1 //===-- NativeRegisterContextLinux_x86_64.cpp ---------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #if defined(__i386__) || defined(__x86_64__) 11 12 #include "NativeRegisterContextLinux_x86_64.h" 13 14 #include "lldb/Core/RegisterValue.h" 15 #include "lldb/Host/HostInfo.h" 16 #include "lldb/Utility/DataBufferHeap.h" 17 #include "lldb/Utility/Log.h" 18 #include "lldb/Utility/Status.h" 19 20 #include "Plugins/Process/Utility/RegisterContextLinux_i386.h" 21 #include "Plugins/Process/Utility/RegisterContextLinux_x86_64.h" 22 23 #include <linux/elf.h> 24 25 using namespace lldb_private; 26 using namespace lldb_private::process_linux; 27 28 // ---------------------------------------------------------------------------- 29 // Private namespace. 30 // ---------------------------------------------------------------------------- 31 32 namespace { 33 // x86 32-bit general purpose registers. 34 const uint32_t g_gpr_regnums_i386[] = { 35 lldb_eax_i386, lldb_ebx_i386, lldb_ecx_i386, lldb_edx_i386, 36 lldb_edi_i386, lldb_esi_i386, lldb_ebp_i386, lldb_esp_i386, 37 lldb_eip_i386, lldb_eflags_i386, lldb_cs_i386, lldb_fs_i386, 38 lldb_gs_i386, lldb_ss_i386, lldb_ds_i386, lldb_es_i386, 39 lldb_ax_i386, lldb_bx_i386, lldb_cx_i386, lldb_dx_i386, 40 lldb_di_i386, lldb_si_i386, lldb_bp_i386, lldb_sp_i386, 41 lldb_ah_i386, lldb_bh_i386, lldb_ch_i386, lldb_dh_i386, 42 lldb_al_i386, lldb_bl_i386, lldb_cl_i386, lldb_dl_i386, 43 LLDB_INVALID_REGNUM // register sets need to end with this flag 44 }; 45 static_assert((sizeof(g_gpr_regnums_i386) / sizeof(g_gpr_regnums_i386[0])) - 46 1 == 47 k_num_gpr_registers_i386, 48 "g_gpr_regnums_i386 has wrong number of register infos"); 49 50 // x86 32-bit floating point registers. 51 const uint32_t g_fpu_regnums_i386[] = { 52 lldb_fctrl_i386, lldb_fstat_i386, lldb_ftag_i386, lldb_fop_i386, 53 lldb_fiseg_i386, lldb_fioff_i386, lldb_foseg_i386, lldb_fooff_i386, 54 lldb_mxcsr_i386, lldb_mxcsrmask_i386, lldb_st0_i386, lldb_st1_i386, 55 lldb_st2_i386, lldb_st3_i386, lldb_st4_i386, lldb_st5_i386, 56 lldb_st6_i386, lldb_st7_i386, lldb_mm0_i386, lldb_mm1_i386, 57 lldb_mm2_i386, lldb_mm3_i386, lldb_mm4_i386, lldb_mm5_i386, 58 lldb_mm6_i386, lldb_mm7_i386, lldb_xmm0_i386, lldb_xmm1_i386, 59 lldb_xmm2_i386, lldb_xmm3_i386, lldb_xmm4_i386, lldb_xmm5_i386, 60 lldb_xmm6_i386, lldb_xmm7_i386, 61 LLDB_INVALID_REGNUM // register sets need to end with this flag 62 }; 63 static_assert((sizeof(g_fpu_regnums_i386) / sizeof(g_fpu_regnums_i386[0])) - 64 1 == 65 k_num_fpr_registers_i386, 66 "g_fpu_regnums_i386 has wrong number of register infos"); 67 68 // x86 32-bit AVX registers. 69 const uint32_t g_avx_regnums_i386[] = { 70 lldb_ymm0_i386, lldb_ymm1_i386, lldb_ymm2_i386, lldb_ymm3_i386, 71 lldb_ymm4_i386, lldb_ymm5_i386, lldb_ymm6_i386, lldb_ymm7_i386, 72 LLDB_INVALID_REGNUM // register sets need to end with this flag 73 }; 74 static_assert((sizeof(g_avx_regnums_i386) / sizeof(g_avx_regnums_i386[0])) - 75 1 == 76 k_num_avx_registers_i386, 77 " g_avx_regnums_i386 has wrong number of register infos"); 78 79 // x64 32-bit MPX registers. 80 static const uint32_t g_mpx_regnums_i386[] = { 81 lldb_bnd0_i386, lldb_bnd1_i386, lldb_bnd2_i386, lldb_bnd3_i386, 82 lldb_bndcfgu_i386, lldb_bndstatus_i386, 83 LLDB_INVALID_REGNUM // register sets need to end with this flag 84 }; 85 static_assert((sizeof(g_mpx_regnums_i386) / sizeof(g_mpx_regnums_i386[0])) - 86 1 == 87 k_num_mpx_registers_i386, 88 "g_mpx_regnums_x86_64 has wrong number of register infos"); 89 90 // x86 64-bit general purpose registers. 91 static const uint32_t g_gpr_regnums_x86_64[] = { 92 lldb_rax_x86_64, lldb_rbx_x86_64, lldb_rcx_x86_64, lldb_rdx_x86_64, 93 lldb_rdi_x86_64, lldb_rsi_x86_64, lldb_rbp_x86_64, lldb_rsp_x86_64, 94 lldb_r8_x86_64, lldb_r9_x86_64, lldb_r10_x86_64, lldb_r11_x86_64, 95 lldb_r12_x86_64, lldb_r13_x86_64, lldb_r14_x86_64, lldb_r15_x86_64, 96 lldb_rip_x86_64, lldb_rflags_x86_64, lldb_cs_x86_64, lldb_fs_x86_64, 97 lldb_gs_x86_64, lldb_ss_x86_64, lldb_ds_x86_64, lldb_es_x86_64, 98 lldb_eax_x86_64, lldb_ebx_x86_64, lldb_ecx_x86_64, lldb_edx_x86_64, 99 lldb_edi_x86_64, lldb_esi_x86_64, lldb_ebp_x86_64, lldb_esp_x86_64, 100 lldb_r8d_x86_64, // Low 32 bits or r8 101 lldb_r9d_x86_64, // Low 32 bits or r9 102 lldb_r10d_x86_64, // Low 32 bits or r10 103 lldb_r11d_x86_64, // Low 32 bits or r11 104 lldb_r12d_x86_64, // Low 32 bits or r12 105 lldb_r13d_x86_64, // Low 32 bits or r13 106 lldb_r14d_x86_64, // Low 32 bits or r14 107 lldb_r15d_x86_64, // Low 32 bits or r15 108 lldb_ax_x86_64, lldb_bx_x86_64, lldb_cx_x86_64, lldb_dx_x86_64, 109 lldb_di_x86_64, lldb_si_x86_64, lldb_bp_x86_64, lldb_sp_x86_64, 110 lldb_r8w_x86_64, // Low 16 bits or r8 111 lldb_r9w_x86_64, // Low 16 bits or r9 112 lldb_r10w_x86_64, // Low 16 bits or r10 113 lldb_r11w_x86_64, // Low 16 bits or r11 114 lldb_r12w_x86_64, // Low 16 bits or r12 115 lldb_r13w_x86_64, // Low 16 bits or r13 116 lldb_r14w_x86_64, // Low 16 bits or r14 117 lldb_r15w_x86_64, // Low 16 bits or r15 118 lldb_ah_x86_64, lldb_bh_x86_64, lldb_ch_x86_64, lldb_dh_x86_64, 119 lldb_al_x86_64, lldb_bl_x86_64, lldb_cl_x86_64, lldb_dl_x86_64, 120 lldb_dil_x86_64, lldb_sil_x86_64, lldb_bpl_x86_64, lldb_spl_x86_64, 121 lldb_r8l_x86_64, // Low 8 bits or r8 122 lldb_r9l_x86_64, // Low 8 bits or r9 123 lldb_r10l_x86_64, // Low 8 bits or r10 124 lldb_r11l_x86_64, // Low 8 bits or r11 125 lldb_r12l_x86_64, // Low 8 bits or r12 126 lldb_r13l_x86_64, // Low 8 bits or r13 127 lldb_r14l_x86_64, // Low 8 bits or r14 128 lldb_r15l_x86_64, // Low 8 bits or r15 129 LLDB_INVALID_REGNUM // register sets need to end with this flag 130 }; 131 static_assert((sizeof(g_gpr_regnums_x86_64) / sizeof(g_gpr_regnums_x86_64[0])) - 132 1 == 133 k_num_gpr_registers_x86_64, 134 "g_gpr_regnums_x86_64 has wrong number of register infos"); 135 136 // x86 64-bit floating point registers. 