1 //===-- Type.cpp ----------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <stdio.h>
10 
11 #include "lldb/Core/Module.h"
12 #include "lldb/Utility/DataBufferHeap.h"
13 #include "lldb/Utility/DataExtractor.h"
14 #include "lldb/Utility/Log.h"
15 #include "lldb/Utility/Scalar.h"
16 #include "lldb/Utility/StreamString.h"
17 
18 #include "lldb/Symbol/CompilerType.h"
19 #include "lldb/Symbol/ObjectFile.h"
20 #include "lldb/Symbol/SymbolContextScope.h"
21 #include "lldb/Symbol/SymbolFile.h"
22 #include "lldb/Symbol/SymbolVendor.h"
23 #include "lldb/Symbol/Type.h"
24 #include "lldb/Symbol/TypeList.h"
25 #include "lldb/Symbol/TypeSystem.h"
26 
27 #include "lldb/Target/ExecutionContext.h"
28 #include "lldb/Target/Process.h"
29 #include "lldb/Target/Target.h"
30 
31 #include "llvm/ADT/StringRef.h"
32 
33 using namespace lldb;
34 using namespace lldb_private;
35 
36 bool lldb_private::contextMatches(llvm::ArrayRef<CompilerContext> context_chain,
37                                   llvm::ArrayRef<CompilerContext> pattern) {
38   auto ctx = context_chain.begin();
39   auto ctx_end = context_chain.end();
40   for (const CompilerContext &pat : pattern) {
41     // Early exit if the pattern is too long.
42     if (ctx == ctx_end)
43       return false;
44     if (*ctx != pat) {
45       // Skip any number of module matches.
46       if (pat.kind == CompilerContextKind::AnyModule) {
47         // Greedily match 0..n modules.
48         ctx = std::find_if(ctx, ctx_end, [](const CompilerContext &ctx) {
49           return ctx.kind != CompilerContextKind::Module;
50         });
51         continue;
52       }
53       // See if there is a kind mismatch; they should have 1 bit in common.
54       if (((uint16_t)ctx->kind & (uint16_t)pat.kind) == 0)
55         return false;
56       // The name is ignored for AnyModule, but not for AnyType.
57       if (pat.kind != CompilerContextKind::AnyModule && ctx->name != pat.name)
58         return false;
59     }
60     ++ctx;
61   }
62   return true;
63 }
64 
65 void CompilerContext::Dump() const {
66   switch (kind) {
67   default:
68     printf("Invalid");
69     break;
70   case CompilerContextKind::TranslationUnit:
71     printf("TranslationUnit");
72     break;
73   case CompilerContextKind::Module:
74     printf("Module");
75     break;
76   case CompilerContextKind::Namespace:
77     printf("Namespace");
78     break;
79   case CompilerContextKind::Class:
80     printf("Class");
81     break;
82   case CompilerContextKind::Struct:
83     printf("Structure");
84     break;
85   case CompilerContextKind::Union:
86     printf("Union");
87     break;
88   case CompilerContextKind::Function:
89     printf("Function");
90     break;
91   case CompilerContextKind::Variable:
92     printf("Variable");
93     break;
94   case CompilerContextKind::Enum:
95     printf("Enumeration");
96     break;
97   case CompilerContextKind::Typedef:
98     printf("Typedef");
99     break;
100   case CompilerContextKind::AnyModule:
101     printf("AnyModule");
102     break;
103   case CompilerContextKind::AnyType:
104     printf("AnyType");
105     break;
106   }
107   printf("(\"%s\")\n", name.GetCString());
108 }
109 
110 class TypeAppendVisitor {
111 public:
112   TypeAppendVisitor(TypeListImpl &type_list) : m_type_list(type_list) {}
113 
114   bool operator()(const lldb::TypeSP &type) {
115     m_type_list.Append(TypeImplSP(new TypeImpl(type)));
116     return true;
117   }
118 
119 private:
120   TypeListImpl &m_type_list;
121 };
122 
123 void TypeListImpl::Append(const lldb_private::TypeList &type_list) {
124   TypeAppendVisitor cb(*this);
125   type_list.ForEach(cb);
126 }
127 
128 SymbolFileType::SymbolFileType(SymbolFile &symbol_file,
129                                const lldb::TypeSP &type_sp)
130     : UserID(type_sp ? type_sp->GetID() : LLDB_INVALID_UID),
131       m_symbol_file(symbol_file), m_type_sp(type_sp) {}
132 
133 Type *SymbolFileType::GetType() {
134   if (!m_type_sp) {
135     Type *resolved_type = m_symbol_file.ResolveTypeUID(GetID());
136     if (resolved_type)
137       m_type_sp = resolved_type->shared_from_this();
138   }
139   return m_type_sp.get();
140 }
141 
142 Type::Type(lldb::user_id_t uid, SymbolFile *symbol_file, ConstString name,
143            llvm::Optional<uint64_t> byte_size, SymbolContextScope *context,
144            user_id_t encoding_uid, EncodingDataType encoding_uid_type,
145            const Declaration &decl, const CompilerType &compiler_type,
146            ResolveState compiler_type_resolve_state, uint32_t opaque_payload)
