1 //===-- NativeRegisterContextLinux_arm64.cpp --------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #if defined(__arm64__) || defined(__aarch64__) 10 11 #include "NativeRegisterContextLinux_arm.h" 12 #include "NativeRegisterContextLinux_arm64.h" 13 14 15 #include "lldb/Host/common/NativeProcessProtocol.h" 16 #include "lldb/Utility/DataBufferHeap.h" 17 #include "lldb/Utility/Log.h" 18 #include "lldb/Utility/RegisterValue.h" 19 #include "lldb/Utility/Status.h" 20 21 #include "Plugins/Process/Linux/NativeProcessLinux.h" 22 #include "Plugins/Process/Linux/Procfs.h" 23 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 24 #include "Plugins/Process/Utility/RegisterInfoPOSIX_arm64.h" 25 26 // System includes - They have to be included after framework includes because 27 // they define some macros which collide with variable names in other modules 28 #include <sys/socket.h> 29 // NT_PRSTATUS and NT_FPREGSET definition 30 #include <elf.h> 31 // user_hwdebug_state definition 32 #include <asm/ptrace.h> 33 34 #define REG_CONTEXT_SIZE (GetGPRSize() + GetFPRSize()) 35 36 using namespace lldb; 37 using namespace lldb_private; 38 using namespace lldb_private::process_linux; 39 40 // ARM64 general purpose registers. 41 static const uint32_t g_gpr_regnums_arm64[] = { 42 gpr_x0_arm64, gpr_x1_arm64, gpr_x2_arm64, gpr_x3_arm64, 43 gpr_x4_arm64, gpr_x5_arm64, gpr_x6_arm64, gpr_x7_arm64, 44 gpr_x8_arm64, gpr_x9_arm64, gpr_x10_arm64, gpr_x11_arm64, 45 gpr_x12_arm64, gpr_x13_arm64, gpr_x14_arm64, gpr_x15_arm64, 46 gpr_x16_arm64, gpr_x17_arm64, gpr_x18_arm64, gpr_x19_arm64, 47 gpr_x20_arm64, gpr_x21_arm64, gpr_x22_arm64, gpr_x23_arm64, 48 gpr_x24_arm64, gpr_x25_arm64, gpr_x26_arm64, gpr_x27_arm64, 49 gpr_x28_arm64, gpr_fp_arm64, gpr_lr_arm64, gpr_sp_arm64, 50 gpr_pc_arm64, gpr_cpsr_arm64, gpr_w0_arm64, gpr_w1_arm64, 51 gpr_w2_arm64, gpr_w3_arm64, gpr_w4_arm64, gpr_w5_arm64, 52 gpr_w6_arm64, gpr_w7_arm64, gpr_w8_arm64, gpr_w9_arm64, 53 gpr_w10_arm64, gpr_w11_arm64, gpr_w12_arm64, gpr_w13_arm64, 54 gpr_w14_arm64, gpr_w15_arm64, gpr_w16_arm64, gpr_w17_arm64, 55 gpr_w18_arm64, gpr_w19_arm64, gpr_w20_arm64, gpr_w21_arm64, 56 gpr_w22_arm64, gpr_w23_arm64, gpr_w24_arm64, gpr_w25_arm64, 57 gpr_w26_arm64, gpr_w27_arm64, gpr_w28_arm64, 58 LLDB_INVALID_REGNUM // register sets need to end with this flag 59 }; 60 static_assert(((sizeof g_gpr_regnums_arm64 / sizeof g_gpr_regnums_arm64[0]) - 61 1) == k_num_gpr_registers_arm64, 62 "g_gpr_regnums_arm64 has wrong number of register infos"); 63 64 // ARM64 floating point registers. 65 static const uint32_t g_fpu_regnums_arm64[] = { 66 fpu_v0_arm64, fpu_v1_arm64, fpu_v2_arm64, fpu_v3_arm64, 67 fpu_v4_arm64, fpu_v5_arm64, fpu_v6_arm64, fpu_v7_arm64, 68 fpu_v8_arm64, fpu_v9_arm64, fpu_v10_arm64, fpu_v11_arm64, 69 fpu_v12_arm64, fpu_v13_arm64, fpu_v14_arm64, fpu_v15_arm64, 70 fpu_v16_arm64, fpu_v17_arm64, fpu_v18_arm64, fpu_v19_arm64, 71 fpu_v20_arm64, fpu_v21_arm64, fpu_v22_arm64, fpu_v23_arm64, 72 fpu_v24_arm64, fpu_v25_arm64, fpu_v26_arm64, fpu_v27_arm64, 73 fpu_v28_arm64, fpu_v29_arm64, fpu_v30_arm64, fpu_v31_arm64, 74 fpu_s0_arm64, fpu_s1_arm64, fpu_s2_arm64, fpu_s3_arm64, 75 fpu_s4_arm64, fpu_s5_arm64, fpu_s6_arm64, fpu_s7_arm64, 76 fpu_s8_arm64, fpu_s9_arm64, fpu_s10_arm64, fpu_s11_arm64, 77 fpu_s12_arm64, fpu_s13_arm64, fpu_s14_arm64, fpu_s15_arm64, 78 fpu_s16_arm64, fpu_s17_arm64, fpu_s18_arm64, fpu_s19_arm64, 79 fpu_s20_arm64, fpu_s21_arm64, fpu_s22_arm64, fpu_s23_arm64, 80 fpu_s24_arm64, fpu_s25_arm64, fpu_s26_arm64, fpu_s27_arm64, 81 fpu_s28_arm64, fpu_s29_arm64, fpu_s30_arm64, fpu_s31_arm64, 82 83 fpu_d0_arm64, fpu_d1_arm64, fpu_d2_arm64, fpu_d3_arm64, 84 fpu_d4_arm64, fpu_d5_arm64, fpu_d6_arm64, fpu_d7_arm64, 85 fpu_d8_arm64, fpu_d9_arm64, fpu_d10_arm64, fpu_d11_arm64, 86 fpu_d12_arm64, fpu_d13_arm64, fpu_d14_arm64, fpu_d15_arm64, 87 