137 static const uint32_t g_fpu_regnums_x86_64[] = { 138 lldb_fctrl_x86_64, lldb_fstat_x86_64, lldb_ftag_x86_64, 139 lldb_fop_x86_64, lldb_fiseg_x86_64, lldb_fioff_x86_64, 140 lldb_foseg_x86_64, lldb_fooff_x86_64, lldb_mxcsr_x86_64, 141 lldb_mxcsrmask_x86_64, lldb_st0_x86_64, lldb_st1_x86_64, 142 lldb_st2_x86_64, lldb_st3_x86_64, lldb_st4_x86_64, 143 lldb_st5_x86_64, lldb_st6_x86_64, lldb_st7_x86_64, 144 lldb_mm0_x86_64, lldb_mm1_x86_64, lldb_mm2_x86_64, 145 lldb_mm3_x86_64, lldb_mm4_x86_64, lldb_mm5_x86_64, 146 lldb_mm6_x86_64, lldb_mm7_x86_64, lldb_xmm0_x86_64, 147 lldb_xmm1_x86_64, lldb_xmm2_x86_64, lldb_xmm3_x86_64, 148 lldb_xmm4_x86_64, lldb_xmm5_x86_64, lldb_xmm6_x86_64, 149 lldb_xmm7_x86_64, lldb_xmm8_x86_64, lldb_xmm9_x86_64, 150 lldb_xmm10_x86_64, lldb_xmm11_x86_64, lldb_xmm12_x86_64, 151 lldb_xmm13_x86_64, lldb_xmm14_x86_64, lldb_xmm15_x86_64, 152 LLDB_INVALID_REGNUM // register sets need to end with this flag 153 }; 154 static_assert((sizeof(g_fpu_regnums_x86_64) / sizeof(g_fpu_regnums_x86_64[0])) - 155 1 == 156 k_num_fpr_registers_x86_64, 157 "g_fpu_regnums_x86_64 has wrong number of register infos"); 158 159 // x86 64-bit AVX registers. 160 static const uint32_t g_avx_regnums_x86_64[] = { 161 lldb_ymm0_x86_64, lldb_ymm1_x86_64, lldb_ymm2_x86_64, lldb_ymm3_x86_64, 162 lldb_ymm4_x86_64, lldb_ymm5_x86_64, lldb_ymm6_x86_64, lldb_ymm7_x86_64, 163 lldb_ymm8_x86_64, lldb_ymm9_x86_64, lldb_ymm10_x86_64, lldb_ymm11_x86_64, 164 lldb_ymm12_x86_64, lldb_ymm13_x86_64, lldb_ymm14_x86_64, lldb_ymm15_x86_64, 165 LLDB_INVALID_REGNUM // register sets need to end with this flag 166 }; 167 static_assert((sizeof(g_avx_regnums_x86_64) / sizeof(g_avx_regnums_x86_64[0])) - 168 1 == 169 k_num_avx_registers_x86_64, 170 "g_avx_regnums_x86_64 has wrong number of register infos"); 171 172 // x86 64-bit MPX registers. 173 static const uint32_t g_mpx_regnums_x86_64[] = { 174 lldb_bnd0_x86_64, lldb_bnd1_x86_64, lldb_bnd2_x86_64, 175 lldb_bnd3_x86_64, lldb_bndcfgu_x86_64, lldb_bndstatus_x86_64, 176 LLDB_INVALID_REGNUM // register sets need to end with this flag 177 }; 178 static_assert((sizeof(g_mpx_regnums_x86_64) / sizeof(g_mpx_regnums_x86_64[0])) - 179 1 == 180 k_num_mpx_registers_x86_64, 181 "g_mpx_regnums_x86_64 has wrong number of register infos"); 182 183 // Number of register sets provided by this context. 184 enum { k_num_extended_register_sets = 2, k_num_register_sets = 4 }; 185 186 // Register sets for x86 32-bit. 187 static const RegisterSet g_reg_sets_i386[k_num_register_sets] = { 188 {"General Purpose Registers", "gpr", k_num_gpr_registers_i386, 189 g_gpr_regnums_i386}, 190 {"Floating Point Registers", "fpu", k_num_fpr_registers_i386, 191 g_fpu_regnums_i386}, 192 {"Advanced Vector Extensions", "avx", k_num_avx_registers_i386, 193 g_avx_regnums_i386}, 194 { "Memory Protection Extensions", "mpx", k_num_mpx_registers_i386, 195 g_mpx_regnums_i386}}; 196 197 // Register sets for x86 64-bit. 198 static const RegisterSet g_reg_sets_x86_64[k_num_register_sets] = { 199 {"General Purpose Registers", "gpr", k_num_gpr_registers_x86_64, 200 g_gpr_regnums_x86_64}, 201 {"Floating Point Registers", "fpu", k_num_fpr_registers_x86_64, 202 g_fpu_regnums_x86_64}, 203 {"Advanced Vector Extensions", "avx", k_num_avx_registers_x86_64, 204 g_avx_regnums_x86_64}, 205 { "Memory Protection Extensions", "mpx", k_num_mpx_registers_x86_64, 206 g_mpx_regnums_x86_64}}; 207 } 208 209 #define REG_CONTEXT_SIZE (GetRegisterInfoInterface().GetGPRSize() + sizeof(FPR)) 210 211 // ---------------------------------------------------------------------------- 212 // Required ptrace defines. 213 // ---------------------------------------------------------------------------- 214 215 // Support ptrace extensions even when compiled without required kernel support 216 #ifndef NT_X86_XSTATE 217 #define NT_X86_XSTATE 0x202 218 #endif 219 #ifndef NT_PRXFPREG 220 #define NT_PRXFPREG 0x46e62b7f 221 #endif 222 223 // On x86_64 NT_PRFPREG is used to access the FXSAVE area. On i386, we need to 224 // use NT_PRXFPREG. 225 static inline unsigned int fxsr_regset(const ArchSpec &arch) { 226 return arch.GetAddressByteSize() == 8 ? NT_PRFPREG : NT_PRXFPREG; 227 } 228 229 // ---------------------------------------------------------------------------- 230 // Required MPX define. 231 // ---------------------------------------------------------------------------- 232 233 // Support MPX extensions also if compiled with compiler without MPX support. 234 #ifndef bit_MPX 235 #define bit_MPX 0x4000 236 #endif 237 238 // ---------------------------------------------------------------------------- 239 // XCR0 extended register sets masks. 240 // ---------------------------------------------------------------------------- 241 #define mask_XSTATE_AVX (1ULL << 2) 242 #define mask_XSTATE_BNDREGS (1ULL << 3) 243 #define mask_XSTATE_BNDCFG (1ULL << 4) 244 #define mask_XSTATE_MPX (mask_XSTATE_BNDREGS | mask_XSTATE_BNDCFG) 245 246 std::unique_ptr<NativeRegisterContextLinux> 247 NativeRegisterContextLinux::CreateHostNativeRegisterContextLinux( 248 const ArchSpec &target_arch, NativeThreadProtocol &native_thread) { 249 return std::unique_ptr<NativeRegisterContextLinux>( 250 new NativeRegisterContextLinux_x86_64(target_arch, native_thread)); 251 } 252 253 // ---------------------------------------------------------------------------- 254 // NativeRegisterContextLinux_x86_64 members. 