1 //===-- HashedNameToDIE.cpp -------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "HashedNameToDIE.h" 11 #include "llvm/ADT/StringRef.h" 12 13 void DWARFMappedHash::ExtractDIEArray(const DIEInfoArray &die_info_array, 14 DIEArray &die_offsets) { 15 const size_t count = die_info_array.size(); 16 for (size_t i = 0; i < count; ++i) 17 die_offsets.emplace_back(die_info_array[i].cu_offset, 18 die_info_array[i].offset); 19 } 20 21 void DWARFMappedHash::ExtractDIEArray(const DIEInfoArray &die_info_array, 22 const dw_tag_t tag, 23 DIEArray &die_offsets) { 24 if (tag == 0) { 25 ExtractDIEArray(die_info_array, die_offsets); 26 } else { 27 const size_t count = die_info_array.size(); 28 for (size_t i = 0; i < count; ++i) { 29 const dw_tag_t die_tag = die_info_array[i].tag; 30 bool tag_matches = die_tag == 0 || tag == die_tag; 31 if (!tag_matches) { 32 if (die_tag == DW_TAG_class_type || die_tag == DW_TAG_structure_type) 33 tag_matches = 34 tag == DW_TAG_structure_type || tag == DW_TAG_class_type; 35 } 36 if (tag_matches) 37 die_offsets.emplace_back(die_info_array[i].cu_offset, 38 die_info_array[i].offset); 39 } 40 } 41 } 42 43 void DWARFMappedHash::ExtractDIEArray(const DIEInfoArray &die_info_array, 44 const dw_tag_t tag, 45 const uint32_t qualified_name_hash, 46 DIEArray &die_offsets) { 47 if (tag == 0) { 48 ExtractDIEArray(die_info_array, die_offsets); 49 } else { 50 const size_t count = die_info_array.size(); 51 for (size_t i = 0; i < count; ++i) { 52 if (qualified_name_hash != die_info_array[i].qualified_name_hash) 53 continue; 54 const dw_tag_t die_tag = die_info_array[i].tag; 55 bool tag_matches = die_tag == 0 || tag == die_tag; 56 if (!tag_matches) { 57 if (die_tag == DW_TAG_class_type || die_tag == DW_TAG_structure_type) 58 tag_matches = 59 tag == DW_TAG_structure_type || tag == DW_TAG_class_type; 60 } 61 if (tag_matches) 62 die_offsets.emplace_back(die_info_array[i].cu_offset, 63 die_info_array[i].offset); 64 } 65 } 66 } 67 68 void DWARFMappedHash::ExtractClassOrStructDIEArray( 69 const DIEInfoArray &die_info_array, 70 bool return_implementation_only_if_available, DIEArray &die_offsets) { 71 const size_t count = die_info_array.size(); 72 for (size_t i = 0; i < count; ++i) { 73 const dw_tag_t die_tag = die_info_array[i].tag; 74 if (die_tag == 0 || die_tag == DW_TAG_class_type || 75 die_tag == DW_TAG_structure_type) { 76 if (die_info_array[i].type_flags & eTypeFlagClassIsImplementation) { 77 if (return_implementation_only_if_available) { 78 // We found the one true definition for this class, so 79 // only return that 80 die_offsets.clear(); 81 die_offsets.emplace_back(die_info_array[i].cu_offset, 82 die_info_array[i].offset); 83 return; 84 } else { 85 // Put the one true definition as the first entry so it 86 // matches first 87 die_offsets.emplace(die_offsets.begin(), die_info_array[i].cu_offset, 88 die_info_array[i].offset); 89 } 90 } else { 91 die_offsets.emplace_back(die_info_array[i].cu_offset, 92 die_info_array[i].offset); 93 } 94 } 95 } 96 } 97 98 void DWARFMappedHash::ExtractTypesFromDIEArray( 99 const DIEInfoArray &die_info_array, uint32_t type_flag_mask, 100 uint32_t type_flag_value, DIEArray &die_offsets) { 101 const size_t count = die_info_array.size(); 102 for (size_t i = 0; i < count; ++i) { 103 if ((die_info_array[i].type_flags & type_flag_mask) == type_flag_value) 104 die_offsets.emplace_back(die_info_array[i].cu_offset, 105 die_info_array[i].offset); 106 } 107 } 108 109 const char *DWARFMappedHash::GetAtomTypeName(uint16_t atom) { 110 switch (atom) { 111 case eAtomTypeNULL: 112 return "NULL"; 113 case eAtomTypeDIEOffset: 114 return "die-offset"; 115 case eAtomTypeCUOffset: 116 return "cu-offset"; 117 case eAtomTypeTag: 118 return "die-tag"; 119 case eAtomTypeNameFlags: 120 return "name-flags"; 121 case eAtomTypeTypeFlags: 122 return "type-flags"; 123 case eAtomTypeQualNameHash: 124 return "qualified-name-hash"; 125 } 126 return "<invalid>"; 127 } 128 129 DWARFMappedHash::DIEInfo::DIEInfo() 130 : cu_offset(DW_INVALID_OFFSET), offset(DW_INVALID_OFFSET), tag(0), 131 type_flags(0), qualified_name_hash(0) {} 132 133 DWARFMappedHash::DIEInfo::DIEInfo(dw_offset_t c, dw_offset_t o, dw_tag_t t, 134 uint32_t f, uint32_t h) 135 : cu_offset(c), offset(o), tag(t), type_flags(f), qualified_name_hash(h) {} 136 137 DWARFMappedHash::Prologue::Prologue(dw_offset_t _die_base_offset) 138 : die_base_offset(_die_base_offset), atoms(), atom_mask(0), 139 min_hash_data_byte_size(0), hash_data_has_fixed_byte_size(true) { 140 // Define an array of DIE offsets by first defining an array, 141 // and then define the atom type for the array, in this case 142 // we have an array of DIE offsets 143 AppendAtom(eAtomTypeDIEOffset, DW_FORM_data4); 144 } 145 146 void DWARFMappedHash::Prologue::ClearAtoms() { 147 hash_data_has_fixed_byte_size = true; 148 min_hash_data_byte_size = 0; 149 atom_mask = 0; 150 atoms.clear(); 151 } 152 153 bool DWARFMappedHash::Prologue::ContainsAtom(AtomType atom_type) const { 154 return (atom_mask & (1u << atom_type)) != 0; 155 } 156 157 void DWARFMappedHash::Prologue::Clear() { 158 die_base_offset = 0; 159 ClearAtoms(); 160 } 161 162 void DWARFMappedHash::Prologue::AppendAtom(AtomType type, dw_form_t form) { 163 atoms.push_back({type, form}); 164 atom_mask |= 1u << type; 165 switch (form) { 166 case DW_FORM_indirect: 167 case DW_FORM_exprloc: 168 case DW_FORM_flag_present: 169 case DW_FORM_ref_sig8: 170 assert(!"Unhandled atom form"); 171 break; 172 173 case DW_FORM_string: 174 case DW_FORM_block: 175 case DW_FORM_block1: 176 case DW_FORM_sdata: 177 case DW_FORM_udata: 178 case DW_FORM_ref_udata: 179 case DW_FORM_GNU_addr_index: 180 case DW_FORM_GNU_str_index: 181 hash_data_has_fixed_byte_size = false; 182 LLVM_FALLTHROUGH; 183 case DW_FORM_flag: 184 case DW_FORM_data1: 185 case DW_FORM_ref1: 186 case DW_FORM_sec_offset: 187 min_hash_data_byte_size += 1; 188 break; 189 190 case DW_FORM_block2: 191 hash_data_has_fixed_byte_size = false; 192 LLVM_FALLTHROUGH; 193 case DW_FORM_data2: 194 case DW_FORM_ref2: 195 min_hash_data_byte_size += 2; 196 break; 197 198 case DW_FORM_block4: 199 hash_data_has_fixed_byte_size = false; 200 LLVM_FALLTHROUGH; 201 case DW_FORM_data4: 202 case DW_FORM_ref4: 203 case DW_FORM_addr: 204 case DW_FORM_ref_addr: 205 case DW_FORM_strp: 206 min_hash_data_byte_size += 4; 207 break; 208 209 case DW_FORM_data8: 210 case DW_FORM_ref8: 211 min_hash_data_byte_size += 8; 212 break; 213 } 214 } 215 216 lldb::offset_t 217 DWARFMappedHash::Prologue::Read(const lldb_private::DataExtractor &data, 218 lldb::offset_t offset) { 219 ClearAtoms(); 220 221 die_base_offset = data.GetU32(&offset); 222 223 const uint32_t atom_count = data.GetU32(&offset); 224 if (atom_count == 0x00060003u) { 225 // Old format, deal with contents of old pre-release format 226 while (data.GetU32(&offset)) 227 /* do nothing */; 228 229 // Hardcode to the only known value for now. 230 AppendAtom(eAtomTypeDIEOffset, DW_FORM_data4); 231 } else { 232 for (uint32_t i = 0; i < atom_count; ++i) { 233 AtomType type = (AtomType)data.GetU16(&offset); 234 dw_form_t form = (dw_form_t)data.GetU16(&offset); 235 