1 //===-- DWARFCallFrameInfo.cpp ----------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "lldb/Symbol/DWARFCallFrameInfo.h"
10 #include "lldb/Core/Module.h"
11 #include "lldb/Core/Section.h"
12 #include "lldb/Core/dwarf.h"
13 #include "lldb/Host/Host.h"
14 #include "lldb/Symbol/ObjectFile.h"
15 #include "lldb/Symbol/UnwindPlan.h"
16 #include "lldb/Target/RegisterContext.h"
17 #include "lldb/Target/Thread.h"
18 #include "lldb/Utility/ArchSpec.h"
19 #include "lldb/Utility/Log.h"
20 #include "lldb/Utility/Timer.h"
21 #include <list>
22 
23 using namespace lldb;
24 using namespace lldb_private;
25 
26 // GetDwarfEHPtr
27 //
28 // Used for calls when the value type is specified by a DWARF EH Frame pointer
29 // encoding.
30 static uint64_t
31 GetGNUEHPointer(const DataExtractor &DE, offset_t *offset_ptr,
32                 uint32_t eh_ptr_enc, addr_t pc_rel_addr, addr_t text_addr,
33                 addr_t data_addr) //, BSDRelocs *data_relocs) const
34 {
35   if (eh_ptr_enc == DW_EH_PE_omit)
36     return ULLONG_MAX; // Value isn't in the buffer...
37 
38   uint64_t baseAddress = 0;
39   uint64_t addressValue = 0;
40   const uint32_t addr_size = DE.GetAddressByteSize();
41   assert(addr_size == 4 || addr_size == 8);
42 
43   bool signExtendValue = false;
44   // Decode the base part or adjust our offset
45   switch (eh_ptr_enc & 0x70) {
46   case DW_EH_PE_pcrel:
47     signExtendValue = true;
48     baseAddress = *offset_ptr;
49     if (pc_rel_addr != LLDB_INVALID_ADDRESS)
50       baseAddress += pc_rel_addr;
51     //      else
52     //          Log::GlobalWarning ("PC relative pointer encoding found with
53     //          invalid pc relative address.");
54     break;
55 
56   case DW_EH_PE_textrel:
57     signExtendValue = true;
58     if (text_addr != LLDB_INVALID_ADDRESS)
59       baseAddress = text_addr;
60     //      else
61     //          Log::GlobalWarning ("text relative pointer encoding being
62     //          decoded with invalid text section address, setting base address
63     //          to zero.");
64     break;
65 
66   case DW_EH_PE_datarel:
67     signExtendValue = true;
68     if (data_addr != LLDB_INVALID_ADDRESS)
69       baseAddress = data_addr;
70     //      else
71     //          Log::GlobalWarning ("data relative pointer encoding being
72     //          decoded with invalid data section address, setting base address
73     //          to zero.");
74     break;
75 
76   case DW_EH_PE_funcrel:
77     signExtendValue = true;
78     break;
79 
80   case DW_EH_PE_aligned: {
81     // SetPointerSize should be called prior to extracting these so the pointer
82     // size is cached
83     assert(addr_size != 0);
84     if (addr_size) {
85       // Align to a address size boundary first
86       uint32_t alignOffset = *offset_ptr % addr_size;
87       if (alignOffset)
88         offset_ptr += addr_size - alignOffset;
89     }
90   } break;
91 
92   default:
93     break;
94   }
95 
96   // Decode the value part
97   switch (eh_ptr_enc & DW_EH_PE_MASK_ENCODING) {
98   case DW_EH_PE_absptr: {
99     addressValue = DE.GetAddress(offset_ptr);
100     //          if (data_relocs)
101     //              addressValue = data_relocs->Relocate(*offset_ptr -
102     //              addr_size, *this, addressValue);
103   } break;
104   case DW_EH_PE_uleb128:
105     addressValue = DE.GetULEB128(offset_ptr);
106     break;
107   case DW_EH_PE_udata2:
108     addressValue = DE.GetU16(offset_ptr);
109     break;
110   case DW_EH_PE_udata4:
111     addressValue = DE.GetU32(offset_ptr);
112     break;
113   case DW_EH_PE_udata8:
114     addressValue = DE.GetU64(offset_ptr);
115     break;
116   case DW_EH_PE_sleb128:
117     addressValue = DE.GetSLEB128(offset_ptr);
118     break;
119   case DW_EH_PE_sdata2:
120     addressValue = (int16_t)DE.GetU16(offset_ptr);
121     break;
122   case DW_EH_PE_sdata4:
123     addressValue = (int32_t)DE.GetU32(offset_ptr);
124     break;
125   case DW_EH_PE_sdata8:
126     addressValue = (int64_t)DE.GetU64(offset_ptr);
127     break;
128   default:
129     // Unhandled encoding type
130     assert(eh_ptr_enc);
131     break;
132   }
133 
134   // Since we promote everything to 64 bit, we may need to sign extend
135   if (signExtendValue && addr_size < sizeof(baseAddress)) {
136     uint64_t sign_bit = 1ull << ((addr_size * 8ull) - 1ull);
137     if (sign_bit & addressValue) {
138       uint64_t mask = ~sign_bit + 1;
139       addressValue |= mask;
140     }
141   }
142   return baseAddress + addressValue;
143 }
144 
145 DWARFCallFrameInfo::DWARFCallFrameInfo(ObjectFile &objfile,
146                                        SectionSP &section_sp, Type type)
147     : m_objfile(objfile), m_section_sp(section_sp), m_type(type) {}
148 
149 bool DWARFCallFrameInfo::GetUnwindPlan(Address addr, UnwindPlan &unwind_plan) {
150   FDEEntryMap::Entry fde_entry;
151 
152   // Make sure that the Address we're searching for is the same object file as