147     : std::enable_shared_from_this<Type>(), UserID(uid), m_name(name),
148       m_symbol_file(symbol_file), m_context(context), m_encoding_type(nullptr),
149       m_encoding_uid(encoding_uid), m_encoding_uid_type(encoding_uid_type),
150       m_decl(decl), m_compiler_type(compiler_type),
151       m_compiler_type_resolve_state(compiler_type ? compiler_type_resolve_state
152                                                   : ResolveState::Unresolved),
153       m_payload(opaque_payload) {
154   if (byte_size) {
155     m_byte_size = *byte_size;
156     m_byte_size_has_value = true;
157   } else {
158     m_byte_size = 0;
159     m_byte_size_has_value = false;
160   }
161 }
162 
163 Type::Type()
164     : std::enable_shared_from_this<Type>(), UserID(0), m_name("<INVALID TYPE>"),
165       m_symbol_file(nullptr), m_context(nullptr), m_encoding_type(nullptr),
166       m_encoding_uid(LLDB_INVALID_UID), m_encoding_uid_type(eEncodingInvalid),
167       m_compiler_type_resolve_state(ResolveState::Unresolved) {
168   m_byte_size = 0;
169   m_byte_size_has_value = false;
170 }
171 
172 void Type::GetDescription(Stream *s, lldb::DescriptionLevel level,
173                           bool show_name) {
174   *s << "id = " << (const UserID &)*this;
175 
176   // Call the name accessor to make sure we resolve the type name
177   if (show_name) {
178     ConstString type_name = GetName();
179     if (type_name) {
180       *s << ", name = \"" << type_name << '"';
181       ConstString qualified_type_name(GetQualifiedName());
182       if (qualified_type_name != type_name) {
183         *s << ", qualified = \"" << qualified_type_name << '"';
184       }
185     }
186   }
187 
188   // Call the get byte size accesor so we resolve our byte size
189   if (GetByteSize())
190     s->Printf(", byte-size = %" PRIu64, m_byte_size);
191   bool show_fullpaths = (level == lldb::eDescriptionLevelVerbose);
192   m_decl.Dump(s, show_fullpaths);
193 
194   if (m_compiler_type.IsValid()) {
195     *s << ", compiler_type = \"";
196     GetForwardCompilerType().DumpTypeDescription(s);
197     *s << '"';
198   } else if (m_encoding_uid != LLDB_INVALID_UID) {
199     s->Printf(", type_uid = 0x%8.8" PRIx64, m_encoding_uid);
200     switch (m_encoding_uid_type) {
201     case eEncodingInvalid:
202       break;
203     case eEncodingIsUID:
204       s->PutCString(" (unresolved type)");
205       break;
206     case eEncodingIsConstUID:
207       s->PutCString(" (unresolved const type)");
208       break;
209     case eEncodingIsRestrictUID:
210       s->PutCString(" (unresolved restrict type)");
211       break;
212     case eEncodingIsVolatileUID:
213       s->PutCString(" (unresolved volatile type)");
214       break;
215     case eEncodingIsAtomicUID:
216       s->PutCString(" (unresolved atomic type)");
217       break;
218     case eEncodingIsTypedefUID:
219       s->PutCString(" (unresolved typedef)");
220       break;
221     case eEncodingIsPointerUID:
222       s->PutCString(" (unresolved pointer)");
223       break;
224     case eEncodingIsLValueReferenceUID:
225       s->PutCString(" (unresolved L value reference)");
226       break;
227     case eEncodingIsRValueReferenceUID:
228       s->PutCString(" (unresolved R value reference)");
229       break;
230     case eEncodingIsSyntheticUID:
231       s->PutCString(" (synthetic type)");
232       break;
233     }
234   }
235 }
236 
237 void Type::Dump(Stream *s, bool show_context, lldb::DescriptionLevel level) {
238   s->Printf("%p: ", static_cast<void *>(this));
239   s->Indent();
240   *s << "Type" << static_cast<const UserID &>(*this) << ' ';
241   if (m_name)
242     *s << ", name = \"" << m_name << "\"";
243 
244   if (m_byte_size_has_value)
245     s->Printf(", size = %" PRIu64, m_byte_size);
246 
247   if (show_context && m_context != nullptr) {
248     s->PutCString(", context = ( ");
249     m_context->DumpSymbolContext(s);
250     s->PutCString(" )");
251   }
252 
253   bool show_fullpaths = false;
254   m_decl.Dump(s, show_fullpaths);
255 
256   if (m_compiler_type.IsValid()) {
257     *s << ", compiler_type = " << m_compiler_type.GetOpaqueQualType() << ' ';
258     GetForwardCompilerType().DumpTypeDescription(s, level);
259   } else if (m_encoding_uid != LLDB_INVALID_UID) {
260     s->Format(", type_data = {0:x-16}", m_encoding_uid);
261     switch (m_encoding_uid_type) {
262     case eEncodingInvalid:
263       break;
264     case eEncodingIsUID:
265       s->PutCString(" (unresolved type)");
266       break;
267     case eEncodingIsConstUID:
