1 //===-- Type.cpp ------------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <stdio.h> 10 11 #include "lldb/Core/Module.h" 12 #include "lldb/Utility/DataBufferHeap.h" 13 #include "lldb/Utility/DataExtractor.h" 14 #include "lldb/Utility/Log.h" 15 #include "lldb/Utility/Scalar.h" 16 #include "lldb/Utility/StreamString.h" 17 18 #include "lldb/Symbol/CompilerType.h" 19 #include "lldb/Symbol/ObjectFile.h" 20 #include "lldb/Symbol/SymbolContextScope.h" 21 #include "lldb/Symbol/SymbolFile.h" 22 #include "lldb/Symbol/SymbolVendor.h" 23 #include "lldb/Symbol/Type.h" 24 #include "lldb/Symbol/TypeList.h" 25 #include "lldb/Symbol/TypeSystem.h" 26 27 #include "lldb/Target/ExecutionContext.h" 28 #include "lldb/Target/Process.h" 29 #include "lldb/Target/Target.h" 30 31 #include "llvm/ADT/StringRef.h" 32 33 using namespace lldb; 34 using namespace lldb_private; 35 36 bool lldb_private::contextMatches(llvm::ArrayRef<CompilerContext> context_chain, 37 llvm::ArrayRef<CompilerContext> pattern) { 38 auto ctx = context_chain.begin(); 39 auto ctx_end = context_chain.end(); 40 for (const CompilerContext &pat : pattern) { 41 // Early exit if the pattern is too long. 42 if (ctx == ctx_end) 43 return false; 44 if (*ctx != pat) { 45 // Skip any number of module matches. 46 if (pat.kind == CompilerContextKind::AnyModule) { 47 // Greedily match 0..n modules. 48 ctx = std::find_if(ctx, ctx_end, [](const CompilerContext &ctx) { 49 return ctx.kind != CompilerContextKind::Module; 50 }); 51 continue; 52 } 53 // See if there is a kind mismatch; they should have 1 bit in common. 54 if (((uint16_t)ctx->kind & (uint16_t)pat.kind) == 0) 55 return false; 56 // The name is ignored for AnyModule, but not for AnyType. 57 if (pat.kind != CompilerContextKind::AnyModule && ctx->name != pat.name) 58 return false; 59 } 60 ++ctx; 61 } 62 return true; 63 } 64 65 void CompilerContext::Dump() const { 66 switch (kind) { 67 default: 68 printf("Invalid"); 69 break; 70 case CompilerContextKind::TranslationUnit: 71 printf("TranslationUnit"); 72 break; 73 case CompilerContextKind::Module: 74 printf("Module"); 75 break; 76 case CompilerContextKind::Namespace: 77 printf("Namespace"); 78 break; 79 case CompilerContextKind::Class: 80 printf("Class"); 81 break; 82 case CompilerContextKind::Struct: 83 printf("Structure"); 84 break; 85 case CompilerContextKind::Union: 86 printf("Union"); 87 break; 88 case CompilerContextKind::Function: 89 printf("Function"); 90 break; 91 case CompilerContextKind::Variable: 92 printf("Variable"); 93 break; 94 case CompilerContextKind::Enum: 95 printf("Enumeration"); 96 break; 97 case CompilerContextKind::Typedef: 98 printf("Typedef"); 99 break; 100 case CompilerContextKind::AnyModule: 101 printf("AnyModule"); 102 break; 103 case CompilerContextKind::AnyType: 104 printf("AnyType"); 105 break; 106 } 107 printf("(\"%s\")\n", name.GetCString()); 108 } 109 110 class TypeAppendVisitor { 111 public: 112 TypeAppendVisitor(TypeListImpl &type_list) : m_type_list(type_list) {} 113 114 bool operator()(const lldb::TypeSP &type) { 115 m_type_list.Append(TypeImplSP(new TypeImpl(type))); 116 return true; 117 } 118 119 private: 120 TypeListImpl &m_type_list; 121 }; 122 123 void TypeListImpl::Append(const lldb_private::TypeList &type_list) { 124 TypeAppendVisitor cb(*this); 125 type_list.ForEach(cb); 126 } 127 128 SymbolFileType::SymbolFileType(SymbolFile &symbol_file, 129 const lldb::TypeSP &type_sp) 130 : UserID(type_sp ? type_sp->GetID() : LLDB_INVALID_UID), 131 m_symbol_file(symbol_file), m_type_sp(type_sp) {} 132 133 Type *SymbolFileType::GetType() { 134 if (!m_type_sp) { 135 Type *resolved_type = m_symbol_file.ResolveTypeUID(GetID()); 136 if (resolved_type) 137 m_type_sp = resolved_type->shared_from_this(); 138 } 139 return m_type_sp.get(); 140 } 141 142 Type::Type(lldb::user_id_t uid, SymbolFile *symbol_file, 143 ConstString name, llvm::Optional<uint64_t> byte_size, 144 SymbolContextScope *context, user_id_t encoding_uid, 145 EncodingDataType encoding_uid_type, const Declaration &decl, 146 const CompilerType &compiler_type, 147 ResolveState compiler_type_resolve_state) 148 : std::enable_shared_from_this<Type>(), UserID(uid), m_name(name), 149 m_symbol_file(symbol_file), m_context(context), m_encoding_type(nullptr), 150 