1 //===-- NativeRegisterContextLinux_ppc64le.cpp ------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 // This implementation is related to the OpenPOWER ABI for Power Architecture
11 // 64-bit ELF V2 ABI
12 
13 #if defined(__powerpc64__)
14 
15 #include "NativeRegisterContextLinux_ppc64le.h"
16 
17 #include "lldb/Core/RegisterValue.h"
18 #include "lldb/Host/common/NativeProcessProtocol.h"
19 #include "lldb/Utility/DataBufferHeap.h"
20 #include "lldb/Utility/Log.h"
21 #include "lldb/Utility/Status.h"
22 
23 #include "Plugins/Process/Linux/NativeProcessLinux.h"
24 #include "Plugins/Process/Linux/Procfs.h"
25 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
26 #include "Plugins/Process/Utility/RegisterInfoPOSIX_ppc64le.h"
27 
28 // System includes - They have to be included after framework includes because
29 // they define some
30 // macros which collide with variable names in other modules
31 #include <sys/socket.h>
32 #include <elf.h>
33 #include <asm/ptrace.h>
34 
35 #define REG_CONTEXT_SIZE                                                       \
36   (GetGPRSize() + GetFPRSize() + sizeof(m_vmx_ppc64le) + sizeof(m_vsx_ppc64le))
37 using namespace lldb;
38 using namespace lldb_private;
39 using namespace lldb_private::process_linux;
40 
41 static const uint32_t g_gpr_regnums_ppc64le[] = {
42     gpr_r0_ppc64le,   gpr_r1_ppc64le,  gpr_r2_ppc64le,     gpr_r3_ppc64le,
43     gpr_r4_ppc64le,   gpr_r5_ppc64le,  gpr_r6_ppc64le,     gpr_r7_ppc64le,
44     gpr_r8_ppc64le,   gpr_r9_ppc64le,  gpr_r10_ppc64le,    gpr_r11_ppc64le,
45     gpr_r12_ppc64le,  gpr_r13_ppc64le, gpr_r14_ppc64le,    gpr_r15_ppc64le,
46     gpr_r16_ppc64le,  gpr_r17_ppc64le, gpr_r18_ppc64le,    gpr_r19_ppc64le,
47     gpr_r20_ppc64le,  gpr_r21_ppc64le, gpr_r22_ppc64le,    gpr_r23_ppc64le,
48     gpr_r24_ppc64le,  gpr_r25_ppc64le, gpr_r26_ppc64le,    gpr_r27_ppc64le,
49     gpr_r28_ppc64le,  gpr_r29_ppc64le, gpr_r30_ppc64le,    gpr_r31_ppc64le,
50     gpr_pc_ppc64le,   gpr_msr_ppc64le, gpr_origr3_ppc64le, gpr_ctr_ppc64le,
51     gpr_lr_ppc64le,   gpr_xer_ppc64le, gpr_cr_ppc64le,     gpr_softe_ppc64le,
52     gpr_trap_ppc64le,
53     LLDB_INVALID_REGNUM // register sets need to end with this flag
54 };
55 
56 static const uint32_t g_fpr_regnums_ppc64le[] = {
57     fpr_f0_ppc64le,    fpr_f1_ppc64le,  fpr_f2_ppc64le,  fpr_f3_ppc64le,
58     fpr_f4_ppc64le,    fpr_f5_ppc64le,  fpr_f6_ppc64le,  fpr_f7_ppc64le,
59     fpr_f8_ppc64le,    fpr_f9_ppc64le,  fpr_f10_ppc64le, fpr_f11_ppc64le,
60     fpr_f12_ppc64le,   fpr_f13_ppc64le, fpr_f14_ppc64le, fpr_f15_ppc64le,
61     fpr_f16_ppc64le,   fpr_f17_ppc64le, fpr_f18_ppc64le, fpr_f19_ppc64le,
