1 //===-- NativeRegisterContextLinux_ppc64le.cpp ------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 // This implementation is related to the OpenPOWER ABI for Power Architecture
11 // 64-bit ELF V2 ABI
12 
13 #if defined(__powerpc64__)
14 
15 #include "NativeRegisterContextLinux_ppc64le.h"
16 
17 #include "lldb/Core/RegisterValue.h"
18 #include "lldb/Host/common/NativeProcessProtocol.h"
19 #include "lldb/Utility/DataBufferHeap.h"
20 #include "lldb/Utility/Log.h"
21 #include "lldb/Utility/Status.h"
22 
23 #include "Plugins/Process/Linux/NativeProcessLinux.h"
24 #include "Plugins/Process/Linux/Procfs.h"
25 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
26 #include "Plugins/Process/Utility/RegisterInfoPOSIX_ppc64le.h"
27 
28 // System includes - They have to be included after framework includes because
29 // they define some
30 // macros which collide with variable names in other modules
31 #include <sys/socket.h>
32 #include <elf.h>
33 #include <asm/ptrace.h>
34 
35 #define REG_CONTEXT_SIZE                                                       \
36   (GetGPRSize() + GetFPRSize() + sizeof(m_vmx_ppc64le) + sizeof(m_vsx_ppc64le))
37 using namespace lldb;
38 using namespace lldb_private;
39 using namespace lldb_private::process_linux;
40 
41 static const uint32_t g_gpr_regnums_ppc64le[] = {
42     gpr_r0_ppc64le,   gpr_r1_ppc64le,  gpr_r2_ppc64le,     gpr_r3_ppc64le,
43     gpr_r4_ppc64le,   gpr_r5_ppc64le,  gpr_r6_ppc64le,     gpr_r7_ppc64le,
44     gpr_r8_ppc64le,   gpr_r9_ppc64le,  gpr_r10_ppc64le,    gpr_r11_ppc64le,
45     gpr_r12_ppc64le,  gpr_r13_ppc64le, gpr_r14_ppc64le,    gpr_r15_ppc64le,
46     gpr_r16_ppc64le,  gpr_r17_ppc64le, gpr_r18_ppc64le,    gpr_r19_ppc64le,
47     gpr_r20_ppc64le,  gpr_r21_ppc64le, gpr_r22_ppc64le,    gpr_r23_ppc64le,
48     gpr_r24_ppc64le,  gpr_r25_ppc64le, gpr_r26_ppc64le,    gpr_r27_ppc64le,
49     gpr_r28_ppc64le,  gpr_r29_ppc64le, gpr_r30_ppc64le,    gpr_r31_ppc64le,
50     gpr_pc_ppc64le,   gpr_msr_ppc64le, gpr_origr3_ppc64le, gpr_ctr_ppc64le,
51     gpr_lr_ppc64le,   gpr_xer_ppc64le, gpr_cr_ppc64le,     gpr_softe_ppc64le,
52     gpr_trap_ppc64le,
53 };
54 
55 static const uint32_t g_fpr_regnums_ppc64le[] = {
56     fpr_f0_ppc64le,    fpr_f1_ppc64le,  fpr_f2_ppc64le,  fpr_f3_ppc64le,
57     fpr_f4_ppc64le,    fpr_f5_ppc64le,  fpr_f6_ppc64le,  fpr_f7_ppc64le,
58     fpr_f8_ppc64le,    fpr_f9_ppc64le,  fpr_f10_ppc64le, fpr_f11_ppc64le,
59     fpr_f12_ppc64le,   fpr_f13_ppc64le, fpr_f14_ppc64le, fpr_f15_ppc64le,
