1 //===-- DWARFCallFrameInfo.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Symbol/DWARFCallFrameInfo.h" 10 #include "lldb/Core/Module.h" 11 #include "lldb/Core/Section.h" 12 #include "lldb/Core/dwarf.h" 13 #include "lldb/Host/Host.h" 14 #include "lldb/Symbol/ObjectFile.h" 15 #include "lldb/Symbol/UnwindPlan.h" 16 #include "lldb/Target/RegisterContext.h" 17 #include "lldb/Target/Thread.h" 18 #include "lldb/Utility/ArchSpec.h" 19 #include "lldb/Utility/LLDBLog.h" 20 #include "lldb/Utility/Log.h" 21 #include "lldb/Utility/Timer.h" 22 #include <cstring> 23 #include <list> 24 25 using namespace lldb; 26 using namespace lldb_private; 27 using namespace lldb_private::dwarf; 28 29 // GetDwarfEHPtr 30 // 31 // Used for calls when the value type is specified by a DWARF EH Frame pointer 32 // encoding. 33 static uint64_t 34 GetGNUEHPointer(const DataExtractor &DE, offset_t *offset_ptr, 35 uint32_t eh_ptr_enc, addr_t pc_rel_addr, addr_t text_addr, 36 addr_t data_addr) //, BSDRelocs *data_relocs) const 37 { 38 if (eh_ptr_enc == DW_EH_PE_omit) 39 return ULLONG_MAX; // Value isn't in the buffer... 40 41 uint64_t baseAddress = 0; 42 uint64_t addressValue = 0; 43 const uint32_t addr_size = DE.GetAddressByteSize(); 44 assert(addr_size == 4 || addr_size == 8); 45 46 bool signExtendValue = false; 47 // Decode the base part or adjust our offset 48 switch (eh_ptr_enc & 0x70) { 49 case DW_EH_PE_pcrel: 50 signExtendValue = true; 51 baseAddress = *offset_ptr; 52 if (pc_rel_addr != LLDB_INVALID_ADDRESS) 53 baseAddress += pc_rel_addr; 54 // else 55 // Log::GlobalWarning ("PC relative pointer encoding found with 56 // invalid pc relative address."); 57 break; 58 59 case DW_EH_PE_textrel: 60 signExtendValue = true; 61 if (text_addr != LLDB_INVALID_ADDRESS) 62 baseAddress = text_addr; 63 // else 64 // Log::GlobalWarning ("text relative pointer encoding being 65 // decoded with invalid text section address, setting base address 66 // to zero."); 67 break; 68 69 case DW_EH_PE_datarel: 70 signExtendValue = true; 71 if (data_addr != LLDB_INVALID_ADDRESS) 72 baseAddress = data_addr; 73 // else 74 // Log::GlobalWarning ("data relative pointer encoding being 75 // decoded with invalid data section address, setting base address 76 // to zero."); 77 break; 78 79 case DW_EH_PE_funcrel: 80 signExtendValue = true; 81 break; 82 83 case DW_EH_PE_aligned: { 84 // SetPointerSize should be called prior to extracting these so the pointer 85 // size is cached 86 assert(addr_size != 0); 87 if (addr_size) { 88 // Align to a address size boundary first 89 uint32_t alignOffset = *offset_ptr % addr_size; 90 if (alignOffset) 91 offset_ptr += addr_size - alignOffset; 92 } 93 } break; 94 95 default: 96 break; 97 } 98 99 // Decode the value part 100 switch (eh_ptr_enc & DW_EH_PE_MASK_ENCODING) { 101 case DW_EH_PE_absptr: { 102 addressValue = DE.GetAddress(offset_ptr); 103 // if (data_relocs) 104 // addressValue = data_relocs->Relocate(*offset_ptr - 105 // addr_size, *this, addressValue); 106 } break; 107 case DW_EH_PE_uleb128: 108 addressValue = DE.GetULEB128(offset_ptr); 109 break; 110 case DW_EH_PE_udata2: 111 addressValue = DE.GetU16(offset_ptr); 112 break; 113 case DW_EH_PE_udata4: 114 addressValue = DE.GetU32(offset_ptr); 115 break; 116 case DW_EH_PE_udata8: 117 addressValue = DE.GetU64(offset_ptr); 118 break; 119 case DW_EH_PE_sleb128: 120 addressValue = DE.GetSLEB128(offset_ptr); 121 break; 122 case DW_EH_PE_sdata2: 123 addressValue = (int16_t)DE.GetU16(offset_ptr); 124 break; 125 case DW_EH_PE_sdata4: 126 addressValue = (int32_t)DE.GetU32(offset_ptr); 127 break; 128 case DW_EH_PE_sdata8: 129 addressValue = (int64_t)DE.GetU64(offset_ptr); 130 break; 131 default: 132 // Unhandled encoding type 133 assert(eh_ptr_enc); 134 break; 135 } 136 137 // Since we promote everything to 64 bit, we may need to sign extend 138 if (signExtendValue && addr_size < sizeof(baseAddress)) { 139 uint64_t sign_bit = 1ull << ((addr_size * 8ull) - 1ull); 140 if (sign_bit & addressValue) { 141 uint64_t mask = ~sign_bit + 1; 142 addressValue |= mask; 143 } 144 } 145 return baseAddress + addressValue; 146 } 147 148 DWARFCallFrameInfo::DWARFCallFrameInfo(ObjectFile &objfile, 149 SectionSP §ion_sp, Type type) 150 : m_objfile(objfile), m_section_sp(section_sp), m_type(type) {} 151 152 bool DWARFCallFrameInfo::GetUnwindPlan(const Address &addr, 153 UnwindPlan &unwind_plan) { 154 return GetUnwindPlan(AddressRange(addr, 1), unwind_plan); 155 } 156 157 bool DWARFCallFrameInfo::GetUnwindPlan(const AddressRange &range, 158 UnwindPlan &unwind_plan) { 159 FDEEntryMap::Entry fde_entry; 160 Address addr = range.GetBaseAddress(); 161 162 // Make sure that the Address we're searching for is the same object file as 163 // this DWARFCallFrameInfo, we only store File offsets in m_fde_index. 