AppendAtom(type, form); 236 } 237 } 238 return offset; 239 } 240 241 size_t DWARFMappedHash::Prologue::GetByteSize() const { 242 // Add an extra count to the atoms size for the zero termination Atom that 243 // gets 244 // written to disk 245 return sizeof(die_base_offset) + sizeof(uint32_t) + 246 atoms.size() * sizeof(Atom); 247 } 248 249 size_t DWARFMappedHash::Prologue::GetMinimumHashDataByteSize() const { 250 return min_hash_data_byte_size; 251 } 252 253 bool DWARFMappedHash::Prologue::HashDataHasFixedByteSize() const { 254 return hash_data_has_fixed_byte_size; 255 } 256 257 size_t DWARFMappedHash::Header::GetByteSize(const HeaderData &header_data) { 258 return header_data.GetByteSize(); 259 } 260 261 lldb::offset_t DWARFMappedHash::Header::Read(lldb_private::DataExtractor &data, 262 lldb::offset_t offset) { 263 offset = MappedHash::Header<Prologue>::Read(data, offset); 264 if (offset != UINT32_MAX) { 265 offset = header_data.Read(data, offset); 266 } 267 return offset; 268 } 269 270 bool DWARFMappedHash::Header::Read(const lldb_private::DWARFDataExtractor &data, 271 lldb::offset_t *offset_ptr, 272 DIEInfo &hash_data) const { 273 const size_t num_atoms = header_data.atoms.size(); 274 if (num_atoms == 0) 275 return false; 276 277 for (size_t i = 0; i < num_atoms; ++i) { 278 DWARFFormValue form_value(NULL, header_data.atoms[i].form); 279 280 if (!form_value.ExtractValue(data, offset_ptr)) 281 return false; 282 283 switch (header_data.atoms[i].type) { 284 case eAtomTypeDIEOffset: // DIE offset, check form for encoding 285 hash_data.offset = 286 (dw_offset_t)form_value.Reference(header_data.die_base_offset); 287 break; 288 289 case eAtomTypeTag: // DW_TAG value for the DIE 290 hash_data.tag = (dw_tag_t)form_value.Unsigned(); 291 break; 292 293 case eAtomTypeTypeFlags: // Flags from enum TypeFlags 294 hash_data.type_flags = (uint32_t)form_value.Unsigned(); 295 break; 296 297 case eAtomTypeQualNameHash: // Flags from enum TypeFlags 298 hash_data.qualified_name_hash = form_value.Unsigned(); 299 break; 300 301 default: 302 // We can always skip atoms we don't know about 303 break; 304 } 305 } 306 return true; 307 } 308 309 void DWARFMappedHash::Header::Dump(lldb_private::Stream &strm, 310 const DIEInfo &hash_data) const { 311 const size_t num_atoms = header_data.atoms.size(); 312 for (size_t i = 0; i < num_atoms; ++i) { 313 if (i > 0) 314 strm.PutCString(", "); 315 316 DWARFFormValue form_value(NULL, header_data.atoms[i].form); 317 switch (header_data.atoms[i].type) { 318 case eAtomTypeDIEOffset: // DIE offset, check form for encoding 319 strm.Printf("{0x%8.8x}", hash_data.offset); 320 break; 321 322 case eAtomTypeTag: // DW_TAG value for the DIE 323 { 324 const char *tag_cstr = lldb_private::DW_TAG_value_to_name(hash_data.tag); 325 if (tag_cstr) 326 strm.PutCString(tag_cstr); 327 else 328 strm.Printf("DW_TAG_(0x%4.4x)", hash_data.tag); 329 } break; 330 331 case eAtomTypeTypeFlags: // Flags from enum TypeFlags 332 strm.Printf("0x%2.2x", hash_data.type_flags); 333 if (hash_data.type_flags) { 334 strm.PutCString(" ("); 335 if (hash_data.type_flags & eTypeFlagClassIsImplementation) 336 strm.PutCString(" implementation"); 337 strm.PutCString(" )"); 338 } 339 break; 340 341 case eAtomTypeQualNameHash: // Flags from enum TypeFlags 342 strm.Printf("0x%8.8x", hash_data.qualified_name_hash); 343 break; 344 345 default: 346 strm.Printf("AtomType(0x%x)", header_data.atoms[i].type); 347 break; 348 } 349 } 350 } 351 352 DWARFMappedHash::MemoryTable::MemoryTable( 353 lldb_private::DWARFDataExtractor &table_data, 354 const