1 //===-- NativeRegisterContextLinux_x86_64.cpp ---------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #if defined(__i386__) || defined(__x86_64__) 11 12 #include "NativeRegisterContextLinux_x86_64.h" 13 14 #include "lldb/Core/RegisterValue.h" 15 #include "lldb/Host/HostInfo.h" 16 #include "lldb/Utility/DataBufferHeap.h" 17 #include "lldb/Utility/Error.h" 18 #include "lldb/Utility/Log.h" 19 20 #include "Plugins/Process/Utility/RegisterContextLinux_i386.h" 21 #include "Plugins/Process/Utility/RegisterContextLinux_x86_64.h" 22 23 #include <linux/elf.h> 24 25 using namespace lldb_private; 26 using namespace lldb_private::process_linux; 27 28 // ---------------------------------------------------------------------------- 29 // Private namespace. 30 // ---------------------------------------------------------------------------- 31 32 namespace { 33 // x86 32-bit general purpose registers. 34 const uint32_t g_gpr_regnums_i386[] = { 35 lldb_eax_i386, lldb_ebx_i386, lldb_ecx_i386, lldb_edx_i386, 36 lldb_edi_i386, lldb_esi_i386, lldb_ebp_i386, lldb_esp_i386, 37 lldb_eip_i386, lldb_eflags_i386, lldb_cs_i386, lldb_fs_i386, 38 lldb_gs_i386, lldb_ss_i386, lldb_ds_i386, lldb_es_i386, 39 lldb_ax_i386, lldb_bx_i386, lldb_cx_i386, lldb_dx_i386, 40 lldb_di_i386, lldb_si_i386, lldb_bp_i386, lldb_sp_i386, 41 lldb_ah_i386, lldb_bh_i386, lldb_ch_i386, lldb_dh_i386, 42 lldb_al_i386, lldb_bl_i386, lldb_cl_i386, lldb_dl_i386, 43 LLDB_INVALID_REGNUM // register sets need to end with this flag 44 }; 45 static_assert((sizeof(g_gpr_regnums_i386) / sizeof(g_gpr_regnums_i386[0])) - 46 1 == 47 k_num_gpr_registers_i386, 48 "g_gpr_regnums_i386 has wrong number of register infos"); 49 50 // x86 32-bit floating point registers. 51 const uint32_t g_fpu_regnums_i386[] = { 52 lldb_fctrl_i386, lldb_fstat_i386, lldb_ftag_i386, lldb_fop_i386, 53 lldb_fiseg_i386, lldb_fioff_i386, lldb_foseg_i386, lldb_fooff_i386, 54 lldb_mxcsr_i386, lldb_mxcsrmask_i386, lldb_st0_i386, lldb_st1_i386, 55 lldb_st2_i386, lldb_st3_i386, lldb_st4_i386, lldb_st5_i386, 56 lldb_st6_i386, lldb_st7_i386, lldb_mm0_i386, lldb_mm1_i386, 57 lldb_mm2_i386, lldb_mm3_i386, lldb_mm4_i386, lldb_mm5_i386, 58 lldb_mm6_i386, lldb_mm7_i386, lldb_xmm0_i386, lldb_xmm1_i386, 59 lldb_xmm2_i386, lldb_xmm3_i386, lldb_xmm4_i386, lldb_xmm5_i386, 60 lldb_xmm6_i386, lldb_xmm7_i386, 61 LLDB_INVALID_REGNUM // register sets need to end with this flag 62 }; 63 static_assert((sizeof(g_fpu_regnums_i386) / sizeof(g_fpu_regnums_i386[0])) - 64 1 == 65 k_num_fpr_registers_i386, 66 "g_fpu_regnums_i386 has wrong number of register infos"); 67 68 // x86 32-bit AVX registers. 69 const uint32_t g_avx_regnums_i386[] = { 70 lldb_ymm0_i386, lldb_ymm1_i386, lldb_ymm2_i386, lldb_ymm3_i386, 71 lldb_ymm4_i386, lldb_ymm5_i386, lldb_ymm6_i386, lldb_ymm7_i386, 72 LLDB_INVALID_REGNUM // register sets need to end with this flag 73 }; 74 static_assert((sizeof(g_avx_regnums_i386) / sizeof(g_avx_regnums_i386[0])) - 75 1 == 76 k_num_avx_registers_i386, 77 " g_avx_regnums_i386 has wrong number of register infos"); 78 79 // x64 32-bit MPX registers. 80 static const uint32_t g_mpx_regnums_i386[] = { 81 lldb_bnd0_i386, lldb_bnd1_i386, lldb_bnd2_i386, lldb_bnd3_i386, 82 lldb_bndcfgu_i386, lldb_bndstatus_i386, 83 LLDB_INVALID_REGNUM // register sets need to end with this flag 84 }; 85 static_assert((sizeof(g_mpx_regnums_i386) / sizeof(g_mpx_regnums_i386[0])) - 86 1 == 87 k_num_mpx_registers_i386, 88 "g_mpx_regnums_x86_64 has wrong number of register infos"); 89 90 // x86 64-bit general purpose registers. 91 static const uint32_t g_gpr_regnums_x86_64[] = { 92 lldb_rax_x86_64, lldb_rbx_x86_64, lldb_rcx_x86_64, lldb_rdx_x86_64, 93 lldb_rdi_x86_64, lldb_rsi_x86_64, lldb_rbp_x86_64, lldb_rsp_x86_64, 94 lldb_r8_x86_64, lldb_r9_x86_64, lldb_r10_x86_64, lldb_r11_x86_64, 95 lldb_r12_x86_64, lldb_r13_x86_64, lldb_r14_x86_64, lldb_r15_x86_64, 96 lldb_rip_x86_64, lldb_rflags_x86_64, lldb_cs_x86_64, lldb_fs_x86_64, 97 lldb_gs_x86_64, lldb_ss_x86_64, lldb_ds_x86_64, lldb_es_x86_64, 98 lldb_eax_x86_64, lldb_ebx_x86_64, lldb_ecx_x86_64, lldb_edx_x86_64, 99 lldb_edi_x86_64, lldb_esi_x86_64, lldb_ebp_x86_64, lldb_esp_x86_64, 100 lldb_r8d_x86_64, // Low 32 bits or r8 101 lldb_r9d_x86_64, // Low 32 bits or r9 102 lldb_r10d_x86_64, // Low 32 bits or r10 103 lldb_r11d_x86_64, // Low 32 bits or r11 104 lldb_r12d_x86_64, // Low 32 bits or r12 105 lldb_r13d_x86_64, // Low 32 bits or r13 106 lldb_r14d_x86_64, // Low 32 bits or r14 107 lldb_r15d_x86_64, // Low 32 bits or r15 108 lldb_ax_x86_64, lldb_bx_x86_64, lldb_cx_x86_64, lldb_dx_x86_64, 109 lldb_di_x86_64, lldb_si_x86_64, lldb_bp_x86_64, lldb_sp_x86_64, 110 lldb_r8w_x86_64, // Low 16 bits or r8 111 lldb_r9w_x86_64, // Low 16 bits or r9 112 lldb_r10w_x86_64, // Low 16 bits or r10 113 lldb_r11w_x86_64, // Low 16 bits or r11 114 lldb_r12w_x86_64, // Low 16 bits or r12 115 lldb_r13w_x86_64, // Low 16 bits or r13 116 lldb_r14w_x86_64, // Low 16 bits or r14 117 lldb_r15w_x86_64, // Low 16 bits or r15 118 lldb_ah_x86_64, lldb_bh_x86_64, lldb_ch_x86_64, lldb_dh_x86_64, 119 lldb_al_x86_64, lldb_bl_x86_64, lldb_cl_x86_64, lldb_dl_x86_64, 120 lldb_dil_x86_64, lldb_sil_x86_64, lldb_bpl_x86_64, lldb_spl_x86_64, 121 lldb_r8l_x86_64, // Low 8 bits or r8 122 lldb_r9l_x86_64, // Low 8 bits or r9 123 lldb_r10l_x86_64, // Low 8 bits or r10 124 lldb_r11l_x86_64, // Low 8 bits or r11 125 lldb_r12l_x86_64, // Low 8 bits or r12 126 lldb_r13l_x86_64, // Low 8 bits or r13 127 lldb_r14l_x86_64, // Low 8 bits or r14 128 lldb_r15l_x86_64, // Low 8 bits or r15 129 LLDB_INVALID_REGNUM // register sets need to end with this flag 130 }; 131 static_assert((sizeof(g_gpr_regnums_x86_64) / sizeof(g_gpr_regnums_x86_64[0])) - 132 1 == 133 k_num_gpr_registers_x86_64, 134 "g_gpr_regnums_x86_64 has wrong number of register infos"); 135 136 // x86 64-bit floating point registers. 