoding(uint64_t &count) { 397 // Make sure we resolve our type if it already hasn't been. 398 return GetForwardCompilerType().GetEncoding(count); 399 } 400 401 bool Type::DumpValueInMemory(ExecutionContext *exe_ctx, Stream *s, 402 lldb::addr_t address, AddressType address_type, 403 bool show_types, bool show_summary, bool verbose) { 404 if (address != LLDB_INVALID_ADDRESS) { 405 DataExtractor data; 406 Target *target = nullptr; 407 if (exe_ctx) 408 target = exe_ctx->GetTargetPtr(); 409 if (target) 410 data.SetByteOrder(target->GetArchitecture().GetByteOrder()); 411 if (ReadFromMemory(exe_ctx, address, address_type, data)) { 412 DumpValue(exe_ctx, s, data, 0, show_types, show_summary, verbose); 413 return true; 414 } 415 } 416 return false; 417 } 418 419 bool Type::ReadFromMemory(ExecutionContext *exe_ctx, lldb::addr_t addr, 420 AddressType address_type, DataExtractor &data) { 421 if (address_type == eAddressTypeFile) { 422 // Can't convert a file address to anything valid without more context 423 // (which Module it came from) 424 return false; 425 } 426 427 const uint64_t byte_size = GetByteSize().getValueOr(0); 428 if (data.GetByteSize() < byte_size) { 429 lldb::DataBufferSP data_sp(new DataBufferHeap(byte_size, '\0')); 430 data.SetData(data_sp); 431 } 432 433 uint8_t *dst = const_cast<uint8_t *>(data.PeekData(0, byte_size)); 434 if (dst != nullptr) { 435 if (address_type == eAddressTypeHost) { 436 // The address is an address in this process, so just copy it 437 if (addr == 0) 438 return false; 439 memcpy(dst, reinterpret_cast<uint8_t *>(addr), byte_size); 440 return true; 441 } else { 442 if (exe_ctx) { 443 Process *process = exe_ctx->GetProcessPtr(); 444 if (process) { 445 Status error; 446 return exe_ctx->GetProcessPtr()->ReadMemory(addr, dst, byte_size, 447 error) == byte_size; 448 } 449 } 450 } 451 } 452 return false; 453 } 454 455 bool Type::WriteToMemory(ExecutionContext *exe_ctx, lldb::addr_t addr, 456 AddressType address_type, DataExtractor &data) { 457 return false; 458 } 459 460 const Declaration &Type::GetDeclaration() const { return m_decl; } 461 462 bool Type::ResolveClangType(ResolveState compiler_type_resolve_state) { 463 // TODO: This needs to consider the correct type system to use. 464 Type *encoding_type = nullptr; 465 if (!m_compiler_type.IsValid()) { 466 encoding_type = GetEncodingType(); 467 if (encoding_type) { 468 switch (m_encoding_uid_type) { 469 case eEncodingIsUID: { 470 CompilerType encoding_compiler_type = 471 encoding_type->GetForwardCompilerType(); 472 if (encoding_compiler_type.IsValid()) { 473 m_compiler_type = encoding_compiler_type; 474 m_compiler_type_resolve_state = 475 encoding_type->m_compiler_type_resolve_state; 476 } 477 } break; 478 479 case eEncodingIsConstUID: 480 m_compiler_type = 481 encoding_type->GetForwardCompilerType().AddConstModifier(); 482 break; 483 484 case eEncodingIsRestrictUID: 485 m_compiler_type = 486 encoding_type->GetForwardCompilerType().AddRestrictModifier(); 487 break; 488 489 case eEncodingIsVolatileUID: 490 m_compiler_type = 491 encoding_type->GetForwardCompilerType().AddVolatileModifier(); 492 break; 493 494 case eEncodingIsTypedefUID: 495 m_compiler_type = encoding_type->GetForwardCompilerType().CreateTypedef( 496 m_name.AsCString("__lldb_invalid_typedef_name"), 497 GetSymbolFile()->GetDeclContextContainingUID(GetID())); 498 m_name.Clear(); 499 break; 500 501 case eEncodingIsPointerUID: 502 m_compiler_type = 503 encoding_type->GetForwardCompilerType().GetPointerType(); 504 break; 505 506 case eEncodingIsLValueReferenceUID: 507 m_compiler_type = 508 encoding_type->GetForwardCompilerType().GetLValueReferenceType(); 509 break; 510 511 case eEncodingIsRValueReferenceUID: 