m_encoding_uid(encoding_uid), m_encoding_uid_type(encoding_uid_type), 151 m_decl(decl), m_compiler_type(compiler_type) { 152 if (byte_size) { 153 m_byte_size = *byte_size; 154 m_byte_size_has_value = true; 155 } else { 156 m_byte_size = 0; 157 m_byte_size_has_value = false; 158 } 159 m_flags.compiler_type_resolve_state = 160 (compiler_type ? compiler_type_resolve_state : eResolveStateUnresolved); 161 m_flags.is_complete_objc_class = false; 162 } 163 164 Type::Type() 165 : std::enable_shared_from_this<Type>(), UserID(0), m_name("<INVALID TYPE>"), 166 m_symbol_file(nullptr), m_context(nullptr), m_encoding_type(nullptr), 167 m_encoding_uid(LLDB_INVALID_UID), m_encoding_uid_type(eEncodingInvalid), 168 m_byte_size(0), m_byte_size_has_value(false), m_decl(), 169 m_compiler_type() { 170 m_flags.compiler_type_resolve_state = eResolveStateUnresolved; 171 m_flags.is_complete_objc_class = false; 172 } 173 174 void Type::GetDescription(Stream *s, lldb::DescriptionLevel level, 175 bool show_name) { 176 *s << "id = " << (const UserID &)*this; 177 178 // Call the name accessor to make sure we resolve the type name 179 if (show_name) { 180 ConstString type_name = GetName(); 181 if (type_name) { 182 *s << ", name = \"" << type_name << '"'; 183 ConstString qualified_type_name(GetQualifiedName()); 184 if (qualified_type_name != type_name) { 185 *s << ", qualified = \"" << qualified_type_name << '"'; 186 } 187 } 188 } 189 190 // Call the get byte size accesor so we resolve our byte size 191 if (GetByteSize()) 192 s->Printf(", byte-size = %" PRIu64, m_byte_size); 193 bool show_fullpaths = (level == lldb::eDescriptionLevelVerbose); 194 m_decl.Dump(s, show_fullpaths); 195 196 if (m_compiler_type.IsValid()) { 197 *s << ", compiler_type = \""; 198 GetForwardCompilerType().DumpTypeDescription(s); 199 *s << '"'; 200 } else if (m_encoding_uid != LLDB_INVALID_UID) { 201 s->Printf(", type_uid = 0x%8.8" PRIx64, m_encoding_uid); 202 switch (m_encoding_uid_type) { 203 case eEncodingInvalid: 204 break; 205 case eEncodingIsUID: 206 s->PutCString(" (unresolved type)"); 207 break; 208 case eEncodingIsConstUID: 209 s->PutCString(" (unresolved const type)"); 210 break; 211 case eEncodingIsRestrictUID: 212 s->PutCString(" (unresolved restrict type)"); 213 break; 214 case eEncodingIsVolatileUID: 215 s->PutCString(" (unresolved volatile type)"); 216 break; 217 case eEncodingIsTypedefUID: 218 s->PutCString(" (unresolved typedef)"); 219 break; 220 case eEncodingIsPointerUID: 221 s->PutCString(" (unresolved pointer)"); 222 break; 223 case eEncodingIsLValueReferenceUID: 224 s->PutCString(" (unresolved L value reference)"); 225 break; 226 case eEncodingIsRValueReferenceUID: 227 s->PutCString(" (unresolved R value reference)"); 228 break; 229 case eEncodingIsSyntheticUID: 230 s->PutCString(" (synthetic type)"); 231 break; 232 } 233 } 234 } 235 236 void Type::Dump(Stream *s, bool show_context) { 237 s->Printf("%p: ", static_cast<void *>(this)); 238 s->Indent(); 239 *s << "Type" << static_cast<const UserID &>(*this) << ' '; 240 if (m_name) 241 *s << ", name = \"" << m_name << "\""; 242 243 if (m_byte_size_has_value) 244 s->Printf(", size = %" PRIu64, m_byte_size); 245 246 if (show_context && m_context != nullptr) { 247 s->PutCString(", context = ( "); 248 m_context->DumpSymbolContext(s); 249 s->PutCString(" )"); 250 } 251 252 bool show_fullpaths = false; 253 m_decl.Dump(s, show_fullpaths); 254 255 if (m_compiler_type.IsValid()) { 256 *s << ", compiler_type = " << m_compiler_type.GetOpaqueQualType() << ' '; 257 GetForwardCompilerType().DumpTypeDescription(s); 258 } else if (m_encoding_uid != LLDB_INVALID_UID) { 259 *s << ", type_data = " << (uint64_t)m_encoding_uid; 260 switch (m_encoding_uid_type) { 261 case eEncodingInvalid: 262 break; 263 case eEncodingIsUID: 264 s->PutCString(" (unresolved type)"); 265 break; 266 case eEncodingIsConstUID: 267 s->PutCString(" (unresolved const type)"); 268 break; 269 case eEncodingIsRestrictUID: 270 s->PutCString(" (unresolved restrict type)"); 271 break; 272 case eEncodingIsVolatileUID: 273 s->PutCString(" (unresolved volatile type)"); 274 break; 275 case eEncodingIsTypedefUID: 276 s->PutCString(" (unresolved typedef)"); 277 break; 278 case eEncodingIsPointerUID: 279 s->PutCString(" (unresolved pointer)"); 280 