1 //===-- NativeRegisterContextLinux_arm.cpp --------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #if defined(__arm__) || defined(__arm64__) || defined(__aarch64__) 10 11 #include "NativeRegisterContextLinux_arm.h" 12 13 #include "Plugins/Process/Linux/NativeProcessLinux.h" 14 #include "Plugins/Process/Linux/Procfs.h" 15 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 16 #include "Plugins/Process/Utility/RegisterInfoPOSIX_arm.h" 17 #include "lldb/Utility/DataBufferHeap.h" 18 #include "lldb/Utility/Log.h" 19 #include "lldb/Utility/RegisterValue.h" 20 #include "lldb/Utility/Status.h" 21 22 #include <elf.h> 23 #include <sys/socket.h> 24 25 #define REG_CONTEXT_SIZE (GetGPRSize() + sizeof(m_fpr)) 26 27 #ifndef PTRACE_GETVFPREGS 28 #define PTRACE_GETVFPREGS 27 29 #define PTRACE_SETVFPREGS 28 30 #endif 31 #ifndef PTRACE_GETHBPREGS 32 #define PTRACE_GETHBPREGS 29 33 #define PTRACE_SETHBPREGS 30 34 #endif 35 #if !defined(PTRACE_TYPE_ARG3) 36 #define PTRACE_TYPE_ARG3 void * 37 #endif 38 #if !defined(PTRACE_TYPE_ARG4) 39 #define PTRACE_TYPE_ARG4 void * 40 #endif 41 42 using namespace lldb; 43 using namespace lldb_private; 44 using namespace lldb_private::process_linux; 45 46 // arm general purpose registers. 47 static const uint32_t g_gpr_regnums_arm[] = { 48 gpr_r0_arm, gpr_r1_arm, gpr_r2_arm, gpr_r3_arm, gpr_r4_arm, 49 gpr_r5_arm, gpr_r6_arm, gpr_r7_arm, gpr_r8_arm, gpr_r9_arm, 50 gpr_r10_arm, gpr_r11_arm, gpr_r12_arm, gpr_sp_arm, gpr_lr_arm, 51 gpr_pc_arm, gpr_cpsr_arm, 52 LLDB_INVALID_REGNUM // register sets need to end with this flag 53 }; 54 static_assert(((sizeof g_gpr_regnums_arm / sizeof g_gpr_regnums_arm[0]) - 1) == 55 k_num_gpr_registers_arm, 56 "g_gpr_regnums_arm has wrong number of register infos"); 57 58 // arm floating point registers. 59 static const uint32_t g_fpu_regnums_arm[] = { 60 fpu_s0_arm, fpu_s1_arm, fpu_s2_arm, fpu_s3_arm, fpu_s4_arm, 61 fpu_s5_arm, fpu_s6_arm, fpu_s7_arm, fpu_s8_arm, fpu_s9_arm, 62 fpu_s10_arm, fpu_s11_arm, fpu_s12_arm, fpu_s13_arm, fpu_s14_arm, 63 fpu_s15_arm, fpu_s16_arm, fpu_s17_arm, fpu_s18_arm, fpu_s19_arm, 64 fpu_s20_arm, fpu_s21_arm, fpu_s22_arm, fpu_s23_arm, fpu_s24_arm, 65 fpu_s25_arm, fpu_s26_arm, fpu_s27_arm, fpu_s28_arm, fpu_s29_arm, 66 fpu_s30_arm, fpu_s31_arm, fpu_fpscr_arm, fpu_d0_arm, fpu_d1_arm, 67 fpu_d2_arm, fpu_d3_arm, fpu_d4_arm, fpu_d5_arm, fpu_d6_arm, 68 fpu_d7_arm, fpu_d8_arm, fpu_d9_arm, fpu_d10_arm, fpu_d11_arm, 69 fpu_d12_arm, fpu_d13_arm, fpu_d14_arm, fpu_d15_arm, fpu_d16_arm, 70 fpu_d17_arm, fpu_d18_arm, fpu_d19_arm, fpu_d20_arm, fpu_d21_arm, 71 fpu_d22_arm, fpu_d23_arm, fpu_d24_arm, fpu_d25_arm, fpu_d26_arm, 72 fpu_d27_arm, fpu_d28_arm, fpu_d29_arm, fpu_d30_arm, fpu_d31_arm, 73 fpu_q0_arm, fpu_q1_arm, fpu_q2_arm, fpu_q3_arm, fpu_q4_arm, 74 fpu_q5_arm, fpu_q6_arm, fpu_q7_arm, fpu_q8_arm, fpu_q9_arm, 75 fpu_q10_arm, fpu_q11_arm, fpu_q12_arm, fpu_q13_arm, fpu_q14_arm, 76 fpu_q15_arm, 77 LLDB_INVALID_REGNUM // register sets need to end with this flag 78 }; 79 static_assert(((sizeof g_fpu_regnums_arm / sizeof g_fpu_regnums_arm[0]) - 1) == 80 k_num_fpr_registers_arm, 81 "g_fpu_regnums_arm has wrong number of register infos"); 82 83 namespace { 84 // Number of register sets provided by this context. 