153   // this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
154   ModuleSP module_sp = addr.GetModule();
155   if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr ||
156       module_sp->GetObjectFile() != &m_objfile)
157     return false;
158 
159   if (!GetFDEEntryByFileAddress(addr.GetFileAddress(), fde_entry))
160     return false;
161   return FDEToUnwindPlan(fde_entry.data, addr, unwind_plan);
162 }
163 
164 bool DWARFCallFrameInfo::GetAddressRange(Address addr, AddressRange &range) {
165 
166   // Make sure that the Address we're searching for is the same object file as
167   // this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
168   ModuleSP module_sp = addr.GetModule();
169   if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr ||
170       module_sp->GetObjectFile() != &m_objfile)
171     return false;
172 
173   if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
174     return false;
175   GetFDEIndex();
176   FDEEntryMap::Entry *fde_entry =
177       m_fde_index.FindEntryThatContains(addr.GetFileAddress());
178   if (!fde_entry)
179     return false;
180 
181   range = AddressRange(fde_entry->base, fde_entry->size,
182                        m_objfile.GetSectionList());
183   return true;
184 }
185 
186 bool DWARFCallFrameInfo::GetFDEEntryByFileAddress(
187     addr_t file_addr, FDEEntryMap::Entry &fde_entry) {
188   if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
189     return false;
190 
191   GetFDEIndex();
192 
193   if (m_fde_index.IsEmpty())
194     return false;
195 
196   FDEEntryMap::Entry *fde = m_fde_index.FindEntryThatContains(file_addr);
197 
198   if (fde == nullptr)
199     return false;
200 
201   fde_entry = *fde;
202   return true;
203 }
204 
205 void DWARFCallFrameInfo::GetFunctionAddressAndSizeVector(
206     FunctionAddressAndSizeVector &function_info) {
207   GetFDEIndex();
208   const size_t count = m_fde_index.GetSize();
209   function_info.Clear();
210   if (count > 0)
211     function_info.Reserve(count);
212   for (size_t i = 0; i < count; ++i) {
213     const FDEEntryMap::Entry *func_offset_data_entry =
214         m_fde_index.GetEntryAtIndex(i);
215     if (func_offset_data_entry) {
216       FunctionAddressAndSizeVector::Entry function_offset_entry(
217           func_offset_data_entry->base, func_offset_data_entry->size);
218       function_info.Append(function_offset_entry);
219     }
220   }
221 }
222 
223 const DWARFCallFrameInfo::CIE *
224 DWARFCallFrameInfo::GetCIE(dw_offset_t cie_offset) {
225   cie_map_t::iterator pos = m_cie_map.find(cie_offset);
226 
227   if (pos != m_cie_map.end()) {
228     // Parse and cache the CIE
229     if (pos->second == nullptr)
230       pos->second = ParseCIE(cie_offset);
231 
232     return pos->second.get();
233   }
234   return nullptr;
235 }
236 
237 DWARFCallFrameInfo::CIESP
238 DWARFCallFrameInfo::ParseCIE(const dw_offset_t cie_offset) {
239   CIESP cie_sp(new CIE(cie_offset));
240   lldb::offset_t offset = cie_offset;
241   if (!m_cfi_data_initialized)
242     GetCFIData();
243   uint32_t length = m_cfi_data.GetU32(&offset);
244   dw_offset_t cie_id, end_offset;
245   bool is_64bit = (length == UINT32_MAX);
246   if (is_64bit) {
247     length = m_cfi_data.GetU64(&offset);
248     cie_id = m_cfi_data.GetU64(&offset);
249     end_offset = cie_offset + length + 12;
250   } else {
251     cie_id = m_cfi_data.GetU32(&offset);
252     end_offset = cie_offset + length + 4;
253   }
254   if (length > 0 && ((m_type == DWARF && cie_id == UINT32_MAX) ||
255                      (m_type == EH && cie_id == 0ul))) {
256     size_t i;
257     //    cie.offset = cie_offset;
258     //    cie.length = length;
259     //    cie.cieID = cieID;
260     cie_sp->ptr_encoding = DW_EH_PE_absptr; // default
261     cie_sp->version = m_cfi_data.GetU8(&offset);
262     if (cie_sp->version > CFI_VERSION4) {
263       Host::SystemLog(Host::eSystemLogError,
264                       "CIE parse error: CFI version %d is not supported\n",
265                       cie_sp->version);
266       return nullptr;
267     }
268 
269     for (i = 0; i < CFI_AUG_MAX_SIZE; ++i) {
270       cie_sp->augmentation[i] = m_cfi_data.GetU8(&offset);
271       if (cie_sp->augmentation[i] == '\0') {
272         // Zero out remaining bytes in augmentation string
273         for (size_t j = i + 1; j < CFI_AUG_MAX_SIZE; ++j)
274           cie_sp->augmentation[j] = '\0';
275 
276         break;
277       }
278     }
279 
280     if (i == CFI_AUG_MAX_SIZE &&
281         cie_sp->augmentation[CFI_AUG_MAX_SIZE - 1] != '\0') {
282       Host::SystemLog(Host::eSystemLogError,
283                       "CIE parse error: CIE augmentation string was too large "
284                       "for the fixed sized buffer of %d bytes.\n",
285                       CFI_AUG_MAX_SIZE);
286       return nullptr;
287     }
288 
289     // m_cfi_data uses address size from target architecture of the process may
290     // ignore these fields?
