1 //===-- NativeRegisterContextLinux_x86_64.cpp ---------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #if defined(__i386__) || defined(__x86_64__) 11 12 #include "NativeRegisterContextLinux_x86_64.h" 13 14 #include "lldb/Core/Log.h" 15 #include "lldb/Core/DataBufferHeap.h" 16 #include "lldb/Core/Error.h" 17 #include "lldb/Core/RegisterValue.h" 18 #include "lldb/Host/HostInfo.h" 19 20 #include "Plugins/Process/Utility/RegisterContextLinux_i386.h" 21 #include "Plugins/Process/Utility/RegisterContextLinux_x86_64.h" 22 23 using namespace lldb_private; 24 using namespace lldb_private::process_linux; 25 26 // ---------------------------------------------------------------------------- 27 // Private namespace. 28 // ---------------------------------------------------------------------------- 29 30 namespace 31 { 32 // x86 32-bit general purpose registers. 33 const uint32_t 34 g_gpr_regnums_i386[] = 35 { 36 lldb_eax_i386, 37 lldb_ebx_i386, 38 lldb_ecx_i386, 39 lldb_edx_i386, 40 lldb_edi_i386, 41 lldb_esi_i386, 42 lldb_ebp_i386, 43 lldb_esp_i386, 44 lldb_eip_i386, 45 lldb_eflags_i386, 46 lldb_cs_i386, 47 lldb_fs_i386, 48 lldb_gs_i386, 49 lldb_ss_i386, 50 lldb_ds_i386, 51 lldb_es_i386, 52 lldb_ax_i386, 53 lldb_bx_i386, 54 lldb_cx_i386, 55 lldb_dx_i386, 56 lldb_di_i386, 57 lldb_si_i386, 58 lldb_bp_i386, 59 lldb_sp_i386, 60 lldb_ah_i386, 61 lldb_bh_i386, 62 lldb_ch_i386, 63 lldb_dh_i386, 64 lldb_al_i386, 65 lldb_bl_i386, 66 lldb_cl_i386, 67 lldb_dl_i386, 68 LLDB_INVALID_REGNUM // register sets need to end with this flag 69 }; 70 static_assert((sizeof(g_gpr_regnums_i386) / sizeof(g_gpr_regnums_i386[0])) - 1 == k_num_gpr_registers_i386, 71 "g_gpr_regnums_i386 has wrong number of register infos"); 72 73 // x86 32-bit floating point registers. 74 const uint32_t 75 g_fpu_regnums_i386[] = 76 { 77 lldb_fctrl_i386, 78 lldb_fstat_i386, 79 lldb_ftag_i386, 80 lldb_fop_i386, 81 lldb_fiseg_i386, 82 lldb_fioff_i386, 83 lldb_foseg_i386, 84 lldb_fooff_i386, 85 lldb_mxcsr_i386, 86 lldb_mxcsrmask_i386, 87 lldb_st0_i386, 88 lldb_st1_i386, 89 lldb_st2_i386, 90 lldb_st3_i386, 91 lldb_st4_i386, 92 lldb_st5_i386, 93 lldb_st6_i386, 94 lldb_st7_i386, 95 lldb_mm0_i386, 96 lldb_mm1_i386, 97 lldb_mm2_i386, 98 lldb_mm3_i386, 99 lldb_mm4_i386, 100 lldb_mm5_i386, 101 lldb_mm6_i386, 102 lldb_mm7_i386, 103 lldb_xmm0_i386, 104 lldb_xmm1_i386, 105 lldb_xmm2_i386, 106 lldb_xmm3_i386, 107 lldb_xmm4_i386, 108 lldb_xmm5_i386, 109 lldb_xmm6_i386, 110 lldb_xmm7_i386, 111 LLDB_INVALID_REGNUM // register sets need to end with this flag 112 }; 113 static_assert((sizeof(g_fpu_regnums_i386) / sizeof(g_fpu_regnums_i386[0])) - 1 == k_num_fpr_registers_i386, 114 "g_fpu_regnums_i386 has wrong number of register infos"); 115 116 // x86 32-bit AVX registers. 117 const uint32_t 118 g_avx_regnums_i386[] = 119 { 120 lldb_ymm0_i386, 121 lldb_ymm1_i386, 122 lldb_ymm2_i386, 123 lldb_ymm3_i386, 124 lldb_ymm4_i386, 125 lldb_ymm5_i386, 126 lldb_ymm6_i386, 127 lldb_ymm7_i386, 128 LLDB_INVALID_REGNUM // register sets need to end with this flag 129 }; 130 static_assert((sizeof(g_avx_regnums_i386) / sizeof(g_avx_regnums_i386[0])) - 1 == k_num_avx_registers_i386, 131 " g_avx_regnums_i386 has wrong number of register infos"); 132 133 // x86 64-bit general purpose registers. 134 static const 135 uint32_t g_gpr_regnums_x86_64[] = 136 { 137 lldb_rax_x86_64, 138 lldb_rbx_x86_64, 139 lldb_rcx_x86_64, 140 lldb_rdx_x86_64, 141 lldb_rdi_x86_64, 142 lldb_rsi_x86_64, 143 lldb_rbp_x86_64, 144 lldb_rsp_x86_64, 145 lldb_r8_x86_64, 146 lldb_r9_x86_64, 147 lldb_r10_x86_64, 148 lldb_r11_x86_64, 149 lldb_r12_x86_64, 150 lldb_r13_x86_64, 151 lldb_r14_x86_64, 152 lldb_r15_x86_64, 153 lldb_rip_x86_64, 154 lldb_rflags_x86_64, 155 lldb_cs_x86_64, 156 lldb_fs_x86_64, 157 lldb_gs_x86_64, 158 lldb_ss_x86_64, 159 lldb_ds_x86_64, 160 lldb_es_x86_64, 161 lldb_eax_x86_64, 162 lldb_ebx_x86_64, 163 lldb_ecx_x86_64, 164 lldb_edx_x86_64, 165 lldb_edi_x86_64, 166 lldb_esi_x86_64, 167 lldb_ebp_x86_64, 168 lldb_esp_x86_64, 169 lldb_r8d_x86_64, // Low 32 bits or r8 170 lldb_r9d_x86_64, // Low 32 bits or r9 171 lldb_r10d_x86_64, // Low 32 bits or r10 172 lldb_r11d_x86_64, // Low 32 bits or r11 173 lldb_r12d_x86_64, // Low 32 bits or r12 174 lldb_r13d_x86_64, // Low 32 bits or r13 175 lldb_r14d_x86_64, // Low 32 bits or r14 176 lldb_r15d_x86_64, // Low 32 bits or r15 177 lldb_ax_x86_64, 178 lldb_bx_x86_64, 179 lldb_cx_x86_64, 180 lldb_dx_x86_64, 181 lldb_di_x86_64, 182 lldb_si_x86_64, 183 lldb_bp_x86_64, 184 lldb_sp_x86_64, 185 lldb_r8w_x86_64, // Low 16 bits or r8 186 lldb_r9w_x86_64, // Low 