1 //===-- DWARFCallFrameInfo.cpp ----------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "lldb/Symbol/DWARFCallFrameInfo.h"
11 #include "lldb/Core/Module.h"
12 #include "lldb/Core/Section.h"
13 #include "lldb/Core/dwarf.h"
14 #include "lldb/Host/Host.h"
15 #include "lldb/Symbol/ObjectFile.h"
16 #include "lldb/Symbol/UnwindPlan.h"
17 #include "lldb/Target/RegisterContext.h"
18 #include "lldb/Target/Thread.h"
19 #include "lldb/Utility/ArchSpec.h"
20 #include "lldb/Utility/Log.h"
21 #include "lldb/Utility/Timer.h"
22 #include <list>
23 
24 using namespace lldb;
25 using namespace lldb_private;
26 
27 //----------------------------------------------------------------------
28 // GetDwarfEHPtr
29 //
30 // Used for calls when the value type is specified by a DWARF EH Frame
31 // pointer encoding.
32 //----------------------------------------------------------------------
33 static uint64_t
34 GetGNUEHPointer(const DataExtractor &DE, offset_t *offset_ptr,
35                 uint32_t eh_ptr_enc, addr_t pc_rel_addr, addr_t text_addr,
36                 addr_t data_addr) //, BSDRelocs *data_relocs) const
37 {
38   if (eh_ptr_enc == DW_EH_PE_omit)
39     return ULLONG_MAX; // Value isn't in the buffer...
40 
41   uint64_t baseAddress = 0;
42   uint64_t addressValue = 0;
43   const uint32_t addr_size = DE.GetAddressByteSize();
44 #ifdef LLDB_CONFIGURATION_DEBUG
45   assert(addr_size == 4 || addr_size == 8);
46 #endif
47 
48   bool signExtendValue = false;
49   // Decode the base part or adjust our offset
50   switch (eh_ptr_enc & 0x70) {
51   case DW_EH_PE_pcrel:
52     signExtendValue = true;
53     baseAddress = *offset_ptr;
54     if (pc_rel_addr != LLDB_INVALID_ADDRESS)
55       baseAddress += pc_rel_addr;
56     //      else
57     //          Log::GlobalWarning ("PC relative pointer encoding found with
58     //          invalid pc relative address.");
59     break;
60 
61   case DW_EH_PE_textrel:
62     signExtendValue = true;
63     if (text_addr != LLDB_INVALID_ADDRESS)
64       baseAddress = text_addr;
65     //      else
66     //          Log::GlobalWarning ("text relative pointer encoding being
67     //          decoded with invalid text section address, setting base address
68     //          to zero.");
69     break;
70 
71   case DW_EH_PE_datarel:
72     signExtendValue = true;
73     if (data_addr != LLDB_INVALID_ADDRESS)
74       baseAddress = data_addr;
75     //      else
76     //          Log::GlobalWarning ("data relative pointer encoding being
77     //          decoded with invalid data section address, setting base address
78     //          to zero.");
79     break;
80 
81   case DW_EH_PE_funcrel:
82     signExtendValue = true;
83     break;
84 
85   case DW_EH_PE_aligned: {
86     // SetPointerSize should be called prior to extracting these so the
87     // pointer size is cached
88     assert(addr_size != 0);
89     if (addr_size) {
90       // Align to a address size boundary first
91       uint32_t alignOffset = *offset_ptr % addr_size;
92       if (alignOffset)
93         offset_ptr += addr_size - alignOffset;
94     }
95   } break;
96 
97   default:
98     break;
99   }
100 
101   // Decode the value part
102   switch (eh_ptr_enc & DW_EH_PE_MASK_ENCODING) {
103   case DW_EH_PE_absptr: {
104     addressValue = DE.GetAddress(offset_ptr);
105     //          if (data_relocs)
106     //              addressValue = data_relocs->Relocate(*offset_ptr -
107     //              addr_size, *this, addressValue);
108   } break;
109   case DW_EH_PE_uleb128:
110     addressValue = DE.GetULEB128(offset_ptr);
111     break;
112   case DW_EH_PE_udata2:
113     addressValue = DE.GetU16(offset_ptr);
114     break;
115   case DW_EH_PE_udata4:
116     addressValue = DE.GetU32(offset_ptr);
117     break;
118   case DW_EH_PE_udata8:
119     addressValue = DE.GetU64(offset_ptr);
120     break;
121   case DW_EH_PE_sleb128:
122     addressValue = DE.GetSLEB128(offset_ptr);
123     break;
124   case DW_EH_PE_sdata2:
125     addressValue = (int16_t)DE.GetU16(offset_ptr);
126     break;
127   case DW_EH_PE_sdata4:
128     addressValue = (int32_t)DE.GetU32(offset_ptr);
129     break;
130   case DW_EH_PE_sdata8:
131     addressValue = (int64_t)DE.GetU64(offset_ptr);
132     break;
133   default:
134     // Unhandled encoding type
135     assert(eh_ptr_enc);
136     break;
137   }
138 
139   // Since we promote everything to 64 bit, we may need to sign extend
140   if (signExtendValue && addr_size < sizeof(baseAddress)) {
141     uint64_t sign_bit = 1ull << ((addr_size * 8ull) - 1ull);
142     if (sign_bit & addressValue) {
143       uint64_t mask = ~sign_bit + 1;
144       addressValue |= mask;
145     }
146   }
147   return baseAddress + addressValue;
148 }
149 
150 DWARFCallFrameInfo::DWARFCallFrameInfo(ObjectFile &objfile,
151                                        SectionSP &section_sp, Type type)
152     : m_objfile(objfile), m_section_sp(section_sp), m_type(type) {}
153 
154 bool DWARFCallFrameInfo::GetUnwindPlan(Address addr, UnwindPlan &unwind_plan) {
155   FDEEntryMap::Entry fde_entry;