break; 281 case eEncodingIsLValueReferenceUID: 282 s->PutCString(" (unresolved L value reference)"); 283 break; 284 case eEncodingIsRValueReferenceUID: 285 s->PutCString(" (unresolved R value reference)"); 286 break; 287 case eEncodingIsSyntheticUID: 288 s->PutCString(" (synthetic type)"); 289 break; 290 } 291 } 292 293 // 294 // if (m_access) 295 // s->Printf(", access = %u", m_access); 296 s->EOL(); 297 } 298 299 ConstString Type::GetName() { 300 if (!m_name) 301 m_name = GetForwardCompilerType().GetConstTypeName(); 302 return m_name; 303 } 304 305 void Type::DumpTypeName(Stream *s) { GetName().Dump(s, "<invalid-type-name>"); } 306 307 void Type::DumpValue(ExecutionContext *exe_ctx, Stream *s, 308 const DataExtractor &data, uint32_t data_byte_offset, 309 bool show_types, bool show_summary, bool verbose, 310 lldb::Format format) { 311 if (ResolveClangType(eResolveStateForward)) { 312 if (show_types) { 313 s->PutChar('('); 314 if (verbose) 315 s->Printf("Type{0x%8.8" PRIx64 "} ", GetID()); 316 DumpTypeName(s); 317 s->PutCString(") "); 318 } 319 320 GetForwardCompilerType().DumpValue( 321 exe_ctx, s, format == lldb::eFormatDefault ? GetFormat() : format, data, 322 data_byte_offset, GetByteSize().getValueOr(0), 323 0, // Bitfield bit size 324 0, // Bitfield bit offset 325 show_types, show_summary, verbose, 0); 326 } 327 } 328 329 Type *Type::GetEncodingType() { 330 if (m_encoding_type == nullptr && m_encoding_uid != LLDB_INVALID_UID) 331 m_encoding_type = m_symbol_file->ResolveTypeUID(m_encoding_uid); 332 return m_encoding_type; 333 } 334 335 llvm::Optional<uint64_t> Type::GetByteSize() { 336 if (m_byte_size_has_value) 337 return m_byte_size; 338 339 switch (m_encoding_uid_type) { 340 case eEncodingInvalid: 341 case eEncodingIsSyntheticUID: 342 break; 343 case eEncodingIsUID: 344 case eEncodingIsConstUID: 345 case eEncodingIsRestrictUID: 346 case eEncodingIsVolatileUID: 347 case eEncodingIsTypedefUID: { 348 Type *encoding_type = GetEncodingType(); 349 if (encoding_type) 350 if (llvm::Optional<uint64_t> size = encoding_type->GetByteSize()) { 351 m_byte_size = *size; 352 m_byte_size_has_value = true; 353 return m_byte_size; 354 } 355 356 if (llvm::Optional<uint64_t> size = 357 GetLayoutCompilerType().GetByteSize(nullptr)) { 358 m_byte_size = *size; 359 m_byte_size_has_value = true; 360 return m_byte_size; 361 } 362 } break; 363 364 // If we are a pointer or reference, then this is just a pointer size; 365 case eEncodingIsPointerUID: 366 case eEncodingIsLValueReferenceUID: 367 case eEncodingIsRValueReferenceUID: { 368 if (ArchSpec arch = m_symbol_file->GetObjectFile()->GetArchitecture()) { 369 m_byte_size = arch.GetAddressByteSize(); 370 m_byte_size_has_value = true; 371 } 372 } break; 373 } 374 return {}; 375 } 376 377 uint32_t Type::GetNumChildren(bool omit_empty_base_classes) { 378 return GetForwardCompilerType().GetNumChildren(omit_empty_base_classes, nullptr); 379 } 380 381 bool Type::IsAggregateType() { 382 return GetForwardCompilerType().IsAggregateType(); 383 } 384 385 lldb::TypeSP Type::GetTypedefType() { 386 lldb::TypeSP type_sp; 387 if (IsTypedef()) { 388 Type *typedef_type = m_symbol_file->ResolveTypeUID(m_encoding_uid); 389 if (typedef_type) 390 type_sp = typedef_type->shared_from_this(); 391 } 392 return type_sp; 393 } 394 395 lldb::Format Type::GetFormat() { return GetForwardCompilerType().GetFormat(); } 396 397 lldb::Encoding Type::GetEncoding(uint64_t &count) { 398 // Make sure we resolve our type if it already hasn't been. 399 return GetForwardCompilerType().GetEncoding(count); 400 } 401 402 bool Type::DumpValueInMemory(ExecutionContext *exe_ctx, Stream *s, 403 lldb::addr_t address, AddressType address_type, 404 bool show_types, bool show_summary, bool verbose) { 405 if (address != LLDB_INVALID_ADDRESS) { 406 DataExtractor data; 407 Target *target = nullptr; 408 if (exe_ctx) 409 target = exe_ctx->GetTargetPtr(); 410 if (target) 411 data.SetByteOrder(target->GetArchitecture().GetByteOrder()); 412 if (ReadFromMemory(exe_ctx, address, address_type, data)) { 413 DumpValue(exe_ctx, s, data, 0, show_types, show_summary, verbose); 414 return true; 415 } 416 } 417 return false; 418 } 419 420 bool Type::ReadFromMemory(ExecutionContext *exe_ctx, lldb::addr_t addr, 421 AddressType