1 //===-- NativeRegisterContextLinux_arm.cpp --------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #if defined(__arm__) || defined(__arm64__) || defined(__aarch64__) 10 11 #include "NativeRegisterContextLinux_arm.h" 12 13 #include "Plugins/Process/Linux/NativeProcessLinux.h" 14 #include "Plugins/Process/Linux/Procfs.h" 15 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 16 #include "Plugins/Process/Utility/RegisterInfoPOSIX_arm.h" 17 #include "lldb/Utility/DataBufferHeap.h" 18 #include "lldb/Utility/Log.h" 19 #include "lldb/Utility/RegisterValue.h" 20 #include "lldb/Utility/Status.h" 21 22 #include <elf.h> 23 #include <sys/socket.h> 24 25 #define REG_CONTEXT_SIZE (GetGPRSize() + sizeof(m_fpr)) 26 27 #ifndef PTRACE_GETVFPREGS 28 #define PTRACE_GETVFPREGS 27 29 #define PTRACE_SETVFPREGS 28 30 #endif 31 #ifndef PTRACE_GETHBPREGS 32 #define PTRACE_GETHBPREGS 29 33 #define PTRACE_SETHBPREGS 30 34 #endif 35 #if !defined(PTRACE_TYPE_ARG3) 36 #define PTRACE_TYPE_ARG3 void * 37 #endif 38 #if !defined(PTRACE_TYPE_ARG4) 39 #define PTRACE_TYPE_ARG4 void * 40 #endif 41 42 using namespace lldb; 43 using namespace lldb_private; 44 using namespace lldb_private::process_linux; 45 46 // arm general purpose registers. 47 static const uint32_t g_gpr_regnums_arm[] = { 48 gpr_r0_arm, gpr_r1_arm, gpr_r2_arm, gpr_r3_arm, gpr_r4_arm, 49 gpr_r5_arm, gpr_r6_arm, gpr_r7_arm, gpr_r8_arm, gpr_r9_arm, 50 gpr_r10_arm, gpr_r11_arm, gpr_r12_arm, gpr_sp_arm, gpr_lr_arm, 51 gpr_pc_arm, gpr_cpsr_arm, 52 LLDB_INVALID_REGNUM // register sets need to end with this flag 53 }; 54 static_assert(((sizeof g_gpr_regnums_arm / sizeof g_gpr_regnums_arm[0]) - 1) == 55 k_num_gpr_registers_arm, 56 "g_gpr_regnums_arm has wrong number of register infos"); 57 58 // arm floating point registers. 59 static const uint32_t g_fpu_regnums_arm[] = { 60 fpu_s0_arm, fpu_s1_arm, fpu_s2_arm, fpu_s3_arm, fpu_s4_arm, 61 fpu_s5_arm, fpu_s6_arm, fpu_s7_arm, fpu_s8_arm, fpu_s9_arm, 62 fpu_s10_arm, fpu_s11_arm, fpu_s12_arm, fpu_s13_arm, fpu_s14_arm, 63 fpu_s15_arm, fpu_s16_arm, fpu_s17_arm, fpu_s18_arm, fpu_s19_arm, 64 fpu_s20_arm, fpu_s21_arm, fpu_s22_arm, fpu_s23_arm, fpu_s24_arm, 65 fpu_s25_arm, fpu_s26_arm, fpu_s27_arm, fpu_s28_arm, fpu_s29_arm, 66 fpu_s30_arm, fpu_s31_arm, fpu_fpscr_arm, fpu_d0_arm, fpu_d1_arm, 67 fpu_d2_arm, fpu_d3_arm, fpu_d4_arm, fpu_d5_arm, fpu_d6_arm, 68 fpu_d7_arm, fpu_d8_arm, fpu_d9_arm, fpu_d10_arm, fpu_d11_arm, 69 fpu_d12_arm, fpu_d13_arm, fpu_d14_arm, fpu_d15_arm, fpu_d16_arm, 70 fpu_d17_arm, fpu_d18_arm, fpu_d19_arm, fpu_d20_arm, fpu_d21_arm, 71 fpu_d22_arm, fpu_d23_arm, fpu_d24_arm, fpu_d25_arm, fpu_d26_arm, 72 fpu_d27_arm, fpu_d28_arm, fpu_d29_arm, fpu_d30_arm, fpu_d31_arm, 73 fpu_q0_arm, fpu_q1_arm, fpu_q2_arm, fpu_q3_arm, fpu_q4_arm, 74 fpu_q5_arm, fpu_q6_arm, fpu_q7_arm, fpu_q8_arm, fpu_q9_arm, 75 fpu_q10_arm, fpu_q11_arm, fpu_q12_arm, fpu_q13_arm, fpu_q14_arm, 76 fpu_q15_arm, 77 LLDB_INVALID_REGNUM // register sets need to end with this flag 78 }; 79 static_assert(((sizeof g_fpu_regnums_arm / sizeof g_fpu_regnums_arm[0]) - 1) == 80 k_num_fpr_registers_arm, 81 "g_fpu_regnums_arm has wrong number of register infos"); 82 83 namespace { 84 // Number of register sets provided by this context. 