1 //===-- CompactUnwindInfo.cpp -----------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 
11 // C Includes
12 // C++ Includes
13 #include <algorithm>
14 
15 #include "lldb/Core/ArchSpec.h"
16 #include "lldb/Core/DataBufferHeap.h"
17 #include "lldb/Core/Log.h"
18 #include "lldb/Core/Module.h"
19 #include "lldb/Core/Section.h"
20 #include "lldb/Core/Section.h"
21 #include "lldb/Core/StreamString.h"
22 #include "lldb/Symbol/CompactUnwindInfo.h"
23 #include "lldb/Symbol/ObjectFile.h"
24 #include "lldb/Symbol/UnwindPlan.h"
25 #include "lldb/Target/Process.h"
26 #include "lldb/Target/Target.h"
27 
28 #include "llvm/Support/MathExtras.h"
29 
30 using namespace lldb;
31 using namespace lldb_private;
32 
33 
34 namespace lldb_private {
35 
36     // Constants from <mach-o/compact_unwind_encoding.h>
37 
38     enum {
39         UNWIND_IS_NOT_FUNCTION_START           = 0x80000000,
40         UNWIND_HAS_LSDA                        = 0x40000000,
41         UNWIND_PERSONALITY_MASK                = 0x30000000,
42     };
43 
44     enum {
45         UNWIND_X86_MODE_MASK                         = 0x0F000000,
46         UNWIND_X86_MODE_EBP_FRAME                    = 0x01000000,
47         UNWIND_X86_MODE_STACK_IMMD                   = 0x02000000,
48         UNWIND_X86_MODE_STACK_IND                    = 0x03000000,
49         UNWIND_X86_MODE_DWARF                        = 0x04000000,
50 
51         UNWIND_X86_EBP_FRAME_REGISTERS               = 0x00007FFF,
52         UNWIND_X86_EBP_FRAME_OFFSET                  = 0x00FF0000,
53 
54         UNWIND_X86_FRAMELESS_STACK_SIZE              = 0x00FF0000,
55         UNWIND_X86_FRAMELESS_STACK_ADJUST            = 0x0000E000,
56         UNWIND_X86_FRAMELESS_STACK_REG_COUNT         = 0x00001C00,
57         UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION   = 0x000003FF,
58 
59         UNWIND_X86_DWARF_SECTION_OFFSET              = 0x00FFFFFF,
60     };
61 
62     enum {
63         UNWIND_X86_REG_NONE     = 0,
64         UNWIND_X86_REG_EBX      = 1,
65         UNWIND_X86_REG_ECX      = 2,
66         UNWIND_X86_REG_EDX      = 3,
67         UNWIND_X86_REG_EDI      = 4,
68         UNWIND_X86_REG_ESI      = 5,
69         UNWIND_X86_REG_EBP      = 6,
70     };
71     enum {
72         UNWIND_X86_64_MODE_MASK                         = 0x0F000000,
73         UNWIND_X86_64_MODE_RBP_FRAME                    = 0x01000000,
74         UNWIND_X86_64_MODE_STACK_IMMD                   = 0x02000000,
75         UNWIND_X86_64_MODE_STACK_IND                    = 0x03000000,
76         UNWIND_X86_64_MODE_DWARF                        = 0x04000000,
77 
78         UNWIND_X86_64_RBP_FRAME_REGISTERS               = 0x00007FFF,
79         UNWIND_X86_64_RBP_FRAME_OFFSET                  = 0x00FF0000,
80 
81         UNWIND_X86_64_FRAMELESS_STACK_SIZE              = 0x00FF0000,
82         UNWIND_X86_64_FRAMELESS_STACK_ADJUST            = 0x0000E000,
83         UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT         = 0x00001C00,
84         UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION   = 0x000003FF,
85 
86         UNWIND_X86_64_DWARF_SECTION_OFFSET              = 0x00FFFFFF,
87     };
88 
89     enum {
90         UNWIND_X86_64_REG_NONE       = 0,
91         UNWIND_X86_64_REG_RBX        = 1,
92         UNWIND_X86_64_REG_R12        = 2,
93         UNWIND_X86_64_REG_R13        = 3,
94         UNWIND_X86_64_REG_R14        = 4,
95         UNWIND_X86_64_REG_R15        = 5,
96         UNWIND_X86_64_REG_RBP        = 6,
97     };
98 };
99 
100 
101 #ifndef UNWIND_SECOND_LEVEL_REGULAR
102 #define UNWIND_SECOND_LEVEL_REGULAR 2
103 #endif
104 
105 #ifndef UNWIND_SECOND_LEVEL_COMPRESSED
106 #define UNWIND_SECOND_LEVEL_COMPRESSED 3
107 #endif
108 
109 #ifndef UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET
110 #define UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(entry)            (entry & 0x00FFFFFF)
111 #endif
112 
113 #ifndef UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX
114 #define UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX(entry)        ((entry >> 24) & 0xFF)
115 #endif
116 
117 #define EXTRACT_BITS(value, mask) \
118         ( (value >> llvm::countTrailingZeros(static_cast<uint32_t>(mask), llvm::ZB_Width)) & \
119           (((1 << llvm::countPopulation(static_cast<uint32_t>(mask))))-1) )
120 
121 
122 
123 //----------------------
124 // constructor
125 //----------------------
126 
127 
128 CompactUnwindInfo::CompactUnwindInfo(ObjectFile& objfile, SectionSP& section_sp) :
129     m_objfile (objfile),
130     m_section_sp (section_sp),
131     m_section_contents_if_encrypted (),
132     m_mutex (),
133     m_indexes (),
134     m_indexes_computed (eLazyBoolCalculate),
135     m_unwindinfo_data (),
136     m_unwindinfo_data_computed (false),
137     m_unwind_header ()
138 {
139 
140 }
141 
142 //----------------------
143 // destructor
144 //----------------------
145 
146 CompactUnwindInfo::~CompactUnwindInfo()
147 {
148 }
149 
150 bool
151 CompactUnwindInfo::GetUnwindPlan (Target &target, Address addr, UnwindPlan& unwind_plan)
152 {
153     if (!IsValid (target.GetProcessSP()))
154     {
155         return false;
156     }
157     FunctionInfo function_info;
158     if (GetCompactUnwindInfoForFunction (target, addr, function_info))
159     {
160         // shortcut return for functions that have no compact unwind
161         if (function_info.encoding == 0)
162             return false;
163 
164         ArchSpec arch;
165         if (m_objfile.GetArchitecture (arch))
166         {
167 
168             Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
169             if (log && log->GetVerbose())
170             {
171                 StreamString strm;
172                 addr.Dump (&strm, NULL, Address::DumpStyle::DumpStyleResolvedDescriptionNoFunctionArguments, Address::DumpStyle::DumpStyleFileAddress, arch.GetAddressByteSize());
173                 log->Printf ("Got compact unwind encoding 0x%x for function %s", function_info.encoding, strm.GetData());
174             }
175 
176             if (function_info.valid_range_offset_start != 0 && function_info.valid_range_offset_end != 0)
177             {
178                 SectionList *sl = m_objfile.GetSectionList ();
179                 if (sl)
180                 {
181                     addr_t func_range_start_file_addr =
182                               function_info.valid_range_offset_start + m_objfile.GetHeaderAddress().GetFileAddress();