137 static const uint32_t g_fpu_regnums_x86_64[] = { 138 lldb_fctrl_x86_64, lldb_fstat_x86_64, lldb_ftag_x86_64, 139 lldb_fop_x86_64, lldb_fiseg_x86_64, lldb_fioff_x86_64, 140 lldb_foseg_x86_64, lldb_fooff_x86_64, lldb_mxcsr_x86_64, 141 lldb_mxcsrmask_x86_64, lldb_st0_x86_64, lldb_st1_x86_64, 142 lldb_st2_x86_64, lldb_st3_x86_64, lldb_st4_x86_64, 143 lldb_st5_x86_64, lldb_st6_x86_64, lldb_st7_x86_64, 144 lldb_mm0_x86_64, lldb_mm1_x86_64, lldb_mm2_x86_64, 145 lldb_mm3_x86_64, lldb_mm4_x86_64, lldb_mm5_x86_64, 146 lldb_mm6_x86_64, lldb_mm7_x86_64, lldb_xmm0_x86_64, 147 lldb_xmm1_x86_64, lldb_xmm2_x86_64, lldb_xmm3_x86_64, 148 lldb_xmm4_x86_64, lldb_xmm5_x86_64, lldb_xmm6_x86_64, 149 lldb_xmm7_x86_64, lldb_xmm8_x86_64, lldb_xmm9_x86_64, 150 lldb_xmm10_x86_64, lldb_xmm11_x86_64, lldb_xmm12_x86_64, 151 lldb_xmm13_x86_64, lldb_xmm14_x86_64, lldb_xmm15_x86_64, 152 LLDB_INVALID_REGNUM // register sets need to end with this flag 153 }; 154 static_assert((sizeof(g_fpu_regnums_x86_64) / sizeof(g_fpu_regnums_x86_64[0])) - 155 1 == 156 k_num_fpr_registers_x86_64, 157 "g_fpu_regnums_x86_64 has wrong number of register infos"); 158 159 // x86 64-bit AVX registers. 160 static const uint32_t g_avx_regnums_x86_64[] = { 161 lldb_ymm0_x86_64, lldb_ymm1_x86_64, lldb_ymm2_x86_64, lldb_ymm3_x86_64, 162 lldb_ymm4_x86_64, lldb_ymm5_x86_64, lldb_ymm6_x86_64, lldb_ymm7_x86_64, 163 lldb_ymm8_x86_64, lldb_ymm9_x86_64, lldb_ymm10_x86_64, lldb_ymm11_x86_64, 164 lldb_ymm12_x86_64, lldb_ymm13_x86_64, lldb_ymm14_x86_64, lldb_ymm15_x86_64, 165 LLDB_INVALID_REGNUM // register sets need to end with this flag 166 }; 167 static_assert((sizeof(g_avx_regnums_x86_64) / sizeof(g_avx_regnums_x86_64[0])) - 168 1 == 169 k_num_avx_registers_x86_64, 170 "g_avx_regnums_x86_64 has wrong number of register infos"); 171 172 // x86 64-bit MPX registers. 173 static const uint32_t g_mpx_regnums_x86_64[] = { 174 lldb_bnd0_x86_64, lldb_bnd1_x86_64, lldb_bnd2_x86_64, 175 lldb_bnd3_x86_64, lldb_bndcfgu_x86_64, lldb_bndstatus_x86_64, 176 LLDB_INVALID_REGNUM // register sets need to end with this flag 177 }; 178 static_assert((sizeof(g_mpx_regnums_x86_64) / sizeof(g_mpx_regnums_x86_64[0])) - 179 1 == 180 k_num_mpx_registers_x86_64, 181 "g_mpx_regnums_x86_64 has wrong number of register infos"); 182 183 // Number of register sets provided by this context. 184 enum { k_num_extended_register_sets = 2, k_num_register_sets = 4 }; 185 186 // Register sets for x86 32-bit. 187 static const RegisterSet g_reg_sets_i386[k_num_register_sets] = { 188 {"General Purpose Registers", "gpr", k_num_gpr_registers_i386, 189 g_gpr_regnums_i386}, 190 {"Floating Point Registers", "fpu", k_num_fpr_registers_i386, 191 g_fpu_regnums_i386}, 192 {"Advanced Vector Extensions", "avx", k_num_avx_registers_i386, 193 g_avx_regnums_i386}, 194 { "Memory Protection Extensions", "mpx", k_num_mpx_registers_i386, 195 g_mpx_regnums_i386}}; 196 197 // Register sets for x86 64-bit. 198 static const RegisterSet g_reg_sets_x86_64[k_num_register_sets] = { 199 {"General Purpose Registers", "gpr", k_num_gpr_registers_x86_64, 200 g_gpr_regnums_x86_64}, 201 {"Floating Point Registers", "fpu", k_num_fpr_registers_x86_64, 202 g_fpu_regnums_x86_64}, 203 {"Advanced Vector Extensions", "avx", k_num_avx_registers_x86_64, 204 g_avx_regnums_x86_64}, 205 { "Memory Protection Extensions", "mpx", k_num_mpx_registers_x86_64, 206 g_mpx_regnums_x86_64}}; 207 } 208 209 #define REG_CONTEXT_SIZE (GetRegisterInfoInterface().GetGPRSize() + sizeof(FPR)) 210 211 // ---------------------------------------------------------------------------- 212 // Required ptrace defines. 213 // ---------------------------------------------------------------------------- 214 215 // Support ptrace extensions even when compiled without required kernel support 216 #ifndef NT_X86_XSTATE 217 #define NT_X86_XSTATE 0x202 218 #endif 219 #ifndef NT_PRXFPREG 220 #define NT_PRXFPREG 0x46e62b7f 221 #endif 222 223 // On x86_64 NT_PRFPREG is used to access the FXSAVE area. On i386, we need to 224 // use NT_PRXFPREG. 225 static inline unsigned int fxsr_regset(const ArchSpec &arch) { 226 return arch.GetAddressByteSize() == 8 ? NT_PRFPREG : NT_PRXFPREG; 227 } 228 229 // ---------------------------------------------------------------------------- 230 // Required MPX define. 231 // ---------------------------------------------------------------------------- 232 233 // Support MPX extensions also if compiled with compiler without MPX support. 234 #ifndef bit_MPX 235 #define bit_MPX 0x4000 236 #endif 237 238 // ---------------------------------------------------------------------------- 239 // XCR0 extended register sets masks. 240 // ---------------------------------------------------------------------------- 241 #define mask_XSTATE_AVX (1ULL << 2) 242 #define mask_XSTATE_BNDREGS (1ULL << 3) 243 #define mask_XSTATE_BNDCFG (1ULL << 4) 244 #define mask_XSTATE_MPX (mask_XSTATE_BNDREGS | mask_XSTATE_BNDCFG) 245 246 NativeRegisterContextLinux * 247 NativeRegisterContextLinux::CreateHostNativeRegisterContextLinux( 248 const ArchSpec &target_arch, NativeThreadProtocol &native_thread, 249 uint32_t concrete_frame_idx) { 250 return new NativeRegisterContextLinux_x86_64(target_arch, native_thread, 251 concrete_frame_idx); 252 } 253 254 // ---------------------------------------------------------------------------- 255 // NativeRegisterContextLinux_x86_64 members. 