85 enum { k_num_register_sets = 2 }; 86 } 87 88 // Register sets for arm. 89 static const RegisterSet g_reg_sets_arm[k_num_register_sets] = { 90 {"General Purpose Registers", "gpr", k_num_gpr_registers_arm, 91 g_gpr_regnums_arm}, 92 {"Floating Point Registers", "fpu", k_num_fpr_registers_arm, 93 g_fpu_regnums_arm}}; 94 95 #if defined(__arm__) 96 97 std::unique_ptr<NativeRegisterContextLinux> 98 NativeRegisterContextLinux::CreateHostNativeRegisterContextLinux( 99 const ArchSpec &target_arch, NativeThreadProtocol &native_thread) { 100 return llvm::make_unique<NativeRegisterContextLinux_arm>(target_arch, 101 native_thread); 102 } 103 104 #endif // defined(__arm__) 105 106 NativeRegisterContextLinux_arm::NativeRegisterContextLinux_arm( 107 const ArchSpec &target_arch, NativeThreadProtocol &native_thread) 108 : NativeRegisterContextLinux(native_thread, 109 new RegisterInfoPOSIX_arm(target_arch)) { 110 switch (target_arch.GetMachine()) { 111 case llvm::Triple::arm: 112 m_reg_info.num_registers = k_num_registers_arm; 113 m_reg_info.num_gpr_registers = k_num_gpr_registers_arm; 114 m_reg_info.num_fpr_registers = k_num_fpr_registers_arm; 115 m_reg_info.last_gpr = k_last_gpr_arm; 116 m_reg_info.first_fpr = k_first_fpr_arm; 117 m_reg_info.last_fpr = k_last_fpr_arm; 118 m_reg_info.first_fpr_v = fpu_s0_arm; 119 m_reg_info.last_fpr_v = fpu_s31_arm; 120 m_reg_info.gpr_flags = gpr_cpsr_arm; 121 break; 122 default: 123 assert(false && "Unhandled target architecture."); 124 break; 125 } 126 127 ::memset(&m_fpr, 0, sizeof(m_fpr)); 128 ::memset(&m_gpr_arm, 0, sizeof(m_gpr_arm)); 129 ::memset(&m_hwp_regs, 0, sizeof(m_hwp_regs)); 130 ::memset(&m_hbr_regs, 0, sizeof(m_hbr_regs)); 131 132 // 16 is just a maximum value, query hardware for actual watchpoint count 133 m_max_hwp_supported = 16; 134 m_max_hbp_supported = 16; 135 m_refresh_hwdebug_info = true; 136 } 137 138 uint32_t NativeRegisterContextLinux_arm::GetRegisterSetCount() const { 139 return k_num_register_sets; 140 } 141 142 uint32_t NativeRegisterContextLinux_arm::GetUserRegisterCount() const { 143 uint32_t count = 0; 144 for (uint32_t set_index = 0; set_index < k_num_register_sets; ++set_index) 145 count += g_reg_sets_arm[set_index].num_registers; 146 return count; 147 } 148 149 const RegisterSet * 150 NativeRegisterContextLinux_arm::GetRegisterSet(uint32_t set_index) const { 151 if (set_index < k_num_register_sets) 152 return &g_reg_sets_arm[set_index]; 153 154 return nullptr; 155 } 156 157 Status 158 NativeRegisterContextLinux_arm::ReadRegister(const RegisterInfo *reg_info, 159 RegisterValue ®_value) { 160 Status error; 161 162 if (!reg_info) { 163 error.SetErrorString("reg_info NULL"); 164 return error; 165 } 166 167 const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB]; 168 169 if (IsFPR(reg)) { 170 error = ReadFPR(); 171 if (error.Fail()) 172 return error; 173 } else { 174 uint32_t full_reg = reg; 175 bool is_subreg = reg_info->invalidate_regs && 176 (reg_info->invalidate_regs[0] != LLDB_INVALID_REGNUM); 177 178 if (is_subreg) { 179 // Read the full aligned 64-bit register. 180 full_reg = reg_info->invalidate_regs[0]; 181 } 182 183 error = ReadRegisterRaw(full_reg, reg_value); 184 185 if (error.Success()) { 186 // If our read was not aligned (for ah,bh,ch,dh), shift our returned 187 // value one byte to the right. 188 if (is_subreg && (reg_info->byte_offset & 0x1)) 189 reg_value.SetUInt64(reg_value.GetAsUInt64() >> 8); 190 191 // If our return byte size was greater than the return value reg size, 192 // then use the type specified by reg_info rather than the uint64_t 193 // default 194 if (reg_value.GetByteSize() > reg_info->byte_size) 195 reg_value.SetType(reg_info); 196 } 197 return error; 198 } 199 200 // Get pointer to m_fpr variable and set the data from it. 201 uint32_t fpr_offset = CalculateFprOffset(reg_info); 202 assert(fpr_offset < sizeof m_fpr); 203 uint8_t *src = (uint8_t *)&m_fpr + fpr_offset; 204 switch (reg_info->byte_size) { 205 case 2: 206 reg_value.SetUInt16(*(uint16_t *)src); 207 break; 208 case 4: 209 reg_value.SetUInt32(*(uint32_t *)src); 210 break; 211 case 8: 212 reg_value.SetUInt64(*(uint64_t *)src); 213 break; 214 case 16: 215 reg_value.SetBytes(src, 16, GetByteOrder()); 216 break; 217 default: 218 assert(false && "Unhandled data size."); 219 error.SetErrorStringWithFormat("unhandled