255 // ---------------------------------------------------------------------------- 256 257 static RegisterInfoInterface * 258 CreateRegisterInfoInterface(const ArchSpec &target_arch) { 259 if (HostInfo::GetArchitecture().GetAddressByteSize() == 4) { 260 // 32-bit hosts run with a RegisterContextLinux_i386 context. 261 return new RegisterContextLinux_i386(target_arch); 262 } else { 263 assert((HostInfo::GetArchitecture().GetAddressByteSize() == 8) && 264 "Register setting path assumes this is a 64-bit host"); 265 // X86_64 hosts know how to work with 64-bit and 32-bit EXEs using the 266 // x86_64 register context. 267 return new RegisterContextLinux_x86_64(target_arch); 268 } 269 } 270 271 NativeRegisterContextLinux_x86_64::NativeRegisterContextLinux_x86_64( 272 const ArchSpec &target_arch, NativeThreadProtocol &native_thread) 273 : NativeRegisterContextLinux(native_thread, 274 CreateRegisterInfoInterface(target_arch)), 275 m_xstate_type(XStateType::Invalid), m_fpr(), m_iovec(), m_ymm_set(), 276 m_mpx_set(), m_reg_info(), m_gpr_x86_64() { 277 // Set up data about ranges of valid registers. 278 switch (target_arch.GetMachine()) { 279 case llvm::Triple::x86: 280 m_reg_info.num_registers = k_num_registers_i386; 281 m_reg_info.num_gpr_registers = k_num_gpr_registers_i386; 282 m_reg_info.num_fpr_registers = k_num_fpr_registers_i386; 283 m_reg_info.num_avx_registers = k_num_avx_registers_i386; 284 m_reg_info.num_mpx_registers = k_num_mpx_registers_i386; 285 m_reg_info.last_gpr = k_last_gpr_i386; 286 m_reg_info.first_fpr = k_first_fpr_i386; 287 m_reg_info.last_fpr = k_last_fpr_i386; 288 m_reg_info.first_st = lldb_st0_i386; 289 m_reg_info.last_st = lldb_st7_i386; 290 m_reg_info.first_mm = lldb_mm0_i386; 291 m_reg_info.last_mm = lldb_mm7_i386; 292 m_reg_info.first_xmm = lldb_xmm0_i386; 293 m_reg_info.last_xmm = lldb_xmm7_i386; 294 m_reg_info.first_ymm = lldb_ymm0_i386; 295 m_reg_info.last_ymm = lldb_ymm7_i386; 296 m_reg_info.first_mpxr = lldb_bnd0_i386; 297 m_reg_info.last_mpxr = lldb_bnd3_i386; 298 m_reg_info.first_mpxc = lldb_bndcfgu_i386; 299 m_reg_info.last_mpxc = lldb_bndstatus_i386; 300 m_reg_info.first_dr = lldb_dr0_i386; 301 m_reg_info.gpr_flags = lldb_eflags_i386; 302 break; 303 case llvm::Triple::x86_64: 304 m_reg_info.num_registers = k_num_registers_x86_64; 305 m_reg_info.num_gpr_registers = k_num_gpr_registers_x86_64; 306 m_reg_info.num_fpr_registers = k_num_fpr_registers_x86_64; 307 m_reg_info.num_avx_registers = k_num_avx_registers_x86_64; 308 m_reg_info.num_mpx_registers = k_num_mpx_registers_x86_64; 309 m_reg_info.last_gpr = k_last_gpr_x86_64; 310 m_reg_info.first_fpr = k_first_fpr_x86_64; 311 m_reg_info.last_fpr = k_last_fpr_x86_64; 312 m_reg_info.first_st = lldb_st0_x86_64; 313 m_reg_info.last_st = lldb_st7_x86_64; 314 m_reg_info.first_mm = lldb_mm0_x86_64; 315 m_reg_info.last_mm = lldb_mm7_x86_64; 316 m_reg_info.first_xmm = lldb_xmm0_x86_64; 317 m_reg_info.last_xmm = lldb_xmm15_x86_64; 318 m_reg_info.first_ymm = lldb_ymm0_x86_64; 319 m_reg_info.last_ymm = lldb_ymm15_x86_64; 320 m_reg_info.first_mpxr = lldb_bnd0_x86_64; 321 m_reg_info.last_mpxr = lldb_bnd3_x86_64; 322 m_reg_info.first_mpxc = lldb_bndcfgu_x86_64; 323 m_reg_info.last_mpxc = lldb_bndstatus_x86_64; 324 m_reg_info.first_dr = lldb_dr0_x86_64; 325 m_reg_info.gpr_flags = lldb_rflags_x86_64; 326 break; 327 default: 328 assert(false && "Unhandled target architecture."); 329 break; 330 } 331 332 // Initialize m_iovec to point to the buffer and buffer size 333 // using the conventions of Berkeley style UIO structures, as required 334 // by PTRACE extensions. 335 m_iovec.iov_base = &m_fpr.xstate.xsave; 336 m_iovec.iov_len = sizeof(m_fpr.xstate.xsave); 337 338 // Clear out the FPR state. 339 ::memset(&m_fpr, 0, sizeof(FPR)); 340 341 // Store byte offset of fctrl (i.e. first register of FPR) 342 const RegisterInfo *reg_info_fctrl = GetRegisterInfoByName("fctrl"); 343 m_fctrl_offset_in_userarea = reg_info_fctrl->byte_offset; 344 } 345 346 // CONSIDER after local and llgs debugging are merged, register set support can 347 // be moved into a base x86-64 class with IsRegisterSetAvailable made virtual. 348 uint32_t NativeRegisterContextLinux_x86_64::GetRegisterSetCount() const { 349 uint32_t sets = 0; 350 for (uint32_t set_index = 0; set_index < k_num_register_sets; ++set_index) { 351 if (IsRegisterSetAvailable(set_index)) 352 ++sets; 353 } 354 355 return sets; 356 } 357 358 uint32_t NativeRegisterContextLinux_x86_64::GetUserRegisterCount() const { 359 uint32_t count = 0; 360 for (uint32_t set_index = 0; set_index < k_num_register_sets; ++set_index) { 361 const RegisterSet *set = GetRegisterSet(set_index); 362 if (set) 363 count += set->num_registers; 364 } 365 return count; 366 } 367 368 const RegisterSet * 369 NativeRegisterContextLinux_x86_64::GetRegisterSet(uint32_t set_index) const { 370 if (!IsRegisterSetAvailable(set_index)) 371 return nullptr; 372 373 switch (GetRegisterInfoInterface().GetTargetArchitecture().GetMachine()) { 374 case llvm::Triple::x86: 375 return &g_reg_sets_i386[set_index]; 376 case llvm::Triple::x86_64: 377 return &g_reg_sets_x86_64[set_index]; 378 default: 379 assert(false && "Unhandled target architecture."); 380 return nullptr; 381 } 382 383 return nullptr; 384 } 385 386 Status 387 NativeRegisterContextLinux_x86_64::ReadRegister(const RegisterInfo *reg_info, 388 RegisterValue ®_value) { 389 Status error; 390 391 if (!reg_info) { 392 error.SetErrorString("reg_info NULL"); 393 return error; 394 } 395 396 const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB]; 397 if (reg == LLDB_INVALID_REGNUM) { 398 // This is likely an internal register for lldb use only and should not be 399 // directly queried. 