1 //===-- Type.cpp ------------------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 // Other libraries and framework includes
11 
12 #include "lldb/Core/DataExtractor.h"
13 #include "lldb/Core/DataBufferHeap.h"
14 #include "lldb/Core/Module.h"
15 #include "lldb/Core/Scalar.h"
16 #include "lldb/Core/StreamString.h"
17 
18 #include "lldb/Symbol/CompilerType.h"
19 #include "lldb/Symbol/ClangASTContext.h"
20 #include "lldb/Symbol/ObjectFile.h"
21 #include "lldb/Symbol/SymbolContextScope.h"
22 #include "lldb/Symbol/SymbolFile.h"
23 #include "lldb/Symbol/SymbolVendor.h"
24 #include "lldb/Symbol/Type.h"
25 #include "lldb/Symbol/TypeList.h"
26 
27 #include "lldb/Target/ExecutionContext.h"
28 #include "lldb/Target/Process.h"
29 #include "lldb/Target/Target.h"
30 
31 #include "llvm/ADT/StringRef.h"
32 
33 #include "clang/AST/Decl.h"
34 #include "clang/AST/DeclObjC.h"
35 
36 using namespace lldb;
37 using namespace lldb_private;
38 
39 class TypeAppendVisitor
40 {
41 public:
42     TypeAppendVisitor(TypeListImpl &type_list) :
43         m_type_list(type_list)
44     {
45     }
46 
47     bool
48     operator() (const lldb::TypeSP& type)
49     {
50         m_type_list.Append(TypeImplSP(new TypeImpl(type)));
51         return true;
52     }
53 
54 private:
55     TypeListImpl &m_type_list;
56 };
57 
58 void
59 TypeListImpl::Append (const lldb_private::TypeList &type_list)
60 {
61     TypeAppendVisitor cb(*this);
62     type_list.ForEach(cb);
63 }
64 
65 
66 Type *
67 SymbolFileType::GetType ()
68 {
69     if (!m_type_sp)
70     {
71         Type *resolved_type = m_symbol_file.ResolveTypeUID (GetID());
72         if (resolved_type)
73             m_type_sp = resolved_type->shared_from_this();
74     }
75     return m_type_sp.get();
76 }
77 
78 
79 Type::Type
80 (
81     lldb::user_id_t uid,
82     SymbolFile* symbol_file,
83     const ConstString &name,
84     uint64_t byte_size,
85     SymbolContextScope *context,
86     user_id_t encoding_uid,
87     EncodingDataType encoding_uid_type,
88     const Declaration& decl,
89     const CompilerType &clang_type,
90     ResolveState clang_type_resolve_state
91 ) :
92     std::enable_shared_from_this<Type> (),
93     UserID (uid),
94     m_name (name),
95     m_symbol_file (symbol_file),
96     m_context (context),
97     m_encoding_type (nullptr),
98     m_encoding_uid (encoding_uid),
99     m_encoding_uid_type (encoding_uid_type),
100     m_byte_size (byte_size),
101     m_decl (decl),
102     m_clang_type (clang_type)
103 {
104     m_flags.clang_type_resolve_state = (clang_type ? clang_type_resolve_state : eResolveStateUnresolved);
105     m_flags.is_complete_objc_class = false;
106 }
107 
108 Type::Type () :
109     std::enable_shared_from_this<Type> (),
110     UserID (0),
111     m_name ("<INVALID TYPE>"),
112     m_symbol_file (nullptr),
113     m_context (nullptr),
114     m_encoding_type (nullptr),
115     m_encoding_uid (LLDB_INVALID_UID),
116     m_encoding_uid_type (eEncodingInvalid),
117     m_byte_size (0),
118     m_decl (),
119     m_clang_type ()
120 {
121     m_flags.clang_type_resolve_state = eResolveStateUnresolved;
122     m_flags.is_complete_objc_class = false;
123 }
124 
125 
126 Type::Type (const Type &rhs) :
127     std::enable_shared_from_this<Type> (rhs),
128     UserID (rhs),
129     m_name (rhs.m_name),
130     m_symbol_file (rhs.m_symbol_file),
131     m_context (rhs.m_context),
132     m_encoding_type (rhs.m_encoding_type),
133     m_encoding_uid (rhs.m_encoding_uid),
134     m_encoding_uid_type (rhs.m_encoding_uid_type),
135     m_byte_size (rhs.m_byte_size),
136     m_decl (rhs.m_decl),
137     m_clang_type (rhs.m_clang_type),
138     m_flags (rhs.m_flags)
139 {
140 }
141 
142 const Type&
143 Type::operator= (const Type& rhs)
144 {
145     if (this != &rhs)
146     {
147     }
148     return *this;
149 }
150 
151 
152 void
153 Type::GetDescription (Stream *s, lldb::DescriptionLevel level, bool show_name)
154 {
155     *s << "id = " << (const UserID&)*this;
156 
157     // Call the name accessor to make sure we resolve the type name
158     if (show_name)
159     {
160         const ConstString &type_name = GetName();
161         if (type_name)
162         {
163             *s << ", name = \"" << type_name << '"';
164             ConstString qualified_type_name (GetQualifiedName());
165             if (qualified_type_name != type_name)
166             {
167                 *s << ", qualified = \"" << qualified_type_name << '"';
168             }
169         }
170     }
171 
172     // Call the get byte size accesor so we resolve our byte size
173     if (GetByteSize())
174         s->Printf(", byte-size = %" PRIu64, m_byte_size);
175     bool show_fullpaths = (level == lldb::eDescriptionLevelVerbose);
176     m_decl.Dump(s, show_fullpaths);
177 
178     if (m_clang_type.IsValid())
179     {
180         *s << ", clang_type = \"";
181         GetForwardCompilerType ().DumpTypeDescription(s);
182         *s << '"';