16 bits or r9 187 lldb_r10w_x86_64, // Low 16 bits or r10 188 lldb_r11w_x86_64, // Low 16 bits or r11 189 lldb_r12w_x86_64, // Low 16 bits or r12 190 lldb_r13w_x86_64, // Low 16 bits or r13 191 lldb_r14w_x86_64, // Low 16 bits or r14 192 lldb_r15w_x86_64, // Low 16 bits or r15 193 lldb_ah_x86_64, 194 lldb_bh_x86_64, 195 lldb_ch_x86_64, 196 lldb_dh_x86_64, 197 lldb_al_x86_64, 198 lldb_bl_x86_64, 199 lldb_cl_x86_64, 200 lldb_dl_x86_64, 201 lldb_dil_x86_64, 202 lldb_sil_x86_64, 203 lldb_bpl_x86_64, 204 lldb_spl_x86_64, 205 lldb_r8l_x86_64, // Low 8 bits or r8 206 lldb_r9l_x86_64, // Low 8 bits or r9 207 lldb_r10l_x86_64, // Low 8 bits or r10 208 lldb_r11l_x86_64, // Low 8 bits or r11 209 lldb_r12l_x86_64, // Low 8 bits or r12 210 lldb_r13l_x86_64, // Low 8 bits or r13 211 lldb_r14l_x86_64, // Low 8 bits or r14 212 lldb_r15l_x86_64, // Low 8 bits or r15 213 LLDB_INVALID_REGNUM // register sets need to end with this flag 214 }; 215 static_assert((sizeof(g_gpr_regnums_x86_64) / sizeof(g_gpr_regnums_x86_64[0])) - 1 == k_num_gpr_registers_x86_64, 216 "g_gpr_regnums_x86_64 has wrong number of register infos"); 217 218 // x86 64-bit floating point registers. 219 static const uint32_t 220 g_fpu_regnums_x86_64[] = 221 { 222 lldb_fctrl_x86_64, 223 lldb_fstat_x86_64, 224 lldb_ftag_x86_64, 225 lldb_fop_x86_64, 226 lldb_fiseg_x86_64, 227 lldb_fioff_x86_64, 228 lldb_foseg_x86_64, 229 lldb_fooff_x86_64, 230 lldb_mxcsr_x86_64, 231 lldb_mxcsrmask_x86_64, 232 lldb_st0_x86_64, 233 lldb_st1_x86_64, 234 lldb_st2_x86_64, 235 lldb_st3_x86_64, 236 lldb_st4_x86_64, 237 lldb_st5_x86_64, 238 lldb_st6_x86_64, 239 lldb_st7_x86_64, 240 lldb_mm0_x86_64, 241 lldb_mm1_x86_64, 242 lldb_mm2_x86_64, 243 lldb_mm3_x86_64, 244 lldb_mm4_x86_64, 245 lldb_mm5_x86_64, 246 lldb_mm6_x86_64, 247 lldb_mm7_x86_64, 248 lldb_xmm0_x86_64, 249 lldb_xmm1_x86_64, 250 lldb_xmm2_x86_64, 251 lldb_xmm3_x86_64, 252 lldb_xmm4_x86_64, 253 lldb_xmm5_x86_64, 254 lldb_xmm6_x86_64, 255 lldb_xmm7_x86_64, 256 lldb_xmm8_x86_64, 257 lldb_xmm9_x86_64, 258 lldb_xmm10_x86_64, 259 lldb_xmm11_x86_64, 260 lldb_xmm12_x86_64, 261 lldb_xmm13_x86_64, 262 lldb_xmm14_x86_64, 263 lldb_xmm15_x86_64, 264 LLDB_INVALID_REGNUM // register sets need to end with this flag 265 }; 266 static_assert((sizeof(g_fpu_regnums_x86_64) / sizeof(g_fpu_regnums_x86_64[0])) - 1 == k_num_fpr_registers_x86_64, 267 "g_fpu_regnums_x86_64 has wrong number of register infos"); 268 269 // x86 64-bit AVX registers. 270 static const uint32_t 271 g_avx_regnums_x86_64[] = 272 { 273 lldb_ymm0_x86_64, 274 lldb_ymm1_x86_64, 275 lldb_ymm2_x86_64, 276 lldb_ymm3_x86_64, 277 lldb_ymm4_x86_64, 278 lldb_ymm5_x86_64, 279 lldb_ymm6_x86_64, 280 lldb_ymm7_x86_64, 281 lldb_ymm8_x86_64, 282 lldb_ymm9_x86_64, 283 lldb_ymm10_x86_64, 284 lldb_ymm11_x86_64, 285 lldb_ymm12_x86_64, 286 lldb_ymm13_x86_64, 287 lldb_ymm14_x86_64, 288 lldb_ymm15_x86_64, 289 LLDB_INVALID_REGNUM // register sets need to end with this flag 290 }; 291 static_assert((sizeof(g_avx_regnums_x86_64) / sizeof(g_avx_regnums_x86_64[0])) - 1 == k_num_avx_registers_x86_64, 292 "g_avx_regnums_x86_64 has wrong number of register infos"); 293 294 // Number of register sets provided by this context. 295 enum 296 { 297 k_num_extended_register_sets = 1, 298 k_num_register_sets = 3 299 }; 300 301 // Register sets for x86 32-bit. 302 static const RegisterSet 303 g_reg_sets_i386[k_num_register_sets] = 304 { 305 { "General Purpose Registers", "gpr", k_num_gpr_registers_i386, g_gpr_regnums_i386 }, 306 { "Floating Point Registers", "fpu", k_num_fpr_registers_i386, g_fpu_regnums_i386 }, 307 { "Advanced Vector Extensions", "avx", k_num_avx_registers_i386, g_avx_regnums_i386 } 308 }; 309 310 // Register sets for x86 64-bit. 311 static const RegisterSet 312 g_reg_sets_x86_64[k_num_register_sets] = 313 { 314 { "General Purpose Registers", "gpr", k_num_gpr_registers_x86_64, g_gpr_regnums_x86_64 }, 315 { "Floating Point Registers", "fpu", k_num_fpr_registers_x86_64, g_fpu_regnums_x86_64 }, 316 { "Advanced Vector Extensions", "avx", k_num_avx_registers_x86_64, g_avx_regnums_x86_64 } 317 }; 318 } 319 320 #define REG_CONTEXT_SIZE (GetRegisterInfoInterface ().GetGPRSize () + sizeof(FPR)) 321 322 // ---------------------------------------------------------------------------- 323 // Required ptrace defines. 