291     if (m_type == DWARF && cie_sp->version >= CFI_VERSION4) {
292       cie_sp->address_size = m_cfi_data.GetU8(&offset);
293       cie_sp->segment_size = m_cfi_data.GetU8(&offset);
294     }
295 
296     cie_sp->code_align = (uint32_t)m_cfi_data.GetULEB128(&offset);
297     cie_sp->data_align = (int32_t)m_cfi_data.GetSLEB128(&offset);
298 
299     cie_sp->return_addr_reg_num =
300         m_type == DWARF && cie_sp->version >= CFI_VERSION3
301             ? static_cast<uint32_t>(m_cfi_data.GetULEB128(&offset))
302             : m_cfi_data.GetU8(&offset);
303 
304     if (cie_sp->augmentation[0]) {
305       // Get the length of the eh_frame augmentation data which starts with a
306       // ULEB128 length in bytes
307       const size_t aug_data_len = (size_t)m_cfi_data.GetULEB128(&offset);
308       const size_t aug_data_end = offset + aug_data_len;
309       const size_t aug_str_len = strlen(cie_sp->augmentation);
310       // A 'z' may be present as the first character of the string.
311       // If present, the Augmentation Data field shall be present. The contents
312       // of the Augmentation Data shall be interpreted according to other
313       // characters in the Augmentation String.
314       if (cie_sp->augmentation[0] == 'z') {
315         // Extract the Augmentation Data
316         size_t aug_str_idx = 0;
317         for (aug_str_idx = 1; aug_str_idx < aug_str_len; aug_str_idx++) {
318           char aug = cie_sp->augmentation[aug_str_idx];
319           switch (aug) {
320           case 'L':
321             // Indicates the presence of one argument in the Augmentation Data
322             // of the CIE, and a corresponding argument in the Augmentation
323             // Data of the FDE. The argument in the Augmentation Data of the
324             // CIE is 1-byte and represents the pointer encoding used for the
325             // argument in the Augmentation Data of the FDE, which is the
326             // address of a language-specific data area (LSDA). The size of the
327             // LSDA pointer is specified by the pointer encoding used.
328             cie_sp->lsda_addr_encoding = m_cfi_data.GetU8(&offset);
329             break;
330 
331           case 'P':
332             // Indicates the presence of two arguments in the Augmentation Data
333             // of the CIE. The first argument is 1-byte and represents the
334             // pointer encoding used for the second argument, which is the
335             // address of a personality routine handler. The size of the
336             // personality routine pointer is specified by the pointer encoding
337             // used.
338             //
339             // The address of the personality function will be stored at this
340             // location.  Pre-execution, it will be all zero's so don't read it
341             // until we're trying to do an unwind & the reloc has been
342             // resolved.
343             {
344               uint8_t arg_ptr_encoding = m_cfi_data.GetU8(&offset);
345               const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
346               cie_sp->personality_loc = GetGNUEHPointer(
347                   m_cfi_data, &offset, arg_ptr_encoding, pc_rel_addr,
348                   LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS);
349             }
350             break;
351 
352           case 'R':
353             // A 'R' may be present at any position after the
354             // first character of the string. The Augmentation Data shall
355             // include a 1 byte argument that represents the pointer encoding
356             // for the address pointers used in the FDE. Example: 0x1B ==
357             // DW_EH_PE_pcrel | DW_EH_PE_sdata4
358             cie_sp->ptr_encoding = m_cfi_data.GetU8(&offset);
359             break;
360           }
361         }
362       } else if (strcmp(cie_sp->augmentation, "eh") == 0) {
363         // If the Augmentation string has the value "eh", then the EH Data
364         // field shall be present
365       }
366 
367       // Set the offset to be the end of the augmentation data just in case we
368       // didn't understand any of the data.
369       offset = (uint32_t)aug_data_end;
370     }
371 
372     if (end_offset > offset) {
373       cie_sp->inst_offset = offset;
374       cie_sp->inst_length = end_offset - offset;
375     }
376     while (offset < end_offset) {
377       uint8_t inst = m_cfi_data.GetU8(&offset);
378       uint8_t primary_opcode = inst & 0xC0;
379       uint8_t extended_opcode = inst & 0x3F;
380 
381       if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode,
382                                    cie_sp->data_align, offset,
383                                    cie_sp->initial_row))
384         break; // Stop if we hit an unrecognized opcode
385     }
386   }
387 
388   return cie_sp;
389 }
390 
391 void DWARFCallFrameInfo::GetCFIData() {
392   if (!m_cfi_data_initialized) {
393     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_UNWIND));
394     if (log)
395       m_objfile.GetModule()->LogMessage(log, "Reading EH frame info");
396     m_objfile.ReadSectionData(m_section_sp.get(), m_cfi_data);
397     m_cfi_data_initialized = true;
398   }
399 }
400 // Scan through the eh_frame or debug_frame section looking for FDEs and noting
401 // the start/end addresses of the functions and a pointer back to the
402 // function's FDE for later expansion. Internalize CIEs as we come across them.
