1 //===-- NativeRegisterContextLinux_arm64.cpp --------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #if defined(__arm64__) || defined(__aarch64__)
11 
12 #include "NativeRegisterContextLinux_arm.h"
13 #include "NativeRegisterContextLinux_arm64.h"
14 
15 // C Includes
16 // C++ Includes
17 
18 // Other libraries and framework includes
19 #include "lldb/Core/DataBufferHeap.h"
20 #include "lldb/Core/Error.h"
21 #include "lldb/Core/Log.h"
22 #include "lldb/Core/RegisterValue.h"
23 #include "lldb/Host/common/NativeProcessProtocol.h"
24 
25 #include "Plugins/Process/Linux/NativeProcessLinux.h"
26 #include "Plugins/Process/Linux/Procfs.h"
27 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
28 #include "Plugins/Process/Utility/RegisterInfoPOSIX_arm64.h"
29 
30 // System includes - They have to be included after framework includes because
31 // they define some
32 // macros which collide with variable names in other modules
33 #include <sys/socket.h>
34 // NT_PRSTATUS and NT_FPREGSET definition
35 #include <elf.h>
36 // user_hwdebug_state definition
37 #include <asm/ptrace.h>
38 
39 #define REG_CONTEXT_SIZE (GetGPRSize() + GetFPRSize())
40 
41 using namespace lldb;
42 using namespace lldb_private;
43 using namespace lldb_private::process_linux;
44 
45 // ARM64 general purpose registers.
46 static const uint32_t g_gpr_regnums_arm64[] = {
47     gpr_x0_arm64,       gpr_x1_arm64,   gpr_x2_arm64,  gpr_x3_arm64,
48     gpr_x4_arm64,       gpr_x5_arm64,   gpr_x6_arm64,  gpr_x7_arm64,
49     gpr_x8_arm64,       gpr_x9_arm64,   gpr_x10_arm64, gpr_x11_arm64,
50     gpr_x12_arm64,      gpr_x13_arm64,  gpr_x14_arm64, gpr_x15_arm64,
51     gpr_x16_arm64,      gpr_x17_arm64,  gpr_x18_arm64, gpr_x19_arm64,
52     gpr_x20_arm64,      gpr_x21_arm64,  gpr_x22_arm64, gpr_x23_arm64,
53     gpr_x24_arm64,      gpr_x25_arm64,  gpr_x26_arm64, gpr_x27_arm64,
54     gpr_x28_arm64,      gpr_fp_arm64,   gpr_lr_arm64,  gpr_sp_arm64,
55     gpr_pc_arm64,       gpr_cpsr_arm64, gpr_w0_arm64,  gpr_w1_arm64,
56     gpr_w2_arm64,       gpr_w3_arm64,   gpr_w4_arm64,  gpr_w5_arm64,
57     gpr_w6_arm64,       gpr_w7_arm64,   gpr_w8_arm64,  gpr_w9_arm64,
58     gpr_w10_arm64,      gpr_w11_arm64,  gpr_w12_arm64, gpr_w13_arm64,
59     gpr_w14_arm64,      gpr_w15_arm64,  gpr_w16_arm64, gpr_w17_arm64,
60     gpr_w18_arm64,      gpr_w19_arm64,  gpr_w20_arm64, gpr_w21_arm64,
61     gpr_w22_arm64,      gpr_w23_arm64,  gpr_w24_arm64, gpr_w25_arm64,
62     gpr_w26_arm64,      gpr_w27_arm64,  gpr_w28_arm64,
63     LLDB_INVALID_REGNUM // register sets need to end with this flag
64 };
65 static_assert(((sizeof g_gpr_regnums_arm64 / sizeof g_gpr_regnums_arm64[0]) -
66                1) == k_num_gpr_registers_arm64,
67               "g_gpr_regnums_arm64 has wrong number of register infos");
68 
69 // ARM64 floating point registers.