62     fpr_f20_ppc64le,   fpr_f21_ppc64le, fpr_f22_ppc64le, fpr_f23_ppc64le,
63     fpr_f24_ppc64le,   fpr_f25_ppc64le, fpr_f26_ppc64le, fpr_f27_ppc64le,
64     fpr_f28_ppc64le,   fpr_f29_ppc64le, fpr_f30_ppc64le, fpr_f31_ppc64le,
65     fpr_fpscr_ppc64le,
66     LLDB_INVALID_REGNUM // register sets need to end with this flag
67 };
68 
69 static const uint32_t g_vmx_regnums_ppc64le[] = {
70     vmx_vr0_ppc64le,  vmx_vr1_ppc64le,    vmx_vr2_ppc64le,  vmx_vr3_ppc64le,
71     vmx_vr4_ppc64le,  vmx_vr5_ppc64le,    vmx_vr6_ppc64le,  vmx_vr7_ppc64le,
72     vmx_vr8_ppc64le,  vmx_vr9_ppc64le,    vmx_vr10_ppc64le, vmx_vr11_ppc64le,
73     vmx_vr12_ppc64le, vmx_vr13_ppc64le,   vmx_vr14_ppc64le, vmx_vr15_ppc64le,
74     vmx_vr16_ppc64le, vmx_vr17_ppc64le,   vmx_vr18_ppc64le, vmx_vr19_ppc64le,
75     vmx_vr20_ppc64le, vmx_vr21_ppc64le,   vmx_vr22_ppc64le, vmx_vr23_ppc64le,
76     vmx_vr24_ppc64le, vmx_vr25_ppc64le,   vmx_vr26_ppc64le, vmx_vr27_ppc64le,
77     vmx_vr28_ppc64le, vmx_vr29_ppc64le,   vmx_vr30_ppc64le, vmx_vr31_ppc64le,
78     vmx_vscr_ppc64le, vmx_vrsave_ppc64le,
79     LLDB_INVALID_REGNUM // register sets need to end with this flag
80 };
81 
82 static const uint32_t g_vsx_regnums_ppc64le[] = {
83     vsx_vs0_ppc64le,  vsx_vs1_ppc64le,  vsx_vs2_ppc64le,  vsx_vs3_ppc64le,
84     vsx_vs4_ppc64le,  vsx_vs5_ppc64le,  vsx_vs6_ppc64le,  vsx_vs7_ppc64le,
85     vsx_vs8_ppc64le,  vsx_vs9_ppc64le,  vsx_vs10_ppc64le, vsx_vs11_ppc64le,
86     vsx_vs12_ppc64le, vsx_vs13_ppc64le, vsx_vs14_ppc64le, vsx_vs15_ppc64le,
87     vsx_vs16_ppc64le, vsx_vs17_ppc64le, vsx_vs18_ppc64le, vsx_vs19_ppc64le,
88     vsx_vs20_ppc64le, vsx_vs21_ppc64le, vsx_vs22_ppc64le, vsx_vs23_ppc64le,
89     vsx_vs24_ppc64le, vsx_vs25_ppc64le, vsx_vs26_ppc64le, vsx_vs27_ppc64le,
90     vsx_vs28_ppc64le, vsx_vs29_ppc64le, vsx_vs30_ppc64le, vsx_vs31_ppc64le,
91     vsx_vs32_ppc64le, vsx_vs33_ppc64le, vsx_vs34_ppc64le, vsx_vs35_ppc64le,
92     vsx_vs36_ppc64le, vsx_vs37_ppc64le, vsx_vs38_ppc64le, vsx_vs39_ppc64le,
93     vsx_vs40_ppc64le, vsx_vs41_ppc64le, vsx_vs42_ppc64le, vsx_vs43_ppc64le,
94     vsx_vs44_ppc64le, vsx_vs45_ppc64le, vsx_vs46_ppc64le, vsx_vs47_ppc64le,
95     vsx_vs48_ppc64le, vsx_vs49_ppc64le, vsx_vs50_ppc64le, vsx_vs51_ppc64le,
96     vsx_vs52_ppc64le, vsx_vs53_ppc64le, vsx_vs54_ppc64le, vsx_vs55_ppc64le,
97     vsx_vs56_ppc64le, vsx_vs57_ppc64le, vsx_vs58_ppc64le, vsx_vs59_ppc64le,
98     vsx_vs60_ppc64le, vsx_vs61_ppc64le, vsx_vs62_ppc64le, vsx_vs63_ppc64le,
99     LLDB_INVALID_REGNUM // register sets need to end with this flag
100 };
101 
102 namespace {
103 // Number of register sets provided by this context.