324 // ---------------------------------------------------------------------------- 325 326 // Support ptrace extensions even when compiled without required kernel support 327 #ifndef NT_X86_XSTATE 328 #define NT_X86_XSTATE 0x202 329 #endif 330 331 NativeRegisterContextLinux* 332 NativeRegisterContextLinux::CreateHostNativeRegisterContextLinux(const ArchSpec& target_arch, 333 NativeThreadProtocol &native_thread, 334 uint32_t concrete_frame_idx) 335 { 336 return new NativeRegisterContextLinux_x86_64(target_arch, native_thread, concrete_frame_idx); 337 } 338 339 // ---------------------------------------------------------------------------- 340 // NativeRegisterContextLinux_x86_64 members. 341 // ---------------------------------------------------------------------------- 342 343 static RegisterInfoInterface* 344 CreateRegisterInfoInterface(const ArchSpec& target_arch) 345 { 346 if (HostInfo::GetArchitecture().GetAddressByteSize() == 4) 347 { 348 // 32-bit hosts run with a RegisterContextLinux_i386 context. 349 return new RegisterContextLinux_i386(target_arch); 350 } 351 else 352 { 353 assert((HostInfo::GetArchitecture().GetAddressByteSize() == 8) && 354 "Register setting path assumes this is a 64-bit host"); 355 // X86_64 hosts know how to work with 64-bit and 32-bit EXEs using the x86_64 register context. 356 return new RegisterContextLinux_x86_64 (target_arch); 357 } 358 } 359 360 NativeRegisterContextLinux_x86_64::NativeRegisterContextLinux_x86_64 (const ArchSpec& target_arch, 361 NativeThreadProtocol &native_thread, 362 uint32_t concrete_frame_idx) : 363 NativeRegisterContextLinux (native_thread, concrete_frame_idx, CreateRegisterInfoInterface(target_arch)), 364 m_fpr_type (eFPRTypeNotValid), 365 m_fpr (), 366 m_iovec (), 367 m_ymm_set (), 368 m_reg_info (), 369 m_gpr_x86_64 () 370 { 371 // Set up data about ranges of valid registers. 372 switch (target_arch.GetMachine ()) 373 { 374 case llvm::Triple::x86: 375 m_reg_info.num_registers = k_num_registers_i386; 376 m_reg_info.num_gpr_registers = k_num_gpr_registers_i386; 377 m_reg_info.num_fpr_registers = k_num_fpr_registers_i386; 378 m_reg_info.num_avx_registers = k_num_avx_registers_i386; 379 m_reg_info.last_gpr = k_last_gpr_i386; 380 m_reg_info.first_fpr = k_first_fpr_i386; 381 m_reg_info.last_fpr = k_last_fpr_i386; 382 m_reg_info.first_st = lldb_st0_i386; 383 m_reg_info.last_st = lldb_st7_i386; 384 m_reg_info.first_mm = lldb_mm0_i386; 385 m_reg_info.last_mm = lldb_mm7_i386; 386 m_reg_info.first_xmm = lldb_xmm0_i386; 387 m_reg_info.last_xmm = lldb_xmm7_i386; 388 m_reg_info.first_ymm = lldb_ymm0_i386; 389 m_reg_info.last_ymm = lldb_ymm7_i386; 390 m_reg_info.first_dr = lldb_dr0_i386; 391 m_reg_info.gpr_flags = lldb_eflags_i386; 392 break; 393 case llvm::Triple::x86_64: 394 m_reg_info.num_registers = k_num_registers_x86_64; 395 m_reg_info.num_gpr_registers = k_num_gpr_registers_x86_64; 396 m_reg_info.num_fpr_registers = k_num_fpr_registers_x86_64; 397 m_reg_info.num_avx_registers = k_num_avx_registers_x86_64; 398 m_reg_info.last_gpr = k_last_gpr_x86_64; 399 m_reg_info.first_fpr = k_first_fpr_x86_64; 400 m_reg_info.last_fpr = k_last_fpr_x86_64; 401 m_reg_info.first_st = lldb_st0_x86_64; 402 m_reg_info.last_st = lldb_st7_x86_64; 403 m_reg_info.first_mm = lldb_mm0_x86_64; 404 m_reg_info.last_mm = lldb_mm7_x86_64; 405 m_reg_info.first_xmm = lldb_xmm0_x86_64; 406 m_reg_info.last_xmm = lldb_xmm15_x86_64; 407 m_reg_info.first_ymm = lldb_ymm0_x86_64; 408 m_reg_info.last_ymm = lldb_ymm15_x86_64; 409 m_reg_info.first_dr = lldb_dr0_x86_64; 410 m_reg_info.gpr_flags = lldb_rflags_x86_64; 411 break; 412 default: 413 assert(false && "Unhandled target architecture."); 414 break; 415 } 416 417 // Initialize m_iovec to point to the buffer and buffer size 418 // using the conventions of Berkeley style UIO structures, as required 419 // by PTRACE extensions. 420 m_iovec.iov_base = &m_fpr.xstate.xsave; 421 m_iovec.iov_len = sizeof(m_fpr.xstate.xsave); 422 423 // Clear out the FPR state. 424 ::memset(&m_fpr, 0, sizeof(FPR)); 425 } 426 427 // CONSIDER after local and llgs debugging are merged, register set support can 428 // be moved into a base x86-64 class with IsRegisterSetAvailable made virtual. 