268       s->PutCString(" (unresolved const type)");
269       break;
270     case eEncodingIsRestrictUID:
271       s->PutCString(" (unresolved restrict type)");
272       break;
273     case eEncodingIsVolatileUID:
274       s->PutCString(" (unresolved volatile type)");
275       break;
276     case eEncodingIsAtomicUID:
277       s->PutCString(" (unresolved atomic type)");
278       break;
279     case eEncodingIsTypedefUID:
280       s->PutCString(" (unresolved typedef)");
281       break;
282     case eEncodingIsPointerUID:
283       s->PutCString(" (unresolved pointer)");
284       break;
285     case eEncodingIsLValueReferenceUID:
286       s->PutCString(" (unresolved L value reference)");
287       break;
288     case eEncodingIsRValueReferenceUID:
289       s->PutCString(" (unresolved R value reference)");
290       break;
291     case eEncodingIsSyntheticUID:
292       s->PutCString(" (synthetic type)");
293       break;
294     }
295   }
296 
297   //
298   //  if (m_access)
299   //      s->Printf(", access = %u", m_access);
300   s->EOL();
301 }
302 
303 ConstString Type::GetName() {
304   if (!m_name)
305     m_name = GetForwardCompilerType().GetTypeName();
306   return m_name;
307 }
308 
309 void Type::DumpTypeName(Stream *s) { GetName().Dump(s, "<invalid-type-name>"); }
310 
311 void Type::DumpValue(ExecutionContext *exe_ctx, Stream *s,
312                      const DataExtractor &data, uint32_t data_byte_offset,
313                      bool show_types, bool show_summary, bool verbose,
314                      lldb::Format format) {
315   if (ResolveCompilerType(ResolveState::Forward)) {
316     if (show_types) {
317       s->PutChar('(');
318       if (verbose)
319         s->Printf("Type{0x%8.8" PRIx64 "} ", GetID());
320       DumpTypeName(s);
321       s->PutCString(") ");
322     }
323 
324     GetForwardCompilerType().DumpValue(
325         exe_ctx, s, format == lldb::eFormatDefault ? GetFormat() : format, data,
326         data_byte_offset, GetByteSize().getValueOr(0),
327         0, // Bitfield bit size
328         0, // Bitfield bit offset
329         show_types, show_summary, verbose, 0);
330   }
331 }
332 
333 Type *Type::GetEncodingType() {
334   if (m_encoding_type == nullptr && m_encoding_uid != LLDB_INVALID_UID)
335     m_encoding_type = m_symbol_file->ResolveTypeUID(m_encoding_uid);
336   return m_encoding_type;
337 }
338 
339 llvm::Optional<uint64_t> Type::GetByteSize() {
340   if (m_byte_size_has_value)
341     return m_byte_size;
342 
343   switch (m_encoding_uid_type) {
344   case eEncodingInvalid:
345   case eEncodingIsSyntheticUID:
346     break;
347   case eEncodingIsUID:
348   case eEncodingIsConstUID:
349   case eEncodingIsRestrictUID:
350   case eEncodingIsVolatileUID:
351   case eEncodingIsAtomicUID:
352   case eEncodingIsTypedefUID: {
353     Type *encoding_type = GetEncodingType();
354     if (encoding_type)
355       if (llvm::Optional<uint64_t> size = encoding_type->GetByteSize()) {
356         m_byte_size = *size;
357         m_byte_size_has_value = true;
358         return m_byte_size;
359       }
360 
361     if (llvm::Optional<uint64_t> size =
362             GetLayoutCompilerType().GetByteSize(nullptr)) {
363       m_byte_size = *size;
364       m_byte_size_has_value = true;
365         return m_byte_size;
366     }
367   } break;
368 
369     // If we are a pointer or reference, then this is just a pointer size;
370     case eEncodingIsPointerUID:
371     case eEncodingIsLValueReferenceUID:
372     case eEncodingIsRValueReferenceUID: {
373       if (ArchSpec arch = m_symbol_file->GetObjectFile()->GetArchitecture()) {
374         m_byte_size = arch.GetAddressByteSize();
375         m_byte_size_has_value = true;
376       }
377     } break;
378   }
379   return {};
380 }
381 
382 uint32_t Type::GetNumChildren(bool omit_empty_base_classes) {
383   return GetForwardCompilerType().GetNumChildren(omit_empty_base_classes, nullptr);
384 }
385 
386 bool Type::IsAggregateType() {
387   return GetForwardCompilerType().IsAggregateType();
388 }
389 
390 lldb::TypeSP Type::GetTypedefType() {
391   lldb::TypeSP type_sp;
392   if (IsTypedef()) {
393     Type *typedef_type = m_symbol_file->ResolveTypeUID(m_encoding_uid);
394     if (typedef_type)
395       type_sp = typedef_type->shared_from_this();
396   }
397   return type_sp;
398 }
399 
400 lldb::Format Type::GetFormat() { return GetForwardCompilerType().GetFormat(); }
401 
402 lldb::Encoding Type::GetEncoding(uint64_t &count) {
403   // Make sure we resolve our type if it already hasn't been.