403 
404 void DWARFCallFrameInfo::GetFDEIndex() {
405   if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
406     return;
407 
408   if (m_fde_index_initialized)
409     return;
410 
411   std::lock_guard<std::mutex> guard(m_fde_index_mutex);
412 
413   if (m_fde_index_initialized) // if two threads hit the locker
414     return;
415 
416   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
417   Timer scoped_timer(func_cat, "%s - %s", LLVM_PRETTY_FUNCTION,
418                      m_objfile.GetFileSpec().GetFilename().AsCString(""));
419 
420   bool clear_address_zeroth_bit = false;
421   if (ArchSpec arch = m_objfile.GetArchitecture()) {
422     if (arch.GetTriple().getArch() == llvm::Triple::arm ||
423         arch.GetTriple().getArch() == llvm::Triple::thumb)
424       clear_address_zeroth_bit = true;
425   }
426 
427   lldb::offset_t offset = 0;
428   if (!m_cfi_data_initialized)
429     GetCFIData();
430   while (m_cfi_data.ValidOffsetForDataOfSize(offset, 8)) {
431     const dw_offset_t current_entry = offset;
432     dw_offset_t cie_id, next_entry, cie_offset;
433     uint32_t len = m_cfi_data.GetU32(&offset);
434     bool is_64bit = (len == UINT32_MAX);
435     if (is_64bit) {
436       len = m_cfi_data.GetU64(&offset);
437       cie_id = m_cfi_data.GetU64(&offset);
438       next_entry = current_entry + len + 12;
439       cie_offset = current_entry + 12 - cie_id;
440     } else {
441       cie_id = m_cfi_data.GetU32(&offset);
442       next_entry = current_entry + len + 4;
443       cie_offset = current_entry + 4 - cie_id;
444     }
445 
446     if (next_entry > m_cfi_data.GetByteSize() + 1) {
447       Host::SystemLog(Host::eSystemLogError, "error: Invalid fde/cie next "
448                                              "entry offset of 0x%x found in "
449                                              "cie/fde at 0x%x\n",
450                       next_entry, current_entry);
451       // Don't trust anything in this eh_frame section if we find blatantly
452       // invalid data.
453       m_fde_index.Clear();
454       m_fde_index_initialized = true;
455       return;
456     }
457 
458     // An FDE entry contains CIE_pointer in debug_frame in same place as cie_id
459     // in eh_frame. CIE_pointer is an offset into the .debug_frame section. So,
460     // variable cie_offset should be equal to cie_id for debug_frame.
461     // FDE entries with cie_id == 0 shouldn't be ignored for it.
462     if ((cie_id == 0 && m_type == EH) || cie_id == UINT32_MAX || len == 0) {
463       auto cie_sp = ParseCIE(current_entry);
464       if (!cie_sp) {
465         // Cannot parse, the reason is already logged
466         m_fde_index.Clear();
467         m_fde_index_initialized = true;
468         return;
469       }
470 
471       m_cie_map[current_entry] = std::move(cie_sp);
472       offset = next_entry;
473       continue;
474     }
475 
476     if (m_type == DWARF)
477       cie_offset = cie_id;
478 
479     if (cie_offset > m_cfi_data.GetByteSize()) {
480       Host::SystemLog(Host::eSystemLogError,
481                       "error: Invalid cie offset of 0x%x "
482                       "found in cie/fde at 0x%x\n",
483                       cie_offset, current_entry);
484       // Don't trust anything in this eh_frame section if we find blatantly
485       // invalid data.
486       m_fde_index.Clear();
487       m_fde_index_initialized = true;
488       return;
489     }
490 
491     const CIE *cie = GetCIE(cie_offset);
492     if (cie) {
493       const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
494       const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
495       const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
496 
497       lldb::addr_t addr =
498           GetGNUEHPointer(m_cfi_data, &offset, cie->ptr_encoding, pc_rel_addr,
499                           text_addr, data_addr);
500       if (clear_address_zeroth_bit)
501         addr &= ~1ull;
502 
503       lldb::addr_t length = GetGNUEHPointer(
504           m_cfi_data, &offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING,
505           pc_rel_addr, text_addr, data_addr);
506       FDEEntryMap::Entry fde(addr, length, current_entry);
507       m_fde_index.Append(fde);
508     } else {
509       Host::SystemLog(Host::eSystemLogError, "error: unable to find CIE at "
510                                              "0x%8.8x for cie_id = 0x%8.8x for "
511                                              "entry at 0x%8.8x.\n",
512                       cie_offset, cie_id, current_entry);
513     }
514     offset = next_entry;
515   }
516   m_fde_index.Sort();
517   m_fde_index_initialized = true;
518 }
519 
520 bool DWARFCallFrameInfo::FDEToUnwindPlan(dw_offset_t dwarf_offset,
521                                          Address startaddr,
522                                          UnwindPlan &unwind_plan) {
523   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_UNWIND);
524   lldb::offset_t offset = dwarf_offset;
525   lldb::offset_t current_entry = offset;
526 
527   if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
528     return false;
529 
530   if (!m_cfi_data_initialized)
531     GetCFIData();
532 
533   uint32_t length = m_cfi_data.GetU32(&offset);
534   dw_offset_t cie_offset;
535   bool is_64bit = (length == UINT32_MAX);
536   if (is_64bit) {
537     length = m_cfi_data.GetU64(&offset);
538     cie_offset = m_cfi_data.GetU64(&offset);
539   } else {
540     cie_offset = m_cfi_data.GetU32(&offset);
541   }
542 
543   // FDE entries with zeroth cie_offset may occur for debug_frame.