256 // ---------------------------------------------------------------------------- 257 258 static RegisterInfoInterface * 259 CreateRegisterInfoInterface(const ArchSpec &target_arch) { 260 if (HostInfo::GetArchitecture().GetAddressByteSize() == 4) { 261 // 32-bit hosts run with a RegisterContextLinux_i386 context. 262 return new RegisterContextLinux_i386(target_arch); 263 } else { 264 assert((HostInfo::GetArchitecture().GetAddressByteSize() == 8) && 265 "Register setting path assumes this is a 64-bit host"); 266 // X86_64 hosts know how to work with 64-bit and 32-bit EXEs using the 267 // x86_64 register context. 268 return new RegisterContextLinux_x86_64(target_arch); 269 } 270 } 271 272 NativeRegisterContextLinux_x86_64::NativeRegisterContextLinux_x86_64( 273 const ArchSpec &target_arch, NativeThreadProtocol &native_thread, 274 uint32_t concrete_frame_idx) 275 : NativeRegisterContextLinux(native_thread, concrete_frame_idx, 276 CreateRegisterInfoInterface(target_arch)), 277 m_xstate_type(XStateType::Invalid), m_fpr(), m_iovec(), m_ymm_set(), 278 m_mpx_set(), m_reg_info(), m_gpr_x86_64() { 279 // Set up data about ranges of valid registers. 280 switch (target_arch.GetMachine()) { 281 case llvm::Triple::x86: 282 m_reg_info.num_registers = k_num_registers_i386; 283 m_reg_info.num_gpr_registers = k_num_gpr_registers_i386; 284 m_reg_info.num_fpr_registers = k_num_fpr_registers_i386; 285 m_reg_info.num_avx_registers = k_num_avx_registers_i386; 286 m_reg_info.num_mpx_registers = k_num_mpx_registers_i386; 287 m_reg_info.last_gpr = k_last_gpr_i386; 288 m_reg_info.first_fpr = k_first_fpr_i386; 289 m_reg_info.last_fpr = k_last_fpr_i386; 290 m_reg_info.first_st = lldb_st0_i386; 291 m_reg_info.last_st = lldb_st7_i386; 292 m_reg_info.first_mm = lldb_mm0_i386; 293 m_reg_info.last_mm = lldb_mm7_i386; 294 m_reg_info.first_xmm = lldb_xmm0_i386; 295 m_reg_info.last_xmm = lldb_xmm7_i386; 296 m_reg_info.first_ymm = lldb_ymm0_i386; 297 m_reg_info.last_ymm = lldb_ymm7_i386; 298 m_reg_info.first_mpxr = lldb_bnd0_i386; 299 m_reg_info.last_mpxr = lldb_bnd3_i386; 300 m_reg_info.first_mpxc = lldb_bndcfgu_i386; 301 m_reg_info.last_mpxc = lldb_bndstatus_i386; 302 m_reg_info.first_dr = lldb_dr0_i386; 303 m_reg_info.gpr_flags = lldb_eflags_i386; 304 break; 305 case llvm::Triple::x86_64: 306 m_reg_info.num_registers = k_num_registers_x86_64; 307 m_reg_info.num_gpr_registers = k_num_gpr_registers_x86_64; 308 m_reg_info.num_fpr_registers = k_num_fpr_registers_x86_64; 309 m_reg_info.num_avx_registers = k_num_avx_registers_x86_64; 310 m_reg_info.num_mpx_registers = k_num_mpx_registers_x86_64; 311 m_reg_info.last_gpr = k_last_gpr_x86_64; 312 m_reg_info.first_fpr = k_first_fpr_x86_64; 313 m_reg_info.last_fpr = k_last_fpr_x86_64; 314 m_reg_info.first_st = lldb_st0_x86_64; 315 m_reg_info.last_st = lldb_st7_x86_64; 316 m_reg_info.first_mm = lldb_mm0_x86_64; 317 m_reg_info.last_mm = lldb_mm7_x86_64; 318 m_reg_info.first_xmm = lldb_xmm0_x86_64; 319 m_reg_info.last_xmm = lldb_xmm15_x86_64; 320 m_reg_info.first_ymm = lldb_ymm0_x86_64; 321 m_reg_info.last_ymm = lldb_ymm15_x86_64; 322 m_reg_info.first_mpxr = lldb_bnd0_x86_64; 323 m_reg_info.last_mpxr = lldb_bnd3_x86_64; 324 m_reg_info.first_mpxc = lldb_bndcfgu_x86_64; 325 m_reg_info.last_mpxc = lldb_bndstatus_x86_64; 326 m_reg_info.first_dr = lldb_dr0_x86_64; 327 m_reg_info.gpr_flags = lldb_rflags_x86_64; 328 break; 329 default: 330 assert(false && "Unhandled target architecture."); 331 break; 332 } 333 334 // Initialize m_iovec to point to the buffer and buffer size 335 // using the conventions of Berkeley style UIO structures, as required 336 // by PTRACE extensions. 337 m_iovec.iov_base = &m_fpr.xstate.xsave; 338 m_iovec.iov_len = sizeof(m_fpr.xstate.xsave); 339 340 // Clear out the FPR state. 341 ::memset(&m_fpr, 0, sizeof(FPR)); 342 343 // Store byte offset of fctrl (i.e. first register of FPR) 344 const RegisterInfo *reg_info_fctrl = GetRegisterInfoByName("fctrl"); 345 m_fctrl_offset_in_userarea = reg_info_fctrl->byte_offset; 346 } 347 348 // CONSIDER after local and llgs debugging are merged, register set support can 349 // be moved into a base x86-64 class with IsRegisterSetAvailable made virtual. 350 uint32_t NativeRegisterContextLinux_x86_64::GetRegisterSetCount() const { 351 uint32_t sets = 0; 352 for (uint32_t set_index = 0; set_index < k_num_register_sets; ++set_index) { 353 if (IsRegisterSetAvailable(set_index)) 354 ++sets; 355 } 356 357 return sets; 358 } 359 360 uint32_t NativeRegisterContextLinux_x86_64::GetUserRegisterCount() const { 361 uint32_t count = 0; 362 for (uint32_t set_index = 0; set_index < k_num_register_sets; ++set_index) { 363 const RegisterSet *set = GetRegisterSet(set_index); 364 if (set) 365 count += set->num_registers; 366 } 367 return count; 368 } 369 370 const RegisterSet * 371 NativeRegisterContextLinux_x86_64::GetRegisterSet(uint32_t set_index) const { 372 if (!IsRegisterSetAvailable(set_index)) 373 return nullptr; 374 375 switch (GetRegisterInfoInterface().GetTargetArchitecture().GetMachine()) { 376 case llvm::Triple::x86: 377 return &g_reg_sets_i386[set_index]; 378 case llvm::Triple::x86_64: 379 return &g_reg_sets_x86_64[set_index]; 380 default: 381 assert(false && "Unhandled target architecture."); 382 return nullptr; 383 } 384 385 return nullptr; 386 } 387 388 Error NativeRegisterContextLinux_x86_64::ReadRegister( 389 const RegisterInfo *reg_info, RegisterValue ®_value) { 390 Error error; 391 392 if (!reg_info) { 393 error.SetErrorString("reg_info NULL"); 394 return error; 395 } 396 397 const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB]; 398 if (reg == LLDB_INVALID_REGNUM) { 399 // This is likely an internal register for lldb use only and should not be 400 // directly queried. 