156 
157   // Make sure that the Address we're searching for is the same object file
158   // as this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
159   ModuleSP module_sp = addr.GetModule();
160   if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr ||
161       module_sp->GetObjectFile() != &m_objfile)
162     return false;
163 
164   if (GetFDEEntryByFileAddress(addr.GetFileAddress(), fde_entry) == false)
165     return false;
166   return FDEToUnwindPlan(fde_entry.data, addr, unwind_plan);
167 }
168 
169 bool DWARFCallFrameInfo::GetAddressRange(Address addr, AddressRange &range) {
170 
171   // Make sure that the Address we're searching for is the same object file
172   // as this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
173   ModuleSP module_sp = addr.GetModule();
174   if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr ||
175       module_sp->GetObjectFile() != &m_objfile)
176     return false;
177 
178   if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
179     return false;
180   GetFDEIndex();
181   FDEEntryMap::Entry *fde_entry =
182       m_fde_index.FindEntryThatContains(addr.GetFileAddress());
183   if (!fde_entry)
184     return false;
185 
186   range = AddressRange(fde_entry->base, fde_entry->size,
187                        m_objfile.GetSectionList());
188   return true;
189 }
190 
191 bool DWARFCallFrameInfo::GetFDEEntryByFileAddress(
192     addr_t file_addr, FDEEntryMap::Entry &fde_entry) {
193   if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
194     return false;
195 
196   GetFDEIndex();
197 
198   if (m_fde_index.IsEmpty())
199     return false;
200 
201   FDEEntryMap::Entry *fde = m_fde_index.FindEntryThatContains(file_addr);
202 
203   if (fde == nullptr)
204     return false;
205 
206   fde_entry = *fde;
207   return true;
208 }
209 
210 void DWARFCallFrameInfo::GetFunctionAddressAndSizeVector(
211     FunctionAddressAndSizeVector &function_info) {
212   GetFDEIndex();
213   const size_t count = m_fde_index.GetSize();
214   function_info.Clear();
215   if (count > 0)
216     function_info.Reserve(count);
217   for (size_t i = 0; i < count; ++i) {
218     const FDEEntryMap::Entry *func_offset_data_entry =
219         m_fde_index.GetEntryAtIndex(i);
220     if (func_offset_data_entry) {
221       FunctionAddressAndSizeVector::Entry function_offset_entry(
222           func_offset_data_entry->base, func_offset_data_entry->size);
223       function_info.Append(function_offset_entry);
224     }
225   }
226 }
227 
228 const DWARFCallFrameInfo::CIE *
229 DWARFCallFrameInfo::GetCIE(dw_offset_t cie_offset) {
230   cie_map_t::iterator pos = m_cie_map.find(cie_offset);
231 
232   if (pos != m_cie_map.end()) {
233     // Parse and cache the CIE
234     if (pos->second.get() == nullptr)
235       pos->second = ParseCIE(cie_offset);
236 
237     return pos->second.get();
238   }
239   return nullptr;
240 }
241 
242 DWARFCallFrameInfo::CIESP
243 DWARFCallFrameInfo::ParseCIE(const dw_offset_t cie_offset) {
244   CIESP cie_sp(new CIE(cie_offset));
245   lldb::offset_t offset = cie_offset;
246   if (m_cfi_data_initialized == false)
247     GetCFIData();
248   uint32_t length = m_cfi_data.GetU32(&offset);
249   dw_offset_t cie_id, end_offset;
250   bool is_64bit = (length == UINT32_MAX);
251   if (is_64bit) {
252     length = m_cfi_data.GetU64(&offset);
253     cie_id = m_cfi_data.GetU64(&offset);
254     end_offset = cie_offset + length + 12;
255   } else {
256     cie_id = m_cfi_data.GetU32(&offset);
257     end_offset = cie_offset + length + 4;
258   }
259   if (length > 0 && ((m_type == DWARF && cie_id == UINT32_MAX) ||
260                      (m_type == EH && cie_id == 0ul))) {
261     size_t i;
262     //    cie.offset = cie_offset;
263     //    cie.length = length;
264     //    cie.cieID = cieID;
265     cie_sp->ptr_encoding = DW_EH_PE_absptr; // default
266     cie_sp->version = m_cfi_data.GetU8(&offset);
267     if (cie_sp->version > CFI_VERSION4) {
268       Host::SystemLog(Host::eSystemLogError,
269                       "CIE parse error: CFI version %d is not supported\n",
270                       cie_sp->version);
271       return nullptr;
272     }
273 
274     for (i = 0; i < CFI_AUG_MAX_SIZE; ++i) {
275       cie_sp->augmentation[i] = m_cfi_data.GetU8(&offset);
276       if (cie_sp->augmentation[i] == '\0') {
277         // Zero out remaining bytes in augmentation string
278         for (size_t j = i + 1; j < CFI_AUG_MAX_SIZE; ++j)
279           cie_sp->augmentation[j] = '\0';
280 
281         break;
282       }
283     }
284 
285     if (i == CFI_AUG_MAX_SIZE &&
286         cie_sp->augmentation[CFI_AUG_MAX_SIZE - 1] != '\0') {
287       Host::SystemLog(Host::eSystemLogError,
288                       "CIE parse error: CIE augmentation string was too large "
289                       "for the fixed sized buffer of %d bytes.\n",
290                       CFI_AUG_MAX_SIZE);
291       return nullptr;
292     }
293 
294     // m_cfi_data uses address size from target architecture of the process
295     // may ignore these fields?