104 enum { k_num_register_sets = 4 };
105 }
106 
107 static const RegisterSet g_reg_sets_ppc64le[k_num_register_sets] = {
108     {"General Purpose Registers", "gpr", k_num_gpr_registers_ppc64le,
109      g_gpr_regnums_ppc64le},
110     {"Floating Point Registers", "fpr", k_num_fpr_registers_ppc64le,
111      g_fpr_regnums_ppc64le},
112     {"AltiVec/VMX Registers", "vmx", k_num_vmx_registers_ppc64le,
113      g_vmx_regnums_ppc64le},
114     {"VSX Registers", "vsx", k_num_vsx_registers_ppc64le,
115      g_vsx_regnums_ppc64le},
116 };
117 
118 std::unique_ptr<NativeRegisterContextLinux>
119 NativeRegisterContextLinux::CreateHostNativeRegisterContextLinux(
120     const ArchSpec &target_arch, NativeThreadProtocol &native_thread) {
121   switch (target_arch.GetMachine()) {
122   case llvm::Triple::ppc64le:
123     return llvm::make_unique<NativeRegisterContextLinux_ppc64le>(target_arch,
124                                                                  native_thread);
125   default:
126     llvm_unreachable("have no register context for architecture");
127   }
128 }
129 
130 NativeRegisterContextLinux_ppc64le::NativeRegisterContextLinux_ppc64le(
131     const ArchSpec &target_arch, NativeThreadProtocol &native_thread)
132     : NativeRegisterContextLinux(native_thread,
133                                  new RegisterInfoPOSIX_ppc64le(target_arch)) {
134   if (target_arch.GetMachine() != llvm::Triple::ppc64le) {
135     llvm_unreachable("Unhandled target architecture.");
136   }
137 
138   ::memset(&m_gpr_ppc64le, 0, sizeof(m_gpr_ppc64le));
139   ::memset(&m_fpr_ppc64le, 0, sizeof(m_fpr_ppc64le));
140   ::memset(&m_vmx_ppc64le, 0, sizeof(m_vmx_ppc64le));
141   ::memset(&m_vsx_ppc64le, 0, sizeof(m_vsx_ppc64le));
142   ::memset(&m_hwp_regs, 0, sizeof(m_hwp_regs));
143 }
144 
145 uint32_t NativeRegisterContextLinux_ppc64le::GetRegisterSetCount() const {
146   return k_num_register_sets;
147 }
148 
149 const RegisterSet *
150 NativeRegisterContextLinux_ppc64le::GetRegisterSet(uint32_t set_index) const {
151   if (set_index < k_num_register_sets)
152     return &g_reg_sets_ppc64le[set_index];
153 
154   return nullptr;
155 }
156 
157 uint32_t NativeRegisterContextLinux_ppc64le::GetUserRegisterCount() const {
158   uint32_t count = 0;
159   for (uint32_t set_index = 0; set_index < k_num_register_sets; ++set_index)
160     count += g_reg_sets_ppc64le[set_index].num_registers;
161   return count;
162 }
163 
164 Status NativeRegisterContextLinux_ppc64le::ReadRegister(
165     const RegisterInfo *reg_info, RegisterValue &reg_value) {
166   Status error;
167 
168   if (!reg_info) {
169     error.SetErrorString("reg_info NULL");
170     return error;
171   }
172 
173   const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB];
174 
175   if (IsFPR(reg)) {
176     error = ReadFPR();
177     if (error.Fail())
178       return error;
179 
180     // Get pointer to m_fpr_ppc64le variable and set the data from it.
181     uint32_t fpr_offset = CalculateFprOffset(reg_info);
182     assert(fpr_offset < sizeof m_fpr_ppc64le);
183     uint8_t *src = (uint8_t *)&m_fpr_ppc64le + fpr_offset;
184     reg_value.SetFromMemoryData(reg_info, src, reg_info->byte_size,
185                                 eByteOrderLittle, error);
186   } else if (IsVSX(reg)) {
187     uint32_t vsx_offset = CalculateVsxOffset(reg_info);
188     assert(vsx_offset < sizeof(m_vsx_ppc64le));
189 
190     if (vsx_offset < sizeof(m_vsx_ppc64le) / 2) {
191       error = ReadVSX();
192       if (error.Fail())
193         return error;
194 
195       error = ReadFPR();
196       if (error.Fail())
197         return error;
198 
199       uint64_t value[2];
200       uint8_t *dst, *src;
201       dst = (uint8_t *)&value;
202       src = (uint8_t *)&m_vsx_ppc64le + vsx_offset / 2;
203       ::memcpy(dst, src, 8);
204       dst += 8;
205       src = (uint8_t *)&m_fpr_ppc64le + vsx_offset / 2;
206       ::memcpy(dst, src, 8);
207       reg_value.SetFromMemoryData(reg_info, &value, reg_info->byte_size,
208                                   eByteOrderLittle, error);
209     } else {
210       error = ReadVMX();
211       if (error.Fail())
212         return error;
213 
214       // Get pointer to m_vmx_ppc64le variable and set the data from it.
215       uint32_t vmx_offset = vsx_offset - sizeof(m_vsx_ppc64le) / 2;
216       uint8_t *src = (uint8_t *)&m_vmx_ppc64le + vmx_offset;
217       reg_value.SetFromMemoryData(reg_info, src, reg_info->byte_size,
218                                   eByteOrderLittle, error);
219     }
220   } else if (IsVMX(reg)) {
221     error = ReadVMX();
222     if (error.Fail())
223       return error;
224 
225     // Get pointer to m_vmx_ppc64le variable and set the data from it.
