1 //===-- Type.cpp ------------------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <stdio.h> 10 11 #include "lldb/Core/Module.h" 12 #include "lldb/Utility/DataBufferHeap.h" 13 #include "lldb/Utility/DataExtractor.h" 14 #include "lldb/Utility/Scalar.h" 15 #include "lldb/Utility/StreamString.h" 16 17 #include "lldb/Symbol/CompilerType.h" 18 #include "lldb/Symbol/ObjectFile.h" 19 #include "lldb/Symbol/SymbolContextScope.h" 20 #include "lldb/Symbol/SymbolFile.h" 21 #include "lldb/Symbol/SymbolVendor.h" 22 #include "lldb/Symbol/Type.h" 23 #include "lldb/Symbol/TypeList.h" 24 #include "lldb/Symbol/TypeSystem.h" 25 26 #include "lldb/Target/ExecutionContext.h" 27 #include "lldb/Target/Process.h" 28 #include "lldb/Target/Target.h" 29 30 #include "llvm/ADT/StringRef.h" 31 32 #include "clang/AST/Decl.h" 33 #include "clang/AST/DeclObjC.h" 34 35 using namespace lldb; 36 using namespace lldb_private; 37 38 void CompilerContext::Dump() const { 39 switch (type) { 40 case CompilerContextKind::Invalid: 41 printf("Invalid"); 42 break; 43 case CompilerContextKind::TranslationUnit: 44 printf("TranslationUnit"); 45 break; 46 case CompilerContextKind::Module: 47 printf("Module"); 48 break; 49 case CompilerContextKind::Namespace: 50 printf("Namespace"); 51 break; 52 case CompilerContextKind::Class: 53 printf("Class"); 54 break; 55 case CompilerContextKind::Structure: 56 printf("Structure"); 57 break; 58 case CompilerContextKind::Union: 59 printf("Union"); 60 break; 61 case CompilerContextKind::Function: 62 printf("Function"); 63 break; 64 case CompilerContextKind::Variable: 65 printf("Variable"); 66 break; 67 case CompilerContextKind::Enumeration: 68 printf("Enumeration"); 69 break; 70 case CompilerContextKind::Typedef: 71 printf("Typedef"); 72 break; 73 } 74 printf("(\"%s\")\n", name.GetCString()); 75 } 76 77 class TypeAppendVisitor { 78 public: 79 TypeAppendVisitor(TypeListImpl &type_list) : m_type_list(type_list) {} 80 81 bool operator()(const lldb::TypeSP &type) { 82 m_type_list.Append(TypeImplSP(new TypeImpl(type))); 83 return true; 84 } 85 86 private: 87 TypeListImpl &m_type_list; 88 }; 89 90 void TypeListImpl::Append(const lldb_private::TypeList &type_list) { 91 TypeAppendVisitor cb(*this); 92 type_list.ForEach(cb); 93 } 94 95 SymbolFileType::SymbolFileType(SymbolFile &symbol_file, 96 const lldb::TypeSP &type_sp) 97 : UserID(type_sp ? type_sp->GetID() : LLDB_INVALID_UID), 98 m_symbol_file(symbol_file), m_type_sp(type_sp) {} 99 100 Type *SymbolFileType::GetType() { 101 if (!m_type_sp) { 102 Type *resolved_type = m_symbol_file.ResolveTypeUID(GetID()); 103 if (resolved_type) 104 m_type_sp = resolved_type->shared_from_this(); 105 } 106 return m_type_sp.get(); 107 } 108 109 Type::Type(lldb::user_id_t uid, SymbolFile *symbol_file, 110 const ConstString &name, llvm::Optional<uint64_t> byte_size, 111 SymbolContextScope *context, user_id_t encoding_uid, 112 EncodingDataType encoding_uid_type, const Declaration &decl, 113 const CompilerType &compiler_type, 114 ResolveState compiler_type_resolve_state) 115 : std::enable_shared_from_this<Type>(), UserID(uid), m_name(name), 116 m_symbol_file(symbol_file), m_context(context), m_encoding_type(nullptr), 117 m_encoding_uid(encoding_uid), m_encoding_uid_type(encoding_uid_type), 118 m_decl(decl), m_compiler_type(compiler_type) { 119 if (byte_size) { 120 m_byte_size = *byte_size; 121 m_byte_size_has_value = true; 122 } else { 123 m_byte_size = 0; 124 m_byte_size_has_value = false; 125 } 126 m_flags.compiler_type_resolve_state = 127 (compiler_type ? compiler_type_resolve_state : eResolveStateUnresolved); 128 m_flags.is_complete_objc_class = false; 129 } 130 131 Type::Type() 132 : std::enable_shared_from_this<Type>(), UserID(0), m_name("<INVALID TYPE>"), 133 m_symbol_file(nullptr), m_context(nullptr), m_encoding_type(nullptr), 134 m_encoding_uid(LLDB_INVALID_UID), m_encoding_uid_type(eEncodingInvalid), 135 m_byte_size(0), m_byte_size_has_value(false), m_decl(), 136 m_compiler_type() { 137 m_flags.compiler_type_resolve_state = eResolveStateUnresolved; 138 m_flags.is_complete_objc_class = false; 139 } 140 141 Type::Type(const Type &rhs) 142 : std::enable_shared_from_this<Type>(rhs), UserID(rhs), m_name(rhs.m_name), 143 m_symbol_file(rhs.m_symbol_file), m_context(rhs.m_context), 144 m_encoding_type(rhs.m_encoding_type), m_encoding_uid(rhs.m_encoding_uid), 