60     fpr_f16_ppc64le,   fpr_f17_ppc64le, fpr_f18_ppc64le, fpr_f19_ppc64le,
61     fpr_f20_ppc64le,   fpr_f21_ppc64le, fpr_f22_ppc64le, fpr_f23_ppc64le,
62     fpr_f24_ppc64le,   fpr_f25_ppc64le, fpr_f26_ppc64le, fpr_f27_ppc64le,
63     fpr_f28_ppc64le,   fpr_f29_ppc64le, fpr_f30_ppc64le, fpr_f31_ppc64le,
64     fpr_fpscr_ppc64le,
65 };
66 
67 static const uint32_t g_vmx_regnums_ppc64le[] = {
68     vmx_vr0_ppc64le,  vmx_vr1_ppc64le,    vmx_vr2_ppc64le,  vmx_vr3_ppc64le,
69     vmx_vr4_ppc64le,  vmx_vr5_ppc64le,    vmx_vr6_ppc64le,  vmx_vr7_ppc64le,
70     vmx_vr8_ppc64le,  vmx_vr9_ppc64le,    vmx_vr10_ppc64le, vmx_vr11_ppc64le,
71     vmx_vr12_ppc64le, vmx_vr13_ppc64le,   vmx_vr14_ppc64le, vmx_vr15_ppc64le,
72     vmx_vr16_ppc64le, vmx_vr17_ppc64le,   vmx_vr18_ppc64le, vmx_vr19_ppc64le,
73     vmx_vr20_ppc64le, vmx_vr21_ppc64le,   vmx_vr22_ppc64le, vmx_vr23_ppc64le,
74     vmx_vr24_ppc64le, vmx_vr25_ppc64le,   vmx_vr26_ppc64le, vmx_vr27_ppc64le,
75     vmx_vr28_ppc64le, vmx_vr29_ppc64le,   vmx_vr30_ppc64le, vmx_vr31_ppc64le,
76     vmx_vscr_ppc64le, vmx_vrsave_ppc64le,
77 };
78 
79 static const uint32_t g_vsx_regnums_ppc64le[] = {
80     vsx_vs0_ppc64le,  vsx_vs1_ppc64le,  vsx_vs2_ppc64le,  vsx_vs3_ppc64le,
81     vsx_vs4_ppc64le,  vsx_vs5_ppc64le,  vsx_vs6_ppc64le,  vsx_vs7_ppc64le,
82     vsx_vs8_ppc64le,  vsx_vs9_ppc64le,  vsx_vs10_ppc64le, vsx_vs11_ppc64le,
83     vsx_vs12_ppc64le, vsx_vs13_ppc64le, vsx_vs14_ppc64le, vsx_vs15_ppc64le,
84     vsx_vs16_ppc64le, vsx_vs17_ppc64le, vsx_vs18_ppc64le, vsx_vs19_ppc64le,
85     vsx_vs20_ppc64le, vsx_vs21_ppc64le, vsx_vs22_ppc64le, vsx_vs23_ppc64le,
86     vsx_vs24_ppc64le, vsx_vs25_ppc64le, vsx_vs26_ppc64le, vsx_vs27_ppc64le,
87     vsx_vs28_ppc64le, vsx_vs29_ppc64le, vsx_vs30_ppc64le, vsx_vs31_ppc64le,
88     vsx_vs32_ppc64le, vsx_vs33_ppc64le, vsx_vs34_ppc64le, vsx_vs35_ppc64le,
89     vsx_vs36_ppc64le, vsx_vs37_ppc64le, vsx_vs38_ppc64le, vsx_vs39_ppc64le,
90     vsx_vs40_ppc64le, vsx_vs41_ppc64le, vsx_vs42_ppc64le, vsx_vs43_ppc64le,
91     vsx_vs44_ppc64le, vsx_vs45_ppc64le, vsx_vs46_ppc64le, vsx_vs47_ppc64le,
92     vsx_vs48_ppc64le, vsx_vs49_ppc64le, vsx_vs50_ppc64le, vsx_vs51_ppc64le,
93     vsx_vs52_ppc64le, vsx_vs53_ppc64le, vsx_vs54_ppc64le, vsx_vs55_ppc64le,
94     vsx_vs56_ppc64le, vsx_vs57_ppc64le, vsx_vs58_ppc64le, vsx_vs59_ppc64le,
95     vsx_vs60_ppc64le, vsx_vs61_ppc64le, vsx_vs62_ppc64le, vsx_vs63_ppc64le,
96 };
97 
98 namespace {
99 // Number of register sets provided by this context.
