1 //===-- NativeRegisterContextLinux_arm64.cpp --------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #if defined(__arm64__) || defined(__aarch64__)
11 
12 #include "NativeRegisterContextLinux_arm.h"
13 #include "NativeRegisterContextLinux_arm64.h"
14 
15 // C Includes
16 // C++ Includes
17 
18 // Other libraries and framework includes
19 #include "lldb/Core/RegisterValue.h"
20 #include "lldb/Host/common/NativeProcessProtocol.h"
21 #include "lldb/Utility/DataBufferHeap.h"
22 #include "lldb/Utility/Log.h"
23 #include "lldb/Utility/Status.h"
24 
25 #include "Plugins/Process/Linux/NativeProcessLinux.h"
26 #include "Plugins/Process/Linux/Procfs.h"
27 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
28 #include "Plugins/Process/Utility/RegisterInfoPOSIX_arm64.h"
29 
30 // System includes - They have to be included after framework includes because
31 // they define some
32 // macros which collide with variable names in other modules
33 #include <sys/socket.h>
34 // NT_PRSTATUS and NT_FPREGSET definition
35 #include <elf.h>
36 // user_hwdebug_state definition
37 #include <asm/ptrace.h>
38 
39 #define REG_CONTEXT_SIZE (GetGPRSize() + GetFPRSize())
40 
41 using namespace lldb;
42 using namespace lldb_private;
43 using namespace lldb_private::process_linux;
44 
45 // ARM64 general purpose registers.
46 static const uint32_t g_gpr_regnums_arm64[] = {
47     gpr_x0_arm64,       gpr_x1_arm64,   gpr_x2_arm64,  gpr_x3_arm64,
48     gpr_x4_arm64,       gpr_x5_arm64,   gpr_x6_arm64,  gpr_x7_arm64,
49     gpr_x8_arm64,       gpr_x9_arm64,   gpr_x10_arm64, gpr_x11_arm64,
50     gpr_x12_arm64,      gpr_x13_arm64,  gpr_x14_arm64, gpr_x15_arm64,
51     gpr_x16_arm64,      gpr_x17_arm64,  gpr_x18_arm64, gpr_x19_arm64,
52     gpr_x20_arm64,      gpr_x21_arm64,  gpr_x22_arm64, gpr_x23_arm64,
53     gpr_x24_arm64,      gpr_x25_arm64,  gpr_x26_arm64, gpr_x27_arm64,
54     gpr_x28_arm64,      gpr_fp_arm64,   gpr_lr_arm64,  gpr_sp_arm64,
55     gpr_pc_arm64,       gpr_cpsr_arm64, gpr_w0_arm64,  gpr_w1_arm64,
56     gpr_w2_arm64,       gpr_w3_arm64,   gpr_w4_arm64,  gpr_w5_arm64,
57     gpr_w6_arm64,       gpr_w7_arm64,   gpr_w8_arm64,  gpr_w9_arm64,
58     gpr_w10_arm64,      gpr_w11_arm64,  gpr_w12_arm64, gpr_w13_arm64,
59     gpr_w14_arm64,      gpr_w15_arm64,  gpr_w16_arm64, gpr_w17_arm64,
60     gpr_w18_arm64,      gpr_w19_arm64,  gpr_w20_arm64, gpr_w21_arm64,
61     gpr_w22_arm64,      gpr_w23_arm64,  gpr_w24_arm64, gpr_w25_arm64,
62     gpr_w26_arm64,      gpr_w27_arm64,  gpr_w28_arm64,
63     LLDB_INVALID_REGNUM // register sets need to end with this flag
64 };
65 static_assert(((sizeof g_gpr_regnums_arm64 / sizeof g_gpr_regnums_arm64[0]) -
66                1) == k_num_gpr_registers_arm64,
67               "g_gpr_regnums_arm64 has wrong number of register infos");
68 
69 // ARM64 floating point registers.