226     uint32_t vmx_offset = CalculateVmxOffset(reg_info);
227     assert(vmx_offset < sizeof m_vmx_ppc64le);
228     uint8_t *src = (uint8_t *)&m_vmx_ppc64le + vmx_offset;
229     reg_value.SetFromMemoryData(reg_info, src, reg_info->byte_size,
230                                 eByteOrderLittle, error);
231   } else if (IsGPR(reg)) {
232     error = ReadGPR();
233     if (error.Fail())
234       return error;
235 
236     uint8_t *src = (uint8_t *) &m_gpr_ppc64le + reg_info->byte_offset;
237     reg_value.SetFromMemoryData(reg_info, src, reg_info->byte_size,
238                                 eByteOrderLittle, error);
239   } else {
240     return Status("failed - register wasn't recognized to be a GPR, FPR, VSX "
241                   "or VMX, read strategy unknown");
242   }
243 
244   return error;
245 }
246 
247 Status NativeRegisterContextLinux_ppc64le::WriteRegister(
248     const RegisterInfo *reg_info, const RegisterValue &reg_value) {
249   Status error;
250   if (!reg_info)
251     return Status("reg_info NULL");
252 
253   const uint32_t reg_index = reg_info->kinds[lldb::eRegisterKindLLDB];
254   if (reg_index == LLDB_INVALID_REGNUM)
255     return Status("no lldb regnum for %s", reg_info && reg_info->name
256                                                ? reg_info->name
257                                                : "<unknown register>");
258 
259   if (IsGPR(reg_index)) {
260     error = ReadGPR();
261     if (error.Fail())
262       return error;
263 
264     uint8_t *dst = (uint8_t *)&m_gpr_ppc64le + reg_info->byte_offset;
265     ::memcpy(dst, reg_value.GetBytes(), reg_value.GetByteSize());
266 
267     error = WriteGPR();
268     if (error.Fail())
269       return error;
270 
271     return Status();
272   }
273 
274   if (IsFPR(reg_index)) {
275     error = ReadFPR();
276     if (error.Fail())
277       return error;
278 
279     // Get pointer to m_fpr_ppc64le variable and set the data to it.
280     uint32_t fpr_offset = CalculateFprOffset(reg_info);
281     assert(fpr_offset < GetFPRSize());
282     uint8_t *dst = (uint8_t *)&m_fpr_ppc64le + fpr_offset;
283     ::memcpy(dst, reg_value.GetBytes(), reg_value.GetByteSize());
284 
285     error = WriteFPR();
286     if (error.Fail())
287       return error;
288 
289     return Status();
290   }
291 
292   if (IsVMX(reg_index)) {
293     error = ReadVMX();
294     if (error.Fail())
295       return error;
296 
297     // Get pointer to m_vmx_ppc64le variable and set the data to it.
298     uint32_t vmx_offset = CalculateVmxOffset(reg_info);
299     assert(vmx_offset < sizeof(m_vmx_ppc64le));
300     uint8_t *dst = (uint8_t *)&m_vmx_ppc64le + vmx_offset;
301     ::memcpy(dst, reg_value.GetBytes(), reg_value.GetByteSize());
302 
303     error = WriteVMX();
304     if (error.Fail())
305       return error;
306 
307     return Status();
308   }
309 
310   if (IsVSX(reg_index)) {
311     uint32_t vsx_offset = CalculateVsxOffset(reg_info);
312     assert(vsx_offset < sizeof(m_vsx_ppc64le));
313 
314     if (vsx_offset < sizeof(m_vsx_ppc64le) / 2) {
315       error = ReadVSX();
316       if (error.Fail())
317         return error;
318 
319       error = ReadFPR();
320       if (error.Fail())
321         return error;
322 
323       uint64_t value[2];
324       ::memcpy(value, reg_value.GetBytes(), 16);
325       uint8_t *dst, *src;
326       src = (uint8_t *)value;
327       dst = (uint8_t *)&m_vsx_ppc64le + vsx_offset / 2;
328       ::memcpy(dst, src, 8);
329       src += 8;
330       dst = (uint8_t *)&m_fpr_ppc64le + vsx_offset / 2;
331       ::memcpy(dst, src, 8);
332 
333       WriteVSX();
334       WriteFPR();
335     } else {
336       error = ReadVMX();
337       if (error.Fail())
338         return error;
339 
340       // Get pointer to m_vmx_ppc64le variable and set the data from it.