100 enum { k_num_register_sets = 4 };
101 }
102 
103 static const RegisterSet g_reg_sets_ppc64le[k_num_register_sets] = {
104     {"General Purpose Registers", "gpr", k_num_gpr_registers_ppc64le,
105      g_gpr_regnums_ppc64le},
106     {"Floating Point Registers", "fpr", k_num_fpr_registers_ppc64le,
107      g_fpr_regnums_ppc64le},
108     {"AltiVec/VMX Registers", "vmx", k_num_vmx_registers_ppc64le,
109      g_vmx_regnums_ppc64le},
110     {"VSX Registers", "vsx", k_num_vsx_registers_ppc64le,
111      g_vsx_regnums_ppc64le},
112 };
113 
114 std::unique_ptr<NativeRegisterContextLinux>
115 NativeRegisterContextLinux::CreateHostNativeRegisterContextLinux(
116     const ArchSpec &target_arch, NativeThreadProtocol &native_thread) {
117   switch (target_arch.GetMachine()) {
118   case llvm::Triple::ppc64le:
119     return llvm::make_unique<NativeRegisterContextLinux_ppc64le>(target_arch,
120                                                                  native_thread);
121   default:
122     llvm_unreachable("have no register context for architecture");
123   }
124 }
125 
126 NativeRegisterContextLinux_ppc64le::NativeRegisterContextLinux_ppc64le(
127     const ArchSpec &target_arch, NativeThreadProtocol &native_thread)
128     : NativeRegisterContextLinux(native_thread,
129                                  new RegisterInfoPOSIX_ppc64le(target_arch)) {
130   if (target_arch.GetMachine() != llvm::Triple::ppc64le) {
131     llvm_unreachable("Unhandled target architecture.");
132   }
133 
134   ::memset(&m_gpr_ppc64le, 0, sizeof(m_gpr_ppc64le));
135   ::memset(&m_fpr_ppc64le, 0, sizeof(m_fpr_ppc64le));
136   ::memset(&m_vmx_ppc64le, 0, sizeof(m_vmx_ppc64le));
137   ::memset(&m_vsx_ppc64le, 0, sizeof(m_vsx_ppc64le));
138   ::memset(&m_hwp_regs, 0, sizeof(m_hwp_regs));
139 }
140 
141 uint32_t NativeRegisterContextLinux_ppc64le::GetRegisterSetCount() const {
142   return k_num_register_sets;
143 }
144 
145 const RegisterSet *
146 NativeRegisterContextLinux_ppc64le::GetRegisterSet(uint32_t set_index) const {
147   if (set_index < k_num_register_sets)
148     return &g_reg_sets_ppc64le[set_index];
149 
150   return nullptr;
151 }
152 
153 uint32_t NativeRegisterContextLinux_ppc64le::GetUserRegisterCount() const {
154   uint32_t count = 0;
155   for (uint32_t set_index = 0; set_index < k_num_register_sets; ++set_index)
156     count += g_reg_sets_ppc64le[set_index].num_registers;
157   return count;
158 }
159 
160 Status NativeRegisterContextLinux_ppc64le::ReadRegister(
161     const RegisterInfo *reg_info, RegisterValue &reg_value) {
162   Status error;
163 
164   if (!reg_info) {
165     error.SetErrorString("reg_info NULL");
166     return error;
167   }
168 
169   const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB];
170 
171   if (IsFPR(reg)) {
172     error = ReadFPR();
173     if (error.Fail())
174       return error;
175 
176     // Get pointer to m_fpr_ppc64le variable and set the data from it.
177     uint32_t fpr_offset = CalculateFprOffset(reg_info);
178     assert(fpr_offset < sizeof m_fpr_ppc64le);
179     uint8_t *src = (uint8_t *)&m_fpr_ppc64le + fpr_offset;
180     reg_value.SetFromMemoryData(reg_info, src, reg_info->byte_size,
181                                 eByteOrderLittle, error);
182   } else if (IsVSX(reg)) {
183     uint32_t vsx_offset = CalculateVsxOffset(reg_info);
184     assert(vsx_offset < sizeof(m_vsx_ppc64le));
185 
186     if (vsx_offset < sizeof(m_vsx_ppc64le) / 2) {
187       error = ReadVSX();
188       if (error.Fail())
189         return error;
190 
191       error = ReadFPR();
192       if (error.Fail())
193         return error;
194 
195       uint64_t value[2];
196       uint8_t *dst, *src;
197       dst = (uint8_t *)&value;
198       src = (uint8_t *)&m_vsx_ppc64le + vsx_offset / 2;
199       ::memcpy(dst, src, 8);
200       dst += 8;
201       src = (uint8_t *)&m_fpr_ppc64le + vsx_offset / 2;
202       ::memcpy(dst, src, 8);
203       reg_value.SetFromMemoryData(reg_info, &value, reg_info->byte_size,
204                                   eByteOrderLittle, error);
205     } else {
206       error = ReadVMX();
207       if (error.Fail())
208         return error;
209 
210       // Get pointer to m_vmx_ppc64le variable and set the data from it.
211       uint32_t vmx_offset = vsx_offset - sizeof(m_vsx_ppc64le) / 2;
212       uint8_t *src = (uint8_t *)&m_vmx_ppc64le + vmx_offset;
213       reg_value.SetFromMemoryData(reg_info, src, reg_info->byte_size,
214                                   eByteOrderLittle, error);
215     }
216   } else if (IsVMX(reg)) {
217     error = ReadVMX();
218     if (error.Fail())
219       return error;
220 
221     // Get pointer to m_vmx_ppc64le variable and set the data from it.