fpu_d16_arm64, fpu_d17_arm64, fpu_d18_arm64, fpu_d19_arm64, 88 fpu_d20_arm64, fpu_d21_arm64, fpu_d22_arm64, fpu_d23_arm64, 89 fpu_d24_arm64, fpu_d25_arm64, fpu_d26_arm64, fpu_d27_arm64, 90 fpu_d28_arm64, fpu_d29_arm64, fpu_d30_arm64, fpu_d31_arm64, 91 fpu_fpsr_arm64, fpu_fpcr_arm64, 92 LLDB_INVALID_REGNUM // register sets need to end with this flag 93 }; 94 static_assert(((sizeof g_fpu_regnums_arm64 / sizeof g_fpu_regnums_arm64[0]) - 95 1) == k_num_fpr_registers_arm64, 96 "g_fpu_regnums_arm64 has wrong number of register infos"); 97 98 namespace { 99 // Number of register sets provided by this context. 100 enum { k_num_register_sets = 2 }; 101 } 102 103 // Register sets for ARM64. 104 static const RegisterSet g_reg_sets_arm64[k_num_register_sets] = { 105 {"General Purpose Registers", "gpr", k_num_gpr_registers_arm64, 106 g_gpr_regnums_arm64}, 107 {"Floating Point Registers", "fpu", k_num_fpr_registers_arm64, 108 g_fpu_regnums_arm64}}; 109 110 std::unique_ptr<NativeRegisterContextLinux> 111 NativeRegisterContextLinux::CreateHostNativeRegisterContextLinux( 112 const ArchSpec &target_arch, NativeThreadProtocol &native_thread) { 113 switch (target_arch.GetMachine()) { 114 case llvm::Triple::arm: 115 return std::make_unique<NativeRegisterContextLinux_arm>(target_arch, 116 native_thread); 117 case llvm::Triple::aarch64: 118 return std::make_unique<NativeRegisterContextLinux_arm64>(target_arch, 119 native_thread); 120 default: 121 llvm_unreachable("have no register context for architecture"); 122 } 123 } 124 125 NativeRegisterContextLinux_arm64::NativeRegisterContextLinux_arm64( 126 const ArchSpec &target_arch, NativeThreadProtocol &native_thread) 127 : NativeRegisterContextLinux(native_thread, 128 new RegisterInfoPOSIX_arm64(target_arch)) { 129 switch (target_arch.GetMachine()) { 130 case llvm::Triple::aarch64: 131 m_reg_info.num_registers = k_num_registers_arm64; 132 m_reg_info.num_gpr_registers = k_num_gpr_registers_arm64; 133 m_reg_info.num_fpr_registers = k_num_fpr_registers_arm64; 134 m_reg_info.last_gpr = k_last_gpr_arm64; 135 m_reg_info.first_fpr = k_first_fpr_arm64; 136 m_reg_info.last_fpr = k_last_fpr_arm64; 137 m_reg_info.first_fpr_v = fpu_v0_arm64; 138 m_reg_info.last_fpr_v = fpu_v31_arm64; 139 m_reg_info.gpr_flags = gpr_cpsr_arm64; 140 break; 141 default: 142 llvm_unreachable("Unhandled target architecture."); 143 break; 144 } 145 146 ::memset(&m_fpr, 0, sizeof(m_fpr)); 147 ::memset(&m_gpr_arm64, 0, sizeof(m_gpr_arm64)); 148 ::memset(&m_hwp_regs, 0, sizeof(m_hwp_regs)); 149 ::memset(&m_hbr_regs, 0, sizeof(m_hbr_regs)); 150 151 // 16 is just a maximum value, query hardware for actual watchpoint count 152 m_max_hwp_supported = 16; 153 m_max_hbp_supported = 16; 154 m_refresh_hwdebug_info = true; 155 } 156 157 uint32_t NativeRegisterContextLinux_arm64::GetRegisterSetCount() const { 158 return k_num_register_sets; 159 } 160 161 const RegisterSet * 162 NativeRegisterContextLinux_arm64::GetRegisterSet(uint32_t set_index) const { 163 if (set_index < k_num_register_sets) 164 return &g_reg_sets_arm64[set_index]; 165 166 return nullptr; 167 } 168 169 uint32_t NativeRegisterContextLinux_arm64::GetUserRegisterCount() const { 170 uint32_t count = 0; 171 for (uint32_t set_index = 0; set_index < k_num_register_sets; ++set_index) 172 count += g_reg_sets_arm64[set_index].num_registers; 173 return count; 174 } 175 176 Status 177 NativeRegisterContextLinux_arm64::ReadRegister(const RegisterInfo *reg_info, 178 RegisterValue ®_value) { 179 Status error; 180 181 if (!reg_info) { 182 error.SetErrorString("reg_info NULL"); 183 return error; 184 } 185 186 const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB]; 187 188 if (IsFPR(reg)) { 189 error = ReadFPR(); 190 if (error.Fail()) 191 return error; 192 } else { 193 uint32_t full_reg = reg; 194 bool is_subreg = reg_info->invalidate_regs && 195 (reg_info->invalidate_regs[0] != LLDB_INVALID_REGNUM); 196 197 if (is_subreg) { 198 // Read the full aligned 64-bit register. 