401 error.SetErrorStringWithFormat("register \"%s\" is an internal-only lldb " 402 "register, cannot read directly", 403 reg_info->name); 404 return error; 405 } 406 407 if (IsFPR(reg) || IsAVX(reg) || IsMPX(reg)) { 408 error = ReadFPR(); 409 if (error.Fail()) 410 return error; 411 } else { 412 uint32_t full_reg = reg; 413 bool is_subreg = reg_info->invalidate_regs && 414 (reg_info->invalidate_regs[0] != LLDB_INVALID_REGNUM); 415 416 if (is_subreg) { 417 // Read the full aligned 64-bit register. 418 full_reg = reg_info->invalidate_regs[0]; 419 } 420 421 error = ReadRegisterRaw(full_reg, reg_value); 422 423 if (error.Success()) { 424 // If our read was not aligned (for ah,bh,ch,dh), shift our returned value 425 // one byte to the right. 426 if (is_subreg && (reg_info->byte_offset & 0x1)) 427 reg_value.SetUInt64(reg_value.GetAsUInt64() >> 8); 428 429 // If our return byte size was greater than the return value reg size, 430 // then 431 // use the type specified by reg_info rather than the uint64_t default 432 if (reg_value.GetByteSize() > reg_info->byte_size) 433 reg_value.SetType(reg_info); 434 } 435 return error; 436 } 437 438 if (reg_info->encoding == lldb::eEncodingVector) { 439 lldb::ByteOrder byte_order = GetByteOrder(); 440 441 if (byte_order != lldb::eByteOrderInvalid) { 442 if (reg >= m_reg_info.first_st && reg <= m_reg_info.last_st) 443 reg_value.SetBytes( 444 m_fpr.xstate.fxsave.stmm[reg - m_reg_info.first_st].bytes, 445 reg_info->byte_size, byte_order); 446 if (reg >= m_reg_info.first_mm && reg <= m_reg_info.last_mm) 447 reg_value.SetBytes( 448 m_fpr.xstate.fxsave.stmm[reg - m_reg_info.first_mm].bytes, 449 reg_info->byte_size, byte_order); 450 if (reg >= m_reg_info.first_xmm && reg <= m_reg_info.last_xmm) 451 reg_value.SetBytes( 452 m_fpr.xstate.fxsave.xmm[reg - m_reg_info.first_xmm].bytes, 453 reg_info->byte_size, byte_order); 454 if (reg >= m_reg_info.first_ymm && reg <= m_reg_info.last_ymm) { 455 // Concatenate ymm using the register halves in xmm.bytes and ymmh.bytes 456 if (CopyXSTATEtoYMM(reg, byte_order)) 457 reg_value.SetBytes(m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes, 458 reg_info->byte_size, byte_order); 459 else { 460 error.SetErrorString("failed to copy ymm register value"); 461 return error; 462 } 463 } 464 if (reg >= m_reg_info.first_mpxr && reg <= m_reg_info.last_mpxr) { 465 if (CopyXSTATEtoMPX(reg)) 466 reg_value.SetBytes(m_mpx_set.mpxr[reg - m_reg_info.first_mpxr].bytes, 467 reg_info->byte_size, byte_order); 468 else { 469 error.SetErrorString("failed to copy mpx register value"); 470 return error; 471 } 472 } 473 if (reg >= m_reg_info.first_mpxc && reg <= m_reg_info.last_mpxc) { 474 if (CopyXSTATEtoMPX(reg)) 475 reg_value.SetBytes(m_mpx_set.mpxc[reg - m_reg_info.first_mpxc].bytes, 476 reg_info->byte_size, byte_order); 477 else { 478 error.SetErrorString("failed to copy mpx register value"); 479 return error; 480 } 481 } 482 483 if (reg_value.GetType() != RegisterValue::eTypeBytes) 484 error.SetErrorString( 485 "write failed - type was expected to be RegisterValue::eTypeBytes"); 486 487 return error; 488 } 489 490 error.SetErrorString("byte order is invalid"); 491 return error; 492 } 493 494 // Get pointer to m_fpr.xstate.fxsave variable and set the data from it. 495 496 // Byte offsets of all registers are calculated wrt 'UserArea' structure. 497 // However, ReadFPR() reads fpu registers {using ptrace(PTRACE_GETFPREGS,..)} 498 // and stores them in 'm_fpr' (of type FPR structure). To extract values of 499 // fpu 500 // registers, m_fpr should be read at byte offsets calculated wrt to FPR 501 // structure. 502 503 // Since, FPR structure is also one of the member of UserArea structure. 504 // byte_offset(fpu wrt FPR) = byte_offset(fpu wrt UserArea) - 505 // byte_offset(fctrl wrt UserArea) 506 assert((reg_info->byte_offset - m_fctrl_offset_in_userarea) < sizeof(m_fpr)); 507 uint8_t *src = 508 (uint8_t *)&m_fpr + reg_info->byte_offset - m_fctrl_offset_in_userarea; 509 switch (reg_info->byte_size) { 510 case 1: 511 reg_value.SetUInt8(*(uint8_t *)src); 512 break; 513 case 2: 514 reg_value.SetUInt16(*(uint16_t *)src); 515 break; 516 case 4: 517 reg_value.SetUInt32(*(uint32_t *)src); 518 break; 519 case 8: 520 reg_value.SetUInt64(*(uint64_t *)src); 521 break; 522 default: 523 assert(false && "Unhandled data size."); 524 error.SetErrorStringWithFormat("unhandled byte size: %" PRIu32, 525 reg_info->byte_size); 526 break; 527 } 528 529 return error; 530 } 531 532 Error NativeRegisterContextLinux_x86_64::WriteRegister( 533 const RegisterInfo *reg_info, const RegisterValue ®_value) { 534 assert(reg_info && "reg_info is null"); 535 536 const uint32_t reg_index = reg_info->kinds[lldb::eRegisterKindLLDB]; 537 if (reg_index == LLDB_INVALID_REGNUM) 538 return Error("no lldb regnum for %s", reg_info && reg_info->name 539 ? reg_info->name 540 : "<unknown register>"); 541 542 if (IsGPR(reg_index)) 543 return WriteRegisterRaw(reg_index, reg_value); 544 545 if (IsFPR(reg_index) || IsAVX(reg_index) || IsMPX(reg_index)) { 546 if (reg_info->encoding == lldb::eEncodingVector) { 547 if (reg_index >= m_reg_info.first_st && reg_index <= m_reg_info.last_st) 548 ::memcpy( 549 m_fpr.xstate.fxsave.stmm[reg_index - m_reg_info.first_st].bytes, 550 reg_value.GetBytes(), reg_value.GetByteSize()); 551 552 if (reg_index >= m_reg_info.first_mm && reg_index <= m_reg_info.last_mm) 553 ::memcpy( 554 m_fpr.xstate.fxsave.stmm[reg_index - m_reg_info.first_mm].bytes, 