222     uint32_t vmx_offset = CalculateVmxOffset(reg_info);
223     assert(vmx_offset < sizeof m_vmx_ppc64le);
224     uint8_t *src = (uint8_t *)&m_vmx_ppc64le + vmx_offset;
225     reg_value.SetFromMemoryData(reg_info, src, reg_info->byte_size,
226                                 eByteOrderLittle, error);
227   } else if (IsGPR(reg)) {
228     error = ReadGPR();
229     if (error.Fail())
230       return error;
231 
232     uint8_t *src = (uint8_t *) &m_gpr_ppc64le + reg_info->byte_offset;
233     reg_value.SetFromMemoryData(reg_info, src, reg_info->byte_size,
234                                 eByteOrderLittle, error);
235   } else {
236     return Status("failed - register wasn't recognized to be a GPR, FPR, VSX "
237                   "or VMX, read strategy unknown");
238   }
239 
240   return error;
241 }
242 
243 Status NativeRegisterContextLinux_ppc64le::WriteRegister(
244     const RegisterInfo *reg_info, const RegisterValue &reg_value) {
245   Status error;
246   if (!reg_info)
247     return Status("reg_info NULL");
248 
249   const uint32_t reg_index = reg_info->kinds[lldb::eRegisterKindLLDB];
250   if (reg_index == LLDB_INVALID_REGNUM)
251     return Status("no lldb regnum for %s", reg_info && reg_info->name
252                                                ? reg_info->name
253                                                : "<unknown register>");
254 
255   if (IsGPR(reg_index)) {
256     error = ReadGPR();
257     if (error.Fail())
258       return error;
259 
260     uint8_t *dst = (uint8_t *)&m_gpr_ppc64le + reg_info->byte_offset;
261     ::memcpy(dst, reg_value.GetBytes(), reg_value.GetByteSize());
262 
263     error = WriteGPR();
264     if (error.Fail())
265       return error;
266 
267     return Status();
268   }
269 
270   if (IsFPR(reg_index)) {
271     error = ReadFPR();
272     if (error.Fail())
273       return error;
274 
275     // Get pointer to m_fpr_ppc64le variable and set the data to it.
276     uint32_t fpr_offset = CalculateFprOffset(reg_info);
277     assert(fpr_offset < GetFPRSize());
278     uint8_t *dst = (uint8_t *)&m_fpr_ppc64le + fpr_offset;
279     ::memcpy(dst, reg_value.GetBytes(), reg_value.GetByteSize());
280 
281     error = WriteFPR();
282     if (error.Fail())
283       return error;
284 
285     return Status();
286   }
287 
288   if (IsVMX(reg_index)) {
289     error = ReadVMX();
290     if (error.Fail())
291       return error;
292 
293     // Get pointer to m_vmx_ppc64le variable and set the data to it.
294     uint32_t vmx_offset = CalculateVmxOffset(reg_info);
295     assert(vmx_offset < sizeof(m_vmx_ppc64le));
296     uint8_t *dst = (uint8_t *)&m_vmx_ppc64le + vmx_offset;
297     ::memcpy(dst, reg_value.GetBytes(), reg_value.GetByteSize());
298 
299     error = WriteVMX();
300     if (error.Fail())
301       return error;
302 
303     return Status();
304   }
305 
306   if (IsVSX(reg_index)) {
307     uint32_t vsx_offset = CalculateVsxOffset(reg_info);
308     assert(vsx_offset < sizeof(m_vsx_ppc64le));
309 
310     if (vsx_offset < sizeof(m_vsx_ppc64le) / 2) {
311       error = ReadVSX();
312       if (error.Fail())
313         return error;
314 
315       error = ReadFPR();
316       if (error.Fail())
317         return error;
318 
319       uint64_t value[2];
320       ::memcpy(value, reg_value.GetBytes(), 16);
321       uint8_t *dst, *src;
322       src = (uint8_t *)value;
323       dst = (uint8_t *)&m_vsx_ppc64le + vsx_offset / 2;
324       ::memcpy(dst, src, 8);
325       src += 8;
326       dst = (uint8_t *)&m_fpr_ppc64le + vsx_offset / 2;
327       ::memcpy(dst, src, 8);
328 
329       WriteVSX();
330       WriteFPR();
331     } else {
332       error = ReadVMX();
333       if (error.Fail())
334         return error;
335 
336       // Get pointer to m_vmx_ppc64le variable and set the data from it.