164 ModuleSP module_sp = addr.GetModule(); 165 if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr || 166 module_sp->GetObjectFile() != &m_objfile) 167 return false; 168 169 if (llvm::Optional<FDEEntryMap::Entry> entry = GetFirstFDEEntryInRange(range)) 170 return FDEToUnwindPlan(entry->data, addr, unwind_plan); 171 return false; 172 } 173 174 bool DWARFCallFrameInfo::GetAddressRange(Address addr, AddressRange &range) { 175 176 // Make sure that the Address we're searching for is the same object file as 177 // this DWARFCallFrameInfo, we only store File offsets in m_fde_index. 178 ModuleSP module_sp = addr.GetModule(); 179 if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr || 180 module_sp->GetObjectFile() != &m_objfile) 181 return false; 182 183 if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted()) 184 return false; 185 GetFDEIndex(); 186 FDEEntryMap::Entry *fde_entry = 187 m_fde_index.FindEntryThatContains(addr.GetFileAddress()); 188 if (!fde_entry) 189 return false; 190 191 range = AddressRange(fde_entry->base, fde_entry->size, 192 m_objfile.GetSectionList()); 193 return true; 194 } 195 196 llvm::Optional<DWARFCallFrameInfo::FDEEntryMap::Entry> 197 DWARFCallFrameInfo::GetFirstFDEEntryInRange(const AddressRange &range) { 198 if (!m_section_sp || m_section_sp->IsEncrypted()) 199 return llvm::None; 200 201 GetFDEIndex(); 202 203 addr_t start_file_addr = range.GetBaseAddress().GetFileAddress(); 204 const FDEEntryMap::Entry *fde = 205 m_fde_index.FindEntryThatContainsOrFollows(start_file_addr); 206 if (fde && fde->DoesIntersect( 207 FDEEntryMap::Range(start_file_addr, range.GetByteSize()))) 208 return *fde; 209 210 return llvm::None; 211 } 212 213 void DWARFCallFrameInfo::GetFunctionAddressAndSizeVector( 214 FunctionAddressAndSizeVector &function_info) { 215 GetFDEIndex(); 216 const size_t count = m_fde_index.GetSize(); 217 function_info.Clear(); 218 if (count > 0) 219 function_info.Reserve(count); 220 for (size_t i = 0; i < count; ++i) { 221 const FDEEntryMap::Entry *func_offset_data_entry = 222 m_fde_index.GetEntryAtIndex(i); 223 if (func_offset_data_entry) { 224 FunctionAddressAndSizeVector::Entry function_offset_entry( 225 func_offset_data_entry->base, func_offset_data_entry->size); 226 function_info.Append(function_offset_entry); 227 } 228 } 229 } 230 231 const DWARFCallFrameInfo::CIE * 232 DWARFCallFrameInfo::GetCIE(dw_offset_t cie_offset) { 233 cie_map_t::iterator pos = m_cie_map.find(cie_offset); 234 235 if (pos != m_cie_map.end()) { 236 // Parse and cache the CIE 237 if (pos->second == nullptr) 238 pos->second = ParseCIE(cie_offset); 239 240 return pos->second.get(); 241 } 242 return nullptr; 243 } 244 245 DWARFCallFrameInfo::CIESP 246 DWARFCallFrameInfo::ParseCIE(const dw_offset_t cie_offset) { 247 CIESP cie_sp(new CIE(cie_offset)); 248 lldb::offset_t offset = cie_offset; 249 if (!m_cfi_data_initialized) 250 GetCFIData(); 251 uint32_t length = m_cfi_data.GetU32(&offset); 252 dw_offset_t cie_id, end_offset; 253 bool is_64bit = (length == UINT32_MAX); 254 if (is_64bit) { 255 length = m_cfi_data.GetU64(&offset); 256 cie_id = m_cfi_data.GetU64(&offset); 257 end_offset = cie_offset + length + 12; 258 } else { 259 cie_id = m_cfi_data.GetU32(&offset); 260 end_offset = cie_offset + length + 4; 261 } 262 if (length > 0 && ((m_type == DWARF && cie_id == UINT32_MAX) || 263 (m_type == EH && cie_id == 0ul))) { 264 size_t i; 265 // cie.offset = cie_offset; 266 // cie.length = length; 267 // cie.cieID = cieID; 268 cie_sp->ptr_encoding = DW_EH_PE_absptr; // default 269 cie_sp->version = m_cfi_data.GetU8(&offset); 270 if (cie_sp->version > CFI_VERSION4) { 271 Host::SystemLog(Host::eSystemLogError, 272 "CIE parse error: CFI version %d is not supported\n", 273 cie_sp->version); 274 return nullptr; 275 } 276 277 for (i = 0; i < CFI_AUG_MAX_SIZE; ++i) { 278 cie_sp->augmentation[i] = m_cfi_data.GetU8(&offset); 279 if (cie_sp->augmentation[i] == '\0') { 280 // Zero out remaining bytes in augmentation string 281 for (size_t j = i + 1; j < CFI_AUG_MAX_SIZE; ++j) 282 cie_sp->augmentation[j] = '\0'; 283 284 break; 285 } 286 } 287 288 if (i == CFI_AUG_MAX_SIZE && 289 cie_sp->augmentation[CFI_AUG_MAX_SIZE - 1] != '\0') { 290 Host::SystemLog(Host::eSystemLogError, 291 "CIE parse error: CIE augmentation string was too large " 292 "for the fixed sized buffer of %d bytes.\n", 293 CFI_AUG_MAX_SIZE); 294 return nullptr; 295 } 296 297 // m_cfi_data uses address size from target architecture of the process may 298 // ignore these fields? 