70 static const uint32_t g_fpu_regnums_arm64[] = {
71     fpu_v0_arm64,       fpu_v1_arm64,   fpu_v2_arm64,  fpu_v3_arm64,
72     fpu_v4_arm64,       fpu_v5_arm64,   fpu_v6_arm64,  fpu_v7_arm64,
73     fpu_v8_arm64,       fpu_v9_arm64,   fpu_v10_arm64, fpu_v11_arm64,
74     fpu_v12_arm64,      fpu_v13_arm64,  fpu_v14_arm64, fpu_v15_arm64,
75     fpu_v16_arm64,      fpu_v17_arm64,  fpu_v18_arm64, fpu_v19_arm64,
76     fpu_v20_arm64,      fpu_v21_arm64,  fpu_v22_arm64, fpu_v23_arm64,
77     fpu_v24_arm64,      fpu_v25_arm64,  fpu_v26_arm64, fpu_v27_arm64,
78     fpu_v28_arm64,      fpu_v29_arm64,  fpu_v30_arm64, fpu_v31_arm64,
79     fpu_s0_arm64,       fpu_s1_arm64,   fpu_s2_arm64,  fpu_s3_arm64,
80     fpu_s4_arm64,       fpu_s5_arm64,   fpu_s6_arm64,  fpu_s7_arm64,
81     fpu_s8_arm64,       fpu_s9_arm64,   fpu_s10_arm64, fpu_s11_arm64,
82     fpu_s12_arm64,      fpu_s13_arm64,  fpu_s14_arm64, fpu_s15_arm64,
83     fpu_s16_arm64,      fpu_s17_arm64,  fpu_s18_arm64, fpu_s19_arm64,
84     fpu_s20_arm64,      fpu_s21_arm64,  fpu_s22_arm64, fpu_s23_arm64,
85     fpu_s24_arm64,      fpu_s25_arm64,  fpu_s26_arm64, fpu_s27_arm64,
86     fpu_s28_arm64,      fpu_s29_arm64,  fpu_s30_arm64, fpu_s31_arm64,
87 
88     fpu_d0_arm64,       fpu_d1_arm64,   fpu_d2_arm64,  fpu_d3_arm64,
89     fpu_d4_arm64,       fpu_d5_arm64,   fpu_d6_arm64,  fpu_d7_arm64,
90     fpu_d8_arm64,       fpu_d9_arm64,   fpu_d10_arm64, fpu_d11_arm64,
91     fpu_d12_arm64,      fpu_d13_arm64,  fpu_d14_arm64, fpu_d15_arm64,
92     fpu_d16_arm64,      fpu_d17_arm64,  fpu_d18_arm64, fpu_d19_arm64,
93     fpu_d20_arm64,      fpu_d21_arm64,  fpu_d22_arm64, fpu_d23_arm64,
94     fpu_d24_arm64,      fpu_d25_arm64,  fpu_d26_arm64, fpu_d27_arm64,
95     fpu_d28_arm64,      fpu_d29_arm64,  fpu_d30_arm64, fpu_d31_arm64,
96     fpu_fpsr_arm64,     fpu_fpcr_arm64,
97     LLDB_INVALID_REGNUM // register sets need to end with this flag
98 };
99 static_assert(((sizeof g_fpu_regnums_arm64 / sizeof g_fpu_regnums_arm64[0]) -
100                1) == k_num_fpr_registers_arm64,
101               "g_fpu_regnums_arm64 has wrong number of register infos");
102 
103 namespace {
104 // Number of register sets provided by this context.
105 enum { k_num_register_sets = 2 };
106 }
107 
108 // Register sets for ARM64.
109 static const RegisterSet g_reg_sets_arm64[k_num_register_sets] = {
110     {"General Purpose Registers", "gpr", k_num_gpr_registers_arm64,
111      g_gpr_regnums_arm64},
112     {"Floating Point Registers", "fpu", k_num_fpr_registers_arm64,
113      g_fpu_regnums_arm64}};
114 
115 NativeRegisterContextLinux *
116 NativeRegisterContextLinux::CreateHostNativeRegisterContextLinux(
117     const ArchSpec &target_arch, NativeThreadProtocol &native_thread,
118     uint32_t concrete_frame_idx) {
119   Log *log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_REGISTERS);
120   switch (target_arch.GetMachine()) {
121   case llvm::Triple::arm:
122     return new NativeRegisterContextLinux_arm(target_arch, native_thread,
123                                               concrete_frame_idx);
124   case llvm::Triple::aarch64:
125     return new NativeRegisterContextLinux_arm64(target_arch, native_thread,
126                                                 concrete_frame_idx);
127   default:
128     if (log)
129       log->Printf("NativeRegisterContextLinux::%s() have no register context "
130                   "for architecture: %s\n",
131                   __FUNCTION__,
132                   target_arch.GetTriple().getArchName().str().c_str());
133     return nullptr;
134   }
135 }
136 
137 NativeRegisterContextLinux_arm64::NativeRegisterContextLinux_arm64(
138     const ArchSpec &target_arch, NativeThreadProtocol &native_thread,
139     uint32_t concrete_frame_idx)
140     : NativeRegisterContextLinux(native_thread, concrete_frame_idx,
141                                  new RegisterInfoPOSIX_arm64(target_arch)) {
142   switch (target_arch.GetMachine()) {
143   case llvm::Triple::aarch64:
144     m_reg_info.num_registers = k_num_registers_arm64;