404   return GetForwardCompilerType().GetEncoding(count);
405 }
406 
407 bool Type::DumpValueInMemory(ExecutionContext *exe_ctx, Stream *s,
408                              lldb::addr_t address, AddressType address_type,
409                              bool show_types, bool show_summary, bool verbose) {
410   if (address != LLDB_INVALID_ADDRESS) {
411     DataExtractor data;
412     Target *target = nullptr;
413     if (exe_ctx)
414       target = exe_ctx->GetTargetPtr();
415     if (target)
416       data.SetByteOrder(target->GetArchitecture().GetByteOrder());
417     if (ReadFromMemory(exe_ctx, address, address_type, data)) {
418       DumpValue(exe_ctx, s, data, 0, show_types, show_summary, verbose);
419       return true;
420     }
421   }
422   return false;
423 }
424 
425 bool Type::ReadFromMemory(ExecutionContext *exe_ctx, lldb::addr_t addr,
426                           AddressType address_type, DataExtractor &data) {
427   if (address_type == eAddressTypeFile) {
428     // Can't convert a file address to anything valid without more context
429     // (which Module it came from)
430     return false;
431   }
432 
433   const uint64_t byte_size = GetByteSize().getValueOr(0);
434   if (data.GetByteSize() < byte_size) {
435     lldb::DataBufferSP data_sp(new DataBufferHeap(byte_size, '\0'));
436     data.SetData(data_sp);
437   }
438 
439   uint8_t *dst = const_cast<uint8_t *>(data.PeekData(0, byte_size));
440   if (dst != nullptr) {
441     if (address_type == eAddressTypeHost) {
442       // The address is an address in this process, so just copy it
443       if (addr == 0)
444         return false;
445       memcpy(dst, reinterpret_cast<uint8_t *>(addr), byte_size);
446       return true;
447     } else {
448       if (exe_ctx) {
449         Process *process = exe_ctx->GetProcessPtr();
450         if (process) {
451           Status error;
452           return exe_ctx->GetProcessPtr()->ReadMemory(addr, dst, byte_size,
453                                                       error) == byte_size;
454         }
455       }
456     }
457   }
458   return false;
459 }
460 
461 bool Type::WriteToMemory(ExecutionContext *exe_ctx, lldb::addr_t addr,
462                          AddressType address_type, DataExtractor &data) {
463   return false;
464 }
465 
466 const Declaration &Type::GetDeclaration() const { return m_decl; }
467 
468 bool Type::ResolveCompilerType(ResolveState compiler_type_resolve_state) {
469   // TODO: This needs to consider the correct type system to use.
470   Type *encoding_type = nullptr;
471   if (!m_compiler_type.IsValid()) {
472     encoding_type = GetEncodingType();
473     if (encoding_type) {
474       switch (m_encoding_uid_type) {
475       case eEncodingIsUID: {
476         CompilerType encoding_compiler_type =
477             encoding_type->GetForwardCompilerType();
478         if (encoding_compiler_type.IsValid()) {
479           m_compiler_type = encoding_compiler_type;
480           m_compiler_type_resolve_state =
481               encoding_type->m_compiler_type_resolve_state;
482         }
483       } break;
484 
485       case eEncodingIsConstUID:
486         m_compiler_type =
487             encoding_type->GetForwardCompilerType().AddConstModifier();
488         break;
489 
490       case eEncodingIsRestrictUID:
491         m_compiler_type =
492             encoding_type->GetForwardCompilerType().AddRestrictModifier();
493         break;
494 
495       case eEncodingIsVolatileUID:
496         m_compiler_type =
497             encoding_type->GetForwardCompilerType().AddVolatileModifier();
498         break;
499 
500       case eEncodingIsAtomicUID:
501         m_compiler_type =
502             encoding_type->GetForwardCompilerType().GetAtomicType();
503         break;
504 
505       case eEncodingIsTypedefUID:
506         m_compiler_type = encoding_type->GetForwardCompilerType().CreateTypedef(
507             m_name.AsCString("__lldb_invalid_typedef_name"),
508             GetSymbolFile()->GetDeclContextContainingUID(GetID()), m_payload);
509         m_name.Clear();
510         break;
511 
512       case eEncodingIsPointerUID:
513         m_compiler_type =
514             encoding_type->GetForwardCompilerType().GetPointerType();
515         break;
516 
517       case eEncodingIsLValueReferenceUID:
518         m_compiler_type =
519             encoding_type->GetForwardCompilerType().GetLValueReferenceType();
520         break;
521 
522       case eEncodingIsRValueReferenceUID:
523         m_compiler_type =
524             encoding_type->GetForwardCompilerType().GetRValueReferenceType();
525         break;
526 
527       default:
528         llvm_unreachable("Unhandled encoding_data_type.");
529       }
530     } else {
531       // We have no encoding type, return void?