145 m_encoding_uid_type(rhs.m_encoding_uid_type), 146 m_byte_size(rhs.m_byte_size), 147 m_byte_size_has_value(rhs.m_byte_size_has_value), m_decl(rhs.m_decl), 148 m_compiler_type(rhs.m_compiler_type), m_flags(rhs.m_flags) {} 149 150 const Type &Type::operator=(const Type &rhs) { 151 if (this != &rhs) { 152 } 153 return *this; 154 } 155 156 void Type::GetDescription(Stream *s, lldb::DescriptionLevel level, 157 bool show_name) { 158 *s << "id = " << (const UserID &)*this; 159 160 // Call the name accessor to make sure we resolve the type name 161 if (show_name) { 162 const ConstString &type_name = GetName(); 163 if (type_name) { 164 *s << ", name = \"" << type_name << '"'; 165 ConstString qualified_type_name(GetQualifiedName()); 166 if (qualified_type_name != type_name) { 167 *s << ", qualified = \"" << qualified_type_name << '"'; 168 } 169 } 170 } 171 172 // Call the get byte size accesor so we resolve our byte size 173 if (GetByteSize()) 174 s->Printf(", byte-size = %" PRIu64, m_byte_size); 175 bool show_fullpaths = (level == lldb::eDescriptionLevelVerbose); 176 m_decl.Dump(s, show_fullpaths); 177 178 if (m_compiler_type.IsValid()) { 179 *s << ", compiler_type = \""; 180 GetForwardCompilerType().DumpTypeDescription(s); 181 *s << '"'; 182 } else if (m_encoding_uid != LLDB_INVALID_UID) { 183 s->Printf(", type_uid = 0x%8.8" PRIx64, m_encoding_uid); 184 switch (m_encoding_uid_type) { 185 case eEncodingInvalid: 186 break; 187 case eEncodingIsUID: 188 s->PutCString(" (unresolved type)"); 189 break; 190 case eEncodingIsConstUID: 191 s->PutCString(" (unresolved const type)"); 192 break; 193 case eEncodingIsRestrictUID: 194 s->PutCString(" (unresolved restrict type)"); 195 break; 196 case eEncodingIsVolatileUID: 197 s->PutCString(" (unresolved volatile type)"); 198 break; 199 case eEncodingIsTypedefUID: 200 s->PutCString(" (unresolved typedef)"); 201 break; 202 case eEncodingIsPointerUID: 203 s->PutCString(" (unresolved pointer)"); 204 break; 205 case eEncodingIsLValueReferenceUID: 206 s->PutCString(" (unresolved L value reference)"); 207 break; 208 case eEncodingIsRValueReferenceUID: 209 s->PutCString(" (unresolved R value reference)"); 210 break; 211 case eEncodingIsSyntheticUID: 212 s->PutCString(" (synthetic type)"); 213 break; 214 } 215 } 216 } 217 218 void Type::Dump(Stream *s, bool show_context) { 219 s->Printf("%p: ", static_cast<void *>(this)); 220 s->Indent(); 221 *s << "Type" << static_cast<const UserID &>(*this) << ' '; 222 if (m_name) 223 *s << ", name = \"" << m_name << "\""; 224 225 if (m_byte_size_has_value) 226 s->Printf(", size = %" PRIu64, m_byte_size); 227 228 if (show_context && m_context != nullptr) { 229 s->PutCString(", context = ( "); 230 m_context->DumpSymbolContext(s); 231 s->PutCString(" )"); 232 } 233 234 bool show_fullpaths = false; 235 m_decl.Dump(s, show_fullpaths); 236 237 if (m_compiler_type.IsValid()) { 238 *s << ", compiler_type = " << m_compiler_type.GetOpaqueQualType() << ' '; 239 GetForwardCompilerType().DumpTypeDescription(s); 240 } else if (m_encoding_uid != LLDB_INVALID_UID) { 241 *s << ", type_data = " << (uint64_t)m_encoding_uid; 242 switch (m_encoding_uid_type) { 243 case eEncodingInvalid: 244 break; 245 case eEncodingIsUID: 246 s->PutCString(" (unresolved type)"); 247 break; 248 case eEncodingIsConstUID: 249 s->PutCString(" (unresolved const type)"); 250 break; 251 case eEncodingIsRestrictUID: 252 s->PutCString(" (unresolved restrict type)"); 253 break; 254 case eEncodingIsVolatileUID: 255 s->PutCString(" (unresolved volatile type)"); 256 break; 257 case eEncodingIsTypedefUID: 258 s->PutCString(" (unresolved typedef)"); 259 break; 260 case eEncodingIsPointerUID: 261 s->PutCString(" (unresolved pointer)"); 262 break; 263 case eEncodingIsLValueReferenceUID: 264 s->PutCString(" (unresolved L value reference)"); 265 break; 266 case eEncodingIsRValueReferenceUID: 267 s->PutCString(" (unresolved R value reference)"); 268 break; 269 case eEncodingIsSyntheticUID: 270 s->PutCString(" (synthetic type)"); 271 break; 272 } 273 } 274 275 // 276 // if (m_access) 277 // s->Printf(", access = %u", m_access); 278 s->EOL(); 279 } 280 281 const ConstString &Type::GetName() { 282 if (!m_name) 283 m_name = GetForwardCompilerType().GetConstTypeName(); 284 return m_name; 285 } 286 287 void Type::DumpTypeName(Stream *s) { GetName().Dump(s, "<invalid-type-name>"); } 