145     m_reg_info.num_gpr_registers = k_num_gpr_registers_arm64;
146     m_reg_info.num_fpr_registers = k_num_fpr_registers_arm64;
147     m_reg_info.last_gpr = k_last_gpr_arm64;
148     m_reg_info.first_fpr = k_first_fpr_arm64;
149     m_reg_info.last_fpr = k_last_fpr_arm64;
150     m_reg_info.first_fpr_v = fpu_v0_arm64;
151     m_reg_info.last_fpr_v = fpu_v31_arm64;
152     m_reg_info.gpr_flags = gpr_cpsr_arm64;
153     break;
154   default:
155     assert(false && "Unhandled target architecture.");
156     break;
157   }
158 
159   ::memset(&m_fpr, 0, sizeof(m_fpr));
160   ::memset(&m_gpr_arm64, 0, sizeof(m_gpr_arm64));
161   ::memset(&m_hwp_regs, 0, sizeof(m_hwp_regs));
162 
163   // 16 is just a maximum value, query hardware for actual watchpoint count
164   m_max_hwp_supported = 16;
165   m_max_hbp_supported = 16;
166   m_refresh_hwdebug_info = true;
167 }
168 
169 uint32_t NativeRegisterContextLinux_arm64::GetRegisterSetCount() const {
170   return k_num_register_sets;
171 }
172 
173 const RegisterSet *
174 NativeRegisterContextLinux_arm64::GetRegisterSet(uint32_t set_index) const {
175   if (set_index < k_num_register_sets)
176     return &g_reg_sets_arm64[set_index];
177 
178   return nullptr;
179 }
180 
181 uint32_t NativeRegisterContextLinux_arm64::GetUserRegisterCount() const {
182   uint32_t count = 0;
183   for (uint32_t set_index = 0; set_index < k_num_register_sets; ++set_index)
184     count += g_reg_sets_arm64[set_index].num_registers;
185   return count;
186 }
187 
188 Error NativeRegisterContextLinux_arm64::ReadRegister(
189     const RegisterInfo *reg_info, RegisterValue &reg_value) {
190   Error error;
191 
192   if (!reg_info) {
193     error.SetErrorString("reg_info NULL");
194     return error;
195   }
196 
197   const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB];
198 
199   if (IsFPR(reg)) {
200     error = ReadFPR();
201     if (error.Fail())
202       return error;
203   } else {
204     uint32_t full_reg = reg;
205     bool is_subreg = reg_info->invalidate_regs &&
206                      (reg_info->invalidate_regs[0] != LLDB_INVALID_REGNUM);
207 
208     if (is_subreg) {
209       // Read the full aligned 64-bit register.
210       full_reg = reg_info->invalidate_regs[0];
211     }
212 
213     error = ReadRegisterRaw(full_reg, reg_value);
214 
215     if (error.Success()) {
216       // If our read was not aligned (for ah,bh,ch,dh), shift our returned value
217       // one byte to the right.
218       if (is_subreg && (reg_info->byte_offset & 0x1))
219         reg_value.SetUInt64(reg_value.GetAsUInt64() >> 8);
220 
221       // If our return byte size was greater than the return value reg size,
222       // then
223       // use the type specified by reg_info rather than the uint64_t default
224       if (reg_value.GetByteSize() > reg_info->byte_size)
225         reg_value.SetType(reg_info);
226     }
227     return error;
228   }
229 
230   // Get pointer to m_fpr variable and set the data from it.
231   uint32_t fpr_offset = CalculateFprOffset(reg_info);
232   assert(fpr_offset < sizeof m_fpr);
233   uint8_t *src = (uint8_t *)&m_fpr + fpr_offset;
234   reg_value.SetFromMemoryData(reg_info, src, reg_info->byte_size,
235                               eByteOrderLittle, error);
236 
237   return error;
238 }
239 
240 Error NativeRegisterContextLinux_arm64::WriteRegister(
241     const RegisterInfo *reg_info, const RegisterValue &reg_value) {
242   if (!reg_info)
243     return Error("reg_info NULL");
244 
245   const uint32_t reg_index = reg_info->kinds[lldb::eRegisterKindLLDB];
246   if (reg_index == LLDB_INVALID_REGNUM)
247     return Error("no lldb regnum for %s", reg_info && reg_info->name
248                                               ? reg_info->name
249                                               : "<unknown register>");
250 
251   if (IsGPR(reg_index))
252     return WriteRegisterRaw(reg_index, reg_value);
253 
254   if (IsFPR(reg_index)) {
255     // Get pointer to m_fpr variable and set the data to it.