85 enum { k_num_register_sets = 2 }; 86 } 87 88 // Register sets for arm. 89 static const RegisterSet g_reg_sets_arm[k_num_register_sets] = { 90 {"General Purpose Registers", "gpr", k_num_gpr_registers_arm, 91 g_gpr_regnums_arm}, 92 {"Floating Point Registers", "fpu", k_num_fpr_registers_arm, 93 g_fpu_regnums_arm}}; 94 95 #if defined(__arm__) 96 97 std::unique_ptr<NativeRegisterContextLinux> 98 NativeRegisterContextLinux::CreateHostNativeRegisterContextLinux( 99 const ArchSpec &target_arch, NativeThreadProtocol &native_thread) { 100 return llvm::make_unique<NativeRegisterContextLinux_arm>(target_arch, 101 native_thread); 102 } 103 104 #endif // defined(__arm__) 105 106 NativeRegisterContextLinux_arm::NativeRegisterContextLinux_arm( 107 const ArchSpec &target_arch, NativeThreadProtocol &native_thread) 108 : NativeRegisterContextLinux(native_thread, 109 new RegisterInfoPOSIX_arm(target_arch)) { 110 switch (target_arch.GetMachine()) { 111 case llvm::Triple::arm: 112 m_reg_info.num_registers = k_num_registers_arm; 113 m_reg_info.num_gpr_registers = k_num_gpr_registers_arm; 114 m_reg_info.num_fpr_registers = k_num_fpr_registers_arm; 115 m_reg_info.last_gpr = k_last_gpr_arm; 116 m_reg_info.first_fpr = k_first_fpr_arm; 117 m_reg_info.last_fpr = k_last_fpr_arm; 118 m_reg_info.first_fpr_v = fpu_s0_arm; 119 m_reg_info.last_fpr_v = fpu_s31_arm; 120 m_reg_info.gpr_flags = gpr_cpsr_arm; 121 break; 122 default: 123 assert(false && "Unhandled target architecture."); 124 break; 125 } 126 127 ::memset(&m_fpr, 0, sizeof(m_fpr)); 128 ::memset(&m_gpr_arm, 0, sizeof(m_gpr_arm)); 129 ::memset(&m_hwp_regs, 0, sizeof(m_hwp_regs)); 130 ::memset(&m_hbr_regs, 0, sizeof(m_hbr_regs)); 131 132 // 16 is just a maximum value, query hardware for actual watchpoint count 133 m_max_hwp_supported = 16; 134 m_max_hbp_supported = 16; 135 m_refresh_hwdebug_info = true; 136 } 137 138 uint32_t NativeRegisterContextLinux_arm::GetRegisterSetCount() const { 139 return k_num_register_sets; 140 } 141 142 uint32_t NativeRegisterContextLinux_arm::GetUserRegisterCount() const { 143 uint32_t count = 0; 144 for (uint32_t set_index = 0; set_index < k_num_register_sets; ++set_index) 145 count += g_reg_sets_arm[set_index].num_registers; 146 return count; 147 } 148 149 const RegisterSet * 150 NativeRegisterContextLinux_arm::GetRegisterSet(uint32_t set_index) const { 151 if (set_index < k_num_register_sets) 152 return &g_reg_sets_arm[set_index]; 153 154 return nullptr; 155 } 156 157 Status 158 NativeRegisterContextLinux_arm::ReadRegister(const RegisterInfo *reg_info, 159 RegisterValue ®_value) { 160 Status error; 161 162 if (!reg_info) { 163 error.SetErrorString("reg_info NULL"); 164 return error; 165 } 166 167 const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB]; 168 169 if (IsFPR(reg)) { 170 error = ReadFPR(); 171 if (error.Fail()) 172 return error; 173 } else { 174 uint32_t full_reg = reg; 175 bool is_subreg = reg_info->invalidate_regs && 176 (reg_info->invalidate_regs[0] != LLDB_INVALID_REGNUM); 177 178 if (is_subreg) { 179 // Read the full aligned 64-bit register. 180 full_reg = reg_info->invalidate_regs[0]; 181 } 182 183 error = ReadRegisterRaw(full_reg, reg_value); 184 185 if (error.Success()) { 186 // If our read was not aligned (for ah,bh,ch,dh), shift our returned 187 // value one byte to the right. 188 if (is_subreg && (reg_info->byte_offset & 0x1)) 189 reg_value.SetUInt64(reg_value.GetAsUInt64() >> 8); 190 191 // If our return byte size was greater than the return value reg size, 192 // then use the type specified by reg_info rather than the uint64_t 193 // default 194 if (reg_value.GetByteSize() > reg_info->byte_size) 195 reg_value.SetType(reg_info); 196 } 197 return error; 198 } 199 200 // Get pointer to m_fpr variable and set the data from it. 201 uint32_t fpr_offset = CalculateFprOffset(reg_info); 202 assert(fpr_offset < sizeof m_fpr); 203 uint8_t *src = (uint8_t *)&m_fpr + fpr_offset; 204 switch (reg_info->byte_size) { 205 case 2: 206 reg_value.SetUInt16(*(uint16_t *)src); 207 break; 208 case 4: 209 reg_value.SetUInt32(*(uint32_t *)src); 210 break; 211 case 8: 212 reg_value.SetUInt64(*(uint64_t *)src); 213 break; 214 case 16: 215 reg_value.SetBytes(src, 16, GetByteOrder()); 216 break; 217 default: 218 assert(false && "Unhandled data size."); 219 error.SetErrorStringWithFormat("unhandled byte size: %" PRIu32, 220 reg_info->byte_size); 221 break; 222 } 223 224 return error; 225 } 226 227 Status 228 NativeRegisterContextLinux_arm::WriteRegister(const RegisterInfo *reg_info, 229 const RegisterValue ®_value) { 230 if (!reg_info) 231 return Status("reg_info NULL"); 232 233 const uint32_t reg_index = reg_info->kinds[lldb::eRegisterKindLLDB]; 234 if (reg_index == LLDB_INVALID_REGNUM) 235 return Status("no lldb regnum for %s", reg_info && reg_info->name 236 ? reg_info->name 237 : "<unknown register>"); 238 239 if (IsGPR(reg_index)) 240 return WriteRegisterRaw(reg_index, reg_value); 241 242 if (IsFPR(reg_index)) { 243 // Get pointer to m_fpr variable and set the data to it. 244 uint32_t fpr_offset = CalculateFprOffset(reg_info); 245 assert(fpr_offset < sizeof m_fpr); 246 uint8_t *dst = (uint8_t *)&m_fpr + fpr_offset; 247 switch (reg_info->byte_size) { 248 case 2: 249 *(uint16_t *)dst = reg_value.GetAsUInt16(); 250 break; 251 case 4: 252 *(uint32_t *)dst = reg_value.GetAsUInt32(); 253 break; 254 case 8: 255 *(uint64_t *)dst = reg_value.GetAsUInt64(); 256 break; 257 default: 258 assert(false && "Unhandled data size."); 259 return Status("unhandled register data size %" PRIu32, 260 reg_info->byte_size); 261 } 262 263 Status error = WriteFPR(); 264 if (error.Fail()) 265 return error; 266 267 return Status(); 268 } 269 270 return Status("failed - register wasn't recognized to be a GPR or an FPR, " 271 "write strategy unknown"); 272 } 273 274 Status NativeRegisterContextLinux_arm::ReadAllRegisterValues( 275 lldb::DataBufferSP &data_sp) { 276 Status error; 277 278 data_sp.reset(new DataBufferHeap(REG_CONTEXT_SIZE, 0)); 279 error = ReadGPR(); 280 if (error.Fail()) 281 return error; 282 283 error = ReadFPR(); 284 if (error.Fail()) 285 return error; 286 287 uint8_t *dst = data_sp->GetBytes(); 288 ::memcpy(dst, &m_gpr_arm, GetGPRSize()); 289 dst += GetGPRSize(); 290 ::memcpy(dst, &m_fpr, sizeof(m_fpr)); 291 292 return error; 293 } 294 295 Status NativeRegisterContextLinux_arm::WriteAllRegisterValues( 296 const lldb::DataBufferSP &data_sp) { 297 Status error; 298 299 if (!data_sp) { 300 error.SetErrorStringWithFormat( 301 "NativeRegisterContextLinux_x86_64::%s invalid data_sp provided", 302 __FUNCTION__); 303 return error; 304 } 305 306 if (data_sp->GetByteSize() != REG_CONTEXT_SIZE) { 307 error.SetErrorStringWithFormat( 308 "NativeRegisterContextLinux_x86_64::%s data_sp contained mismatched " 309 "data size, expected %" PRIu64 ", actual %" PRIu64, 310 __FUNCTION__, (uint64_t)REG_CONTEXT_SIZE, data_sp->GetByteSize()); 311 return error; 312 } 313 314 uint8_t *src = data_sp->GetBytes(); 315 if (src == nullptr) { 316 error.SetErrorStringWithFormat("NativeRegisterContextLinux_x86_64::%s " 317 "DataBuffer::GetBytes() returned a null " 318 "pointer", 319 __FUNCTION__); 320 return error; 321 } 322 ::memcpy(&m_gpr_arm, src, GetRegisterInfoInterface().GetGPRSize()); 323 324 error = WriteGPR(); 325 if (error.Fail()) 326 return error; 327 328 src += GetRegisterInfoInterface().GetGPRSize(); 329 ::memcpy(&m_fpr, src, sizeof(m_fpr)); 330 331 error = WriteFPR(); 332 if (error.Fail()) 333 return error; 334 335 return error; 336 } 337 338 bool NativeRegisterContextLinux_arm::IsGPR(unsigned reg) const { 339 return reg <= m_reg_info.last_gpr; // GPR's come first. 340 } 341 342 bool NativeRegisterContextLinux_arm::IsFPR(unsigned reg) const { 343 return (m_reg_info.first_fpr <= reg && reg <= m_reg_info.last_fpr); 344 } 345 346 uint32_t NativeRegisterContextLinux_arm::NumSupportedHardwareBreakpoints() { 347 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 348 349 if (log) 350 log->Printf("NativeRegisterContextLinux_arm::%s()", __FUNCTION__); 351 352 Status error; 353 354 // Read hardware breakpoint and watchpoint information. 