341       uint32_t vmx_offset = vsx_offset - sizeof(m_vsx_ppc64le) / 2;
342       uint8_t *dst = (uint8_t *)&m_vmx_ppc64le + vmx_offset;
343       ::memcpy(dst, reg_value.GetBytes(), reg_value.GetByteSize());
344       WriteVMX();
345     }
346 
347     return Status();
348   }
349 
350   return Status("failed - register wasn't recognized to be a GPR, FPR, VSX "
351                 "or VMX, write strategy unknown");
352 }
353 
354 Status NativeRegisterContextLinux_ppc64le::ReadAllRegisterValues(
355     lldb::DataBufferSP &data_sp) {
356   Status error;
357 
358   data_sp.reset(new DataBufferHeap(REG_CONTEXT_SIZE, 0));
359   if (!data_sp)
360     return Status("failed to allocate DataBufferHeap instance of size %" PRIu64,
361                   REG_CONTEXT_SIZE);
362 
363   error = ReadGPR();
364   if (error.Fail())
365     return error;
366 
367   error = ReadFPR();
368   if (error.Fail())
369     return error;
370 
371   error = ReadVMX();
372   if (error.Fail())
373     return error;
374 
375   error = ReadVSX();
376   if (error.Fail())
377     return error;
378 
379   uint8_t *dst = data_sp->GetBytes();
380   if (dst == nullptr) {
381     error.SetErrorStringWithFormat("DataBufferHeap instance of size %" PRIu64
382                                    " returned a null pointer",
383                                    REG_CONTEXT_SIZE);
384     return error;
385   }
386 
387   ::memcpy(dst, &m_gpr_ppc64le, GetGPRSize());
388   dst += GetGPRSize();
389   ::memcpy(dst, &m_fpr_ppc64le, GetFPRSize());
390   dst += GetFPRSize();
391   ::memcpy(dst, &m_vmx_ppc64le, sizeof(m_vmx_ppc64le));
392   dst += sizeof(m_vmx_ppc64le);
393   ::memcpy(dst, &m_vsx_ppc64le, sizeof(m_vsx_ppc64le));
394 
395   return error;
396 }
397 
398 Status NativeRegisterContextLinux_ppc64le::WriteAllRegisterValues(
399     const lldb::DataBufferSP &data_sp) {
400   Status error;
401 
402   if (!data_sp) {
403     error.SetErrorStringWithFormat(
404         "NativeRegisterContextLinux_ppc64le::%s invalid data_sp provided",
405         __FUNCTION__);
406     return error;
407   }
408 
409   if (data_sp->GetByteSize() != REG_CONTEXT_SIZE) {
410     error.SetErrorStringWithFormat(
411         "NativeRegisterContextLinux_ppc64le::%s data_sp contained mismatched "
412         "data size, expected %" PRIu64 ", actual %" PRIu64,
413         __FUNCTION__, REG_CONTEXT_SIZE, data_sp->GetByteSize());
414     return error;
415   }
416 
417   uint8_t *src = data_sp->GetBytes();
418   if (src == nullptr) {
419     error.SetErrorStringWithFormat("NativeRegisterContextLinux_ppc64le::%s "
420                                    "DataBuffer::GetBytes() returned a null "
421                                    "pointer",
422                                    __FUNCTION__);
423     return error;
424   }
425 
426   ::memcpy(&m_gpr_ppc64le, src, GetGPRSize());
427   error = WriteGPR();
428 
429   if (error.Fail())
430     return error;
431 
432   src += GetGPRSize();
433   ::memcpy(&m_fpr_ppc64le, src, GetFPRSize());
434 
435   error = WriteFPR();
436   if (error.Fail())
437     return error;
438 
439   src += GetFPRSize();
440   ::memcpy(&m_vmx_ppc64le, src, sizeof(m_vmx_ppc64le));
441 
442   error = WriteVMX();
443   if (error.Fail())
444     return error;
445 
446   src += sizeof(m_vmx_ppc64le);
447   ::memcpy(&m_vsx_ppc64le, src, sizeof(m_vsx_ppc64le));
448   error = WriteVSX();
449 
450   return error;
451 }
452 
453 bool NativeRegisterContextLinux_ppc64le::IsGPR(unsigned reg) const {
454   return reg <= k_last_gpr_ppc64le; // GPR's come first.