199 full_reg = reg_info->invalidate_regs[0]; 200 } 201 202 error = ReadRegisterRaw(full_reg, reg_value); 203 204 if (error.Success()) { 205 // If our read was not aligned (for ah,bh,ch,dh), shift our returned 206 // value one byte to the right. 207 if (is_subreg && (reg_info->byte_offset & 0x1)) 208 reg_value.SetUInt64(reg_value.GetAsUInt64() >> 8); 209 210 // If our return byte size was greater than the return value reg size, 211 // then use the type specified by reg_info rather than the uint64_t 212 // default 213 if (reg_value.GetByteSize() > reg_info->byte_size) 214 reg_value.SetType(reg_info); 215 } 216 return error; 217 } 218 219 // Get pointer to m_fpr variable and set the data from it. 220 uint32_t fpr_offset = CalculateFprOffset(reg_info); 221 assert(fpr_offset < sizeof m_fpr); 222 uint8_t *src = (uint8_t *)&m_fpr + fpr_offset; 223 reg_value.SetFromMemoryData(reg_info, src, reg_info->byte_size, 224 eByteOrderLittle, error); 225 226 return error; 227 } 228 229 Status NativeRegisterContextLinux_arm64::WriteRegister( 230 const RegisterInfo *reg_info, const RegisterValue ®_value) { 231 if (!reg_info) 232 return Status("reg_info NULL"); 233 234 const uint32_t reg_index = reg_info->kinds[lldb::eRegisterKindLLDB]; 235 if (reg_index == LLDB_INVALID_REGNUM) 236 return Status("no lldb regnum for %s", reg_info && reg_info->name 237 ? reg_info->name 238 : "<unknown register>"); 239 240 if (IsGPR(reg_index)) 241 return WriteRegisterRaw(reg_index, reg_value); 242 243 if (IsFPR(reg_index)) { 244 // Get pointer to m_fpr variable and set the data to it. 245 uint32_t fpr_offset = CalculateFprOffset(reg_info); 246 assert(fpr_offset < sizeof m_fpr); 247 uint8_t *dst = (uint8_t *)&m_fpr + fpr_offset; 248 switch (reg_info->byte_size) { 249 case 2: 250 *(uint16_t *)dst = reg_value.GetAsUInt16(); 251 break; 252 case 4: 253 *(uint32_t *)dst = reg_value.GetAsUInt32(); 254 break; 255 case 8: 256 *(uint64_t *)dst = reg_value.GetAsUInt64(); 257 break; 258 default: 259 assert(false && "Unhandled data size."); 260 return Status("unhandled register data size %" PRIu32, 261 reg_info->byte_size); 262 } 263 264 Status error = WriteFPR(); 265 if (error.Fail()) 266 return error; 267 268 return Status(); 269 } 270 271 return Status("failed - register wasn't recognized to be a GPR or an FPR, " 272 "write strategy unknown"); 273 } 274 275 Status NativeRegisterContextLinux_arm64::ReadAllRegisterValues( 276 lldb::DataBufferSP &data_sp) { 277 Status error; 278 279 data_sp.reset(new DataBufferHeap(REG_CONTEXT_SIZE, 0)); 280 error = ReadGPR(); 281 if (error.Fail()) 282 return error; 283 284 error = ReadFPR(); 285 if (error.Fail()) 286 return error; 287 288 uint8_t *dst = data_sp->GetBytes(); 289 ::memcpy(dst, &m_gpr_arm64, GetGPRSize()); 290 dst += GetGPRSize(); 291 ::memcpy(dst, &m_fpr, sizeof(m_fpr)); 292 293 return error; 294 } 295 296 Status NativeRegisterContextLinux_arm64::WriteAllRegisterValues( 297 const lldb::DataBufferSP &data_sp) { 298 Status error; 299 300 if (!data_sp) { 301 error.SetErrorStringWithFormat( 302 "NativeRegisterContextLinux_x86_64::%s invalid data_sp provided", 303 __FUNCTION__); 304 return error; 305 } 306 307 if (data_sp->GetByteSize() != REG_CONTEXT_SIZE) { 308 error.SetErrorStringWithFormat( 309 "NativeRegisterContextLinux_x86_64::%s data_sp contained mismatched " 310 "data size, expected %" PRIu64 ", actual %" PRIu64, 311 __FUNCTION__, REG_CONTEXT_SIZE, data_sp->GetByteSize()); 312 return error; 313 } 314 315 uint8_t *src = data_sp->GetBytes(); 316 if (src == nullptr) { 317 error.SetErrorStringWithFormat("NativeRegisterContextLinux_x86_64::%s " 318 "DataBuffer::GetBytes() returned a null " 319 "pointer", 320 __FUNCTION__); 321 return error; 322 } 323 ::memcpy(&m_gpr_arm64, src, GetRegisterInfoInterface().GetGPRSize()); 324 325 error = WriteGPR(); 326 if (error.Fail()) 327 return error; 328 329 src += GetRegisterInfoInterface().GetGPRSize(); 330 ::memcpy(&m_fpr, src, sizeof(m_fpr)); 331 332 error = WriteFPR(); 333 if (error.Fail()) 334 return error; 335 336 return error; 337 } 338 339 bool NativeRegisterContextLinux_arm64::IsGPR(unsigned reg) const { 340 return reg <= m_reg_info.last_gpr; // GPR's come first. 