296     if (m_type == DWARF && cie_sp->version >= CFI_VERSION4) {
297       cie_sp->address_size = m_cfi_data.GetU8(&offset);
298       cie_sp->segment_size = m_cfi_data.GetU8(&offset);
299     }
300 
301     cie_sp->code_align = (uint32_t)m_cfi_data.GetULEB128(&offset);
302     cie_sp->data_align = (int32_t)m_cfi_data.GetSLEB128(&offset);
303 
304     cie_sp->return_addr_reg_num =
305         m_type == DWARF && cie_sp->version >= CFI_VERSION3
306             ? static_cast<uint32_t>(m_cfi_data.GetULEB128(&offset))
307             : m_cfi_data.GetU8(&offset);
308 
309     if (cie_sp->augmentation[0]) {
310       // Get the length of the eh_frame augmentation data
311       // which starts with a ULEB128 length in bytes
312       const size_t aug_data_len = (size_t)m_cfi_data.GetULEB128(&offset);
313       const size_t aug_data_end = offset + aug_data_len;
314       const size_t aug_str_len = strlen(cie_sp->augmentation);
315       // A 'z' may be present as the first character of the string.
316       // If present, the Augmentation Data field shall be present.
317       // The contents of the Augmentation Data shall be interpreted
318       // according to other characters in the Augmentation String.
319       if (cie_sp->augmentation[0] == 'z') {
320         // Extract the Augmentation Data
321         size_t aug_str_idx = 0;
322         for (aug_str_idx = 1; aug_str_idx < aug_str_len; aug_str_idx++) {
323           char aug = cie_sp->augmentation[aug_str_idx];
324           switch (aug) {
325           case 'L':
326             // Indicates the presence of one argument in the
327             // Augmentation Data of the CIE, and a corresponding
328             // argument in the Augmentation Data of the FDE. The
329             // argument in the Augmentation Data of the CIE is
330             // 1-byte and represents the pointer encoding used
331             // for the argument in the Augmentation Data of the
332             // FDE, which is the address of a language-specific
333             // data area (LSDA). The size of the LSDA pointer is
334             // specified by the pointer encoding used.
335             cie_sp->lsda_addr_encoding = m_cfi_data.GetU8(&offset);
336             break;
337 
338           case 'P':
339             // Indicates the presence of two arguments in the
340             // Augmentation Data of the CIE. The first argument
341             // is 1-byte and represents the pointer encoding
342             // used for the second argument, which is the
343             // address of a personality routine handler. The
344             // size of the personality routine pointer is
345             // specified by the pointer encoding used.
346             //
347             // The address of the personality function will
348             // be stored at this location.  Pre-execution, it
349             // will be all zero's so don't read it until we're
350             // trying to do an unwind & the reloc has been
351             // resolved.
352             {
353               uint8_t arg_ptr_encoding = m_cfi_data.GetU8(&offset);
354               const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
355               cie_sp->personality_loc = GetGNUEHPointer(
356                   m_cfi_data, &offset, arg_ptr_encoding, pc_rel_addr,
357                   LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS);
358             }
359             break;
360 
361           case 'R':
362             // A 'R' may be present at any position after the
363             // first character of the string. The Augmentation
364             // Data shall include a 1 byte argument that
365             // represents the pointer encoding for the address
366             // pointers used in the FDE.
367             // Example: 0x1B == DW_EH_PE_pcrel | DW_EH_PE_sdata4
368             cie_sp->ptr_encoding = m_cfi_data.GetU8(&offset);
369             break;
370           }
371         }
372       } else if (strcmp(cie_sp->augmentation, "eh") == 0) {
373         // If the Augmentation string has the value "eh", then
374         // the EH Data field shall be present
375       }
376 
377       // Set the offset to be the end of the augmentation data just in case
378       // we didn't understand any of the data.
379       offset = (uint32_t)aug_data_end;
380     }
381 
382     if (end_offset > offset) {
383       cie_sp->inst_offset = offset;
384       cie_sp->inst_length = end_offset - offset;
385     }
386     while (offset < end_offset) {
387       uint8_t inst = m_cfi_data.GetU8(&offset);
388       uint8_t primary_opcode = inst & 0xC0;
389       uint8_t extended_opcode = inst & 0x3F;
390 
391       if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode,
392                                    cie_sp->data_align, offset,
393                                    cie_sp->initial_row))
394         break; // Stop if we hit an unrecognized opcode
395     }
396   }
397 
398   return cie_sp;
399 }
400 
401 void DWARFCallFrameInfo::GetCFIData() {
402   if (m_cfi_data_initialized == false) {
403     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_UNWIND));
404     if (log)
405       m_objfile.GetModule()->LogMessage(log, "Reading EH frame info");
406     m_objfile.ReadSectionData(m_section_sp.get(), m_cfi_data);
407     m_cfi_data_initialized = true;
408   }
409 }
410 // Scan through the eh_frame or debug_frame section looking for FDEs and noting
411 // the start/end addresses
412 // of the functions and a pointer back to the function's FDE for later
413 // expansion.
414 // Internalize CIEs as we come across them.