byte size: %" PRIu32, 220 reg_info->byte_size); 221 break; 222 } 223 224 return error; 225 } 226 227 Status 228 NativeRegisterContextLinux_arm::WriteRegister(const RegisterInfo *reg_info, 229 const RegisterValue ®_value) { 230 if (!reg_info) 231 return Status("reg_info NULL"); 232 233 const uint32_t reg_index = reg_info->kinds[lldb::eRegisterKindLLDB]; 234 if (reg_index == LLDB_INVALID_REGNUM) 235 return Status("no lldb regnum for %s", reg_info && reg_info->name 236 ? reg_info->name 237 : "<unknown register>"); 238 239 if (IsGPR(reg_index)) 240 return WriteRegisterRaw(reg_index, reg_value); 241 242 if (IsFPR(reg_index)) { 243 // Get pointer to m_fpr variable and set the data to it. 244 uint32_t fpr_offset = CalculateFprOffset(reg_info); 245 assert(fpr_offset < sizeof m_fpr); 246 uint8_t *dst = (uint8_t *)&m_fpr + fpr_offset; 247 switch (reg_info->byte_size) { 248 case 2: 249 *(uint16_t *)dst = reg_value.GetAsUInt16(); 250 break; 251 case 4: 252 *(uint32_t *)dst = reg_value.GetAsUInt32(); 253 break; 254 case 8: 255 *(uint64_t *)dst = reg_value.GetAsUInt64(); 256 break; 257 default: 258 assert(false && "Unhandled data size."); 259 return Status("unhandled register data size %" PRIu32, 260 reg_info->byte_size); 261 } 262 263 Status error = WriteFPR(); 264 if (error.Fail()) 265 return error; 266 267 return Status(); 268 } 269 270 return Status("failed - register wasn't recognized to be a GPR or an FPR, " 271 "write strategy unknown"); 272 } 273 274 Status NativeRegisterContextLinux_arm::ReadAllRegisterValues( 275 lldb::DataBufferSP &data_sp) { 276 Status error; 277 278 data_sp.reset(new DataBufferHeap(REG_CONTEXT_SIZE, 0)); 279 error = ReadGPR(); 280 if (error.Fail()) 281 return error; 282 283 error = ReadFPR(); 284 if (error.Fail()) 285 return error; 286 287 uint8_t *dst = data_sp->GetBytes(); 288 if (dst == nullptr) { 289 error.SetErrorStringWithFormat("DataBufferHeap instance of size %" PRIu64 290 " returned a null pointer", 291 (uint64_t)REG_CONTEXT_SIZE); 292 return error; 293 } 294 295 ::memcpy(dst, &m_gpr_arm, GetGPRSize()); 296 dst += GetGPRSize(); 297 ::memcpy(dst, &m_fpr, sizeof(m_fpr)); 298 299 return error; 300 } 301 302 Status NativeRegisterContextLinux_arm::WriteAllRegisterValues( 303 const lldb::DataBufferSP &data_sp) { 304 Status error; 305 306 if (!data_sp) { 307 error.SetErrorStringWithFormat( 308 "NativeRegisterContextLinux_x86_64::%s invalid data_sp provided", 309 __FUNCTION__); 310 return error; 311 } 312 313 if (data_sp->GetByteSize() != REG_CONTEXT_SIZE) { 314 error.SetErrorStringWithFormat( 315 "NativeRegisterContextLinux_x86_64::%s data_sp contained mismatched " 316 "data size, expected %" PRIu64 ", actual %" PRIu64, 317 __FUNCTION__, (uint64_t)REG_CONTEXT_SIZE, data_sp->GetByteSize()); 318 return error; 319 } 320 321 uint8_t *src = data_sp->GetBytes(); 322 if (src == nullptr) { 323 error.SetErrorStringWithFormat("NativeRegisterContextLinux_x86_64::%s " 324 "DataBuffer::GetBytes() returned a null " 325 "pointer", 326 __FUNCTION__); 327 return error; 328 } 329 ::memcpy(&m_gpr_arm, src, GetRegisterInfoInterface().GetGPRSize()); 330 331 error = WriteGPR(); 332 if (error.Fail()) 333 return error; 334 335 src += GetRegisterInfoInterface().GetGPRSize(); 336 ::memcpy(&m_fpr, src, sizeof(m_fpr)); 337 338 error = WriteFPR(); 339 if (error.Fail()) 340 return error; 341 342 return error; 343 } 344 345 bool NativeRegisterContextLinux_arm::IsGPR(unsigned reg) const { 346 return reg <= m_reg_info.last_gpr; // GPR's come first. 347 } 348 349 bool NativeRegisterContextLinux_arm::IsFPR(unsigned reg) const { 350 return (m_reg_info.first_fpr <= reg && reg <= m_reg_info.last_fpr); 351 } 352 353 uint32_t NativeRegisterContextLinux_arm::NumSupportedHardwareBreakpoints() { 354 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 355 356 if (log) 357 log->Printf("NativeRegisterContextLinux_arm::%s()", __FUNCTION__); 358 359 Status error; 360 361 // Read hardware breakpoint and watchpoint information. 