299 if (m_type == DWARF && cie_sp->version >= CFI_VERSION4) { 300 cie_sp->address_size = m_cfi_data.GetU8(&offset); 301 cie_sp->segment_size = m_cfi_data.GetU8(&offset); 302 } 303 304 cie_sp->code_align = (uint32_t)m_cfi_data.GetULEB128(&offset); 305 cie_sp->data_align = (int32_t)m_cfi_data.GetSLEB128(&offset); 306 307 cie_sp->return_addr_reg_num = 308 m_type == DWARF && cie_sp->version >= CFI_VERSION3 309 ? static_cast<uint32_t>(m_cfi_data.GetULEB128(&offset)) 310 : m_cfi_data.GetU8(&offset); 311 312 if (cie_sp->augmentation[0]) { 313 // Get the length of the eh_frame augmentation data which starts with a 314 // ULEB128 length in bytes 315 const size_t aug_data_len = (size_t)m_cfi_data.GetULEB128(&offset); 316 const size_t aug_data_end = offset + aug_data_len; 317 const size_t aug_str_len = strlen(cie_sp->augmentation); 318 // A 'z' may be present as the first character of the string. 319 // If present, the Augmentation Data field shall be present. The contents 320 // of the Augmentation Data shall be interpreted according to other 321 // characters in the Augmentation String. 322 if (cie_sp->augmentation[0] == 'z') { 323 // Extract the Augmentation Data 324 size_t aug_str_idx = 0; 325 for (aug_str_idx = 1; aug_str_idx < aug_str_len; aug_str_idx++) { 326 char aug = cie_sp->augmentation[aug_str_idx]; 327 switch (aug) { 328 case 'L': 329 // Indicates the presence of one argument in the Augmentation Data 330 // of the CIE, and a corresponding argument in the Augmentation 331 // Data of the FDE. The argument in the Augmentation Data of the 332 // CIE is 1-byte and represents the pointer encoding used for the 333 // argument in the Augmentation Data of the FDE, which is the 334 // address of a language-specific data area (LSDA). The size of the 335 // LSDA pointer is specified by the pointer encoding used. 336 cie_sp->lsda_addr_encoding = m_cfi_data.GetU8(&offset); 337 break; 338 339 case 'P': 340 // Indicates the presence of two arguments in the Augmentation Data 341 // of the CIE. The first argument is 1-byte and represents the 342 // pointer encoding used for the second argument, which is the 343 // address of a personality routine handler. The size of the 344 // personality routine pointer is specified by the pointer encoding 345 // used. 346 // 347 // The address of the personality function will be stored at this 348 // location. Pre-execution, it will be all zero's so don't read it 349 // until we're trying to do an unwind & the reloc has been 350 // resolved. 351 { 352 uint8_t arg_ptr_encoding = m_cfi_data.GetU8(&offset); 353 const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress(); 354 cie_sp->personality_loc = GetGNUEHPointer( 355 m_cfi_data, &offset, arg_ptr_encoding, pc_rel_addr, 356 LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS); 357 } 358 break; 359 360 case 'R': 361 // A 'R' may be present at any position after the 362 // first character of the string. The Augmentation Data shall 363 // include a 1 byte argument that represents the pointer encoding 364 // for the address pointers used in the FDE. Example: 0x1B == 365 // DW_EH_PE_pcrel | DW_EH_PE_sdata4 366 cie_sp->ptr_encoding = m_cfi_data.GetU8(&offset); 367 break; 368 } 369 } 370 } else if (strcmp(cie_sp->augmentation, "eh") == 0) { 371 // If the Augmentation string has the value "eh", then the EH Data 372 // field shall be present 373 } 374 375 // Set the offset to be the end of the augmentation data just in case we 376 // didn't understand any of the data. 377 offset = (uint32_t)aug_data_end; 378 } 379 380 if (end_offset > offset) { 381 cie_sp->inst_offset = offset; 382 cie_sp->inst_length = end_offset - offset; 383 } 384 while (offset < end_offset) { 385 uint8_t inst = m_cfi_data.GetU8(&offset); 386 uint8_t primary_opcode = inst & 0xC0; 387 uint8_t extended_opcode = inst & 0x3F; 388 389 if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode, 390 cie_sp->data_align, offset, 391 cie_sp->initial_row)) 392 break; // Stop if we hit an unrecognized opcode 393 } 394 } 395 396 return cie_sp; 397 } 398 399 void DWARFCallFrameInfo::GetCFIData() { 400 if (!m_cfi_data_initialized) { 401 Log *log = GetLog(LLDBLog::Unwind); 402 if (log) 403 m_objfile.GetModule()->LogMessage(log, "Reading EH frame info"); 404 m_objfile.ReadSectionData(m_section_sp.get(), m_cfi_data); 405 m_cfi_data_initialized = true; 406 } 407 } 408 // Scan through the eh_frame or debug_frame section looking for FDEs and noting 409 // the start/end addresses of the functions and a pointer back to the 410 // function's FDE for later expansion. Internalize CIEs as we come across them. 411 412 void DWARFCallFrameInfo::GetFDEIndex() { 413 if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted()) 414 