183                     AddressRange func_range (func_range_start_file_addr,
184                                       function_info.valid_range_offset_end - function_info.valid_range_offset_start,
185                                       sl);
186                     unwind_plan.SetPlanValidAddressRange (func_range);
187                 }
188             }
189 
190             if (arch.GetTriple().getArch() == llvm::Triple::x86_64)
191             {
192                 return CreateUnwindPlan_x86_64 (target, function_info, unwind_plan, addr);
193             }
194             if (arch.GetTriple().getArch() == llvm::Triple::x86)
195             {
196                 return CreateUnwindPlan_i386 (target, function_info, unwind_plan, addr);
197             }
198         }
199     }
200     return false;
201 }
202 
203 bool
204 CompactUnwindInfo::IsValid (const ProcessSP &process_sp)
205 {
206     if (m_section_sp.get() == nullptr)
207         return false;
208 
209     if (m_indexes_computed == eLazyBoolYes && m_unwindinfo_data_computed)
210         return true;
211 
212     ScanIndex (process_sp);
213 
214     return m_indexes_computed == eLazyBoolYes && m_unwindinfo_data_computed;
215 }
216 
217 void
218 CompactUnwindInfo::ScanIndex (const ProcessSP &process_sp)
219 {
220     Mutex::Locker locker(m_mutex);
221     if (m_indexes_computed == eLazyBoolYes && m_unwindinfo_data_computed)
222         return;
223 
224     // We can't read the index for some reason.
225     if (m_indexes_computed == eLazyBoolNo)
226     {
227         return;
228     }
229 
230     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
231     if (log)
232         m_objfile.GetModule()->LogMessage(log, "Reading compact unwind first-level indexes");
233 
234     if (m_unwindinfo_data_computed == false)
235     {
236         if (m_section_sp->IsEncrypted())
237         {
238             // Can't get section contents of a protected/encrypted section until we have a live
239             // process and can read them out of memory.
240             if (process_sp.get() == nullptr)
241                 return;
242             m_section_contents_if_encrypted.reset (new DataBufferHeap (m_section_sp->GetByteSize(), 0));
243             Error error;
244             if (process_sp->ReadMemory (
245                         m_section_sp->GetLoadBaseAddress (&process_sp->GetTarget()),
246                         m_section_contents_if_encrypted->GetBytes(),
247                         m_section_sp->GetByteSize(), error) == m_section_sp->GetByteSize() && error.Success())
248             {
249                 m_unwindinfo_data.SetAddressByteSize (process_sp->GetTarget().GetArchitecture().GetAddressByteSize());
250                 m_unwindinfo_data.SetByteOrder (process_sp->GetTarget().GetArchitecture().GetByteOrder());
251                 m_unwindinfo_data.SetData (m_section_contents_if_encrypted, 0);
252             }
253         }
254         else
255         {
256             m_objfile.ReadSectionData (m_section_sp.get(), m_unwindinfo_data);
257         }
258         if (m_unwindinfo_data.GetByteSize() != m_section_sp->GetByteSize())
259             return;
260         m_unwindinfo_data_computed = true;
261     }
262 
263     if (m_unwindinfo_data.GetByteSize() > 0)
264     {
265         offset_t offset = 0;
266 
267                 // struct unwind_info_section_header
268                 // {
269                 // uint32_t    version;            // UNWIND_SECTION_VERSION
270                 // uint32_t    commonEncodingsArraySectionOffset;
271                 // uint32_t    commonEncodingsArrayCount;
272                 // uint32_t    personalityArraySectionOffset;
273                 // uint32_t    personalityArrayCount;
274                 // uint32_t    indexSectionOffset;
275                 // uint32_t    indexCount;
276 
277         m_unwind_header.version = m_unwindinfo_data.GetU32(&offset);
278         m_unwind_header.common_encodings_array_offset = m_unwindinfo_data.GetU32(&offset);
279         m_unwind_header.common_encodings_array_count = m_unwindinfo_data.GetU32(&offset);
280         m_unwind_header.personality_array_offset = m_unwindinfo_data.GetU32(&offset);
281         m_unwind_header.personality_array_count = m_unwindinfo_data.GetU32(&offset);
282         uint32_t indexSectionOffset = m_unwindinfo_data.GetU32(&offset);
283 
284         uint32_t indexCount = m_unwindinfo_data.GetU32(&offset);
285 
286         if (m_unwind_header.version != 1)
287         {
288             m_indexes_computed = eLazyBoolNo;
289         }
290 
291         // Parse the basic information from the indexes
292         // We wait to scan the second level page info until it's needed
293 
294             // struct unwind_info_section_header_index_entry
295             // {
296             //     uint32_t        functionOffset;
297             //     uint32_t        secondLevelPagesSectionOffset;
298             //     uint32_t        lsdaIndexArraySectionOffset;
299             // };
300 
301         offset = indexSectionOffset;
302         for (uint32_t idx = 0; idx < indexCount; idx++)
303         {
304             uint32_t function_offset = m_unwindinfo_data.GetU32(&offset);      // functionOffset
305             uint32_t second_level_offset = m_unwindinfo_data.GetU32(&offset);  // secondLevelPagesSectionOffset
306             uint32_t lsda_offset = m_unwindinfo_data.GetU32(&offset);          // lsdaIndexArraySectionOffset
307 
308             if (second_level_offset > m_section_sp->GetByteSize() || lsda_offset > m_section_sp->GetByteSize())
309             {
310                 m_indexes_computed = eLazyBoolNo;
311             }
312 
313             UnwindIndex this_index;
314             this_index.function_offset = function_offset;     //
315             this_index.second_level = second_level_offset;
316             this_index.lsda_array_start = lsda_offset;
317 
318             if (m_indexes.size() > 0)
319             {
320                 m_indexes[m_indexes.size() - 1].lsda_array_end = lsda_offset;
321             }
322 
323             if (second_level_offset == 0)
324             {
325                 this_index.sentinal_entry = true;
326             }
327 
328             m_indexes.push_back (this_index);
329         }
330         m_indexes_computed = eLazyBoolYes;
331     }
332     else
333     {
334         m_indexes_computed = eLazyBoolNo;
335     }
336 }
337 
338 uint32_t
339 CompactUnwindInfo::GetLSDAForFunctionOffset (uint32_t lsda_offset, uint32_t lsda_count, uint32_t function_offset)