362 error = ReadHardwareDebugInfo(); 363 364 if (error.Fail()) 365 return 0; 366 367 LLDB_LOG(log, "{0}", m_max_hbp_supported); 368 return m_max_hbp_supported; 369 } 370 371 uint32_t 372 NativeRegisterContextLinux_arm::SetHardwareBreakpoint(lldb::addr_t addr, 373 size_t size) { 374 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 375 LLDB_LOG(log, "addr: {0:x}, size: {1:x}", addr, size); 376 377 // Read hardware breakpoint and watchpoint information. 378 Status error = ReadHardwareDebugInfo(); 379 380 if (error.Fail()) 381 return LLDB_INVALID_INDEX32; 382 383 uint32_t control_value = 0, bp_index = 0; 384 385 // Setup address and control values. 386 // Use size to get a hint of arm vs thumb modes. 387 switch (size) { 388 case 2: 389 control_value = (0x3 << 5) | 7; 390 addr &= ~1; 391 break; 392 case 4: 393 control_value = (0xfu << 5) | 7; 394 addr &= ~3; 395 break; 396 default: 397 return LLDB_INVALID_INDEX32; 398 } 399 400 // Iterate over stored breakpoints and find a free bp_index 401 bp_index = LLDB_INVALID_INDEX32; 402 for (uint32_t i = 0; i < m_max_hbp_supported; i++) { 403 if ((m_hbr_regs[i].control & 1) == 0) { 404 bp_index = i; // Mark last free slot 405 } else if (m_hbr_regs[i].address == addr) { 406 return LLDB_INVALID_INDEX32; // We do not support duplicate breakpoints. 407 } 408 } 409 410 if (bp_index == LLDB_INVALID_INDEX32) 411 return LLDB_INVALID_INDEX32; 412 413 // Update breakpoint in local cache 414 m_hbr_regs[bp_index].real_addr = addr; 415 m_hbr_regs[bp_index].address = addr; 416 m_hbr_regs[bp_index].control = control_value; 417 418 // PTRACE call to set corresponding hardware breakpoint register. 419 error = WriteHardwareDebugRegs(eDREGTypeBREAK, bp_index); 420 421 if (error.Fail()) { 422 m_hbr_regs[bp_index].address = 0; 423 m_hbr_regs[bp_index].control &= ~1; 424 425 return LLDB_INVALID_INDEX32; 426 } 427 428 return bp_index; 429 } 430 431 bool NativeRegisterContextLinux_arm::ClearHardwareBreakpoint(uint32_t hw_idx) { 432 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 433 LLDB_LOG(log, "hw_idx: {0}", hw_idx); 434 435 // Read hardware breakpoint and watchpoint information. 436 Status error = ReadHardwareDebugInfo(); 437 438 if (error.Fail()) 439 return false; 440 441 if (hw_idx >= m_max_hbp_supported) 442 return false; 443 444 // Create a backup we can revert to in case of failure. 445 lldb::addr_t tempAddr = m_hbr_regs[hw_idx].address; 446 uint32_t tempControl = m_hbr_regs[hw_idx].control; 447 448 m_hbr_regs[hw_idx].control &= ~1; 449 m_hbr_regs[hw_idx].address = 0; 450 451 // PTRACE call to clear corresponding hardware breakpoint register. 452 error = WriteHardwareDebugRegs(eDREGTypeBREAK, hw_idx); 453 454 if (error.Fail()) { 455 m_hbr_regs[hw_idx].control = tempControl; 456 m_hbr_regs[hw_idx].address = tempAddr; 457 458 return false; 459 } 460 461 return true; 462 } 463 464 Status NativeRegisterContextLinux_arm::GetHardwareBreakHitIndex( 465 uint32_t &bp_index, lldb::addr_t trap_addr) { 466 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 467 468 if (log) 469 log->Printf("NativeRegisterContextLinux_arm64::%s()", __FUNCTION__); 470 471 lldb::addr_t break_addr; 472 473 for (bp_index = 0; bp_index < m_max_hbp_supported; ++bp_index) { 474 break_addr = m_hbr_regs[bp_index].address; 475 476 if ((m_hbr_regs[bp_index].control & 0x1) && (trap_addr == break_addr)) { 477 m_hbr_regs[bp_index].hit_addr = trap_addr; 478 return Status(); 479 } 480 } 481 482 bp_index = LLDB_INVALID_INDEX32; 483 return Status(); 484 } 485 486 Status NativeRegisterContextLinux_arm::ClearAllHardwareBreakpoints() { 487 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 488 489 if (log) 490 log->Printf("NativeRegisterContextLinux_arm::%s()", __FUNCTION__); 491 492 Status error; 493 494 // Read hardware breakpoint and watchpoint information. 