415 
416 void DWARFCallFrameInfo::GetFDEIndex() {
417   if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
418     return;
419 
420   if (m_fde_index_initialized)
421     return;
422 
423   std::lock_guard<std::mutex> guard(m_fde_index_mutex);
424 
425   if (m_fde_index_initialized) // if two threads hit the locker
426     return;
427 
428   static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
429   Timer scoped_timer(func_cat, "%s - %s", LLVM_PRETTY_FUNCTION,
430                      m_objfile.GetFileSpec().GetFilename().AsCString(""));
431 
432   bool clear_address_zeroth_bit = false;
433   ArchSpec arch;
434   if (m_objfile.GetArchitecture(arch)) {
435     if (arch.GetTriple().getArch() == llvm::Triple::arm ||
436         arch.GetTriple().getArch() == llvm::Triple::thumb)
437       clear_address_zeroth_bit = true;
438   }
439 
440   lldb::offset_t offset = 0;
441   if (m_cfi_data_initialized == false)
442     GetCFIData();
443   while (m_cfi_data.ValidOffsetForDataOfSize(offset, 8)) {
444     const dw_offset_t current_entry = offset;
445     dw_offset_t cie_id, next_entry, cie_offset;
446     uint32_t len = m_cfi_data.GetU32(&offset);
447     bool is_64bit = (len == UINT32_MAX);
448     if (is_64bit) {
449       len = m_cfi_data.GetU64(&offset);
450       cie_id = m_cfi_data.GetU64(&offset);
451       next_entry = current_entry + len + 12;
452       cie_offset = current_entry + 12 - cie_id;
453     } else {
454       cie_id = m_cfi_data.GetU32(&offset);
455       next_entry = current_entry + len + 4;
456       cie_offset = current_entry + 4 - cie_id;
457     }
458 
459     if (next_entry > m_cfi_data.GetByteSize() + 1) {
460       Host::SystemLog(Host::eSystemLogError, "error: Invalid fde/cie next "
461                                              "entry offset of 0x%x found in "
462                                              "cie/fde at 0x%x\n",
463                       next_entry, current_entry);
464       // Don't trust anything in this eh_frame section if we find blatantly
465       // invalid data.
466       m_fde_index.Clear();
467       m_fde_index_initialized = true;
468       return;
469     }
470 
471     // An FDE entry contains CIE_pointer in debug_frame in same place as cie_id
472     // in eh_frame. CIE_pointer is an offset into the .debug_frame section.
473     // So, variable cie_offset should be equal to cie_id for debug_frame.
474     // FDE entries with cie_id == 0 shouldn't be ignored for it.
475     if ((cie_id == 0 && m_type == EH) || cie_id == UINT32_MAX || len == 0) {
476       auto cie_sp = ParseCIE(current_entry);
477       if (!cie_sp) {
478         // Cannot parse, the reason is already logged
479         m_fde_index.Clear();
480         m_fde_index_initialized = true;
481         return;
482       }
483 
484       m_cie_map[current_entry] = std::move(cie_sp);
485       offset = next_entry;
486       continue;
487     }
488 
489     if (m_type == DWARF)
490       cie_offset = cie_id;
491 
492     if (cie_offset > m_cfi_data.GetByteSize()) {
493       Host::SystemLog(Host::eSystemLogError,
494                       "error: Invalid cie offset of 0x%x "
495                       "found in cie/fde at 0x%x\n",
496                       cie_offset, current_entry);
497       // Don't trust anything in this eh_frame section if we find blatantly
498       // invalid data.
499       m_fde_index.Clear();
500       m_fde_index_initialized = true;
501       return;
502     }
503 
504     const CIE *cie = GetCIE(cie_offset);
505     if (cie) {
506       const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
507       const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
508       const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
509 
510       lldb::addr_t addr =
511           GetGNUEHPointer(m_cfi_data, &offset, cie->ptr_encoding, pc_rel_addr,
512                           text_addr, data_addr);
513       if (clear_address_zeroth_bit)
514         addr &= ~1ull;
515 
516       lldb::addr_t length = GetGNUEHPointer(
517           m_cfi_data, &offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING,
518           pc_rel_addr, text_addr, data_addr);
519       FDEEntryMap::Entry fde(addr, length, current_entry);
520       m_fde_index.Append(fde);
521     } else {
522       Host::SystemLog(Host::eSystemLogError, "error: unable to find CIE at "
523                                              "0x%8.8x for cie_id = 0x%8.8x for "
524                                              "entry at 0x%8.8x.\n",
525                       cie_offset, cie_id, current_entry);
526     }
527     offset = next_entry;
528   }
529   m_fde_index.Sort();
530   m_fde_index_initialized = true;
531 }
532 
533 bool DWARFCallFrameInfo::FDEToUnwindPlan(dw_offset_t dwarf_offset,
534                                          Address startaddr,
535                                          UnwindPlan &unwind_plan) {
536   Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_UNWIND);
537   lldb::offset_t offset = dwarf_offset;
538   lldb::offset_t current_entry = offset;
539 
540   if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
541     return false;
542 
543   if (m_cfi_data_initialized == false)
544     GetCFIData();
545 
546   uint32_t length = m_cfi_data.GetU32(&offset);
547   dw_offset_t cie_offset;
548   bool is_64bit = (length == UINT32_MAX);
549   if (is_64bit) {
550     length = m_cfi_data.GetU64(&offset);
551     cie_offset = m_cfi_data.GetU64(&offset);
552   } else {
553     cie_offset = m_cfi_data.GetU32(&offset);
554   }
555 
556   // FDE entries with zeroth cie_offset may occur for debug_frame.