return; 415 416 if (m_fde_index_initialized) 417 return; 418 419 std::lock_guard<std::mutex> guard(m_fde_index_mutex); 420 421 if (m_fde_index_initialized) // if two threads hit the locker 422 return; 423 424 LLDB_SCOPED_TIMERF("%s - %s", LLVM_PRETTY_FUNCTION, 425 m_objfile.GetFileSpec().GetFilename().AsCString("")); 426 427 bool clear_address_zeroth_bit = false; 428 if (ArchSpec arch = m_objfile.GetArchitecture()) { 429 if (arch.GetTriple().getArch() == llvm::Triple::arm || 430 arch.GetTriple().getArch() == llvm::Triple::thumb) 431 clear_address_zeroth_bit = true; 432 } 433 434 lldb::offset_t offset = 0; 435 if (!m_cfi_data_initialized) 436 GetCFIData(); 437 while (m_cfi_data.ValidOffsetForDataOfSize(offset, 8)) { 438 const dw_offset_t current_entry = offset; 439 dw_offset_t cie_id, next_entry, cie_offset; 440 uint32_t len = m_cfi_data.GetU32(&offset); 441 bool is_64bit = (len == UINT32_MAX); 442 if (is_64bit) { 443 len = m_cfi_data.GetU64(&offset); 444 cie_id = m_cfi_data.GetU64(&offset); 445 next_entry = current_entry + len + 12; 446 cie_offset = current_entry + 12 - cie_id; 447 } else { 448 cie_id = m_cfi_data.GetU32(&offset); 449 next_entry = current_entry + len + 4; 450 cie_offset = current_entry + 4 - cie_id; 451 } 452 453 if (next_entry > m_cfi_data.GetByteSize() + 1) { 454 Host::SystemLog(Host::eSystemLogError, "error: Invalid fde/cie next " 455 "entry offset of 0x%x found in " 456 "cie/fde at 0x%x\n", 457 next_entry, current_entry); 458 // Don't trust anything in this eh_frame section if we find blatantly 459 // invalid data. 460 m_fde_index.Clear(); 461 m_fde_index_initialized = true; 462 return; 463 } 464 465 // An FDE entry contains CIE_pointer in debug_frame in same place as cie_id 466 // in eh_frame. CIE_pointer is an offset into the .debug_frame section. So, 467 // variable cie_offset should be equal to cie_id for debug_frame. 468 // FDE entries with cie_id == 0 shouldn't be ignored for it. 469 if ((cie_id == 0 && m_type == EH) || cie_id == UINT32_MAX || len == 0) { 470 auto cie_sp = ParseCIE(current_entry); 471 if (!cie_sp) { 472 // Cannot parse, the reason is already logged 473 m_fde_index.Clear(); 474 m_fde_index_initialized = true; 475 return; 476 } 477 478 m_cie_map[current_entry] = std::move(cie_sp); 479 offset = next_entry; 480 continue; 481 } 482 483 if (m_type == DWARF) 484 cie_offset = cie_id; 485 486 if (cie_offset > m_cfi_data.GetByteSize()) { 487 Host::SystemLog(Host::eSystemLogError, 488 "error: Invalid cie offset of 0x%x " 489 "found in cie/fde at 0x%x\n", 490 cie_offset, current_entry); 491 // Don't trust anything in this eh_frame section if we find blatantly 492 // invalid data. 493 m_fde_index.Clear(); 494 m_fde_index_initialized = true; 495 return; 496 } 497 498 const CIE *cie = GetCIE(cie_offset); 499 if (cie) { 500 const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress(); 501 const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS; 502 const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS; 503 504 lldb::addr_t addr = 505 GetGNUEHPointer(m_cfi_data, &offset, cie->ptr_encoding, pc_rel_addr, 506 text_addr, data_addr); 507 if (clear_address_zeroth_bit) 508 addr &= ~1ull; 509 510 lldb::addr_t length = GetGNUEHPointer( 511 m_cfi_data, &offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, 512 pc_rel_addr, text_addr, data_addr); 513 FDEEntryMap::Entry fde(addr, length, current_entry); 514 m_fde_index.Append(fde); 515 } else { 516 Host::SystemLog(Host::eSystemLogError, "error: unable to find CIE at " 517 "0x%8.8x for cie_id = 0x%8.8x for " 518 "entry at 0x%8.8x.\n", 519 cie_offset, cie_id, current_entry); 520 } 521 offset = next_entry; 522 } 523 m_fde_index.Sort(); 524 m_fde_index_initialized = true; 525 } 526 527 bool DWARFCallFrameInfo::FDEToUnwindPlan(dw_offset_t dwarf_offset, 528 Address startaddr, 529 UnwindPlan &unwind_plan) { 530 Log *log = GetLog(LLDBLog::Unwind); 531 lldb::offset_t offset = dwarf_offset; 532 lldb::offset_t current_entry = offset; 533 534 if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted()) 535 return false; 536 537 if (!m_cfi_data_initialized) 538 GetCFIData(); 539 540 uint32_t length = m_cfi_data.GetU32(&offset); 541 dw_offset_t cie_offset; 542 bool is_64bit = (length == UINT32_MAX); 543 if (is_64bit) { 544 length = m_cfi_data.GetU64(&offset); 545 cie_offset = m_cfi_data.GetU64(&offset); 546 } else { 547 cie_offset = m_cfi_data.GetU32(&offset); 548 } 549 550 // FDE entries with zeroth cie_offset may occur for debug_frame. 551 assert(!(m_type == EH && 0 == cie_offset) && cie_offset != UINT32_MAX); 552 553 // Translate the CIE_id from the eh_frame format, which is relative to the 554 // FDE offset, into a __eh_frame section offset 555 if (m_type == EH) { 556 unwind_plan.SetSourceName("eh_frame CFI"); 557 cie_offset = current_entry + (is_64bit ? 