70 static const uint32_t g_fpu_regnums_arm64[] = {
71     fpu_v0_arm64,       fpu_v1_arm64,   fpu_v2_arm64,  fpu_v3_arm64,
72     fpu_v4_arm64,       fpu_v5_arm64,   fpu_v6_arm64,  fpu_v7_arm64,
73     fpu_v8_arm64,       fpu_v9_arm64,   fpu_v10_arm64, fpu_v11_arm64,
74     fpu_v12_arm64,      fpu_v13_arm64,  fpu_v14_arm64, fpu_v15_arm64,
75     fpu_v16_arm64,      fpu_v17_arm64,  fpu_v18_arm64, fpu_v19_arm64,
76     fpu_v20_arm64,      fpu_v21_arm64,  fpu_v22_arm64, fpu_v23_arm64,
77     fpu_v24_arm64,      fpu_v25_arm64,  fpu_v26_arm64, fpu_v27_arm64,
78     fpu_v28_arm64,      fpu_v29_arm64,  fpu_v30_arm64, fpu_v31_arm64,
79     fpu_s0_arm64,       fpu_s1_arm64,   fpu_s2_arm64,  fpu_s3_arm64,
80     fpu_s4_arm64,       fpu_s5_arm64,   fpu_s6_arm64,  fpu_s7_arm64,
81     fpu_s8_arm64,       fpu_s9_arm64,   fpu_s10_arm64, fpu_s11_arm64,
82     fpu_s12_arm64,      fpu_s13_arm64,  fpu_s14_arm64, fpu_s15_arm64,
83     fpu_s16_arm64,      fpu_s17_arm64,  fpu_s18_arm64, fpu_s19_arm64,
84     fpu_s20_arm64,      fpu_s21_arm64,  fpu_s22_arm64, fpu_s23_arm64,
85     fpu_s24_arm64,      fpu_s25_arm64,  fpu_s26_arm64, fpu_s27_arm64,
86     fpu_s28_arm64,      fpu_s29_arm64,  fpu_s30_arm64, fpu_s31_arm64,
87 
88     fpu_d0_arm64,       fpu_d1_arm64,   fpu_d2_arm64,  fpu_d3_arm64,
89     fpu_d4_arm64,       fpu_d5_arm64,   fpu_d6_arm64,  fpu_d7_arm64,
90     fpu_d8_arm64,       fpu_d9_arm64,   fpu_d10_arm64, fpu_d11_arm64,
91     fpu_d12_arm64,      fpu_d13_arm64,  fpu_d14_arm64, fpu_d15_arm64,
92     fpu_d16_arm64,      fpu_d17_arm64,  fpu_d18_arm64, fpu_d19_arm64,
93     fpu_d20_arm64,      fpu_d21_arm64,  fpu_d22_arm64, fpu_d23_arm64,
94     fpu_d24_arm64,      fpu_d25_arm64,  fpu_d26_arm64, fpu_d27_arm64,
95     fpu_d28_arm64,      fpu_d29_arm64,  fpu_d30_arm64, fpu_d31_arm64,
96     fpu_fpsr_arm64,     fpu_fpcr_arm64,
97     LLDB_INVALID_REGNUM // register sets need to end with this flag
98 };
99 static_assert(((sizeof g_fpu_regnums_arm64 / sizeof g_fpu_regnums_arm64[0]) -
100                1) == k_num_fpr_registers_arm64,
101               "g_fpu_regnums_arm64 has wrong number of register infos");
102 
103 namespace {
104 // Number of register sets provided by this context.
105 enum { k_num_register_sets = 2 };
106 }
107 
108 // Register sets for ARM64.
109 static const RegisterSet g_reg_sets_arm64[k_num_register_sets] = {
110     {"General Purpose Registers", "gpr", k_num_gpr_registers_arm64,
111      g_gpr_regnums_arm64},
112     {"Floating Point Registers", "fpu", k_num_fpr_registers_arm64,
113      g_fpu_regnums_arm64}};
114 
115 NativeRegisterContextLinux *
116 NativeRegisterContextLinux::CreateHostNativeRegisterContextLinux(
117     const ArchSpec &target_arch, NativeThreadProtocol &native_thread,
118     uint32_t concrete_frame_idx) {
119   switch (target_arch.GetMachine()) {
120   case llvm::Triple::arm:
121     return new NativeRegisterContextLinux_arm(target_arch, native_thread,
122                                               concrete_frame_idx);
123   case llvm::Triple::aarch64:
124     return new NativeRegisterContextLinux_arm64(target_arch, native_thread,
125                                                 concrete_frame_idx);
126   default:
127     llvm_unreachable("have no register context for architecture");
128   }
129 }
130 
131 NativeRegisterContextLinux_arm64::NativeRegisterContextLinux_arm64(
132     const ArchSpec &target_arch, NativeThreadProtocol &native_thread,
133     uint32_t concrete_frame_idx)
134     : NativeRegisterContextLinux(native_thread, concrete_frame_idx,
135                                  new RegisterInfoPOSIX_arm64(target_arch)) {
136   switch (target_arch.GetMachine()) {
137   case llvm::Triple::aarch64:
138     m_reg_info.num_registers = k_num_registers_arm64;
139     m_reg_info.num_gpr_registers = k_num_gpr_registers_arm64;
140     m_reg_info.num_fpr_registers = k_num_fpr_registers_arm64;
141     m_reg_info.last_gpr = k_last_gpr_arm64;
142     m_reg_info.first_fpr = k_first_fpr_arm64;
143     m_reg_info.last_fpr = k_last_fpr_arm64;
144     m_reg_info.first_fpr_v = fpu_v0_arm64;
145     m_reg_info.last_fpr_v = fpu_v31_arm64;
146     m_reg_info.gpr_flags = gpr_cpsr_arm64;
147     break;
148   default:
149     llvm_unreachable("Unhandled target architecture.");
150     break;
151   }
152 
153   ::memset(&m_fpr, 0, sizeof(m_fpr));
154   ::memset(&m_gpr_arm64, 0, sizeof(m_gpr_arm64));
155   ::memset(&m_hwp_regs, 0, sizeof(m_hwp_regs));
156   ::memset(&m_hbr_regs, 0, sizeof(m_hbr_regs));
157 
158   // 16 is just a maximum value, query hardware for actual watchpoint count
159   m_max_hwp_supported = 16;
160   m_max_hbp_supported = 16;
161   m_refresh_hwdebug_info = true;
162 }
163 
164 uint32_t NativeRegisterContextLinux_arm64::GetRegisterSetCount() const {
165   return k_num_register_sets;
166 }
167 
168 const RegisterSet *
169 NativeRegisterContextLinux_arm64::GetRegisterSet(uint32_t set_index) const {
170   if (set_index < k_num_register_sets)
171     return &g_reg_sets_arm64[set_index];
172 
173   return nullptr;
174 }
175 
176 uint32_t NativeRegisterContextLinux_arm64::GetUserRegisterCount() const {
177   uint32_t count = 0;
178   for (uint32_t set_index = 0; set_index < k_num_register_sets; ++set_index)
179     count += g_reg_sets_arm64[set_index].num_registers;
180   return count;
181 }
182 
183 Status
184 NativeRegisterContextLinux_arm64::ReadRegister(const RegisterInfo *reg_info,
185                                                RegisterValue &reg_value) {
186   Status error;
187 
188   if (!reg_info) {
189     error.SetErrorString("reg_info NULL");
190     return error;
191   }
192 
193   const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB];
194 
195   if (IsFPR(reg)) {
196     error = ReadFPR();
197     if (error.Fail())
198       return error;
199   } else {
200     uint32_t full_reg = reg;
201     bool is_subreg = reg_info->invalidate_regs &&
202                      (reg_info->invalidate_regs[0] != LLDB_INVALID_REGNUM);
203 
204     if (is_subreg) {
205       // Read the full aligned 64-bit register.