341 } 342 343 bool NativeRegisterContextLinux_arm64::IsFPR(unsigned reg) const { 344 return (m_reg_info.first_fpr <= reg && reg <= m_reg_info.last_fpr); 345 } 346 347 uint32_t NativeRegisterContextLinux_arm64::NumSupportedHardwareBreakpoints() { 348 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 349 350 LLDB_LOGF(log, "NativeRegisterContextLinux_arm64::%s()", __FUNCTION__); 351 352 Status error; 353 354 // Read hardware breakpoint and watchpoint information. 355 error = ReadHardwareDebugInfo(); 356 357 if (error.Fail()) 358 return 0; 359 360 return m_max_hbp_supported; 361 } 362 363 uint32_t 364 NativeRegisterContextLinux_arm64::SetHardwareBreakpoint(lldb::addr_t addr, 365 size_t size) { 366 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 367 LLDB_LOG(log, "addr: {0:x}, size: {1:x}", addr, size); 368 369 // Read hardware breakpoint and watchpoint information. 370 Status error = ReadHardwareDebugInfo(); 371 372 if (error.Fail()) 373 return LLDB_INVALID_INDEX32; 374 375 uint32_t control_value = 0, bp_index = 0; 376 377 // Check if size has a valid hardware breakpoint length. 378 if (size != 4) 379 return LLDB_INVALID_INDEX32; // Invalid size for a AArch64 hardware 380 // breakpoint 381 382 // Check 4-byte alignment for hardware breakpoint target address. 383 if (addr & 0x03) 384 return LLDB_INVALID_INDEX32; // Invalid address, should be 4-byte aligned. 385 386 // Setup control value 387 control_value = 0; 388 control_value |= ((1 << size) - 1) << 5; 389 control_value |= (2 << 1) | 1; 390 391 // Iterate over stored breakpoints and find a free bp_index 392 bp_index = LLDB_INVALID_INDEX32; 393 for (uint32_t i = 0; i < m_max_hbp_supported; i++) { 394 if ((m_hbr_regs[i].control & 1) == 0) { 395 bp_index = i; // Mark last free slot 396 } else if (m_hbr_regs[i].address == addr) { 397 return LLDB_INVALID_INDEX32; // We do not support duplicate breakpoints. 398 } 399 } 400 401 if (bp_index == LLDB_INVALID_INDEX32) 402 return LLDB_INVALID_INDEX32; 403 404 // Update breakpoint in local cache 405 m_hbr_regs[bp_index].real_addr = addr; 406 m_hbr_regs[bp_index].address = addr; 407 m_hbr_regs[bp_index].control = control_value; 408 409 // PTRACE call to set corresponding hardware breakpoint register. 410 error = WriteHardwareDebugRegs(eDREGTypeBREAK); 411 412 if (error.Fail()) { 413 m_hbr_regs[bp_index].address = 0; 414 m_hbr_regs[bp_index].control &= ~1; 415 416 return LLDB_INVALID_INDEX32; 417 } 418 419 return bp_index; 420 } 421 422 bool NativeRegisterContextLinux_arm64::ClearHardwareBreakpoint( 423 uint32_t hw_idx) { 424 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 425 LLDB_LOG(log, "hw_idx: {0}", hw_idx); 426 427 // Read hardware breakpoint and watchpoint information. 428 Status error = ReadHardwareDebugInfo(); 429 430 if (error.Fail()) 431 return false; 432 433 if (hw_idx >= m_max_hbp_supported) 434 return false; 435 436 // Create a backup we can revert to in case of failure. 437 lldb::addr_t tempAddr = m_hbr_regs[hw_idx].address; 438 uint32_t tempControl = m_hbr_regs[hw_idx].control; 439 440 m_hbr_regs[hw_idx].control &= ~1; 441 m_hbr_regs[hw_idx].address = 0; 442 443 // PTRACE call to clear corresponding hardware breakpoint register. 