256     uint32_t fpr_offset = CalculateFprOffset(reg_info);
257     assert(fpr_offset < sizeof m_fpr);
258     uint8_t *dst = (uint8_t *)&m_fpr + fpr_offset;
259     switch (reg_info->byte_size) {
260     case 2:
261       *(uint16_t *)dst = reg_value.GetAsUInt16();
262       break;
263     case 4:
264       *(uint32_t *)dst = reg_value.GetAsUInt32();
265       break;
266     case 8:
267       *(uint64_t *)dst = reg_value.GetAsUInt64();
268       break;
269     default:
270       assert(false && "Unhandled data size.");
271       return Error("unhandled register data size %" PRIu32,
272                    reg_info->byte_size);
273     }
274 
275     Error error = WriteFPR();
276     if (error.Fail())
277       return error;
278 
279     return Error();
280   }
281 
282   return Error("failed - register wasn't recognized to be a GPR or an FPR, "
283                "write strategy unknown");
284 }
285 
286 Error NativeRegisterContextLinux_arm64::ReadAllRegisterValues(
287     lldb::DataBufferSP &data_sp) {
288   Error error;
289 
290   data_sp.reset(new DataBufferHeap(REG_CONTEXT_SIZE, 0));
291   if (!data_sp)
292     return Error("failed to allocate DataBufferHeap instance of size %" PRIu64,
293                  REG_CONTEXT_SIZE);
294 
295   error = ReadGPR();
296   if (error.Fail())
297     return error;
298 
299   error = ReadFPR();
300   if (error.Fail())
301     return error;
302 
303   uint8_t *dst = data_sp->GetBytes();
304   if (dst == nullptr) {
305     error.SetErrorStringWithFormat("DataBufferHeap instance of size %" PRIu64
306                                    " returned a null pointer",
307                                    REG_CONTEXT_SIZE);
308     return error;
309   }
310 
311   ::memcpy(dst, &m_gpr_arm64, GetGPRSize());
312   dst += GetGPRSize();
313   ::memcpy(dst, &m_fpr, sizeof(m_fpr));
314 
315   return error;
316 }
317 
318 Error NativeRegisterContextLinux_arm64::WriteAllRegisterValues(
319     const lldb::DataBufferSP &data_sp) {
320   Error error;
321 
322   if (!data_sp) {
323     error.SetErrorStringWithFormat(
324         "NativeRegisterContextLinux_x86_64::%s invalid data_sp provided",
325         __FUNCTION__);
326     return error;
327   }
328 
329   if (data_sp->GetByteSize() != REG_CONTEXT_SIZE) {
330     error.SetErrorStringWithFormat(
331         "NativeRegisterContextLinux_x86_64::%s data_sp contained mismatched "
332         "data size, expected %" PRIu64 ", actual %" PRIu64,
333         __FUNCTION__, REG_CONTEXT_SIZE, data_sp->GetByteSize());
334     return error;
335   }
336 
337   uint8_t *src = data_sp->GetBytes();
338   if (src == nullptr) {
339     error.SetErrorStringWithFormat("NativeRegisterContextLinux_x86_64::%s "
340                                    "DataBuffer::GetBytes() returned a null "
341                                    "pointer",
342                                    __FUNCTION__);
343     return error;
344   }
345   ::memcpy(&m_gpr_arm64, src, GetRegisterInfoInterface().GetGPRSize());
346 
347   error = WriteGPR();
348   if (error.Fail())
349     return error;
350 
351   src += GetRegisterInfoInterface().GetGPRSize();
352   ::memcpy(&m_fpr, src, sizeof(m_fpr));
353 
354   error = WriteFPR();
355   if (error.Fail())
356     return error;
357 
358   return error;
359 }
360 
361 bool NativeRegisterContextLinux_arm64::IsGPR(unsigned reg) const {
362   return reg <= m_reg_info.last_gpr; // GPR's come first.
363 }
364 
365 bool NativeRegisterContextLinux_arm64::IsFPR(unsigned reg) const {
366   return (m_reg_info.first_fpr <= reg && reg <= m_reg_info.last_fpr);
367 }
368 
369 uint32_t
370 NativeRegisterContextLinux_arm64::SetHardwareBreakpoint(lldb::addr_t addr,
371                                                         size_t size) {
372   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_WATCHPOINTS));
373 
374   if (log)
375     log->Printf("NativeRegisterContextLinux_arm64::%s()", __FUNCTION__);
376 
377   Error error;
378 
379   // Read hardware breakpoint and watchpoint information.
380   error = ReadHardwareDebugInfo();
381 
382   if (error.Fail())
383     return LLDB_INVALID_INDEX32;
384 
385   uint32_t control_value = 0, bp_index = 0;
386 
387   // Check if size has a valid hardware breakpoint length.
388   if (size != 4)
389     return LLDB_INVALID_INDEX32; // Invalid size for a AArch64 hardware
390                                  // breakpoint
391 
392   // Check 4-byte alignment for hardware breakpoint target address.
393   if (addr & 0x03)
394     return LLDB_INVALID_INDEX32; // Invalid address, should be 4-byte aligned.
395 
396   // Setup control value
397   control_value = 0;
398   control_value |= ((1 << size) - 1) << 5;
399   control_value |= (2 << 1) | 1;
400 
401   // Iterate over stored hardware breakpoints
402   // Find a free bp_index or update reference count if duplicate.
403   bp_index = LLDB_INVALID_INDEX32;
404   for (uint32_t i = 0; i < m_max_hbp_supported; i++) {
405     if ((m_hbr_regs[i].control & 1) == 0) {
406       bp_index = i; // Mark last free slot
407     } else if (m_hbr_regs[i].address == addr &&
408                m_hbr_regs[i].control == control_value) {
409       bp_index = i; // Mark duplicate index
410       break;        // Stop searching here
411     }
412   }
413 
414   if (bp_index == LLDB_INVALID_INDEX32)
415     return LLDB_INVALID_INDEX32;
416 
417   // Add new or update existing breakpoint
418   if ((m_hbr_regs[bp_index].control & 1) == 0) {
419     m_hbr_regs[bp_index].address = addr;
420     m_hbr_regs[bp_index].control = control_value;
421     m_hbr_regs[bp_index].refcount = 1;
422 
423     // PTRACE call to set corresponding hardware breakpoint register.