455 }
456 
457 bool NativeRegisterContextLinux_ppc64le::IsFPR(unsigned reg) const {
458   return (k_first_fpr_ppc64le <= reg && reg <= k_last_fpr_ppc64le);
459 }
460 
461 Status NativeRegisterContextLinux_ppc64le::DoReadGPR(
462     void *buf, size_t buf_size) {
463   int regset = NT_PRSTATUS;
464   return NativeProcessLinux::PtraceWrapper(PTRACE_GETREGS, m_thread.GetID(),
465                                            &regset, buf, buf_size);
466 }
467 
468 Status NativeRegisterContextLinux_ppc64le::DoWriteGPR(
469     void *buf, size_t buf_size) {
470   int regset = NT_PRSTATUS;
471   return NativeProcessLinux::PtraceWrapper(PTRACE_SETREGS, m_thread.GetID(),
472                                            &regset, buf, buf_size);
473 }
474 
475 Status NativeRegisterContextLinux_ppc64le::DoReadFPR(void *buf,
476                                                      size_t buf_size) {
477   int regset = NT_FPREGSET;
478   return NativeProcessLinux::PtraceWrapper(PTRACE_GETFPREGS, m_thread.GetID(),
479                                            &regset, buf, buf_size);
480 }
481 
482 Status NativeRegisterContextLinux_ppc64le::DoWriteFPR(void *buf,
483                                                       size_t buf_size) {
484   int regset = NT_FPREGSET;
485   return NativeProcessLinux::PtraceWrapper(PTRACE_SETFPREGS, m_thread.GetID(),
486                                            &regset, buf, buf_size);
487 }
488 
489 uint32_t NativeRegisterContextLinux_ppc64le::CalculateFprOffset(
490     const RegisterInfo *reg_info) const {
491   return reg_info->byte_offset -
492          GetRegisterInfoAtIndex(k_first_fpr_ppc64le)->byte_offset;
493 }
494 
495 uint32_t NativeRegisterContextLinux_ppc64le::CalculateVmxOffset(
496     const RegisterInfo *reg_info) const {
497   return reg_info->byte_offset -
498          GetRegisterInfoAtIndex(k_first_vmx_ppc64le)->byte_offset;
499 }
500 
501 uint32_t NativeRegisterContextLinux_ppc64le::CalculateVsxOffset(
502     const RegisterInfo *reg_info) const {
503   return reg_info->byte_offset -
504          GetRegisterInfoAtIndex(k_first_vsx_ppc64le)->byte_offset;
505 }
506 
507 Status NativeRegisterContextLinux_ppc64le::ReadVMX() {
508   int regset = NT_PPC_VMX;
509   return NativeProcessLinux::PtraceWrapper(PTRACE_GETVRREGS, m_thread.GetID(),
510                                            &regset, &m_vmx_ppc64le,
511                                            sizeof(m_vmx_ppc64le));
512 }
513 
514 Status NativeRegisterContextLinux_ppc64le::WriteVMX() {
515   int regset = NT_PPC_VMX;
516   return NativeProcessLinux::PtraceWrapper(PTRACE_SETVRREGS, m_thread.GetID(),
517                                            &regset, &m_vmx_ppc64le,
518                                            sizeof(m_vmx_ppc64le));
519 }
520 
521 Status NativeRegisterContextLinux_ppc64le::ReadVSX() {
522   int regset = NT_PPC_VSX;
523   return NativeProcessLinux::PtraceWrapper(PTRACE_GETVSRREGS, m_thread.GetID(),
524                                            &regset, &m_vsx_ppc64le,
525                                            sizeof(m_vsx_ppc64le));
526 }
527 
528 Status NativeRegisterContextLinux_ppc64le::WriteVSX() {
529   int regset = NT_PPC_VSX;
530   return NativeProcessLinux::PtraceWrapper(PTRACE_SETVSRREGS, m_thread.GetID(),
531                                            &regset, &m_vsx_ppc64le,
532                                            sizeof(m_vsx_ppc64le));
533 }
534 
535 bool NativeRegisterContextLinux_ppc64le::IsVMX(unsigned reg) {
536   return (reg >= k_first_vmx_ppc64le) && (reg <= k_last_vmx_ppc64le);
537 }
538 
539 bool NativeRegisterContextLinux_ppc64le::IsVSX(unsigned reg) {
540   return (reg >= k_first_vsx_ppc64le) && (reg <= k_last_vsx_ppc64le);
541 }
542 
543 uint32_t NativeRegisterContextLinux_ppc64le::NumSupportedHardwareWatchpoints() {
544   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
545 
546   // Read hardware breakpoint and watchpoint information.
547   Status error = ReadHardwareDebugInfo();
548 
549   if (error.Fail())
550     return 0;
551 
552   LLDB_LOG(log, "{0}", m_max_hwp_supported);
553   return m_max_hwp_supported;
554 }
555 
556 uint32_t NativeRegisterContextLinux_ppc64le::SetHardwareWatchpoint(
557     lldb::addr_t addr, size_t size, uint32_t watch_flags) {
558   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
559   LLDB_LOG(log, "addr: {0:x}, size: {1:x} watch_flags: {2:x}", addr, size,
560            watch_flags);
561 
562   // Read hardware breakpoint and watchpoint information.