544   assert(!(m_type == EH && 0 == cie_offset) && cie_offset != UINT32_MAX);
545 
546   // Translate the CIE_id from the eh_frame format, which is relative to the
547   // FDE offset, into a __eh_frame section offset
548   if (m_type == EH) {
549     unwind_plan.SetSourceName("eh_frame CFI");
550     cie_offset = current_entry + (is_64bit ? 12 : 4) - cie_offset;
551     unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
552   } else {
553     unwind_plan.SetSourceName("DWARF CFI");
554     // In theory the debug_frame info should be valid at all call sites
555     // ("asynchronous unwind info" as it is sometimes called) but in practice
556     // gcc et al all emit call frame info for the prologue and call sites, but
557     // not for the epilogue or all the other locations during the function
558     // reliably.
559     unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
560   }
561   unwind_plan.SetSourcedFromCompiler(eLazyBoolYes);
562 
563   const CIE *cie = GetCIE(cie_offset);
564   assert(cie != nullptr);
565 
566   const dw_offset_t end_offset = current_entry + length + (is_64bit ? 12 : 4);
567 
568   const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
569   const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
570   const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
571   lldb::addr_t range_base =
572       GetGNUEHPointer(m_cfi_data, &offset, cie->ptr_encoding, pc_rel_addr,
573                       text_addr, data_addr);
574   lldb::addr_t range_len = GetGNUEHPointer(
575       m_cfi_data, &offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING,
576       pc_rel_addr, text_addr, data_addr);
577   AddressRange range(range_base, m_objfile.GetAddressByteSize(),
578                      m_objfile.GetSectionList());
579   range.SetByteSize(range_len);
580 
581   addr_t lsda_data_file_address = LLDB_INVALID_ADDRESS;
582 
583   if (cie->augmentation[0] == 'z') {
584     uint32_t aug_data_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
585     if (aug_data_len != 0 && cie->lsda_addr_encoding != DW_EH_PE_omit) {
586       offset_t saved_offset = offset;
587       lsda_data_file_address =
588           GetGNUEHPointer(m_cfi_data, &offset, cie->lsda_addr_encoding,
589                           pc_rel_addr, text_addr, data_addr);
590       if (offset - saved_offset != aug_data_len) {
591         // There is more in the augmentation region than we know how to process;
592         // don't read anything.
593         lsda_data_file_address = LLDB_INVALID_ADDRESS;
594       }
595       offset = saved_offset;
596     }
597     offset += aug_data_len;
598   }
599   Address lsda_data;
600   Address personality_function_ptr;
601 
602   if (lsda_data_file_address != LLDB_INVALID_ADDRESS &&
603       cie->personality_loc != LLDB_INVALID_ADDRESS) {
604     m_objfile.GetModule()->ResolveFileAddress(lsda_data_file_address,
605                                               lsda_data);
606     m_objfile.GetModule()->ResolveFileAddress(cie->personality_loc,
607                                               personality_function_ptr);
608   }
609 
610   if (lsda_data.IsValid() && personality_function_ptr.IsValid()) {
611     unwind_plan.SetLSDAAddress(lsda_data);
612     unwind_plan.SetPersonalityFunctionPtr(personality_function_ptr);
613   }
614 
615   uint32_t code_align = cie->code_align;
616   int32_t data_align = cie->data_align;
617 
618   unwind_plan.SetPlanValidAddressRange(range);
619   UnwindPlan::Row *cie_initial_row = new UnwindPlan::Row;
620   *cie_initial_row = cie->initial_row;
621   UnwindPlan::RowSP row(cie_initial_row);
622 
623   unwind_plan.SetRegisterKind(GetRegisterKind());
624   unwind_plan.SetReturnAddressRegister(cie->return_addr_reg_num);
625 
626   std::vector<UnwindPlan::RowSP> stack;
627 
628   UnwindPlan::Row::RegisterLocation reg_location;
629   while (m_cfi_data.ValidOffset(offset) && offset < end_offset) {
630     uint8_t inst = m_cfi_data.GetU8(&offset);
631     uint8_t primary_opcode = inst & 0xC0;
632     uint8_t extended_opcode = inst & 0x3F;
633 
634     if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode, data_align,
635                                  offset, *row)) {
636       if (primary_opcode) {
637         switch (primary_opcode) {
638         case DW_CFA_advance_loc: // (Row Creation Instruction)
639         { // 0x40 - high 2 bits are 0x1, lower 6 bits are delta
640           // takes a single argument that represents a constant delta. The
641           // required action is to create a new table row with a location value
642           // that is computed by taking the current entry's location value and
643           // adding (delta * code_align). All other values in the new row are
644           // initially identical to the current row.
645           unwind_plan.AppendRow(row);
646           UnwindPlan::Row *newrow = new UnwindPlan::Row;
647           *newrow = *row.get();
648           row.reset(newrow);
649           row->SlideOffset(extended_opcode * code_align);
650           break;
651         }
652 
653         case DW_CFA_restore: { // 0xC0 - high 2 bits are 0x3, lower 6 bits are
654                                // register
655           // takes a single argument that represents a register number. The
656           // required action is to change the rule for the indicated register
657           // to the rule assigned it by the initial_instructions in the CIE.
658           uint32_t reg_num = extended_opcode;
659           // We only keep enough register locations around to unwind what is in
660           // our thread, and these are organized by the register index in that
661           // state, so we need to convert our eh_frame register number from the
662           // EH frame info, to a register index
663 
664           if (unwind_plan.IsValidRowIndex(0) &&
665               unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num,
666                                                             reg_location))
667             row->SetRegisterInfo(reg_num, reg_location);
668           break;
669         }
670         }
671       } else {
672         switch (extended_opcode) {
673         case DW_CFA_set_loc: // 0x1 (Row Creation Instruction)
674         {
675           // DW_CFA_set_loc takes a single argument that represents an address.