183     }
184     else if (m_encoding_uid != LLDB_INVALID_UID)
185     {
186         s->Printf(", type_uid = 0x%8.8" PRIx64, m_encoding_uid);
187         switch (m_encoding_uid_type)
188         {
189         case eEncodingInvalid: break;
190         case eEncodingIsUID: s->PutCString(" (unresolved type)"); break;
191         case eEncodingIsConstUID: s->PutCString(" (unresolved const type)"); break;
192         case eEncodingIsRestrictUID: s->PutCString(" (unresolved restrict type)"); break;
193         case eEncodingIsVolatileUID: s->PutCString(" (unresolved volatile type)"); break;
194         case eEncodingIsTypedefUID: s->PutCString(" (unresolved typedef)"); break;
195         case eEncodingIsPointerUID: s->PutCString(" (unresolved pointer)"); break;
196         case eEncodingIsLValueReferenceUID: s->PutCString(" (unresolved L value reference)"); break;
197         case eEncodingIsRValueReferenceUID: s->PutCString(" (unresolved R value reference)"); break;
198         case eEncodingIsSyntheticUID: s->PutCString(" (synthetic type)"); break;
199         }
200     }
201 }
202 
203 
204 void
205 Type::Dump (Stream *s, bool show_context)
206 {
207     s->Printf("%p: ", static_cast<void*>(this));
208     s->Indent();
209     *s << "Type" << static_cast<const UserID&>(*this) << ' ';
210     if (m_name)
211         *s << ", name = \"" << m_name << "\"";
212 
213     if (m_byte_size != 0)
214         s->Printf(", size = %" PRIu64, m_byte_size);
215 
216     if (show_context && m_context != nullptr)
217     {
218         s->PutCString(", context = ( ");
219         m_context->DumpSymbolContext(s);
220         s->PutCString(" )");
221     }
222 
223     bool show_fullpaths = false;
224     m_decl.Dump (s,show_fullpaths);
225 
226     if (m_clang_type.IsValid())
227     {
228         *s << ", clang_type = " << m_clang_type.GetOpaqueQualType() << ' ';
229         GetForwardCompilerType ().DumpTypeDescription (s);
230     }
231     else if (m_encoding_uid != LLDB_INVALID_UID)
232     {
233         *s << ", type_data = " << (uint64_t)m_encoding_uid;
234         switch (m_encoding_uid_type)
235         {
236         case eEncodingInvalid: break;
237         case eEncodingIsUID: s->PutCString(" (unresolved type)"); break;
238         case eEncodingIsConstUID: s->PutCString(" (unresolved const type)"); break;
239         case eEncodingIsRestrictUID: s->PutCString(" (unresolved restrict type)"); break;
240         case eEncodingIsVolatileUID: s->PutCString(" (unresolved volatile type)"); break;
241         case eEncodingIsTypedefUID: s->PutCString(" (unresolved typedef)"); break;
242         case eEncodingIsPointerUID: s->PutCString(" (unresolved pointer)"); break;
243         case eEncodingIsLValueReferenceUID: s->PutCString(" (unresolved L value reference)"); break;
244         case eEncodingIsRValueReferenceUID: s->PutCString(" (unresolved R value reference)"); break;
245         case eEncodingIsSyntheticUID: s->PutCString(" (synthetic type)"); break;
246         }
247     }
248 
249 //
250 //  if (m_access)
251 //      s->Printf(", access = %u", m_access);
252     s->EOL();
253 }
254 
255 const ConstString &
256 Type::GetName()
257 {
258     if (!m_name)
259         m_name = GetForwardCompilerType ().GetConstTypeName();
260     return m_name;
261 }
262 
263 void
264 Type::DumpTypeName(Stream *s)
265 {
266     GetName().Dump(s, "<invalid-type-name>");
267 }
268 
269 
270 void
271 Type::DumpValue
272 (
273     ExecutionContext *exe_ctx,
274     Stream *s,
275     const DataExtractor &data,
276     uint32_t data_byte_offset,
277     bool show_types,
278     bool show_summary,
279     bool verbose,
280     lldb::Format format
281 )
282 {
283     if (ResolveClangType(eResolveStateForward))
284     {
285         if (show_types)
286         {
287             s->PutChar('(');
288             if (verbose)
289                 s->Printf("Type{0x%8.8" PRIx64 "} ", GetID());
290             DumpTypeName (s);
291             s->PutCString(") ");
292         }
293 
294         GetForwardCompilerType ().DumpValue (exe_ctx,
295                                          s,
296                                          format == lldb::eFormatDefault ? GetFormat() : format,
297                                          data,
298                                          data_byte_offset,
299                                          GetByteSize(),
300                                          0, // Bitfield bit size
301                                          0, // Bitfield bit offset
302                                          show_types,
303                                          show_summary,
304                                          verbose,
305                                          0);
306     }
307 }
308 
309 Type *
310 Type::GetEncodingType ()
311 {
312     if (m_encoding_type == nullptr && m_encoding_uid != LLDB_INVALID_UID)
313         m_encoding_type = m_symbol_file->ResolveTypeUID(m_encoding_uid);