206       full_reg = reg_info->invalidate_regs[0];
207     }
208 
209     error = ReadRegisterRaw(full_reg, reg_value);
210 
211     if (error.Success()) {
212       // If our read was not aligned (for ah,bh,ch,dh), shift our returned value
213       // one byte to the right.
214       if (is_subreg && (reg_info->byte_offset & 0x1))
215         reg_value.SetUInt64(reg_value.GetAsUInt64() >> 8);
216 
217       // If our return byte size was greater than the return value reg size,
218       // then
219       // use the type specified by reg_info rather than the uint64_t default
220       if (reg_value.GetByteSize() > reg_info->byte_size)
221         reg_value.SetType(reg_info);
222     }
223     return error;
224   }
225 
226   // Get pointer to m_fpr variable and set the data from it.
227   uint32_t fpr_offset = CalculateFprOffset(reg_info);
228   assert(fpr_offset < sizeof m_fpr);
229   uint8_t *src = (uint8_t *)&m_fpr + fpr_offset;
230   reg_value.SetFromMemoryData(reg_info, src, reg_info->byte_size,
231                               eByteOrderLittle, error);
232 
233   return error;
234 }
235 
236 Status NativeRegisterContextLinux_arm64::WriteRegister(
237     const RegisterInfo *reg_info, const RegisterValue &reg_value) {
238   if (!reg_info)
239     return Status("reg_info NULL");
240 
241   const uint32_t reg_index = reg_info->kinds[lldb::eRegisterKindLLDB];
242   if (reg_index == LLDB_INVALID_REGNUM)
243     return Status("no lldb regnum for %s", reg_info && reg_info->name
244                                                ? reg_info->name
245                                                : "<unknown register>");
246 
247   if (IsGPR(reg_index))
248     return WriteRegisterRaw(reg_index, reg_value);
249 
250   if (IsFPR(reg_index)) {
251     // Get pointer to m_fpr variable and set the data to it.
252     uint32_t fpr_offset = CalculateFprOffset(reg_info);
253     assert(fpr_offset < sizeof m_fpr);
254     uint8_t *dst = (uint8_t *)&m_fpr + fpr_offset;
255     switch (reg_info->byte_size) {
256     case 2:
257       *(uint16_t *)dst = reg_value.GetAsUInt16();
258       break;
259     case 4:
260       *(uint32_t *)dst = reg_value.GetAsUInt32();
261       break;
262     case 8:
263       *(uint64_t *)dst = reg_value.GetAsUInt64();
264       break;
265     default:
266       assert(false && "Unhandled data size.");
267       return Status("unhandled register data size %" PRIu32,
268                     reg_info->byte_size);
269     }
270 
271     Status error = WriteFPR();
272     if (error.Fail())
273       return error;
274 
275     return Status();
276   }
277 
278   return Status("failed - register wasn't recognized to be a GPR or an FPR, "
279                 "write strategy unknown");
280 }
281 
282 Status NativeRegisterContextLinux_arm64::ReadAllRegisterValues(
283     lldb::DataBufferSP &data_sp) {
284   Status error;
285 
286   data_sp.reset(new DataBufferHeap(REG_CONTEXT_SIZE, 0));
287   if (!data_sp)
288     return Status("failed to allocate DataBufferHeap instance of size %" PRIu64,
289                   REG_CONTEXT_SIZE);
290 
291   error = ReadGPR();
292   if (error.Fail())
293     return error;
294 
295   error = ReadFPR();
296   if (error.Fail())
297     return error;
298 
299   uint8_t *dst = data_sp->GetBytes();
300   if (dst == nullptr) {
301     error.SetErrorStringWithFormat("DataBufferHeap instance of size %" PRIu64
302                                    " returned a null pointer",
303                                    REG_CONTEXT_SIZE);
304     return error;
305   }
306 
307   ::memcpy(dst, &m_gpr_arm64, GetGPRSize());
308   dst += GetGPRSize();
309   ::memcpy(dst, &m_fpr, sizeof(m_fpr));
310 
311   return error;
312 }
313 
314 Status NativeRegisterContextLinux_arm64::WriteAllRegisterValues(
315     const lldb::DataBufferSP &data_sp) {
316   Status error;
317 
318   if (!data_sp) {
319     error.SetErrorStringWithFormat(
320         "NativeRegisterContextLinux_x86_64::%s invalid data_sp provided",
321         __FUNCTION__);
322     return error;
323   }
324 
325   if (data_sp->GetByteSize() != REG_CONTEXT_SIZE) {