12 : 4) - cie_offset; 558 unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo); 559 } else { 560 unwind_plan.SetSourceName("DWARF CFI"); 561 // In theory the debug_frame info should be valid at all call sites 562 // ("asynchronous unwind info" as it is sometimes called) but in practice 563 // gcc et al all emit call frame info for the prologue and call sites, but 564 // not for the epilogue or all the other locations during the function 565 // reliably. 566 unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo); 567 } 568 unwind_plan.SetSourcedFromCompiler(eLazyBoolYes); 569 570 const CIE *cie = GetCIE(cie_offset); 571 assert(cie != nullptr); 572 573 const dw_offset_t end_offset = current_entry + length + (is_64bit ? 12 : 4); 574 575 const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress(); 576 const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS; 577 const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS; 578 lldb::addr_t range_base = 579 GetGNUEHPointer(m_cfi_data, &offset, cie->ptr_encoding, pc_rel_addr, 580 text_addr, data_addr); 581 lldb::addr_t range_len = GetGNUEHPointer( 582 m_cfi_data, &offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, 583 pc_rel_addr, text_addr, data_addr); 584 AddressRange range(range_base, m_objfile.GetAddressByteSize(), 585 m_objfile.GetSectionList()); 586 range.SetByteSize(range_len); 587 588 addr_t lsda_data_file_address = LLDB_INVALID_ADDRESS; 589 590 if (cie->augmentation[0] == 'z') { 591 uint32_t aug_data_len = (uint32_t)m_cfi_data.GetULEB128(&offset); 592 if (aug_data_len != 0 && cie->lsda_addr_encoding != DW_EH_PE_omit) { 593 offset_t saved_offset = offset; 594 lsda_data_file_address = 595 GetGNUEHPointer(m_cfi_data, &offset, cie->lsda_addr_encoding, 596 pc_rel_addr, text_addr, data_addr); 597 if (offset - saved_offset != aug_data_len) { 598 // There is more in the augmentation region than we know how to process; 599 // don't read anything. 600 lsda_data_file_address = LLDB_INVALID_ADDRESS; 601 } 602 offset = saved_offset; 603 } 604 offset += aug_data_len; 605 } 606 unwind_plan.SetUnwindPlanForSignalTrap( 607 strchr(cie->augmentation, 'S') ? eLazyBoolYes : eLazyBoolNo); 608 609 Address lsda_data; 610 Address personality_function_ptr; 611 612 if (lsda_data_file_address != LLDB_INVALID_ADDRESS && 613 cie->personality_loc != LLDB_INVALID_ADDRESS) { 614 m_objfile.GetModule()->ResolveFileAddress(lsda_data_file_address, 615 lsda_data); 616 m_objfile.GetModule()->ResolveFileAddress(cie->personality_loc, 617 personality_function_ptr); 618 } 619 620 if (lsda_data.IsValid() && personality_function_ptr.IsValid()) { 621 unwind_plan.SetLSDAAddress(lsda_data); 622 unwind_plan.SetPersonalityFunctionPtr(personality_function_ptr); 623 } 624 625 uint32_t code_align = cie->code_align; 626 int32_t data_align = cie->data_align; 627 628 unwind_plan.SetPlanValidAddressRange(range); 629 UnwindPlan::Row *cie_initial_row = new UnwindPlan::Row; 630 *cie_initial_row = cie->initial_row; 631 UnwindPlan::RowSP row(cie_initial_row); 632 633 unwind_plan.SetRegisterKind(GetRegisterKind()); 634 unwind_plan.SetReturnAddressRegister(cie->return_addr_reg_num); 635 636 std::vector<UnwindPlan::RowSP> stack; 637 638 UnwindPlan::Row::RegisterLocation reg_location; 639 while (m_cfi_data.ValidOffset(offset) && offset < end_offset) { 640 uint8_t inst = m_cfi_data.GetU8(&offset); 641 uint8_t primary_opcode = inst & 0xC0; 642 uint8_t extended_opcode = inst & 0x3F; 643 644 if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode, data_align, 645 offset, *row)) { 646 if (primary_opcode) { 647 switch (primary_opcode) { 648 case DW_CFA_advance_loc: // (Row Creation Instruction) 649 { // 0x40 - high 2 bits are 0x1, lower 6 bits are delta 650 // takes a single argument that represents a constant delta. The 651 // required action is to create a new table row with a location value 652 // that is computed by taking the current entry's location value and 653 // adding (delta * code_align). All other values in the new row are 654 // initially identical to the current row. 655 unwind_plan.AppendRow(row); 656 UnwindPlan::Row *newrow = new UnwindPlan::Row; 657 *newrow = *row.get(); 658 row.reset(newrow); 659 row->SlideOffset(extended_opcode * code_align); 660 break; 661 } 662 663 case DW_CFA_restore: { // 0xC0 - high 2 bits are 0x3, lower 6 bits are 664 // register 665 // takes a single argument that represents a register number. The 666 // required action is to change the rule for the indicated register 667 // to the rule assigned it by