444 error = WriteHardwareDebugRegs(eDREGTypeBREAK); 445 446 if (error.Fail()) { 447 m_hbr_regs[hw_idx].control = tempControl; 448 m_hbr_regs[hw_idx].address = tempAddr; 449 450 return false; 451 } 452 453 return true; 454 } 455 456 Status NativeRegisterContextLinux_arm64::GetHardwareBreakHitIndex( 457 uint32_t &bp_index, lldb::addr_t trap_addr) { 458 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 459 460 LLDB_LOGF(log, "NativeRegisterContextLinux_arm64::%s()", __FUNCTION__); 461 462 lldb::addr_t break_addr; 463 464 for (bp_index = 0; bp_index < m_max_hbp_supported; ++bp_index) { 465 break_addr = m_hbr_regs[bp_index].address; 466 467 if ((m_hbr_regs[bp_index].control & 0x1) && (trap_addr == break_addr)) { 468 m_hbr_regs[bp_index].hit_addr = trap_addr; 469 return Status(); 470 } 471 } 472 473 bp_index = LLDB_INVALID_INDEX32; 474 return Status(); 475 } 476 477 Status NativeRegisterContextLinux_arm64::ClearAllHardwareBreakpoints() { 478 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 479 480 LLDB_LOGF(log, "NativeRegisterContextLinux_arm64::%s()", __FUNCTION__); 481 482 Status error; 483 484 // Read hardware breakpoint and watchpoint information. 485 error = ReadHardwareDebugInfo(); 486 487 if (error.Fail()) 488 return error; 489 490 lldb::addr_t tempAddr = 0; 491 uint32_t tempControl = 0; 492 493 for (uint32_t i = 0; i < m_max_hbp_supported; i++) { 494 if (m_hbr_regs[i].control & 0x01) { 495 // Create a backup we can revert to in case of failure. 496 tempAddr = m_hbr_regs[i].address; 497 tempControl = m_hbr_regs[i].control; 498 499 // Clear watchpoints in local cache 500 m_hbr_regs[i].control &= ~1; 501 m_hbr_regs[i].address = 0; 502 503 // Ptrace call to update hardware debug registers 504 error = WriteHardwareDebugRegs(eDREGTypeBREAK); 505 506 if (error.Fail()) { 507 m_hbr_regs[i].control = tempControl; 508 m_hbr_regs[i].address = tempAddr; 509 510 return error; 511 } 512 } 513 } 514 515 return Status(); 516 } 517 518 uint32_t NativeRegisterContextLinux_arm64::NumSupportedHardwareWatchpoints() { 519 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 520 521 // Read hardware breakpoint and watchpoint information. 522 Status error = ReadHardwareDebugInfo(); 523 524 if (error.Fail()) 525 return 0; 526 527 LLDB_LOG(log, "{0}", m_max_hwp_supported); 528 return m_max_hwp_supported; 529 } 530 531 uint32_t NativeRegisterContextLinux_arm64::SetHardwareWatchpoint( 532 lldb::addr_t addr, size_t size, uint32_t watch_flags) { 533 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 534 LLDB_LOG(log, "addr: {0:x}, size: {1:x} watch_flags: {2:x}", addr, size, 535 watch_flags); 536 537 // Read hardware breakpoint and watchpoint information. 538 Status error = ReadHardwareDebugInfo(); 539 540 if (error.Fail()) 541 return LLDB_INVALID_INDEX32; 542 543 uint32_t control_value = 0, wp_index = 0; 544 lldb::addr_t real_addr = addr; 545 546 // Check if we are setting watchpoint other than read/write/access Also 547 // update watchpoint flag to match AArch64 write-read bit configuration. 548 switch (watch_flags) { 549 case 1: 550 watch_flags = 2; 551 break; 552 case 2: 553 watch_flags = 1; 554 break; 555 case 3: 556 break; 557 default: 558 return LLDB_INVALID_INDEX32; 559 } 560 561 // Check if size has a valid hardware watchpoint length. 562 if (size != 1 && size != 2 && size != 4 && size != 8) 563 return LLDB_INVALID_INDEX32; 564 565 // Check 8-byte alignment for hardware watchpoint target address. Below is a 566 // hack to recalculate address and size in order to make sure we can watch 567 // non 8-byte alligned addresses as well. 568 if (addr & 0x07) { 569 uint8_t watch_mask = (addr & 0x07) + size; 570 571 if (watch_mask > 0x08) 572 return LLDB_INVALID_INDEX32; 573 else if (watch_mask <= 0x02) 574 size = 2; 575 else if (watch_mask <= 0x04) 576 size = 4; 577 else 578 size = 8; 579 580 addr = addr & (~0x07); 581 } 582 583 // Setup control value 584 control_value = watch_flags << 3; 585 control_value |= ((1 << size) - 1) << 5; 586 control_value |= (2 << 1) | 1; 587 588 // Iterate over stored watchpoints and find a free wp_index 589 wp_index = LLDB_INVALID_INDEX32; 590 for (uint32_t i = 0; i < m_max_hwp_supported; i++) { 591 if ((m_hwp_regs[i].control & 1) == 0) { 592 wp_index = i; // Mark last free slot 593 } else if (m_hwp_regs[i].address == addr) { 594 return LLDB_INVALID_INDEX32; // We do not support duplicate watchpoints. 