288 289 void Type::DumpValue(ExecutionContext *exe_ctx, Stream *s, 290 const DataExtractor &data, uint32_t data_byte_offset, 291 bool show_types, bool show_summary, bool verbose, 292 lldb::Format format) { 293 if (ResolveClangType(eResolveStateForward)) { 294 if (show_types) { 295 s->PutChar('('); 296 if (verbose) 297 s->Printf("Type{0x%8.8" PRIx64 "} ", GetID()); 298 DumpTypeName(s); 299 s->PutCString(") "); 300 } 301 302 GetForwardCompilerType().DumpValue( 303 exe_ctx, s, format == lldb::eFormatDefault ? GetFormat() : format, data, 304 data_byte_offset, GetByteSize().getValueOr(0), 305 0, // Bitfield bit size 306 0, // Bitfield bit offset 307 show_types, show_summary, verbose, 0); 308 } 309 } 310 311 Type *Type::GetEncodingType() { 312 if (m_encoding_type == nullptr && m_encoding_uid != LLDB_INVALID_UID) 313 m_encoding_type = m_symbol_file->ResolveTypeUID(m_encoding_uid); 314 return m_encoding_type; 315 } 316 317 llvm::Optional<uint64_t> Type::GetByteSize() { 318 if (m_byte_size_has_value) 319 return m_byte_size; 320 321 switch (m_encoding_uid_type) { 322 case eEncodingInvalid: 323 case eEncodingIsSyntheticUID: 324 break; 325 case eEncodingIsUID: 326 case eEncodingIsConstUID: 327 case eEncodingIsRestrictUID: 328 case eEncodingIsVolatileUID: 329 case eEncodingIsTypedefUID: { 330 Type *encoding_type = GetEncodingType(); 331 if (encoding_type) 332 if (llvm::Optional<uint64_t> size = encoding_type->GetByteSize()) { 333 m_byte_size = *size; 334 m_byte_size_has_value = true; 335 return m_byte_size; 336 } 337 338 if (llvm::Optional<uint64_t> size = 339 GetLayoutCompilerType().GetByteSize(nullptr)) { 340 m_byte_size = *size; 341 m_byte_size_has_value = true; 342 return m_byte_size; 343 } 344 } break; 345 346 // If we are a pointer or reference, then this is just a pointer size; 347 case eEncodingIsPointerUID: 348 case eEncodingIsLValueReferenceUID: 349 case eEncodingIsRValueReferenceUID: { 350 if (ArchSpec arch = m_symbol_file->GetObjectFile()->GetArchitecture()) { 351 m_byte_size = arch.GetAddressByteSize(); 352 m_byte_size_has_value = true; 353 } 354 } break; 355 } 356 return {}; 357 } 358 359 uint32_t Type::GetNumChildren(bool omit_empty_base_classes) { 360 return GetForwardCompilerType().GetNumChildren(omit_empty_base_classes, nullptr); 361 } 362 363 bool Type::IsAggregateType() { 364 return GetForwardCompilerType().IsAggregateType(); 365 } 366 367 lldb::TypeSP Type::GetTypedefType() { 368 lldb::TypeSP type_sp; 369 if (IsTypedef()) { 370 Type *typedef_type = m_symbol_file->ResolveTypeUID(m_encoding_uid); 371 if (typedef_type) 372 type_sp = typedef_type->shared_from_this(); 373 } 374 return type_sp; 375 } 376 377 lldb::Format Type::GetFormat() { return GetForwardCompilerType().GetFormat(); } 378 379 lldb::Encoding Type::GetEncoding(uint64_t &count) { 380 // Make sure we resolve our type if it already hasn't been. 381 return GetForwardCompilerType().GetEncoding(count); 382 } 383 384 bool Type::DumpValueInMemory(ExecutionContext *exe_ctx, Stream *s, 385 lldb::addr_t address, AddressType address_type, 386 bool show_types, bool show_summary, bool verbose) { 387 if (address != LLDB_INVALID_ADDRESS) { 388 DataExtractor data; 389 Target *target = nullptr; 390 if (exe_ctx) 391 target = exe_ctx->GetTargetPtr(); 392 if (target) 393 data.SetByteOrder(target->GetArchitecture().GetByteOrder()); 394 if (ReadFromMemory(exe_ctx, address, address_type, data)) { 395 DumpValue(exe_ctx, s, data, 0, show_types, show_summary, verbose); 396 return true; 397 } 398 } 399 return false; 400 } 401 402 bool Type::ReadFromMemory(ExecutionContext *exe_ctx, lldb::addr_t addr, 403 AddressType address_type, DataExtractor &data) { 404 if (address_type == eAddressTypeFile) { 405 // Can't convert a file address to anything valid without more context 406 // (which Module it came from) 407 return false; 408 } 409 410 const uint64_t byte_size = GetByteSize().getValueOr(0); 411 if (data.GetByteSize() < byte_size) { 412 lldb::DataBufferSP data_sp(new DataBufferHeap(byte_size, '\0')); 413 data.SetData(data_sp); 414 } 415 416 uint8_t *dst = const_cast<uint8_t *>(data.PeekData(0, byte_size)); 417 if (dst != nullptr) { 418 if (address_type == eAddressTypeHost) { 419 // The address is an address in this process, so just copy it 420 if (addr == 0) 421 return false; 422 memcpy(dst, reinterpret_cast<uint8_t *>(addr), byte_size); 423 return true; 424 } else { 425 if (exe_ctx) { 426 Process *process = exe_ctx->GetProcessPtr(); 427 if (process) { 428 Status error; 429 return exe_ctx->GetProcessPtr()->ReadMemory(addr, dst, byte_size, 430 error) == byte_size; 431 } 432 } 433 } 434 } 435 return false; 436 } 437 438 bool Type::WriteToMemory(ExecutionContext *exe_ctx, lldb::addr_t addr, 439 AddressType address_type, DataExtractor &data) { 440 return false; 441 } 442 443 TypeList *Type::GetTypeList() { return GetSymbolFile()->GetTypeList(); } 444 445 const Declaration &Type::GetDeclaration() const { return m_decl; } 446 447 bool Type::ResolveClangType(ResolveState compiler_type_resolve_state) { 448 // TODO: This needs to consider the correct type system to use. 449 Type *encoding_type = nullptr; 450 if (!m_compiler_type.IsValid()) { 451 encoding_type = GetEncodingType(); 452 if (encoding_type) { 453 switch (m_encoding_uid_type) { 454 case eEncodingIsUID: { 455 CompilerType encoding_compiler_type = 456 encoding_type->GetForwardCompilerType(); 457 if (encoding_compiler_type.IsValid()) { 458 m_compiler_type = encoding_compiler_type; 459 m_flags.compiler_type_resolve_state = 460 encoding_type->m_flags.compiler_type_resolve_state; 461 } 462 } break; 463 464 case eEncodingIsConstUID: 465 m_compiler_type = 466 encoding_type->GetForwardCompilerType().AddConstModifier(); 467 break; 468 469 case eEncodingIsRestrictUID: 470 m_compiler_type = 471 encoding_type->GetForwardCompilerType().AddRestrictModifier(); 472 break; 473 474 case eEncodingIsVolatileUID: 475 m_compiler_type = 476 encoding_type->GetForwardCompilerType().AddVolatileModifier(); 477 break; 478 479 case eEncodingIsTypedefUID: 480 m_compiler_type = encoding_type->GetForwardCompilerType().CreateTypedef( 481 m_name.AsCString("__lldb_invalid_typedef_name"), 482 GetSymbolFile()->GetDeclContextContainingUID(GetID())); 483 m_name.Clear(); 484 break; 485 486 case eEncodingIsPointerUID: 487 m_compiler_type = 488 encoding_type->GetForwardCompilerType().GetPointerType(); 489 break; 490 491 case eEncodingIsLValueReferenceUID: 492 m_compiler_type = 493 encoding_type->GetForwardCompilerType().GetLValueReferenceType(); 494 break; 495 496 case eEncodingIsRValueReferenceUID: 497 m_compiler_type = 498 encoding_type->GetForwardCompilerType().GetRValueReferenceType(); 499 break; 500 501 default: 502 llvm_unreachable("Unhandled encoding_data_type."); 503 } 504 } else { 505 // We have no encoding type, return void? 506 TypeSystem *type_system = 507 m_symbol_file->GetTypeSystemForLanguage(eLanguageTypeC); 508 CompilerType void_compiler_type = 509 type_system->GetBasicTypeFromAST(eBasicTypeVoid); 510 switch (m_encoding_uid_type) { 511 case eEncodingIsUID: 512 m_compiler_type = void_compiler_type; 513 break; 514 515 case eEncodingIsConstUID: 516 m_compiler_type = void_compiler_type.AddConstModifier(); 517 break; 518 519 case eEncodingIsRestrictUID: 520 m_compiler_type = void_compiler_type.AddRestrictModifier(); 521 break; 522 523 case eEncodingIsVolatileUID: 524 m_compiler_type = void_compiler_type.AddVolatileModifier(); 525 break; 526 527 case eEncodingIsTypedefUID: 528 m_compiler_type = void_compiler_type.CreateTypedef( 529 m_name.AsCString("__lldb_invalid_typedef_name"), 530 GetSymbolFile()->GetDeclContextContainingUID(GetID())); 531 break; 532 533 case eEncodingIsPointerUID: 534 m_compiler_type = void_compiler_type.GetPointerType(); 535 break; 536 537 case eEncodingIsLValueReferenceUID: 538 m_compiler_type = void_compiler_type.GetLValueReferenceType(); 539 break; 540 541 case eEncodingIsRValueReferenceUID: 542 m_compiler_type = void_compiler_type.GetRValueReferenceType(); 543 break; 544 545 default: 546 llvm_unreachable("Unhandled encoding_data_type."); 547 } 548 } 549 550 // When we have a EncodingUID, our "m_flags.compiler_type_resolve_state" is 551 // set to eResolveStateUnresolved so we need to update it to say that we 552 // now have a forward declaration since that is what we created above. 553 if (m_compiler_type.IsValid()) 554 m_flags.compiler_type_resolve_state = eResolveStateForward; 555 } 556 557 // Check if we have a forward reference to a class/struct/union/enum? 558 if (compiler_type_resolve_state == eResolveStateLayout || 559 compiler_type_resolve_state == eResolveStateFull) { 560 // Check if we have a forward reference to a class/struct/union/enum? 561 if (m_compiler_type.IsValid() && 562 m_flags.compiler_type_resolve_state < compiler_type_resolve_state) { 563 m_flags.compiler_type_resolve_state = eResolveStateFull; 564 if (!m_compiler_type.IsDefined()) { 565 // We have a forward declaration, we need to resolve it to a complete 566 // definition. 