the initial_instructions in the CIE. 668 uint32_t reg_num = extended_opcode; 669 // We only keep enough register locations around to unwind what is in 670 // our thread, and these are organized by the register index in that 671 // state, so we need to convert our eh_frame register number from the 672 // EH frame info, to a register index 673 674 if (unwind_plan.IsValidRowIndex(0) && 675 unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num, 676 reg_location)) 677 row->SetRegisterInfo(reg_num, reg_location); 678 break; 679 } 680 } 681 } else { 682 switch (extended_opcode) { 683 case DW_CFA_set_loc: // 0x1 (Row Creation Instruction) 684 { 685 // DW_CFA_set_loc takes a single argument that represents an address. 686 // The required action is to create a new table row using the 687 // specified address as the location. All other values in the new row 688 // are initially identical to the current row. The new location value 689 // should always be greater than the current one. 690 unwind_plan.AppendRow(row); 691 UnwindPlan::Row *newrow = new UnwindPlan::Row; 692 *newrow = *row.get(); 693 row.reset(newrow); 694 row->SetOffset(m_cfi_data.GetAddress(&offset) - 695 startaddr.GetFileAddress()); 696 break; 697 } 698 699 case DW_CFA_advance_loc1: // 0x2 (Row Creation Instruction) 700 { 701 // takes a single uword argument that represents a constant delta. 702 // This instruction is identical to DW_CFA_advance_loc except for the 703 // encoding and size of the delta argument. 704 unwind_plan.AppendRow(row); 705 UnwindPlan::Row *newrow = new UnwindPlan::Row; 706 *newrow = *row.get(); 707 row.reset(newrow); 708 row->SlideOffset(m_cfi_data.GetU8(&offset) * code_align); 709 break; 710 } 711 712 case DW_CFA_advance_loc2: // 0x3 (Row Creation Instruction) 713 { 714 // takes a single uword argument that represents a constant delta. 715 // This instruction is identical to DW_CFA_advance_loc except for the 716 // encoding and size of the delta argument. 717 unwind_plan.AppendRow(row); 718 UnwindPlan::Row *newrow = new UnwindPlan::Row; 719 *newrow = *row.get(); 720 row.reset(newrow); 721 row->SlideOffset(m_cfi_data.GetU16(&offset) * code_align); 722 break; 723 } 724 725 case DW_CFA_advance_loc4: // 0x4 (Row Creation Instruction) 726 { 727 // takes a single uword argument that represents a constant delta. 728 // This instruction is identical to DW_CFA_advance_loc except for the 729 // encoding and size of the delta argument. 730 unwind_plan.AppendRow(row); 731 UnwindPlan::Row *newrow = new UnwindPlan::Row; 732 *newrow = *row.get(); 733 row.reset(newrow); 734 row->SlideOffset(m_cfi_data.GetU32(&offset) * code_align); 735 break; 736 } 737 738 case DW_CFA_restore_extended: // 0x6 739 { 740 // takes a single unsigned LEB128 argument that represents a register 741 // number. This instruction is identical to DW_CFA_restore except for 742 // the encoding and size of the register argument. 743 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); 744 if (unwind_plan.IsValidRowIndex(0) && 745 unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num, 746 reg_location)) 747 row->SetRegisterInfo(reg_num, reg_location); 748 break; 749 } 750 751 case DW_CFA_remember_state: // 0xA 752 { 753 // These instructions define a stack of information. Encountering the 754 // DW_CFA_remember_state instruction means to save the rules for 755 // every register on the current row on the stack. Encountering the 756 // DW_CFA_restore_state instruction means to pop the set of rules off 757 // the stack and place them in the current row. (This operation is 758 // useful for compilers that move epilogue code into the body of a 759 // function.) 760 stack.push_back(row); 761 UnwindPlan::Row *newrow = new UnwindPlan::Row; 762 *newrow = *row.get(); 763 row.reset(newrow); 764 break; 765 } 766 767 case DW_CFA_restore_state: // 0xB 768 { 769 // These instructions define a stack of information. Encountering the 770 // DW_CFA_remember_state instruction means to save the rules for 771 // every register on the current row on the stack. Encountering the 772 // DW_CFA_restore_state instruction means to pop the set of rules off 773 // the stack and place them in the current row. (This operation is 774 // useful for compilers that move epilogue code into the body of a 775 // function.) 776 if (stack.empty()) { 777 LLDB_LOGF(log, 778 "DWARFCallFrameInfo::%s(dwarf_offset: %" PRIx32 779 ", startaddr: %" PRIx64 780 " encountered DW_CFA_restore_state but state stack " 781 "is empty. Corrupt unwind info?", 782 __FUNCTION__, dwarf_offset, startaddr.GetFileAddress()); 783 break; 784 } 785 lldb::addr_t offset = row->GetOffset(); 786 row = stack.back(); 787 stack.pop_back(); 788 row->SetOffset(offset); 789 break; 790 } 791 792 case DW_CFA_GNU_args_size: // 0x2e 793 { 794 // The DW_CFA_GNU_args_size instruction takes an unsigned LEB128 795 // operand representing an argument size. This instruction specifies 796 // the total of the size of the arguments which have been pushed onto 797 // the stack. 