495 error = ReadHardwareDebugInfo(); 496 497 if (error.Fail()) 498 return error; 499 500 lldb::addr_t tempAddr = 0; 501 uint32_t tempControl = 0; 502 503 for (uint32_t i = 0; i < m_max_hbp_supported; i++) { 504 if (m_hbr_regs[i].control & 0x01) { 505 // Create a backup we can revert to in case of failure. 506 tempAddr = m_hbr_regs[i].address; 507 tempControl = m_hbr_regs[i].control; 508 509 // Clear breakpoints in local cache 510 m_hbr_regs[i].control &= ~1; 511 m_hbr_regs[i].address = 0; 512 513 // Ptrace call to update hardware debug registers 514 error = WriteHardwareDebugRegs(eDREGTypeBREAK, i); 515 516 if (error.Fail()) { 517 m_hbr_regs[i].control = tempControl; 518 m_hbr_regs[i].address = tempAddr; 519 520 return error; 521 } 522 } 523 } 524 525 return Status(); 526 } 527 528 uint32_t NativeRegisterContextLinux_arm::NumSupportedHardwareWatchpoints() { 529 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 530 531 // Read hardware breakpoint and watchpoint information. 532 Status error = ReadHardwareDebugInfo(); 533 534 if (error.Fail()) 535 return 0; 536 537 LLDB_LOG(log, "{0}", m_max_hwp_supported); 538 return m_max_hwp_supported; 539 } 540 541 uint32_t NativeRegisterContextLinux_arm::SetHardwareWatchpoint( 542 lldb::addr_t addr, size_t size, uint32_t watch_flags) { 543 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 544 LLDB_LOG(log, "addr: {0:x}, size: {1:x} watch_flags: {2:x}", addr, size, 545 watch_flags); 546 547 // Read hardware breakpoint and watchpoint information. 548 Status error = ReadHardwareDebugInfo(); 549 550 if (error.Fail()) 551 return LLDB_INVALID_INDEX32; 552 553 uint32_t control_value = 0, wp_index = 0, addr_word_offset = 0, byte_mask = 0; 554 lldb::addr_t real_addr = addr; 555 556 // Check if we are setting watchpoint other than read/write/access Also 557 // update watchpoint flag to match Arm write-read bit configuration. 558 switch (watch_flags) { 559 case 1: 560 watch_flags = 2; 561 break; 562 case 2: 563 watch_flags = 1; 564 break; 565 case 3: 566 break; 567 default: 568 return LLDB_INVALID_INDEX32; 569 } 570 571 // Can't watch zero bytes 572 // Can't watch more than 4 bytes per WVR/WCR pair 573 574 if (size == 0 || size > 4) 575 return LLDB_INVALID_INDEX32; 576 577 // Check 4-byte alignment for hardware watchpoint target address. Below is a 578 // hack to recalculate address and size in order to make sure we can watch 579 // non 4-byte alligned addresses as well. 580 if (addr & 0x03) { 581 uint8_t watch_mask = (addr & 0x03) + size; 582 583 if (watch_mask > 0x04) 584 return LLDB_INVALID_INDEX32; 585 else if (watch_mask <= 0x02) 586 size = 2; 587 else if (watch_mask <= 0x04) 588 size = 4; 589 590 addr = addr & (~0x03); 591 } 592 593 // We can only watch up to four bytes that follow a 4 byte aligned address 594 // per watchpoint register pair, so make sure we can properly encode this. 595 addr_word_offset = addr % 4; 596 byte_mask = ((1u << size) - 1u) << addr_word_offset; 597 598 // Check if we need multiple watchpoint register 599 if (byte_mask > 0xfu) 600 return LLDB_INVALID_INDEX32; 601 602 // Setup control value 603 // Make the byte_mask into a valid Byte Address Select mask 604 control_value = byte_mask << 5; 605 606 // Turn on appropriate watchpoint flags read or write 607 control_value |= (watch_flags << 3); 608 609 // Enable this watchpoint and make it stop in privileged or user mode; 610 control_value |= 7; 611 612 // Make sure bits 1:0 are clear in our address 613 addr &= ~((lldb::addr_t)3); 614 615 // Iterate over stored watchpoints and find a free wp_index 616 wp_index = LLDB_INVALID_INDEX32; 617 for (uint32_t i = 0; i < m_max_hwp_supported; i++) { 618 if ((m_hwp_regs[i].control & 1) == 0) { 619 wp_index = i; // Mark last free slot 620 } else if (m_hwp_regs[i].address == addr) { 621 return LLDB_INVALID_INDEX32; // We do not support duplicate watchpoints. 