676           // The required action is to create a new table row using the
677           // specified address as the location. All other values in the new row
678           // are initially identical to the current row. The new location value
679           // should always be greater than the current one.
680           unwind_plan.AppendRow(row);
681           UnwindPlan::Row *newrow = new UnwindPlan::Row;
682           *newrow = *row.get();
683           row.reset(newrow);
684           row->SetOffset(m_cfi_data.GetPointer(&offset) -
685                          startaddr.GetFileAddress());
686           break;
687         }
688 
689         case DW_CFA_advance_loc1: // 0x2 (Row Creation Instruction)
690         {
691           // takes a single uword argument that represents a constant delta.
692           // This instruction is identical to DW_CFA_advance_loc except for the
693           // encoding and size of the delta argument.
694           unwind_plan.AppendRow(row);
695           UnwindPlan::Row *newrow = new UnwindPlan::Row;
696           *newrow = *row.get();
697           row.reset(newrow);
698           row->SlideOffset(m_cfi_data.GetU8(&offset) * code_align);
699           break;
700         }
701 
702         case DW_CFA_advance_loc2: // 0x3 (Row Creation Instruction)
703         {
704           // takes a single uword argument that represents a constant delta.
705           // This instruction is identical to DW_CFA_advance_loc except for the
706           // encoding and size of the delta argument.
707           unwind_plan.AppendRow(row);
708           UnwindPlan::Row *newrow = new UnwindPlan::Row;
709           *newrow = *row.get();
710           row.reset(newrow);
711           row->SlideOffset(m_cfi_data.GetU16(&offset) * code_align);
712           break;
713         }
714 
715         case DW_CFA_advance_loc4: // 0x4 (Row Creation Instruction)
716         {
717           // takes a single uword argument that represents a constant delta.
718           // This instruction is identical to DW_CFA_advance_loc except for the
719           // encoding and size of the delta argument.
720           unwind_plan.AppendRow(row);
721           UnwindPlan::Row *newrow = new UnwindPlan::Row;
722           *newrow = *row.get();
723           row.reset(newrow);
724           row->SlideOffset(m_cfi_data.GetU32(&offset) * code_align);
725           break;
726         }
727 
728         case DW_CFA_restore_extended: // 0x6
729         {
730           // takes a single unsigned LEB128 argument that represents a register
731           // number. This instruction is identical to DW_CFA_restore except for
732           // the encoding and size of the register argument.
733           uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
734           if (unwind_plan.IsValidRowIndex(0) &&
735               unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num,
736                                                             reg_location))
737             row->SetRegisterInfo(reg_num, reg_location);
738           break;
739         }
740 
741         case DW_CFA_remember_state: // 0xA
742         {
743           // These instructions define a stack of information. Encountering the
744           // DW_CFA_remember_state instruction means to save the rules for
745           // every register on the current row on the stack. Encountering the
746           // DW_CFA_restore_state instruction means to pop the set of rules off
747           // the stack and place them in the current row. (This operation is
748           // useful for compilers that move epilogue code into the body of a
749           // function.)
750           stack.push_back(row);
751           UnwindPlan::Row *newrow = new UnwindPlan::Row;
752           *newrow = *row.get();
753           row.reset(newrow);
754           break;
755         }
756 
757         case DW_CFA_restore_state: // 0xB
758         {
759           // These instructions define a stack of information. Encountering the
760           // DW_CFA_remember_state instruction means to save the rules for
761           // every register on the current row on the stack. Encountering the
762           // DW_CFA_restore_state instruction means to pop the set of rules off
763           // the stack and place them in the current row. (This operation is
764           // useful for compilers that move epilogue code into the body of a
765           // function.)
766           if (stack.empty()) {
767             if (log)
768               log->Printf("DWARFCallFrameInfo::%s(dwarf_offset: %" PRIx32
769                           ", startaddr: %" PRIx64
770                           " encountered DW_CFA_restore_state but state stack "
771                           "is empty. Corrupt unwind info?",
772                           __FUNCTION__, dwarf_offset,
773                           startaddr.GetFileAddress());
774             break;
775           }
776           lldb::addr_t offset = row->GetOffset();
777           row = stack.back();
778           stack.pop_back();
779           row->SetOffset(offset);
780           break;
781         }
782 
783         case DW_CFA_GNU_args_size: // 0x2e
784         {
785           // The DW_CFA_GNU_args_size instruction takes an unsigned LEB128
786           // operand representing an argument size. This instruction specifies
787           // the total of the size of the arguments which have been pushed onto
788           // the stack.
789 
790           // TODO: Figure out how we should handle this.
791           m_cfi_data.GetULEB128(&offset);
792           break;
793         }
794 
795         case DW_CFA_val_offset:    // 0x14
796         case DW_CFA_val_offset_sf: // 0x15
797         default:
798           break;
799         }
800       }
801     }
802   }
803   unwind_plan.AppendRow(row);
804 
805   return true;
806 }
807 
808 bool DWARFCallFrameInfo::HandleCommonDwarfOpcode(uint8_t primary_opcode,
809                                                  uint8_t extended_opcode,
810                                                  int32_t data_align,
811                                                  lldb::offset_t &offset,
812                                                  UnwindPlan::Row &row) {
813   UnwindPlan::Row::RegisterLocation reg_location;
814 
815   if (primary_opcode) {
816     switch (primary_opcode) {
817     case DW_CFA_offset: { // 0x80 - high 2 bits are 0x2, lower 6 bits are
818                           // register
819       // takes two arguments: an unsigned LEB128 constant representing a
820       // factored offset and a register number. The required action is to
821       // change the rule for the register indicated by the register number to
822       // be an offset(N) rule with a value of (N = factored offset *
823       // data_align).