567 m_symbol_file->CompleteType(m_compiler_type); 568 } 569 } 570 } 571 572 // If we have an encoding type, then we need to make sure it is resolved 573 // appropriately. 574 if (m_encoding_uid != LLDB_INVALID_UID) { 575 if (encoding_type == nullptr) 576 encoding_type = GetEncodingType(); 577 if (encoding_type) { 578 ResolveState encoding_compiler_type_resolve_state = 579 compiler_type_resolve_state; 580 581 if (compiler_type_resolve_state == eResolveStateLayout) { 582 switch (m_encoding_uid_type) { 583 case eEncodingIsPointerUID: 584 case eEncodingIsLValueReferenceUID: 585 case eEncodingIsRValueReferenceUID: 586 encoding_compiler_type_resolve_state = eResolveStateForward; 587 break; 588 default: 589 break; 590 } 591 } 592 encoding_type->ResolveClangType(encoding_compiler_type_resolve_state); 593 } 594 } 595 return m_compiler_type.IsValid(); 596 } 597 uint32_t Type::GetEncodingMask() { 598 uint32_t encoding_mask = 1u << m_encoding_uid_type; 599 Type *encoding_type = GetEncodingType(); 600 assert(encoding_type != this); 601 if (encoding_type) 602 encoding_mask |= encoding_type->GetEncodingMask(); 603 return encoding_mask; 604 } 605 606 CompilerType Type::GetFullCompilerType() { 607 ResolveClangType(eResolveStateFull); 608 return m_compiler_type; 609 } 610 611 CompilerType Type::GetLayoutCompilerType() { 612 ResolveClangType(eResolveStateLayout); 613 return m_compiler_type; 614 } 615 616 CompilerType Type::GetForwardCompilerType() { 617 ResolveClangType(eResolveStateForward); 618 return m_compiler_type; 619 } 620 621 int Type::Compare(const Type &a, const Type &b) { 622 // Just compare the UID values for now... 623 lldb::user_id_t a_uid = a.GetID(); 624 lldb::user_id_t b_uid = b.GetID(); 625 if (a_uid < b_uid) 626 return -1; 627 if (a_uid > b_uid) 628 return 1; 629 return 0; 630 } 631 632 ConstString Type::GetQualifiedName() { 633 return GetForwardCompilerType().GetConstTypeName(); 634 } 635 636 bool Type::GetTypeScopeAndBasename(const llvm::StringRef& name, 637 llvm::StringRef &scope, 638 llvm::StringRef &basename, 639 TypeClass &type_class) { 640 type_class = eTypeClassAny; 641 642 if (name.empty()) 643 return false; 644 645 basename = name; 646 if (basename.consume_front("struct ")) 647 type_class = eTypeClassStruct; 648 else if (basename.consume_front("class ")) 649 type_class = eTypeClassClass; 650 else if (basename.consume_front("union ")) 651 type_class = eTypeClassUnion; 652 else if (basename.consume_front("enum ")) 653 type_class = eTypeClassEnumeration; 654 else if (basename.consume_front("typedef ")) 655 type_class = eTypeClassTypedef; 656 657 size_t namespace_separator = basename.find("::"); 658 if (namespace_separator == llvm::StringRef::npos) 659 return false; 660 661 size_t template_begin = basename.find('<'); 662 while (namespace_separator != llvm::StringRef::npos) { 663 if (template_begin != llvm::StringRef::npos && 664 namespace_separator > template_begin) { 665 size_t template_depth = 1; 666 llvm::StringRef template_arg = 667 basename.drop_front(template_begin + 1); 668 while (template_depth > 0 && !template_arg.empty()) { 669 if (template_arg.front() == '<') 670 template_depth++; 671 else if (template_arg.front() == '>') 672 template_depth--; 673 template_arg = template_arg.drop_front(1); 674 } 675 if (template_depth != 0) 676 return false; // We have an invalid type name. Bail out. 677 if (template_arg.empty()) 678 break; // The template ends at the end of the full name. 679 basename = template_arg; 680 } else { 681 basename = basename.drop_front(namespace_separator + 2); 682 } 683 template_begin = basename.find('<'); 684 namespace_separator = basename.find("::"); 685 } 686 if (basename.size() < name.size()) { 687 scope = name.take_front(name.size() - basename.size()); 688 return true; 689 } 690 return false; 691 } 692 693 ModuleSP Type::GetModule() { 694 if (m_symbol_file) 695 return m_symbol_file->GetObjectFile()->GetModule(); 696 return ModuleSP(); 697 } 698 699 TypeAndOrName::TypeAndOrName() : m_type_pair(), m_type_name() {} 