429 uint32_t 430 NativeRegisterContextLinux_x86_64::GetRegisterSetCount () const 431 { 432 uint32_t sets = 0; 433 for (uint32_t set_index = 0; set_index < k_num_register_sets; ++set_index) 434 { 435 if (IsRegisterSetAvailable (set_index)) 436 ++sets; 437 } 438 439 return sets; 440 } 441 442 uint32_t 443 NativeRegisterContextLinux_x86_64::GetUserRegisterCount() const 444 { 445 uint32_t count = 0; 446 for (uint32_t set_index = 0; set_index < k_num_register_sets; ++set_index) 447 { 448 const RegisterSet* set = GetRegisterSet(set_index); 449 if (set) 450 count += set->num_registers; 451 } 452 return count; 453 } 454 455 const RegisterSet * 456 NativeRegisterContextLinux_x86_64::GetRegisterSet (uint32_t set_index) const 457 { 458 if (!IsRegisterSetAvailable (set_index)) 459 return nullptr; 460 461 switch (GetRegisterInfoInterface ().GetTargetArchitecture ().GetMachine ()) 462 { 463 case llvm::Triple::x86: 464 return &g_reg_sets_i386[set_index]; 465 case llvm::Triple::x86_64: 466 return &g_reg_sets_x86_64[set_index]; 467 default: 468 assert (false && "Unhandled target architecture."); 469 return nullptr; 470 } 471 472 return nullptr; 473 } 474 475 Error 476 NativeRegisterContextLinux_x86_64::ReadRegister (const RegisterInfo *reg_info, RegisterValue ®_value) 477 { 478 Error error; 479 480 if (!reg_info) 481 { 482 error.SetErrorString ("reg_info NULL"); 483 return error; 484 } 485 486 const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB]; 487 if (reg == LLDB_INVALID_REGNUM) 488 { 489 // This is likely an internal register for lldb use only and should not be directly queried. 490 error.SetErrorStringWithFormat ("register \"%s\" is an internal-only lldb register, cannot read directly", reg_info->name); 491 return error; 492 } 493 494 if (IsFPR(reg, GetFPRType())) 495 { 496 error = ReadFPR(); 497 if (error.Fail()) 498 return error; 499 } 500 else 501 { 502 uint32_t full_reg = reg; 503 bool is_subreg = reg_info->invalidate_regs && (reg_info->invalidate_regs[0] != LLDB_INVALID_REGNUM); 504 505 if (is_subreg) 506 { 507 // Read the full aligned 64-bit register. 508 full_reg = reg_info->invalidate_regs[0]; 509 } 510 511 error = ReadRegisterRaw(full_reg, reg_value); 512 513 if (error.Success ()) 514 { 515 // If our read was not aligned (for ah,bh,ch,dh), shift our returned value one byte to the right. 516 if (is_subreg && (reg_info->byte_offset & 0x1)) 517 reg_value.SetUInt64(reg_value.GetAsUInt64() >> 8); 518 519 // If our return byte size was greater than the return value reg size, then 520 // use the type specified by reg_info rather than the uint64_t default 521 if (reg_value.GetByteSize() > reg_info->byte_size) 522 reg_value.SetType(reg_info); 523 } 524 return error; 525 } 526 527 if (reg_info->encoding == lldb::eEncodingVector) 528 { 529 lldb::ByteOrder byte_order = GetByteOrder(); 530 531 if (byte_order != lldb::eByteOrderInvalid) 532 { 533 if (reg >= m_reg_info.first_st && reg <= m_reg_info.last_st) 534 reg_value.SetBytes(m_fpr.xstate.fxsave.stmm[reg - m_reg_info.first_st].bytes, reg_info->byte_size, byte_order); 535 if (reg >= m_reg_info.first_mm && reg <= m_reg_info.last_mm) 536 reg_value.SetBytes(m_fpr.xstate.fxsave.stmm[reg - m_reg_info.first_mm].bytes, reg_info->byte_size, byte_order); 537 if (reg >= m_reg_info.first_xmm && reg <= m_reg_info.last_xmm) 538 reg_value.SetBytes(m_fpr.xstate.fxsave.xmm[reg - m_reg_info.first_xmm].bytes, reg_info->byte_size, byte_order); 539 if (reg >= m_reg_info.first_ymm && reg <= m_reg_info.last_ymm) 540 { 541 // Concatenate ymm using the register halves in xmm.bytes and ymmh.bytes 542 if (GetFPRType() == eFPRTypeXSAVE && CopyXSTATEtoYMM(reg, byte_order)) 543 reg_value.SetBytes(m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes, reg_info->byte_size, byte_order); 544 else 545 { 546 error.SetErrorString ("failed to copy ymm register value"); 547 return error; 548 } 549 } 550 551 if (reg_value.GetType() != RegisterValue::eTypeBytes) 552 error.SetErrorString ("write failed - type was expected to be RegisterValue::eTypeBytes"); 553 554 return error; 555 } 556 557 error.SetErrorString ("byte order is invalid"); 558 return error; 559 } 560 561 // Get pointer to m_fpr.xstate.fxsave variable and set the data from it. 562 assert (reg_info->byte_offset < sizeof(m_fpr)); 563 uint8_t *src = (uint8_t *)&m_fpr + reg_info->byte_offset; 564 switch (reg_info->byte_size) 565 { 566 case 2: 567 reg_value.SetUInt16(*(uint16_t *)src); 568 break; 569 case 4: 570 reg_value.SetUInt32(*(uint32_t *)src); 571 break; 572 case 8: 573 reg_value.SetUInt64(*(uint64_t *)src); 574 break; 575 default: 576 assert(false && "Unhandled data size."); 577 error.SetErrorStringWithFormat ("unhandled byte size: %" PRIu32, reg_info->byte_size); 578 break; 579 } 580 581 return error; 582 } 583 584 Error 585 NativeRegisterContextLinux_x86_64::WriteRegister (const RegisterInfo *reg_info, const RegisterValue ®_value) 586 { 587 assert (reg_info && "reg_info is null"); 588 589 const uint32_t reg_index = reg_info->kinds[lldb::eRegisterKindLLDB]; 590 if (reg_index == LLDB_INVALID_REGNUM) 591 return Error ("no lldb regnum for %s", reg_info && reg_info->name ? reg_info->name : "<unknown register>"); 592 593 if (IsGPR(reg_index)) 594 return WriteRegisterRaw(reg_index, reg_value); 595 596 if (IsFPR(reg_index, GetFPRType())) 597 { 598 if (reg_info->encoding == lldb::eEncodingVector) 599 { 600 if (reg_index >= m_reg_info.first_st && reg_index <= m_reg_info.last_st) 601 ::memcpy (m_fpr.xstate.fxsave.stmm[reg_index - m_reg_info.first_st].bytes, reg_value.GetBytes(), reg_value.GetByteSize()); 602 603 if (reg_index >= m_reg_info.first_mm && reg_index <= m_reg_info.last_mm) 604 ::memcpy (m_fpr.xstate.fxsave.stmm[reg_index - m_reg_info.first_mm].bytes, reg_value.GetBytes(), reg_value.GetByteSize()); 605 606 if (reg_index >= m_reg_info.first_xmm && reg_index <= m_reg_info.last_xmm) 607 ::memcpy (m_fpr.xstate.fxsave.xmm[reg_index - m_reg_info.first_xmm].bytes, reg_value.GetBytes(), reg_value.GetByteSize()); 608 609 if (reg_index >= m_reg_info.first_ymm && reg_index <= m_reg_info.last_ymm) 610 { 611 if (GetFPRType() != eFPRTypeXSAVE) 612 return Error ("target processor does not support AVX"); 613 614 // Store ymm register content, and split into the register halves in xmm.bytes and ymmh.bytes 615 ::memcpy (m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes, reg_value.GetBytes(), reg_value.GetByteSize()); 616 if (!CopyYMMtoXSTATE(reg_index, GetByteOrder())) 617 return Error ("CopyYMMtoXSTATE() failed"); 618 } 619 } 620 else 621 { 622 // Get pointer to m_fpr.xstate.fxsave variable and set the data to it. 623 assert (reg_info->byte_offset < sizeof(m_fpr)); 624 uint8_t *dst = (uint8_t *)&m_fpr + reg_info->byte_offset; 625 switch (reg_info->byte_size) 626 { 627 case 2: 628 *(uint16_t *)dst = reg_value.GetAsUInt16(); 629 break; 630 case 4: 631 *(uint32_t *)dst = reg_value.GetAsUInt32(); 632 break; 633 case 8: 634 *(uint64_t *)dst = reg_value.GetAsUInt64(); 635 break; 636 default: 637 assert(false && "Unhandled data size."); 638 return Error ("unhandled register data size %" PRIu32, reg_info->byte_size); 639 } 640 } 641 642 Error error = WriteFPR(); 643 if (error.Fail()) 644 return error; 645 646 if (IsAVX(reg_index)) 647 { 648 if (!CopyYMMtoXSTATE(reg_index, GetByteOrder())) 649 return Error ("CopyYMMtoXSTATE() failed"); 650 } 651 return Error (); 652 } 653 return Error ("failed - register wasn't recognized to be a GPR or an FPR, write strategy unknown"); 654 } 655 656 Error 657 NativeRegisterContextLinux_x86_64::ReadAllRegisterValues (lldb::DataBufferSP &data_sp) 658 { 659 Error error; 660 661 data_sp.reset (new DataBufferHeap (REG_CONTEXT_SIZE, 0)); 662 if (!data_sp) 663 { 664 error.SetErrorStringWithFormat ("failed to allocate DataBufferHeap instance of size %" PRIu64, REG_CONTEXT_SIZE); 665 return error; 666 } 667 668 error = ReadGPR(); 669 if (error.Fail()) 670 return error; 671 672 error = ReadFPR(); 673 if (error.Fail()) 674 return error; 675 676 uint8_t *dst = data_sp->GetBytes (); 677 if (dst == nullptr) 678 { 679 error.SetErrorStringWithFormat ("DataBufferHeap instance of size %" PRIu64 " returned a null pointer", REG_CONTEXT_SIZE); 680 return error; 681 } 682 683 ::memcpy (dst, &m_gpr_x86_64, GetRegisterInfoInterface ().GetGPRSize ()); 684 dst += GetRegisterInfoInterface ().GetGPRSize (); 685 if (GetFPRType () == eFPRTypeFXSAVE) 686 ::memcpy (dst, &m_fpr.xstate.fxsave, sizeof(m_fpr.xstate.fxsave)); 687 else if (GetFPRType () == eFPRTypeXSAVE) 688 { 689 lldb::ByteOrder byte_order = GetByteOrder (); 690 691 // Assemble the YMM register content from the register halves. 692 for (uint32_t reg = m_reg_info.first_ymm; reg <= m_reg_info.last_ymm; ++reg) 693 { 694 if (!CopyXSTATEtoYMM (reg, byte_order)) 695 { 696 error.SetErrorStringWithFormat ("NativeRegisterContextLinux_x86_64::%s CopyXSTATEtoYMM() failed for reg num %" PRIu32, __FUNCTION__, reg); 697 return error; 698 } 699 } 700 701 // Copy the extended register state including the assembled ymm registers. 702 ::memcpy (dst, &m_fpr, sizeof (m_fpr)); 703 } 704 else 705 { 706 assert (false && "how do we save the floating point registers?"); 707 error.SetErrorString ("unsure how to save the floating point registers"); 708 } 709 710 return error; 711 } 712 713 Error 714 NativeRegisterContextLinux_x86_64::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp) 715 { 716 Error error; 717 718 if (!data_sp) 719 { 720 error.SetErrorStringWithFormat ("NativeRegisterContextLinux_x86_64::%s invalid data_sp provided", __FUNCTION__); 721 return error; 722 } 723 724 if (data_sp->GetByteSize () != REG_CONTEXT_SIZE) 725 { 726 error.SetErrorStringWithFormat ("NativeRegisterContextLinux_x86_64::%s data_sp contained mismatched data size, expected %" PRIu64 ", actual %" PRIu64, __FUNCTION__, REG_CONTEXT_SIZE, data_sp->GetByteSize ()); 727 return error; 728 } 729 730 731 uint8_t *src = data_sp->GetBytes (); 732 if (src == nullptr) 733 { 734 error.SetErrorStringWithFormat ("NativeRegisterContextLinux_x86_64::%s DataBuffer::GetBytes() returned a null pointer", __FUNCTION__); 735 return error; 736 } 737 ::memcpy (&m_gpr_x86_64, src, GetRegisterInfoInterface ().GetGPRSize ()); 738 739 error = WriteGPR(); 740 if (error.Fail()) 741 return error; 742 743 src += GetRegisterInfoInterface ().GetGPRSize (); 744 if (GetFPRType () == eFPRTypeFXSAVE) 745 ::memcpy (&m_fpr.xstate.fxsave, src, sizeof(m_fpr.xstate.fxsave)); 746 else if (GetFPRType () == eFPRTypeXSAVE) 747 ::memcpy (&m_fpr.xstate.xsave, src, sizeof(m_fpr.xstate.xsave)); 748 749 error = WriteFPR(); 750 if (error.Fail()) 751 return error; 752 753 if (GetFPRType() == eFPRTypeXSAVE) 754 { 755 lldb::ByteOrder byte_order = GetByteOrder(); 756 757 // Parse the YMM register content from the register halves. 758 for (uint32_t reg = m_reg_info.first_ymm; reg <= m_reg_info.last_ymm; ++reg) 759 { 760 if (!CopyYMMtoXSTATE (reg, byte_order)) 761 { 762 error.SetErrorStringWithFormat ("NativeRegisterContextLinux_x86_64::%s CopyYMMtoXSTATE() failed for reg num %" PRIu32, __FUNCTION__, reg); 763 return error; 764 } 765 } 766 } 767 768 return error; 769 } 770 771 bool 772 NativeRegisterContextLinux_x86_64::IsRegisterSetAvailable (uint32_t set_index) const 773 { 774 // Note: Extended register sets are assumed to be at the end of g_reg_sets. 775 uint32_t num_sets = k_num_register_sets - k_num_extended_register_sets; 776 777 if (GetFPRType () == eFPRTypeXSAVE) 778 { 779 // AVX is the first extended register set. 780 ++num_sets; 781 } 782 return (set_index < num_sets); 783 } 784 785 bool 786 NativeRegisterContextLinux_x86_64::IsGPR(uint32_t reg_index) const 787 { 788 // GPRs come first. 789 return reg_index <= m_reg_info.last_gpr; 790 } 791 792 NativeRegisterContextLinux_x86_64::FPRType 793 NativeRegisterContextLinux_x86_64::GetFPRType () const 794 { 795 if (m_fpr_type == eFPRTypeNotValid) 796 { 797 // TODO: Use assembly to call cpuid on the inferior and query ebx or ecx. 798 799 // Try and see if AVX register retrieval works. 800 m_fpr_type = eFPRTypeXSAVE; 801 if (const_cast<NativeRegisterContextLinux_x86_64*>(this)->ReadFPR().Fail()) 802 { 803 // Fall back to general floating point with no AVX support. 804 m_fpr_type = eFPRTypeFXSAVE; 805 } 806 } 807 808 return m_fpr_type; 809 } 810 811 bool 812 NativeRegisterContextLinux_x86_64::IsFPR(uint32_t reg_index) const 813 { 814 return (m_reg_info.first_fpr <= reg_index && reg_index <= m_reg_info.last_fpr); 815 } 816 817 bool 818 NativeRegisterContextLinux_x86_64::IsFPR(uint32_t reg_index, FPRType fpr_type) const 819 { 820 bool generic_fpr = IsFPR(reg_index); 821 822 if (fpr_type == eFPRTypeXSAVE) 823 return generic_fpr || IsAVX(reg_index); 824 return generic_fpr; 825 } 826 827 Error 828 NativeRegisterContextLinux_x86_64::WriteFPR() 829 { 830 const FPRType fpr_type = GetFPRType (); 831 switch (fpr_type) 832 { 833 case FPRType::eFPRTypeFXSAVE: 834 return NativeRegisterContextLinux::WriteFPR(); 835 case FPRType::eFPRTypeXSAVE: 836 return WriteRegisterSet(&m_iovec, sizeof(m_fpr.xstate.xsave), NT_X86_XSTATE); 837 default: 838 return Error("Unrecognized FPR type"); 839 } 840 } 841 842 bool 843 NativeRegisterContextLinux_x86_64::IsAVX(uint32_t reg_index) const 844 { 845 return (m_reg_info.first_ymm <= reg_index && reg_index <= m_reg_info.last_ymm); 846 } 847 848 bool 849 NativeRegisterContextLinux_x86_64::CopyXSTATEtoYMM (uint32_t reg_index, lldb::ByteOrder byte_order) 850 { 851 if (!IsAVX (reg_index)) 852 return false; 853 854 if (byte_order == lldb::eByteOrderLittle) 855 { 856 ::memcpy (m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes, 857 m_fpr.xstate.fxsave.xmm[reg_index - m_reg_info.first_ymm].bytes, 858 sizeof (XMMReg)); 859 ::memcpy (m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes + sizeof (XMMReg), 860 m_fpr.xstate.xsave.ymmh[reg_index - m_reg_info.first_ymm].bytes, 861 sizeof (YMMHReg)); 862 return true; 863 } 864 865 if (byte_order == lldb::eByteOrderBig) 866 { 867 ::memcpy(m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes + sizeof (XMMReg), 868 m_fpr.xstate.fxsave.xmm[reg_index - m_reg_info.first_ymm].bytes, 869 sizeof (XMMReg)); 870 ::memcpy(m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes, 871 m_fpr.xstate.xsave.ymmh[reg_index - m_reg_info.first_ymm].bytes, 872 sizeof (YMMHReg)); 873 return true; 874 } 875 return false; // unsupported or