532       auto type_system_or_err =
533           m_symbol_file->GetTypeSystemForLanguage(eLanguageTypeC);
534       if (auto err = type_system_or_err.takeError()) {
535         LLDB_LOG_ERROR(
536             lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_SYMBOLS),
537             std::move(err),
538             "Unable to construct void type from TypeSystemClang");
539       } else {
540         CompilerType void_compiler_type =
541             type_system_or_err->GetBasicTypeFromAST(eBasicTypeVoid);
542         switch (m_encoding_uid_type) {
543         case eEncodingIsUID:
544           m_compiler_type = void_compiler_type;
545           break;
546 
547         case eEncodingIsConstUID:
548           m_compiler_type = void_compiler_type.AddConstModifier();
549           break;
550 
551         case eEncodingIsRestrictUID:
552           m_compiler_type = void_compiler_type.AddRestrictModifier();
553           break;
554 
555         case eEncodingIsVolatileUID:
556           m_compiler_type = void_compiler_type.AddVolatileModifier();
557           break;
558 
559         case eEncodingIsAtomicUID:
560           m_compiler_type = void_compiler_type.GetAtomicType();
561           break;
562 
563         case eEncodingIsTypedefUID:
564           m_compiler_type = void_compiler_type.CreateTypedef(
565               m_name.AsCString("__lldb_invalid_typedef_name"),
566               GetSymbolFile()->GetDeclContextContainingUID(GetID()), m_payload);
567           break;
568 
569         case eEncodingIsPointerUID:
570           m_compiler_type = void_compiler_type.GetPointerType();
571           break;
572 
573         case eEncodingIsLValueReferenceUID:
574           m_compiler_type = void_compiler_type.GetLValueReferenceType();
575           break;
576 
577         case eEncodingIsRValueReferenceUID:
578           m_compiler_type = void_compiler_type.GetRValueReferenceType();
579           break;
580 
581         default:
582           llvm_unreachable("Unhandled encoding_data_type.");
583         }
584       }
585     }
586 
587     // When we have a EncodingUID, our "m_flags.compiler_type_resolve_state" is
588     // set to eResolveStateUnresolved so we need to update it to say that we
589     // now have a forward declaration since that is what we created above.
590     if (m_compiler_type.IsValid())
591       m_compiler_type_resolve_state = ResolveState::Forward;
592   }
593 
594   // Check if we have a forward reference to a class/struct/union/enum?
595   if (compiler_type_resolve_state == ResolveState::Layout ||
596       compiler_type_resolve_state == ResolveState::Full) {
597     // Check if we have a forward reference to a class/struct/union/enum?
598     if (m_compiler_type.IsValid() &&
599         m_compiler_type_resolve_state < compiler_type_resolve_state) {
600       m_compiler_type_resolve_state = ResolveState::Full;
601       if (!m_compiler_type.IsDefined()) {
602         // We have a forward declaration, we need to resolve it to a complete
603         // definition.
604         m_symbol_file->CompleteType(m_compiler_type);
605       }
606     }
607   }
608 
609   // If we have an encoding type, then we need to make sure it is resolved
610   // appropriately.
611   if (m_encoding_uid != LLDB_INVALID_UID) {
612     if (encoding_type == nullptr)
613       encoding_type = GetEncodingType();
614     if (encoding_type) {
615       ResolveState encoding_compiler_type_resolve_state =
616           compiler_type_resolve_state;
617 
618       if (compiler_type_resolve_state == ResolveState::Layout) {
619         switch (m_encoding_uid_type) {
620         case eEncodingIsPointerUID:
621         case eEncodingIsLValueReferenceUID:
622         case eEncodingIsRValueReferenceUID:
623           encoding_compiler_type_resolve_state = ResolveState::Forward;
624           break;
625         default:
626           break;
627         }
628       }
629       encoding_type->ResolveCompilerType(encoding_compiler_type_resolve_state);
630     }
631   }
632   return m_compiler_type.IsValid();
633 }
634 uint32_t Type::GetEncodingMask() {
635   uint32_t encoding_mask = 1u << m_encoding_uid_type;
636   Type *encoding_type = GetEncodingType();
637   assert(encoding_type != this);
638   if (encoding_type)
639     encoding_mask |= encoding_type->GetEncodingMask();
640   return encoding_mask;
641 }
642 
643 CompilerType Type::GetFullCompilerType() {
644   ResolveCompilerType(ResolveState::Full);
645   return m_compiler_type;
646 }
647 
648 CompilerType Type::GetLayoutCompilerType() {
649   ResolveCompilerType(ResolveState::Layout);
650   return m_compiler_type;
651 }
652 
653 CompilerType Type::GetForwardCompilerType() {
654   ResolveCompilerType(ResolveState::Forward);
655   return m_compiler_type;
656 }
657 
658 ConstString Type::GetQualifiedName() {
659   return GetForwardCompilerType().GetTypeName();
660 }
661 
662 bool Type::GetTypeScopeAndBasename(const llvm::StringRef& name,
663                                    llvm::StringRef &scope,
664                                    llvm::StringRef &basename,
665                                    TypeClass &type_class) {
666   type_class = eTypeClassAny;
667 
668   if (name.empty())
669     return false;
670 
671   basename = name;
672   if (basename.consume_front("struct "))
673     type_class = eTypeClassStruct;
674   else if (basename.consume_front("class "))
675     type_class = eTypeClassClass;
676   else if (basename.consume_front("union "))
677     type_class = eTypeClassUnion;
678   else if (basename.consume_front("enum "))
679     type_class = eTypeClassEnumeration;
680   else if (basename.consume_front("typedef "))
681     type_class = eTypeClassTypedef;
682 
683   size_t namespace_separator = basename.find("::");
684   if (namespace_separator == llvm::StringRef::npos)
685     return false;
686 
687   size_t template_begin = basename.find('<');
688   while (namespace_separator != llvm::StringRef::npos) {
689     if (template_begin != llvm::StringRef::npos &&
690         namespace_separator > template_begin) {
691       size_t template_depth = 1;
692       llvm::StringRef template_arg =
693           basename.drop_front(template_begin + 1);
694       while (template_depth > 0 && !template_arg.empty()) {
695         if (template_arg.front() == '<')
696           template_depth++;
697         else if (template_arg.front() == '>')
698           template_depth--;
699         template_arg = template_arg.drop_front(1);
700       }
701       if (template_depth != 0)
702         return false; // We have an invalid type name. Bail out.