512 m_compiler_type = 513 encoding_type->GetForwardCompilerType().GetRValueReferenceType(); 514 break; 515 516 default: 517 llvm_unreachable("Unhandled encoding_data_type."); 518 } 519 } else { 520 // We have no encoding type, return void? 521 auto type_system_or_err = 522 m_symbol_file->GetTypeSystemForLanguage(eLanguageTypeC); 523 if (auto err = type_system_or_err.takeError()) { 524 LLDB_LOG_ERROR( 525 lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS), 526 std::move(err), 527 "Unable to construct void type from ClangASTContext"); 528 } else { 529 CompilerType void_compiler_type = 530 type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid); 531 switch (m_encoding_uid_type) { 532 case eEncodingIsUID: 533 m_compiler_type = void_compiler_type; 534 break; 535 536 case eEncodingIsConstUID: 537 m_compiler_type = void_compiler_type.AddConstModifier(); 538 break; 539 540 case eEncodingIsRestrictUID: 541 m_compiler_type = void_compiler_type.AddRestrictModifier(); 542 break; 543 544 case eEncodingIsVolatileUID: 545 m_compiler_type = void_compiler_type.AddVolatileModifier(); 546 break; 547 548 case eEncodingIsTypedefUID: 549 m_compiler_type = void_compiler_type.CreateTypedef( 550 m_name.AsCString("__lldb_invalid_typedef_name"), 551 GetSymbolFile()->GetDeclContextContainingUID(GetID())); 552 break; 553 554 case eEncodingIsPointerUID: 555 m_compiler_type = void_compiler_type.GetPointerType(); 556 break; 557 558 case eEncodingIsLValueReferenceUID: 559 m_compiler_type = void_compiler_type.GetLValueReferenceType(); 560 break; 561 562 case eEncodingIsRValueReferenceUID: 563 m_compiler_type = void_compiler_type.GetRValueReferenceType(); 564 break; 565 566 default: 567 llvm_unreachable("Unhandled encoding_data_type."); 568 } 569 } 570 } 571 572 // When we have a EncodingUID, our "m_flags.compiler_type_resolve_state" is 573 // set to eResolveStateUnresolved so we need to update it to say that we 574 // now have a forward declaration since that is what we created above. 575 if (m_compiler_type.IsValid()) 576 m_compiler_type_resolve_state = ResolveState::Forward; 577 } 578 579 // Check if we have a forward reference to a class/struct/union/enum? 580 if (compiler_type_resolve_state == ResolveState::Layout || 581 compiler_type_resolve_state == ResolveState::Full) { 582 // Check if we have a forward reference to a class/struct/union/enum? 583 if (m_compiler_type.IsValid() && 584 m_compiler_type_resolve_state < compiler_type_resolve_state) { 585 m_compiler_type_resolve_state = ResolveState::Full; 586 if (!m_compiler_type.IsDefined()) { 587 // We have a forward declaration, we need to resolve it to a complete 588 // definition. 589 m_symbol_file->CompleteType(m_compiler_type); 590 } 591 } 592 } 593 594 // If we have an encoding type, then we need to make sure it is resolved 595 // appropriately. 596 if (m_encoding_uid != LLDB_INVALID_UID) { 597 if (encoding_type == nullptr) 598 encoding_type = GetEncodingType(); 599 if (encoding_type) { 600 ResolveState encoding_compiler_type_resolve_state = 601 compiler_type_resolve_state; 602 603 if (compiler_type_resolve_state == ResolveState::Layout) { 604 switch (m_encoding_uid_type) { 605 case eEncodingIsPointerUID: 606 case eEncodingIsLValueReferenceUID: 607 case eEncodingIsRValueReferenceUID: 608 encoding_compiler_type_resolve_state = ResolveState::Forward; 609 break; 610 default: 611 break; 612 } 613 } 614 encoding_type->ResolveClangType(encoding_compiler_type_resolve_state); 615 } 616 } 617 return m_compiler_type.IsValid(); 618 } 619 uint32_t Type::GetEncodingMask() { 620 uint32_t encoding_mask = 1u << m_encoding_uid_type; 621 Type *encoding_type = GetEncodingType(); 622 assert(encoding_type != this); 623 if (encoding_type) 624 encoding_mask |= encoding_type->GetEncodingMask(); 625 return encoding_mask; 626 } 627 628 CompilerType Type::GetFullCompilerType() { 629 ResolveClangType(ResolveState::Full); 630 return m_compiler_type; 631 } 632 633 CompilerType Type::GetLayoutCompilerType() { 634 ResolveClangType(ResolveState::Layout); 635 return m_compiler_type; 636 } 637 638 CompilerType Type::GetForwardCompilerType() { 639 ResolveClangType(ResolveState::Forward); 640 return m_compiler_type; 641 } 642 643 int Type::Compare(const Type &a, const Type &b) { 644 // Just compare the UID values for now... 645 lldb::user_id_t a_uid = a.GetID(); 646 lldb::user_id_t b_uid = b.GetID(); 647 if (a_uid < b_uid) 648 return -1; 649 if (a_uid > b_uid) 650 return 1; 651 return 0; 652 } 653 654 ConstString Type::GetQualifiedName() { 655 return GetForwardCompilerType().GetConstTypeName(); 656 } 657 658 bool Type::GetTypeScopeAndBasename(const llvm::StringRef& name, 659 llvm::StringRef &scope, 660 llvm::StringRef &basename, 661 TypeClass &type_class) { 662 type_class = eTypeClassAny; 663 664 if (name.empty()) 665 return false; 666 667 basename = name; 668 if (basename.consume_front("struct ")) 669 type_class = eTypeClassStruct; 670 else if (basename.consume_front("class ")) 671 type_class = eTypeClassClass; 672 else if (basename.consume_front("union ")) 673 type_class = eTypeClassUnion; 674 else if (basename.consume_front("enum ")) 675 type_class = eTypeClassEnumeration; 676 else if (basename.consume_front("typedef ")) 677 type_class = eTypeClassTypedef; 678 679 size_t namespace_separator = basename.find("::"); 680 if (namespace_separator == llvm::StringRef::npos) 681 return false; 682 683 size_t template_begin = basename.find('<'); 684 while (namespace_separator != llvm::StringRef::npos) { 685 if (template_begin != llvm::StringRef::npos && 686 namespace_separator > template_begin) { 687 size_t template_depth = 1; 688 llvm::StringRef template_arg = 689 basename.drop_front(template_begin + 1); 690 while (template_depth > 0 && !template_arg.empty()) { 691 if (template_arg.front() == '<') 692 template_depth++; 693 else if (template_arg.front() == '>') 694 template_depth--; 695 template_arg = template_arg.drop_front(1); 696 } 697 if (template_depth != 0) 698 return false; // We have an invalid type name. Bail out. 699 if (template_arg.empty()) 700 break; // The template ends at the end of the full name. 701 basename = template_arg; 702 } else { 703 basename = basename.drop_front(namespace_separator + 2); 704 } 705 template_begin = basename.find('<'); 706 namespace_separator = basename.find("::"); 707 } 708 if (basename.size() < name.size()) { 709 scope = name.take_front(name.size() - basename.size()); 710 return true; 711 } 712 return false; 713 } 714 715 ModuleSP Type::GetModule() { 716 if (m_symbol_file) 717 return m_symbol_file->GetObjectFile()->GetModule(); 718 return ModuleSP(); 719 } 720 721 TypeAndOrName::TypeAndOrName(TypeSP &in_type_sp) { 722 if (in_type_sp) { 723 m_compiler_type = in_type_sp->GetForwardCompilerType(); 724 m_type_name = in_type_sp->GetName(); 725 } 726 } 727 728 TypeAndOrName::TypeAndOrName(const char *in_type_str) 729 : m_type_name(in_type_str) {} 730 731 TypeAndOrName::TypeAndOrName(ConstString &in_type_const_string) 732 : m_type_name(in_type_const_string) {} 733 734 bool TypeAndOrName::operator==(const TypeAndOrName &other) const { 735 if (m_compiler_type != other.m_compiler_type) 736 return false; 737 if (m_type_name != other.m_type_name) 738 return false; 739 return true; 740 } 741 742 bool TypeAndOrName::operator!=(const TypeAndOrName &other) const { 743 return !