824       uint8_t reg_num = extended_opcode;
825       int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
826       reg_location.SetAtCFAPlusOffset(op_offset);
827       row.SetRegisterInfo(reg_num, reg_location);
828       return true;
829     }
830     }
831   } else {
832     switch (extended_opcode) {
833     case DW_CFA_nop: // 0x0
834       return true;
835 
836     case DW_CFA_offset_extended: // 0x5
837     {
838       // takes two unsigned LEB128 arguments representing a register number and
839       // a factored offset. This instruction is identical to DW_CFA_offset
840       // except for the encoding and size of the register argument.
841       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
842       int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
843       UnwindPlan::Row::RegisterLocation reg_location;
844       reg_location.SetAtCFAPlusOffset(op_offset);
845       row.SetRegisterInfo(reg_num, reg_location);
846       return true;
847     }
848 
849     case DW_CFA_undefined: // 0x7
850     {
851       // takes a single unsigned LEB128 argument that represents a register
852       // number. The required action is to set the rule for the specified
853       // register to undefined.
854       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
855       UnwindPlan::Row::RegisterLocation reg_location;
856       reg_location.SetUndefined();
857       row.SetRegisterInfo(reg_num, reg_location);
858       return true;
859     }
860 
861     case DW_CFA_same_value: // 0x8
862     {
863       // takes a single unsigned LEB128 argument that represents a register
864       // number. The required action is to set the rule for the specified
865       // register to same value.
866       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
867       UnwindPlan::Row::RegisterLocation reg_location;
868       reg_location.SetSame();
869       row.SetRegisterInfo(reg_num, reg_location);
870       return true;
871     }
872 
873     case DW_CFA_register: // 0x9
874     {
875       // takes two unsigned LEB128 arguments representing register numbers. The
876       // required action is to set the rule for the first register to be the
877       // second register.
878       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
879       uint32_t other_reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
880       UnwindPlan::Row::RegisterLocation reg_location;
881       reg_location.SetInRegister(other_reg_num);
882       row.SetRegisterInfo(reg_num, reg_location);
883       return true;
884     }
885 
886     case DW_CFA_def_cfa: // 0xC    (CFA Definition Instruction)
887     {
888       // Takes two unsigned LEB128 operands representing a register number and
889       // a (non-factored) offset. The required action is to define the current
890       // CFA rule to use the provided register and offset.
891       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
892       int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
893       row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, op_offset);
894       return true;
895     }
896 
897     case DW_CFA_def_cfa_register: // 0xD    (CFA Definition Instruction)
898     {
899       // takes a single unsigned LEB128 argument representing a register
900       // number. The required action is to define the current CFA rule to use
901       // the provided register (but to keep the old offset).
902       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
903       row.GetCFAValue().SetIsRegisterPlusOffset(reg_num,
904                                                 row.GetCFAValue().GetOffset());
905       return true;
906     }
907 
908     case DW_CFA_def_cfa_offset: // 0xE    (CFA Definition Instruction)
909     {
910       // Takes a single unsigned LEB128 operand representing a (non-factored)
911       // offset. The required action is to define the current CFA rule to use
912       // the provided offset (but to keep the old register).
913       int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
914       row.GetCFAValue().SetIsRegisterPlusOffset(
915           row.GetCFAValue().GetRegisterNumber(), op_offset);
916       return true;
917     }
918 
919     case DW_CFA_def_cfa_expression: // 0xF    (CFA Definition Instruction)
920     {
921       size_t block_len = (size_t)m_cfi_data.GetULEB128(&offset);
922       const uint8_t *block_data =
923           static_cast<const uint8_t *>(m_cfi_data.GetData(&offset, block_len));
924       row.GetCFAValue().SetIsDWARFExpression(block_data, block_len);
925       return true;
926     }
927 
928     case DW_CFA_expression: // 0x10
929     {
930       // Takes two operands: an unsigned LEB128 value representing a register
931       // number, and a DW_FORM_block value representing a DWARF expression. The
932       // required action is to change the rule for the register indicated by
933       // the register number to be an expression(E) rule where E is the DWARF
934       // expression. That is, the DWARF expression computes the address. The
935       // value of the CFA is pushed on the DWARF evaluation stack prior to
936       // execution of the DWARF expression.
937       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
938       uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
939       const uint8_t *block_data =
940           static_cast<const uint8_t *>(m_cfi_data.GetData(&offset, block_len));
941       UnwindPlan::Row::RegisterLocation reg_location;
942       reg_location.SetAtDWARFExpression(block_data, block_len);
943       row.SetRegisterInfo(reg_num, reg_location);
944       return true;
945     }
946 
947     case DW_CFA_offset_extended_sf: // 0x11
948     {
949       // takes two operands: an unsigned LEB128 value representing a register
950       // number and a signed LEB128 factored offset. This instruction is
951       // identical to DW_CFA_offset_extended except that the second operand is
952       // signed and factored.