703       if (template_arg.empty())
704         break; // The template ends at the end of the full name.
705       basename = template_arg;
706     } else {
707       basename = basename.drop_front(namespace_separator + 2);
708     }
709     template_begin = basename.find('<');
710     namespace_separator = basename.find("::");
711   }
712   if (basename.size() < name.size()) {
713     scope = name.take_front(name.size() - basename.size());
714     return true;
715   }
716   return false;
717 }
718 
719 ModuleSP Type::GetModule() {
720   if (m_symbol_file)
721     return m_symbol_file->GetObjectFile()->GetModule();
722   return ModuleSP();
723 }
724 
725 TypeAndOrName::TypeAndOrName(TypeSP &in_type_sp) {
726   if (in_type_sp) {
727     m_compiler_type = in_type_sp->GetForwardCompilerType();
728     m_type_name = in_type_sp->GetName();
729   }
730 }
731 
732 TypeAndOrName::TypeAndOrName(const char *in_type_str)
733     : m_type_name(in_type_str) {}
734 
735 TypeAndOrName::TypeAndOrName(ConstString &in_type_const_string)
736     : m_type_name(in_type_const_string) {}
737 
738 bool TypeAndOrName::operator==(const TypeAndOrName &other) const {
739   if (m_compiler_type != other.m_compiler_type)
740     return false;
741   if (m_type_name != other.m_type_name)
742     return false;
743   return true;
744 }
745 
746 bool TypeAndOrName::operator!=(const TypeAndOrName &other) const {
747   return !(*this == other);
748 }
749 
750 ConstString TypeAndOrName::GetName() const {
751   if (m_type_name)
752     return m_type_name;
753   if (m_compiler_type)
754     return m_compiler_type.GetTypeName();
755   return ConstString("<invalid>");
756 }
757 
758 void TypeAndOrName::SetName(ConstString type_name) {
759   m_type_name = type_name;
760 }
761 
762 void TypeAndOrName::SetName(const char *type_name_cstr) {
763   m_type_name.SetCString(type_name_cstr);
764 }
765 
766 void TypeAndOrName::SetTypeSP(lldb::TypeSP type_sp) {
767   if (type_sp) {
768     m_compiler_type = type_sp->GetForwardCompilerType();
769     m_type_name = type_sp->GetName();
770   } else
771     Clear();
772 }
773 
774 void TypeAndOrName::SetCompilerType(CompilerType compiler_type) {
775   m_compiler_type = compiler_type;
776   if (m_compiler_type)
777     m_type_name = m_compiler_type.GetTypeName();
778 }
779 
780 bool TypeAndOrName::IsEmpty() const {
781   return !((bool)m_type_name || (bool)m_compiler_type);
782 }
783 
784 void TypeAndOrName::Clear() {
785   m_type_name.Clear();
786   m_compiler_type.Clear();
787 }
788 
789 bool TypeAndOrName::HasName() const { return (bool)m_type_name; }
790 
791 bool TypeAndOrName::HasCompilerType() const {
792   return m_compiler_type.IsValid();
793 }
794 
795 TypeImpl::TypeImpl(const lldb::TypeSP &type_sp)
796     : m_module_wp(), m_static_type(), m_dynamic_type() {
797   SetType(type_sp);
798 }
799 
800 TypeImpl::TypeImpl(const CompilerType &compiler_type)
801     : m_module_wp(), m_static_type(), m_dynamic_type() {
802   SetType(compiler_type);
803 }
804 
805 TypeImpl::TypeImpl(const lldb::TypeSP &type_sp, const CompilerType &dynamic)
806     : m_module_wp(), m_static_type(), m_dynamic_type(dynamic) {
807   SetType(type_sp, dynamic);
808 }
809 
810 TypeImpl::TypeImpl(const CompilerType &static_type,
811                    const CompilerType &dynamic_type)
812     : m_module_wp(), m_static_type(), m_dynamic_type() {
813   SetType(static_type, dynamic_type);
814 }
815 
816 void TypeImpl::SetType(const lldb::TypeSP &type_sp) {
817   if (type_sp) {
818     m_static_type = type_sp->GetForwardCompilerType();
819     m_module_wp = type_sp->GetModule();
820   } else {
821     m_static_type.Clear();
822     m_module_wp = lldb::ModuleWP();
823   }
824 }
825 
826 void TypeImpl::SetType(const CompilerType &compiler_type) {
827   m_module_wp = lldb::ModuleWP();
828   m_static_type = compiler_type;
829 }
830 
831 void TypeImpl::SetType(const lldb::TypeSP &type_sp,
832                        const CompilerType &dynamic) {
833   SetType(type_sp);
834   m_dynamic_type = dynamic;
835 }
836 
837 void TypeImpl::SetType(const CompilerType &compiler_type,
838                        const CompilerType &dynamic) {
839   m_module_wp = lldb::ModuleWP();
840   m_static_type = compiler_type;
841   m_dynamic_type = dynamic;
842 }
843 
844 bool TypeImpl::CheckModule(lldb::ModuleSP &module_sp) const {
845   // Check if we have a module for this type. If we do and the shared pointer
846   // is can be successfully initialized with m_module_wp, return true. Else
847   // return false if we didn't have a module, or if we had a module and it has
848   // been deleted. Any functions doing anything with a TypeSP in this TypeImpl
849   // class should call this function and only do anything with the ivars if
850   // this function returns true. If we have a module, the "module_sp" will be
851   // filled in with a strong reference to the module so that the module will at
852   // least stay around long enough for the type query to succeed.