326     error.SetErrorStringWithFormat(
327         "NativeRegisterContextLinux_x86_64::%s data_sp contained mismatched "
328         "data size, expected %" PRIu64 ", actual %" PRIu64,
329         __FUNCTION__, REG_CONTEXT_SIZE, data_sp->GetByteSize());
330     return error;
331   }
332 
333   uint8_t *src = data_sp->GetBytes();
334   if (src == nullptr) {
335     error.SetErrorStringWithFormat("NativeRegisterContextLinux_x86_64::%s "
336                                    "DataBuffer::GetBytes() returned a null "
337                                    "pointer",
338                                    __FUNCTION__);
339     return error;
340   }
341   ::memcpy(&m_gpr_arm64, src, GetRegisterInfoInterface().GetGPRSize());
342 
343   error = WriteGPR();
344   if (error.Fail())
345     return error;
346 
347   src += GetRegisterInfoInterface().GetGPRSize();
348   ::memcpy(&m_fpr, src, sizeof(m_fpr));
349 
350   error = WriteFPR();
351   if (error.Fail())
352     return error;
353 
354   return error;
355 }
356 
357 bool NativeRegisterContextLinux_arm64::IsGPR(unsigned reg) const {
358   return reg <= m_reg_info.last_gpr; // GPR's come first.
359 }
360 
361 bool NativeRegisterContextLinux_arm64::IsFPR(unsigned reg) const {
362   return (m_reg_info.first_fpr <= reg && reg <= m_reg_info.last_fpr);
363 }
364 
365 uint32_t NativeRegisterContextLinux_arm64::NumSupportedHardwareBreakpoints() {
366   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
367 
368   if (log)
369     log->Printf("NativeRegisterContextLinux_arm64::%s()", __FUNCTION__);
370 
371   Status error;
372 
373   // Read hardware breakpoint and watchpoint information.
374   error = ReadHardwareDebugInfo();
375 
376   if (error.Fail())
377     return 0;
378 
379   return m_max_hbp_supported;
380 }
381 
382 uint32_t
383 NativeRegisterContextLinux_arm64::SetHardwareBreakpoint(lldb::addr_t addr,
384                                                         size_t size) {
385   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
386   LLDB_LOG(log, "addr: {0:x}, size: {1:x}", addr, size);
387 
388   // Read hardware breakpoint and watchpoint information.
389   Status error = ReadHardwareDebugInfo();
390 
391   if (error.Fail())
392     return LLDB_INVALID_INDEX32;
393 
394   uint32_t control_value = 0, bp_index = 0;
395 
396   // Check if size has a valid hardware breakpoint length.
397   if (size != 4)
398     return LLDB_INVALID_INDEX32; // Invalid size for a AArch64 hardware
399                                  // breakpoint
400 
401   // Check 4-byte alignment for hardware breakpoint target address.
402   if (addr & 0x03)
403     return LLDB_INVALID_INDEX32; // Invalid address, should be 4-byte aligned.
404 
405   // Setup control value
406   control_value = 0;
407   control_value |= ((1 << size) - 1) << 5;
408   control_value |= (2 << 1) | 1;
409 
410   // Iterate over stored breakpoints and find a free bp_index
411   bp_index = LLDB_INVALID_INDEX32;
412   for (uint32_t i = 0; i < m_max_hbp_supported; i++) {
413     if ((m_hbr_regs[i].control & 1) == 0) {
414       bp_index = i; // Mark last free slot
415     } else if (m_hbr_regs[i].address == addr) {
416       return LLDB_INVALID_INDEX32; // We do not support duplicate breakpoints.
417     }
418   }
419 
420   if (bp_index == LLDB_INVALID_INDEX32)
421     return LLDB_INVALID_INDEX32;
422 
423   // Update breakpoint in local cache
424   m_hbr_regs[bp_index].real_addr = addr;
425   m_hbr_regs[bp_index].address = addr;
426   m_hbr_regs[bp_index].control = control_value;
427 
428   // PTRACE call to set corresponding hardware breakpoint register.
429   error = WriteHardwareDebugRegs(eDREGTypeBREAK);
430 
431   if (error.Fail()) {
432     m_hbr_regs[bp_index].address = 0;
433     m_hbr_regs[bp_index].control &= ~1;
434 
435     return LLDB_INVALID_INDEX32;
436   }
437 
438   return bp_index;
439 }
440 
441 bool NativeRegisterContextLinux_arm64::ClearHardwareBreakpoint(
442     uint32_t hw_idx) {
443   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
444   LLDB_LOG(log, "hw_idx: {0}", hw_idx);
445 
446   // Read hardware breakpoint and watchpoint information.