355 error = ReadHardwareDebugInfo(); 356 357 if (error.Fail()) 358 return 0; 359 360 LLDB_LOG(log, "{0}", m_max_hbp_supported); 361 return m_max_hbp_supported; 362 } 363 364 uint32_t 365 NativeRegisterContextLinux_arm::SetHardwareBreakpoint(lldb::addr_t addr, 366 size_t size) { 367 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 368 LLDB_LOG(log, "addr: {0:x}, size: {1:x}", addr, size); 369 370 // Read hardware breakpoint and watchpoint information. 371 Status error = ReadHardwareDebugInfo(); 372 373 if (error.Fail()) 374 return LLDB_INVALID_INDEX32; 375 376 uint32_t control_value = 0, bp_index = 0; 377 378 // Setup address and control values. 379 // Use size to get a hint of arm vs thumb modes. 380 switch (size) { 381 case 2: 382 control_value = (0x3 << 5) | 7; 383 addr &= ~1; 384 break; 385 case 4: 386 control_value = (0xfu << 5) | 7; 387 addr &= ~3; 388 break; 389 default: 390 return LLDB_INVALID_INDEX32; 391 } 392 393 // Iterate over stored breakpoints and find a free bp_index 394 bp_index = LLDB_INVALID_INDEX32; 395 for (uint32_t i = 0; i < m_max_hbp_supported; i++) { 396 if ((m_hbr_regs[i].control & 1) == 0) { 397 bp_index = i; // Mark last free slot 398 } else if (m_hbr_regs[i].address == addr) { 399 return LLDB_INVALID_INDEX32; // We do not support duplicate breakpoints. 400 } 401 } 402 403 if (bp_index == LLDB_INVALID_INDEX32) 404 return LLDB_INVALID_INDEX32; 405 406 // Update breakpoint in local cache 407 m_hbr_regs[bp_index].real_addr = addr; 408 m_hbr_regs[bp_index].address = addr; 409 m_hbr_regs[bp_index].control = control_value; 410 411 // PTRACE call to set corresponding hardware breakpoint register. 412 error = WriteHardwareDebugRegs(eDREGTypeBREAK, bp_index); 413 414 if (error.Fail()) { 415 m_hbr_regs[bp_index].address = 0; 416 m_hbr_regs[bp_index].control &= ~1; 417 418 return LLDB_INVALID_INDEX32; 419 } 420 421 return bp_index; 422 } 423 424 bool NativeRegisterContextLinux_arm::ClearHardwareBreakpoint(uint32_t hw_idx) { 425 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 426 LLDB_LOG(log, "hw_idx: {0}", hw_idx); 427 428 // Read hardware breakpoint and watchpoint information. 429 Status error = ReadHardwareDebugInfo(); 430 431 if (error.Fail()) 432 return false; 433 434 if (hw_idx >= m_max_hbp_supported) 435 return false; 436 437 // Create a backup we can revert to in case of failure. 438 lldb::addr_t tempAddr = m_hbr_regs[hw_idx].address; 439 uint32_t tempControl = m_hbr_regs[hw_idx].control; 440 441 m_hbr_regs[hw_idx].control &= ~1; 442 m_hbr_regs[hw_idx].address = 0; 443 444 // PTRACE call to clear corresponding hardware breakpoint register. 445 error = WriteHardwareDebugRegs(eDREGTypeBREAK, hw_idx); 446 447 if (error.Fail()) { 448 m_hbr_regs[hw_idx].control = tempControl; 449 m_hbr_regs[hw_idx].address = tempAddr; 450 451 return false; 452 } 453 454 return true; 455 } 456 457 Status NativeRegisterContextLinux_arm::GetHardwareBreakHitIndex( 458 uint32_t &bp_index, lldb::addr_t trap_addr) { 459 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 460 461 if (log) 462 log->Printf("NativeRegisterContextLinux_arm64::%s()", __FUNCTION__); 463 464 lldb::addr_t break_addr; 465 466 for (bp_index = 0; bp_index < m_max_hbp_supported; ++bp_index) { 467 break_addr = m_hbr_regs[bp_index].address; 468 469 if ((m_hbr_regs[bp_index].control & 0x1) && (trap_addr == break_addr)) { 470 m_hbr_regs[bp_index].hit_addr = trap_addr; 471 return Status(); 472 } 473 } 474 475 bp_index = LLDB_INVALID_INDEX32; 476 return Status(); 477 } 478 479 Status NativeRegisterContextLinux_arm::ClearAllHardwareBreakpoints() { 480 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 481 482 if (log) 483 log->Printf("NativeRegisterContextLinux_arm::%s()", __FUNCTION__); 484 485 Status error; 486 487 // Read hardware breakpoint and watchpoint information. 