(*this == other); 744 } 745 746 ConstString TypeAndOrName::GetName() const { 747 if (m_type_name) 748 return m_type_name; 749 if (m_compiler_type) 750 return m_compiler_type.GetTypeName(); 751 return ConstString("<invalid>"); 752 } 753 754 void TypeAndOrName::SetName(ConstString type_name) { 755 m_type_name = type_name; 756 } 757 758 void TypeAndOrName::SetName(const char *type_name_cstr) { 759 m_type_name.SetCString(type_name_cstr); 760 } 761 762 void TypeAndOrName::SetTypeSP(lldb::TypeSP type_sp) { 763 if (type_sp) { 764 m_compiler_type = type_sp->GetForwardCompilerType(); 765 m_type_name = type_sp->GetName(); 766 } else 767 Clear(); 768 } 769 770 void TypeAndOrName::SetCompilerType(CompilerType compiler_type) { 771 m_compiler_type = compiler_type; 772 if (m_compiler_type) 773 m_type_name = m_compiler_type.GetTypeName(); 774 } 775 776 bool TypeAndOrName::IsEmpty() const { 777 return !((bool)m_type_name || (bool)m_compiler_type); 778 } 779 780 void TypeAndOrName::Clear() { 781 m_type_name.Clear(); 782 m_compiler_type.Clear(); 783 } 784 785 bool TypeAndOrName::HasName() const { return (bool)m_type_name; } 786 787 bool TypeAndOrName::HasCompilerType() const { 788 return m_compiler_type.IsValid(); 789 } 790 791 TypeImpl::TypeImpl(const lldb::TypeSP &type_sp) 792 : m_module_wp(), m_static_type(), m_dynamic_type() { 793 SetType(type_sp); 794 } 795 796 TypeImpl::TypeImpl(const CompilerType &compiler_type) 797 : m_module_wp(), m_static_type(), m_dynamic_type() { 798 SetType(compiler_type); 799 } 800 801 TypeImpl::TypeImpl(const lldb::TypeSP &type_sp, const CompilerType &dynamic) 802 : m_module_wp(), m_static_type(), m_dynamic_type(dynamic) { 803 SetType(type_sp, dynamic); 804 } 805 806 TypeImpl::TypeImpl(const CompilerType &static_type, 807 const CompilerType &dynamic_type) 808 : m_module_wp(), m_static_type(), m_dynamic_type() { 809 SetType(static_type, dynamic_type); 810 } 811 812 void TypeImpl::SetType(const lldb::TypeSP &type_sp) { 813 if (type_sp) { 814 m_static_type = type_sp->GetForwardCompilerType(); 815 m_module_wp = type_sp->GetModule(); 816 } else { 817 m_static_type.Clear(); 818 m_module_wp = lldb::ModuleWP(); 819 } 820 } 821 822 void TypeImpl::SetType(const CompilerType &compiler_type) { 823 m_module_wp = lldb::ModuleWP(); 824 m_static_type = compiler_type; 825 } 826 827 void TypeImpl::SetType(const lldb::TypeSP &type_sp, 828 const CompilerType &dynamic) { 829 SetType(type_sp); 830 m_dynamic_type = dynamic; 831 } 832 833 void TypeImpl::SetType(const CompilerType &compiler_type, 834 const CompilerType &dynamic) { 835 m_module_wp = lldb::ModuleWP(); 836 m_static_type = compiler_type; 837 m_dynamic_type = dynamic; 838 } 839 840 bool TypeImpl::CheckModule(lldb::ModuleSP &module_sp) const { 841 // Check if we have a module for this type. If we do and the shared pointer 842 // is can be successfully initialized with m_module_wp, return true. Else 843 // return false if we didn't have a module, or if we had a module and it has 844 // been deleted. Any functions doing anything with a TypeSP in this TypeImpl 845 // class should call this function and only do anything with the ivars if 846 // this function returns true. If we have a module, the "module_sp" will be 847 // filled in with a strong reference to the module so that the module will at 848 // least stay around long enough for the type query to succeed. 