447   Status error = ReadHardwareDebugInfo();
448 
449   if (error.Fail())
450     return false;
451 
452   if (hw_idx >= m_max_hbp_supported)
453     return false;
454 
455   // Create a backup we can revert to in case of failure.
456   lldb::addr_t tempAddr = m_hbr_regs[hw_idx].address;
457   uint32_t tempControl = m_hbr_regs[hw_idx].control;
458 
459   m_hbr_regs[hw_idx].control &= ~1;
460   m_hbr_regs[hw_idx].address = 0;
461 
462   // PTRACE call to clear corresponding hardware breakpoint register.
463   error = WriteHardwareDebugRegs(eDREGTypeBREAK);
464 
465   if (error.Fail()) {
466     m_hbr_regs[hw_idx].control = tempControl;
467     m_hbr_regs[hw_idx].address = tempAddr;
468 
469     return false;
470   }
471 
472   return true;
473 }
474 
475 Status NativeRegisterContextLinux_arm64::GetHardwareBreakHitIndex(
476     uint32_t &bp_index, lldb::addr_t trap_addr) {
477   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
478 
479   if (log)
480     log->Printf("NativeRegisterContextLinux_arm64::%s()", __FUNCTION__);
481 
482   lldb::addr_t break_addr;
483 
484   for (bp_index = 0; bp_index < m_max_hbp_supported; ++bp_index) {
485     break_addr = m_hbr_regs[bp_index].address;
486 
487     if ((m_hbr_regs[bp_index].control & 0x1) && (trap_addr == break_addr)) {
488       m_hbr_regs[bp_index].hit_addr = trap_addr;
489       return Status();
490     }
491   }
492 
493   bp_index = LLDB_INVALID_INDEX32;
494   return Status();
495 }
496 
497 Status NativeRegisterContextLinux_arm64::ClearAllHardwareBreakpoints() {
498   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
499 
500   if (log)
501     log->Printf("NativeRegisterContextLinux_arm64::%s()", __FUNCTION__);
502 
503   Status error;
504 
505   // Read hardware breakpoint and watchpoint information.
506   error = ReadHardwareDebugInfo();
507 
508   if (error.Fail())
509     return error;
510 
511   lldb::addr_t tempAddr = 0;
512   uint32_t tempControl = 0;
513 
514   for (uint32_t i = 0; i < m_max_hbp_supported; i++) {
515     if (m_hbr_regs[i].control & 0x01) {
516       // Create a backup we can revert to in case of failure.
517       tempAddr = m_hbr_regs[i].address;
518       tempControl = m_hbr_regs[i].control;
519 
520       // Clear watchpoints in local cache
521       m_hbr_regs[i].control &= ~1;
522       m_hbr_regs[i].address = 0;
523 
524       // Ptrace call to update hardware debug registers
525       error = WriteHardwareDebugRegs(eDREGTypeBREAK);
526 
527       if (error.Fail()) {
528         m_hbr_regs[i].control = tempControl;
529         m_hbr_regs[i].address = tempAddr;
530 
531         return error;
532       }
533     }
534   }
535 
536   return Status();
537 }
538 
539 uint32_t NativeRegisterContextLinux_arm64::NumSupportedHardwareWatchpoints() {
540   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
541 
542   // Read hardware breakpoint and watchpoint information.
543   Status error = ReadHardwareDebugInfo();
544 
545   if (error.Fail())
546     return 0;
547 
548   LLDB_LOG(log, "{0}", m_max_hwp_supported);
549   return m_max_hwp_supported;
550 }
551 
552 uint32_t NativeRegisterContextLinux_arm64::SetHardwareWatchpoint(
553     lldb::addr_t addr, size_t size, uint32_t watch_flags) {
554   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
555   LLDB_LOG(log, "addr: {0:x}, size: {1:x} watch_flags: {2:x}", addr, size,
556            watch_flags);
557 
558   // Read hardware breakpoint and watchpoint information.
559   Status error = ReadHardwareDebugInfo();
560 
561   if (error.Fail())
562     return LLDB_INVALID_INDEX32;
563 
564   uint32_t control_value = 0, wp_index = 0;
565   lldb::addr_t real_addr = addr;
566 
567   // Check if we are setting watchpoint other than read/write/access
568   // Also update watchpoint flag to match AArch64 write-read bit configuration.
569   switch (watch_flags) {
570   case 1:
571     watch_flags = 2;
572     break;
573   case 2:
574     watch_flags = 1;
575     break;
576   case 3:
577     break;
578   default:
579     return LLDB_INVALID_INDEX32;
580   }
581 
582   // Check if size has a valid hardware watchpoint length.
583   if (size != 1 && size != 2 && size != 4 && size != 8)
584     return LLDB_INVALID_INDEX32;
585 
586   // Check 8-byte alignment for hardware watchpoint target address.
587   // Below is a hack to recalculate address and size in order to
588   // make sure we can watch non 8-byte alligned addresses as well.