address_type, DataExtractor &data) { 422 if (address_type == eAddressTypeFile) { 423 // Can't convert a file address to anything valid without more context 424 // (which Module it came from) 425 return false; 426 } 427 428 const uint64_t byte_size = GetByteSize().getValueOr(0); 429 if (data.GetByteSize() < byte_size) { 430 lldb::DataBufferSP data_sp(new DataBufferHeap(byte_size, '\0')); 431 data.SetData(data_sp); 432 } 433 434 uint8_t *dst = const_cast<uint8_t *>(data.PeekData(0, byte_size)); 435 if (dst != nullptr) { 436 if (address_type == eAddressTypeHost) { 437 // The address is an address in this process, so just copy it 438 if (addr == 0) 439 return false; 440 memcpy(dst, reinterpret_cast<uint8_t *>(addr), byte_size); 441 return true; 442 } else { 443 if (exe_ctx) { 444 Process *process = exe_ctx->GetProcessPtr(); 445 if (process) { 446 Status error; 447 return exe_ctx->GetProcessPtr()->ReadMemory(addr, dst, byte_size, 448 error) == byte_size; 449 } 450 } 451 } 452 } 453 return false; 454 } 455 456 bool Type::WriteToMemory(ExecutionContext *exe_ctx, lldb::addr_t addr, 457 AddressType address_type, DataExtractor &data) { 458 return false; 459 } 460 461 const Declaration &Type::GetDeclaration() const { return m_decl; } 462 463 bool Type::ResolveClangType(ResolveState compiler_type_resolve_state) { 464 // TODO: This needs to consider the correct type system to use. 465 Type *encoding_type = nullptr; 466 if (!m_compiler_type.IsValid()) { 467 encoding_type = GetEncodingType(); 468 if (encoding_type) { 469 switch (m_encoding_uid_type) { 470 case eEncodingIsUID: { 471 CompilerType encoding_compiler_type = 472 encoding_type->GetForwardCompilerType(); 473 if (encoding_compiler_type.IsValid()) { 474 m_compiler_type = encoding_compiler_type; 475 m_flags.compiler_type_resolve_state = 476 encoding_type->m_flags.compiler_type_resolve_state; 477 } 478 } break; 479 480 case eEncodingIsConstUID: 481 m_compiler_type = 482 encoding_type->GetForwardCompilerType().AddConstModifier(); 483 break; 484 485 case eEncodingIsRestrictUID: 486 m_compiler_type = 487 encoding_type->GetForwardCompilerType().AddRestrictModifier(); 488 break; 489 490 case eEncodingIsVolatileUID: 491 m_compiler_type = 492 encoding_type->GetForwardCompilerType().AddVolatileModifier(); 493 break; 494 495 case eEncodingIsTypedefUID: 496 m_compiler_type = encoding_type->GetForwardCompilerType().CreateTypedef( 497 m_name.AsCString("__lldb_invalid_typedef_name"), 498 GetSymbolFile()->GetDeclContextContainingUID(GetID())); 499 m_name.Clear(); 500 break; 501 502 case eEncodingIsPointerUID: 503 m_compiler_type = 504 encoding_type->GetForwardCompilerType().GetPointerType(); 505 break; 506 507 case eEncodingIsLValueReferenceUID: 508 m_compiler_type = 509 encoding_type->GetForwardCompilerType().GetLValueReferenceType(); 510 break; 511 512 case eEncodingIsRValueReferenceUID: 513 m_compiler_type = 514 encoding_type->GetForwardCompilerType().GetRValueReferenceType(); 515 break; 516 517 default: 518 llvm_unreachable("Unhandled encoding_data_type."); 519 } 520 } else { 521 // We have no encoding type, return void? 522 auto type_system_or_err = 523 m_symbol_file->GetTypeSystemForLanguage(eLanguageTypeC); 524 if (auto err = type_system_or_err.takeError()) { 525 LLDB_LOG_ERROR( 526 lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS), 527 std::move(err), 528 "Unable to construct void type from ClangASTContext"); 529 } else { 530 CompilerType void_compiler_type = 531 type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid); 532 switch (m_encoding_uid_type) { 533 case eEncodingIsUID: 534 m_compiler_type = void_compiler_type; 535 break; 536 537 case eEncodingIsConstUID: 538 m_compiler_type = void_compiler_type.AddConstModifier(); 539 break; 540 541 case eEncodingIsRestrictUID: 542 m_compiler_type = void_compiler_type.AddRestrictModifier(); 543 break; 544 545 case eEncodingIsVolatileUID: 546 m_compiler_type = void_compiler_type.AddVolatileModifier(); 547 break; 548 549 case eEncodingIsTypedefUID: 550 m_compiler_type = void_compiler_type.CreateTypedef( 551 m_name.AsCString("__lldb_invalid_typedef_name"), 552 GetSymbolFile()->GetDeclContextContainingUID(GetID())); 553 break; 554 555 case eEncodingIsPointerUID: 556 m_compiler_type = void_compiler_type.GetPointerType(); 557 break; 558 559 case eEncodingIsLValueReferenceUID: 560 m_compiler_type = void_compiler_type.GetLValueReferenceType(); 561 break; 562 563 case eEncodingIsRValueReferenceUID: 564 m_compiler_type = void_compiler_type.GetRValueReferenceType(); 565 break; 566 567 default: 568 llvm_unreachable("Unhandled encoding_data_type."); 569 } 570 } 571 } 572 573 // When we have a EncodingUID, our "m_flags.compiler_type_resolve_state" is 574 // set to eResolveStateUnresolved so we need to update it to say that we 575 // now have a forward declaration since that is what we created above. 