340 {
341         // struct unwind_info_section_header_lsda_index_entry
342         // {
343         //         uint32_t        functionOffset;
344         //         uint32_t        lsdaOffset;
345         // };
346 
347     offset_t first_entry = lsda_offset;
348     uint32_t low = 0;
349     uint32_t high = lsda_count;
350     while (low < high)
351     {
352         uint32_t mid = (low + high) / 2;
353         offset_t offset = first_entry + (mid * 8);
354         uint32_t mid_func_offset = m_unwindinfo_data.GetU32(&offset);  // functionOffset
355         uint32_t mid_lsda_offset = m_unwindinfo_data.GetU32(&offset);  // lsdaOffset
356         if (mid_func_offset == function_offset)
357         {
358             return mid_lsda_offset;
359         }
360         if (mid_func_offset < function_offset)
361         {
362             low = mid + 1;
363         }
364         else
365         {
366             high = mid;
367         }
368     }
369     return 0;
370 }
371 
372 lldb::offset_t
373 CompactUnwindInfo::BinarySearchRegularSecondPage (uint32_t entry_page_offset, uint32_t entry_count, uint32_t function_offset, uint32_t *entry_func_start_offset, uint32_t *entry_func_end_offset)
374 {
375     // typedef uint32_t compact_unwind_encoding_t;
376     // struct unwind_info_regular_second_level_entry
377     // {
378     //     uint32_t                    functionOffset;
379     //     compact_unwind_encoding_t    encoding;
380 
381     offset_t first_entry = entry_page_offset;
382 
383     uint32_t low = 0;
384     uint32_t high = entry_count;
385     uint32_t last = high - 1;
386     while (low < high)
387     {
388         uint32_t mid = (low + high) / 2;
389         offset_t offset = first_entry + (mid * 8);
390         uint32_t mid_func_offset = m_unwindinfo_data.GetU32(&offset);   // functionOffset
391         uint32_t next_func_offset = 0;
392         if (mid < last)
393         {
394             offset = first_entry + ((mid + 1) * 8);
395             next_func_offset = m_unwindinfo_data.GetU32(&offset);       // functionOffset
396         }
397         if (mid_func_offset <= function_offset)
398         {
399             if (mid == last || (next_func_offset > function_offset))
400             {
401                 if (entry_func_start_offset)
402                     *entry_func_start_offset = mid_func_offset;
403                 if (mid != last && entry_func_end_offset)
404                     *entry_func_end_offset = next_func_offset;
405                 return first_entry + (mid * 8);
406             }
407             else
408             {
409                 low = mid + 1;
410             }
411         }
412         else
413         {
414             high = mid;
415         }
416     }
417     return LLDB_INVALID_OFFSET;
418 }
419 
420 uint32_t
421 CompactUnwindInfo::BinarySearchCompressedSecondPage (uint32_t entry_page_offset, uint32_t entry_count, uint32_t function_offset_to_find, uint32_t function_offset_base, uint32_t *entry_func_start_offset, uint32_t *entry_func_end_offset)
422 {
423     offset_t first_entry = entry_page_offset;
424 
425     uint32_t low = 0;
426     uint32_t high = entry_count;
427     uint32_t last = high - 1;
428     while (low < high)
429     {
430         uint32_t mid = (low + high) / 2;
431         offset_t offset = first_entry + (mid * 4);
432         uint32_t entry = m_unwindinfo_data.GetU32(&offset);   // entry
433         uint32_t mid_func_offset = UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET (entry);
434         mid_func_offset += function_offset_base;
435         uint32_t next_func_offset = 0;
436         if (mid < last)
437         {
438             offset = first_entry + ((mid + 1) * 4);
439             uint32_t next_entry = m_unwindinfo_data.GetU32(&offset);       // entry
440             next_func_offset = UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET (next_entry);
441             next_func_offset += function_offset_base;
442         }
443         if (mid_func_offset <= function_offset_to_find)
444         {
445             if (mid == last || (next_func_offset > function_offset_to_find))
446             {
447                 if (entry_func_start_offset)
448                     *entry_func_start_offset = mid_func_offset;
449                 if (mid != last && entry_func_end_offset)
450                     *entry_func_end_offset = next_func_offset;
451                 return UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX (entry);
452             }
453             else
454             {
455                 low = mid + 1;
456             }
457         }
458         else
459         {
460             high = mid;
461         }
462     }
463 
464     return UINT32_MAX;
465 }
466 
467 bool
468 CompactUnwindInfo::GetCompactUnwindInfoForFunction (Target &target, Address address, FunctionInfo &unwind_info)
469 {
470     unwind_info.encoding = 0;
471     unwind_info.lsda_address.Clear();
472     unwind_info.personality_ptr_address.Clear();
473 
474     if (!IsValid (target.GetProcessSP()))
475         return false;
476 
477     addr_t text_section_file_address = LLDB_INVALID_ADDRESS;
478     SectionList *sl = m_objfile.GetSectionList ();
479     if (sl)
480     {
481         SectionSP text_sect = sl->FindSectionByType (eSectionTypeCode, true);
482         if (text_sect.get())
483         {
484            text_section_file_address = text_sect->GetFileAddress();
485         }
486     }
487     if (text_section_file_address == LLDB_INVALID_ADDRESS)
488         return false;
489 
490     addr_t function_offset = address.GetFileAddress() - m_objfile.GetHeaderAddress().GetFileAddress();
491 
492     UnwindIndex key;
493     key.function_offset = function_offset;
494 
495     std::vector<UnwindIndex>::const_iterator it;
496     it = std::lower_bound (m_indexes.begin(), m_indexes.end(), key);
497     if (it == m_indexes.end())
498     {
499         return false;
500     }
501 
502     if (it->function_offset != key.function_offset)
503     {
504         if (it != m_indexes.begin())
505             --it;
506     }
507 
508     if (it->sentinal_entry == true)
509     {
510         return false;
511     }
512 
513     auto next_it = it + 1;
514     if (next_it != m_indexes.begin())
515     {
516         // initialize the function offset end range to be the start of the
517         // next index offset.  If we find an entry which is at the end of
518         // the index table, this will establish the range end.