700 701 TypeAndOrName::TypeAndOrName(TypeSP &in_type_sp) : m_type_pair(in_type_sp) { 702 if (in_type_sp) 703 m_type_name = in_type_sp->GetName(); 704 } 705 706 TypeAndOrName::TypeAndOrName(const char *in_type_str) 707 : m_type_name(in_type_str) {} 708 709 TypeAndOrName::TypeAndOrName(const TypeAndOrName &rhs) 710 : m_type_pair(rhs.m_type_pair), m_type_name(rhs.m_type_name) {} 711 712 TypeAndOrName::TypeAndOrName(ConstString &in_type_const_string) 713 : m_type_name(in_type_const_string) {} 714 715 TypeAndOrName &TypeAndOrName::operator=(const TypeAndOrName &rhs) { 716 if (this != &rhs) { 717 m_type_name = rhs.m_type_name; 718 m_type_pair = rhs.m_type_pair; 719 } 720 return *this; 721 } 722 723 bool TypeAndOrName::operator==(const TypeAndOrName &other) const { 724 if (m_type_pair != other.m_type_pair) 725 return false; 726 if (m_type_name != other.m_type_name) 727 return false; 728 return true; 729 } 730 731 bool TypeAndOrName::operator!=(const TypeAndOrName &other) const { 732 return !(*this == other); 733 } 734 735 ConstString TypeAndOrName::GetName() const { 736 if (m_type_name) 737 return m_type_name; 738 if (m_type_pair) 739 return m_type_pair.GetName(); 740 return ConstString("<invalid>"); 741 } 742 743 void TypeAndOrName::SetName(const ConstString &type_name) { 744 m_type_name = type_name; 745 } 746 747 void TypeAndOrName::SetName(const char *type_name_cstr) { 748 m_type_name.SetCString(type_name_cstr); 749 } 750 751 void TypeAndOrName::SetTypeSP(lldb::TypeSP type_sp) { 752 m_type_pair.SetType(type_sp); 753 if (m_type_pair) 754 m_type_name = m_type_pair.GetName(); 755 } 756 757 void TypeAndOrName::SetCompilerType(CompilerType compiler_type) { 758 m_type_pair.SetType(compiler_type); 759 if (m_type_pair) 760 m_type_name = m_type_pair.GetName(); 761 } 762 763 bool TypeAndOrName::IsEmpty() const { 764 return !((bool)m_type_name || (bool)m_type_pair); 765 } 766 767 void TypeAndOrName::Clear() { 768 m_type_name.Clear(); 769 m_type_pair.Clear(); 770 } 771 772 bool TypeAndOrName::HasName() const { return (bool)m_type_name; } 773 774 bool TypeAndOrName::HasTypeSP() const { 775 return m_type_pair.GetTypeSP().get() != nullptr; 776 } 777 778 bool TypeAndOrName::HasCompilerType() const { 779 return m_type_pair.GetCompilerType().IsValid(); 780 } 781 782 TypeImpl::TypeImpl() : m_module_wp(), m_static_type(), m_dynamic_type() {} 783 784 TypeImpl::TypeImpl(const TypeImpl &rhs) 785 : m_module_wp(rhs.m_module_wp), m_static_type(rhs.m_static_type), 786 m_dynamic_type(rhs.m_dynamic_type) {} 787 788 TypeImpl::TypeImpl(const lldb::TypeSP &type_sp) 789 : m_module_wp(), m_static_type(), m_dynamic_type() { 790 SetType(type_sp); 791 } 792 793 TypeImpl::TypeImpl(const CompilerType &compiler_type) 794 : m_module_wp(), m_static_type(), m_dynamic_type() { 795 SetType(compiler_type); 796 } 797 798 TypeImpl::TypeImpl(const lldb::TypeSP &type_sp, const CompilerType &dynamic) 799 : m_module_wp(), m_static_type(type_sp), m_dynamic_type(dynamic) { 800 SetType(type_sp, dynamic); 801 } 802 803 TypeImpl::TypeImpl(const CompilerType &static_type, 804 const CompilerType &dynamic_type) 805 : m_module_wp(), m_static_type(), m_dynamic_type() { 806 SetType(static_type, dynamic_type); 807 } 808 809 TypeImpl::TypeImpl(const TypePair &pair, const CompilerType &dynamic) 810 : m_module_wp(), m_static_type(), m_dynamic_type() { 811 SetType(pair, dynamic); 812 } 813 814 void TypeImpl::SetType(const lldb::TypeSP &type_sp) { 815 m_static_type.SetType(type_sp); 816 if (type_sp) 817 m_module_wp = type_sp->GetModule(); 818 else 819 m_module_wp = lldb::ModuleWP(); 820 } 821 822 void TypeImpl::SetType(const CompilerType &compiler_type) { 823 m_module_wp = lldb::ModuleWP(); 824 m_static_type.SetType(compiler_type); 825 } 826 827 void TypeImpl::SetType(const lldb::TypeSP &type_sp, 828 const CompilerType &dynamic) { 829 SetType(type_sp); 830 m_dynamic_type = dynamic; 831 } 832 833 void TypeImpl::SetType(const CompilerType &compiler_type, 834 const CompilerType &dynamic) { 835 m_module_wp = lldb::ModuleWP(); 836 m_static_type.SetType(compiler_type); 837 m_dynamic_type = dynamic; 838 } 839 840 void TypeImpl::SetType(const TypePair &pair, const CompilerType &dynamic) { 841 m_module_wp = pair.GetModule(); 842 m_static_type = pair; 843 m_dynamic_type = dynamic; 844 } 845 846 TypeImpl &TypeImpl::operator=(const TypeImpl &rhs) { 847 