576 if (m_compiler_type.IsValid()) 577 m_flags.compiler_type_resolve_state = eResolveStateForward; 578 } 579 580 // Check if we have a forward reference to a class/struct/union/enum? 581 if (compiler_type_resolve_state == eResolveStateLayout || 582 compiler_type_resolve_state == eResolveStateFull) { 583 // Check if we have a forward reference to a class/struct/union/enum? 584 if (m_compiler_type.IsValid() && 585 m_flags.compiler_type_resolve_state < compiler_type_resolve_state) { 586 m_flags.compiler_type_resolve_state = eResolveStateFull; 587 if (!m_compiler_type.IsDefined()) { 588 // We have a forward declaration, we need to resolve it to a complete 589 // definition. 590 m_symbol_file->CompleteType(m_compiler_type); 591 } 592 } 593 } 594 595 // If we have an encoding type, then we need to make sure it is resolved 596 // appropriately. 597 if (m_encoding_uid != LLDB_INVALID_UID) { 598 if (encoding_type == nullptr) 599 encoding_type = GetEncodingType(); 600 if (encoding_type) { 601 ResolveState encoding_compiler_type_resolve_state = 602 compiler_type_resolve_state; 603 604 if (compiler_type_resolve_state == eResolveStateLayout) { 605 switch (m_encoding_uid_type) { 606 case eEncodingIsPointerUID: 607 case eEncodingIsLValueReferenceUID: 608 case eEncodingIsRValueReferenceUID: 609 encoding_compiler_type_resolve_state = eResolveStateForward; 610 break; 611 default: 612 break; 613 } 614 } 615 encoding_type->ResolveClangType(encoding_compiler_type_resolve_state); 616 } 617 } 618 return m_compiler_type.IsValid(); 619 } 620 uint32_t Type::GetEncodingMask() { 621 uint32_t encoding_mask = 1u << m_encoding_uid_type; 622 Type *encoding_type = GetEncodingType(); 623 assert(encoding_type != this); 624 if (encoding_type) 625 encoding_mask |= encoding_type->GetEncodingMask(); 626 return encoding_mask; 627 } 628 629 CompilerType Type::GetFullCompilerType() { 630 ResolveClangType(eResolveStateFull); 631 return m_compiler_type; 632 } 633 634 CompilerType Type::GetLayoutCompilerType() { 635 ResolveClangType(eResolveStateLayout); 636 return m_compiler_type; 637 } 638 639 CompilerType Type::GetForwardCompilerType() { 640 ResolveClangType(eResolveStateForward); 641 return m_compiler_type; 642 } 643 644 int Type::Compare(const Type &a, const Type &b) { 645 // Just compare the UID values for now... 646 lldb::user_id_t a_uid = a.GetID(); 647 lldb::user_id_t b_uid = b.GetID(); 648 if (a_uid < b_uid) 649 return -1; 650 if (a_uid > b_uid) 651 return 1; 652 return 0; 653 } 654 655 ConstString Type::GetQualifiedName() { 656 return GetForwardCompilerType().GetConstTypeName(); 657 } 658 659 bool Type::GetTypeScopeAndBasename(const llvm::StringRef& name, 660 llvm::StringRef &scope, 661 llvm::StringRef &basename, 662 TypeClass &type_class) { 663 type_class = eTypeClassAny; 664 665 if (name.empty()) 666 return false; 667 668 basename = name; 669 if (basename.consume_front("struct ")) 670 type_class = eTypeClassStruct; 671 else if (basename.consume_front("class ")) 672 type_class = eTypeClassClass; 673 else if (basename.consume_front("union ")) 674 type_class = eTypeClassUnion; 675 else if (basename.consume_front("enum ")) 676 type_class = eTypeClassEnumeration; 677 else if (basename.consume_front("typedef ")) 678 type_class = eTypeClassTypedef; 679 680 size_t namespace_separator = basename.find("::"); 681 if (namespace_separator == llvm::StringRef::npos) 682 return false; 683 684 size_t template_begin = basename.find('<'); 685 while (namespace_separator != llvm::StringRef::npos) { 686 if (template_begin != llvm::StringRef::npos && 687 namespace_separator > template_begin) { 688 size_t template_depth = 1; 689 llvm::StringRef template_arg = 690 