314     return m_encoding_type;
315 }
316 
317 
318 
319 uint64_t
320 Type::GetByteSize()
321 {
322     if (m_byte_size == 0)
323     {
324         switch (m_encoding_uid_type)
325         {
326         case eEncodingInvalid:
327         case eEncodingIsSyntheticUID:
328             break;
329         case eEncodingIsUID:
330         case eEncodingIsConstUID:
331         case eEncodingIsRestrictUID:
332         case eEncodingIsVolatileUID:
333         case eEncodingIsTypedefUID:
334             {
335                 Type *encoding_type = GetEncodingType ();
336                 if (encoding_type)
337                     m_byte_size = encoding_type->GetByteSize();
338                 if (m_byte_size == 0)
339                     m_byte_size = GetLayoutCompilerType ().GetByteSize(nullptr);
340             }
341             break;
342 
343         // If we are a pointer or reference, then this is just a pointer size;
344         case eEncodingIsPointerUID:
345         case eEncodingIsLValueReferenceUID:
346         case eEncodingIsRValueReferenceUID:
347             m_byte_size = m_symbol_file->GetClangASTContext().GetPointerByteSize();
348             break;
349         }
350     }
351     return m_byte_size;
352 }
353 
354 
355 uint32_t
356 Type::GetNumChildren (bool omit_empty_base_classes)
357 {
358     return GetForwardCompilerType ().GetNumChildren(omit_empty_base_classes);
359 }
360 
361 bool
362 Type::IsAggregateType ()
363 {
364     return GetForwardCompilerType ().IsAggregateType();
365 }
366 
367 lldb::TypeSP
368 Type::GetTypedefType()
369 {
370     lldb::TypeSP type_sp;
371     if (IsTypedef())
372     {
373         Type *typedef_type = m_symbol_file->ResolveTypeUID(m_encoding_uid);
374         if (typedef_type)
375             type_sp = typedef_type->shared_from_this();
376     }
377     return type_sp;
378 }
379 
380 
381 
382 lldb::Format
383 Type::GetFormat ()
384 {
385     return GetForwardCompilerType ().GetFormat();
386 }
387 
388 
389 
390 lldb::Encoding
391 Type::GetEncoding (uint64_t &count)
392 {
393     // Make sure we resolve our type if it already hasn't been.
394     return GetForwardCompilerType ().GetEncoding(count);
395 }
396 
397 bool
398 Type::DumpValueInMemory
399 (
400     ExecutionContext *exe_ctx,
401     Stream *s,
402     lldb::addr_t address,
403     AddressType address_type,
404     bool show_types,
405     bool show_summary,
406     bool verbose
407 )
408 {
409     if (address != LLDB_INVALID_ADDRESS)
410     {
411         DataExtractor data;
412         Target *target = nullptr;
413         if (exe_ctx)
414             target = exe_ctx->GetTargetPtr();
415         if (target)
416             data.SetByteOrder (target->GetArchitecture().GetByteOrder());
417         if (ReadFromMemory (exe_ctx, address, address_type, data))
418         {
419             DumpValue(exe_ctx, s, data, 0, show_types, show_summary, verbose);
420             return true;
421         }
422     }
423     return false;
424 }
425 
426 
427 bool
428 Type::ReadFromMemory (ExecutionContext *exe_ctx, lldb::addr_t addr, AddressType address_type, DataExtractor &data)
429 {
430     if (address_type == eAddressTypeFile)
431     {
432         // Can't convert a file address to anything valid without more
433         // context (which Module it came from)
434         return false;
435     }
436 
437     const uint64_t byte_size = GetByteSize();
438     if (data.GetByteSize() < byte_size)
439     {
440         lldb::DataBufferSP data_sp(new DataBufferHeap (byte_size, '\0'));
441         data.SetData(data_sp);
442     }
443 
444     uint8_t* dst = (uint8_t*)data.PeekData(0, byte_size);
445     if (dst != nullptr)
446     {
447         if (address_type == eAddressTypeHost)
448         {
449             // The address is an address in this process, so just copy it
450             if (addr == 0)
451                 return false;
452             memcpy (dst, (uint8_t*)nullptr + addr, byte_size);
453             return true;
454         }
455         else
456         {
457             if (exe_ctx)
458             {
459                 Process *process = exe_ctx->GetProcessPtr();
460                 if (process)
461                 {
462                     Error error;
463                     return exe_ctx->GetProcessPtr()->ReadMemory(addr, dst, byte_size, error) == byte_size;
464                 }
465             }
466         }
467     }
468     return false;
469 }
470 
471 
472 bool
473 Type::WriteToMemory (ExecutionContext *exe_ctx, lldb::addr_t addr, AddressType address_type, DataExtractor &data)
474 {
475     return false;
476 }
477 
478 
479 TypeList*
480 Type::GetTypeList()
481 {
482     return GetSymbolFile()->GetTypeList();
483 }
484 
485 const Declaration &
486 Type::GetDeclaration () const
487 {
488     return m_decl;
489 }
490 
491 bool
492 Type::ResolveClangType (ResolveState clang_type_resolve_state)
493 {
494     // TODO: This needs to consider the correct type system to use.