555 reg_value.GetBytes(), reg_value.GetByteSize()); 556 557 if (reg_index >= m_reg_info.first_xmm && reg_index <= m_reg_info.last_xmm) 558 ::memcpy( 559 m_fpr.xstate.fxsave.xmm[reg_index - m_reg_info.first_xmm].bytes, 560 reg_value.GetBytes(), reg_value.GetByteSize()); 561 562 if (reg_index >= m_reg_info.first_ymm && 563 reg_index <= m_reg_info.last_ymm) { 564 // Store ymm register content, and split into the register halves in 565 // xmm.bytes and ymmh.bytes 566 ::memcpy(m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes, 567 reg_value.GetBytes(), reg_value.GetByteSize()); 568 if (!CopyYMMtoXSTATE(reg_index, GetByteOrder())) 569 return Error("CopyYMMtoXSTATE() failed"); 570 } 571 572 if (reg_index >= m_reg_info.first_mpxr && 573 reg_index <= m_reg_info.last_mpxr) { 574 ::memcpy(m_mpx_set.mpxr[reg_index - m_reg_info.first_mpxr].bytes, 575 reg_value.GetBytes(), reg_value.GetByteSize()); 576 if (!CopyMPXtoXSTATE(reg_index)) 577 return Error("CopyMPXtoXSTATE() failed"); 578 } 579 580 if (reg_index >= m_reg_info.first_mpxc && 581 reg_index <= m_reg_info.last_mpxc) { 582 ::memcpy(m_mpx_set.mpxc[reg_index - m_reg_info.first_mpxc].bytes, 583 reg_value.GetBytes(), reg_value.GetByteSize()); 584 if (!CopyMPXtoXSTATE(reg_index)) 585 return Error("CopyMPXtoXSTATE() failed"); 586 } 587 } else { 588 // Get pointer to m_fpr.xstate.fxsave variable and set the data to it. 589 590 // Byte offsets of all registers are calculated wrt 'UserArea' structure. 591 // However, WriteFPR() takes m_fpr (of type FPR structure) and writes only 592 // fpu 593 // registers using ptrace(PTRACE_SETFPREGS,..) API. Hence fpu registers 594 // should 595 // be written in m_fpr at byte offsets calculated wrt FPR structure. 596 597 // Since, FPR structure is also one of the member of UserArea structure. 598 // byte_offset(fpu wrt FPR) = byte_offset(fpu wrt UserArea) - 599 // byte_offset(fctrl wrt UserArea) 600 assert((reg_info->byte_offset - m_fctrl_offset_in_userarea) < 601 sizeof(m_fpr)); 602 uint8_t *dst = (uint8_t *)&m_fpr + reg_info->byte_offset - 603 m_fctrl_offset_in_userarea; 604 switch (reg_info->byte_size) { 605 case 1: 606 *(uint8_t *)dst = reg_value.GetAsUInt8(); 607 break; 608 case 2: 609 *(uint16_t *)dst = reg_value.GetAsUInt16(); 610 break; 611 case 4: 612 *(uint32_t *)dst = reg_value.GetAsUInt32(); 613 break; 614 case 8: 615 *(uint64_t *)dst = reg_value.GetAsUInt64(); 616 break; 617 default: 618 assert(false && "Unhandled data size."); 619 return Error("unhandled register data size %" PRIu32, 620 reg_info->byte_size); 621 } 622 } 623 624 Error error = WriteFPR(); 625 if (error.Fail()) 626 return error; 627 628 if (IsAVX(reg_index)) { 629 if (!CopyYMMtoXSTATE(reg_index, GetByteOrder())) 630 return Error("CopyYMMtoXSTATE() failed"); 631 } 632 633 if (IsMPX(reg_index)) { 634 if (!CopyMPXtoXSTATE(reg_index)) 635 return Error("CopyMPXtoXSTATE() failed"); 636 } 637 return Error(); 638 } 639 return Error("failed - register wasn't recognized to be a GPR or an FPR, " 640 "write strategy unknown"); 641 } 642 643 Error NativeRegisterContextLinux_x86_64::ReadAllRegisterValues( 644 lldb::DataBufferSP &data_sp) { 645 Error error; 646 647 data_sp.reset(new DataBufferHeap(REG_CONTEXT_SIZE, 0)); 648 if (!data_sp) { 649 error.SetErrorStringWithFormat( 650 "failed to allocate DataBufferHeap instance of size %" PRIu64, 651 REG_CONTEXT_SIZE); 652 return error; 653 } 654 655 error = ReadGPR(); 656 if (error.Fail()) 657 return error; 658 659 error = ReadFPR(); 660 if (error.Fail()) 661 return error; 662 663 uint8_t *dst = data_sp->GetBytes(); 664 if (dst == nullptr) { 665 error.SetErrorStringWithFormat("DataBufferHeap instance of size %" PRIu64 666 " returned a null pointer", 667 REG_CONTEXT_SIZE); 668 return error; 669 } 670 671 ::memcpy(dst, &m_gpr_x86_64, GetRegisterInfoInterface().GetGPRSize()); 672 dst += GetRegisterInfoInterface().GetGPRSize(); 673 if (m_xstate_type == XStateType::FXSAVE) 674 ::memcpy(dst, &m_fpr.xstate.fxsave, sizeof(m_fpr.xstate.fxsave)); 675 else if (m_xstate_type == XStateType::XSAVE) { 676 lldb::ByteOrder byte_order = GetByteOrder(); 677 678 if (IsCPUFeatureAvailable(RegSet::avx)) { 679 // Assemble the YMM register content from the register halves. 680 for (uint32_t reg = m_reg_info.first_ymm; reg <= m_reg_info.last_ymm; 681 ++reg) { 682 if (!CopyXSTATEtoYMM(reg, byte_order)) { 683 error.SetErrorStringWithFormat( 684 "NativeRegisterContextLinux_x86_64::%s " 685 "CopyXSTATEtoYMM() failed for reg num " 686 "%" PRIu32, 687 __FUNCTION__, reg); 688 return error; 689 } 690 } 691 } 692 693 if (IsCPUFeatureAvailable(RegSet::mpx)) { 694 for (uint32_t reg = m_reg_info.first_mpxr; reg <= m_reg_info.last_mpxc; 695 ++reg) { 696 if (!CopyXSTATEtoMPX(reg)) { 697 error.SetErrorStringWithFormat( 698 "NativeRegisterContextLinux_x86_64::%s " 699 "CopyXSTATEtoMPX() failed for reg num " 700 "%" PRIu32, 701 __FUNCTION__, reg); 702 return error; 703 } 704 } 705 } 706 // Copy the extended register state including the assembled ymm registers. 707 ::memcpy(dst, &m_fpr, sizeof(m_fpr)); 708 } else { 709 assert(false && "how do we save the floating point registers?"); 710 error.SetErrorString("unsure how to save the floating point registers"); 711 } 712 /** The following code is specific to Linux x86 based architectures, 713 * where the register orig_eax (32 bit)/orig_rax (64 bit) is set to 714 * -1 to solve the bug 23659, such a setting prevents the automatic 715 * decrement of the instruction pointer which was causing the SIGILL 716 * exception. 