if (rhs != *this) { 848 m_module_wp = rhs.m_module_wp; 849 m_static_type = rhs.m_static_type; 850 m_dynamic_type = rhs.m_dynamic_type; 851 } 852 return *this; 853 } 854 855 bool TypeImpl::CheckModule(lldb::ModuleSP &module_sp) const { 856 // Check if we have a module for this type. If we do and the shared pointer 857 // is can be successfully initialized with m_module_wp, return true. Else 858 // return false if we didn't have a module, or if we had a module and it has 859 // been deleted. Any functions doing anything with a TypeSP in this TypeImpl 860 // class should call this function and only do anything with the ivars if 861 // this function returns true. If we have a module, the "module_sp" will be 862 // filled in with a strong reference to the module so that the module will at 863 // least stay around long enough for the type query to succeed. 864 module_sp = m_module_wp.lock(); 865 if (!module_sp) { 866 lldb::ModuleWP empty_module_wp; 867 // If either call to "std::weak_ptr::owner_before(...) value returns true, 868 // this indicates that m_module_wp once contained (possibly still does) a 869 // reference to a valid shared pointer. This helps us know if we had a 870 // valid reference to a section which is now invalid because the module it 871 // was in was deleted 872 if (empty_module_wp.owner_before(m_module_wp) || 873 m_module_wp.owner_before(empty_module_wp)) { 874 // m_module_wp had a valid reference to a module, but all strong 875 // references have been released and the module has been deleted 876 return false; 877 } 878 } 879 // We either successfully locked the module, or didn't have one to begin with 880 return true; 881 } 882 883 bool TypeImpl::operator==(const TypeImpl &rhs) const { 884 return m_static_type == rhs.m_static_type && 885 m_dynamic_type == rhs.m_dynamic_type; 886 } 887 888 bool TypeImpl::operator!=(const TypeImpl &rhs) const { 889 return !(*this == rhs); 890 } 891 892 bool TypeImpl::IsValid() const { 893 // just a name is not valid 894 ModuleSP module_sp; 895 if (CheckModule(module_sp)) 896 return m_static_type.IsValid() || m_dynamic_type.IsValid(); 897 return false; 898 } 899 900 TypeImpl::operator bool() const { return IsValid(); } 901 902 void TypeImpl::Clear() { 903 m_module_wp = lldb::ModuleWP(); 904 m_static_type.Clear(); 905 m_dynamic_type.Clear(); 906 } 907 908 ConstString TypeImpl::GetName() const { 909 ModuleSP module_sp; 910 if (CheckModule(module_sp)) { 911 if (m_dynamic_type) 912 return m_dynamic_type.GetTypeName(); 913 return m_static_type.GetName(); 914 } 915 return ConstString(); 916 } 917 918 ConstString TypeImpl::GetDisplayTypeName() const { 919 ModuleSP module_sp; 920 if (CheckModule(module_sp)) { 921 if (m_dynamic_type) 922 return m_dynamic_type.GetDisplayTypeName(); 923 return m_static_type.GetDisplayTypeName(); 924 } 925 return ConstString(); 926 } 927 928 TypeImpl TypeImpl::GetPointerType() const { 929 ModuleSP module_sp; 930 if (CheckModule(module_sp)) { 931 if (m_dynamic_type.IsValid()) { 932 return TypeImpl(m_static_type.GetPointerType(), 933 m_dynamic_type.GetPointerType()); 934 } 935 return TypeImpl(m_static_type.GetPointerType()); 936 } 937 return TypeImpl(); 938 } 939 940 TypeImpl TypeImpl::GetPointeeType() const { 941 ModuleSP module_sp; 942 if (CheckModule(module_sp)) { 943 if (m_dynamic_type.IsValid()) { 944 return TypeImpl(m_static_type.GetPointeeType(), 945 m_dynamic_type.GetPointeeType()); 946 } 947 return TypeImpl(m_static_type.GetPointeeType()); 948 } 949 return TypeImpl(); 950 } 951 952 TypeImpl TypeImpl::GetReferenceType() const { 953 ModuleSP module_sp; 954 if (CheckModule(module_sp)) { 955 if (m_dynamic_type.IsValid()) { 956 return TypeImpl(m_static_type.GetReferenceType(), 957 m_dynamic_type.GetLValueReferenceType()); 958 } 959 return TypeImpl(m_static_type.GetReferenceType()); 960 } 961 return TypeImpl(); 962 } 963 964 TypeImpl TypeImpl::GetTypedefedType() const { 965 ModuleSP module_sp; 966 if (CheckModule(module_sp)) { 967 if (m_dynamic_type.IsValid()) { 968 return TypeImpl(m_static_type.GetTypedefedType(), 969 m_dynamic_type.GetTypedefedType()); 970 } 971 return TypeImpl(m_static_type.GetTypedefedType()); 972 } 973 return TypeImpl(); 974 } 975 976 TypeImpl TypeImpl::GetDereferencedType() const { 977 ModuleSP module_sp; 978 if (CheckModule(module_sp)) { 979 if (m_dynamic_type.IsValid()) { 