lldb_private::DWARFDataExtractor &string_table, const char *name) 355 : MappedHash::MemoryTable<uint32_t, Header, DIEInfoArray>(table_data), 356 m_data(table_data), m_string_table(string_table), m_name(name) {} 357 358 const char * 359 DWARFMappedHash::MemoryTable::GetStringForKeyType(KeyType key) const { 360 // The key in the DWARF table is the .debug_str offset for the string 361 return m_string_table.PeekCStr(key); 362 } 363 364 bool DWARFMappedHash::MemoryTable::ReadHashData(uint32_t hash_data_offset, 365 HashData &hash_data) const { 366 lldb::offset_t offset = hash_data_offset; 367 offset += 4; // Skip string table offset that contains offset of hash name in 368 // .debug_str 369 const uint32_t count = m_data.GetU32(&offset); 370 if (count > 0) { 371 hash_data.resize(count); 372 for (uint32_t i = 0; i < count; ++i) { 373 if (!m_header.Read(m_data, &offset, hash_data[i])) 374 return false; 375 } 376 } else 377 hash_data.clear(); 378 return true; 379 } 380 381 DWARFMappedHash::MemoryTable::Result 382 DWARFMappedHash::MemoryTable::GetHashDataForName( 383 const char *name, lldb::offset_t *hash_data_offset_ptr, Pair &pair) const { 384 pair.key = m_data.GetU32(hash_data_offset_ptr); 385 pair.value.clear(); 386 387 // If the key is zero, this terminates our chain of HashData objects 388 // for this hash value. 389 if (pair.key == 0) 390 return eResultEndOfHashData; 391 392 // There definitely should be a string for this string offset, if 393 // there isn't, there is something wrong, return and error 394 const char *strp_cstr = m_string_table.PeekCStr(pair.key); 395 if (strp_cstr == NULL) { 396 *hash_data_offset_ptr = UINT32_MAX; 397 return eResultError; 398 } 399 400 const uint32_t count = m_data.GetU32(hash_data_offset_ptr); 401 const size_t min_total_hash_data_size = 402 count * m_header.header_data.GetMinimumHashDataByteSize(); 403 if (count > 0 && 404 m_data.ValidOffsetForDataOfSize(*hash_data_offset_ptr, 405 min_total_hash_data_size)) { 406 // We have at least one HashData entry, and we have enough 407 // data to parse at least "count" HashData entries. 408 409 // First make sure the entire C string matches... 410 const bool match = strcmp(name, strp_cstr) == 0; 411 412 if (!match && m_header.header_data.HashDataHasFixedByteSize()) { 413 // If the string doesn't match and we have fixed size data, 414 // we can just add the total byte size of all HashData objects 415 // to the hash data offset and be done... 416 *hash_data_offset_ptr += min_total_hash_data_size; 417 } else { 418 // If the string does match, or we don't have fixed size data 419 // then we need to read the hash data as a stream. If the 420 // string matches we also append all HashData objects to the 421 // value array. 422 for (uint32_t i = 0; i < count; ++i) { 423 DIEInfo die_info; 424 if (m_header.Read(m_data, hash_data_offset_ptr, die_info)) { 425 // Only happened if the HashData of the string matched... 426 if (match) 427 pair.value.push_back(die_info); 428 } else { 429 // Something went wrong while reading the data 430 *hash_data_offset_ptr = UINT32_MAX; 431 return eResultError; 432 } 433 } 434 } 435 // Return the correct response depending on if the string matched 436 // or not... 437 if (match) 438 return eResultKeyMatch; // The key (cstring) matches and we have lookup 439 // results! 440 else 441 return eResultKeyMismatch; // The key doesn't match, this function will 442 // get called 443 // again for the next key/value or the key terminator 444 // which in our case is a zero .debug_str offset. 