563   Status error = ReadHardwareDebugInfo();
564 
565   if (error.Fail())
566     return LLDB_INVALID_INDEX32;
567 
568   uint32_t control_value = 0, wp_index = 0;
569   lldb::addr_t real_addr = addr;
570   uint32_t rw_mode = 0;
571 
572   // Check if we are setting watchpoint other than read/write/access
573   // Update watchpoint flag to match ppc64le write-read bit configuration.
574   switch (watch_flags) {
575   case eWatchpointKindWrite:
576     rw_mode = PPC_BREAKPOINT_TRIGGER_WRITE;
577     watch_flags = 2;
578     break;
579   case eWatchpointKindRead:
580     rw_mode = PPC_BREAKPOINT_TRIGGER_READ;
581     watch_flags = 1;
582     break;
583   case (eWatchpointKindRead | eWatchpointKindWrite):
584     rw_mode = PPC_BREAKPOINT_TRIGGER_RW;
585     break;
586   default:
587     return LLDB_INVALID_INDEX32;
588   }
589 
590   // Check if size has a valid hardware watchpoint length.
591   if (size != 1 && size != 2 && size != 4 && size != 8)
592     return LLDB_INVALID_INDEX32;
593 
594   // Check 8-byte alignment for hardware watchpoint target address.
595   // Below is a hack to recalculate address and size in order to
596   // make sure we can watch non 8-byte alligned addresses as well.
597   if (addr & 0x07) {
598 
599     addr_t begin = llvm::alignDown(addr, 8);
600     addr_t end = llvm::alignTo(addr + size, 8);
601     size = llvm::PowerOf2Ceil(end - begin);
602 
603     addr = addr & (~0x07);
604   }
605 
606   // Setup control value
607   control_value = watch_flags << 3;
608   control_value |= ((1 << size) - 1) << 5;
609   control_value |= (2 << 1) | 1;
610 
611   // Iterate over stored watchpoints and find a free wp_index
612   wp_index = LLDB_INVALID_INDEX32;
613   for (uint32_t i = 0; i < m_max_hwp_supported; i++) {
614     if ((m_hwp_regs[i].control & 1) == 0) {
615       wp_index = i; // Mark last free slot
616     } else if (m_hwp_regs[i].address == addr) {
617       return LLDB_INVALID_INDEX32; // We do not support duplicate watchpoints.
618     }
619   }
620 
621   if (wp_index == LLDB_INVALID_INDEX32)
622     return LLDB_INVALID_INDEX32;
623 
624   // Update watchpoint in local cache
625   m_hwp_regs[wp_index].real_addr = real_addr;
626   m_hwp_regs[wp_index].address = addr;
627   m_hwp_regs[wp_index].control = control_value;
628   m_hwp_regs[wp_index].mode = rw_mode;
629 
630   // PTRACE call to set corresponding watchpoint register.
631   error = WriteHardwareDebugRegs();
632 
633   if (error.Fail()) {
634     m_hwp_regs[wp_index].address = 0;
635     m_hwp_regs[wp_index].control &= llvm::maskTrailingZeros<uint32_t>(1);
636 
637     return LLDB_INVALID_INDEX32;
638   }
639 
640   return wp_index;
641 }
642 
643 bool NativeRegisterContextLinux_ppc64le::ClearHardwareWatchpoint(
644     uint32_t wp_index) {
645   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
646   LLDB_LOG(log, "wp_index: {0}", wp_index);
647 
648   // Read hardware breakpoint and watchpoint information.
649   Status error = ReadHardwareDebugInfo();
650 
651   if (error.Fail())
652     return false;
653 
654   if (wp_index >= m_max_hwp_supported)
655     return false;
656 
657   // Create a backup we can revert to in case of failure.