622 } 623 } 624 625 if (wp_index == LLDB_INVALID_INDEX32) 626 return LLDB_INVALID_INDEX32; 627 628 // Update watchpoint in local cache 629 m_hwp_regs[wp_index].real_addr = real_addr; 630 m_hwp_regs[wp_index].address = addr; 631 m_hwp_regs[wp_index].control = control_value; 632 633 // PTRACE call to set corresponding watchpoint register. 634 error = WriteHardwareDebugRegs(eDREGTypeWATCH, wp_index); 635 636 if (error.Fail()) { 637 m_hwp_regs[wp_index].address = 0; 638 m_hwp_regs[wp_index].control &= ~1; 639 640 return LLDB_INVALID_INDEX32; 641 } 642 643 return wp_index; 644 } 645 646 bool NativeRegisterContextLinux_arm::ClearHardwareWatchpoint( 647 uint32_t wp_index) { 648 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 649 LLDB_LOG(log, "wp_index: {0}", wp_index); 650 651 // Read hardware breakpoint and watchpoint information. 652 Status error = ReadHardwareDebugInfo(); 653 654 if (error.Fail()) 655 return false; 656 657 if (wp_index >= m_max_hwp_supported) 658 return false; 659 660 // Create a backup we can revert to in case of failure. 661 lldb::addr_t tempAddr = m_hwp_regs[wp_index].address; 662 uint32_t tempControl = m_hwp_regs[wp_index].control; 663 664 // Update watchpoint in local cache 665 m_hwp_regs[wp_index].control &= ~1; 666 m_hwp_regs[wp_index].address = 0; 667 668 // Ptrace call to update hardware debug registers 669 error = WriteHardwareDebugRegs(eDREGTypeWATCH, wp_index); 670 671 if (error.Fail()) { 672 m_hwp_regs[wp_index].control = tempControl; 673 m_hwp_regs[wp_index].address = tempAddr; 674 675 return false; 676 } 677 678 return true; 679 } 680 681 Status NativeRegisterContextLinux_arm::ClearAllHardwareWatchpoints() { 682 // Read hardware breakpoint and watchpoint information. 683 Status error = ReadHardwareDebugInfo(); 684 685 if (error.Fail()) 686 return error; 687 688 lldb::addr_t tempAddr = 0; 689 uint32_t tempControl = 0; 690 691 for (uint32_t i = 0; i < m_max_hwp_supported; i++) { 692 if (m_hwp_regs[i].control & 0x01) { 693 // Create a backup we can revert to in case of failure. 694 tempAddr = m_hwp_regs[i].address; 695 tempControl = m_hwp_regs[i].control; 696 697 // Clear watchpoints in local cache 698 m_hwp_regs[i].control &= ~1; 699 m_hwp_regs[i].address = 0; 700 701 // Ptrace call to update hardware debug registers 702 error = WriteHardwareDebugRegs(eDREGTypeWATCH, i); 703 704 if (error.Fail()) { 705 m_hwp_regs[i].control = tempControl; 706 m_hwp_regs[i].address = tempAddr; 707 708 return error; 709 } 710 } 711 } 712 713 return Status(); 714 } 715 716 uint32_t NativeRegisterContextLinux_arm::GetWatchpointSize(uint32_t wp_index) { 717 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 718 LLDB_LOG(log, "wp_index: {0}", wp_index); 719 720 switch ((m_hwp_regs[wp_index].control >> 5) & 0x0f) { 721 case 0x01: 722 return 1; 723 case 0x03: 724 return 2; 725 case 0x07: 726 return 3; 727 case 0x0f: 728 return 4; 729 default: 730 return 0; 731 } 732 } 733 bool NativeRegisterContextLinux_arm::WatchpointIsEnabled(uint32_t wp_index) { 734 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 735 LLDB_LOG(log, "wp_index: {0}", wp_index); 736 737 if ((m_hwp_regs[wp_index].control & 0x1) == 0x1) 738 return true; 739 else 740 return false; 741 } 742 743 Status 744 NativeRegisterContextLinux_arm::GetWatchpointHitIndex(uint32_t &wp_index, 745 lldb::addr_t trap_addr) { 746 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 