495     Type *encoding_type = nullptr;
496     if (!m_clang_type.IsValid())
497     {
498         encoding_type = GetEncodingType();
499         if (encoding_type)
500         {
501             switch (m_encoding_uid_type)
502             {
503             case eEncodingIsUID:
504                 {
505                     CompilerType encoding_clang_type = encoding_type->GetForwardCompilerType ();
506                     if (encoding_clang_type.IsValid())
507                     {
508                         m_clang_type = encoding_clang_type;
509                         m_flags.clang_type_resolve_state = encoding_type->m_flags.clang_type_resolve_state;
510                     }
511                 }
512                 break;
513 
514             case eEncodingIsConstUID:
515                 m_clang_type = ClangASTContext::AddConstModifier(encoding_type->GetForwardCompilerType ());
516                 break;
517 
518             case eEncodingIsRestrictUID:
519                 m_clang_type = ClangASTContext::AddRestrictModifier(encoding_type->GetForwardCompilerType ());
520                 break;
521 
522             case eEncodingIsVolatileUID:
523                 m_clang_type = ClangASTContext::AddVolatileModifier(encoding_type->GetForwardCompilerType ());
524                 break;
525 
526             case eEncodingIsTypedefUID:
527                 m_clang_type = ClangASTContext::CreateTypedefType (encoding_type->GetForwardCompilerType (),
528                                                                    GetName().AsCString(),
529                                                                    GetSymbolFile()->GetDeclContextContainingUID(GetID()));
530                 m_name.Clear();
531                 break;
532 
533             case eEncodingIsPointerUID:
534                 m_clang_type = encoding_type->GetForwardCompilerType ().GetPointerType();
535                 break;
536 
537             case eEncodingIsLValueReferenceUID:
538                 m_clang_type = ClangASTContext::GetLValueReferenceType(encoding_type->GetForwardCompilerType ());
539                 break;
540 
541             case eEncodingIsRValueReferenceUID:
542                 m_clang_type = ClangASTContext::GetRValueReferenceType(encoding_type->GetForwardCompilerType ());
543                 break;
544 
545             default:
546                 assert(!"Unhandled encoding_data_type.");
547                 break;
548             }
549         }
550         else
551         {
552             // We have no encoding type, return void?
553             CompilerType void_clang_type (ClangASTContext::GetBasicType(GetClangASTContext().getASTContext(), eBasicTypeVoid));
554             switch (m_encoding_uid_type)
555             {
556             case eEncodingIsUID:
557                 m_clang_type = void_clang_type;
558                 break;
559 
560             case eEncodingIsConstUID:
561                 m_clang_type = ClangASTContext::AddConstModifier (void_clang_type);
562                 break;
563 
564             case eEncodingIsRestrictUID:
565                 m_clang_type = ClangASTContext::AddRestrictModifier (void_clang_type);
566                 break;
567 
568             case eEncodingIsVolatileUID:
569                 m_clang_type = ClangASTContext::AddVolatileModifier (void_clang_type);
570                 break;
571 
572             case eEncodingIsTypedefUID:
573                 m_clang_type = ClangASTContext::CreateTypedefType (void_clang_type,
574                                                                    GetName().AsCString(),
575                                                                    GetSymbolFile()->GetDeclContextContainingUID(GetID()));
576                 break;
577 
578             case eEncodingIsPointerUID:
579                 m_clang_type = void_clang_type.GetPointerType ();
580                 break;
581 
582             case eEncodingIsLValueReferenceUID:
583                 m_clang_type = ClangASTContext::GetLValueReferenceType(void_clang_type);
584                 break;
585 
586             case eEncodingIsRValueReferenceUID:
587                 m_clang_type = ClangASTContext::GetRValueReferenceType(void_clang_type);
588                 break;
589 
590             default:
591                 assert(!"Unhandled encoding_data_type.");
592                 break;
593             }
594         }
595 
596         // When we have a EncodingUID, our "m_flags.clang_type_resolve_state" is set to eResolveStateUnresolved
597         // so we need to update it to say that we now have a forward declaration since that is what we created
598         // above.
599         if (m_clang_type.IsValid())
600             m_flags.clang_type_resolve_state = eResolveStateForward;
601 
602     }
603 
604     // Check if we have a forward reference to a class/struct/union/enum?
605     if (clang_type_resolve_state == eResolveStateLayout || clang_type_resolve_state == eResolveStateFull)
606     {
607         // Check if we have a forward reference to a class/struct/union/enum?
608         if (m_clang_type.IsValid() && m_flags.clang_type_resolve_state < clang_type_resolve_state)
609         {
610             m_flags.clang_type_resolve_state = eResolveStateFull;
611             if (!m_clang_type.IsDefined ())
612             {
613                 // We have a forward declaration, we need to resolve it to a complete definition.
614                 m_symbol_file->CompleteType (m_clang_type);
615             }
616         }
617     }
618 
619     // If we have an encoding type, then we need to make sure it is
620     // resolved appropriately.
621     if (m_encoding_uid != LLDB_INVALID_UID)
622     {
623         if (encoding_type == nullptr)
624             encoding_type = GetEncodingType();
625         if (encoding_type)
626         {
627             ResolveState encoding_clang_type_resolve_state = clang_type_resolve_state;
628 
629             if (clang_type_resolve_state == eResolveStateLayout)
630             {
631                 switch (m_encoding_uid_type)
632                 {
633                 case eEncodingIsPointerUID:
634                 case eEncodingIsLValueReferenceUID:
635                 case eEncodingIsRValueReferenceUID:
636                     encoding_clang_type_resolve_state = eResolveStateForward;
637                     break;
638                 default:
639                     break;
640                 }
641             }
642             encoding_type->ResolveClangType (encoding_clang_type_resolve_state);
643         }
644     }
645     return m_clang_type.IsValid();
646 }
647 uint32_t
648 Type::GetEncodingMask ()
649 {
650     uint32_t encoding_mask = 1u << m_encoding_uid_type;
651     Type *encoding_type = GetEncodingType();
652     assert (encoding_type != this);
653     if (encoding_type)
654         encoding_mask |= encoding_type->GetEncodingMask ();
655     return encoding_mask;
656 }
657 
658 CompilerType
659 Type::GetFullCompilerType ()
660 {
661     ResolveClangType(eResolveStateFull);
662     return m_clang_type;
663 }
664 
665 CompilerType
666 Type::GetLayoutCompilerType ()
667 {
668     ResolveClangType(eResolveStateLayout);
669     return m_clang_type;
670 }
671 
672 CompilerType
673 Type::GetForwardCompilerType ()
674 {
675     ResolveClangType (eResolveStateForward);
676     return m_clang_type;
677 }
678 
679 ClangASTContext &
680 Type::GetClangASTContext ()
681 {
682     return m_symbol_file->GetClangASTContext();
683 }
684 
685 int
686 Type::Compare(const Type &a, const Type &b)
687 {
688     // Just compare the UID values for now...