400 error.SetErrorStringWithFormat("register \"%s\" is an internal-only lldb " 401 "register, cannot read directly", 402 reg_info->name); 403 return error; 404 } 405 406 if (IsFPR(reg) || IsAVX(reg) || IsMPX(reg)) { 407 error = ReadFPR(); 408 if (error.Fail()) 409 return error; 410 } else { 411 uint32_t full_reg = reg; 412 bool is_subreg = reg_info->invalidate_regs && 413 (reg_info->invalidate_regs[0] != LLDB_INVALID_REGNUM); 414 415 if (is_subreg) { 416 // Read the full aligned 64-bit register. 417 full_reg = reg_info->invalidate_regs[0]; 418 } 419 420 error = ReadRegisterRaw(full_reg, reg_value); 421 422 if (error.Success()) { 423 // If our read was not aligned (for ah,bh,ch,dh), shift our returned value 424 // one byte to the right. 425 if (is_subreg && (reg_info->byte_offset & 0x1)) 426 reg_value.SetUInt64(reg_value.GetAsUInt64() >> 8); 427 428 // If our return byte size was greater than the return value reg size, 429 // then 430 // use the type specified by reg_info rather than the uint64_t default 431 if (reg_value.GetByteSize() > reg_info->byte_size) 432 reg_value.SetType(reg_info); 433 } 434 return error; 435 } 436 437 if (reg_info->encoding == lldb::eEncodingVector) { 438 lldb::ByteOrder byte_order = GetByteOrder(); 439 440 if (byte_order != lldb::eByteOrderInvalid) { 441 if (reg >= m_reg_info.first_st && reg <= m_reg_info.last_st) 442 reg_value.SetBytes( 443 m_fpr.xstate.fxsave.stmm[reg - m_reg_info.first_st].bytes, 444 reg_info->byte_size, byte_order); 445 if (reg >= m_reg_info.first_mm && reg <= m_reg_info.last_mm) 446 reg_value.SetBytes( 447 m_fpr.xstate.fxsave.stmm[reg - m_reg_info.first_mm].bytes, 448 reg_info->byte_size, byte_order); 449 if (reg >= m_reg_info.first_xmm && reg <= m_reg_info.last_xmm) 450 reg_value.SetBytes( 451 m_fpr.xstate.fxsave.xmm[reg - m_reg_info.first_xmm].bytes, 452 reg_info->byte_size, byte_order); 453 if (reg >= m_reg_info.first_ymm && reg <= m_reg_info.last_ymm) { 454 // Concatenate ymm using the register halves in xmm.bytes and ymmh.bytes 455 if (CopyXSTATEtoYMM(reg, byte_order)) 456 reg_value.SetBytes(m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes, 457 reg_info->byte_size, byte_order); 458 else { 459 error.SetErrorString("failed to copy ymm register value"); 460 return error; 461 } 462 } 463 if (reg >= m_reg_info.first_mpxr && reg <= m_reg_info.last_mpxr) { 464 if (CopyXSTATEtoMPX(reg)) 465 reg_value.SetBytes(m_mpx_set.mpxr[reg - m_reg_info.first_mpxr].bytes, 466 reg_info->byte_size, byte_order); 467 else { 468 error.SetErrorString("failed to copy mpx register value"); 469 return error; 470 } 471 } 472 if (reg >= m_reg_info.first_mpxc && reg <= m_reg_info.last_mpxc) { 473 if (CopyXSTATEtoMPX(reg)) 474 reg_value.SetBytes(m_mpx_set.mpxc[reg - m_reg_info.first_mpxc].bytes, 475 reg_info->byte_size, byte_order); 476 else { 477 error.SetErrorString("failed to copy mpx register value"); 478 return error; 479 } 480 } 481 482 if (reg_value.GetType() != RegisterValue::eTypeBytes) 483 error.SetErrorString( 484 "write failed - type was expected to be RegisterValue::eTypeBytes"); 485 486 return error; 487 } 488 489 error.SetErrorString("byte order is invalid"); 490 return error; 491 } 492 493 // Get pointer to m_fpr.xstate.fxsave variable and set the data from it. 494 495 // Byte offsets of all registers are calculated wrt 'UserArea' structure. 496 // However, ReadFPR() reads fpu registers {using ptrace(PTRACE_GETFPREGS,..)} 497 // and stores them in 'm_fpr' (of type FPR structure). To extract values of 498 // fpu 499 // registers, m_fpr should be read at byte offsets calculated wrt to FPR 500 // structure. 501 502 // Since, FPR structure is also one of the member of UserArea structure. 503 // byte_offset(fpu wrt FPR) = byte_offset(fpu wrt UserArea) - 504 // byte_offset(fctrl wrt UserArea) 505 assert((reg_info->byte_offset - m_fctrl_offset_in_userarea) < sizeof(m_fpr)); 506 uint8_t *src = 507 (uint8_t *)&m_fpr + reg_info->byte_offset - m_fctrl_offset_in_userarea; 508 switch (reg_info->byte_size) { 509 case 1: 510 reg_value.SetUInt8(*(uint8_t *)src); 511 break; 512 case 2: 513 reg_value.SetUInt16(*(uint16_t *)src); 514 break; 515 case 4: 516 reg_value.SetUInt32(*(uint32_t *)src); 517 break; 518 case 8: 519 reg_value.SetUInt64(*(uint64_t *)src); 520 break; 521 default: 522 assert(false && "Unhandled data size."); 523 error.SetErrorStringWithFormat("unhandled byte size: %" PRIu32, 524 reg_info->byte_size); 525 break; 526 } 527 528 return error; 529 } 530 531 Status NativeRegisterContextLinux_x86_64::WriteRegister( 532 const RegisterInfo *reg_info, const RegisterValue ®_value) { 533 assert(reg_info && "reg_info is null"); 534 535 const uint32_t reg_index = reg_info->kinds[lldb::eRegisterKindLLDB]; 536 if (reg_index == LLDB_INVALID_REGNUM) 537 return Status("no lldb regnum for %s", reg_info && reg_info->name 538 ? reg_info->name 539 : "<unknown register>"); 540 541 if (IsGPR(reg_index)) 542 return WriteRegisterRaw(reg_index, reg_value); 543 544 if (IsFPR(reg_index) || IsAVX(reg_index) || IsMPX(reg_index)) { 545 if (reg_info->encoding == lldb::eEncodingVector) { 546 if (reg_index >= m_reg_info.first_st && reg_index <= m_reg_info.last_st) 547 ::memcpy( 548 m_fpr.xstate.fxsave.stmm[reg_index - m_reg_info.first_st].bytes, 549 