557   assert(!(m_type == EH && 0 == cie_offset) && cie_offset != UINT32_MAX);
558 
559   // Translate the CIE_id from the eh_frame format, which
560   // is relative to the FDE offset, into a __eh_frame section
561   // offset
562   if (m_type == EH) {
563     unwind_plan.SetSourceName("eh_frame CFI");
564     cie_offset = current_entry + (is_64bit ? 12 : 4) - cie_offset;
565     unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
566   } else {
567     unwind_plan.SetSourceName("DWARF CFI");
568     // In theory the debug_frame info should be valid at all call sites
569     // ("asynchronous unwind info" as it is sometimes called) but in practice
570     // gcc et al all emit call frame info for the prologue and call sites, but
571     // not for the epilogue or all the other locations during the function
572     // reliably.
573     unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
574   }
575   unwind_plan.SetSourcedFromCompiler(eLazyBoolYes);
576 
577   const CIE *cie = GetCIE(cie_offset);
578   assert(cie != nullptr);
579 
580   const dw_offset_t end_offset = current_entry + length + (is_64bit ? 12 : 4);
581 
582   const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
583   const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
584   const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
585   lldb::addr_t range_base =
586       GetGNUEHPointer(m_cfi_data, &offset, cie->ptr_encoding, pc_rel_addr,
587                       text_addr, data_addr);
588   lldb::addr_t range_len = GetGNUEHPointer(
589       m_cfi_data, &offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING,
590       pc_rel_addr, text_addr, data_addr);
591   AddressRange range(range_base, m_objfile.GetAddressByteSize(),
592                      m_objfile.GetSectionList());
593   range.SetByteSize(range_len);
594 
595   addr_t lsda_data_file_address = LLDB_INVALID_ADDRESS;
596 
597   if (cie->augmentation[0] == 'z') {
598     uint32_t aug_data_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
599     if (aug_data_len != 0 && cie->lsda_addr_encoding != DW_EH_PE_omit) {
600       offset_t saved_offset = offset;
601       lsda_data_file_address =
602           GetGNUEHPointer(m_cfi_data, &offset, cie->lsda_addr_encoding,
603                           pc_rel_addr, text_addr, data_addr);
604       if (offset - saved_offset != aug_data_len) {
605         // There is more in the augmentation region than we know how to process;
606         // don't read anything.
607         lsda_data_file_address = LLDB_INVALID_ADDRESS;
608       }
609       offset = saved_offset;
610     }
611     offset += aug_data_len;
612   }
613   Address lsda_data;
614   Address personality_function_ptr;
615 
616   if (lsda_data_file_address != LLDB_INVALID_ADDRESS &&
617       cie->personality_loc != LLDB_INVALID_ADDRESS) {
618     m_objfile.GetModule()->ResolveFileAddress(lsda_data_file_address,
619                                               lsda_data);
620     m_objfile.GetModule()->ResolveFileAddress(cie->personality_loc,
621                                               personality_function_ptr);
622   }
623 
624   if (lsda_data.IsValid() && personality_function_ptr.IsValid()) {
625     unwind_plan.SetLSDAAddress(lsda_data);
626     unwind_plan.SetPersonalityFunctionPtr(personality_function_ptr);
627   }
628 
629   uint32_t code_align = cie->code_align;
630   int32_t data_align = cie->data_align;
631 
632   unwind_plan.SetPlanValidAddressRange(range);
633   UnwindPlan::Row *cie_initial_row = new UnwindPlan::Row;
634   *cie_initial_row = cie->initial_row;
635   UnwindPlan::RowSP row(cie_initial_row);
636 
637   unwind_plan.SetRegisterKind(GetRegisterKind());
638   unwind_plan.SetReturnAddressRegister(cie->return_addr_reg_num);
639 
640   std::vector<UnwindPlan::RowSP> stack;
641 
642   UnwindPlan::Row::RegisterLocation reg_location;
643   while (m_cfi_data.ValidOffset(offset) && offset < end_offset) {
644     uint8_t inst = m_cfi_data.GetU8(&offset);
645     uint8_t primary_opcode = inst & 0xC0;
646     uint8_t extended_opcode = inst & 0x3F;
647 
648     if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode, data_align,
649                                  offset, *row)) {
650       if (primary_opcode) {
651         switch (primary_opcode) {
652         case DW_CFA_advance_loc: // (Row Creation Instruction)
653         { // 0x40 - high 2 bits are 0x1, lower 6 bits are delta
654           // takes a single argument that represents a constant delta. The
655           // required action is to create a new table row with a location
656           // value that is computed by taking the current entry's location
657           // value and adding (delta * code_align). All other
658           // values in the new row are initially identical to the current row.
659           unwind_plan.AppendRow(row);
660           UnwindPlan::Row *newrow = new UnwindPlan::Row;
661           *newrow = *row.get();
662           row.reset(newrow);
663           row->SlideOffset(extended_opcode * code_align);
664           break;
665         }
666 
667         case DW_CFA_restore: { // 0xC0 - high 2 bits are 0x3, lower 6 bits are
668                                // register
669           // takes a single argument that represents a register number. The
670           // required action is to change the rule for the indicated register
671           // to the rule assigned it by the initial_instructions in the CIE.