689     lldb::user_id_t a_uid = a.GetID();
690     lldb::user_id_t b_uid = b.GetID();
691     if (a_uid < b_uid)
692         return -1;
693     if (a_uid > b_uid)
694         return 1;
695     return 0;
696 }
697 
698 ConstString
699 Type::GetQualifiedName ()
700 {
701     return GetForwardCompilerType ().GetConstTypeName();
702 }
703 
704 bool
705 Type::GetTypeScopeAndBasename (const char* &name_cstr,
706                                std::string &scope,
707                                std::string &basename,
708                                TypeClass &type_class)
709 {
710     // Protect against null c string.
711 
712     type_class = eTypeClassAny;
713 
714     if (name_cstr && name_cstr[0])
715     {
716         llvm::StringRef name_strref(name_cstr);
717         if (name_strref.startswith("struct "))
718         {
719             name_cstr += 7;
720             type_class = eTypeClassStruct;
721         }
722         else if (name_strref.startswith("class "))
723         {
724             name_cstr += 6;
725             type_class = eTypeClassClass;
726         }
727         else if (name_strref.startswith("union "))
728         {
729             name_cstr += 6;
730             type_class = eTypeClassUnion;
731         }
732         else if (name_strref.startswith("enum "))
733         {
734             name_cstr += 5;
735             type_class = eTypeClassEnumeration;
736         }
737         else if (name_strref.startswith("typedef "))
738         {
739             name_cstr += 8;
740             type_class = eTypeClassTypedef;
741         }
742         const char *basename_cstr = name_cstr;
743         const char* namespace_separator = ::strstr (basename_cstr, "::");
744         if (namespace_separator)
745         {
746             const char* template_arg_char = ::strchr (basename_cstr, '<');
747             while (namespace_separator != nullptr)
748             {
749                 if (template_arg_char && namespace_separator > template_arg_char) // but namespace'd template arguments are still good to go
750                     break;
751                 basename_cstr = namespace_separator + 2;
752                 namespace_separator = strstr(basename_cstr, "::");
753             }
754             if (basename_cstr > name_cstr)
755             {
756                 scope.assign (name_cstr, basename_cstr - name_cstr);
757                 basename.assign (basename_cstr);
758                 return true;
759             }
760         }
761     }
762     return false;
763 }
764 
765 
766 ModuleSP
767 Type::GetModule()
768 {
769     if (m_symbol_file)
770         return m_symbol_file->GetObjectFile()->GetModule();
771     return ModuleSP();
772 }
773 
774 
775 TypeAndOrName::TypeAndOrName () : m_type_pair(), m_type_name()
776 {
777 
778 }
779 
780 TypeAndOrName::TypeAndOrName (TypeSP &in_type_sp) : m_type_pair(in_type_sp)
781 {
782     if (in_type_sp)
783         m_type_name = in_type_sp->GetName();
784 }
785 
786 TypeAndOrName::TypeAndOrName (const char *in_type_str) : m_type_name(in_type_str)
787 {
788 }
789 
790 TypeAndOrName::TypeAndOrName (const TypeAndOrName &rhs) : m_type_pair (rhs.m_type_pair), m_type_name (rhs.m_type_name)
791 {
792 
793 }
794 
795 TypeAndOrName::TypeAndOrName (ConstString &in_type_const_string) : m_type_name (in_type_const_string)
796 {
797 }
798 
799 TypeAndOrName &
800 TypeAndOrName::operator= (const TypeAndOrName &rhs)
801 {
802     if (this != &rhs)
803     {
804         m_type_name = rhs.m_type_name;
805         m_type_pair = rhs.m_type_pair;
806     }
807     return *this;
808 }
809 
810 bool
811 TypeAndOrName::operator==(const TypeAndOrName &other) const
812 {
813     if (m_type_pair != other.m_type_pair)
814         return false;
815     if (m_type_name != other.m_type_name)
816         return false;
817     return true;
818 }
819 
820 bool
821 TypeAndOrName::operator!=(const TypeAndOrName &other) const
822 {
823     if (m_type_pair != other.m_type_pair)
824         return true;
825     if (m_type_name != other.m_type_name)
826         return true;
827     return false;
828 }
829 
830 ConstString
831 TypeAndOrName::GetName () const
832 {
833     if (m_type_name)
834         return m_type_name;
835     if (m_type_pair)
836         return m_type_pair.GetName();
837     return ConstString("<invalid>");
838 }
839 
840 void
841 TypeAndOrName::SetName (const ConstString &type_name)
842 {
843     m_type_name = type_name;
844 }
845 
846 void