519         unwind_info.valid_range_offset_end = next_it->function_offset;
520     }
521 
522     offset_t second_page_offset = it->second_level;
523     offset_t lsda_array_start = it->lsda_array_start;
524     offset_t lsda_array_count = (it->lsda_array_end - it->lsda_array_start) / 8;
525 
526     offset_t offset = second_page_offset;
527     uint32_t kind = m_unwindinfo_data.GetU32(&offset);  // UNWIND_SECOND_LEVEL_REGULAR or UNWIND_SECOND_LEVEL_COMPRESSED
528 
529     if (kind == UNWIND_SECOND_LEVEL_REGULAR)
530     {
531             // struct unwind_info_regular_second_level_page_header
532             // {
533             //     uint32_t    kind;    // UNWIND_SECOND_LEVEL_REGULAR
534             //     uint16_t    entryPageOffset;
535             //     uint16_t    entryCount;
536 
537             // typedef uint32_t compact_unwind_encoding_t;
538             // struct unwind_info_regular_second_level_entry
539             // {
540             //     uint32_t                    functionOffset;
541             //     compact_unwind_encoding_t    encoding;
542 
543         uint16_t entry_page_offset = m_unwindinfo_data.GetU16(&offset); // entryPageOffset
544         uint16_t entry_count = m_unwindinfo_data.GetU16(&offset);       // entryCount
545 
546         offset_t entry_offset = BinarySearchRegularSecondPage (second_page_offset + entry_page_offset, entry_count, function_offset, &unwind_info.valid_range_offset_start, &unwind_info.valid_range_offset_end);
547         if (entry_offset == LLDB_INVALID_OFFSET)
548         {
549             return false;
550         }
551         entry_offset += 4;                                              // skip over functionOffset
552         unwind_info.encoding = m_unwindinfo_data.GetU32(&entry_offset); // encoding
553         if (unwind_info.encoding & UNWIND_HAS_LSDA)
554         {
555             SectionList *sl = m_objfile.GetSectionList ();
556             if (sl)
557             {
558                 uint32_t lsda_offset = GetLSDAForFunctionOffset (lsda_array_start, lsda_array_count, function_offset);
559                 addr_t objfile_header_file_address = m_objfile.GetHeaderAddress().GetFileAddress();
560                 unwind_info.lsda_address.ResolveAddressUsingFileSections (objfile_header_file_address + lsda_offset, sl);
561             }
562         }
563         if (unwind_info.encoding & UNWIND_PERSONALITY_MASK)
564         {
565             uint32_t personality_index = EXTRACT_BITS (unwind_info.encoding, UNWIND_PERSONALITY_MASK);
566 
567             if (personality_index > 0)
568             {
569                 personality_index--;
570                 if (personality_index < m_unwind_header.personality_array_count)
571                 {
572                     offset_t offset = m_unwind_header.personality_array_offset;
573                     offset += 4 * personality_index;
574                     SectionList *sl = m_objfile.GetSectionList ();
575                     if (sl)
576                     {
577                         uint32_t personality_offset = m_unwindinfo_data.GetU32(&offset);
578                         addr_t objfile_header_file_address = m_objfile.GetHeaderAddress().GetFileAddress();
579                         unwind_info.personality_ptr_address.ResolveAddressUsingFileSections (objfile_header_file_address + personality_offset, sl);
580                     }
581                 }
582             }
583         }
584         return true;
585     }
586     else if (kind == UNWIND_SECOND_LEVEL_COMPRESSED)
587     {
588             // struct unwind_info_compressed_second_level_page_header
589             // {
590             //     uint32_t    kind;    // UNWIND_SECOND_LEVEL_COMPRESSED
591             //     uint16_t    entryPageOffset;         // offset from this 2nd lvl page idx to array of entries
592             //                                          // (an entry has a function offset and index into the encodings)
593             //                                          // NB function offset from the entry in the compressed page
594             //                                          // must be added to the index's functionOffset value.