853   module_sp = m_module_wp.lock();
854   if (!module_sp) {
855     lldb::ModuleWP empty_module_wp;
856     // If either call to "std::weak_ptr::owner_before(...) value returns true,
857     // this indicates that m_module_wp once contained (possibly still does) a
858     // reference to a valid shared pointer. This helps us know if we had a
859     // valid reference to a section which is now invalid because the module it
860     // was in was deleted
861     if (empty_module_wp.owner_before(m_module_wp) ||
862         m_module_wp.owner_before(empty_module_wp)) {
863       // m_module_wp had a valid reference to a module, but all strong
864       // references have been released and the module has been deleted
865       return false;
866     }
867   }
868   // We either successfully locked the module, or didn't have one to begin with
869   return true;
870 }
871 
872 bool TypeImpl::operator==(const TypeImpl &rhs) const {
873   return m_static_type == rhs.m_static_type &&
874          m_dynamic_type == rhs.m_dynamic_type;
875 }
876 
877 bool TypeImpl::operator!=(const TypeImpl &rhs) const {
878   return !(*this == rhs);
879 }
880 
881 bool TypeImpl::IsValid() const {
882   // just a name is not valid
883   ModuleSP module_sp;
884   if (CheckModule(module_sp))
885     return m_static_type.IsValid() || m_dynamic_type.IsValid();
886   return false;
887 }
888 
889 TypeImpl::operator bool() const { return IsValid(); }
890 
891 void TypeImpl::Clear() {
892   m_module_wp = lldb::ModuleWP();
893   m_static_type.Clear();
894   m_dynamic_type.Clear();
895 }
896 
897 ConstString TypeImpl::GetName() const {
898   ModuleSP module_sp;
899   if (CheckModule(module_sp)) {
900     if (m_dynamic_type)
901       return m_dynamic_type.GetTypeName();
902     return m_static_type.GetTypeName();
903   }
904   return ConstString();
905 }
906 
907 ConstString TypeImpl::GetDisplayTypeName() const {
908   ModuleSP module_sp;
909   if (CheckModule(module_sp)) {
910     if (m_dynamic_type)
911       return m_dynamic_type.GetDisplayTypeName();
912     return m_static_type.GetDisplayTypeName();
913   }
914   return ConstString();
915 }
916 
917 TypeImpl TypeImpl::GetPointerType() const {
918   ModuleSP module_sp;
919   if (CheckModule(module_sp)) {
920     if (m_dynamic_type.IsValid()) {
921       return TypeImpl(m_static_type.GetPointerType(),
922                       m_dynamic_type.GetPointerType());
923     }
924     return TypeImpl(m_static_type.GetPointerType());
925   }
926   return TypeImpl();
927 }
928 
929 TypeImpl TypeImpl::GetPointeeType() const {
930   ModuleSP module_sp;
931   if (CheckModule(module_sp)) {
932     if (m_dynamic_type.IsValid()) {
933       return TypeImpl(m_static_type.GetPointeeType(),
934                       m_dynamic_type.GetPointeeType());
935     }
936     return TypeImpl(m_static_type.GetPointeeType());
937   }
938   return TypeImpl();
939 }
940 
941 TypeImpl TypeImpl::GetReferenceType() const {
942   ModuleSP module_sp;
943   if (CheckModule(module_sp)) {
944     if (m_dynamic_type.IsValid()) {
945       return TypeImpl(m_static_type.GetLValueReferenceType(),
946                       m_dynamic_type.GetLValueReferenceType());
947     }
948     return TypeImpl(m_static_type.GetLValueReferenceType());
949   }
950   return TypeImpl();
951 }
952 
953 TypeImpl TypeImpl::GetTypedefedType() const {
954   ModuleSP module_sp;
955   if (CheckModule(module_sp)) {
956     if (m_dynamic_type.IsValid()) {
957       return TypeImpl(m_static_type.GetTypedefedType(),
958                       m_dynamic_type.GetTypedefedType());
959     }
960     return TypeImpl(m_static_type.GetTypedefedType());
961   }
962   return TypeImpl();
963 }
964 
965 TypeImpl TypeImpl::GetDereferencedType() const {
966   ModuleSP module_sp;
967   if (CheckModule(module_sp)) {
968     if (m_dynamic_type.IsValid()) {
969       return TypeImpl(m_static_type.GetNonReferenceType(),
970                       m_dynamic_type.GetNonReferenceType());
971     }
972     return TypeImpl(m_static_type.GetNonReferenceType());
973   }
974   return TypeImpl();
975 }
976 
977 TypeImpl TypeImpl::GetUnqualifiedType() const {
978   ModuleSP module_sp;
979   if (CheckModule(module_sp)) {
980     if (m_dynamic_type.IsValid()) {
981       return TypeImpl(m_static_type.GetFullyUnqualifiedType(),