337       uint32_t vmx_offset = vsx_offset - sizeof(m_vsx_ppc64le) / 2;
338       uint8_t *dst = (uint8_t *)&m_vmx_ppc64le + vmx_offset;
339       ::memcpy(dst, reg_value.GetBytes(), reg_value.GetByteSize());
340       WriteVMX();
341     }
342 
343     return Status();
344   }
345 
346   return Status("failed - register wasn't recognized to be a GPR, FPR, VSX "
347                 "or VMX, write strategy unknown");
348 }
349 
350 Status NativeRegisterContextLinux_ppc64le::ReadAllRegisterValues(
351     lldb::DataBufferSP &data_sp) {
352   Status error;
353 
354   data_sp.reset(new DataBufferHeap(REG_CONTEXT_SIZE, 0));
355   if (!data_sp)
356     return Status("failed to allocate DataBufferHeap instance of size %" PRIu64,
357                   REG_CONTEXT_SIZE);
358 
359   error = ReadGPR();
360   if (error.Fail())
361     return error;
362 
363   error = ReadFPR();
364   if (error.Fail())
365     return error;
366 
367   error = ReadVMX();
368   if (error.Fail())
369     return error;
370 
371   error = ReadVSX();
372   if (error.Fail())
373     return error;
374 
375   uint8_t *dst = data_sp->GetBytes();
376   if (dst == nullptr) {
377     error.SetErrorStringWithFormat("DataBufferHeap instance of size %" PRIu64
378                                    " returned a null pointer",
379                                    REG_CONTEXT_SIZE);
380     return error;
381   }
382 
383   ::memcpy(dst, &m_gpr_ppc64le, GetGPRSize());
384   dst += GetGPRSize();
385   ::memcpy(dst, &m_fpr_ppc64le, GetFPRSize());
386   dst += GetFPRSize();
387   ::memcpy(dst, &m_vmx_ppc64le, sizeof(m_vmx_ppc64le));
388   dst += sizeof(m_vmx_ppc64le);
389   ::memcpy(dst, &m_vsx_ppc64le, sizeof(m_vsx_ppc64le));
390 
391   return error;
392 }
393 
394 Status NativeRegisterContextLinux_ppc64le::WriteAllRegisterValues(
395     const lldb::DataBufferSP &data_sp) {
396   Status error;
397 
398   if (!data_sp) {
399     error.SetErrorStringWithFormat(
400         "NativeRegisterContextLinux_ppc64le::%s invalid data_sp provided",
401         __FUNCTION__);
402     return error;
403   }
404 
405   if (data_sp->GetByteSize() != REG_CONTEXT_SIZE) {
406     error.SetErrorStringWithFormat(
407         "NativeRegisterContextLinux_ppc64le::%s data_sp contained mismatched "
408         "data size, expected %" PRIu64 ", actual %" PRIu64,
409         __FUNCTION__, REG_CONTEXT_SIZE, data_sp->GetByteSize());
410     return error;
411   }
412 
413   uint8_t *src = data_sp->GetBytes();
414   if (src == nullptr) {
415     error.SetErrorStringWithFormat("NativeRegisterContextLinux_ppc64le::%s "
416                                    "DataBuffer::GetBytes() returned a null "
417                                    "pointer",
418                                    __FUNCTION__);
419     return error;
420   }
421 
422   ::memcpy(&m_gpr_ppc64le, src, GetGPRSize());
423   error = WriteGPR();
424 
425   if (error.Fail())
426     return error;
427 
428   src += GetGPRSize();
429   ::memcpy(&m_fpr_ppc64le, src, GetFPRSize());
430 
431   error = WriteFPR();
432   if (error.Fail())
433     return error;
434 
435   src += GetFPRSize();
436   ::memcpy(&m_vmx_ppc64le, src, sizeof(m_vmx_ppc64le));
437 
438   error = WriteVMX();
439   if (error.Fail())
440     return error;
441 
442   src += sizeof(m_vmx_ppc64le);
443   ::memcpy(&m_vsx_ppc64le, src, sizeof(m_vsx_ppc64le));
444   error = WriteVSX();
445 
446   return error;
447 }
448 
449 bool NativeRegisterContextLinux_ppc64le::IsGPR(unsigned reg) const {
450   return reg <= k_last_gpr_ppc64le; // GPR's come first.