424     error = WriteHardwareDebugRegs(eDREGTypeBREAK);
425 
426     if (error.Fail()) {
427       m_hbr_regs[bp_index].address = 0;
428       m_hbr_regs[bp_index].control &= ~1;
429       m_hbr_regs[bp_index].refcount = 0;
430 
431       return LLDB_INVALID_INDEX32;
432     }
433   } else
434     m_hbr_regs[bp_index].refcount++;
435 
436   return bp_index;
437 }
438 
439 bool NativeRegisterContextLinux_arm64::ClearHardwareBreakpoint(
440     uint32_t hw_idx) {
441   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_WATCHPOINTS));
442 
443   if (log)
444     log->Printf("NativeRegisterContextLinux_arm64::%s()", __FUNCTION__);
445 
446   Error error;
447 
448   // Read hardware breakpoint and watchpoint information.
449   error = ReadHardwareDebugInfo();
450 
451   if (error.Fail())
452     return false;
453 
454   if (hw_idx >= m_max_hbp_supported)
455     return false;
456 
457   // Update reference count if multiple references.
458   if (m_hbr_regs[hw_idx].refcount > 1) {
459     m_hbr_regs[hw_idx].refcount--;
460     return true;
461   } else if (m_hbr_regs[hw_idx].refcount == 1) {
462     // Create a backup we can revert to in case of failure.
463     lldb::addr_t tempAddr = m_hbr_regs[hw_idx].address;
464     uint32_t tempControl = m_hbr_regs[hw_idx].control;
465     uint32_t tempRefCount = m_hbr_regs[hw_idx].refcount;
466 
467     m_hbr_regs[hw_idx].control &= ~1;
468     m_hbr_regs[hw_idx].address = 0;
469     m_hbr_regs[hw_idx].refcount = 0;
470 
471     // PTRACE call to clear corresponding hardware breakpoint register.
472     WriteHardwareDebugRegs(eDREGTypeBREAK);
473 
474     if (error.Fail()) {
475       m_hbr_regs[hw_idx].control = tempControl;
476       m_hbr_regs[hw_idx].address = tempAddr;
477       m_hbr_regs[hw_idx].refcount = tempRefCount;
478 
479       return false;
480     }
481 
482     return true;
483   }
484 
485   return false;
486 }
487 
488 uint32_t NativeRegisterContextLinux_arm64::NumSupportedHardwareWatchpoints() {
489   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_WATCHPOINTS));
490 
491   if (log)
492     log->Printf("NativeRegisterContextLinux_arm64::%s()", __FUNCTION__);
493 
494   Error error;
495 
496   // Read hardware breakpoint and watchpoint information.
497   error = ReadHardwareDebugInfo();
498 
499   if (error.Fail())
500     return 0;
501 
502   return m_max_hwp_supported;
503 }
504 
505 uint32_t NativeRegisterContextLinux_arm64::SetHardwareWatchpoint(
506     lldb::addr_t addr, size_t size, uint32_t watch_flags) {
507   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_WATCHPOINTS));
508 
509   if (log)
510     log->Printf("NativeRegisterContextLinux_arm64::%s()", __FUNCTION__);
511 
512   Error error;
513 
514   // Read hardware breakpoint and watchpoint information.
515   error = ReadHardwareDebugInfo();
516 
517   if (error.Fail())
518     return LLDB_INVALID_INDEX32;
519 
520   uint32_t control_value = 0, wp_index = 0;
521   lldb::addr_t real_addr = addr;
522 
523   // Check if we are setting watchpoint other than read/write/access
524   // Also update watchpoint flag to match AArch64 write-read bit configuration.
525   switch (watch_flags) {
526   case 1:
527     watch_flags = 2;
528     break;
529   case 2:
530     watch_flags = 1;
531     break;
532   case 3:
533     break;
534   default:
535     return LLDB_INVALID_INDEX32;
536   }
537 
538   // Check if size has a valid hardware watchpoint length.
539   if (size != 1 && size != 2 && size != 4 && size != 8)
540     return LLDB_INVALID_INDEX32;
541 
542   // Check 8-byte alignment for hardware watchpoint target address.
543   // Below is a hack to recalculate address and size in order to
544   // make sure we can watch non 8-byte alligned addresses as well.
545   if (addr & 0x07) {
546     uint8_t watch_mask = (addr & 0x07) + size;
547 
548     if (watch_mask > 0x08)
549       return LLDB_INVALID_INDEX32;
550     else if (watch_mask <= 0x02)
551       size = 2;
552     else if (watch_mask <= 0x04)
553       size = 4;
554     else
555       size = 8;
556 
557     addr = addr & (~0x07);
558   }
559 
560   // Setup control value
561   control_value = watch_flags << 3;
562   control_value |= ((1 << size) - 1) << 5;
563   control_value |= (2 << 1) | 1;
564 
565   // Iterate over stored watchpoints and find a free wp_index
566   wp_index = LLDB_INVALID_INDEX32;
567   for (uint32_t i = 0; i < m_max_hwp_supported; i++) {
568     if ((m_hwp_regs[i].control & 1) == 0) {
569       wp_index = i; // Mark last free slot
570     } else if (m_hwp_regs[i].address == addr) {
571       return LLDB_INVALID_INDEX32; // We do not support duplicate watchpoints.