717 * **/ 718 719 RegisterValue value((uint64_t)-1); 720 const RegisterInfo *reg_info = 721 GetRegisterInfoInterface().GetDynamicRegisterInfo("orig_eax"); 722 if (reg_info == nullptr) 723 reg_info = GetRegisterInfoInterface().GetDynamicRegisterInfo("orig_rax"); 724 725 if (reg_info != nullptr) 726 return DoWriteRegisterValue(reg_info->byte_offset, reg_info->name, value); 727 728 return error; 729 } 730 731 Error NativeRegisterContextLinux_x86_64::WriteAllRegisterValues( 732 const lldb::DataBufferSP &data_sp) { 733 Error error; 734 735 if (!data_sp) { 736 error.SetErrorStringWithFormat( 737 "NativeRegisterContextLinux_x86_64::%s invalid data_sp provided", 738 __FUNCTION__); 739 return error; 740 } 741 742 if (data_sp->GetByteSize() != REG_CONTEXT_SIZE) { 743 error.SetErrorStringWithFormat( 744 "NativeRegisterContextLinux_x86_64::%s data_sp contained mismatched " 745 "data size, expected %" PRIu64 ", actual %" PRIu64, 746 __FUNCTION__, REG_CONTEXT_SIZE, data_sp->GetByteSize()); 747 return error; 748 } 749 750 uint8_t *src = data_sp->GetBytes(); 751 if (src == nullptr) { 752 error.SetErrorStringWithFormat("NativeRegisterContextLinux_x86_64::%s " 753 "DataBuffer::GetBytes() returned a null " 754 "pointer", 755 __FUNCTION__); 756 return error; 757 } 758 ::memcpy(&m_gpr_x86_64, src, GetRegisterInfoInterface().GetGPRSize()); 759 760 error = WriteGPR(); 761 if (error.Fail()) 762 return error; 763 764 src += GetRegisterInfoInterface().GetGPRSize(); 765 if (m_xstate_type == XStateType::FXSAVE) 766 ::memcpy(&m_fpr.xstate.fxsave, src, sizeof(m_fpr.xstate.fxsave)); 767 else if (m_xstate_type == XStateType::XSAVE) 768 ::memcpy(&m_fpr.xstate.xsave, src, sizeof(m_fpr.xstate.xsave)); 769 770 error = WriteFPR(); 771 if (error.Fail()) 772 return error; 773 774 if (m_xstate_type == XStateType::XSAVE) { 775 lldb::ByteOrder byte_order = GetByteOrder(); 776 777 if (IsCPUFeatureAvailable(RegSet::avx)) { 778 // Parse the YMM register content from the register halves. 779 for (uint32_t reg = m_reg_info.first_ymm; reg <= m_reg_info.last_ymm; 780 ++reg) { 781 if (!CopyYMMtoXSTATE(reg, byte_order)) { 782 error.SetErrorStringWithFormat( 783 "NativeRegisterContextLinux_x86_64::%s " 784 "CopyYMMtoXSTATE() failed for reg num " 785 "%" PRIu32, 786 __FUNCTION__, reg); 787 return error; 788 } 789 } 790 } 791 792 if (IsCPUFeatureAvailable(RegSet::mpx)) { 793 for (uint32_t reg = m_reg_info.first_mpxr; reg <= m_reg_info.last_mpxc; 794 ++reg) { 795 if (!CopyMPXtoXSTATE(reg)) { 796 error.SetErrorStringWithFormat( 797 "NativeRegisterContextLinux_x86_64::%s " 798 "CopyMPXtoXSTATE() failed for reg num " 799 "%" PRIu32, 800 __FUNCTION__, reg); 801 return error; 802 } 803 } 804 } 805 } 806 807 return error; 808 } 809 810 bool NativeRegisterContextLinux_x86_64::IsCPUFeatureAvailable( 811 RegSet feature_code) const { 812 if (m_xstate_type == XStateType::Invalid) { 813 if (const_cast<NativeRegisterContextLinux_x86_64 *>(this)->ReadFPR().Fail()) 814 return false; 815 } 816 switch (feature_code) { 817 case RegSet::gpr: 818 case RegSet::fpu: 819 return true; 820 case RegSet::avx: // Check if CPU has AVX and if there is kernel support, by 821 // reading in the XCR0 area of XSAVE. 822 if ((m_fpr.xstate.xsave.i387.xcr0 & mask_XSTATE_AVX) == mask_XSTATE_AVX) 823 return true; 824 break; 825 case RegSet::mpx: // Check if CPU has MPX and if there is kernel support, by 826 // reading in the XCR0 area of XSAVE. 827 if ((m_fpr.xstate.xsave.i387.xcr0 & mask_XSTATE_MPX) == mask_XSTATE_MPX) 828 return true; 829 break; 830 } 831 return false; 832 } 833 834 bool NativeRegisterContextLinux_x86_64::IsRegisterSetAvailable( 835 uint32_t set_index) const { 836 uint32_t num_sets = k_num_register_sets - k_num_extended_register_sets; 837 838 switch (static_cast<RegSet>(set_index)) { 839 case RegSet::gpr: 840 case RegSet::fpu: 841 return (set_index < num_sets); 842 case RegSet::avx: 843 return IsCPUFeatureAvailable(RegSet::avx); 844 case RegSet::mpx: 845 return IsCPUFeatureAvailable(RegSet::mpx); 846 } 847 return false; 848 } 849 850 bool NativeRegisterContextLinux_x86_64::IsGPR(uint32_t reg_index) const { 851 // GPRs come first. 852 return reg_index <= m_reg_info.last_gpr; 853 } 854 855 bool NativeRegisterContextLinux_x86_64::IsFPR(uint32_t reg_index) const { 856 return (m_reg_info.first_fpr <= reg_index && 857 reg_index <= m_reg_info.last_fpr); 858 } 859 860 Error NativeRegisterContextLinux_x86_64::WriteFPR() { 861 switch (m_xstate_type) { 862 case XStateType::FXSAVE: 863 return WriteRegisterSet( 864 &m_iovec, sizeof(m_fpr.xstate.xsave), 865 fxsr_regset(GetRegisterInfoInterface().GetTargetArchitecture())); 866 case XStateType::XSAVE: 867 return WriteRegisterSet(&m_iovec, sizeof(m_fpr.xstate.xsave), 868 NT_X86_XSTATE); 869 default: 870 return Error("Unrecognized FPR type."); 871 } 872 } 873 874 bool NativeRegisterContextLinux_x86_64::IsAVX(uint32_t reg_index) const { 875 if (!IsCPUFeatureAvailable(RegSet::avx)) 876 return false; 877 return (m_reg_info.first_ymm <= reg_index && 878 reg_index <= m_reg_info.last_ymm); 879 } 880 881 bool NativeRegisterContextLinux_x86_64::CopyXSTATEtoYMM( 882 uint32_t reg_index, lldb::ByteOrder byte_order) { 883 if (!IsAVX(reg_index)) 884 return false; 885 886 if (byte_order == lldb::eByteOrderLittle) { 887 ::memcpy(m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes, 888 m_fpr.xstate.fxsave.xmm[reg_index - m_reg_info.first_ymm].bytes, 889 sizeof(XMMReg)); 890 ::memcpy(m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes + 891 sizeof(XMMReg), 892 m_fpr.xstate.xsave.ymmh[reg_index - m_reg_info.first_ymm].bytes, 893 sizeof(YMMHReg)); 894 return true; 895 } 896 897 if (byte_order == lldb::eByteOrderBig) { 898 ::memcpy(m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes + 899 sizeof(XMMReg), 900 m_fpr.xstate.fxsave.xmm[reg_index - m_reg_info.first_ymm].bytes, 901 sizeof(XMMReg)); 902 ::memcpy(m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes, 903 m_fpr.xstate.xsave.ymmh[reg_index - m_reg_info.first_ymm].bytes, 904 sizeof(YMMHReg)); 905 return true; 906 } 907 return false; // unsupported or invalid byte order 908 } 909 910 bool NativeRegisterContextLinux_x86_64::CopyYMMtoXSTATE( 911 uint32_t reg, lldb::ByteOrder byte_order) { 912 if (!IsAVX(reg)) 913 return false; 914 915 if (byte_order == lldb::eByteOrderLittle) { 916 ::memcpy(m_fpr.xstate.fxsave.xmm[reg - m_reg_info.first_ymm].bytes, 917 m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes, sizeof(XMMReg)); 918 ::memcpy(m_fpr.xstate.xsave.ymmh[reg - m_reg_info.first_ymm].bytes, 919 m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes + sizeof(XMMReg), 920 sizeof(YMMHReg)); 921 return true; 922 } 923 924 if (byte_order == lldb::eByteOrderBig) { 925 ::memcpy(m_fpr.xstate.fxsave.xmm[reg - m_reg_info.first_ymm].bytes, 926 m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes + sizeof(XMMReg), 927 sizeof(XMMReg)); 928 ::memcpy(m_fpr.xstate.xsave.ymmh[reg - m_reg_info.first_ymm].bytes, 929 m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes, sizeof(YMMHReg)); 930 return true; 931 } 932 return false; // unsupported or invalid byte order 933 } 934 935 void *NativeRegisterContextLinux_x86_64::GetFPRBuffer() { 936 switch (m_xstate_type) { 937 case XStateType::FXSAVE: 938 return &m_fpr.xstate.fxsave; 939 case XStateType::XSAVE: 940 return &m_iovec; 941 default: 942 return nullptr; 943 } 944 } 945 946 size_t NativeRegisterContextLinux_x86_64::GetFPRSize() { 947 switch (m_xstate_type) { 948 case XStateType::FXSAVE: 949 return sizeof(m_fpr.xstate.fxsave); 950 case XStateType::XSAVE: 951 return sizeof(m_iovec); 952 default: 953 return 0; 954 } 955 } 956 957 Error NativeRegisterContextLinux_x86_64::ReadFPR() { 958 Error error; 959 960 // Probe XSAVE and if it is not supported fall back to FXSAVE. 961 if (m_xstate_type != XStateType::FXSAVE) { 962 error = 963 ReadRegisterSet(&m_iovec, sizeof(m_fpr.xstate.xsave), NT_X86_XSTATE); 964 if (!error.Fail()) { 965 m_xstate_type = XStateType::XSAVE; 966 return error; 967 } 968 } 969 error = ReadRegisterSet( 970 &m_iovec, sizeof(m_fpr.xstate.xsave), 971 fxsr_regset(GetRegisterInfoInterface().GetTargetArchitecture())); 972 if (!error.Fail()) { 973 m_xstate_type = XStateType::FXSAVE; 974 return error; 975 } 976 return Error("Unrecognized FPR type."); 977 } 978 979 bool NativeRegisterContextLinux_x86_64::IsMPX(uint32_t reg_index) const { 980 if (!IsCPUFeatureAvailable(RegSet::mpx)) 981 return false; 982 return (m_reg_info.first_mpxr <= reg_index && 983 reg_index <= m_reg_info.last_mpxc); 984 } 985 986 bool NativeRegisterContextLinux_x86_64::CopyXSTATEtoMPX(uint32_t reg) { 987 if (!IsMPX(reg)) 988 return false; 989 990 if (reg >= m_reg_info.first_mpxr && reg <= m_reg_info.last_mpxr) { 991 ::memcpy(m_mpx_set.mpxr[reg - m_reg_info.first_mpxr].bytes, 992 m_fpr.xstate.xsave.mpxr[reg - m_reg_info.first_mpxr].bytes, 993 sizeof(MPXReg)); 994 } else { 995 ::memcpy(m_mpx_set.mpxc[reg - m_reg_info.first_mpxc].bytes, 996 m_fpr.xstate.xsave.mpxc[reg - m_reg_info.first_mpxc].bytes, 997 sizeof(MPXCsr)); 998 } 999 return true; 1000 } 1001 1002 bool NativeRegisterContextLinux_x86_64::CopyMPXtoXSTATE(uint32_t reg) { 1003 if (!IsMPX(reg)) 1004 return false; 1005 1006 if (reg >= m_reg_info.first_mpxr && reg <= m_reg_info.last_mpxr) { 1007 ::memcpy(m_fpr.xstate.xsave.mpxr[reg - m_reg_info.first_mpxr].bytes, 1008 m_mpx_set.mpxr[reg - m_reg_info.first_mpxr].bytes, sizeof(MPXReg)); 1009 } else { 1010 ::memcpy(m_fpr.xstate.xsave.mpxc[reg - m_reg_info.first_mpxc].bytes, 1011 m_mpx_set.mpxc[reg - m_reg_info.first_mpxc].bytes, sizeof(MPXCsr)); 1012 } 1013 return true; 1014 } 1015 1016 Error NativeRegisterContextLinux_x86_64::IsWatchpointHit(uint32_t wp_index, 1017 bool &is_hit) { 1018 if (wp_index >= NumSupportedHardwareWatchpoints()) 1019 return Error("Watchpoint index out of range"); 1020 1021 RegisterValue reg_value; 1022 Error error = ReadRegisterRaw(m_reg_info.first_dr + 6, reg_value); 1023 if (error.Fail()) { 1024 is_hit = false; 1025 return error; 1026 } 1027 1028 uint64_t status_bits = reg_value.GetAsUInt64(); 1029 1030 is_hit = status_bits & (1 << wp_index); 1031 1032 return error; 1033 } 1034 1035 Error NativeRegisterContextLinux_x86_64::GetWatchpointHitIndex( 1036 uint32_t &wp_index, lldb::addr_t trap_addr) { 1037 uint32_t num_hw_wps = NumSupportedHardwareWatchpoints(); 1038 for (wp_index = 0; wp_index < num_hw_wps; ++wp_index) { 1039 bool is_hit; 1040 Error error = IsWatchpointHit(wp_index, is_hit); 1041 if (error.Fail()) { 1042 wp_index = LLDB_INVALID_INDEX32; 1043 return error; 1044 } else if (is_hit) { 1045 return error; 1046 } 1047 } 1048 wp_index = LLDB_INVALID_INDEX32; 1049 return Error(); 1050 } 1051 1052 Error NativeRegisterContextLinux_x86_64::IsWatchpointVacant(uint32_t wp_index, 1053 bool &is_vacant) { 1054 if (wp_index >= NumSupportedHardwareWatchpoints()) 1055 return Error("Watchpoint index out of range"); 1056 1057 RegisterValue reg_value; 1058 Error error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value); 1059 if (error.Fail()) { 1060 is_vacant = false; 1061 return error; 1062 } 1063 1064 uint64_t control_bits = reg_value.GetAsUInt64(); 1065 1066 is_vacant = !