589   if (addr & 0x07) {
590     uint8_t watch_mask = (addr & 0x07) + size;
591 
592     if (watch_mask > 0x08)
593       return LLDB_INVALID_INDEX32;
594     else if (watch_mask <= 0x02)
595       size = 2;
596     else if (watch_mask <= 0x04)
597       size = 4;
598     else
599       size = 8;
600 
601     addr = addr & (~0x07);
602   }
603 
604   // Setup control value
605   control_value = watch_flags << 3;
606   control_value |= ((1 << size) - 1) << 5;
607   control_value |= (2 << 1) | 1;
608 
609   // Iterate over stored watchpoints and find a free wp_index
610   wp_index = LLDB_INVALID_INDEX32;
611   for (uint32_t i = 0; i < m_max_hwp_supported; i++) {
612     if ((m_hwp_regs[i].control & 1) == 0) {
613       wp_index = i; // Mark last free slot
614     } else if (m_hwp_regs[i].address == addr) {
615       return LLDB_INVALID_INDEX32; // We do not support duplicate watchpoints.
616     }
617   }
618 
619   if (wp_index == LLDB_INVALID_INDEX32)
620     return LLDB_INVALID_INDEX32;
621 
622   // Update watchpoint in local cache
623   m_hwp_regs[wp_index].real_addr = real_addr;
624   m_hwp_regs[wp_index].address = addr;
625   m_hwp_regs[wp_index].control = control_value;
626 
627   // PTRACE call to set corresponding watchpoint register.
628   error = WriteHardwareDebugRegs(eDREGTypeWATCH);
629 
630   if (error.Fail()) {
631     m_hwp_regs[wp_index].address = 0;
632     m_hwp_regs[wp_index].control &= ~1;
633 
634     return LLDB_INVALID_INDEX32;
635   }
636 
637   return wp_index;
638 }
639 
640 bool NativeRegisterContextLinux_arm64::ClearHardwareWatchpoint(
641     uint32_t wp_index) {
642   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
643   LLDB_LOG(log, "wp_index: {0}", wp_index);
644 
645   // Read hardware breakpoint and watchpoint information.
646   Status error = ReadHardwareDebugInfo();
647 
648   if (error.Fail())
649     return false;
650 
651   if (wp_index >= m_max_hwp_supported)
652     return false;
653 
654   // Create a backup we can revert to in case of failure.
655   lldb::addr_t tempAddr = m_hwp_regs[wp_index].address;
656   uint32_t tempControl = m_hwp_regs[wp_index].control;
657 
658   // Update watchpoint in local cache
659   m_hwp_regs[wp_index].control &= ~1;
660   m_hwp_regs[wp_index].address = 0;
661 
662   // Ptrace call to update hardware debug registers
663   error = WriteHardwareDebugRegs(eDREGTypeWATCH);
664 
665   if (error.Fail()) {
666     m_hwp_regs[wp_index].control = tempControl;
667     m_hwp_regs[wp_index].address = tempAddr;
668 
669     return false;
670   }
671 
672   return true;
673 }
674 
675 Status NativeRegisterContextLinux_arm64::ClearAllHardwareWatchpoints() {
676   // Read hardware breakpoint and watchpoint information.
677   Status error = ReadHardwareDebugInfo();
678 
679   if (error.Fail())
680     return error;
681 
682   lldb::addr_t tempAddr = 0;
683   uint32_t tempControl = 0;
684 
685   for (uint32_t i = 0; i < m_max_hwp_supported; i++) {
686     if (m_hwp_regs[i].control & 0x01) {
687       // Create a backup we can revert to in case of failure.
688       tempAddr = m_hwp_regs[i].address;
689       tempControl = m_hwp_regs[i].control;
690 
691       // Clear watchpoints in local cache
692       m_hwp_regs[i].control &= ~1;
693       m_hwp_regs[i].address = 0;
694 
695       // Ptrace call to update hardware debug registers
696       error = WriteHardwareDebugRegs(eDREGTypeWATCH);
697 
698       if (error.Fail()) {
699         m_hwp_regs[i].control = tempControl;
700         m_hwp_regs[i].address = tempAddr;
701 
702         return error;
703       }
704     }
705   }
706 
707   return Status();
708 }
709 
710 uint32_t
711 NativeRegisterContextLinux_arm64::GetWatchpointSize(uint32_t wp_index) {
712   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
713   LLDB_LOG(log, "wp_index: {0}", wp_index);
714 
715   switch ((m_hwp_regs[wp_index].control >> 5) & 0xff) {
716   case 0x01:
717     return 1;
718   case 0x03:
719     return 2;
720   case 0x0f:
721     return 4;
722   case 0xff:
723     return 8;
724   default:
725     return 0;
726   }
727 }
728 bool NativeRegisterContextLinux_arm64::WatchpointIsEnabled(uint32_t wp_index) {
729   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
730   LLDB_LOG(log, "wp_index: {0}", wp_index);
731 
732   if ((m_hwp_regs[wp_index].control & 0x1) == 0x1)
733     return true;
734   else
735     return false;
736 }
737 
738 Status NativeRegisterContextLinux_arm64::GetWatchpointHitIndex(
739     uint32_t &wp_index, lldb::addr_t trap_addr) {
740   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
741   LLDB_LOG(log, "wp_index: {0}, trap_addr: {1:x}", wp_index, trap_addr);