572     }
573   }
574 
575   if (wp_index == LLDB_INVALID_INDEX32)
576     return LLDB_INVALID_INDEX32;
577 
578   // Update watchpoint in local cache
579   m_hwp_regs[wp_index].real_addr = real_addr;
580   m_hwp_regs[wp_index].address = addr;
581   m_hwp_regs[wp_index].control = control_value;
582 
583   // PTRACE call to set corresponding watchpoint register.
584   error = WriteHardwareDebugRegs(eDREGTypeWATCH);
585 
586   if (error.Fail()) {
587     m_hwp_regs[wp_index].address = 0;
588     m_hwp_regs[wp_index].control &= ~1;
589 
590     return LLDB_INVALID_INDEX32;
591   }
592 
593   return wp_index;
594 }
595 
596 bool NativeRegisterContextLinux_arm64::ClearHardwareWatchpoint(
597     uint32_t wp_index) {
598   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_WATCHPOINTS));
599 
600   if (log)
601     log->Printf("NativeRegisterContextLinux_arm64::%s()", __FUNCTION__);
602 
603   Error error;
604 
605   // Read hardware breakpoint and watchpoint information.
606   error = ReadHardwareDebugInfo();
607 
608   if (error.Fail())
609     return false;
610 
611   if (wp_index >= m_max_hwp_supported)
612     return false;
613 
614   // Create a backup we can revert to in case of failure.
615   lldb::addr_t tempAddr = m_hwp_regs[wp_index].address;
616   uint32_t tempControl = m_hwp_regs[wp_index].control;
617 
618   // Update watchpoint in local cache
619   m_hwp_regs[wp_index].control &= ~1;
620   m_hwp_regs[wp_index].address = 0;
621 
622   // Ptrace call to update hardware debug registers
623   error = WriteHardwareDebugRegs(eDREGTypeWATCH);
624 
625   if (error.Fail()) {
626     m_hwp_regs[wp_index].control = tempControl;
627     m_hwp_regs[wp_index].address = tempAddr;
628 
629     return false;
630   }
631 
632   return true;
633 }
634 
635 Error NativeRegisterContextLinux_arm64::ClearAllHardwareWatchpoints() {
636   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_WATCHPOINTS));
637 
638   if (log)
639     log->Printf("NativeRegisterContextLinux_arm64::%s()", __FUNCTION__);
640 
641   Error error;
642 
643   // Read hardware breakpoint and watchpoint information.
644   error = ReadHardwareDebugInfo();
645 
646   if (error.Fail())
647     return error;
648 
649   lldb::addr_t tempAddr = 0;
650   uint32_t tempControl = 0, tempRefCount = 0;
651 
652   for (uint32_t i = 0; i < m_max_hwp_supported; i++) {
653     if (m_hwp_regs[i].control & 0x01) {
654       // Create a backup we can revert to in case of failure.
655       tempAddr = m_hwp_regs[i].address;
656       tempControl = m_hwp_regs[i].control;
657 
658       // Clear watchpoints in local cache
659       m_hwp_regs[i].control &= ~1;
660       m_hwp_regs[i].address = 0;
661 
662       // Ptrace call to update hardware debug registers
663       error = WriteHardwareDebugRegs(eDREGTypeWATCH);
664 
665       if (error.Fail()) {
666         m_hwp_regs[i].control = tempControl;
667         m_hwp_regs[i].address = tempAddr;
668 
669         return error;
670       }
671     }
672   }
673 
674   return Error();
675 }
676 
677 uint32_t
678 NativeRegisterContextLinux_arm64::GetWatchpointSize(uint32_t wp_index) {
679   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_WATCHPOINTS));
680 
681   if (log)
682     log->Printf("NativeRegisterContextLinux_arm64::%s()", __FUNCTION__);
683   switch ((m_hwp_regs[wp_index].control >> 5) & 0xff) {
684   case 0x01:
685     return 1;
686   case 0x03:
687     return 2;
688   case 0x0f:
689     return 4;
690   case 0xff:
691     return 8;
692   default:
693     return 0;
694   }
695 }
696 bool NativeRegisterContextLinux_arm64::WatchpointIsEnabled(uint32_t wp_index) {
697   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_WATCHPOINTS));
698 
699   if (log)
700     log->Printf("NativeRegisterContextLinux_arm64::%s()", __FUNCTION__);
701 
702   if ((m_hwp_regs[wp_index].control & 0x1) == 0x1)
703     return true;
704   else
705     return false;
706 }
707 
708 Error NativeRegisterContextLinux_arm64::GetWatchpointHitIndex(
709     uint32_t &wp_index, lldb::addr_t trap_addr) {
710   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_WATCHPOINTS));
711 
712   if (log)
713     log->Printf("NativeRegisterContextLinux_arm64::%s()", __FUNCTION__);
714 
715   uint32_t watch_size;
716   lldb::addr_t watch_addr;
717 
718   for (wp_index = 0; wp_index < m_max_hwp_supported; ++wp_index) {
719     watch_size = GetWatchpointSize(wp_index);
720     watch_addr = m_hwp_regs[wp_index].address;
721 
722     if (WatchpointIsEnabled(wp_index) && trap_addr >= watch_addr &&