672           uint32_t reg_num = extended_opcode;
673           // We only keep enough register locations around to
674           // unwind what is in our thread, and these are organized
675           // by the register index in that state, so we need to convert our
676           // eh_frame register number from the EH frame info, to a register
677           // index
678 
679           if (unwind_plan.IsValidRowIndex(0) &&
680               unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num,
681                                                             reg_location))
682             row->SetRegisterInfo(reg_num, reg_location);
683           break;
684         }
685         }
686       } else {
687         switch (extended_opcode) {
688         case DW_CFA_set_loc: // 0x1 (Row Creation Instruction)
689         {
690           // DW_CFA_set_loc takes a single argument that represents an address.
691           // The required action is to create a new table row using the
692           // specified address as the location. All other values in the new row
693           // are initially identical to the current row. The new location value
694           // should always be greater than the current one.
695           unwind_plan.AppendRow(row);
696           UnwindPlan::Row *newrow = new UnwindPlan::Row;
697           *newrow = *row.get();
698           row.reset(newrow);
699           row->SetOffset(m_cfi_data.GetPointer(&offset) -
700                          startaddr.GetFileAddress());
701           break;
702         }
703 
704         case DW_CFA_advance_loc1: // 0x2 (Row Creation Instruction)
705         {
706           // takes a single uword argument that represents a constant delta.
707           // This instruction is identical to DW_CFA_advance_loc except for the
708           // encoding and size of the delta argument.
709           unwind_plan.AppendRow(row);
710           UnwindPlan::Row *newrow = new UnwindPlan::Row;
711           *newrow = *row.get();
712           row.reset(newrow);
713           row->SlideOffset(m_cfi_data.GetU8(&offset) * code_align);
714           break;
715         }
716 
717         case DW_CFA_advance_loc2: // 0x3 (Row Creation Instruction)
718         {
719           // takes a single uword argument that represents a constant delta.
720           // This instruction is identical to DW_CFA_advance_loc except for the
721           // encoding and size of the delta argument.
722           unwind_plan.AppendRow(row);
723           UnwindPlan::Row *newrow = new UnwindPlan::Row;
724           *newrow = *row.get();
725           row.reset(newrow);
726           row->SlideOffset(m_cfi_data.GetU16(&offset) * code_align);
727           break;
728         }
729 
730         case DW_CFA_advance_loc4: // 0x4 (Row Creation Instruction)
731         {
732           // takes a single uword argument that represents a constant delta.
733           // This instruction is identical to DW_CFA_advance_loc except for the
734           // encoding and size of the delta argument.
735           unwind_plan.AppendRow(row);
736           UnwindPlan::Row *newrow = new UnwindPlan::Row;
737           *newrow = *row.get();
738           row.reset(newrow);
739           row->SlideOffset(m_cfi_data.GetU32(&offset) * code_align);
740           break;
741         }
742 
743         case DW_CFA_restore_extended: // 0x6
744         {
745           // takes a single unsigned LEB128 argument that represents a register
746           // number. This instruction is identical to DW_CFA_restore except for
747           // the encoding and size of the register argument.
748           uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
749           if (unwind_plan.IsValidRowIndex(0) &&
750               unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num,
751                                                             reg_location))
752             row->SetRegisterInfo(reg_num, reg_location);
753           break;
754         }
755 
756         case DW_CFA_remember_state: // 0xA
757         {
758           // These instructions define a stack of information. Encountering the
759           // DW_CFA_remember_state instruction means to save the rules for every
760           // register on the current row on the stack. Encountering the
761           // DW_CFA_restore_state instruction means to pop the set of rules off
762           // the stack and place them in the current row. (This operation is
763           // useful for compilers that move epilogue code into the body of a
764           // function.)
765           stack.push_back(row);
766           UnwindPlan::Row *newrow = new UnwindPlan::Row;
767           *newrow = *row.get();
768           row.reset(newrow);
769           break;
770         }
771 
772         case DW_CFA_restore_state: // 0xB
773         {
774           // These instructions define a stack of information. Encountering the
775           // DW_CFA_remember_state instruction means to save the rules for every
776           // register on the current row on the stack. Encountering the
777           // DW_CFA_restore_state instruction means to pop the set of rules off
778           // the stack and place them in the current row. (This operation is
779           // useful for compilers that move epilogue code into the body of a
780           // function.)
781           if (stack.empty()) {
782             if (log)
783               log->Printf("DWARFCallFrameInfo::%s(dwarf_offset: %" PRIx32
784                           ", startaddr: %" PRIx64
785                           " encountered DW_CFA_restore_state but state stack "
786                           "is empty. Corrupt unwind info?",
787                           __FUNCTION__, dwarf_offset,
788                           startaddr.GetFileAddress());
789             break;
790           }
791           lldb::addr_t offset = row->GetOffset();
792           row = stack.back();
793           stack.pop_back();
794           row->SetOffset(offset);
795           break;
796         }
797 
798         case DW_CFA_GNU_args_size: // 0x2e
799         {
800           // The DW_CFA_GNU_args_size instruction takes an unsigned LEB128
801           // operand
802           // representing an argument size. This instruction specifies the total
803           // of
804           // the size of the arguments which have been pushed onto the stack.
805 
806           // TODO: Figure out how we should handle this.
807           m_cfi_data.GetULEB128(&offset);
808           break;
809         }
810 
811         case DW_CFA_val_offset:    // 0x14
812         case DW_CFA_val_offset_sf: // 0x15
813         default:
814           break;
815         }
816       }
817     }
818   }
819   unwind_plan.AppendRow(row);
820 
821   return true;
822 }
823 
824 bool DWARFCallFrameInfo::HandleCommonDwarfOpcode(uint8_t primary_opcode,
825                                                  uint8_t extended_opcode,
826                                                  int32_t data_align,
827                                                  lldb::offset_t &offset,
828                                                  UnwindPlan::Row &row) {
829   UnwindPlan::Row::RegisterLocation reg_location;
830 
831   if (primary_opcode) {
832     switch (primary_opcode) {
833     case DW_CFA_offset: { // 0x80 - high 2 bits are 0x2, lower 6 bits are
834                           // register
835       // takes two arguments: an unsigned LEB128 constant representing a
836       // factored offset and a register number. The required action is to
837       // change the rule for the register indicated by the register number
838       // to be an offset(N) rule with a value of
839       // (N = factored offset * data_align).