798 799 // TODO: Figure out how we should handle this. 800 m_cfi_data.GetULEB128(&offset); 801 break; 802 } 803 804 case DW_CFA_val_offset: // 0x14 805 case DW_CFA_val_offset_sf: // 0x15 806 default: 807 break; 808 } 809 } 810 } 811 } 812 unwind_plan.AppendRow(row); 813 814 return true; 815 } 816 817 bool DWARFCallFrameInfo::HandleCommonDwarfOpcode(uint8_t primary_opcode, 818 uint8_t extended_opcode, 819 int32_t data_align, 820 lldb::offset_t &offset, 821 UnwindPlan::Row &row) { 822 UnwindPlan::Row::RegisterLocation reg_location; 823 824 if (primary_opcode) { 825 switch (primary_opcode) { 826 case DW_CFA_offset: { // 0x80 - high 2 bits are 0x2, lower 6 bits are 827 // register 828 // takes two arguments: an unsigned LEB128 constant representing a 829 // factored offset and a register number. The required action is to 830 // change the rule for the register indicated by the register number to 831 // be an offset(N) rule with a value of (N = factored offset * 832 // data_align). 833 uint8_t reg_num = extended_opcode; 834 int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align; 835 reg_location.SetAtCFAPlusOffset(op_offset); 836 row.SetRegisterInfo(reg_num, reg_location); 837 return true; 838 } 839 } 840 } else { 841 switch (extended_opcode) { 842 case DW_CFA_nop: // 0x0 843 return true; 844 845 case DW_CFA_offset_extended: // 0x5 846 { 847 // takes two unsigned LEB128 arguments representing a register number and 848 // a factored offset. This instruction is identical to DW_CFA_offset 849 // except for the encoding and size of the register argument. 850 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); 851 int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align; 852 UnwindPlan::Row::RegisterLocation reg_location; 853 reg_location.SetAtCFAPlusOffset(op_offset); 854 row.SetRegisterInfo(reg_num, reg_location); 855 return true; 856 } 857 858 case DW_CFA_undefined: // 0x7 859 { 860 // takes a single unsigned LEB128 argument that represents a register 861 // number. The required action is to set the rule for the specified 862 // register to undefined. 863 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); 864 UnwindPlan::Row::RegisterLocation reg_location; 865 reg_location.SetUndefined(); 866 row.SetRegisterInfo(reg_num, reg_location); 867 return true; 868 } 869 870 case DW_CFA_same_value: // 0x8 871 { 872 // takes a single unsigned LEB128 argument that represents a register 873 // number. The required action is to set the rule for the specified 874 // register to same value. 875 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); 876 UnwindPlan::Row::RegisterLocation reg_location; 877 reg_location.SetSame(); 878 row.SetRegisterInfo(reg_num, reg_location); 879 return true; 880 } 881 882 case DW_CFA_register: // 0x9 883 { 884 // takes two unsigned LEB128 arguments representing register numbers. The 885 // required action is to set the rule for the first register to be the 886 // second register. 887 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); 888 uint32_t other_reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); 889 UnwindPlan::Row::RegisterLocation reg_location; 890 reg_location.SetInRegister(other_reg_num); 891 row.SetRegisterInfo(reg_num, reg_location); 892 return true; 893 } 894 895 case DW_CFA_def_cfa: // 0xC (CFA Definition Instruction) 896 { 897 // Takes two unsigned LEB128 operands representing a register number and 898 // a (non-factored) offset. The required action is to define the current 899 // CFA rule to use the provided register and offset. 900 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); 901 int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset); 902 row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, op_offset); 903 return true; 904 } 905 906 case DW_CFA_def_cfa_register: // 0xD (CFA Definition Instruction) 907 { 908 // takes a single unsigned LEB128 argument representing a register 909 // number. The required action is to define the current CFA rule to use 910 // the provided register (but to keep the old offset). 911 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); 912 row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, 913 row.GetCFAValue().GetOffset()); 914 return true; 915 } 916 917 case DW_CFA_def_cfa_offset: // 0xE (CFA Definition Instruction) 918 { 919 // Takes a single unsigned LEB128 operand representing a (non-factored) 920 // offset. The required action is to define the current CFA rule to use 921 // the provided offset (but to keep the old register). 