(control_bits & (1 << (2 * wp_index))); 1067 1068 return error; 1069 } 1070 1071 Error NativeRegisterContextLinux_x86_64::SetHardwareWatchpointWithIndex( 1072 lldb::addr_t addr, size_t size, uint32_t watch_flags, uint32_t wp_index) { 1073 1074 if (wp_index >= NumSupportedHardwareWatchpoints()) 1075 return Error("Watchpoint index out of range"); 1076 1077 // Read only watchpoints aren't supported on x86_64. Fall back to read/write 1078 // waitchpoints instead. 1079 // TODO: Add logic to detect when a write happens and ignore that watchpoint 1080 // hit. 1081 if (watch_flags == 0x2) 1082 watch_flags = 0x3; 1083 1084 if (watch_flags != 0x1 && watch_flags != 0x3) 1085 return Error("Invalid read/write bits for watchpoint"); 1086 1087 if (size != 1 && size != 2 && size != 4 && size != 8) 1088 return Error("Invalid size for watchpoint"); 1089 1090 bool is_vacant; 1091 Error error = IsWatchpointVacant(wp_index, is_vacant); 1092 if (error.Fail()) 1093 return error; 1094 if (!is_vacant) 1095 return Error("Watchpoint index not vacant"); 1096 1097 RegisterValue reg_value; 1098 error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value); 1099 if (error.Fail()) 1100 return error; 1101 1102 // for watchpoints 0, 1, 2, or 3, respectively, 1103 // set bits 1, 3, 5, or 7 1104 uint64_t enable_bit = 1 << (2 * wp_index); 1105 1106 // set bits 16-17, 20-21, 24-25, or 28-29 1107 // with 0b01 for write, and 0b11 for read/write 1108 uint64_t rw_bits = watch_flags << (16 + 4 * wp_index); 1109 1110 // set bits 18-19, 22-23, 26-27, or 30-31 1111 // with 0b00, 0b01, 0b10, or 0b11 1112 // for 1, 2, 8 (if supported), or 4 bytes, respectively 1113 uint64_t size_bits = (size == 8 ? 0x2 : size - 1) << (18 + 4 * wp_index); 1114 1115 uint64_t bit_mask = (0x3 << (2 * wp_index)) | (0xF << (16 + 4 * wp_index)); 1116 1117 uint64_t control_bits = reg_value.GetAsUInt64() & ~bit_mask; 1118 1119 control_bits |= enable_bit | rw_bits | size_bits; 1120 1121 error = WriteRegisterRaw(m_reg_info.first_dr + wp_index, RegisterValue(addr)); 1122 if (error.Fail()) 1123 return error; 1124 1125 error = 1126 WriteRegisterRaw(m_reg_info.first_dr + 7, RegisterValue(control_bits)); 1127 if (error.Fail()) 1128 return error; 1129 1130 error.Clear(); 1131 return error; 1132 } 1133 1134 bool NativeRegisterContextLinux_x86_64::ClearHardwareWatchpoint( 1135 uint32_t wp_index) { 1136 if (wp_index >= NumSupportedHardwareWatchpoints()) 1137 return false; 1138 1139 RegisterValue reg_value; 1140 1141 // for watchpoints 0, 1, 2, or 3, respectively, 1142 // clear bits 0, 1, 2, or 3 of the debug status register (DR6) 1143 Error error = ReadRegisterRaw(m_reg_info.first_dr + 6, reg_value); 1144 if (error.Fail()) 1145 return false; 1146 uint64_t bit_mask = 1 << wp_index; 1147 uint64_t status_bits = reg_value.GetAsUInt64() & ~bit_mask; 1148 error = WriteRegisterRaw(m_reg_info.first_dr + 6, RegisterValue(status_bits)); 1149 if (error.Fail()) 1150 return false; 1151 1152 // for watchpoints 0, 1, 2, or 3, respectively, 1153 // clear bits {0-1,16-19}, {2-3,20-23}, {4-5,24-27}, or {6-7,28-31} 1154 // of the debug control register (DR7) 1155 error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value); 1156 if (error.Fail()) 1157 return false; 1158 bit_mask = (0x3 << (2 * wp_index)) | (0xF << (16 + 4 * wp_index)); 1159 uint64_t control_bits = reg_value.GetAsUInt64() & ~bit_mask; 1160 return WriteRegisterRaw(m_reg_info.first_dr + 7, RegisterValue(control_bits)) 1161 .Success(); 1162 } 1163 1164 Error NativeRegisterContextLinux_x86_64::ClearAllHardwareWatchpoints() { 1165 RegisterValue reg_value; 1166 1167 // clear bits {0-4} of the debug status register (DR6) 1168 Error error = ReadRegisterRaw(m_reg_info.first_dr + 6, reg_value); 1169 if (error.Fail()) 1170 return error; 1171 uint64_t bit_mask = 0xF; 1172 uint64_t status_bits = reg_value.GetAsUInt64() & ~bit_mask; 1173 error = WriteRegisterRaw(m_reg_info.first_dr + 6, RegisterValue(status_bits)); 1174 if (error.Fail()) 1175 return error; 1176 1177 // clear bits {0-7,16-31} of the debug control register (DR7) 1178 error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value); 1179 if (error.Fail()) 1180 return error; 1181 bit_mask = 0xFF | (0xFFFF << 16); 1182 uint64_t control_bits = reg_value.GetAsUInt64() & ~bit_mask; 1183 return WriteRegisterRaw(m_reg_info.first_dr + 7, RegisterValue(control_bits)); 1184 } 1185 1186 uint32_t NativeRegisterContextLinux_x86_64::SetHardwareWatchpoint( 1187 lldb::addr_t addr, size_t size, uint32_t watch_flags) { 1188 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_WATCHPOINTS)); 1189 const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints(); 1190 for (uint32_t wp_index = 0; wp_index < num_hw_watchpoints; ++wp_index) { 1191 bool is_vacant; 1192 Error error = IsWatchpointVacant(wp_index, is_vacant); 1193 if (is_vacant) { 1194 error = SetHardwareWatchpointWithIndex(addr, size, watch_flags, wp_index); 1195 if (error.Success()) 1196 return wp_index; 1197 } 1198 if (error.Fail() && log) { 1199 log->Printf("NativeRegisterContextLinux_x86_64::%s Error: %s", 1200 __FUNCTION__, error.AsCString()); 1201 } 1202 } 1203 return LLDB_INVALID_INDEX32; 1204 } 1205 1206 lldb::addr_t 1207 NativeRegisterContextLinux_x86_64::GetWatchpointAddress(uint32_t wp_index) { 1208 if (wp_index >= NumSupportedHardwareWatchpoints()) 1209 return LLDB_INVALID_ADDRESS; 1210 RegisterValue reg_value; 1211 if (ReadRegisterRaw(m_reg_info.first_dr + wp_index, reg_value).Fail()) 1212 return LLDB_INVALID_ADDRESS; 1213 return reg_value.GetAsUInt64(); 1214 } 1215 1216 uint32_t NativeRegisterContextLinux_x86_64::NumSupportedHardwareWatchpoints() { 1217 // Available debug address registers: dr0, dr1, dr2, dr3 1218 return 4; 1219 } 1220 1221 #endif // defined(__i386__) || defined(__x86_64__) 1222