invalid byte order 876 877 } 878 879 bool 880 NativeRegisterContextLinux_x86_64::CopyYMMtoXSTATE(uint32_t reg, lldb::ByteOrder byte_order) 881 { 882 if (!IsAVX(reg)) 883 return false; 884 885 if (byte_order == lldb::eByteOrderLittle) 886 { 887 ::memcpy(m_fpr.xstate.fxsave.xmm[reg - m_reg_info.first_ymm].bytes, 888 m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes, 889 sizeof(XMMReg)); 890 ::memcpy(m_fpr.xstate.xsave.ymmh[reg - m_reg_info.first_ymm].bytes, 891 m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes + sizeof(XMMReg), 892 sizeof(YMMHReg)); 893 return true; 894 } 895 896 if (byte_order == lldb::eByteOrderBig) 897 { 898 ::memcpy(m_fpr.xstate.fxsave.xmm[reg - m_reg_info.first_ymm].bytes, 899 m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes + sizeof(XMMReg), 900 sizeof(XMMReg)); 901 ::memcpy(m_fpr.xstate.xsave.ymmh[reg - m_reg_info.first_ymm].bytes, 902 m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes, 903 sizeof(YMMHReg)); 904 return true; 905 } 906 return false; // unsupported or invalid byte order 907 } 908 909 void* 910 NativeRegisterContextLinux_x86_64::GetFPRBuffer() 911 { 912 const FPRType fpr_type = GetFPRType (); 913 switch (fpr_type) 914 { 915 case FPRType::eFPRTypeFXSAVE: 916 return &m_fpr.xstate.fxsave; 917 case FPRType::eFPRTypeXSAVE: 918 return &m_iovec; 919 default: 920 return nullptr; 921 } 922 } 923 924 size_t 925 NativeRegisterContextLinux_x86_64::GetFPRSize() 926 { 927 const FPRType fpr_type = GetFPRType (); 928 switch (fpr_type) 929 { 930 case FPRType::eFPRTypeFXSAVE: 931 return sizeof(m_fpr.xstate.fxsave); 932 case FPRType::eFPRTypeXSAVE: 933 return sizeof(m_iovec); 934 default: 935 return 0; 936 } 937 } 938 939 Error 940 NativeRegisterContextLinux_x86_64::ReadFPR () 941 { 942 const FPRType fpr_type = GetFPRType (); 943 switch (fpr_type) 944 { 945 case FPRType::eFPRTypeFXSAVE: 946 return NativeRegisterContextLinux::ReadFPR(); 947 case FPRType::eFPRTypeXSAVE: 948 return ReadRegisterSet(&m_iovec, sizeof(m_fpr.xstate.xsave), NT_X86_XSTATE); 949 default: 950 return Error("Unrecognized FPR type"); 951 } 952 } 953 954 Error 955 NativeRegisterContextLinux_x86_64::IsWatchpointHit(uint32_t wp_index, bool &is_hit) 956 { 957 if (wp_index >= NumSupportedHardwareWatchpoints()) 958 return Error("Watchpoint index out of range"); 959 960 RegisterValue reg_value; 961 Error error = ReadRegisterRaw(m_reg_info.first_dr + 6, reg_value); 962 if (error.Fail()) 963 { 964 is_hit = false; 965 return error; 966 } 967 968 uint64_t status_bits = reg_value.GetAsUInt64(); 969 970 is_hit = status_bits & (1 << wp_index); 971 972 return error; 973 } 974 975 Error 976 NativeRegisterContextLinux_x86_64::GetWatchpointHitIndex(uint32_t &wp_index, lldb::addr_t trap_addr) { 977 uint32_t num_hw_wps = NumSupportedHardwareWatchpoints(); 978 for (wp_index = 0; wp_index < num_hw_wps; ++wp_index) 979 { 980 bool is_hit; 981 Error error = IsWatchpointHit(wp_index, is_hit); 982 if (error.Fail()) { 983 wp_index = LLDB_INVALID_INDEX32; 984 return error; 985 } else if (is_hit) { 986 return error; 987 } 988 } 989 wp_index = LLDB_INVALID_INDEX32; 990 return Error(); 991 } 992 993 Error 994 NativeRegisterContextLinux_x86_64::IsWatchpointVacant(uint32_t wp_index, bool &is_vacant) 995 { 996 if (wp_index >= NumSupportedHardwareWatchpoints()) 997 return Error ("Watchpoint index out of range"); 998 999 RegisterValue reg_value; 1000 Error error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value); 1001 if (error.Fail()) 1002 { 1003 is_vacant = false; 1004 return error; 1005 } 1006 1007 uint64_t control_bits = reg_value.GetAsUInt64(); 1008 1009 is_vacant = !(control_bits & (1 << (2 * wp_index))); 1010 1011 return error; 1012 } 1013 1014 Error 1015 NativeRegisterContextLinux_x86_64::SetHardwareWatchpointWithIndex( 1016 lldb::addr_t addr, size_t size, uint32_t watch_flags, uint32_t wp_index) { 1017 1018 if (wp_index >= NumSupportedHardwareWatchpoints()) 1019 return Error ("Watchpoint index out of range"); 1020 1021 if (watch_flags != 0x1 && watch_flags != 0x3) 1022 return Error ("Invalid read/write bits for watchpoint"); 1023 1024 if (size != 1 && size != 2 && size != 4 && size != 8) 1025 return Error ("Invalid size for watchpoint"); 1026 1027 bool is_vacant; 1028 Error error = IsWatchpointVacant (wp_index, is_vacant); 1029 if (error.Fail()) return error; 1030 if (!is_vacant) return Error("Watchpoint index not vacant"); 1031 1032 RegisterValue reg_value; 1033 error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value); 1034 if (error.Fail()) return error; 1035 1036 // for watchpoints 0, 1, 2, or 3, respectively, 1037 // set bits 1, 3, 5, or 7 1038 uint64_t enable_bit = 1 << (2 * wp_index); 1039 1040 // set bits 16-17, 20-21, 24-25, or 28-29 1041 // with 0b01 for write, and 0b11 for read/write 1042 uint64_t rw_bits = watch_flags << (16 + 4 * wp_index); 1043 1044 // set bits 18-19, 22-23, 26-27, or 30-31 1045 // with 0b00, 0b01, 0b10, or 0b11 1046 // for 1, 2, 8 (if supported), or 4 bytes, respectively 1047 uint64_t size_bits = (size == 8 ? 