847 TypeAndOrName::SetName (const char *type_name_cstr)
848 {
849     m_type_name.SetCString (type_name_cstr);
850 }
851 
852 void
853 TypeAndOrName::SetTypeSP (lldb::TypeSP type_sp)
854 {
855     m_type_pair.SetType(type_sp);
856     if (m_type_pair)
857         m_type_name = m_type_pair.GetName();
858 }
859 
860 void
861 TypeAndOrName::SetCompilerType (CompilerType clang_type)
862 {
863     m_type_pair.SetType(clang_type);
864     if (m_type_pair)
865         m_type_name = m_type_pair.GetName();
866 }
867 
868 bool
869 TypeAndOrName::IsEmpty()  const
870 {
871     if ((bool)m_type_name || (bool)m_type_pair)
872         return false;
873     else
874         return true;
875 }
876 
877 void
878 TypeAndOrName::Clear ()
879 {
880     m_type_name.Clear();
881     m_type_pair.Clear();
882 }
883 
884 bool
885 TypeAndOrName::HasName () const
886 {
887     return (bool)m_type_name;
888 }
889 
890 bool
891 TypeAndOrName::HasTypeSP () const
892 {
893     return m_type_pair.GetTypeSP().get() != nullptr;
894 }
895 
896 bool
897 TypeAndOrName::HasCompilerType () const
898 {
899     return m_type_pair.GetCompilerType().IsValid();
900 }
901 
902 
903 TypeImpl::TypeImpl() :
904     m_module_wp(),
905     m_static_type(),
906     m_dynamic_type()
907 {
908 }
909 
910 TypeImpl::TypeImpl(const TypeImpl& rhs) :
911     m_module_wp (rhs.m_module_wp),
912     m_static_type(rhs.m_static_type),
913     m_dynamic_type(rhs.m_dynamic_type)
914 {
915 }
916 
917 TypeImpl::TypeImpl (const lldb::TypeSP &type_sp) :
918     m_module_wp (),
919     m_static_type(),
920     m_dynamic_type()
921 {
922     SetType (type_sp);
923 }
924 
925 TypeImpl::TypeImpl (const CompilerType &clang_type) :
926     m_module_wp (),
927     m_static_type(),
928     m_dynamic_type()
929 {
930     SetType (clang_type);
931 }
932 
933 TypeImpl::TypeImpl (const lldb::TypeSP &type_sp, const CompilerType &dynamic) :
934     m_module_wp (),
935     m_static_type (type_sp),
936     m_dynamic_type(dynamic)
937 {
938     SetType (type_sp, dynamic);
939 }
940 
941 TypeImpl::TypeImpl (const CompilerType &static_type, const CompilerType &dynamic_type) :
942     m_module_wp (),
943     m_static_type (),
944     m_dynamic_type()
945 {
946     SetType (static_type, dynamic_type);
947 }
948 
949 TypeImpl::TypeImpl (const TypePair &pair, const CompilerType &dynamic) :
950     m_module_wp (),
951     m_static_type (),
952     m_dynamic_type()
953 {
954     SetType (pair, dynamic);
955 }
956 
957 void
958 TypeImpl::SetType (const lldb::TypeSP &type_sp)
959 {
960     m_static_type.SetType(type_sp);
961     if (type_sp)
962         m_module_wp = type_sp->GetModule();
963     else
964         m_module_wp = lldb::ModuleWP();
965 }
966 
967 void
968 TypeImpl::SetType (const CompilerType &clang_type)
969 {
970     m_module_wp = lldb::ModuleWP();
971     m_static_type.SetType (clang_type);
972 }
973 
974 void
975 TypeImpl::SetType (const lldb::TypeSP &type_sp, const CompilerType &dynamic)
976 {
977     SetType (type_sp);
978     m_dynamic_type = dynamic;
979 }
980 
981 void
982 TypeImpl::SetType (const CompilerType &clang_type, const CompilerType &dynamic)
983 {
984     m_module_wp = lldb::ModuleWP();
985     m_static_type.SetType (clang_type);
986     m_dynamic_type = dynamic;
987 }
988 
989 void
990 TypeImpl::SetType (const TypePair &pair, const CompilerType &dynamic)
991 {
992     m_module_wp = pair.GetModule();
993     m_static_type = pair;
994     m_dynamic_type = dynamic;
995 }
996 
997 TypeImpl&
998 TypeImpl::operator = (const TypeImpl& rhs)
999 {
1000     if (rhs != *this)
1001     {
1002         m_module_wp = rhs.m_module_wp;
1003         m_static_type = rhs.m_static_type;
1004         m_dynamic_type = rhs.m_dynamic_type;
1005     }
1006     return *this;
1007 }
1008 
1009 bool
1010 TypeImpl::CheckModule (lldb::ModuleSP &module_sp) const
1011 {
1012     // Check if we have a module for this type. If we do and the shared pointer is
1013     // can be successfully initialized with m_module_wp, return true. Else return false
1014     // if we didn't have a module, or if we had a module and it has been deleted. Any
1015     // functions doing anything with a TypeSP in this TypeImpl class should call this
1016     // function and only do anything with the ivars if this function returns true. If
1017     // we have a module, the "module_sp" will be filled in with a strong reference to the
1018     // module so that the module will at least stay around long enough for the type
1019     // query to succeed.