595             //     uint16_t    entryCount;
596             //     uint16_t    encodingsPageOffset;     // offset from this 2nd lvl page idx to array of encodings
597             //     uint16_t    encodingsCount;
598 
599         uint16_t entry_page_offset = m_unwindinfo_data.GetU16(&offset);     // entryPageOffset
600         uint16_t entry_count = m_unwindinfo_data.GetU16(&offset);           // entryCount
601         uint16_t encodings_page_offset = m_unwindinfo_data.GetU16(&offset); // encodingsPageOffset
602         uint16_t encodings_count = m_unwindinfo_data.GetU16(&offset);       // encodingsCount
603 
604         uint32_t encoding_index = BinarySearchCompressedSecondPage (second_page_offset + entry_page_offset, entry_count, function_offset, it->function_offset, &unwind_info.valid_range_offset_start, &unwind_info.valid_range_offset_end);
605         if (encoding_index == UINT32_MAX || encoding_index >= encodings_count + m_unwind_header.common_encodings_array_count)
606         {
607             return false;
608         }
609         uint32_t encoding = 0;
610         if (encoding_index < m_unwind_header.common_encodings_array_count)
611         {
612             offset = m_unwind_header.common_encodings_array_offset + (encoding_index * sizeof (uint32_t));
613             encoding = m_unwindinfo_data.GetU32(&offset);   // encoding entry from the commonEncodingsArray
614         }
615         else
616         {
617             uint32_t page_specific_entry_index = encoding_index - m_unwind_header.common_encodings_array_count;
618             offset = second_page_offset + encodings_page_offset + (page_specific_entry_index * sizeof (uint32_t));
619             encoding = m_unwindinfo_data.GetU32(&offset);   // encoding entry from the page-specific encoding array
620         }
621         if (encoding == 0)
622             return false;
623 
624         unwind_info.encoding = encoding;
625         if (unwind_info.encoding & UNWIND_HAS_LSDA)
626         {
627             SectionList *sl = m_objfile.GetSectionList ();
628             if (sl)
629             {
630                 uint32_t lsda_offset = GetLSDAForFunctionOffset (lsda_array_start, lsda_array_count, function_offset);
631                 addr_t objfile_header_file_address = m_objfile.GetHeaderAddress().GetFileAddress();
632                 unwind_info.lsda_address.ResolveAddressUsingFileSections (objfile_header_file_address + lsda_offset, sl);
633             }
634         }
635         if (unwind_info.encoding & UNWIND_PERSONALITY_MASK)
636         {
637             uint32_t personality_index = EXTRACT_BITS (unwind_info.encoding, UNWIND_PERSONALITY_MASK);
638 
639             if (personality_index > 0)
640             {
641                 personality_index--;
642                 if (personality_index < m_unwind_header.personality_array_count)
643                 {
644                     offset_t offset = m_unwind_header.personality_array_offset;
645                     offset += 4 * personality_index;
646                     SectionList *sl = m_objfile.GetSectionList ();
647                     if (sl)
648                     {
649                         uint32_t personality_offset = m_unwindinfo_data.GetU32(&offset);
650                         addr_t objfile_header_file_address = m_objfile.GetHeaderAddress().GetFileAddress();
651                         unwind_info.personality_ptr_address.ResolveAddressUsingFileSections (objfile_header_file_address + personality_offset, sl);
652                     }
653                 }
654             }
655         }
656         return true;
657     }
658     return false;
659 }
660 
661 enum x86_64_eh_regnum {
662     rax = 0,
663     rdx = 1,
664     rcx = 2,
665     rbx = 3,
666     rsi = 4,
667     rdi = 5,
668     rbp = 6,
669     rsp = 7,
670     r8 = 8,
671     r9 = 9,
672     r10 = 10,
673     r11 = 11,
674     r12 = 12,
675     r13 = 13,
676     r14 = 14,
677     r15 = 15,
678     rip = 16   // this is officially the Return Address register number, but close enough
679 };
680 
681 // Convert the compact_unwind_info.h register numbering scheme
682 // to eRegisterKindGCC (eh_frame) register numbering scheme.
683 uint32_t
684 translate_to_eh_frame_regnum_x86_64 (uint32_t unwind_regno)
685 {
686     switch (unwind_regno)
687     {
688         case UNWIND_X86_64_REG_RBX:
689             return x86_64_eh_regnum::rbx;
690         case UNWIND_X86_64_REG_R12:
691             return x86_64_eh_regnum::r12;
692         case UNWIND_X86_64_REG_R13:
693             return x86_64_eh_regnum::r13;
694         case UNWIND_X86_64_REG_R14:
695             return x86_64_eh_regnum::r14;
696         case UNWIND_X86_64_REG_R15:
697             return x86_64_eh_regnum::r15;
698         case UNWIND_X86_64_REG_RBP:
699             return x86_64_eh_regnum::rbp;
700         default:
701             return LLDB_INVALID_REGNUM;
702     }
703 }
704 
705 bool
706 CompactUnwindInfo::CreateUnwindPlan_x86_64 (Target &target, FunctionInfo &function_info, UnwindPlan &unwind_plan, Address pc_or_function_start)
707 {
708     unwind_plan.SetSourceName ("compact unwind info");
709     unwind_plan.SetSourcedFromCompiler (eLazyBoolYes);
710     unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
711     unwind_plan.SetRegisterKind (eRegisterKindGCC);
712 
713     unwind_plan.SetLSDAAddress (function_info.lsda_address);
714     unwind_plan.SetPersonalityFunctionPtr (function_info.personality_ptr_address);
715 
716     UnwindPlan::RowSP row (new UnwindPlan::Row);
717 
718     const int wordsize = 8;
719     int mode = function_info.encoding & UNWIND_X86_64_MODE_MASK;
720     switch (mode)
721     {
722         case UNWIND_X86_64_MODE_RBP_FRAME:
723         {
724             row->GetCFAValue().SetIsRegisterPlusOffset (
725                     translate_to_eh_frame_regnum_x86_64 (UNWIND_X86_64_REG_RBP),
726                     2 * wordsize);
727             row->SetOffset (0);
728             row->SetRegisterLocationToAtCFAPlusOffset (x86_64_eh_regnum::rbp, wordsize * -2, true);
729             row->SetRegisterLocationToAtCFAPlusOffset (x86_64_eh_regnum::rip, wordsize * -1, true);
730             row->SetRegisterLocationToIsCFAPlusOffset (x86_64_eh_regnum::rsp, 0, true);
731 
732             uint32_t saved_registers_offset = EXTRACT_BITS (function_info.encoding, UNWIND_X86_64_RBP_FRAME_OFFSET);
733 
734             uint32_t saved_registers_locations = EXTRACT_BITS (function_info.encoding, UNWIND_X86_64_RBP_FRAME_REGISTERS);
735 
736             saved_registers_offset += 2;
737 
738             for (int i = 0; i < 5; i++)
739             {
740                 uint32_t regnum = saved_registers_locations & 0x7;
741                 switch (regnum)
742                 {
743                     case UNWIND_X86_64_REG_NONE:
744                         break;
745                     case UNWIND_X86_64_REG_RBX:
746                     case UNWIND_X86_64_REG_R12:
747                     case UNWIND_X86_64_REG_R13:
748                     case UNWIND_X86_64_REG_R14:
749                     case UNWIND_X86_64_REG_R15:
750                         row->SetRegisterLocationToAtCFAPlusOffset (translate_to_eh_frame_regnum_x86_64 (regnum), wordsize * -saved_registers_offset, true);
751                         break;
752                 }
753                 saved_registers_offset--;
754                 saved_registers_locations >>= 3;
755             }
756             unwind_plan.AppendRow (row);
757             return true;
758         }
759         break;
760 
761         case UNWIND_X86_64_MODE_STACK_IND:
762         {
763             // The clang in Xcode 6 is emitting incorrect compact unwind encodings for this
764             // style of unwind.  It was fixed in llvm r217020.