reg_value.GetBytes(), reg_value.GetByteSize()); 550 551 if (reg_index >= m_reg_info.first_mm && reg_index <= m_reg_info.last_mm) 552 ::memcpy( 553 m_fpr.xstate.fxsave.stmm[reg_index - m_reg_info.first_mm].bytes, 554 reg_value.GetBytes(), reg_value.GetByteSize()); 555 556 if (reg_index >= m_reg_info.first_xmm && reg_index <= m_reg_info.last_xmm) 557 ::memcpy( 558 m_fpr.xstate.fxsave.xmm[reg_index - m_reg_info.first_xmm].bytes, 559 reg_value.GetBytes(), reg_value.GetByteSize()); 560 561 if (reg_index >= m_reg_info.first_ymm && 562 reg_index <= m_reg_info.last_ymm) { 563 // Store ymm register content, and split into the register halves in 564 // xmm.bytes and ymmh.bytes 565 ::memcpy(m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes, 566 reg_value.GetBytes(), reg_value.GetByteSize()); 567 if (!CopyYMMtoXSTATE(reg_index, GetByteOrder())) 568 return Status("CopyYMMtoXSTATE() failed"); 569 } 570 571 if (reg_index >= m_reg_info.first_mpxr && 572 reg_index <= m_reg_info.last_mpxr) { 573 ::memcpy(m_mpx_set.mpxr[reg_index - m_reg_info.first_mpxr].bytes, 574 reg_value.GetBytes(), reg_value.GetByteSize()); 575 if (!CopyMPXtoXSTATE(reg_index)) 576 return Status("CopyMPXtoXSTATE() failed"); 577 } 578 579 if (reg_index >= m_reg_info.first_mpxc && 580 reg_index <= m_reg_info.last_mpxc) { 581 ::memcpy(m_mpx_set.mpxc[reg_index - m_reg_info.first_mpxc].bytes, 582 reg_value.GetBytes(), reg_value.GetByteSize()); 583 if (!CopyMPXtoXSTATE(reg_index)) 584 return Status("CopyMPXtoXSTATE() failed"); 585 } 586 } else { 587 // Get pointer to m_fpr.xstate.fxsave variable and set the data to it. 588 589 // Byte offsets of all registers are calculated wrt 'UserArea' structure. 590 // However, WriteFPR() takes m_fpr (of type FPR structure) and writes only 591 // fpu 592 // registers using ptrace(PTRACE_SETFPREGS,..) API. Hence fpu registers 593 // should 594 // be written in m_fpr at byte offsets calculated wrt FPR structure. 595 596 // Since, FPR structure is also one of the member of UserArea structure. 597 // byte_offset(fpu wrt FPR) = byte_offset(fpu wrt UserArea) - 598 // byte_offset(fctrl wrt UserArea) 599 assert((reg_info->byte_offset - m_fctrl_offset_in_userarea) < 600 sizeof(m_fpr)); 601 uint8_t *dst = (uint8_t *)&m_fpr + reg_info->byte_offset - 602 m_fctrl_offset_in_userarea; 603 switch (reg_info->byte_size) { 604 case 1: 605 *(uint8_t *)dst = reg_value.GetAsUInt8(); 606 break; 607 case 2: 608 *(uint16_t *)dst = reg_value.GetAsUInt16(); 609 break; 610 case 4: 611 *(uint32_t *)dst = reg_value.GetAsUInt32(); 612 break; 613 case 8: 614 *(uint64_t *)dst = reg_value.GetAsUInt64(); 615 break; 616 default: 617 assert(false && "Unhandled data size."); 618 return Status("unhandled register data size %" PRIu32, 619 reg_info->byte_size); 620 } 621 } 622 623 Status error = WriteFPR(); 624 if (error.Fail()) 625 return error; 626 627 if (IsAVX(reg_index)) { 628 if (!CopyYMMtoXSTATE(reg_index, GetByteOrder())) 629 return Status("CopyYMMtoXSTATE() failed"); 630 } 631 632 if (IsMPX(reg_index)) { 633 if (!CopyMPXtoXSTATE(reg_index)) 634 return Status("CopyMPXtoXSTATE() failed"); 635 } 636 return Status(); 637 } 638 return Status("failed - register wasn't recognized to be a GPR or an FPR, " 639 "write strategy unknown"); 640 } 641 642 Status NativeRegisterContextLinux_x86_64::ReadAllRegisterValues( 643 lldb::DataBufferSP &data_sp) { 644 Status error; 645 646 data_sp.reset(new DataBufferHeap(REG_CONTEXT_SIZE, 0)); 647 error = ReadGPR(); 648 if (error.Fail()) 649 return error; 650 651 error = ReadFPR(); 652 if (error.Fail()) 653 return error; 654 655 uint8_t *dst = data_sp->GetBytes(); 656 ::memcpy(dst, &m_gpr_x86_64, GetRegisterInfoInterface().GetGPRSize()); 657 dst += GetRegisterInfoInterface().GetGPRSize(); 658 if (m_xstate_type == XStateType::FXSAVE) 659 ::memcpy(dst, &m_fpr.xstate.fxsave, sizeof(m_fpr.xstate.fxsave)); 660 else if (m_xstate_type == XStateType::XSAVE) { 661 lldb::ByteOrder byte_order = GetByteOrder(); 662 663 if (IsCPUFeatureAvailable(RegSet::avx)) { 664 // Assemble the YMM register content from the register halves. 665 for (uint32_t reg = m_reg_info.first_ymm; reg <= m_reg_info.last_ymm; 666 ++reg) { 667 if (!CopyXSTATEtoYMM(reg, byte_order)) { 668 error.SetErrorStringWithFormat( 669 "NativeRegisterContextLinux_x86_64::%s " 670 "CopyXSTATEtoYMM() failed for reg num " 671 "%" PRIu32, 672 __FUNCTION__, reg); 673 return error; 674 } 675 } 676 } 677 678 if (IsCPUFeatureAvailable(RegSet::mpx)) { 679 for (uint32_t reg = m_reg_info.first_mpxr; reg <= m_reg_info.last_mpxc; 680 ++reg) { 681 if (!CopyXSTATEtoMPX(reg)) { 682 error.SetErrorStringWithFormat( 683 "NativeRegisterContextLinux_x86_64::%s " 684 "CopyXSTATEtoMPX() failed for reg num " 685 "%" PRIu32, 686 __FUNCTION__, reg); 687 return error; 688 } 689 } 690 } 691 // Copy the extended register state including the assembled ymm registers. 692 ::memcpy(dst, &m_fpr, sizeof(m_fpr)); 693 } else { 694 assert(false && "how do we save the floating point registers?"); 695 error.SetErrorString("unsure how to save the floating point registers"); 696 } 697 /** The following code is specific to Linux x86 based architectures, 698 * where the register orig_eax (32 bit)/orig_rax (64 bit) is set to 699 * -1 to solve the bug 23659, such a setting prevents the automatic 700 * decrement of the instruction pointer which was causing the SIGILL 701 * exception. 