742 
743   uint32_t watch_size;
744   lldb::addr_t watch_addr;
745 
746   for (wp_index = 0; wp_index < m_max_hwp_supported; ++wp_index) {
747     watch_size = GetWatchpointSize(wp_index);
748     watch_addr = m_hwp_regs[wp_index].address;
749 
750     if (WatchpointIsEnabled(wp_index) && trap_addr >= watch_addr &&
751         trap_addr < watch_addr + watch_size) {
752       m_hwp_regs[wp_index].hit_addr = trap_addr;
753       return Status();
754     }
755   }
756 
757   wp_index = LLDB_INVALID_INDEX32;
758   return Status();
759 }
760 
761 lldb::addr_t
762 NativeRegisterContextLinux_arm64::GetWatchpointAddress(uint32_t wp_index) {
763   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
764   LLDB_LOG(log, "wp_index: {0}", wp_index);
765 
766   if (wp_index >= m_max_hwp_supported)
767     return LLDB_INVALID_ADDRESS;
768 
769   if (WatchpointIsEnabled(wp_index))
770     return m_hwp_regs[wp_index].real_addr;
771   else
772     return LLDB_INVALID_ADDRESS;
773 }
774 
775 lldb::addr_t
776 NativeRegisterContextLinux_arm64::GetWatchpointHitAddress(uint32_t wp_index) {
777   Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
778   LLDB_LOG(log, "wp_index: {0}", wp_index);
779 
780   if (wp_index >= m_max_hwp_supported)
781     return LLDB_INVALID_ADDRESS;
782 
783   if (WatchpointIsEnabled(wp_index))
784     return m_hwp_regs[wp_index].hit_addr;
785   else
786     return LLDB_INVALID_ADDRESS;
787 }
788 
789 Status NativeRegisterContextLinux_arm64::ReadHardwareDebugInfo() {
790   if (!m_refresh_hwdebug_info) {
791     return Status();
792   }
793 
794   ::pid_t tid = m_thread.GetID();
795 
796   int regset = NT_ARM_HW_WATCH;
797   struct iovec ioVec;
798   struct user_hwdebug_state dreg_state;
799   Status error;
800 
801   ioVec.iov_base = &dreg_state;
802   ioVec.iov_len = sizeof(dreg_state);
803   error = NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET, tid, &regset,
804                                             &ioVec, ioVec.iov_len);
805 
806   if (error.Fail())
807     return error;
808 
809   m_max_hwp_supported = dreg_state.dbg_info & 0xff;
810 
811   regset = NT_ARM_HW_BREAK;
812   error = NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET, tid, &regset,
813                                             &ioVec, ioVec.iov_len);
814 
815   if (error.Fail())
816     return error;
817 
818   m_max_hbp_supported = dreg_state.dbg_info & 0xff;
819   m_refresh_hwdebug_info = false;
820 
821   return error;
822 }
823 
824 Status NativeRegisterContextLinux_arm64::WriteHardwareDebugRegs(int hwbType) {
825   struct iovec ioVec;
826   struct user_hwdebug_state dreg_state;
827   Status error;
828 
829   memset(&dreg_state, 0, sizeof(dreg_state));
830   ioVec.iov_base = &dreg_state;
831 
832   if (hwbType == eDREGTypeWATCH) {
833     hwbType = NT_ARM_HW_WATCH;
834     ioVec.iov_len = sizeof(dreg_state.dbg_info) + sizeof(dreg_state.pad) +
835                     (sizeof(dreg_state.dbg_regs[0]) * m_max_hwp_supported);
836 
837     for (uint32_t i = 0; i < m_max_hwp_supported; i++) {
838       dreg_state.dbg_regs[i].addr = m_hwp_regs[i].address;
839       dreg_state.dbg_regs[i].ctrl = m_hwp_regs[i].control;
840     }
841   } else {
842     hwbType = NT_ARM_HW_BREAK;
843     ioVec.iov_len = sizeof(dreg_state.dbg_info) + sizeof(dreg_state.pad) +
844                     (sizeof(dreg_state.dbg_regs[0]) * m_max_hbp_supported);
845 
846     for (uint32_t i = 0; i < m_max_hbp_supported; i++) {
847       dreg_state.dbg_regs[i].addr = m_hbr_regs[i].address;
848       dreg_state.dbg_regs[i].ctrl = m_hbr_regs[i].control;
849     }
850   }
851 
852   return NativeProcessLinux::PtraceWrapper(PTRACE_SETREGSET, m_thread.GetID(),
853                                            &hwbType, &ioVec, ioVec.iov_len);
854 }
855 
856 Status NativeRegisterContextLinux_arm64::DoReadRegisterValue(
857     uint32_t offset, const char *reg_name, uint32_t size,
858     RegisterValue &value) {
859   Status error;
860   if (offset > sizeof(struct user_pt_regs)) {
861     offset -= sizeof(struct user_pt_regs);
862     if (offset > sizeof(struct user_fpsimd_state)) {
863       error.SetErrorString("invalid offset value");
864       return error;
865     }
866     elf_fpregset_t regs;
867     int regset = NT_FPREGSET;
868     struct iovec ioVec;
869 
870     ioVec.iov_base = &regs;
871     ioVec.iov_len = sizeof regs;
872     error = NativeProcessLinux::PtraceWrapper(
873         PTRACE_GETREGSET, m_thread.GetID(), &regset, &ioVec, sizeof regs);
874     if (error.Success()) {
875       ArchSpec arch;
876       if (m_thread.GetProcess().GetArchitecture(arch))