747 LLDB_LOG(log, "wp_index: {0}, trap_addr: {1:x}", wp_index, trap_addr); 748 749 uint32_t watch_size; 750 lldb::addr_t watch_addr; 751 752 for (wp_index = 0; wp_index < m_max_hwp_supported; ++wp_index) { 753 watch_size = GetWatchpointSize(wp_index); 754 watch_addr = m_hwp_regs[wp_index].address; 755 756 if (WatchpointIsEnabled(wp_index) && trap_addr >= watch_addr && 757 trap_addr < watch_addr + watch_size) { 758 m_hwp_regs[wp_index].hit_addr = trap_addr; 759 return Status(); 760 } 761 } 762 763 wp_index = LLDB_INVALID_INDEX32; 764 return Status(); 765 } 766 767 lldb::addr_t 768 NativeRegisterContextLinux_arm::GetWatchpointAddress(uint32_t wp_index) { 769 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 770 LLDB_LOG(log, "wp_index: {0}", wp_index); 771 772 if (wp_index >= m_max_hwp_supported) 773 return LLDB_INVALID_ADDRESS; 774 775 if (WatchpointIsEnabled(wp_index)) 776 return m_hwp_regs[wp_index].real_addr; 777 else 778 return LLDB_INVALID_ADDRESS; 779 } 780 781 lldb::addr_t 782 NativeRegisterContextLinux_arm::GetWatchpointHitAddress(uint32_t wp_index) { 783 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 784 LLDB_LOG(log, "wp_index: {0}", wp_index); 785 786 if (wp_index >= m_max_hwp_supported) 787 return LLDB_INVALID_ADDRESS; 788 789 if (WatchpointIsEnabled(wp_index)) 790 return m_hwp_regs[wp_index].hit_addr; 791 else 792 return LLDB_INVALID_ADDRESS; 793 } 794 795 Status NativeRegisterContextLinux_arm::ReadHardwareDebugInfo() { 796 Status error; 797 798 if (!m_refresh_hwdebug_info) { 799 return Status(); 800 } 801 802 unsigned int cap_val; 803 804 error = NativeProcessLinux::PtraceWrapper(PTRACE_GETHBPREGS, m_thread.GetID(), 805 nullptr, &cap_val, 806 sizeof(unsigned int)); 807 808 if (error.Fail()) 809 return error; 810 811 m_max_hwp_supported = (cap_val >> 8) & 0xff; 812 m_max_hbp_supported = cap_val & 0xff; 813 m_refresh_hwdebug_info = false; 814 815 return error; 816 } 817 818 Status NativeRegisterContextLinux_arm::WriteHardwareDebugRegs(int hwbType, 819 int hwb_index) { 820 Status error; 821 822 lldb::addr_t *addr_buf; 823 uint32_t *ctrl_buf; 824 825 if (hwbType == eDREGTypeWATCH) { 826 addr_buf = &m_hwp_regs[hwb_index].address; 827 ctrl_buf = &m_hwp_regs[hwb_index].control; 828 829 error = NativeProcessLinux::PtraceWrapper( 830 PTRACE_SETHBPREGS, m_thread.GetID(), 831 (PTRACE_TYPE_ARG3)(intptr_t) - ((hwb_index << 1) + 1), addr_buf, 832 sizeof(unsigned int)); 833 834 if (error.Fail()) 835 return error; 836 837 error = NativeProcessLinux::PtraceWrapper( 838 PTRACE_SETHBPREGS, m_thread.GetID(), 839 (PTRACE_TYPE_ARG3)(intptr_t) - ((hwb_index << 1) + 2), ctrl_buf, 840 sizeof(unsigned int)); 841 } else { 842 addr_buf = &m_hbr_regs[hwb_index].address; 843 ctrl_buf = &m_hbr_regs[hwb_index].control; 844 845 error = NativeProcessLinux::PtraceWrapper( 846 PTRACE_SETHBPREGS, m_thread.GetID(), 847 (PTRACE_TYPE_ARG3)(intptr_t)((hwb_index << 1) + 1), addr_buf, 848 sizeof(unsigned int)); 849 850 if (error.Fail()) 851 return error; 852 853 error = NativeProcessLinux::PtraceWrapper( 854 PTRACE_SETHBPREGS, m_thread.GetID(), 855 (PTRACE_TYPE_ARG3)(intptr_t)((hwb_index << 1) + 2), ctrl_buf, 856 sizeof(unsigned int)); 857 } 858 859 return error; 860 } 861 862 uint32_t NativeRegisterContextLinux_arm::CalculateFprOffset( 863 const RegisterInfo *reg_info) const { 864 return reg_info->byte_offset - 865 GetRegisterInfoAtIndex(m_reg_info.first_fpr)->byte_offset; 866 } 867 868 Status NativeRegisterContextLinux_arm::DoReadRegisterValue( 869 uint32_t offset, const char *reg_name, uint32_t size, 870 RegisterValue &value) { 871 // PTRACE_PEEKUSER don't work in the aarch64 linux kernel used on android 872 // devices (always return "Bad address"). To avoid using PTRACE_PEEKUSER we 873 // read out the full GPR register set instead. This approach is about 4 times 874 // slower but the performance overhead is negligible in comparision to 875 // processing time in lldb-server. 