488 error = ReadHardwareDebugInfo(); 489 490 if (error.Fail()) 491 return error; 492 493 lldb::addr_t tempAddr = 0; 494 uint32_t tempControl = 0; 495 496 for (uint32_t i = 0; i < m_max_hbp_supported; i++) { 497 if (m_hbr_regs[i].control & 0x01) { 498 // Create a backup we can revert to in case of failure. 499 tempAddr = m_hbr_regs[i].address; 500 tempControl = m_hbr_regs[i].control; 501 502 // Clear breakpoints in local cache 503 m_hbr_regs[i].control &= ~1; 504 m_hbr_regs[i].address = 0; 505 506 // Ptrace call to update hardware debug registers 507 error = WriteHardwareDebugRegs(eDREGTypeBREAK, i); 508 509 if (error.Fail()) { 510 m_hbr_regs[i].control = tempControl; 511 m_hbr_regs[i].address = tempAddr; 512 513 return error; 514 } 515 } 516 } 517 518 return Status(); 519 } 520 521 uint32_t NativeRegisterContextLinux_arm::NumSupportedHardwareWatchpoints() { 522 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 523 524 // Read hardware breakpoint and watchpoint information. 525 Status error = ReadHardwareDebugInfo(); 526 527 if (error.Fail()) 528 return 0; 529 530 LLDB_LOG(log, "{0}", m_max_hwp_supported); 531 return m_max_hwp_supported; 532 } 533 534 uint32_t NativeRegisterContextLinux_arm::SetHardwareWatchpoint( 535 lldb::addr_t addr, size_t size, uint32_t watch_flags) { 536 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 537 LLDB_LOG(log, "addr: {0:x}, size: {1:x} watch_flags: {2:x}", addr, size, 538 watch_flags); 539 540 // Read hardware breakpoint and watchpoint information. 541 Status error = ReadHardwareDebugInfo(); 542 543 if (error.Fail()) 544 return LLDB_INVALID_INDEX32; 545 546 uint32_t control_value = 0, wp_index = 0, addr_word_offset = 0, byte_mask = 0; 547 lldb::addr_t real_addr = addr; 548 549 // Check if we are setting watchpoint other than read/write/access Also 550 // update watchpoint flag to match Arm write-read bit configuration. 551 switch (watch_flags) { 552 case 1: 553 watch_flags = 2; 554 break; 555 case 2: 556 watch_flags = 1; 557 break; 558 case 3: 559 break; 560 default: 561 return LLDB_INVALID_INDEX32; 562 } 563 564 // Can't watch zero bytes 565 // Can't watch more than 4 bytes per WVR/WCR pair 566 567 if (size == 0 || size > 4) 568 return LLDB_INVALID_INDEX32; 569 570 // Check 4-byte alignment for hardware watchpoint target address. Below is a 571 // hack to recalculate address and size in order to make sure we can watch 572 // non 4-byte alligned addresses as well. 573 if (addr & 0x03) { 574 uint8_t watch_mask = (addr & 0x03) + size; 575 576 if (watch_mask > 0x04) 577 return LLDB_INVALID_INDEX32; 578 else if (watch_mask <= 0x02) 579 size = 2; 580 else if (watch_mask <= 0x04) 581 size = 4; 582 583 addr = addr & (~0x03); 584 } 585 586 // We can only watch up to four bytes that follow a 4 byte aligned address 587 // per watchpoint register pair, so make sure we can properly encode this. 588 addr_word_offset = addr % 4; 589 byte_mask = ((1u << size) - 1u) << addr_word_offset; 590 591 // Check if we need multiple watchpoint register 592 if (byte_mask > 0xfu) 593 return LLDB_INVALID_INDEX32; 594 595 // Setup control value 596 // Make the byte_mask into a valid Byte Address Select mask 597 control_value = byte_mask << 5; 598 599 // Turn on appropriate watchpoint flags read or write 600 control_value |= (watch_flags << 3); 601 602 // Enable this watchpoint and make it stop in privileged or user mode; 603 control_value |= 7; 604 605 // Make sure bits 1:0 are clear in our address 606 addr &= ~((lldb::addr_t)3); 607 608 // Iterate over stored watchpoints and find a free wp_index 609 wp_index = LLDB_INVALID_INDEX32; 610 for (uint32_t i = 0; i < m_max_hwp_supported; i++) { 611 if ((m_hwp_regs[i].control & 1) == 0) { 612 wp_index = i; // Mark last free slot 613 } else if (m_hwp_regs[i].address == addr) { 614 return LLDB_INVALID_INDEX32; // We do not support duplicate watchpoints. 