451 }
452 
453 bool NativeRegisterContextLinux_ppc64le::IsFPR(unsigned reg) const {
454   return (k_first_fpr_ppc64le <= reg && reg <= k_last_fpr_ppc64le);
455 }
456 
457 Status NativeRegisterContextLinux_ppc64le::DoReadGPR(
458     void *buf, size_t buf_size) {
459   int regset = NT_PRSTATUS;
460   return NativeProcessLinux::PtraceWrapper(PTRACE_GETREGS, m_thread.GetID(),
461                                            &regset, buf, buf_size);
462 }
463 
464 Status NativeRegisterContextLinux_ppc64le::DoWriteGPR(
465     void *buf, size_t buf_size) {
466   int regset = NT_PRSTATUS;
467   return NativeProcessLinux::PtraceWrapper(PTRACE_SETREGS, m_thread.GetID(),
468                                            &regset, buf, buf_size);
469 }
470 
471 Status NativeRegisterContextLinux_ppc64le::DoReadFPR(void *buf,
472                                                      size_t buf_size) {
473   int regset = NT_FPREGSET;
474   return NativeProcessLinux::PtraceWrapper(PTRACE_GETFPREGS, m_thread.GetID(),
475                                            &regset, buf, buf_size);
476 }
477 
478 Status NativeRegisterContextLinux_ppc64le::DoWriteFPR(void *buf,
479                                                       size_t buf_size) {
480   int regset = NT_FPREGSET;
481   return NativeProcessLinux::PtraceWrapper(PTRACE_SETFPREGS, m_thread.GetID(),
482                                            &regset, buf, buf_size);
483 }
484 
485 uint32_t NativeRegisterContextLinux_ppc64le::CalculateFprOffset(
486     const RegisterInfo *reg_info) const {
487   return reg_info->byte_offset -
488          GetRegisterInfoAtIndex(k_first_fpr_ppc64le)->byte_offset;
489 }
490 
491 uint32_t NativeRegisterContextLinux_ppc64le::CalculateVmxOffset(
492     const RegisterInfo *reg_info) const {
493   return reg_info->byte_offset -
494          GetRegisterInfoAtIndex(k_first_vmx_ppc64le)->byte_offset;
495 }
496 
497 uint32_t NativeRegisterContextLinux_ppc64le::CalculateVsxOffset(
498     const RegisterInfo *reg_info) const {
499   return reg_info->byte_offset -
500          GetRegisterInfoAtIndex(k_first_vsx_ppc64le)->byte_offset;
501 }
502 
503 Status NativeRegisterContextLinux_ppc64le::ReadVMX() {
504   int regset = NT_PPC_VMX;
505   return NativeProcessLinux::PtraceWrapper(PTRACE_GETVRREGS, m_thread.GetID(),
506                                            &regset, &m_vmx_ppc64le,
507                                            sizeof(m_vmx_ppc64le));
508 }
509 
510 Status NativeRegisterContextLinux_ppc64le::WriteVMX() {
511   int regset = NT_PPC_VMX;
512   return NativeProcessLinux::PtraceWrapper(PTRACE_SETVRREGS, m_thread.GetID(),
513                                            &regset, &m_vmx_ppc64le,
514                                            sizeof(m_vmx_ppc64le));
515 }
516 
517 Status NativeRegisterContextLinux_ppc64le::ReadVSX() {
518   int regset = NT_PPC_VSX;
519   return NativeProcessLinux::PtraceWrapper(PTRACE_GETVSRREGS, m_thread.GetID(),
520                                            &regset, &m_vsx_ppc64le,
521                                            sizeof(m_vsx_ppc64le));
522 }
523 
524 Status NativeRegisterContextLinux_ppc64le::WriteVSX() {
525   int regset = NT_PPC_VSX;
526   return NativeProcessLinux::PtraceWrapper(PTRACE_SETVSRREGS, m_thread.GetID(),
527                                            &regset, &m_vsx_ppc64le,
528                                            sizeof(m_vsx_ppc64le));
529 }
530 
531 bool NativeRegisterContextLinux_ppc64le::IsVMX(unsigned reg) {
532   return (reg >= k_first_vmx_ppc64le) && (reg <= k_last_vmx_ppc64le);
533 }
534 
535 bool NativeRegisterContextLinux_ppc64le::IsVSX(unsigned reg) {
536   return (reg >= k_first_vsx_ppc64le) && (reg <= k_last_vsx_ppc64le);
537 }
538 
539 uint32_t NativeRegisterContextLinux_ppc64le::NumSupportedHardwareWatchpoints() {
540   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
541 
542   // Read hardware breakpoint and watchpoint information.
543   Status error = ReadHardwareDebugInfo();
544 
545   if (error.Fail())
546     return 0;
547 
548   LLDB_LOG(log, "{0}", m_max_hwp_supported);
549   return m_max_hwp_supported;
550 }
551 
552 uint32_t NativeRegisterContextLinux_ppc64le::SetHardwareWatchpoint(
553     lldb::addr_t addr, size_t size, uint32_t watch_flags) {
554   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
555   LLDB_LOG(log, "addr: {0:x}, size: {1:x} watch_flags: {2:x}", addr, size,
556            watch_flags);
557 
558   // Read hardware breakpoint and watchpoint information.