658   lldb::addr_t tempAddr = m_hwp_regs[wp_index].address;
659   uint32_t tempControl = m_hwp_regs[wp_index].control;
660   long *tempSlot = reinterpret_cast<long *>(m_hwp_regs[wp_index].slot);
661 
662   // Update watchpoint in local cache
663   m_hwp_regs[wp_index].control &= llvm::maskTrailingZeros<uint32_t>(1);
664   m_hwp_regs[wp_index].address = 0;
665   m_hwp_regs[wp_index].slot = 0;
666   m_hwp_regs[wp_index].mode = 0;
667 
668   // Ptrace call to update hardware debug registers
669   error = NativeProcessLinux::PtraceWrapper(PPC_PTRACE_DELHWDEBUG,
670                                             m_thread.GetID(), 0, tempSlot);
671 
672   if (error.Fail()) {
673     m_hwp_regs[wp_index].control = tempControl;
674     m_hwp_regs[wp_index].address = tempAddr;
675     m_hwp_regs[wp_index].slot = reinterpret_cast<long>(tempSlot);
676 
677     return false;
678   }
679 
680   return true;
681 }
682 
683 uint32_t
684 NativeRegisterContextLinux_ppc64le::GetWatchpointSize(uint32_t wp_index) {
685   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
686   LLDB_LOG(log, "wp_index: {0}", wp_index);
687 
688   unsigned control = (m_hwp_regs[wp_index].control >> 5) & 0xff;
689   if (llvm::isPowerOf2_32(control + 1)) {
690     return llvm::countPopulation(control);
691   }
692 
693   return 0;
694 }
695 
696 bool NativeRegisterContextLinux_ppc64le::WatchpointIsEnabled(
697     uint32_t wp_index) {
698   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
699   LLDB_LOG(log, "wp_index: {0}", wp_index);
700 
701   return !!((m_hwp_regs[wp_index].control & 0x1) == 0x1);
702 }
703 
704 Status NativeRegisterContextLinux_ppc64le::GetWatchpointHitIndex(
705     uint32_t &wp_index, lldb::addr_t trap_addr) {
706   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
707   LLDB_LOG(log, "wp_index: {0}, trap_addr: {1:x}", wp_index, trap_addr);
708 
709   uint32_t watch_size;
710   lldb::addr_t watch_addr;
711 
712   for (wp_index = 0; wp_index < m_max_hwp_supported; ++wp_index) {
713     watch_size = GetWatchpointSize(wp_index);
714     watch_addr = m_hwp_regs[wp_index].address;
715 
716     if (WatchpointIsEnabled(wp_index) && trap_addr >= watch_addr &&
717         trap_addr <= watch_addr + watch_size) {
718       m_hwp_regs[wp_index].hit_addr = trap_addr;
719       return Status();
720     }
721   }
722 
723   wp_index = LLDB_INVALID_INDEX32;
724   return Status();
725 }
726 
727 lldb::addr_t
728 NativeRegisterContextLinux_ppc64le::GetWatchpointAddress(uint32_t wp_index) {
729   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
730   LLDB_LOG(log, "wp_index: {0}", wp_index);
731 
732   if (wp_index >= m_max_hwp_supported)
733     return LLDB_INVALID_ADDRESS;
734 
735   if (WatchpointIsEnabled(wp_index))
736     return m_hwp_regs[wp_index].real_addr;
737   else
738     return LLDB_INVALID_ADDRESS;
739 }
740 
741 lldb::addr_t
742 NativeRegisterContextLinux_ppc64le::GetWatchpointHitAddress(uint32_t wp_index) {
743   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
744   LLDB_LOG(log, "wp_index: {0}", wp_index);
745 
746   if (wp_index >= m_max_hwp_supported)
747     return LLDB_INVALID_ADDRESS;
748 
749   if (WatchpointIsEnabled(wp_index))
750     return m_hwp_regs[wp_index].hit_addr;
751 
752   return LLDB_INVALID_ADDRESS;
753 }
754 
755 Status NativeRegisterContextLinux_ppc64le::ReadHardwareDebugInfo() {
756   if (!m_refresh_hwdebug_info) {
757     return Status();
758   }
759 
760   ::pid_t tid = m_thread.GetID();
761 
762   struct ppc_debug_info hwdebug_info;
763   Status error;
764 
765   error = NativeProcessLinux::PtraceWrapper(
766       PPC_PTRACE_GETHWDBGINFO, tid, 0, &hwdebug_info, sizeof(hwdebug_info));
767 
768   if (error.Fail())
769     return error;
770 
771   m_max_hwp_supported = hwdebug_info.num_data_bps;
772   m_max_hbp_supported = hwdebug_info.num_instruction_bps;
773   m_refresh_hwdebug_info = false;
774 
775   return error;
776 }
777 
778 Status NativeRegisterContextLinux_ppc64le::WriteHardwareDebugRegs() {
779   struct ppc_hw_breakpoint reg_state;
780   Status error;
781   long ret;
782 
783   for (uint32_t i = 0; i < m_max_hwp_supported; i++) {
784     reg_state.addr = m_hwp_regs[i].address;
785     reg_state.trigger_type = m_hwp_regs[i].mode;
786     reg_state.version = 1;
787     reg_state.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
788     reg_state.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
789     reg_state.addr2 = 0;
790     reg_state.condition_value = 0;
791 
792     error = NativeProcessLinux::PtraceWrapper(PPC_PTRACE_SETHWDEBUG,
793                                               m_thread.GetID(), 0, &reg_state,
794                                               sizeof(reg_state), &ret);
795 
796     if (error.Fail())
797       return error;
798 
799     m_hwp_regs[i].slot = ret;
800   }
801 
802   return error;
803 }
804 
805 #endif // defined(__powerpc64__)
806