980 return TypeImpl(m_static_type.GetDereferencedType(), 981 m_dynamic_type.GetNonReferenceType()); 982 } 983 return TypeImpl(m_static_type.GetDereferencedType()); 984 } 985 return TypeImpl(); 986 } 987 988 TypeImpl TypeImpl::GetUnqualifiedType() const { 989 ModuleSP module_sp; 990 if (CheckModule(module_sp)) { 991 if (m_dynamic_type.IsValid()) { 992 return TypeImpl(m_static_type.GetUnqualifiedType(), 993 m_dynamic_type.GetFullyUnqualifiedType()); 994 } 995 return TypeImpl(m_static_type.GetUnqualifiedType()); 996 } 997 return TypeImpl(); 998 } 999 1000 TypeImpl TypeImpl::GetCanonicalType() const { 1001 ModuleSP module_sp; 1002 if (CheckModule(module_sp)) { 1003 if (m_dynamic_type.IsValid()) { 1004 return TypeImpl(m_static_type.GetCanonicalType(), 1005 m_dynamic_type.GetCanonicalType()); 1006 } 1007 return TypeImpl(m_static_type.GetCanonicalType()); 1008 } 1009 return TypeImpl(); 1010 } 1011 1012 CompilerType TypeImpl::GetCompilerType(bool prefer_dynamic) { 1013 ModuleSP module_sp; 1014 if (CheckModule(module_sp)) { 1015 if (prefer_dynamic) { 1016 if (m_dynamic_type.IsValid()) 1017 return m_dynamic_type; 1018 } 1019 return m_static_type.GetCompilerType(); 1020 } 1021 return CompilerType(); 1022 } 1023 1024 TypeSystem *TypeImpl::GetTypeSystem(bool prefer_dynamic) { 1025 ModuleSP module_sp; 1026 if (CheckModule(module_sp)) { 1027 if (prefer_dynamic) { 1028 if (m_dynamic_type.IsValid()) 1029 return m_dynamic_type.GetTypeSystem(); 1030 } 1031 return m_static_type.GetCompilerType().GetTypeSystem(); 1032 } 1033 return NULL; 1034 } 1035 1036 bool TypeImpl::GetDescription(lldb_private::Stream &strm, 1037 lldb::DescriptionLevel description_level) { 1038 ModuleSP module_sp; 1039 if (CheckModule(module_sp)) { 1040 if (m_dynamic_type.IsValid()) { 1041 strm.Printf("Dynamic:\n"); 1042 m_dynamic_type.DumpTypeDescription(&strm); 1043 strm.Printf("\nStatic:\n"); 1044 } 1045 m_static_type.GetCompilerType().DumpTypeDescription(&strm); 1046 } else { 1047 strm.PutCString("Invalid TypeImpl module for type has been deleted\n"); 1048 } 1049 return true; 1050 } 1051 1052 bool TypeMemberFunctionImpl::IsValid() { 1053 return m_type.IsValid() && m_kind != lldb::eMemberFunctionKindUnknown; 1054 } 1055 1056 ConstString TypeMemberFunctionImpl::GetName() const { return m_name; } 1057 1058 ConstString TypeMemberFunctionImpl::GetMangledName() const { 1059 return m_decl.GetMangledName(); 1060 } 1061 1062 CompilerType TypeMemberFunctionImpl::GetType() const { return m_type; } 1063 1064 lldb::MemberFunctionKind TypeMemberFunctionImpl::GetKind() const { 1065 return m_kind; 1066 } 1067 1068 bool TypeMemberFunctionImpl::GetDescription(Stream &stream) { 1069 switch (m_kind) { 1070 case lldb::eMemberFunctionKindUnknown: 1071 return false; 1072 case lldb::eMemberFunctionKindConstructor: 1073 stream.Printf("constructor for %s", 1074 m_type.GetTypeName().AsCString("<unknown>")); 1075 break; 1076 case lldb::eMemberFunctionKindDestructor: 1077 stream.Printf("destructor for %s", 1078 m_type.GetTypeName().AsCString("<unknown>")); 1079 break; 1080 case lldb::eMemberFunctionKindInstanceMethod: 1081 stream.Printf("instance method %s of type %s", m_name.AsCString(), 1082 m_decl.GetDeclContext().GetName().AsCString()); 1083 break; 1084 case lldb::eMemberFunctionKindStaticMethod: 1085 stream.Printf("static method %s of type %s", m_name.AsCString(), 1086 m_decl.GetDeclContext().GetName().AsCString()); 1087 break; 1088 } 1089 return true; 1090 } 1091 1092 CompilerType TypeMemberFunctionImpl::GetReturnType() const { 1093 if (m_type) 1094 return m_type.GetFunctionReturnType(); 1095 return m_decl.GetFunctionReturnType(); 1096 } 1097 1098 size_t TypeMemberFunctionImpl::GetNumArguments() const { 1099 if (m_type) 1100 return m_type.GetNumberOfFunctionArguments(); 1101 else 1102 return m_decl.GetNumFunctionArguments(); 1103 } 1104 1105 CompilerType TypeMemberFunctionImpl::GetArgumentAtIndex(size_t idx) const { 1106 if (m_type) 1107 return m_type.GetFunctionArgumentAtIndex(idx); 1108 else 1109 return m_decl.GetFunctionArgumentType(idx); 1110 } 1111 1112 TypeEnumMemberImpl::TypeEnumMemberImpl(const lldb::TypeImplSP &integer_type_sp, 1113 const ConstString &name, 1114 const llvm::APSInt &value) 1115 : m_integer_type_sp(integer_type_sp), m_name(name), m_value(value), 1116 m_valid((bool)name && (bool)integer_type_sp) 1117 1118 {} 1119