615 } 616 } 617 618 if (wp_index == LLDB_INVALID_INDEX32) 619 return LLDB_INVALID_INDEX32; 620 621 // Update watchpoint in local cache 622 m_hwp_regs[wp_index].real_addr = real_addr; 623 m_hwp_regs[wp_index].address = addr; 624 m_hwp_regs[wp_index].control = control_value; 625 626 // PTRACE call to set corresponding watchpoint register. 627 error = WriteHardwareDebugRegs(eDREGTypeWATCH, wp_index); 628 629 if (error.Fail()) { 630 m_hwp_regs[wp_index].address = 0; 631 m_hwp_regs[wp_index].control &= ~1; 632 633 return LLDB_INVALID_INDEX32; 634 } 635 636 return wp_index; 637 } 638 639 bool NativeRegisterContextLinux_arm::ClearHardwareWatchpoint( 640 uint32_t wp_index) { 641 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 642 LLDB_LOG(log, "wp_index: {0}", wp_index); 643 644 // Read hardware breakpoint and watchpoint information. 645 Status error = ReadHardwareDebugInfo(); 646 647 if (error.Fail()) 648 return false; 649 650 if (wp_index >= m_max_hwp_supported) 651 return false; 652 653 // Create a backup we can revert to in case of failure. 654 lldb::addr_t tempAddr = m_hwp_regs[wp_index].address; 655 uint32_t tempControl = m_hwp_regs[wp_index].control; 656 657 // Update watchpoint in local cache 658 m_hwp_regs[wp_index].control &= ~1; 659 m_hwp_regs[wp_index].address = 0; 660 661 // Ptrace call to update hardware debug registers 662 error = WriteHardwareDebugRegs(eDREGTypeWATCH, wp_index); 663 664 if (error.Fail()) { 665 m_hwp_regs[wp_index].control = tempControl; 666 m_hwp_regs[wp_index].address = tempAddr; 667 668 return false; 669 } 670 671 return true; 672 } 673 674 Status NativeRegisterContextLinux_arm::ClearAllHardwareWatchpoints() { 675 // Read hardware breakpoint and watchpoint information. 676 Status error = ReadHardwareDebugInfo(); 677 678 if (error.Fail()) 679 return error; 680 681 lldb::addr_t tempAddr = 0; 682 uint32_t tempControl = 0; 683 684 for (uint32_t i = 0; i < m_max_hwp_supported; i++) { 685 if (m_hwp_regs[i].control & 0x01) { 686 // Create a backup we can revert to in case of failure. 687 tempAddr = m_hwp_regs[i].address; 688 tempControl = m_hwp_regs[i].control; 689 690 // Clear watchpoints in local cache 691 m_hwp_regs[i].control &= ~1; 692 m_hwp_regs[i].address = 0; 693 694 // Ptrace call to update hardware debug registers 695 error = WriteHardwareDebugRegs(eDREGTypeWATCH, i); 696 697 if (error.Fail()) { 698 m_hwp_regs[i].control = tempControl; 699 m_hwp_regs[i].address = tempAddr; 700 701 return error; 702 } 703 } 704 } 705 706 return Status(); 707 } 708 709 uint32_t NativeRegisterContextLinux_arm::GetWatchpointSize(uint32_t wp_index) { 710 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 711 LLDB_LOG(log, "wp_index: {0}", wp_index); 712 713 switch ((m_hwp_regs[wp_index].control >> 5) & 0x0f) { 714 case 0x01: 715 return 1; 716 case 0x03: 717 return 2; 718 case 0x07: 719 return 3; 720 case 0x0f: 721 return 4; 722 default: 723 return 0; 724 } 725 } 726 bool NativeRegisterContextLinux_arm::WatchpointIsEnabled(uint32_t wp_index) { 727 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 728 LLDB_LOG(log, "wp_index: {0}", wp_index); 729 730 if ((m_hwp_regs[wp_index].control & 0x1) == 0x1) 731 return true; 732 else 733 return false; 734 } 735 736 Status 737 NativeRegisterContextLinux_arm::GetWatchpointHitIndex(uint32_t &wp_index, 738 lldb::addr_t trap_addr) { 739 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 740 LLDB_LOG(log, "wp_index: {0}, trap_addr: {1:x}", wp_index, trap_addr); 741 742 uint32_t watch_size; 743 lldb::addr_t watch_addr; 744 745 for (wp_index = 0; wp_index < m_max_hwp_supported; ++wp_index) { 746 watch_size = GetWatchpointSize(wp_index); 747 watch_addr = m_hwp_regs[wp_index].address; 748 749 if (WatchpointIsEnabled(wp_index) && trap_addr >= watch_addr && 750 trap_addr < watch_addr + watch_size) { 751 m_hwp_regs[wp_index].hit_addr = trap_addr; 752 return Status(); 753 } 754 } 755 756 wp_index = LLDB_INVALID_INDEX32; 757 return Status(); 758 } 759 760 lldb::addr_t 761 NativeRegisterContextLinux_arm::GetWatchpointAddress(uint32_t wp_index) { 762 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 763 LLDB_LOG(log, "wp_index: {0}", wp_index); 764 765 if (wp_index >= m_max_hwp_supported) 766 return LLDB_INVALID_ADDRESS; 767 768 if (WatchpointIsEnabled(wp_index)) 769 return m_hwp_regs[wp_index].real_addr; 770 else 771 return LLDB_INVALID_ADDRESS; 772 } 773 774 lldb::addr_t 775 NativeRegisterContextLinux_arm::GetWatchpointHitAddress(uint32_t wp_index) { 776 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 777 LLDB_LOG(log, "wp_index: {0}", wp_index); 778 779 if (wp_index >= m_max_hwp_supported) 780 return LLDB_INVALID_ADDRESS; 781 782 if (WatchpointIsEnabled(wp_index)) 783 return m_hwp_regs[wp_index].hit_addr; 784 else 785 return LLDB_INVALID_ADDRESS; 786 } 787 788 Status NativeRegisterContextLinux_arm::ReadHardwareDebugInfo() { 789 Status error; 790 791 if (!m_refresh_hwdebug_info) { 792 return Status(); 793 } 794 795 unsigned int cap_val; 796 797 error = NativeProcessLinux::PtraceWrapper(PTRACE_GETHBPREGS, m_thread.GetID(), 798 nullptr, &cap_val, 799 sizeof(unsigned int)); 800 801 if (error.Fail()) 802 return error; 803 804 m_max_hwp_supported = (cap_val >> 8) & 0xff; 805 m_max_hbp_supported = cap_val & 0xff; 806 m_refresh_hwdebug_info = false; 807 808 return error; 809 } 810 811 Status NativeRegisterContextLinux_arm::WriteHardwareDebugRegs(int hwbType, 812 int hwb_index) { 813 Status error; 814 815 lldb::addr_t *addr_buf; 816 uint32_t *ctrl_buf; 817 818 if (hwbType == eDREGTypeWATCH) { 819 addr_buf = &m_hwp_regs[hwb_index].address; 820 ctrl_buf = &m_hwp_regs[hwb_index].control; 821 822 error = NativeProcessLinux::PtraceWrapper( 823 PTRACE_SETHBPREGS, m_thread.GetID(), 824 (PTRACE_TYPE_ARG3)(intptr_t) - ((hwb_index << 1) + 1), addr_buf, 825 sizeof(unsigned int)); 826 827 if (error.Fail()) 828 return error; 829 830 error = NativeProcessLinux::PtraceWrapper( 831 PTRACE_SETHBPREGS, m_thread.GetID(), 832 (PTRACE_TYPE_ARG3)(intptr_t) - ((hwb_index << 1) + 2), ctrl_buf, 833 sizeof(unsigned int)); 834 } else { 835 addr_buf = &m_hbr_regs[hwb_index].address; 836 ctrl_buf = &m_hbr_regs[hwb_index].control; 837 838 error = NativeProcessLinux::PtraceWrapper( 839 PTRACE_SETHBPREGS, m_thread.GetID(), 840 (PTRACE_TYPE_ARG3)(intptr_t)((hwb_index << 1) + 1), addr_buf, 841 sizeof(unsigned int)); 842 843 if (error.Fail()) 844 return error; 845 846 error = NativeProcessLinux::PtraceWrapper( 847 PTRACE_SETHBPREGS, m_thread.GetID(), 848 (PTRACE_TYPE_ARG3)(intptr_t)((hwb_index << 1) + 2), ctrl_buf, 849 sizeof(unsigned int)); 850 } 851 852 return error; 853 } 854 855 uint32_t NativeRegisterContextLinux_arm::CalculateFprOffset( 856 const RegisterInfo *reg_info) const { 857 return reg_info->byte_offset - 858 GetRegisterInfoAtIndex(m_reg_info.first_fpr)->byte_offset; 859 } 860 861 Status NativeRegisterContextLinux_arm::DoReadRegisterValue( 862 uint32_t offset, const char *reg_name, uint32_t size, 863 RegisterValue &value) { 864 // PTRACE_PEEKUSER don't work in the aarch64 linux kernel used on android 865 // devices (always return "Bad address"). To avoid using PTRACE_PEEKUSER we 866 // read out the full GPR register set instead. This approach is about 4 times 867 // slower but the performance overhead is negligible in comparision to 868 // processing time in lldb-server. 