723         trap_addr < watch_addr + watch_size) {
724       m_hwp_regs[wp_index].hit_addr = trap_addr;
725       return Error();
726     }
727   }
728 
729   wp_index = LLDB_INVALID_INDEX32;
730   return Error();
731 }
732 
733 lldb::addr_t
734 NativeRegisterContextLinux_arm64::GetWatchpointAddress(uint32_t wp_index) {
735   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_WATCHPOINTS));
736 
737   if (log)
738     log->Printf("NativeRegisterContextLinux_arm64::%s()", __FUNCTION__);
739 
740   if (wp_index >= m_max_hwp_supported)
741     return LLDB_INVALID_ADDRESS;
742 
743   if (WatchpointIsEnabled(wp_index))
744     return m_hwp_regs[wp_index].real_addr;
745   else
746     return LLDB_INVALID_ADDRESS;
747 }
748 
749 lldb::addr_t
750 NativeRegisterContextLinux_arm64::GetWatchpointHitAddress(uint32_t wp_index) {
751   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_WATCHPOINTS));
752 
753   if (log)
754     log->Printf("NativeRegisterContextLinux_arm64::%s()", __FUNCTION__);
755 
756   if (wp_index >= m_max_hwp_supported)
757     return LLDB_INVALID_ADDRESS;
758 
759   if (WatchpointIsEnabled(wp_index))
760     return m_hwp_regs[wp_index].hit_addr;
761   else
762     return LLDB_INVALID_ADDRESS;
763 }
764 
765 Error NativeRegisterContextLinux_arm64::ReadHardwareDebugInfo() {
766   if (!m_refresh_hwdebug_info) {
767     return Error();
768   }
769 
770   ::pid_t tid = m_thread.GetID();
771 
772   int regset = NT_ARM_HW_WATCH;
773   struct iovec ioVec;
774   struct user_hwdebug_state dreg_state;
775   Error error;
776 
777   ioVec.iov_base = &dreg_state;
778   ioVec.iov_len = sizeof(dreg_state);
779   error = NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET, tid, &regset,
780                                             &ioVec, ioVec.iov_len);
781 
782   if (error.Fail())
783     return error;
784 
785   m_max_hwp_supported = dreg_state.dbg_info & 0xff;
786 
787   regset = NT_ARM_HW_BREAK;
788   error = NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET, tid, &regset,
789                                             &ioVec, ioVec.iov_len);
790 
791   if (error.Fail())
792     return error;
793 
794   m_max_hbp_supported = dreg_state.dbg_info & 0xff;
795   m_refresh_hwdebug_info = false;
796 
797   return error;
798 }
799 
800 Error NativeRegisterContextLinux_arm64::WriteHardwareDebugRegs(int hwbType) {
801   struct iovec ioVec;
802   struct user_hwdebug_state dreg_state;
803   Error error;
804 
805   memset(&dreg_state, 0, sizeof(dreg_state));
806   ioVec.iov_base = &dreg_state;
807 
808   if (hwbType == eDREGTypeWATCH) {
809     hwbType = NT_ARM_HW_WATCH;
810     ioVec.iov_len = sizeof(dreg_state.dbg_info) + sizeof(dreg_state.pad) +
811                     (sizeof(dreg_state.dbg_regs[0]) * m_max_hwp_supported);
812 
813     for (uint32_t i = 0; i < m_max_hwp_supported; i++) {
814       dreg_state.dbg_regs[i].addr = m_hwp_regs[i].address;
815       dreg_state.dbg_regs[i].ctrl = m_hwp_regs[i].control;
816     }
817   } else {
818     hwbType = NT_ARM_HW_BREAK;
819     ioVec.iov_len = sizeof(dreg_state.dbg_info) + sizeof(dreg_state.pad) +
820                     (sizeof(dreg_state.dbg_regs[0]) * m_max_hbp_supported);
821 
822     for (uint32_t i = 0; i < m_max_hbp_supported; i++) {
823       dreg_state.dbg_regs[i].addr = m_hbr_regs[i].address;
824       dreg_state.dbg_regs[i].ctrl = m_hbr_regs[i].control;
825     }
826   }
827 
828   return NativeProcessLinux::PtraceWrapper(PTRACE_SETREGSET, m_thread.GetID(),
829                                            &hwbType, &ioVec, ioVec.iov_len);
830 }
831 
832 Error NativeRegisterContextLinux_arm64::DoReadRegisterValue(
833     uint32_t offset, const char *reg_name, uint32_t size,
834     RegisterValue &value) {
835   Error error;
836   if (offset > sizeof(struct user_pt_regs)) {
837     uintptr_t offset = offset - sizeof(struct user_pt_regs);
838     if (offset > sizeof(struct user_fpsimd_state)) {
839       error.SetErrorString("invalid offset value");
840       return error;
841     }
842     elf_fpregset_t regs;
843     int regset = NT_FPREGSET;
844     struct iovec ioVec;
845 
846     ioVec.iov_base = &regs;
847     ioVec.iov_len = sizeof regs;
848     error = NativeProcessLinux::PtraceWrapper(
849         PTRACE_GETREGSET, m_thread.GetID(), &regset, &ioVec, sizeof regs);
850     if (error.Success()) {
851       ArchSpec arch;
852       if (m_thread.GetProcess()->GetArchitecture(arch))
853         value.SetBytes((void *)(((unsigned char *)(&regs)) + offset), 16,