0x2 : size - 1) << (18 + 4 * wp_index); 1048 1049 uint64_t bit_mask = (0x3 << (2 * wp_index)) | (0xF << (16 + 4 * wp_index)); 1050 1051 uint64_t control_bits = reg_value.GetAsUInt64() & ~bit_mask; 1052 1053 control_bits |= enable_bit | rw_bits | size_bits; 1054 1055 error = WriteRegisterRaw(m_reg_info.first_dr + wp_index, RegisterValue(addr)); 1056 if (error.Fail()) return error; 1057 1058 error = WriteRegisterRaw(m_reg_info.first_dr + 7, RegisterValue(control_bits)); 1059 if (error.Fail()) return error; 1060 1061 error.Clear(); 1062 return error; 1063 } 1064 1065 bool 1066 NativeRegisterContextLinux_x86_64::ClearHardwareWatchpoint(uint32_t wp_index) 1067 { 1068 if (wp_index >= NumSupportedHardwareWatchpoints()) 1069 return false; 1070 1071 RegisterValue reg_value; 1072 1073 // for watchpoints 0, 1, 2, or 3, respectively, 1074 // clear bits 0, 1, 2, or 3 of the debug status register (DR6) 1075 Error error = ReadRegisterRaw(m_reg_info.first_dr + 6, reg_value); 1076 if (error.Fail()) return false; 1077 uint64_t bit_mask = 1 << wp_index; 1078 uint64_t status_bits = reg_value.GetAsUInt64() & ~bit_mask; 1079 error = WriteRegisterRaw(m_reg_info.first_dr + 6, RegisterValue(status_bits)); 1080 if (error.Fail()) return false; 1081 1082 // for watchpoints 0, 1, 2, or 3, respectively, 1083 // clear bits {0-1,16-19}, {2-3,20-23}, {4-5,24-27}, or {6-7,28-31} 1084 // of the debug control register (DR7) 1085 error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value); 1086 if (error.Fail()) return false; 1087 bit_mask = (0x3 << (2 * wp_index)) | (0xF << (16 + 4 * wp_index)); 1088 uint64_t control_bits = reg_value.GetAsUInt64() & ~bit_mask; 1089 return WriteRegisterRaw(m_reg_info.first_dr + 7, RegisterValue(control_bits)).Success(); 1090 } 1091 1092 Error 1093 NativeRegisterContextLinux_x86_64::ClearAllHardwareWatchpoints() 1094 { 1095 RegisterValue reg_value; 1096 1097 // clear bits {0-4} of the debug status register (DR6) 1098 Error error = ReadRegisterRaw(m_reg_info.first_dr + 6, reg_value); 1099 if (error.Fail()) return error; 1100 uint64_t bit_mask = 0xF; 1101 uint64_t status_bits = reg_value.GetAsUInt64() & ~bit_mask; 1102 error = WriteRegisterRaw(m_reg_info.first_dr + 6, RegisterValue(status_bits)); 1103 if (error.Fail()) return error; 1104 1105 // clear bits {0-7,16-31} of the debug control register (DR7) 1106 error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value); 1107 if (error.Fail()) return error; 1108 bit_mask = 0xFF | (0xFFFF << 16); 1109 uint64_t control_bits = reg_value.GetAsUInt64() & ~bit_mask; 1110 return WriteRegisterRaw(m_reg_info.first_dr + 7, RegisterValue(control_bits)); 1111 } 1112 1113 uint32_t 1114 NativeRegisterContextLinux_x86_64::SetHardwareWatchpoint( 1115 lldb::addr_t addr, size_t size, uint32_t watch_flags) 1116 { 1117 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_WATCHPOINTS)); 1118 const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints(); 1119 for (uint32_t wp_index = 0; wp_index < num_hw_watchpoints; ++wp_index) 1120 { 1121 bool is_vacant; 1122 Error error = IsWatchpointVacant(wp_index, is_vacant); 1123 if (is_vacant) 1124 { 1125 error = SetHardwareWatchpointWithIndex(addr, size, watch_flags, wp_index); 1126 if (error.Success()) 1127 return wp_index; 1128 } 1129 if (error.Fail() && log) 1130 { 1131 log->Printf("NativeRegisterContextLinux_x86_64::%s Error: %s", 1132 __FUNCTION__, error.AsCString()); 1133 } 1134 } 1135 return LLDB_INVALID_INDEX32; 1136 } 1137 1138 lldb::addr_t 1139 NativeRegisterContextLinux_x86_64::GetWatchpointAddress(uint32_t wp_index) 1140 { 1141 if (wp_index >= NumSupportedHardwareWatchpoints()) 1142 return LLDB_INVALID_ADDRESS; 1143 RegisterValue reg_value; 1144 if (ReadRegisterRaw(m_reg_info.first_dr + wp_index, reg_value).Fail()) 1145 return LLDB_INVALID_ADDRESS; 1146 return reg_value.GetAsUInt64(); 1147 } 1148 1149 uint32_t 1150 NativeRegisterContextLinux_x86_64::NumSupportedHardwareWatchpoints () 1151 { 1152 // Available debug address registers: dr0, dr1, dr2, dr3 1153 return 4; 1154 } 1155 1156 #endif // defined(__i386__) || defined(__x86_64__) 1157