982                       m_dynamic_type.GetFullyUnqualifiedType());
983     }
984     return TypeImpl(m_static_type.GetFullyUnqualifiedType());
985   }
986   return TypeImpl();
987 }
988 
989 TypeImpl TypeImpl::GetCanonicalType() const {
990   ModuleSP module_sp;
991   if (CheckModule(module_sp)) {
992     if (m_dynamic_type.IsValid()) {
993       return TypeImpl(m_static_type.GetCanonicalType(),
994                       m_dynamic_type.GetCanonicalType());
995     }
996     return TypeImpl(m_static_type.GetCanonicalType());
997   }
998   return TypeImpl();
999 }
1000 
1001 CompilerType TypeImpl::GetCompilerType(bool prefer_dynamic) {
1002   ModuleSP module_sp;
1003   if (CheckModule(module_sp)) {
1004     if (prefer_dynamic) {
1005       if (m_dynamic_type.IsValid())
1006         return m_dynamic_type;
1007     }
1008     return m_static_type;
1009   }
1010   return CompilerType();
1011 }
1012 
1013 TypeSystem *TypeImpl::GetTypeSystem(bool prefer_dynamic) {
1014   ModuleSP module_sp;
1015   if (CheckModule(module_sp)) {
1016     if (prefer_dynamic) {
1017       if (m_dynamic_type.IsValid())
1018         return m_dynamic_type.GetTypeSystem();
1019     }
1020     return m_static_type.GetTypeSystem();
1021   }
1022   return nullptr;
1023 }
1024 
1025 bool TypeImpl::GetDescription(lldb_private::Stream &strm,
1026                               lldb::DescriptionLevel description_level) {
1027   ModuleSP module_sp;
1028   if (CheckModule(module_sp)) {
1029     if (m_dynamic_type.IsValid()) {
1030       strm.Printf("Dynamic:\n");
1031       m_dynamic_type.DumpTypeDescription(&strm);
1032       strm.Printf("\nStatic:\n");
1033     }
1034     m_static_type.DumpTypeDescription(&strm);
1035   } else {
1036     strm.PutCString("Invalid TypeImpl module for type has been deleted\n");
1037   }
1038   return true;
1039 }
1040 
1041 bool TypeMemberFunctionImpl::IsValid() {
1042   return m_type.IsValid() && m_kind != lldb::eMemberFunctionKindUnknown;
1043 }
1044 
1045 ConstString TypeMemberFunctionImpl::GetName() const { return m_name; }
1046 
1047 ConstString TypeMemberFunctionImpl::GetMangledName() const {
1048   return m_decl.GetMangledName();
1049 }
1050 
1051 CompilerType TypeMemberFunctionImpl::GetType() const { return m_type; }
1052 
1053 lldb::MemberFunctionKind TypeMemberFunctionImpl::GetKind() const {
1054   return m_kind;
1055 }
1056 
1057 bool TypeMemberFunctionImpl::GetDescription(Stream &stream) {
1058   switch (m_kind) {
1059   case lldb::eMemberFunctionKindUnknown:
1060     return false;
1061   case lldb::eMemberFunctionKindConstructor:
1062     stream.Printf("constructor for %s",
1063                   m_type.GetTypeName().AsCString("<unknown>"));
1064     break;
1065   case lldb::eMemberFunctionKindDestructor:
1066     stream.Printf("destructor for %s",
1067                   m_type.GetTypeName().AsCString("<unknown>"));
1068     break;
1069   case lldb::eMemberFunctionKindInstanceMethod:
1070     stream.Printf("instance method %s of type %s", m_name.AsCString(),
1071                   m_decl.GetDeclContext().GetName().AsCString());
1072     break;
1073   case lldb::eMemberFunctionKindStaticMethod:
1074     stream.Printf("static method %s of type %s", m_name.AsCString(),
1075                   m_decl.GetDeclContext().GetName().AsCString());
1076     break;
1077   }
1078   return true;
1079 }
1080 
1081 CompilerType TypeMemberFunctionImpl::GetReturnType() const {
1082   if (m_type)
1083     return m_type.GetFunctionReturnType();
1084   return m_decl.GetFunctionReturnType();
1085 }
1086 
1087 size_t TypeMemberFunctionImpl::GetNumArguments() const {
1088   if (m_type)
1089     return m_type.GetNumberOfFunctionArguments();
1090   else
1091     return m_decl.GetNumFunctionArguments();
1092 }
1093 
1094 CompilerType TypeMemberFunctionImpl::GetArgumentAtIndex(size_t idx) const {
1095   if (m_type)
1096     return m_type.GetFunctionArgumentAtIndex(idx);
1097   else
1098     return m_decl.GetFunctionArgumentType(idx);
1099 }
1100 
1101 TypeEnumMemberImpl::TypeEnumMemberImpl(const lldb::TypeImplSP &integer_type_sp,
1102                                        ConstString name,
1103                                        const llvm::APSInt &value)
1104     : m_integer_type_sp(integer_type_sp), m_name(name), m_value(value),
1105       m_valid((bool)name && (bool)integer_type_sp)
1106 
1107 {}
1108