445 } else { 446 *hash_data_offset_ptr = UINT32_MAX; 447 return eResultError; 448 } 449 } 450 451 DWARFMappedHash::MemoryTable::Result 452 DWARFMappedHash::MemoryTable::AppendHashDataForRegularExpression( 453 const lldb_private::RegularExpression ®ex, 454 lldb::offset_t *hash_data_offset_ptr, Pair &pair) const { 455 pair.key = m_data.GetU32(hash_data_offset_ptr); 456 // If the key is zero, this terminates our chain of HashData objects 457 // for this hash value. 458 if (pair.key == 0) 459 return eResultEndOfHashData; 460 461 // There definitely should be a string for this string offset, if 462 // there isn't, there is something wrong, return and error 463 const char *strp_cstr = m_string_table.PeekCStr(pair.key); 464 if (strp_cstr == NULL) 465 return eResultError; 466 467 const uint32_t count = m_data.GetU32(hash_data_offset_ptr); 468 const size_t min_total_hash_data_size = 469 count * m_header.header_data.GetMinimumHashDataByteSize(); 470 if (count > 0 && 471 m_data.ValidOffsetForDataOfSize(*hash_data_offset_ptr, 472 min_total_hash_data_size)) { 473 const bool match = regex.Execute(llvm::StringRef(strp_cstr)); 474 475 if (!match && m_header.header_data.HashDataHasFixedByteSize()) { 476 // If the regex doesn't match and we have fixed size data, 477 // we can just add the total byte size of all HashData objects 478 // to the hash data offset and be done... 479 *hash_data_offset_ptr += min_total_hash_data_size; 480 } else { 481 // If the string does match, or we don't have fixed size data 482 // then we need to read the hash data as a stream. If the 483 // string matches we also append all HashData objects to the 484 // value array. 485 for (uint32_t i = 0; i < count; ++i) { 486 DIEInfo die_info; 487 if (m_header.Read(m_data, hash_data_offset_ptr, die_info)) { 488 // Only happened if the HashData of the string matched... 489 if (match) 490 pair.value.push_back(die_info); 491 } else { 492 // Something went wrong while reading the data 493 *hash_data_offset_ptr = UINT32_MAX; 494 return eResultError; 495 } 496 } 497 } 498 // Return the correct response depending on if the string matched 499 // or not... 500 if (match) 501 return eResultKeyMatch; // The key (cstring) matches and we have lookup 502 // results! 503 else 504 return eResultKeyMismatch; // The key doesn't match, this function will 505 // get called 506 // again for the next key/value or the key terminator 507 // which in our case is a zero .debug_str offset. 508 } else { 509 *hash_data_offset_ptr = UINT32_MAX; 510 return eResultError; 511 } 512 } 513 514 size_t DWARFMappedHash::MemoryTable::AppendAllDIEsThatMatchingRegex( 515 const lldb_private::RegularExpression ®ex, 516 DIEInfoArray &die_info_array) const { 517 const uint32_t hash_count = m_header.hashes_count; 518 Pair pair; 519 for (uint32_t offset_idx = 0; offset_idx < hash_count; ++offset_idx) { 520 lldb::offset_t hash_data_offset = GetHashDataOffset(offset_idx); 521 while (hash_data_offset != UINT32_MAX) { 522 const lldb::offset_t prev_hash_data_offset = hash_data_offset; 523 Result hash_result = 524 AppendHashDataForRegularExpression(regex, &hash_data_offset, pair); 525 if (prev_hash_data_offset == hash_data_offset) 526 break; 527 528 // Check the result of getting our hash data 529 switch (hash_result) { 530 case eResultKeyMatch: 531 case eResultKeyMismatch: 532 // Whether we matches or not, it doesn't matter, we 533 // keep looking. 