854                        arch.GetByteOrder());
855       else
856         error.SetErrorString("failed to get architecture");
857     }
858   } else {
859     elf_gregset_t regs;
860     int regset = NT_PRSTATUS;
861     struct iovec ioVec;
862 
863     ioVec.iov_base = &regs;
864     ioVec.iov_len = sizeof regs;
865     error = NativeProcessLinux::PtraceWrapper(
866         PTRACE_GETREGSET, m_thread.GetID(), &regset, &ioVec, sizeof regs);
867     if (error.Success()) {
868       ArchSpec arch;
869       if (m_thread.GetProcess()->GetArchitecture(arch))
870         value.SetBytes((void *)(((unsigned char *)(regs)) + offset), 8,
871                        arch.GetByteOrder());
872       else
873         error.SetErrorString("failed to get architecture");
874     }
875   }
876   return error;
877 }
878 
879 Error NativeRegisterContextLinux_arm64::DoWriteRegisterValue(
880     uint32_t offset, const char *reg_name, const RegisterValue &value) {
881   Error error;
882   ::pid_t tid = m_thread.GetID();
883   if (offset > sizeof(struct user_pt_regs)) {
884     uintptr_t offset = offset - sizeof(struct user_pt_regs);
885     if (offset > sizeof(struct user_fpsimd_state)) {
886       error.SetErrorString("invalid offset value");
887       return error;
888     }
889     elf_fpregset_t regs;
890     int regset = NT_FPREGSET;
891     struct iovec ioVec;
892 
893     ioVec.iov_base = &regs;
894     ioVec.iov_len = sizeof regs;
895     error = NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET, tid, &regset,
896                                               &ioVec, sizeof regs);
897 
898     if (error.Success()) {
899       ::memcpy((void *)(((unsigned char *)(&regs)) + offset), value.GetBytes(),
900                16);
901       error = NativeProcessLinux::PtraceWrapper(PTRACE_SETREGSET, tid, &regset,
902                                                 &ioVec, sizeof regs);
903     }
904   } else {
905     elf_gregset_t regs;
906     int regset = NT_PRSTATUS;
907     struct iovec ioVec;
908 
909     ioVec.iov_base = &regs;
910     ioVec.iov_len = sizeof regs;
911     error = NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET, tid, &regset,
912                                               &ioVec, sizeof regs);
913     if (error.Success()) {
914       ::memcpy((void *)(((unsigned char *)(&regs)) + offset), value.GetBytes(),
915                8);
916       error = NativeProcessLinux::PtraceWrapper(PTRACE_SETREGSET, tid, &regset,
917                                                 &ioVec, sizeof regs);
918     }
919   }
920   return error;
921 }
922 
923 Error NativeRegisterContextLinux_arm64::DoReadGPR(void *buf, size_t buf_size) {
924   int regset = NT_PRSTATUS;
925   struct iovec ioVec;
926   Error error;
927 
928   ioVec.iov_base = buf;
929   ioVec.iov_len = buf_size;
930   return NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET, m_thread.GetID(),
931                                            &regset, &ioVec, buf_size);
932 }
933 
934 Error NativeRegisterContextLinux_arm64::DoWriteGPR(void *buf, size_t buf_size) {
935   int regset = NT_PRSTATUS;
936   struct iovec ioVec;
937   Error error;
938 
939   ioVec.iov_base = buf;
940   ioVec.iov_len = buf_size;
941   return NativeProcessLinux::PtraceWrapper(PTRACE_SETREGSET, m_thread.GetID(),
942                                            &regset, &ioVec, buf_size);
943 }
944 
945 Error NativeRegisterContextLinux_arm64::DoReadFPR(void *buf, size_t buf_size) {
946   int regset = NT_FPREGSET;
947   struct iovec ioVec;
948   Error error;
949 
950   ioVec.iov_base = buf;
951   ioVec.iov_len = buf_size;
952   return NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET, m_thread.GetID(),
953                                            &regset, &ioVec, buf_size);
954 }
955 
956 Error NativeRegisterContextLinux_arm64::DoWriteFPR(void *buf, size_t buf_size) {
957   int regset = NT_FPREGSET;
958   struct iovec ioVec;
959   Error error;
960 
961   ioVec.iov_base = buf;
962   ioVec.iov_len = buf_size;
963   return NativeProcessLinux::PtraceWrapper(PTRACE_SETREGSET, m_thread.GetID(),
964                                            &regset, &ioVec, buf_size);
965 }
966 
967 uint32_t NativeRegisterContextLinux_arm64::CalculateFprOffset(
968     const RegisterInfo *reg_info) const {
969   return reg_info->byte_offset -
970          GetRegisterInfoAtIndex(m_reg_info.first_fpr)->byte_offset;
971 }
972 
973 #endif // defined (__arm64__) || defined (__aarch64__)
974