595 } 596 } 597 598 if (wp_index == LLDB_INVALID_INDEX32) 599 return LLDB_INVALID_INDEX32; 600 601 // Update watchpoint in local cache 602 m_hwp_regs[wp_index].real_addr = real_addr; 603 m_hwp_regs[wp_index].address = addr; 604 m_hwp_regs[wp_index].control = control_value; 605 606 // PTRACE call to set corresponding watchpoint register. 607 error = WriteHardwareDebugRegs(eDREGTypeWATCH); 608 609 if (error.Fail()) { 610 m_hwp_regs[wp_index].address = 0; 611 m_hwp_regs[wp_index].control &= ~1; 612 613 return LLDB_INVALID_INDEX32; 614 } 615 616 return wp_index; 617 } 618 619 bool NativeRegisterContextLinux_arm64::ClearHardwareWatchpoint( 620 uint32_t wp_index) { 621 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 622 LLDB_LOG(log, "wp_index: {0}", wp_index); 623 624 // Read hardware breakpoint and watchpoint information. 625 Status error = ReadHardwareDebugInfo(); 626 627 if (error.Fail()) 628 return false; 629 630 if (wp_index >= m_max_hwp_supported) 631 return false; 632 633 // Create a backup we can revert to in case of failure. 634 lldb::addr_t tempAddr = m_hwp_regs[wp_index].address; 635 uint32_t tempControl = m_hwp_regs[wp_index].control; 636 637 // Update watchpoint in local cache 638 m_hwp_regs[wp_index].control &= ~1; 639 m_hwp_regs[wp_index].address = 0; 640 641 // Ptrace call to update hardware debug registers 642 error = WriteHardwareDebugRegs(eDREGTypeWATCH); 643 644 if (error.Fail()) { 645 m_hwp_regs[wp_index].control = tempControl; 646 m_hwp_regs[wp_index].address = tempAddr; 647 648 return false; 649 } 650 651 return true; 652 } 653 654 Status NativeRegisterContextLinux_arm64::ClearAllHardwareWatchpoints() { 655 // Read hardware breakpoint and watchpoint information. 656 Status error = ReadHardwareDebugInfo(); 657 658 if (error.Fail()) 659 return error; 660 661 lldb::addr_t tempAddr = 0; 662 uint32_t tempControl = 0; 663 664 for (uint32_t i = 0; i < m_max_hwp_supported; i++) { 665 if (m_hwp_regs[i].control & 0x01) { 666 // Create a backup we can revert to in case of failure. 667 tempAddr = m_hwp_regs[i].address; 668 tempControl = m_hwp_regs[i].control; 669 670 // Clear watchpoints in local cache 671 m_hwp_regs[i].control &= ~1; 672 m_hwp_regs[i].address = 0; 673 674 // Ptrace call to update hardware debug registers 675 error = WriteHardwareDebugRegs(eDREGTypeWATCH); 676 677 if (error.Fail()) { 678 m_hwp_regs[i].control = tempControl; 679 m_hwp_regs[i].address = tempAddr; 680 681 return error; 682 } 683 } 684 } 685 686 return Status(); 687 } 688 689 uint32_t 690 NativeRegisterContextLinux_arm64::GetWatchpointSize(uint32_t wp_index) { 691 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 692 LLDB_LOG(log, "wp_index: {0}", wp_index); 693 694 switch ((m_hwp_regs[wp_index].control >> 5) & 0xff) { 695 case 0x01: 696 return 1; 697 case 0x03: 698 return 2; 699 case 0x0f: 700 return 4; 701 case 0xff: 702 return 8; 703 default: 704 return 0; 705 } 706 } 707 bool NativeRegisterContextLinux_arm64::WatchpointIsEnabled(uint32_t wp_index) { 708 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 709 LLDB_LOG(log, "wp_index: {0}", wp_index); 710 711 if ((m_hwp_regs[wp_index].control & 0x1) == 0x1) 712 return true; 713 else 714 return false; 715 } 716 717 Status NativeRegisterContextLinux_arm64::GetWatchpointHitIndex( 718 uint32_t &wp_index, lldb::addr_t trap_addr) { 719 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 720 LLDB_LOG(log, "wp_index: {0}, trap_addr: {1:x}", wp_index, trap_addr); 721 722 uint32_t watch_size; 723 lldb::addr_t watch_addr; 724 725 for (wp_index = 0; wp_index < m_max_hwp_supported; ++wp_index) { 726 watch_size = GetWatchpointSize(wp_index); 727 watch_addr = m_hwp_regs[wp_index].address; 728 729 if (WatchpointIsEnabled(wp_index) && trap_addr >= watch_addr && 730 trap_addr < watch_addr + watch_size) { 731 m_hwp_regs[wp_index].hit_addr = trap_addr; 732 return Status(); 733 } 734 } 735 736 wp_index = LLDB_INVALID_INDEX32; 737 return Status(); 738 } 739 740 lldb::addr_t 741 NativeRegisterContextLinux_arm64::GetWatchpointAddress(uint32_t wp_index) { 742 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 743 LLDB_LOG(log, "wp_index: {0}", wp_index); 744 745 if (wp_index >= m_max_hwp_supported) 746 return LLDB_INVALID_ADDRESS; 747 748 if (WatchpointIsEnabled(wp_index)) 749 return m_hwp_regs[wp_index].real_addr; 750 else 751 return LLDB_INVALID_ADDRESS; 752 } 753 754 lldb::addr_t 755 NativeRegisterContextLinux_arm64::GetWatchpointHitAddress(uint32_t wp_index) { 756 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 757 LLDB_LOG(log, "wp_index: {0}", wp_index); 758 759 if (wp_index >= m_max_hwp_supported) 760 return LLDB_INVALID_ADDRESS; 761 762 if (WatchpointIsEnabled(wp_index)) 763 return m_hwp_regs[wp_index].hit_addr; 764 else 765 return LLDB_INVALID_ADDRESS; 766 } 767 768 Status NativeRegisterContextLinux_arm64::ReadHardwareDebugInfo() { 769 if (!m_refresh_hwdebug_info) { 770 return Status(); 771 } 772 773 ::pid_t tid = m_thread.GetID(); 774 775 int regset = NT_ARM_HW_WATCH; 776 struct iovec ioVec; 777 struct user_hwdebug_state dreg_state; 778 Status error; 779 780 ioVec.iov_base = &dreg_state; 781 ioVec.iov_len = sizeof(dreg_state); 782 error = NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET, tid, ®set, 783 &ioVec, ioVec.iov_len); 784 785 if (error.Fail()) 786 return error; 787 788 m_max_hwp_supported = dreg_state.dbg_info & 0xff; 789 790 regset = NT_ARM_HW_BREAK; 791 error = NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET, tid, ®set, 792 &ioVec, ioVec.iov_len); 793 794 if (error.Fail()) 795 return error; 796 797 m_max_hbp_supported = dreg_state.dbg_info & 0xff; 798 m_refresh_hwdebug_info = false; 799 800 return error; 801 } 802 803 Status NativeRegisterContextLinux_arm64::WriteHardwareDebugRegs(int hwbType) { 804 struct iovec ioVec; 805 struct user_hwdebug_state dreg_state; 806 Status error; 807 808 memset(&dreg_state, 0, sizeof(dreg_state)); 809 ioVec.iov_base = &dreg_state; 810 811 if (hwbType == eDREGTypeWATCH) { 812 hwbType = NT_ARM_HW_WATCH; 813 ioVec.iov_len = sizeof(dreg_state.dbg_info) + sizeof(dreg_state.pad) + 814 (sizeof(dreg_state.dbg_regs[0]) * m_max_hwp_supported); 815 816 for (uint32_t i = 0; i < m_max_hwp_supported; i++) { 817 dreg_state.dbg_regs[i].addr = m_hwp_regs[i].address; 818 dreg_state.dbg_regs[i].ctrl = m_hwp_regs[i].control; 819 } 820 } else { 821 hwbType = NT_ARM_HW_BREAK; 822 ioVec.iov_len = sizeof(dreg_state.dbg_info) + sizeof(dreg_state.pad) + 823 (sizeof(dreg_state.dbg_regs[0]) * m_max_hbp_supported); 824 825 for (uint32_t i = 0; i < m_max_hbp_supported; i++) { 826 dreg_state.dbg_regs[i].addr = m_hbr_regs[i].address; 827 dreg_state.dbg_regs[i].ctrl = m_hbr_regs[i].control; 828 } 829 } 830 831 return NativeProcessLinux::PtraceWrapper(PTRACE_SETREGSET, m_thread.GetID(), 832 &hwbType, &ioVec, ioVec.iov_len); 833 } 834 835 Status NativeRegisterContextLinux_arm64::DoReadRegisterValue( 836 uint32_t offset, const char *reg_name, uint32_t size, 837 RegisterValue &value) { 838 Status error; 839 if (offset > sizeof(struct user_pt_regs)) { 840 offset -= sizeof(struct user_pt_regs); 841 if (offset > sizeof(struct user_fpsimd_state)) { 842 error.SetErrorString("invalid offset value"); 843 return error; 844 } 845 elf_fpregset_t regs; 846 int regset = NT_FPREGSET; 