1020     module_sp = m_module_wp.lock();
1021     if (!module_sp)
1022     {
1023         lldb::ModuleWP empty_module_wp;
1024         // If either call to "std::weak_ptr::owner_before(...) value returns true, this
1025         // indicates that m_module_wp once contained (possibly still does) a reference
1026         // to a valid shared pointer. This helps us know if we had a valid reference to
1027         // a section which is now invalid because the module it was in was deleted
1028         if (empty_module_wp.owner_before(m_module_wp) || m_module_wp.owner_before(empty_module_wp))
1029         {
1030             // m_module_wp had a valid reference to a module, but all strong references
1031             // have been released and the module has been deleted
1032             return false;
1033         }
1034     }
1035     // We either successfully locked the module, or didn't have one to begin with
1036     return true;
1037 }
1038 
1039 bool
1040 TypeImpl::operator == (const TypeImpl& rhs) const
1041 {
1042     return m_static_type == rhs.m_static_type && m_dynamic_type == rhs.m_dynamic_type;
1043 }
1044 
1045 bool
1046 TypeImpl::operator != (const TypeImpl& rhs) const
1047 {
1048     return m_static_type != rhs.m_static_type || m_dynamic_type != rhs.m_dynamic_type;
1049 }
1050 
1051 bool
1052 TypeImpl::IsValid() const
1053 {
1054     // just a name is not valid
1055     ModuleSP module_sp;
1056     if (CheckModule (module_sp))
1057         return m_static_type.IsValid() || m_dynamic_type.IsValid();
1058     return false;
1059 }
1060 
1061 TypeImpl::operator bool () const
1062 {
1063     return IsValid();
1064 }
1065 
1066 void
1067 TypeImpl::Clear()
1068 {
1069     m_module_wp = lldb::ModuleWP();
1070     m_static_type.Clear();
1071     m_dynamic_type.Clear();
1072 }
1073 
1074 ConstString
1075 TypeImpl::GetName ()  const
1076 {
1077     ModuleSP module_sp;
1078     if (CheckModule (module_sp))
1079     {
1080         if (m_dynamic_type)
1081             return m_dynamic_type.GetTypeName();
1082         return m_static_type.GetName ();
1083     }
1084     return ConstString();
1085 }
1086 
1087 ConstString
1088 TypeImpl::GetDisplayTypeName ()  const
1089 {
1090     ModuleSP module_sp;
1091     if (CheckModule (module_sp))
1092     {
1093         if (m_dynamic_type)
1094             return m_dynamic_type.GetDisplayTypeName();
1095         return m_static_type.GetDisplayTypeName();
1096     }
1097     return ConstString();
1098 }
1099 
1100 TypeImpl
1101 TypeImpl::GetPointerType () const
1102 {
1103     ModuleSP module_sp;
1104     if (CheckModule (module_sp))
1105     {
1106         if (m_dynamic_type.IsValid())
1107         {
1108             return TypeImpl(m_static_type.GetPointerType(), m_dynamic_type.GetPointerType());
1109         }
1110         return TypeImpl(m_static_type.GetPointerType());
1111     }
1112     return TypeImpl();
1113 }
1114 
1115 TypeImpl
1116 TypeImpl::GetPointeeType () const
1117 {
1118     ModuleSP module_sp;
1119     if (CheckModule (module_sp))
1120     {
1121         if (m_dynamic_type.IsValid())
1122         {
1123             return TypeImpl(m_static_type.GetPointeeType(), m_dynamic_type.GetPointeeType());
1124         }
1125         return TypeImpl(m_static_type.GetPointeeType());
1126     }
1127     return TypeImpl();
1128 }
1129 
1130 TypeImpl
1131 TypeImpl::GetReferenceType () const
1132 {
1133     ModuleSP module_sp;
1134     if (CheckModule (module_sp))
1135     {
1136         if (m_dynamic_type.IsValid())
1137         {
1138             return TypeImpl(m_static_type.GetReferenceType(), ClangASTContext::GetLValueReferenceType(m_dynamic_type));
1139         }
1140         return TypeImpl(m_static_type.GetReferenceType());
1141     }
1142     return TypeImpl();
1143 }
1144 
1145 TypeImpl
1146 TypeImpl::GetTypedefedType () const
1147 {
1148     ModuleSP module_sp;
1149     if (CheckModule (module_sp))
1150     {
1151         if (m_dynamic_type.IsValid())
1152         {
1153             return TypeImpl(m_static_type.GetTypedefedType(), m_dynamic_type.GetTypedefedType());
1154         }
1155         return TypeImpl(m_static_type.GetTypedefedType());
1156     }
1157     return TypeImpl();
1158 }
1159 
1160 TypeImpl
1161 TypeImpl::GetDereferencedType () const
1162 {
1163     ModuleSP module_sp;
1164     if (CheckModule (module_sp))
1165     {
1166         if (m_dynamic_type.IsValid())
1167         {
1168             return TypeImpl(m_static_type.GetDereferencedType(), m_dynamic_type.GetNonReferenceType());
1169         }
1170         return TypeImpl(m_static_type.GetDereferencedType());
1171     }
1172     return TypeImpl();
1173 }
1174 
1175 TypeImpl
1176 TypeImpl::GetUnqualifiedType() const
1177 {
1178     ModuleSP module_sp;
1179     if (CheckModule (module_sp))
1180     {
1181         if (m_dynamic_type.IsValid())
1182         {
1183             return TypeImpl(m_static_type.GetUnqualifiedType(), m_dynamic_type.GetFullyUnqualifiedType());
1184         }
1185         return TypeImpl(m_static_type.GetUnqualifiedType());
1186     }
1187     return TypeImpl();
1188 }
1189 
1190 TypeImpl
1191 TypeImpl::GetCanonicalType() const
1192 {
1193     ModuleSP module_sp;
1194     if (CheckModule (module_sp))
1195     {
1196         if (m_dynamic_type.IsValid())
1197         {
1198             return TypeImpl(m_static_type.GetCanonicalType(), m_dynamic_type.GetCanonicalType());
1199         }
1200         return TypeImpl(m_static_type.GetCanonicalType());