840       uint8_t reg_num = extended_opcode;
841       int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
842       reg_location.SetAtCFAPlusOffset(op_offset);
843       row.SetRegisterInfo(reg_num, reg_location);
844       return true;
845     }
846     }
847   } else {
848     switch (extended_opcode) {
849     case DW_CFA_nop: // 0x0
850       return true;
851 
852     case DW_CFA_offset_extended: // 0x5
853     {
854       // takes two unsigned LEB128 arguments representing a register number
855       // and a factored offset. This instruction is identical to DW_CFA_offset
856       // except for the encoding and size of the register argument.
857       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
858       int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
859       UnwindPlan::Row::RegisterLocation reg_location;
860       reg_location.SetAtCFAPlusOffset(op_offset);
861       row.SetRegisterInfo(reg_num, reg_location);
862       return true;
863     }
864 
865     case DW_CFA_undefined: // 0x7
866     {
867       // takes a single unsigned LEB128 argument that represents a register
868       // number. The required action is to set the rule for the specified
869       // register to undefined.
870       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
871       UnwindPlan::Row::RegisterLocation reg_location;
872       reg_location.SetUndefined();
873       row.SetRegisterInfo(reg_num, reg_location);
874       return true;
875     }
876 
877     case DW_CFA_same_value: // 0x8
878     {
879       // takes a single unsigned LEB128 argument that represents a register
880       // number. The required action is to set the rule for the specified
881       // register to same value.
882       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
883       UnwindPlan::Row::RegisterLocation reg_location;
884       reg_location.SetSame();
885       row.SetRegisterInfo(reg_num, reg_location);
886       return true;
887     }
888 
889     case DW_CFA_register: // 0x9
890     {
891       // takes two unsigned LEB128 arguments representing register numbers.
892       // The required action is to set the rule for the first register to be
893       // the second register.
894       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
895       uint32_t other_reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
896       UnwindPlan::Row::RegisterLocation reg_location;
897       reg_location.SetInRegister(other_reg_num);
898       row.SetRegisterInfo(reg_num, reg_location);
899       return true;
900     }
901 
902     case DW_CFA_def_cfa: // 0xC    (CFA Definition Instruction)
903     {
904       // Takes two unsigned LEB128 operands representing a register
905       // number and a (non-factored) offset. The required action
906       // is to define the current CFA rule to use the provided
907       // register and offset.
908       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
909       int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
910       row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, op_offset);
911       return true;
912     }
913 
914     case DW_CFA_def_cfa_register: // 0xD    (CFA Definition Instruction)
915     {
916       // takes a single unsigned LEB128 argument representing a register
917       // number. The required action is to define the current CFA rule to
918       // use the provided register (but to keep the old offset).
919       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
920       row.GetCFAValue().SetIsRegisterPlusOffset(reg_num,
921                                                 row.GetCFAValue().GetOffset());
922       return true;
923     }
924 
925     case DW_CFA_def_cfa_offset: // 0xE    (CFA Definition Instruction)
926     {
927       // Takes a single unsigned LEB128 operand representing a
928       // (non-factored) offset. The required action is to define
929       // the current CFA rule to use the provided offset (but
930       // to keep the old register).
931       int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
932       row.GetCFAValue().SetIsRegisterPlusOffset(
933           row.GetCFAValue().GetRegisterNumber(), op_offset);
934       return true;
935     }
936 
937     case DW_CFA_def_cfa_expression: // 0xF    (CFA Definition Instruction)
938     {
939       size_t block_len = (size_t)m_cfi_data.GetULEB128(&offset);
940       const uint8_t *block_data =
941           static_cast<const uint8_t *>(m_cfi_data.GetData(&offset, block_len));
942       row.GetCFAValue().SetIsDWARFExpression(block_data, block_len);
943       return true;
944     }
945 
946     case DW_CFA_expression: // 0x10
947     {
948       // Takes two operands: an unsigned LEB128 value representing
949       // a register number, and a DW_FORM_block value representing a DWARF
950       // expression. The required action is to change the rule for the
951       // register indicated by the register number to be an expression(E)
952       // rule where E is the DWARF expression. That is, the DWARF
953       // expression computes the address. The value of the CFA is
954       // pushed on the DWARF evaluation stack prior to execution of
955       // the DWARF expression.
956       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
957       uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
958       const uint8_t *block_data =
959           static_cast<const uint8_t *>(m_cfi_data.GetData(&offset, block_len));
960       UnwindPlan::Row::RegisterLocation reg_location;
961       reg_location.SetAtDWARFExpression(block_data, block_len);
962       row.SetRegisterInfo(reg_num, reg_location);
963       return true;
964     }
965 
966     case DW_CFA_offset_extended_sf: // 0x11
967     {
968       // takes two operands: an unsigned LEB128 value representing a
969       // register number and a signed LEB128 factored offset. This
970       // instruction is identical to DW_CFA_offset_extended except
971       // that the second operand is signed and factored.