765             return false;
766         }
767         break;
768 
769         case UNWIND_X86_64_MODE_STACK_IMMD:
770         {
771             uint32_t stack_size = EXTRACT_BITS (function_info.encoding, UNWIND_X86_64_FRAMELESS_STACK_SIZE);
772             uint32_t register_count = EXTRACT_BITS (function_info.encoding, UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT);
773             uint32_t permutation = EXTRACT_BITS (function_info.encoding, UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION);
774 
775             if (mode == UNWIND_X86_64_MODE_STACK_IND && function_info.valid_range_offset_start != 0)
776             {
777                 uint32_t stack_adjust = EXTRACT_BITS (function_info.encoding, UNWIND_X86_64_FRAMELESS_STACK_ADJUST);
778 
779                 // offset into the function instructions; 0 == beginning of first instruction
780                 uint32_t offset_to_subl_insn = EXTRACT_BITS (function_info.encoding, UNWIND_X86_64_FRAMELESS_STACK_SIZE);
781 
782                 SectionList *sl = m_objfile.GetSectionList ();
783                 if (sl)
784                 {
785                     ProcessSP process_sp = target.GetProcessSP();
786                     if (process_sp)
787                     {
788                         Address subl_payload_addr (function_info.valid_range_offset_start, sl);
789                         subl_payload_addr.Slide (offset_to_subl_insn);
790                         Error error;
791                         uint64_t large_stack_size = process_sp->ReadUnsignedIntegerFromMemory (subl_payload_addr.GetLoadAddress (&target),
792                                 4, 0, error);
793                         if (large_stack_size != 0 && error.Success ())
794                         {
795                             // Got the large stack frame size correctly - use it
796                             stack_size = large_stack_size + (stack_adjust * wordsize);
797                         }
798                         else
799                         {
800                             return false;
801                         }
802                     }
803                     else
804                     {
805                         return false;
806                     }
807                 }
808                 else
809                 {
810                     return false;
811                 }
812             }
813 
814             int32_t offset = mode == UNWIND_X86_64_MODE_STACK_IND ? stack_size : stack_size * wordsize;
815             row->GetCFAValue().SetIsRegisterPlusOffset (x86_64_eh_regnum::rsp, offset);
816 
817             row->SetOffset (0);
818             row->SetRegisterLocationToAtCFAPlusOffset (x86_64_eh_regnum::rip, wordsize * -1, true);
819             row->SetRegisterLocationToIsCFAPlusOffset (x86_64_eh_regnum::rsp, 0, true);
820 
821             if (register_count > 0)
822             {
823 
824                 // We need to include (up to) 6 registers in 10 bits.
825                 // That would be 18 bits if we just used 3 bits per reg to indicate
826                 // the order they're saved on the stack.
827                 //
828                 // This is done with Lehmer code permutation, e.g. see
829                 // http://stackoverflow.com/questions/1506078/fast-permutation-number-permutation-mapping-algorithms
830                 int permunreg[6];
831 
832                 // This decodes the variable-base number in the 10 bits
833                 // and gives us the Lehmer code sequence which can then
834                 // be decoded.
835 
836                 switch (register_count)
837                 {
838                     case 6:
839                         permunreg[0] = permutation/120;    // 120 == 5!
840                         permutation -= (permunreg[0]*120);
841                         permunreg[1] = permutation/24;     // 24 == 4!
842                         permutation -= (permunreg[1]*24);
843                         permunreg[2] = permutation/6;      // 6 == 3!
844                         permutation -= (permunreg[2]*6);
845                         permunreg[3] = permutation/2;      // 2 == 2!
846                         permutation -= (permunreg[3]*2);
847                         permunreg[4] = permutation;        // 1 == 1!
848                         permunreg[5] = 0;
849                         break;
850                     case 5:
851                         permunreg[0] = permutation/120;
852                         permutation -= (permunreg[0]*120);
853                         permunreg[1] = permutation/24;
854                         permutation -= (permunreg[1]*24);
855                         permunreg[2] = permutation/6;
856                         permutation -= (permunreg[2]*6);
857                         permunreg[3] = permutation/2;
858                         permutation -= (permunreg[3]*2);
859                         permunreg[4] = permutation;
860                         break;
861                     case 4:
862                         permunreg[0] = permutation/60;
863                         permutation -= (permunreg[0]*60);
864                         permunreg[1] = permutation/12;
865                         permutation -= (permunreg[1]*12);
866                         permunreg[2] = permutation/3;
867                         permutation -= (permunreg[2]*3);
868                         permunreg[3] = permutation;
869                         break;
870                     case 3:
871                         permunreg[0] = permutation/20;
872                         permutation -= (permunreg[0]*20);
873                         permunreg[1] = permutation/4;
874                         permutation -= (permunreg[1]*4);
875                         permunreg[2] = permutation;
876                         break;
877                     case 2:
878                         permunreg[0] = permutation/5;
879                         permutation -= (permunreg[0]*5);
880                         permunreg[1] = permutation;
881                         break;
882                     case 1:
883                         permunreg[0] = permutation;
884                         break;
885                 }
886 
887                 // Decode the Lehmer code for this permutation of
888                 // the registers v. http://en.wikipedia.org/wiki/Lehmer_code
889 
890                 int registers[6];
891                 bool used[7] = { false, false, false, false, false, false, false };
892                 for (uint32_t i = 0; i < register_count; i++)
893                 {
894                     int renum = 0;
895                     for (int j = 1; j < 7; j++)
896                     {
897                         if (used[j] == false)
898                         {
899                             if (renum == permunreg[i])
900                             {
901                                 registers[i] = j;
902                                 used[j] = true;
903                                 break;
904                             }
905                             renum++;
906                         }
907                     }
908                 }
909 
910                 uint32_t saved_registers_offset = 1;
911                 saved_registers_offset++;
912 
913                 for (int i = (sizeof (registers) / sizeof (int)) - 1; i >= 0; i--)
914                 {
915                     switch (registers[i])
916                     {
917                         case UNWIND_X86_64_REG_NONE:
918                             break;
919                         case UNWIND_X86_64_REG_RBX:
920                         case UNWIND_X86_64_REG_R12:
921                         case UNWIND_X86_64_REG_R13:
922                         case UNWIND_X86_64_REG_R14:
923                         case UNWIND_X86_64_REG_R15:
924                         case UNWIND_X86_64_REG_RBP:
925                             row->SetRegisterLocationToAtCFAPlusOffset (translate_to_eh_frame_regnum_x86_64 (registers[i]), wordsize * -saved_registers_offset, true);
926                             saved_registers_offset++;
927                         break;
928                     }
929                 }
930             }
931             unwind_plan.AppendRow (row);
932             return true;
933         }
934         break;
935 
936         case UNWIND_X86_64_MODE_DWARF:
937         {
938             return false;
939         }
940         break;
941 
942         case 0:
943         {
944             return false;
945         }
946         break;
947     }
948     return false;
949 }
950 
951 enum i386_eh_regnum {
952     eax = 0,
953     ecx = 1,
954     edx = 2,
955     ebx = 3,
956     ebp = 4,
957     esp = 5,
958     esi = 6,
959     edi = 7,
960     eip = 8    // this is officially the Return Address register number, but close enough
961 };
962 
963 // Convert the compact_unwind_info.h register numbering scheme
964 // to eRegisterKindGCC (eh_frame) register numbering scheme.