559   Status error = ReadHardwareDebugInfo();
560 
561   if (error.Fail())
562     return LLDB_INVALID_INDEX32;
563 
564   uint32_t control_value = 0, wp_index = 0;
565   lldb::addr_t real_addr = addr;
566   uint32_t rw_mode = 0;
567 
568   // Check if we are setting watchpoint other than read/write/access
569   // Update watchpoint flag to match ppc64le write-read bit configuration.
570   switch (watch_flags) {
571   case eWatchpointKindWrite:
572     rw_mode = PPC_BREAKPOINT_TRIGGER_WRITE;
573     watch_flags = 2;
574     break;
575   case eWatchpointKindRead:
576     rw_mode = PPC_BREAKPOINT_TRIGGER_READ;
577     watch_flags = 1;
578     break;
579   case (eWatchpointKindRead | eWatchpointKindWrite):
580     rw_mode = PPC_BREAKPOINT_TRIGGER_RW;
581     break;
582   default:
583     return LLDB_INVALID_INDEX32;
584   }
585 
586   // Check if size has a valid hardware watchpoint length.
587   if (size != 1 && size != 2 && size != 4 && size != 8)
588     return LLDB_INVALID_INDEX32;
589 
590   // Check 8-byte alignment for hardware watchpoint target address.
591   // Below is a hack to recalculate address and size in order to
592   // make sure we can watch non 8-byte alligned addresses as well.
593   if (addr & 0x07) {
594 
595     addr_t begin = llvm::alignDown(addr, 8);
596     addr_t end = llvm::alignTo(addr + size, 8);
597     size = llvm::PowerOf2Ceil(end - begin);
598 
599     addr = addr & (~0x07);
600   }
601 
602   // Setup control value
603   control_value = watch_flags << 3;
604   control_value |= ((1 << size) - 1) << 5;
605   control_value |= (2 << 1) | 1;
606 
607   // Iterate over stored watchpoints and find a free wp_index
608   wp_index = LLDB_INVALID_INDEX32;
609   for (uint32_t i = 0; i < m_max_hwp_supported; i++) {
610     if ((m_hwp_regs[i].control & 1) == 0) {
611       wp_index = i; // Mark last free slot
612     } else if (m_hwp_regs[i].address == addr) {
613       return LLDB_INVALID_INDEX32; // We do not support duplicate watchpoints.
614     }
615   }
616 
617   if (wp_index == LLDB_INVALID_INDEX32)
618     return LLDB_INVALID_INDEX32;
619 
620   // Update watchpoint in local cache
621   m_hwp_regs[wp_index].real_addr = real_addr;
622   m_hwp_regs[wp_index].address = addr;
623   m_hwp_regs[wp_index].control = control_value;
624   m_hwp_regs[wp_index].mode = rw_mode;
625 
626   // PTRACE call to set corresponding watchpoint register.
627   error = WriteHardwareDebugRegs();
628 
629   if (error.Fail()) {
630     m_hwp_regs[wp_index].address = 0;
631     m_hwp_regs[wp_index].control &= llvm::maskTrailingZeros<uint32_t>(1);
632 
633     return LLDB_INVALID_INDEX32;
634   }
635 
636   return wp_index;
637 }
638 
639 bool NativeRegisterContextLinux_ppc64le::ClearHardwareWatchpoint(
640     uint32_t wp_index) {
641   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
642   LLDB_LOG(log, "wp_index: {0}", wp_index);
643 
644   // Read hardware breakpoint and watchpoint information.
645   Status error = ReadHardwareDebugInfo();
646 
647   if (error.Fail())
648     return false;
649 
650   if (wp_index >= m_max_hwp_supported)
651     return false;
652 
653   // Create a backup we can revert to in case of failure.