1201     }
1202     return TypeImpl();
1203 }
1204 
1205 CompilerType
1206 TypeImpl::GetCompilerType (bool prefer_dynamic)
1207 {
1208     ModuleSP module_sp;
1209     if (CheckModule (module_sp))
1210     {
1211         if (prefer_dynamic)
1212         {
1213             if (m_dynamic_type.IsValid())
1214                 return m_dynamic_type;
1215         }
1216         return m_static_type.GetCompilerType();
1217     }
1218     return CompilerType();
1219 }
1220 
1221 TypeSystem *
1222 TypeImpl::GetTypeSystem (bool prefer_dynamic)
1223 {
1224     ModuleSP module_sp;
1225     if (CheckModule (module_sp))
1226     {
1227         if (prefer_dynamic)
1228         {
1229             if (m_dynamic_type.IsValid())
1230                 return m_dynamic_type.GetTypeSystem();
1231         }
1232         return m_static_type.GetCompilerType().GetTypeSystem();
1233     }
1234     return NULL;
1235 }
1236 
1237 bool
1238 TypeImpl::GetDescription (lldb_private::Stream &strm,
1239                           lldb::DescriptionLevel description_level)
1240 {
1241     ModuleSP module_sp;
1242     if (CheckModule (module_sp))
1243     {
1244         if (m_dynamic_type.IsValid())
1245         {
1246             strm.Printf("Dynamic:\n");
1247             m_dynamic_type.DumpTypeDescription(&strm);
1248             strm.Printf("\nStatic:\n");
1249         }
1250         m_static_type.GetCompilerType().DumpTypeDescription(&strm);
1251     }
1252     else
1253     {
1254         strm.PutCString("Invalid TypeImpl module for type has been deleted\n");
1255     }
1256     return true;
1257 }
1258 
1259 TypeMemberFunctionImpl&
1260 TypeMemberFunctionImpl::operator = (const TypeMemberFunctionImpl& rhs)
1261 {
1262     if (this != &rhs)
1263     {
1264         m_type = rhs.m_type;
1265         m_objc_method_decl = rhs.m_objc_method_decl;
1266         m_name = rhs.m_name;
1267         m_kind = rhs.m_kind;
1268     }
1269     return *this;
1270 }
1271 
1272 bool
1273 TypeMemberFunctionImpl::IsValid ()
1274 {
1275     return m_type.IsValid() && m_kind != lldb::eMemberFunctionKindUnknown;
1276 }
1277 
1278 ConstString
1279 TypeMemberFunctionImpl::GetName () const
1280 {
1281     return m_name;
1282 }
1283 
1284 CompilerType
1285 TypeMemberFunctionImpl::GetType () const
1286 {
1287     return m_type;
1288 }
1289 
1290 lldb::MemberFunctionKind
1291 TypeMemberFunctionImpl::GetKind () const
1292 {
1293     return m_kind;
1294 }
1295 
1296 std::string
1297 TypeMemberFunctionImpl::GetPrintableTypeName ()
1298 {
1299     if (m_type)
1300         return m_type.GetTypeName().AsCString("<unknown>");
1301     if (m_objc_method_decl)
1302     {
1303         if (m_objc_method_decl->getClassInterface())
1304         {
1305             return m_objc_method_decl->getClassInterface()->getName();
1306         }
1307     }
1308     return "<unknown>";
1309 }
1310 
1311 bool
1312 TypeMemberFunctionImpl::GetDescription (Stream& stream)
1313 {
1314     switch (m_kind) {
1315         case lldb::eMemberFunctionKindUnknown:
1316             return false;
1317         case lldb::eMemberFunctionKindConstructor:
1318             stream.Printf("constructor for %s", GetPrintableTypeName().c_str());
1319             break;
1320         case lldb::eMemberFunctionKindDestructor:
1321             stream.Printf("destructor for %s",  GetPrintableTypeName().c_str());
1322             break;
1323         case lldb::eMemberFunctionKindInstanceMethod:
1324             stream.Printf("instance method %s of type %s",
1325                           m_name.AsCString(),
1326                           GetPrintableTypeName().c_str());
1327             break;
1328         case lldb::eMemberFunctionKindStaticMethod:
1329             stream.Printf("static method %s of type %s",
1330                           m_name.AsCString(),
1331                           GetPrintableTypeName().c_str());
1332             break;
1333     }
1334     return true;
1335 }
1336 
1337 CompilerType
1338 TypeMemberFunctionImpl::GetReturnType () const
1339 {
1340     if (m_type)
1341         return m_type.GetFunctionReturnType();
1342     if (m_objc_method_decl)
1343         return CompilerType(&m_objc_method_decl->getASTContext(), m_objc_method_decl->getReturnType());
1344     return CompilerType();
1345 }
1346 
1347 size_t
1348 TypeMemberFunctionImpl::GetNumArguments () const
1349 {
1350     if (m_type)
1351         return m_type.GetNumberOfFunctionArguments();
1352     if (m_objc_method_decl)
1353         return m_objc_method_decl->param_size();
1354     return 0;
1355 }
1356 
1357 CompilerType
1358 TypeMemberFunctionImpl::GetArgumentAtIndex (size_t idx) const
1359 {
1360     if (m_type)
1361         return m_type.GetFunctionArgumentAtIndex (idx);
1362     if (m_objc_method_decl)
1363     {
1364         if (idx < m_objc_method_decl->param_size())
1365             return CompilerType(&m_objc_method_decl->getASTContext(), m_objc_method_decl->parameters()[idx]->getOriginalType());
1366     }
1367     return CompilerType();
1368 }
1369 
1370 TypeEnumMemberImpl::TypeEnumMemberImpl (const lldb::TypeImplSP &integer_type_sp,
1371                                         const ConstString &name,
1372                                         const llvm::APSInt &value) :
1373     m_integer_type_sp(integer_type_sp),
1374     m_name(name),
1375     m_value(value),
1376     m_valid((bool)name && (bool)integer_type_sp)
1377 
1378 {
1379 }
1380