972       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
973       int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
974       UnwindPlan::Row::RegisterLocation reg_location;
975       reg_location.SetAtCFAPlusOffset(op_offset);
976       row.SetRegisterInfo(reg_num, reg_location);
977       return true;
978     }
979 
980     case DW_CFA_def_cfa_sf: // 0x12   (CFA Definition Instruction)
981     {
982       // Takes two operands: an unsigned LEB128 value representing
983       // a register number and a signed LEB128 factored offset.
984       // This instruction is identical to DW_CFA_def_cfa except
985       // that the second operand is signed and factored.
986       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
987       int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
988       row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, op_offset);
989       return true;
990     }
991 
992     case DW_CFA_def_cfa_offset_sf: // 0x13   (CFA Definition Instruction)
993     {
994       // takes a signed LEB128 operand representing a factored
995       // offset. This instruction is identical to  DW_CFA_def_cfa_offset
996       // except that the operand is signed and factored.
997       int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
998       uint32_t cfa_regnum = row.GetCFAValue().GetRegisterNumber();
999       row.GetCFAValue().SetIsRegisterPlusOffset(cfa_regnum, op_offset);
1000       return true;
1001     }
1002 
1003     case DW_CFA_val_expression: // 0x16
1004     {
1005       // takes two operands: an unsigned LEB128 value representing a register
1006       // number, and a DW_FORM_block value representing a DWARF expression.
1007       // The required action is to change the rule for the register indicated
1008       // by the register number to be a val_expression(E) rule where E is the
1009       // DWARF expression. That is, the DWARF expression computes the value of
1010       // the given register. The value of the CFA is pushed on the DWARF
1011       // evaluation stack prior to execution of the DWARF expression.
1012       uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
1013       uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
1014       const uint8_t *block_data =
1015           (const uint8_t *)m_cfi_data.GetData(&offset, block_len);
1016       //#if defined(__i386__) || defined(__x86_64__)
1017       //              // The EH frame info for EIP and RIP contains code that
1018       //              looks for traps to
1019       //              // be a specific type and increments the PC.
1020       //              // For i386:
1021       //              // DW_CFA_val_expression where:
1022       //              // eip = DW_OP_breg6(+28), DW_OP_deref, DW_OP_dup,
1023       //              DW_OP_plus_uconst(0x34),
1024       //              //       DW_OP_deref, DW_OP_swap, DW_OP_plus_uconst(0),
1025       //              DW_OP_deref,
1026       //              //       DW_OP_dup, DW_OP_lit3, DW_OP_ne, DW_OP_swap,
1027       //              DW_OP_lit4, DW_OP_ne,
1028       //              //       DW_OP_and, DW_OP_plus
1029       //              // This basically does a:
1030       //              // eip = ucontenxt.mcontext32->gpr.eip;
1031       //              // if (ucontenxt.mcontext32->exc.trapno != 3 &&
1032       //              ucontenxt.mcontext32->exc.trapno != 4)
1033       //              //   eip++;
1034       //              //
1035       //              // For x86_64:
1036       //              // DW_CFA_val_expression where:
1037       //              // rip =  DW_OP_breg3(+48), DW_OP_deref, DW_OP_dup,
1038       //              DW_OP_plus_uconst(0x90), DW_OP_deref,
1039       //              //          DW_OP_swap, DW_OP_plus_uconst(0),
1040       //              DW_OP_deref_size(4), DW_OP_dup, DW_OP_lit3,
1041       //              //          DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne,
1042       //              DW_OP_and, DW_OP_plus
1043       //              // This basically does a:
1044       //              // rip = ucontenxt.mcontext64->gpr.rip;
1045       //              // if (ucontenxt.mcontext64->exc.trapno != 3 &&
1046       //              ucontenxt.mcontext64->exc.trapno != 4)
1047       //              //   rip++;
1048       //              // The trap comparisons and increments are not needed as
1049       //              it hoses up the unwound PC which
1050       //              // is expected to point at least past the instruction that
1051       //              causes the fault/trap. So we
1052       //              // take it out by trimming the expression right at the
1053       //              first "DW_OP_swap" opcodes
1054       //              if (block_data != NULL && thread->GetPCRegNum(Thread::GCC)
1055       //              == reg_num)
1056       //              {
1057       //                  if (thread->Is64Bit())
1058       //                  {
1059       //                      if (block_len > 9 && block_data[8] == DW_OP_swap
1060       //                      && block_data[9] == DW_OP_plus_uconst)
1061       //                          block_len = 8;
1062       //                  }
1063       //                  else
1064       //                  {
1065       //                      if (block_len > 8 && block_data[7] == DW_OP_swap
1066       //                      && block_data[8] == DW_OP_plus_uconst)
1067       //                          block_len = 7;
1068       //                  }
1069       //              }
1070       //#endif
1071       reg_location.SetIsDWARFExpression(block_data, block_len);
1072       row.SetRegisterInfo(reg_num, reg_location);
1073       return true;
1074     }
1075     }
1076   }
1077   return false;
1078 }
1079 
1080 void DWARFCallFrameInfo::ForEachFDEEntries(
1081     const std::function<bool(lldb::addr_t, uint32_t, dw_offset_t)> &callback) {
1082   GetFDEIndex();
1083 
1084   for (size_t i = 0, c = m_fde_index.GetSize(); i < c; ++i) {
1085     const FDEEntryMap::Entry &entry = m_fde_index.GetEntryRef(i);
1086     if (!callback(entry.base, entry.size, entry.data))
1087       break;
1088   }
1089 }
1090