654   lldb::addr_t tempAddr = m_hwp_regs[wp_index].address;
655   uint32_t tempControl = m_hwp_regs[wp_index].control;
656   long *tempSlot = reinterpret_cast<long *>(m_hwp_regs[wp_index].slot);
657 
658   // Update watchpoint in local cache
659   m_hwp_regs[wp_index].control &= llvm::maskTrailingZeros<uint32_t>(1);
660   m_hwp_regs[wp_index].address = 0;
661   m_hwp_regs[wp_index].slot = 0;
662   m_hwp_regs[wp_index].mode = 0;
663 
664   // Ptrace call to update hardware debug registers
665   error = NativeProcessLinux::PtraceWrapper(PPC_PTRACE_DELHWDEBUG,
666                                             m_thread.GetID(), 0, tempSlot);
667 
668   if (error.Fail()) {
669     m_hwp_regs[wp_index].control = tempControl;
670     m_hwp_regs[wp_index].address = tempAddr;
671     m_hwp_regs[wp_index].slot = reinterpret_cast<long>(tempSlot);
672 
673     return false;
674   }
675 
676   return true;
677 }
678 
679 uint32_t
680 NativeRegisterContextLinux_ppc64le::GetWatchpointSize(uint32_t wp_index) {
681   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
682   LLDB_LOG(log, "wp_index: {0}", wp_index);
683 
684   unsigned control = (m_hwp_regs[wp_index].control >> 5) & 0xff;
685   if (llvm::isPowerOf2_32(control + 1)) {
686     return llvm::countPopulation(control);
687   }
688 
689   return 0;
690 }
691 
692 bool NativeRegisterContextLinux_ppc64le::WatchpointIsEnabled(
693     uint32_t wp_index) {
694   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
695   LLDB_LOG(log, "wp_index: {0}", wp_index);
696 
697   return !!((m_hwp_regs[wp_index].control & 0x1) == 0x1);
698 }
699 
700 Status NativeRegisterContextLinux_ppc64le::GetWatchpointHitIndex(
701     uint32_t &wp_index, lldb::addr_t trap_addr) {
702   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
703   LLDB_LOG(log, "wp_index: {0}, trap_addr: {1:x}", wp_index, trap_addr);
704 
705   uint32_t watch_size;
706   lldb::addr_t watch_addr;
707 
708   for (wp_index = 0; wp_index < m_max_hwp_supported; ++wp_index) {
709     watch_size = GetWatchpointSize(wp_index);
710     watch_addr = m_hwp_regs[wp_index].address;
711 
712     if (WatchpointIsEnabled(wp_index) && trap_addr >= watch_addr &&
713         trap_addr <= watch_addr + watch_size) {
714       m_hwp_regs[wp_index].hit_addr = trap_addr;
715       return Status();
716     }
717   }
718 
719   wp_index = LLDB_INVALID_INDEX32;
720   return Status();
721 }
722 
723 lldb::addr_t
724 NativeRegisterContextLinux_ppc64le::GetWatchpointAddress(uint32_t wp_index) {
725   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
726   LLDB_LOG(log, "wp_index: {0}", wp_index);
727 
728   if (wp_index >= m_max_hwp_supported)
729     return LLDB_INVALID_ADDRESS;
730 
731   if (WatchpointIsEnabled(wp_index))
732     return m_hwp_regs[wp_index].real_addr;
733   else
734     return LLDB_INVALID_ADDRESS;
735 }
736 
737 lldb::addr_t
738 NativeRegisterContextLinux_ppc64le::GetWatchpointHitAddress(uint32_t wp_index) {
739   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
740   LLDB_LOG(log, "wp_index: {0}", wp_index);
741 
742   if (wp_index >= m_max_hwp_supported)
743     return LLDB_INVALID_ADDRESS;
744 
745   if (WatchpointIsEnabled(wp_index))
746     return m_hwp_regs[wp_index].hit_addr;
747 
748   return LLDB_INVALID_ADDRESS;
749 }
750 
751 Status NativeRegisterContextLinux_ppc64le::ReadHardwareDebugInfo() {
752   if (!m_refresh_hwdebug_info) {
753     return Status();
754   }
755 
756   ::pid_t tid = m_thread.GetID();
757 
758   struct ppc_debug_info hwdebug_info;
759   Status error;
760 
761   error = NativeProcessLinux::PtraceWrapper(
762       PPC_PTRACE_GETHWDBGINFO, tid, 0, &hwdebug_info, sizeof(hwdebug_info));
763 
764   if (error.Fail())
765     return error;
766 
767   m_max_hwp_supported = hwdebug_info.num_data_bps;
768   m_max_hbp_supported = hwdebug_info.num_instruction_bps;
769   m_refresh_hwdebug_info = false;
770 
771   return error;
772 }
773 
774 Status NativeRegisterContextLinux_ppc64le::WriteHardwareDebugRegs() {
775   struct ppc_hw_breakpoint reg_state;
776   Status error;
777   long ret;
778 
779   for (uint32_t i = 0; i < m_max_hwp_supported; i++) {
780     reg_state.addr = m_hwp_regs[i].address;
781     reg_state.trigger_type = m_hwp_regs[i].mode;
782     reg_state.version = 1;
783     reg_state.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
784     reg_state.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
785     reg_state.addr2 = 0;
786     reg_state.condition_value = 0;
787 
788     error = NativeProcessLinux::PtraceWrapper(PPC_PTRACE_SETHWDEBUG,
789                                               m_thread.GetID(), 0, &reg_state,
790                                               sizeof(reg_state), &ret);
791 
792     if (error.Fail())
793       return error;
794 
795     m_hwp_regs[i].slot = ret;
796   }
797 
798   return error;
799 }
800 
801 #endif // defined(__powerpc64__)
802