965 uint32_t
966 translate_to_eh_frame_regnum_i386 (uint32_t unwind_regno)
967 {
968     switch (unwind_regno)
969     {
970         case UNWIND_X86_REG_EBX:
971             return i386_eh_regnum::ebx;
972         case UNWIND_X86_REG_ECX:
973             return i386_eh_regnum::ecx;
974         case UNWIND_X86_REG_EDX:
975             return i386_eh_regnum::edx;
976         case UNWIND_X86_REG_EDI:
977             return i386_eh_regnum::edi;
978         case UNWIND_X86_REG_ESI:
979             return i386_eh_regnum::esi;
980         case UNWIND_X86_REG_EBP:
981             return i386_eh_regnum::ebp;
982         default:
983             return LLDB_INVALID_REGNUM;
984     }
985 }
986 
987 
988 bool
989 CompactUnwindInfo::CreateUnwindPlan_i386 (Target &target, FunctionInfo &function_info, UnwindPlan &unwind_plan, Address pc_or_function_start)
990 {
991     unwind_plan.SetSourceName ("compact unwind info");
992     unwind_plan.SetSourcedFromCompiler (eLazyBoolYes);
993     unwind_plan.SetUnwindPlanValidAtAllInstructions (eLazyBoolNo);
994     unwind_plan.SetRegisterKind (eRegisterKindGCC);
995 
996     unwind_plan.SetLSDAAddress (function_info.lsda_address);
997     unwind_plan.SetPersonalityFunctionPtr (function_info.personality_ptr_address);
998 
999     UnwindPlan::RowSP row (new UnwindPlan::Row);
1000 
1001     const int wordsize = 4;
1002     int mode = function_info.encoding & UNWIND_X86_MODE_MASK;
1003     switch (mode)
1004     {
1005         case UNWIND_X86_MODE_EBP_FRAME:
1006         {
1007             row->GetCFAValue().SetIsRegisterPlusOffset (
1008                     translate_to_eh_frame_regnum_i386 (UNWIND_X86_REG_EBP), 2 * wordsize);
1009             row->SetOffset (0);
1010             row->SetRegisterLocationToAtCFAPlusOffset (i386_eh_regnum::ebp, wordsize * -2, true);
1011             row->SetRegisterLocationToAtCFAPlusOffset (i386_eh_regnum::eip, wordsize * -1, true);
1012             row->SetRegisterLocationToIsCFAPlusOffset (i386_eh_regnum::esp, 0, true);
1013 
1014             uint32_t saved_registers_offset = EXTRACT_BITS (function_info.encoding, UNWIND_X86_EBP_FRAME_OFFSET);
1015 
1016             uint32_t saved_registers_locations = EXTRACT_BITS (function_info.encoding, UNWIND_X86_EBP_FRAME_REGISTERS);
1017 
1018             saved_registers_offset += 2;
1019 
1020             for (int i = 0; i < 5; i++)
1021             {
1022                 uint32_t regnum = saved_registers_locations & 0x7;
1023                 switch (regnum)
1024                 {
1025                     case UNWIND_X86_REG_NONE:
1026                         break;
1027                     case UNWIND_X86_REG_EBX:
1028                     case UNWIND_X86_REG_ECX:
1029                     case UNWIND_X86_REG_EDX:
1030                     case UNWIND_X86_REG_EDI:
1031                     case UNWIND_X86_REG_ESI:
1032                         row->SetRegisterLocationToAtCFAPlusOffset (translate_to_eh_frame_regnum_i386 (regnum), wordsize * -saved_registers_offset, true);
1033                         break;
1034                 }
1035                 saved_registers_offset--;
1036                 saved_registers_locations >>= 3;
1037             }
1038             unwind_plan.AppendRow (row);
1039             return true;
1040         }
1041         break;
1042 
1043         case UNWIND_X86_MODE_STACK_IND:
1044         case UNWIND_X86_MODE_STACK_IMMD:
1045         {
1046             uint32_t stack_size = EXTRACT_BITS (function_info.encoding, UNWIND_X86_FRAMELESS_STACK_SIZE);
1047             uint32_t register_count = EXTRACT_BITS (function_info.encoding, UNWIND_X86_FRAMELESS_STACK_REG_COUNT);
1048             uint32_t permutation = EXTRACT_BITS (function_info.encoding, UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION);
1049 
1050             if (mode == UNWIND_X86_MODE_STACK_IND && function_info.valid_range_offset_start != 0)
1051             {
1052                 uint32_t stack_adjust = EXTRACT_BITS (function_info.encoding, UNWIND_X86_FRAMELESS_STACK_ADJUST);
1053 
1054                 // offset into the function instructions; 0 == beginning of first instruction
1055                 uint32_t offset_to_subl_insn = EXTRACT_BITS (function_info.encoding, UNWIND_X86_FRAMELESS_STACK_SIZE);
1056 
1057                 SectionList *sl = m_objfile.GetSectionList ();
1058                 if (sl)
1059                 {
1060                     ProcessSP process_sp = target.GetProcessSP();
1061                     if (process_sp)
1062                     {
1063                         Address subl_payload_addr (function_info.valid_range_offset_start, sl);
1064                         subl_payload_addr.Slide (offset_to_subl_insn);
1065                         Error error;
1066                         uint64_t large_stack_size = process_sp->ReadUnsignedIntegerFromMemory (subl_payload_addr.GetLoadAddress (&target),
1067                                 4, 0, error);
1068                         if (large_stack_size != 0 && error.Success ())
1069                         {
1070                             // Got the large stack frame size correctly - use it
1071                             stack_size = large_stack_size + (stack_adjust * wordsize);
1072                         }
1073                         else
1074                         {
1075                             return false;
1076                         }
1077                     }
1078                     else
1079                     {
1080                         return false;
1081                     }
1082                 }
1083                 else
1084                 {
1085                     return false;
1086                 }
1087             }
1088 
1089             int32_t offset = mode == UNWIND_X86_MODE_STACK_IND ? stack_size : stack_size * wordsize;
1090             row->GetCFAValue().SetIsRegisterPlusOffset (i386_eh_regnum::esp, offset);
1091             row->SetOffset (0);
1092             row->SetRegisterLocationToAtCFAPlusOffset (i386_eh_regnum::eip, wordsize * -1, true);
1093             row->SetRegisterLocationToIsCFAPlusOffset (i386_eh_regnum::esp, 0, true);
1094 
1095             if (register_count > 0)
1096             {
1097 
1098                 // We need to include (up to) 6 registers in 10 bits.