953       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
954       int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
955       UnwindPlan::Row::RegisterLocation reg_location;
956       reg_location.SetAtCFAPlusOffset(op_offset);
957       row.SetRegisterInfo(reg_num, reg_location);
958       return true;
959     }
960 
961     case DW_CFA_def_cfa_sf: // 0x12   (CFA Definition Instruction)
962     {
963       // Takes two operands: an unsigned LEB128 value representing a register
964       // number and a signed LEB128 factored offset. This instruction is
965       // identical to DW_CFA_def_cfa except that the second operand is signed
966       // and factored.
967       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
968       int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
969       row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, op_offset);
970       return true;
971     }
972 
973     case DW_CFA_def_cfa_offset_sf: // 0x13   (CFA Definition Instruction)
974     {
975       // takes a signed LEB128 operand representing a factored offset. This
976       // instruction is identical to  DW_CFA_def_cfa_offset except that the
977       // operand is signed and factored.
978       int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
979       uint32_t cfa_regnum = row.GetCFAValue().GetRegisterNumber();
980       row.GetCFAValue().SetIsRegisterPlusOffset(cfa_regnum, op_offset);
981       return true;
982     }
983 
984     case DW_CFA_val_expression: // 0x16
985     {
986       // takes two operands: an unsigned LEB128 value representing a register
987       // number, and a DW_FORM_block value representing a DWARF expression. The
988       // required action is to change the rule for the register indicated by
989       // the register number to be a val_expression(E) rule where E is the
990       // DWARF expression. That is, the DWARF expression computes the value of
991       // the given register. The value of the CFA is pushed on the DWARF
992       // evaluation stack prior to execution of the DWARF expression.
993       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
994       uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
995       const uint8_t *block_data =
996           (const uint8_t *)m_cfi_data.GetData(&offset, block_len);
997       //#if defined(__i386__) || defined(__x86_64__)
998       //              // The EH frame info for EIP and RIP contains code that
999       //              looks for traps to
1000       //              // be a specific type and increments the PC.
1001       //              // For i386:
1002       //              // DW_CFA_val_expression where:
1003       //              // eip = DW_OP_breg6(+28), DW_OP_deref, DW_OP_dup,
1004       //              DW_OP_plus_uconst(0x34),
1005       //              //       DW_OP_deref, DW_OP_swap, DW_OP_plus_uconst(0),
1006       //              DW_OP_deref,
1007       //              //       DW_OP_dup, DW_OP_lit3, DW_OP_ne, DW_OP_swap,
1008       //              DW_OP_lit4, DW_OP_ne,
1009       //              //       DW_OP_and, DW_OP_plus
1010       //              // This basically does a:
1011       //              // eip = ucontenxt.mcontext32->gpr.eip;
1012       //              // if (ucontenxt.mcontext32->exc.trapno != 3 &&
1013       //              ucontenxt.mcontext32->exc.trapno != 4)
1014       //              //   eip++;
1015       //              //
1016       //              // For x86_64:
1017       //              // DW_CFA_val_expression where:
1018       //              // rip =  DW_OP_breg3(+48), DW_OP_deref, DW_OP_dup,
1019       //              DW_OP_plus_uconst(0x90), DW_OP_deref,
1020       //              //          DW_OP_swap, DW_OP_plus_uconst(0),
1021       //              DW_OP_deref_size(4), DW_OP_dup, DW_OP_lit3,
1022       //              //          DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne,
1023       //              DW_OP_and, DW_OP_plus
1024       //              // This basically does a:
1025       //              // rip = ucontenxt.mcontext64->gpr.rip;
1026       //              // if (ucontenxt.mcontext64->exc.trapno != 3 &&
1027       //              ucontenxt.mcontext64->exc.trapno != 4)
1028       //              //   rip++;
1029       //              // The trap comparisons and increments are not needed as
1030       //              it hoses up the unwound PC which
1031       //              // is expected to point at least past the instruction that
1032       //              causes the fault/trap. So we
1033       //              // take it out by trimming the expression right at the
1034       //              first "DW_OP_swap" opcodes
1035       //              if (block_data != NULL && thread->GetPCRegNum(Thread::GCC)
1036       //              == reg_num)
1037       //              {
1038       //                  if (thread->Is64Bit())
1039       //                  {
1040       //                      if (block_len > 9 && block_data[8] == DW_OP_swap
1041       //                      && block_data[9] == DW_OP_plus_uconst)
1042       //                          block_len = 8;
1043       //                  }
1044       //                  else
1045       //                  {
1046       //                      if (block_len > 8 && block_data[7] == DW_OP_swap
1047       //                      && block_data[8] == DW_OP_plus_uconst)
1048       //                          block_len = 7;
1049       //                  }
1050       //              }
1051       //#endif
1052       reg_location.SetIsDWARFExpression(block_data, block_len);
1053       row.SetRegisterInfo(reg_num, reg_location);
1054       return true;
1055     }
1056     }
1057   }
1058   return false;
1059 }
1060 
1061 void DWARFCallFrameInfo::ForEachFDEEntries(
1062     const std::function<bool(lldb::addr_t, uint32_t, dw_offset_t)> &callback) {
1063   GetFDEIndex();
1064 
1065   for (size_t i = 0, c = m_fde_index.GetSize(); i < c; ++i) {
1066     const FDEEntryMap::Entry &entry = m_fde_index.GetEntryRef(i);
1067     if (!callback(entry.base, entry.size, entry.data))
1068       break;
1069   }
1070 }
1071