702 * **/ 703 704 RegisterValue value((uint64_t)-1); 705 const RegisterInfo *reg_info = 706 GetRegisterInfoInterface().GetDynamicRegisterInfo("orig_eax"); 707 if (reg_info == nullptr) 708 reg_info = GetRegisterInfoInterface().GetDynamicRegisterInfo("orig_rax"); 709 710 if (reg_info != nullptr) 711 return DoWriteRegisterValue(reg_info->byte_offset, reg_info->name, value); 712 713 return error; 714 } 715 716 Status NativeRegisterContextLinux_x86_64::WriteAllRegisterValues( 717 const lldb::DataBufferSP &data_sp) { 718 Status error; 719 720 if (!data_sp) { 721 error.SetErrorStringWithFormat( 722 "NativeRegisterContextLinux_x86_64::%s invalid data_sp provided", 723 __FUNCTION__); 724 return error; 725 } 726 727 if (data_sp->GetByteSize() != REG_CONTEXT_SIZE) { 728 error.SetErrorStringWithFormatv( 729 "data_sp contained mismatched data size, expected {0}, actual {1}", 730 REG_CONTEXT_SIZE, data_sp->GetByteSize()); 731 return error; 732 } 733 734 uint8_t *src = data_sp->GetBytes(); 735 if (src == nullptr) { 736 error.SetErrorStringWithFormat("NativeRegisterContextLinux_x86_64::%s " 737 "DataBuffer::GetBytes() returned a null " 738 "pointer", 739 __FUNCTION__); 740 return error; 741 } 742 ::memcpy(&m_gpr_x86_64, src, GetRegisterInfoInterface().GetGPRSize()); 743 744 error = WriteGPR(); 745 if (error.Fail()) 746 return error; 747 748 src += GetRegisterInfoInterface().GetGPRSize(); 749 if (m_xstate_type == XStateType::FXSAVE) 750 ::memcpy(&m_fpr.xstate.fxsave, src, sizeof(m_fpr.xstate.fxsave)); 751 else if (m_xstate_type == XStateType::XSAVE) 752 ::memcpy(&m_fpr.xstate.xsave, src, sizeof(m_fpr.xstate.xsave)); 753 754 error = WriteFPR(); 755 if (error.Fail()) 756 return error; 757 758 if (m_xstate_type == XStateType::XSAVE) { 759 lldb::ByteOrder byte_order = GetByteOrder(); 760 761 if (IsCPUFeatureAvailable(RegSet::avx)) { 762 // Parse the YMM register content from the register halves. 763 for (uint32_t reg = m_reg_info.first_ymm; reg <= m_reg_info.last_ymm; 764 ++reg) { 765 if (!CopyYMMtoXSTATE(reg, byte_order)) { 766 error.SetErrorStringWithFormat( 767 "NativeRegisterContextLinux_x86_64::%s " 768 "CopyYMMtoXSTATE() failed for reg num " 769 "%" PRIu32, 770 __FUNCTION__, reg); 771 return error; 772 } 773 } 774 } 775 776 if (IsCPUFeatureAvailable(RegSet::mpx)) { 777 for (uint32_t reg = m_reg_info.first_mpxr; reg <= m_reg_info.last_mpxc; 778 ++reg) { 779 if (!CopyMPXtoXSTATE(reg)) { 780 error.SetErrorStringWithFormat( 781 "NativeRegisterContextLinux_x86_64::%s " 782 "CopyMPXtoXSTATE() failed for reg num " 783 "%" PRIu32, 784 __FUNCTION__, reg); 785 return error; 786 } 787 } 788 } 789 } 790 791 return error; 792 } 793 794 bool NativeRegisterContextLinux_x86_64::IsCPUFeatureAvailable( 795 RegSet feature_code) const { 796 if (m_xstate_type == XStateType::Invalid) { 797 if (const_cast<NativeRegisterContextLinux_x86_64 *>(this)->ReadFPR().Fail()) 798 return false; 799 } 800 switch (feature_code) { 801 case RegSet::gpr: 802 case RegSet::fpu: 803 return true; 804 case RegSet::avx: // Check if CPU has AVX and if there is kernel support, by 805 // reading in the XCR0 area of XSAVE. 806 if ((m_fpr.xstate.xsave.i387.xcr0 & mask_XSTATE_AVX) == mask_XSTATE_AVX) 807 return true; 808 break; 809 case RegSet::mpx: // Check if CPU has MPX and if there is kernel support, by 810 // reading in the XCR0 area of XSAVE. 811 if ((m_fpr.xstate.xsave.i387.xcr0 & mask_XSTATE_MPX) == mask_XSTATE_MPX) 812 return true; 813 break; 814 } 815 return false; 816 } 817 818 bool NativeRegisterContextLinux_x86_64::IsRegisterSetAvailable( 819 uint32_t set_index) const { 820 uint32_t num_sets = k_num_register_sets - k_num_extended_register_sets; 821 822 switch (static_cast<RegSet>(set_index)) { 823 case RegSet::gpr: 824 case RegSet::fpu: 825 return (set_index < num_sets); 826 case RegSet::avx: 827 return IsCPUFeatureAvailable(RegSet::avx); 828 case RegSet::mpx: 829 return IsCPUFeatureAvailable(RegSet::mpx); 830 } 831 return false; 832 } 833 834 bool NativeRegisterContextLinux_x86_64::IsGPR(uint32_t reg_index) const { 835 // GPRs come first. 836 return reg_index <= m_reg_info.last_gpr; 837 } 838 839 bool NativeRegisterContextLinux_x86_64::IsFPR(uint32_t reg_index) const { 840 return (m_reg_info.first_fpr <= reg_index && 841 reg_index <= m_reg_info.last_fpr); 842 } 843 844 Status NativeRegisterContextLinux_x86_64::WriteFPR() { 845 switch (m_xstate_type) { 846 case XStateType::FXSAVE: 847 return WriteRegisterSet( 848 &m_iovec, sizeof(m_fpr.xstate.xsave), 849 fxsr_regset(GetRegisterInfoInterface().GetTargetArchitecture())); 850 case XStateType::XSAVE: 851 return WriteRegisterSet(&m_iovec, sizeof(m_fpr.xstate.xsave), 852 NT_X86_XSTATE); 853 default: 854 return Status("Unrecognized FPR type."); 855 } 856 } 857 858 bool NativeRegisterContextLinux_x86_64::IsAVX(uint32_t reg_index) const { 859 if (!IsCPUFeatureAvailable(RegSet::avx)) 860 return false; 861 return (m_reg_info.first_ymm <= reg_index && 862 reg_index <= m_reg_info.last_ymm); 863 } 864 865 bool NativeRegisterContextLinux_x86_64::CopyXSTATEtoYMM( 866 uint32_t reg_index, lldb::ByteOrder byte_order) { 867 if (!IsAVX(reg_index)) 868 return false; 869 870 if (byte_order == lldb::eByteOrderLittle) { 871 ::memcpy(m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes, 872 m_fpr.xstate.fxsave.xmm[reg_index - m_reg_info.first_ymm].bytes, 873 sizeof(XMMReg)); 874 ::memcpy(m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes + 875 sizeof(XMMReg), 876 m_fpr.xstate.xsave.ymmh[reg_index - m_reg_info.first_ymm].bytes, 877 sizeof(YMMHReg)); 878 return true; 879 } 880 881 if (byte_order == lldb::eByteOrderBig) { 882 ::memcpy(m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes + 883 sizeof(XMMReg), 884 m_fpr.xstate.fxsave.xmm[reg_index - m_reg_info.first_ymm].bytes, 885 sizeof(XMMReg)); 886 ::memcpy(m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes, 887 m_fpr.xstate.xsave.ymmh[reg_index - m_reg_info.first_ymm].bytes, 888 sizeof(YMMHReg)); 889 return true; 890 } 891 return false; // unsupported or invalid byte order 892 } 893 894 bool NativeRegisterContextLinux_x86_64::CopyYMMtoXSTATE( 895 uint32_t reg, lldb::ByteOrder byte_order) { 896 if (!IsAVX(reg)) 897 return false; 898 899 if (byte_order == lldb::eByteOrderLittle) { 900 ::memcpy(m_fpr.xstate.fxsave.xmm[reg - m_reg_info.first_ymm].bytes, 901 m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes, sizeof(XMMReg)); 902 ::memcpy(m_fpr.xstate.xsave.ymmh[reg - m_reg_info.first_ymm].bytes, 903 m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes + sizeof(XMMReg), 904 sizeof(YMMHReg)); 905 return true; 906 } 907 908 if (byte_order == lldb::eByteOrderBig) { 909 ::memcpy(m_fpr.xstate.fxsave.xmm[reg - m_reg_info.first_ymm].bytes, 910 m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes + sizeof(XMMReg), 911 sizeof(XMMReg)); 912 ::memcpy(m_fpr.xstate.xsave.ymmh[reg - m_reg_info.first_ymm].bytes, 913 m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes, sizeof(YMMHReg)); 914 return true; 915 } 916 return false; // unsupported or invalid byte order 917 } 918 919 void *NativeRegisterContextLinux_x86_64::GetFPRBuffer() { 920 switch (m_xstate_type) { 921 case XStateType::FXSAVE: 922 return &m_fpr.xstate.fxsave; 923 case XStateType::XSAVE: 924 return &m_iovec; 925 default: 926 return nullptr; 927 } 928 } 929 930 size_t NativeRegisterContextLinux_x86_64::GetFPRSize() { 931 switch (m_xstate_type) { 932 case XStateType::FXSAVE: 933 return sizeof(m_fpr.xstate.fxsave); 934 case XStateType::XSAVE: 935 return sizeof(m_iovec); 936 default: 937 return 0; 938 } 939 } 940 941 Status NativeRegisterContextLinux_x86_64::ReadFPR() { 942 Status error; 943 944 // Probe XSAVE and if it is not supported fall back to FXSAVE. 945 if (m_xstate_type != XStateType::FXSAVE) { 946 error = 947 ReadRegisterSet(&m_iovec, sizeof(m_fpr.xstate.xsave), NT_X86_XSTATE); 948 if (!error.Fail()) { 949 m_xstate_type = XStateType::XSAVE; 950 return error; 951 } 952 } 953 error = ReadRegisterSet( 954 &m_iovec, sizeof(m_fpr.xstate.xsave), 955 fxsr_regset(GetRegisterInfoInterface().GetTargetArchitecture())); 956 if (!error.Fail()) { 957 m_xstate_type = XStateType::FXSAVE; 958 return error; 959 } 960 return Status("Unrecognized FPR type."); 961 } 962 963 bool NativeRegisterContextLinux_x86_64::IsMPX(uint32_t reg_index) const { 964 if (!IsCPUFeatureAvailable(RegSet::mpx)) 965 return false; 966 return (m_reg_info.first_mpxr <= reg_index && 967 reg_index <= m_reg_info.last_mpxc); 968 } 969 970 bool NativeRegisterContextLinux_x86_64::CopyXSTATEtoMPX(uint32_t reg) { 971 if (!IsMPX(reg)) 972 return false; 973 974 if (reg >= m_reg_info.first_mpxr && reg <= m_reg_info.last_mpxr) { 975 ::memcpy(m_mpx_set.mpxr[reg - m_reg_info.first_mpxr].bytes, 976 m_fpr.xstate.xsave.mpxr[reg - m_reg_info.first_mpxr].bytes, 977 sizeof(MPXReg)); 978 } else { 979 ::memcpy(m_mpx_set.mpxc[reg - m_reg_info.first_mpxc].bytes, 980 m_fpr.xstate.xsave.mpxc[reg - m_reg_info.first_mpxc].bytes, 981 sizeof(MPXCsr)); 982 } 983 return true; 984 } 985 986 bool NativeRegisterContextLinux_x86_64::CopyMPXtoXSTATE(uint32_t reg) { 987 if (!IsMPX(reg)) 988 return false; 989 990 if (reg >= m_reg_info.first_mpxr && reg <= m_reg_info.last_mpxr) { 991 ::memcpy(m_fpr.xstate.xsave.mpxr[reg - m_reg_info.first_mpxr].bytes, 992 m_mpx_set.mpxr[reg - m_reg_info.first_mpxr].bytes, sizeof(MPXReg)); 993 } else { 994 ::memcpy(m_fpr.xstate.xsave.mpxc[reg - m_reg_info.first_mpxc].bytes, 995 m_mpx_set.mpxc[reg - m_reg_info.first_mpxc].bytes, sizeof(MPXCsr)); 996 } 997 return true; 998 } 999 1000 Status NativeRegisterContextLinux_x86_64::IsWatchpointHit(uint32_t wp_index, 1001 bool &is_hit) { 1002 if (wp_index >= NumSupportedHardwareWatchpoints()) 1003 return Status("Watchpoint index out of range"); 1004 1005 RegisterValue reg_value; 1006 Status error = ReadRegisterRaw(m_reg_info.first_dr + 6, reg_value); 1007 if (error.Fail()) { 1008 is_hit = false; 1009 return error; 1010 } 1011 1012 uint64_t status_bits = reg_value.GetAsUInt64(); 1013 1014 is_hit = status_bits & (1 << wp_index); 1015 1016 return error; 1017 } 1018 1019 Status NativeRegisterContextLinux_x86_64::GetWatchpointHitIndex( 1020 uint32_t &wp_index, lldb::addr_t trap_addr) { 1021 uint32_t num_hw_wps = NumSupportedHardwareWatchpoints(); 1022 for (wp_index = 0; wp_index < num_hw_wps; ++wp_index) { 1023 bool is_hit; 1024 Status error = IsWatchpointHit(wp_index, is_hit); 1025 if (error.Fail()) { 1026 wp_index = LLDB_INVALID_INDEX32; 1027 return error; 1028 } else if (is_hit) { 1029 return error; 1030 } 1031 } 1032 wp_index = LLDB_INVALID_INDEX32; 1033 return Status(); 1034 } 1035 1036 Status NativeRegisterContextLinux_x86_64::IsWatchpointVacant(uint32_t wp_index, 1037 bool &is_vacant) { 1038 if (wp_index >= NumSupportedHardwareWatchpoints()) 1039 return Status("Watchpoint index out of range"); 1040 1041 RegisterValue reg_value; 1042 Status error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value); 1043 if (error.Fail()) { 1044 is_vacant = false; 1045 return error; 1046 } 1047 1048 uint64_t control_bits = reg_value.GetAsUInt64(); 1049 1050 is_vacant = !(control_bits & (1 << (2 * wp_index))); 1051 1052 return error; 1053 } 1054 1055 Status NativeRegisterContextLinux_x86_64::SetHardwareWatchpointWithIndex( 1056 lldb::addr_t addr, size_t size, uint32_t watch_flags, uint32_t wp_index) { 1057 1058 if (wp_index >= NumSupportedHardwareWatchpoints()) 1059 return Status("Watchpoint index out of range"); 1060 1061 // Read only watchpoints aren't supported on x86_64. Fall back to read/write 1062 // waitchpoints instead. 