869 assert(offset % 4 == 0 && "Try to write a register with unaligned offset"); 870 if (offset + sizeof(uint32_t) > sizeof(m_gpr_arm)) 871 return Status("Register isn't fit into the size of the GPR area"); 872 873 Status error = DoReadGPR(m_gpr_arm, sizeof(m_gpr_arm)); 874 if (error.Fail()) 875 return error; 876 877 value.SetUInt32(m_gpr_arm[offset / sizeof(uint32_t)]); 878 return Status(); 879 } 880 881 Status NativeRegisterContextLinux_arm::DoWriteRegisterValue( 882 uint32_t offset, const char *reg_name, const RegisterValue &value) { 883 // PTRACE_POKEUSER don't work in the aarch64 linux kernel used on android 884 // devices (always return "Bad address"). To avoid using PTRACE_POKEUSER we 885 // read out the full GPR register set, modify the requested register and 886 // write it back. This approach is about 4 times slower but the performance 887 // overhead is negligible in comparision to processing time in lldb-server. 888 assert(offset % 4 == 0 && "Try to write a register with unaligned offset"); 889 if (offset + sizeof(uint32_t) > sizeof(m_gpr_arm)) 890 return Status("Register isn't fit into the size of the GPR area"); 891 892 Status error = DoReadGPR(m_gpr_arm, sizeof(m_gpr_arm)); 893 if (error.Fail()) 894 return error; 895 896 uint32_t reg_value = value.GetAsUInt32(); 897 // As precaution for an undefined behavior encountered while setting PC we 898 // will clear thumb bit of new PC if we are already in thumb mode; that is 899 // CPSR thumb mode bit is set. 900 if (offset / sizeof(uint32_t) == gpr_pc_arm) { 901 // Check if we are already in thumb mode and thumb bit of current PC is 902 // read out to be zero and thumb bit of next PC is read out to be one. 903 if ((m_gpr_arm[gpr_cpsr_arm] & 0x20) && !(m_gpr_arm[gpr_pc_arm] & 0x01) && 904 (value.GetAsUInt32() & 0x01)) { 905 reg_value &= (~1ull); 906 } 907 } 908 909 m_gpr_arm[offset / sizeof(uint32_t)] = reg_value; 910 return DoWriteGPR(m_gpr_arm, sizeof(m_gpr_arm)); 911 } 912 913 Status NativeRegisterContextLinux_arm::DoReadGPR(void *buf, size_t buf_size) { 914 #ifdef __arm__ 915 return NativeRegisterContextLinux::DoReadGPR(buf, buf_size); 916 #else // __aarch64__ 917 struct iovec ioVec; 918 ioVec.iov_base = buf; 919 ioVec.iov_len = buf_size; 920 921 return ReadRegisterSet(&ioVec, buf_size, NT_PRSTATUS); 922 #endif // __arm__ 923 } 924 925 Status NativeRegisterContextLinux_arm::DoWriteGPR(void *buf, size_t buf_size) { 926 #ifdef __arm__ 927 return NativeRegisterContextLinux::DoWriteGPR(buf, buf_size); 928 #else // __aarch64__ 929 struct iovec ioVec; 930 ioVec.iov_base = buf; 931 ioVec.iov_len = buf_size; 932 933 return WriteRegisterSet(&ioVec, buf_size, NT_PRSTATUS); 934 #endif // __arm__ 935 } 936 937 Status NativeRegisterContextLinux_arm::DoReadFPR(void *buf, size_t buf_size) { 938 #ifdef __arm__ 939 return NativeProcessLinux::PtraceWrapper(PTRACE_GETVFPREGS, m_thread.GetID(), 940 nullptr, buf, buf_size); 941 #else // __aarch64__ 942 struct iovec ioVec; 943 ioVec.iov_base = buf; 944 ioVec.iov_len = buf_size; 945 946 return ReadRegisterSet(&ioVec, buf_size, NT_ARM_VFP); 947 #endif // __arm__ 948 } 949 950 Status NativeRegisterContextLinux_arm::DoWriteFPR(void *buf, size_t buf_size) { 951 #ifdef __arm__ 952 return NativeProcessLinux::PtraceWrapper(PTRACE_SETVFPREGS, m_thread.GetID(), 953 nullptr, buf, buf_size); 954 #else // __aarch64__ 955 struct iovec ioVec; 956 ioVec.iov_base = buf; 957 ioVec.iov_len = buf_size; 958 959 return WriteRegisterSet(&ioVec, buf_size, NT_ARM_VFP); 960 #endif // __arm__ 961 } 962 963 #endif // defined(__arm__) || defined(__arm64__) || defined(__aarch64__) 964