basename.drop_front(template_begin + 1); 691 while (template_depth > 0 && !template_arg.empty()) { 692 if (template_arg.front() == '<') 693 template_depth++; 694 else if (template_arg.front() == '>') 695 template_depth--; 696 template_arg = template_arg.drop_front(1); 697 } 698 if (template_depth != 0) 699 return false; // We have an invalid type name. Bail out. 700 if (template_arg.empty()) 701 break; // The template ends at the end of the full name. 702 basename = template_arg; 703 } else { 704 basename = basename.drop_front(namespace_separator + 2); 705 } 706 template_begin = basename.find('<'); 707 namespace_separator = basename.find("::"); 708 } 709 if (basename.size() < name.size()) { 710 scope = name.take_front(name.size() - basename.size()); 711 return true; 712 } 713 return false; 714 } 715 716 ModuleSP Type::GetModule() { 717 if (m_symbol_file) 718 return m_symbol_file->GetObjectFile()->GetModule(); 719 return ModuleSP(); 720 } 721 722 TypeAndOrName::TypeAndOrName(TypeSP &in_type_sp) { 723 if (in_type_sp) { 724 m_compiler_type = in_type_sp->GetForwardCompilerType(); 725 m_type_name = in_type_sp->GetName(); 726 } 727 } 728 729 TypeAndOrName::TypeAndOrName(const char *in_type_str) 730 : m_type_name(in_type_str) {} 731 732 TypeAndOrName::TypeAndOrName(ConstString &in_type_const_string) 733 : m_type_name(in_type_const_string) {} 734 735 bool TypeAndOrName::operator==(const TypeAndOrName &other) const { 736 if (m_compiler_type != other.m_compiler_type) 737 return false; 738 if (m_type_name != other.m_type_name) 739 return false; 740 return true; 741 } 742 743 bool TypeAndOrName::operator!=(const TypeAndOrName &other) const { 744 return !(*this == other); 745 } 746 747 ConstString TypeAndOrName::GetName() const { 748 if (m_type_name) 749 return m_type_name; 750 if (m_compiler_type) 751 return m_compiler_type.GetTypeName(); 752 return ConstString("<invalid>"); 753 } 754 755 void TypeAndOrName::SetName(ConstString type_name) { 756 m_type_name = type_name; 757 } 758 759 void TypeAndOrName::SetName(const char *type_name_cstr) { 760 m_type_name.SetCString(type_name_cstr); 761 } 762 763 void TypeAndOrName::SetTypeSP(lldb::TypeSP type_sp) { 764 if (type_sp) { 765 m_compiler_type = type_sp->GetForwardCompilerType(); 766 m_type_name = type_sp->GetName(); 767 } else 768 Clear(); 769 } 770 771 void TypeAndOrName::SetCompilerType(CompilerType compiler_type) { 772 m_compiler_type = compiler_type; 773 if (m_compiler_type) 774 m_type_name = m_compiler_type.GetTypeName(); 775 } 776 777 bool TypeAndOrName::IsEmpty() const { 778 return !((bool)m_type_name || (bool)m_compiler_type); 779 } 780 781 void TypeAndOrName::Clear() { 782 m_type_name.Clear(); 783 m_compiler_type.Clear(); 784 } 785 786 bool TypeAndOrName::HasName() const { return (bool)m_type_name; } 787 788 bool TypeAndOrName::HasCompilerType() const { 789 return m_compiler_type.IsValid(); 790 } 791 792 TypeImpl::TypeImpl(const lldb::TypeSP &type_sp) 793 : m_module_wp(), m_static_type(), m_dynamic_type() { 794 SetType(type_sp); 795 } 796 797 TypeImpl::TypeImpl(const CompilerType &compiler_type) 798 : m_module_wp(), m_static_type(), m_dynamic_type() { 799 SetType(compiler_type); 800 } 801 802 TypeImpl::TypeImpl(const lldb::TypeSP &type_sp, const CompilerType &dynamic) 803 : m_module_wp(), m_static_type(), m_dynamic_type(dynamic) { 804 SetType(type_sp, dynamic); 805 } 806 807 TypeImpl::TypeImpl(const CompilerType &static_type, 808 const CompilerType &dynamic_type) 809 : m_module_wp(), m_static_type(), m_dynamic_type() { 810 SetType(static_type, dynamic_type); 811 } 812 813 void TypeImpl::SetType(const lldb::TypeSP &type_sp) { 814 if (type_sp) { 815 m_static_type = type_sp->GetForwardCompilerType(); 816 m_module_wp = type_sp->GetModule(); 817 } else { 818 m_static_type.Clear(); 819 m_module_wp = lldb::ModuleWP(); 820 } 821 } 822 823 void TypeImpl::SetType(const CompilerType &compiler_type) { 824 m_module_wp = lldb::ModuleWP(); 825 m_static_type = compiler_type; 826 } 827 828 void TypeImpl::SetType(const lldb::TypeSP &type_sp, 829 const CompilerType &dynamic) { 830 SetType(type_sp); 831 m_dynamic_type = dynamic; 832 } 833 834 void TypeImpl::SetType(const CompilerType &compiler_type, 835 const CompilerType &dynamic) { 836 m_module_wp = lldb::ModuleWP(); 837 m_static_type = compiler_type; 838 m_dynamic_type = dynamic; 839 } 840 841 bool TypeImpl::CheckModule(lldb::ModuleSP &module_sp) const { 842 // Check if we have a module for this type. If we do and the shared pointer 843 // is can be successfully initialized with m_module_wp, return true. Else 844 // return false if we didn't have a module, or if we had a module and it has 845 // been deleted. Any functions doing anything with a TypeSP in this TypeImpl 846 // class should call this function and only do anything with the ivars if 847 // this function returns true. If we have a module, the "module_sp" will be 848 // filled in with a strong reference to the module so that the module will at 849 // least stay around long enough for the type query to succeed. 850 module_sp = m_module_wp.lock(); 851 if (!module_sp) { 852 lldb::ModuleWP empty_module_wp; 853 // If either call to "std::weak_ptr::owner_before(...) value returns true, 854 // this indicates that m_module_wp once contained (possibly still does) a 855 // reference to a valid shared pointer. This helps us know if we had a 856 // valid reference to a section which is now invalid because the module it 857 // was in was deleted 858 if (empty_module_wp.owner_before(m_module_wp) || 859 m_module_wp.owner_before(empty_module_wp)) { 860 // m_module_wp had a valid reference to a module, but all strong 861 // references have been released and the module has been deleted 862 return false; 863 } 864 } 865 // We either successfully locked the module, or didn't have one to begin with 866 return true; 867 } 868 869 bool TypeImpl::operator==(const TypeImpl &rhs) const { 870 return m_static_type == rhs.m_static_type && 871 m_dynamic_type == rhs.m_dynamic_type; 872 } 873 874 bool TypeImpl::operator!=(const TypeImpl &rhs) const { 875 return !(*this == rhs); 876 } 877 878 bool TypeImpl::IsValid() const { 879 // just a name is not valid 880 ModuleSP module_sp; 881 if (CheckModule(module_sp)) 882 return m_static_type.IsValid() || m_dynamic_type.IsValid(); 883 return false; 884 } 885 886 TypeImpl::operator bool() const { return IsValid(); } 887 888 void TypeImpl::Clear() { 889 m_module_wp = lldb::ModuleWP(); 890 m_static_type.Clear(); 891 m_dynamic_type.Clear(); 892 } 893 894 ConstString TypeImpl::GetName() const { 895 ModuleSP module_sp; 896 if (CheckModule(module_sp)) { 897 if (m_dynamic_type) 898 return m_dynamic_type.GetTypeName(); 899 return m_static_type.GetTypeName(); 900 } 901 return ConstString(); 902 } 903 904 ConstString TypeImpl::GetDisplayTypeName() const { 905 ModuleSP module_sp; 906 if (CheckModule(module_sp)) { 907 if (m_dynamic_type) 908 return m_dynamic_type.GetDisplayTypeName(); 909 return m_static_type.GetDisplayTypeName(); 910 } 911 return ConstString(); 912 } 913 914 TypeImpl TypeImpl::GetPointerType() const { 915 ModuleSP module_sp; 916 if (CheckModule(module_sp)) { 917 if (m_dynamic_type.IsValid()) { 918 return TypeImpl(m_static_type.GetPointerType(), 919 m_dynamic_type.GetPointerType()); 920 } 921 return TypeImpl(m_static_type.GetPointerType()); 922 } 923 return TypeImpl(); 924 } 925 926 TypeImpl TypeImpl::GetPointeeType() const { 927 ModuleSP module_sp; 928 if (CheckModule(module_sp)) { 929 if (m_dynamic_type.IsValid()) { 930 return TypeImpl(m_static_type.GetPointeeType(), 931 m_dynamic_type.GetPointeeType()); 932 } 933 return TypeImpl(m_static_type.GetPointeeType()); 934 } 935 return TypeImpl(); 936 } 937 938 TypeImpl TypeImpl::GetReferenceType() const { 939 ModuleSP module_sp; 940 if (CheckModule(module_sp)) { 941 if (m_dynamic_type.IsValid()) { 942 return TypeImpl(m_static_type.GetLValueReferenceType(), 943 m_dynamic_type.GetLValueReferenceType()); 944 } 945 return TypeImpl(m_static_type.GetLValueReferenceType()); 946 } 947 return TypeImpl(); 948 } 949 950 TypeImpl TypeImpl::GetTypedefedType() const { 951 ModuleSP module_sp; 952 if (CheckModule(module_sp)) { 953 if (m_dynamic_type.IsValid()) { 954 return TypeImpl(m_static_type.GetTypedefedType(), 955 m_dynamic_type.GetTypedefedType()); 956 } 957 return TypeImpl(m_static_type.GetTypedefedType()); 958 } 959 return TypeImpl(); 960 } 961 962 TypeImpl TypeImpl::GetDereferencedType() const { 963 ModuleSP module_sp; 964 if (CheckModule(module_sp)) { 965 if (m_dynamic_type.IsValid()) { 966 return