1063 // TODO: Add logic to detect when a write happens and ignore that watchpoint 1064 // hit. 1065 if (watch_flags == 0x2) 1066 watch_flags = 0x3; 1067 1068 if (watch_flags != 0x1 && watch_flags != 0x3) 1069 return Status("Invalid read/write bits for watchpoint"); 1070 1071 if (size != 1 && size != 2 && size != 4 && size != 8) 1072 return Status("Invalid size for watchpoint"); 1073 1074 bool is_vacant; 1075 Status error = IsWatchpointVacant(wp_index, is_vacant); 1076 if (error.Fail()) 1077 return error; 1078 if (!is_vacant) 1079 return Status("Watchpoint index not vacant"); 1080 1081 RegisterValue reg_value; 1082 error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value); 1083 if (error.Fail()) 1084 return error; 1085 1086 // for watchpoints 0, 1, 2, or 3, respectively, 1087 // set bits 1, 3, 5, or 7 1088 uint64_t enable_bit = 1 << (2 * wp_index); 1089 1090 // set bits 16-17, 20-21, 24-25, or 28-29 1091 // with 0b01 for write, and 0b11 for read/write 1092 uint64_t rw_bits = watch_flags << (16 + 4 * wp_index); 1093 1094 // set bits 18-19, 22-23, 26-27, or 30-31 1095 // with 0b00, 0b01, 0b10, or 0b11 1096 // for 1, 2, 8 (if supported), or 4 bytes, respectively 1097 uint64_t size_bits = (size == 8 ? 0x2 : size - 1) << (18 + 4 * wp_index); 1098 1099 uint64_t bit_mask = (0x3 << (2 * wp_index)) | (0xF << (16 + 4 * wp_index)); 1100 1101 uint64_t control_bits = reg_value.GetAsUInt64() & ~bit_mask; 1102 1103 control_bits |= enable_bit | rw_bits | size_bits; 1104 1105 error = WriteRegisterRaw(m_reg_info.first_dr + wp_index, RegisterValue(addr)); 1106 if (error.Fail()) 1107 return error; 1108 1109 error = 1110 WriteRegisterRaw(m_reg_info.first_dr + 7, RegisterValue(control_bits)); 1111 if (error.Fail()) 1112 return error; 1113 1114 error.Clear(); 1115 return error; 1116 } 1117 1118 bool NativeRegisterContextLinux_x86_64::ClearHardwareWatchpoint( 1119 uint32_t wp_index) { 1120 if (wp_index >= NumSupportedHardwareWatchpoints()) 1121 return false; 1122 1123 RegisterValue reg_value; 1124 1125 // for watchpoints 0, 1, 2, or 3, respectively, 1126 // clear bits 0, 1, 2, or 3 of the debug status register (DR6) 1127 Status error = ReadRegisterRaw(m_reg_info.first_dr + 6, reg_value); 1128 if (error.Fail()) 1129 return false; 1130 uint64_t bit_mask = 1 << wp_index; 1131 uint64_t status_bits = reg_value.GetAsUInt64() & ~bit_mask; 1132 error = WriteRegisterRaw(m_reg_info.first_dr + 6, RegisterValue(status_bits)); 1133 if (error.Fail()) 1134 return false; 1135 1136 // for watchpoints 0, 1, 2, or 3, respectively, 1137 // clear bits {0-1,16-19}, {2-3,20-23}, {4-5,24-27}, or {6-7,28-31} 1138 // of the debug control register (DR7) 1139 error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value); 1140 if (error.Fail()) 1141 return false; 1142 bit_mask = (0x3 << (2 * wp_index)) | (0xF << (16 + 4 * wp_index)); 1143 uint64_t control_bits = reg_value.GetAsUInt64() & ~bit_mask; 1144 return WriteRegisterRaw(m_reg_info.first_dr + 7, RegisterValue(control_bits)) 1145 .Success(); 1146 } 1147 1148 Status NativeRegisterContextLinux_x86_64::ClearAllHardwareWatchpoints() { 1149 RegisterValue reg_value; 1150 1151 // clear bits {0-4} of the debug status register (DR6) 1152 Status error = ReadRegisterRaw(m_reg_info.first_dr + 6, reg_value); 1153 if (error.Fail()) 1154 return error; 1155 uint64_t bit_mask = 0xF; 1156 uint64_t status_bits = reg_value.GetAsUInt64() & ~bit_mask; 1157 error = WriteRegisterRaw(m_reg_info.first_dr + 6, RegisterValue(status_bits)); 1158 if (error.Fail()) 1159 return error; 1160 1161 // clear bits {0-7,16-31} of the debug control register (DR7) 1162 error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value); 1163 if (error.Fail()) 1164 return error; 1165 bit_mask = 0xFF | (0xFFFF << 16); 1166 uint64_t control_bits = reg_value.GetAsUInt64() & ~bit_mask; 1167 return WriteRegisterRaw(m_reg_info.first_dr + 7, RegisterValue(control_bits)); 1168 } 1169 1170 uint32_t NativeRegisterContextLinux_x86_64::SetHardwareWatchpoint( 1171 lldb::addr_t addr, size_t size, uint32_t watch_flags) { 1172 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_WATCHPOINTS)); 1173 const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints(); 1174 for (uint32_t wp_index = 0; wp_index < num_hw_watchpoints; ++wp_index) { 1175 bool is_vacant; 1176 Status error = IsWatchpointVacant(wp_index, is_vacant); 1177 if (is_vacant) { 1178 error = SetHardwareWatchpointWithIndex(addr, size, watch_flags, wp_index); 1179 if (error.Success()) 1180 return wp_index; 1181 } 1182 if (error.Fail() && log) { 1183 log->Printf("NativeRegisterContextLinux_x86_64::%s Error: %s", 1184 __FUNCTION__, error.AsCString()); 1185 } 1186 } 1187 return LLDB_INVALID_INDEX32; 1188 } 1189 1190 lldb::addr_t 1191 NativeRegisterContextLinux_x86_64::GetWatchpointAddress(uint32_t wp_index) { 1192 if (wp_index >= NumSupportedHardwareWatchpoints()) 1193 return LLDB_INVALID_ADDRESS; 1194 RegisterValue reg_value; 1195 if (ReadRegisterRaw(m_reg_info.first_dr + wp_index, reg_value).Fail()) 1196 return LLDB_INVALID_ADDRESS; 1197 return reg_value.GetAsUInt64(); 1198 } 1199 1200 uint32_t NativeRegisterContextLinux_x86_64::NumSupportedHardwareWatchpoints() { 1201 // Available debug address registers: dr0, dr1, dr2, dr3 1202 return 4; 1203 } 1204 1205 #endif // defined(__i386__) || defined(__x86_64__) 1206