534 break; 535 536 case eResultEndOfHashData: 537 case eResultError: 538 hash_data_offset = UINT32_MAX; 539 break; 540 } 541 } 542 } 543 die_info_array.swap(pair.value); 544 return die_info_array.size(); 545 } 546 547 size_t DWARFMappedHash::MemoryTable::AppendAllDIEsInRange( 548 const uint32_t die_offset_start, const uint32_t die_offset_end, 549 DIEInfoArray &die_info_array) const { 550 const uint32_t hash_count = m_header.hashes_count; 551 for (uint32_t offset_idx = 0; offset_idx < hash_count; ++offset_idx) { 552 bool done = false; 553 lldb::offset_t hash_data_offset = GetHashDataOffset(offset_idx); 554 while (!done && hash_data_offset != UINT32_MAX) { 555 KeyType key = m_data.GetU32(&hash_data_offset); 556 // If the key is zero, this terminates our chain of HashData objects 557 // for this hash value. 558 if (key == 0) 559 break; 560 561 const uint32_t count = m_data.GetU32(&hash_data_offset); 562 for (uint32_t i = 0; i < count; ++i) { 563 DIEInfo die_info; 564 if (m_header.Read(m_data, &hash_data_offset, die_info)) { 565 if (die_info.offset == 0) 566 done = true; 567 if (die_offset_start <= die_info.offset && 568 die_info.offset < die_offset_end) 569 die_info_array.push_back(die_info); 570 } 571 } 572 } 573 } 574 return die_info_array.size(); 575 } 576 577 size_t DWARFMappedHash::MemoryTable::FindByName(const char *name, 578 DIEArray &die_offsets) { 579 if (!name || !name[0]) 580 return 0; 581 582 DIEInfoArray die_info_array; 583 if (FindByName(name, die_info_array)) 584 DWARFMappedHash::ExtractDIEArray(die_info_array, die_offsets); 585 return die_info_array.size(); 586 } 587 588 size_t DWARFMappedHash::MemoryTable::FindByNameAndTag(const char *name, 589 const dw_tag_t tag, 590 DIEArray &die_offsets) { 591 DIEInfoArray die_info_array; 592 if (FindByName(name, die_info_array)) 593 DWARFMappedHash::ExtractDIEArray(die_info_array, tag, die_offsets); 594 return die_info_array.size(); 595 } 596 597 size_t DWARFMappedHash::MemoryTable::FindByNameAndTagAndQualifiedNameHash( 598 const char *name, const dw_tag_t tag, const uint32_t qualified_name_hash, 599 DIEArray &die_offsets) { 600 DIEInfoArray die_info_array; 601 if (FindByName(name, die_info_array)) 602 DWARFMappedHash::ExtractDIEArray(die_info_array, tag, qualified_name_hash, 603 die_offsets); 604 return die_info_array.size(); 605 } 606 607 size_t DWARFMappedHash::MemoryTable::FindCompleteObjCClassByName( 608 const char *name, DIEArray &die_offsets, bool must_be_implementation) { 609 DIEInfoArray die_info_array; 610 if (FindByName(name, die_info_array)) { 611 if (must_be_implementation && 612 GetHeader().header_data.ContainsAtom(eAtomTypeTypeFlags)) { 613 // If we have two atoms, then we have the DIE offset and 614 // the type flags so we can find the objective C class 615 // efficiently. 616 DWARFMappedHash::ExtractTypesFromDIEArray(die_info_array, UINT32_MAX, 617 eTypeFlagClassIsImplementation, 618 die_offsets); 619 } else { 620 // We don't only want the one true definition, so try and see 621 // what we can find, and only return class or struct DIEs. 622 // If we do have the full implementation, then return it alone, 623 // else return all possible matches. 624 const bool return_implementation_only_if_available = true; 625 DWARFMappedHash::ExtractClassOrStructDIEArray( 626 die_info_array, return_implementation_only_if_available, die_offsets); 627 } 628 } 629 return die_offsets.size(); 630 } 631 632 size_t DWARFMappedHash::MemoryTable::FindByName(const char *name, 633 DIEInfoArray &die_info_array) { 634 if (!name || !name[0]) 635 return 0; 636 637 Pair kv_pair; 638 size_t old_size = die_info_array.size(); 639 if (Find(name, kv_pair)) { 640 die_info_array.swap(kv_pair.value); 641 return die_info_array.size() - old_size; 642 } 643 return 0; 644 } 645