TypeImpl(m_static_type.GetNonReferenceType(), 967 m_dynamic_type.GetNonReferenceType()); 968 } 969 return TypeImpl(m_static_type.GetNonReferenceType()); 970 } 971 return TypeImpl(); 972 } 973 974 TypeImpl TypeImpl::GetUnqualifiedType() const { 975 ModuleSP module_sp; 976 if (CheckModule(module_sp)) { 977 if (m_dynamic_type.IsValid()) { 978 return TypeImpl(m_static_type.GetFullyUnqualifiedType(), 979 m_dynamic_type.GetFullyUnqualifiedType()); 980 } 981 return TypeImpl(m_static_type.GetFullyUnqualifiedType()); 982 } 983 return TypeImpl(); 984 } 985 986 TypeImpl TypeImpl::GetCanonicalType() const { 987 ModuleSP module_sp; 988 if (CheckModule(module_sp)) { 989 if (m_dynamic_type.IsValid()) { 990 return TypeImpl(m_static_type.GetCanonicalType(), 991 m_dynamic_type.GetCanonicalType()); 992 } 993 return TypeImpl(m_static_type.GetCanonicalType()); 994 } 995 return TypeImpl(); 996 } 997 998 CompilerType TypeImpl::GetCompilerType(bool prefer_dynamic) { 999 ModuleSP module_sp; 1000 if (CheckModule(module_sp)) { 1001 if (prefer_dynamic) { 1002 if (m_dynamic_type.IsValid()) 1003 return m_dynamic_type; 1004 } 1005 return m_static_type; 1006 } 1007 return CompilerType(); 1008 } 1009 1010 TypeSystem *TypeImpl::GetTypeSystem(bool prefer_dynamic) { 1011 ModuleSP module_sp; 1012 if (CheckModule(module_sp)) { 1013 if (prefer_dynamic) { 1014 if (m_dynamic_type.IsValid()) 1015 return m_dynamic_type.GetTypeSystem(); 1016 } 1017 return m_static_type.GetTypeSystem(); 1018 } 1019 return nullptr; 1020 } 1021 1022 bool TypeImpl::GetDescription(lldb_private::Stream &strm, 1023 lldb::DescriptionLevel description_level) { 1024 ModuleSP module_sp; 1025 if (CheckModule(module_sp)) { 1026 if (m_dynamic_type.IsValid()) { 1027 strm.Printf("Dynamic:\n"); 1028 m_dynamic_type.DumpTypeDescription(&strm); 1029 strm.Printf("\nStatic:\n"); 1030 } 1031 m_static_type.DumpTypeDescription(&strm); 1032 } else { 1033 strm.PutCString("Invalid TypeImpl module for type has been deleted\n"); 1034 } 1035 return true; 1036 } 1037 1038 bool TypeMemberFunctionImpl::IsValid() { 1039 return m_type.IsValid() && m_kind != lldb::eMemberFunctionKindUnknown; 1040 } 1041 1042 ConstString TypeMemberFunctionImpl::GetName() const { return m_name; } 1043 1044 ConstString TypeMemberFunctionImpl::GetMangledName() const { 1045 return m_decl.GetMangledName(); 1046 } 1047 1048 CompilerType TypeMemberFunctionImpl::GetType() const { return m_type; } 1049 1050 lldb::MemberFunctionKind TypeMemberFunctionImpl::GetKind() const { 1051 return m_kind; 1052 } 1053 1054 bool TypeMemberFunctionImpl::GetDescription(Stream &stream) { 1055 switch (m_kind) { 1056 case lldb::eMemberFunctionKindUnknown: 1057 return false; 1058 case lldb::eMemberFunctionKindConstructor: 1059 stream.Printf("constructor for %s", 1060 m_type.GetTypeName().AsCString("<unknown>")); 1061 break; 1062 case lldb::eMemberFunctionKindDestructor: 1063 stream.Printf("destructor for %s", 1064 m_type.GetTypeName().AsCString("<unknown>")); 1065 break; 1066 case lldb::eMemberFunctionKindInstanceMethod: 1067 stream.Printf("instance method %s of type %s", m_name.AsCString(), 1068 m_decl.GetDeclContext().GetName().AsCString()); 1069 break; 1070 case lldb::eMemberFunctionKindStaticMethod: 1071 stream.Printf("static method %s of type %s", m_name.AsCString(), 1072 m_decl.GetDeclContext().GetName().AsCString()); 1073 break; 1074 } 1075 return true; 1076 } 1077 1078 CompilerType TypeMemberFunctionImpl::GetReturnType() const { 1079 if (m_type) 1080 return m_type.GetFunctionReturnType(); 1081 return m_decl.GetFunctionReturnType(); 1082 } 1083 1084 size_t TypeMemberFunctionImpl::GetNumArguments() const { 1085 if (m_type) 1086 return m_type.GetNumberOfFunctionArguments(); 1087 else 1088 return m_decl.GetNumFunctionArguments(); 1089 } 1090 1091 CompilerType TypeMemberFunctionImpl::GetArgumentAtIndex(size_t idx) const { 1092 if (m_type) 1093 return m_type.GetFunctionArgumentAtIndex(idx); 1094 else 1095 return m_decl.GetFunctionArgumentType(idx); 1096 } 1097 1098 TypeEnumMemberImpl::TypeEnumMemberImpl(const lldb::TypeImplSP &integer_type_sp, 1099 ConstString name, 1100 const llvm::APSInt &value) 1101 : m_integer_type_sp(integer_type_sp), m_name(name), m_value(value), 1102 m_valid((bool)name && (bool)integer_type_sp) 1103 1104 {} 1105