849 module_sp = m_module_wp.lock(); 850 if (!module_sp) { 851 lldb::ModuleWP empty_module_wp; 852 // If either call to "std::weak_ptr::owner_before(...) value returns true, 853 // this indicates that m_module_wp once contained (possibly still does) a 854 // reference to a valid shared pointer. This helps us know if we had a 855 // valid reference to a section which is now invalid because the module it 856 // was in was deleted 857 if (empty_module_wp.owner_before(m_module_wp) || 858 m_module_wp.owner_before(empty_module_wp)) { 859 // m_module_wp had a valid reference to a module, but all strong 860 // references have been released and the module has been deleted 861 return false; 862 } 863 } 864 // We either successfully locked the module, or didn't have one to begin with 865 return true; 866 } 867 868 bool TypeImpl::operator==(const TypeImpl &rhs) const { 869 return m_static_type == rhs.m_static_type && 870 m_dynamic_type == rhs.m_dynamic_type; 871 } 872 873 bool TypeImpl::operator!=(const TypeImpl &rhs) const { 874 return !(*this == rhs); 875 } 876 877 bool TypeImpl::IsValid() const { 878 // just a name is not valid 879 ModuleSP module_sp; 880 if (CheckModule(module_sp)) 881 return m_static_type.IsValid() || m_dynamic_type.IsValid(); 882 return false; 883 } 884 885 TypeImpl::operator bool() const { return IsValid(); } 886 887 void TypeImpl::Clear() { 888 m_module_wp = lldb::ModuleWP(); 889 m_static_type.Clear(); 890 m_dynamic_type.Clear(); 891 } 892 893 ConstString TypeImpl::GetName() const { 894 ModuleSP module_sp; 895 if (CheckModule(module_sp)) { 896 if (m_dynamic_type) 897 return m_dynamic_type.GetTypeName(); 898 return m_static_type.GetTypeName(); 899 } 900 return ConstString(); 901 } 902 903 ConstString TypeImpl::GetDisplayTypeName() const { 904 ModuleSP module_sp; 905 if (CheckModule(module_sp)) { 906 if (m_dynamic_type) 907 return m_dynamic_type.GetDisplayTypeName(); 908 return m_static_type.GetDisplayTypeName(); 909 } 910 return ConstString(); 911 } 912 913 TypeImpl TypeImpl::GetPointerType() const { 914 ModuleSP module_sp; 915 if (CheckModule(module_sp)) { 916 if (m_dynamic_type.IsValid()) { 917 return TypeImpl(m_static_type.GetPointerType(), 918 m_dynamic_type.GetPointerType()); 919 } 920 return TypeImpl(m_static_type.GetPointerType()); 921 } 922 return TypeImpl(); 923 } 924 925 TypeImpl TypeImpl::GetPointeeType() const { 926 ModuleSP module_sp; 927 if (CheckModule(module_sp)) { 928 if (m_dynamic_type.IsValid()) { 929 return TypeImpl(m_static_type.GetPointeeType(), 930 m_dynamic_type.GetPointeeType()); 931 } 932 return TypeImpl(m_static_type.GetPointeeType()); 933 } 934 return TypeImpl(); 935 } 936 937 TypeImpl TypeImpl::GetReferenceType() const { 938 ModuleSP module_sp; 939 if (CheckModule(module_sp)) { 940 if (m_dynamic_type.IsValid()) { 941 return TypeImpl(m_static_type.GetLValueReferenceType(), 942 m_dynamic_type.GetLValueReferenceType()); 943 } 944 return TypeImpl(m_static_type.GetLValueReferenceType()); 945 } 946 return TypeImpl(); 947 } 948 949 TypeImpl TypeImpl::GetTypedefedType() const { 950 ModuleSP module_sp; 951 if (CheckModule(module_sp)) { 952 if (m_dynamic_type.IsValid()) { 953 return TypeImpl(m_static_type.GetTypedefedType(), 954 m_dynamic_type.GetTypedefedType()); 955 } 956 return TypeImpl(m_static_type.GetTypedefedType()); 957 } 958 return TypeImpl(); 959 } 960 961 TypeImpl TypeImpl::GetDereferencedType() const { 962 ModuleSP module_sp; 963 if (CheckModule(module_sp)) { 964 if (m_dynamic_type.IsValid()) { 965 return TypeImpl(m_static_type.GetNonReferenceType(), 966 m_dynamic_type.GetNonReferenceType()); 967 } 968 return TypeImpl(m_static_type.GetNonReferenceType()); 969 } 970 return TypeImpl(); 971 } 972 973 TypeImpl TypeImpl::GetUnqualifiedType() const { 974 ModuleSP module_sp; 975 if (CheckModule(module_sp)) { 976 if (m_dynamic_type.IsValid()) { 977 return TypeImpl(m_static_type.GetFullyUnqualifiedType(), 978 m_dynamic_type.GetFullyUnqualifiedType()); 979 } 980 return TypeImpl(m_static_type.GetFullyUnqualifiedType()); 981 } 982 return TypeImpl(); 983 } 984 985 TypeImpl