876 assert(offset % 4 == 0 && "Try to write a register with unaligned offset"); 877 if (offset + sizeof(uint32_t) > sizeof(m_gpr_arm)) 878 return Status("Register isn't fit into the size of the GPR area"); 879 880 Status error = DoReadGPR(m_gpr_arm, sizeof(m_gpr_arm)); 881 if (error.Fail()) 882 return error; 883 884 value.SetUInt32(m_gpr_arm[offset / sizeof(uint32_t)]); 885 return Status(); 886 } 887 888 Status NativeRegisterContextLinux_arm::DoWriteRegisterValue( 889 uint32_t offset, const char *reg_name, const RegisterValue &value) { 890 // PTRACE_POKEUSER don't work in the aarch64 linux kernel used on android 891 // devices (always return "Bad address"). To avoid using PTRACE_POKEUSER we 892 // read out the full GPR register set, modify the requested register and 893 // write it back. This approach is about 4 times slower but the performance 894 // overhead is negligible in comparision to processing time in lldb-server. 895 assert(offset % 4 == 0 && "Try to write a register with unaligned offset"); 896 if (offset + sizeof(uint32_t) > sizeof(m_gpr_arm)) 897 return Status("Register isn't fit into the size of the GPR area"); 898 899 Status error = DoReadGPR(m_gpr_arm, sizeof(m_gpr_arm)); 900 if (error.Fail()) 901 return error; 902 903 uint32_t reg_value = value.GetAsUInt32(); 904 // As precaution for an undefined behavior encountered while setting PC we 905 // will clear thumb bit of new PC if we are already in thumb mode; that is 906 // CPSR thumb mode bit is set. 907 if (offset / sizeof(uint32_t) == gpr_pc_arm) { 908 // Check if we are already in thumb mode and thumb bit of current PC is 909 // read out to be zero and thumb bit of next PC is read out to be one. 910 if ((m_gpr_arm[gpr_cpsr_arm] & 0x20) && !(m_gpr_arm[gpr_pc_arm] & 0x01) && 911 (value.GetAsUInt32() & 0x01)) { 912 reg_value &= (~1ull); 913 } 914 } 915 916 m_gpr_arm[offset / sizeof(uint32_t)] = reg_value; 917 return DoWriteGPR(m_gpr_arm, sizeof(m_gpr_arm)); 918 } 919 920 Status NativeRegisterContextLinux_arm::DoReadGPR(void *buf, size_t buf_size) { 921 #ifdef __arm__ 922 return NativeRegisterContextLinux::DoReadGPR(buf, buf_size); 923 #else // __aarch64__ 924 struct iovec ioVec; 925 ioVec.iov_base = buf; 926 ioVec.iov_len = buf_size; 927 928 return ReadRegisterSet(&ioVec, buf_size, NT_PRSTATUS); 929 #endif // __arm__ 930 } 931 932 Status NativeRegisterContextLinux_arm::DoWriteGPR(void *buf, size_t buf_size) { 933 #ifdef __arm__ 934 return NativeRegisterContextLinux::DoWriteGPR(buf, buf_size); 935 #else // __aarch64__ 936 struct iovec ioVec; 937 ioVec.iov_base = buf; 938 ioVec.iov_len = buf_size; 939 940 return WriteRegisterSet(&ioVec, buf_size, NT_PRSTATUS); 941 #endif // __arm__ 942 } 943 944 Status NativeRegisterContextLinux_arm::DoReadFPR(void *buf, size_t buf_size) { 945 #ifdef __arm__ 946 return NativeProcessLinux::PtraceWrapper(PTRACE_GETVFPREGS, m_thread.GetID(), 947 nullptr, buf, buf_size); 948 #else // __aarch64__ 949 struct iovec ioVec; 950 ioVec.iov_base = buf; 951 ioVec.iov_len = buf_size; 952 953 return ReadRegisterSet(&ioVec, buf_size, NT_ARM_VFP); 954 #endif // __arm__ 955 } 956 957 Status NativeRegisterContextLinux_arm::DoWriteFPR(void *buf, size_t buf_size) { 958 #ifdef __arm__ 959 return NativeProcessLinux::PtraceWrapper(PTRACE_SETVFPREGS, m_thread.GetID(), 960 nullptr, buf, buf_size); 961 #else // __aarch64__ 962 struct iovec ioVec; 963 ioVec.iov_base = buf; 964 ioVec.iov_len = buf_size; 965 966 return WriteRegisterSet(&ioVec, buf_size, NT_ARM_VFP); 967 #endif // __arm__ 968 } 969 970 #endif // defined(__arm__) || defined(__arm64__) || defined(__aarch64__) 971