922 int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset); 923 row.GetCFAValue().SetIsRegisterPlusOffset( 924 row.GetCFAValue().GetRegisterNumber(), op_offset); 925 return true; 926 } 927 928 case DW_CFA_def_cfa_expression: // 0xF (CFA Definition Instruction) 929 { 930 size_t block_len = (size_t)m_cfi_data.GetULEB128(&offset); 931 const uint8_t *block_data = 932 static_cast<const uint8_t *>(m_cfi_data.GetData(&offset, block_len)); 933 row.GetCFAValue().SetIsDWARFExpression(block_data, block_len); 934 return true; 935 } 936 937 case DW_CFA_expression: // 0x10 938 { 939 // Takes two operands: an unsigned LEB128 value representing a register 940 // number, and a DW_FORM_block value representing a DWARF expression. The 941 // required action is to change the rule for the register indicated by 942 // the register number to be an expression(E) rule where E is the DWARF 943 // expression. That is, the DWARF expression computes the address. The 944 // value of the CFA is pushed on the DWARF evaluation stack prior to 945 // execution of the DWARF expression. 946 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); 947 uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset); 948 const uint8_t *block_data = 949 static_cast<const uint8_t *>(m_cfi_data.GetData(&offset, block_len)); 950 UnwindPlan::Row::RegisterLocation reg_location; 951 reg_location.SetAtDWARFExpression(block_data, block_len); 952 row.SetRegisterInfo(reg_num, reg_location); 953 return true; 954 } 955 956 case DW_CFA_offset_extended_sf: // 0x11 957 { 958 // takes two operands: an unsigned LEB128 value representing a register 959 // number and a signed LEB128 factored offset. This instruction is 960 // identical to DW_CFA_offset_extended except that the second operand is 961 // signed and factored. 962 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); 963 int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align; 964 UnwindPlan::Row::RegisterLocation reg_location; 965 reg_location.SetAtCFAPlusOffset(op_offset); 966 row.SetRegisterInfo(reg_num, reg_location); 967 return true; 968 } 969 970 case DW_CFA_def_cfa_sf: // 0x12 (CFA Definition Instruction) 971 { 972 // Takes two operands: an unsigned LEB128 value representing a register 973 // number and a signed LEB128 factored offset. This instruction is 974 // identical to DW_CFA_def_cfa except that the second operand is signed 975 // and factored. 976 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); 977 int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align; 978 row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, op_offset); 979 return true; 980 } 981 982 case DW_CFA_def_cfa_offset_sf: // 0x13 (CFA Definition Instruction) 983 { 984 // takes a signed LEB128 operand representing a factored offset. This 985 // instruction is identical to DW_CFA_def_cfa_offset except that the 986 // operand is signed and factored. 987 int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align; 988 uint32_t cfa_regnum = row.GetCFAValue().GetRegisterNumber(); 989 row.GetCFAValue().SetIsRegisterPlusOffset(cfa_regnum, op_offset); 990 return true; 991 } 992 993 case DW_CFA_val_expression: // 0x16 994 { 995 // takes two operands: an unsigned LEB128 value representing a register 996 // number, and a DW_FORM_block value representing a DWARF expression. The 997 // required action is to change the rule for the register indicated by 998 // the register number to be a val_expression(E) rule where E is the 999 // DWARF expression. That is, the DWARF expression computes the value of 1000 // the given register. The value of the CFA is pushed on the DWARF 1001 // evaluation stack prior to execution of the DWARF expression. 1002 uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); 1003 uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset); 1004 const uint8_t *block_data = 1005 (const uint8_t *)m_cfi_data.GetData(&offset, block_len); 1006 reg_location.SetIsDWARFExpression(block_data, block_len); 1007 row.SetRegisterInfo(reg_num, reg_location); 1008 return true; 1009 } 1010 } 1011 } 1012 return false; 1013 } 1014 1015 void DWARFCallFrameInfo::ForEachFDEEntries( 1016 const std::function<bool(lldb::addr_t, uint32_t, dw_offset_t)> &callback) { 1017 GetFDEIndex(); 1018 1019 for (size_t i = 0, c = m_fde_index.GetSize(); i < c; ++i) { 1020 const FDEEntryMap::Entry &entry = m_fde_index.GetEntryRef(i); 1021 if (!callback(entry.base, entry.size, entry.data)) 1022 break; 1023 } 1024 } 1025