TypeImpl::GetCanonicalType() const { 986 ModuleSP module_sp; 987 if (CheckModule(module_sp)) { 988 if (m_dynamic_type.IsValid()) { 989 return TypeImpl(m_static_type.GetCanonicalType(), 990 m_dynamic_type.GetCanonicalType()); 991 } 992 return TypeImpl(m_static_type.GetCanonicalType()); 993 } 994 return TypeImpl(); 995 } 996 997 CompilerType TypeImpl::GetCompilerType(bool prefer_dynamic) { 998 ModuleSP module_sp; 999 if (CheckModule(module_sp)) { 1000 if (prefer_dynamic) { 1001 if (m_dynamic_type.IsValid()) 1002 return m_dynamic_type; 1003 } 1004 return m_static_type; 1005 } 1006 return CompilerType(); 1007 } 1008 1009 TypeSystem *TypeImpl::GetTypeSystem(bool prefer_dynamic) { 1010 ModuleSP module_sp; 1011 if (CheckModule(module_sp)) { 1012 if (prefer_dynamic) { 1013 if (m_dynamic_type.IsValid()) 1014 return m_dynamic_type.GetTypeSystem(); 1015 } 1016 return m_static_type.GetTypeSystem(); 1017 } 1018 return nullptr; 1019 } 1020 1021 bool TypeImpl::GetDescription(lldb_private::Stream &strm, 1022 lldb::DescriptionLevel description_level) { 1023 ModuleSP module_sp; 1024 if (CheckModule(module_sp)) { 1025 if (m_dynamic_type.IsValid()) { 1026 strm.Printf("Dynamic:\n"); 1027 m_dynamic_type.DumpTypeDescription(&strm); 1028 strm.Printf("\nStatic:\n"); 1029 } 1030 m_static_type.DumpTypeDescription(&strm); 1031 } else { 1032 strm.PutCString("Invalid TypeImpl module for type has been deleted\n"); 1033 } 1034 return true; 1035 } 1036 1037 bool TypeMemberFunctionImpl::IsValid() { 1038 return m_type.IsValid() && m_kind != lldb::eMemberFunctionKindUnknown; 1039 } 1040 1041 ConstString TypeMemberFunctionImpl::GetName() const { return m_name; } 1042 1043 ConstString TypeMemberFunctionImpl::GetMangledName() const { 1044 return m_decl.GetMangledName(); 1045 } 1046 1047 CompilerType TypeMemberFunctionImpl::GetType() const { return m_type; } 1048 1049 lldb::MemberFunctionKind TypeMemberFunctionImpl::GetKind() const { 1050 return m_kind; 1051 } 1052 1053 bool TypeMemberFunctionImpl::GetDescription(Stream &stream) { 1054 switch (m_kind) { 1055 case lldb::eMemberFunctionKindUnknown: 1056 return false; 1057 case lldb::eMemberFunctionKindConstructor: 1058 stream.Printf("constructor for %s", 1059 m_type.GetTypeName().AsCString("<unknown>")); 1060 break; 1061 case lldb::eMemberFunctionKindDestructor: 1062 stream.Printf("destructor for %s", 1063 m_type.GetTypeName().AsCString("<unknown>")); 1064 break; 1065 case lldb::eMemberFunctionKindInstanceMethod: 1066 stream.Printf("instance method %s of type %s", m_name.AsCString(), 1067 m_decl.GetDeclContext().GetName().AsCString()); 1068 break; 1069 case lldb::eMemberFunctionKindStaticMethod: 1070 stream.Printf("static method %s of type %s", m_name.AsCString(), 1071 m_decl.GetDeclContext().GetName().AsCString()); 1072 break; 1073 } 1074 return true; 1075 } 1076 1077 CompilerType TypeMemberFunctionImpl::GetReturnType() const { 1078 if (m_type) 1079 return m_type.GetFunctionReturnType(); 1080 return m_decl.GetFunctionReturnType(); 1081 } 1082 1083 size_t TypeMemberFunctionImpl::GetNumArguments() const { 1084 if (m_type) 1085 return m_type.GetNumberOfFunctionArguments(); 1086 else 1087 return m_decl.GetNumFunctionArguments(); 1088 } 1089 1090 CompilerType TypeMemberFunctionImpl::GetArgumentAtIndex(size_t idx) const { 1091 if (m_type) 1092 return m_type.GetFunctionArgumentAtIndex(idx); 1093 else 1094 return m_decl.GetFunctionArgumentType(idx); 1095 } 1096 1097 TypeEnumMemberImpl::TypeEnumMemberImpl(const lldb::TypeImplSP &integer_type_sp, 1098 ConstString name, 1099 const llvm::APSInt &value) 1100 : m_integer_type_sp(integer_type_sp), m_name(name), m_value(value), 1101 m_valid((bool)name && (bool)integer_type_sp) 1102 1103 {} 1104