847 struct iovec ioVec; 848 849 ioVec.iov_base = ®s; 850 ioVec.iov_len = sizeof regs; 851 error = NativeProcessLinux::PtraceWrapper( 852 PTRACE_GETREGSET, m_thread.GetID(), ®set, &ioVec, sizeof regs); 853 if (error.Success()) { 854 value.SetBytes((void *)(((unsigned char *)(®s)) + offset), 16, 855 m_thread.GetProcess().GetByteOrder()); 856 } 857 } else { 858 elf_gregset_t regs; 859 int regset = NT_PRSTATUS; 860 struct iovec ioVec; 861 862 ioVec.iov_base = ®s; 863 ioVec.iov_len = sizeof regs; 864 error = NativeProcessLinux::PtraceWrapper( 865 PTRACE_GETREGSET, m_thread.GetID(), ®set, &ioVec, sizeof regs); 866 if (error.Success()) { 867 value.SetBytes((void *)(((unsigned char *)(regs)) + offset), 8, 868 m_thread.GetProcess().GetByteOrder()); 869 } 870 } 871 return error; 872 } 873 874 Status NativeRegisterContextLinux_arm64::DoWriteRegisterValue( 875 uint32_t offset, const char *reg_name, const RegisterValue &value) { 876 Status error; 877 ::pid_t tid = m_thread.GetID(); 878 if (offset > sizeof(struct user_pt_regs)) { 879 offset -= sizeof(struct user_pt_regs); 880 if (offset > sizeof(struct user_fpsimd_state)) { 881 error.SetErrorString("invalid offset value"); 882 return error; 883 } 884 elf_fpregset_t regs; 885 int regset = NT_FPREGSET; 886 struct iovec ioVec; 887 888 ioVec.iov_base = ®s; 889 ioVec.iov_len = sizeof regs; 890 error = NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET, tid, ®set, 891 &ioVec, sizeof regs); 892 893 if (error.Success()) { 894 ::memcpy((void *)(((unsigned char *)(®s)) + offset), value.GetBytes(), 895 16); 896 error = NativeProcessLinux::PtraceWrapper(PTRACE_SETREGSET, tid, ®set, 897 &ioVec, sizeof regs); 898 } 899 } else { 900 elf_gregset_t regs; 901 int regset = NT_PRSTATUS; 902 struct iovec ioVec; 903 904 ioVec.iov_base = ®s; 905 ioVec.iov_len = sizeof regs; 906 error = NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET, tid, ®set, 907 &ioVec, sizeof regs); 908 if (error.Success()) { 909 ::memcpy((void *)(((unsigned char *)(®s)) + offset), value.GetBytes(), 910 8); 911 error = NativeProcessLinux::PtraceWrapper(PTRACE_SETREGSET, tid, ®set, 912 &ioVec, sizeof regs); 913 } 914 } 915 return error; 916 } 917 918 Status NativeRegisterContextLinux_arm64::DoReadGPR(void *buf, size_t buf_size) { 919 int regset = NT_PRSTATUS; 920 struct iovec ioVec; 921 Status error; 922 923 ioVec.iov_base = buf; 924 ioVec.iov_len = buf_size; 925 return NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET, m_thread.GetID(), 926 ®set, &ioVec, buf_size); 927 } 928 929 Status NativeRegisterContextLinux_arm64::DoWriteGPR(void *buf, 930 size_t buf_size) { 931 int regset = NT_PRSTATUS; 932 struct iovec ioVec; 933 Status error; 934 935 ioVec.iov_base = buf; 936 ioVec.iov_len = buf_size; 937 return NativeProcessLinux::PtraceWrapper(PTRACE_SETREGSET, m_thread.GetID(), 938 ®set, &ioVec, buf_size); 939 } 940 941 Status NativeRegisterContextLinux_arm64::DoReadFPR(void *buf, size_t buf_size) { 942 int regset = NT_FPREGSET; 943 struct iovec ioVec; 944 Status error; 945 946 ioVec.iov_base = buf; 947 ioVec.iov_len = buf_size; 948 return NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET, m_thread.GetID(), 949 ®set, &ioVec, buf_size); 950 } 951 952 Status NativeRegisterContextLinux_arm64::DoWriteFPR(void *buf, 953 size_t buf_size) { 954 int regset = NT_FPREGSET; 955 struct iovec ioVec; 956 Status error; 957 958 ioVec.iov_base = buf; 959 ioVec.iov_len = buf_size; 960 return NativeProcessLinux::PtraceWrapper(PTRACE_SETREGSET, m_thread.GetID(), 961 ®set, &ioVec, buf_size); 962 } 963 964 uint32_t NativeRegisterContextLinux_arm64::CalculateFprOffset( 965 const RegisterInfo *reg_info) const { 966 return reg_info->byte_offset - 967 GetRegisterInfoAtIndex(m_reg_info.first_fpr)->byte_offset; 968 } 969 970 #endif // defined (__arm64__) || defined (__aarch64__) 971