1099                 // That would be 18 bits if we just used 3 bits per reg to indicate
1100                 // the order they're saved on the stack.
1101                 //
1102                 // This is done with Lehmer code permutation, e.g. see
1103                 // http://stackoverflow.com/questions/1506078/fast-permutation-number-permutation-mapping-algorithms
1104                 int permunreg[6];
1105 
1106                 // This decodes the variable-base number in the 10 bits
1107                 // and gives us the Lehmer code sequence which can then
1108                 // be decoded.
1109 
1110                 switch (register_count)
1111                 {
1112                     case 6:
1113                         permunreg[0] = permutation/120;    // 120 == 5!
1114                         permutation -= (permunreg[0]*120);
1115                         permunreg[1] = permutation/24;     // 24 == 4!
1116                         permutation -= (permunreg[1]*24);
1117                         permunreg[2] = permutation/6;      // 6 == 3!
1118                         permutation -= (permunreg[2]*6);
1119                         permunreg[3] = permutation/2;      // 2 == 2!
1120                         permutation -= (permunreg[3]*2);
1121                         permunreg[4] = permutation;        // 1 == 1!
1122                         permunreg[5] = 0;
1123                         break;
1124                     case 5:
1125                         permunreg[0] = permutation/120;
1126                         permutation -= (permunreg[0]*120);
1127                         permunreg[1] = permutation/24;
1128                         permutation -= (permunreg[1]*24);
1129                         permunreg[2] = permutation/6;
1130                         permutation -= (permunreg[2]*6);
1131                         permunreg[3] = permutation/2;
1132                         permutation -= (permunreg[3]*2);
1133                         permunreg[4] = permutation;
1134                         break;
1135                     case 4:
1136                         permunreg[0] = permutation/60;
1137                         permutation -= (permunreg[0]*60);
1138                         permunreg[1] = permutation/12;
1139                         permutation -= (permunreg[1]*12);
1140                         permunreg[2] = permutation/3;
1141                         permutation -= (permunreg[2]*3);
1142                         permunreg[3] = permutation;
1143                         break;
1144                     case 3:
1145                         permunreg[0] = permutation/20;
1146                         permutation -= (permunreg[0]*20);
1147                         permunreg[1] = permutation/4;
1148                         permutation -= (permunreg[1]*4);
1149                         permunreg[2] = permutation;
1150                         break;
1151                     case 2:
1152                         permunreg[0] = permutation/5;
1153                         permutation -= (permunreg[0]*5);
1154                         permunreg[1] = permutation;
1155                         break;
1156                     case 1:
1157                         permunreg[0] = permutation;
1158                         break;
1159                 }
1160 
1161                 // Decode the Lehmer code for this permutation of
1162                 // the registers v. http://en.wikipedia.org/wiki/Lehmer_code
1163 
1164                 int registers[6];
1165                 bool used[7] = { false, false, false, false, false, false, false };
1166                 for (uint32_t i = 0; i < register_count; i++)
1167                 {
1168                     int renum = 0;
1169                     for (int j = 1; j < 7; j++)
1170                     {
1171                         if (used[j] == false)
1172                         {
1173                             if (renum == permunreg[i])
1174                             {
1175                                 registers[i] = j;
1176                                 used[j] = true;
1177                                 break;
1178                             }
1179                             renum++;
1180                         }
1181                     }
1182                 }
1183 
1184                 uint32_t saved_registers_offset = 1;
1185                 saved_registers_offset++;
1186 
1187                 for (int i = (sizeof (registers) / sizeof (int)) - 1; i >= 0; i--)
1188                 {
1189                     switch (registers[i])
1190                     {
1191                         case UNWIND_X86_REG_NONE:
1192                             break;
1193                         case UNWIND_X86_REG_EBX:
1194                         case UNWIND_X86_REG_ECX:
1195                         case UNWIND_X86_REG_EDX:
1196                         case UNWIND_X86_REG_EDI:
1197                         case UNWIND_X86_REG_ESI:
1198                         case UNWIND_X86_REG_EBP:
1199                             row->SetRegisterLocationToAtCFAPlusOffset (translate_to_eh_frame_regnum_i386 (registers[i]), wordsize * -saved_registers_offset, true);
1200                             saved_registers_offset++;
1201                         break;
1202                     }
1203                 }
1204             }
1205 
1206             unwind_plan.AppendRow (row);
1207             return true;
1208         }
1209         break;
1210 
1211         case UNWIND_X86_MODE_DWARF:
1212         {
1213             return false;
1214         }
1215         break;
1216     }
1217     return false;
1218 }
1219