877         value.SetBytes((void *)(((unsigned char *)(&regs)) + offset), 16,
878                        arch.GetByteOrder());
879       else
880         error.SetErrorString("failed to get architecture");
881     }
882   } else {
883     elf_gregset_t regs;
884     int regset = NT_PRSTATUS;
885     struct iovec ioVec;
886 
887     ioVec.iov_base = &regs;
888     ioVec.iov_len = sizeof regs;
889     error = NativeProcessLinux::PtraceWrapper(
890         PTRACE_GETREGSET, m_thread.GetID(), &regset, &ioVec, sizeof regs);
891     if (error.Success()) {
892       ArchSpec arch;
893       if (m_thread.GetProcess().GetArchitecture(arch))
894         value.SetBytes((void *)(((unsigned char *)(regs)) + offset), 8,
895                        arch.GetByteOrder());
896       else
897         error.SetErrorString("failed to get architecture");
898     }
899   }
900   return error;
901 }
902 
903 Status NativeRegisterContextLinux_arm64::DoWriteRegisterValue(
904     uint32_t offset, const char *reg_name, const RegisterValue &value) {
905   Status error;
906   ::pid_t tid = m_thread.GetID();
907   if (offset > sizeof(struct user_pt_regs)) {
908     offset -= sizeof(struct user_pt_regs);
909     if (offset > sizeof(struct user_fpsimd_state)) {
910       error.SetErrorString("invalid offset value");
911       return error;
912     }
913     elf_fpregset_t regs;
914     int regset = NT_FPREGSET;
915     struct iovec ioVec;
916 
917     ioVec.iov_base = &regs;
918     ioVec.iov_len = sizeof regs;
919     error = NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET, tid, &regset,
920                                               &ioVec, sizeof regs);
921 
922     if (error.Success()) {
923       ::memcpy((void *)(((unsigned char *)(&regs)) + offset), value.GetBytes(),
924                16);
925       error = NativeProcessLinux::PtraceWrapper(PTRACE_SETREGSET, tid, &regset,
926                                                 &ioVec, sizeof regs);
927     }
928   } else {
929     elf_gregset_t regs;
930     int regset = NT_PRSTATUS;
931     struct iovec ioVec;
932 
933     ioVec.iov_base = &regs;
934     ioVec.iov_len = sizeof regs;
935     error = NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET, tid, &regset,
936                                               &ioVec, sizeof regs);
937     if (error.Success()) {
938       ::memcpy((void *)(((unsigned char *)(&regs)) + offset), value.GetBytes(),
939                8);
940       error = NativeProcessLinux::PtraceWrapper(PTRACE_SETREGSET, tid, &regset,
941                                                 &ioVec, sizeof regs);
942     }
943   }
944   return error;
945 }
946 
947 Status NativeRegisterContextLinux_arm64::DoReadGPR(void *buf, size_t buf_size) {
948   int regset = NT_PRSTATUS;
949   struct iovec ioVec;
950   Status error;
951 
952   ioVec.iov_base = buf;
953   ioVec.iov_len = buf_size;
954   return NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET, m_thread.GetID(),
955                                            &regset, &ioVec, buf_size);
956 }
957 
958 Status NativeRegisterContextLinux_arm64::DoWriteGPR(void *buf,
959                                                     size_t buf_size) {
960   int regset = NT_PRSTATUS;
961   struct iovec ioVec;
962   Status error;
963 
964   ioVec.iov_base = buf;
965   ioVec.iov_len = buf_size;
966   return NativeProcessLinux::PtraceWrapper(PTRACE_SETREGSET, m_thread.GetID(),
967                                            &regset, &ioVec, buf_size);
968 }
969 
970 Status NativeRegisterContextLinux_arm64::DoReadFPR(void *buf, size_t buf_size) {
971   int regset = NT_FPREGSET;
972   struct iovec ioVec;
973   Status error;
974 
975   ioVec.iov_base = buf;
976   ioVec.iov_len = buf_size;
977   return NativeProcessLinux::PtraceWrapper(PTRACE_GETREGSET, m_thread.GetID(),
978                                            &regset, &ioVec, buf_size);
979 }
980 
981 Status NativeRegisterContextLinux_arm64::DoWriteFPR(void *buf,
982                                                     size_t buf_size) {
983   int regset = NT_FPREGSET;
984   struct iovec ioVec;
985   Status error;
986 
987   ioVec.iov_base = buf;
988   ioVec.iov_len = buf_size;
989   return NativeProcessLinux::PtraceWrapper(PTRACE_SETREGSET, m_thread.GetID(),
990                                            &regset, &ioVec, buf_size);
991 }
992 
993 uint32_t NativeRegisterContextLinux_arm64::CalculateFprOffset(
994     const RegisterInfo *reg_info) const {
995   return reg_info->byte_offset -
996          GetRegisterInfoAtIndex(m_reg_info.first_fpr)->byte_offset;
997 }
998 
999 #endif // defined (__arm64__) || defined (__aarch64__)
1000