1 //===-- NativeRegisterContextLinux_arm.cpp --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #if defined(__arm__) || defined(__arm64__) || defined(__aarch64__) 10 11 #include "NativeRegisterContextLinux_arm.h" 12 13 #include "Plugins/Process/Linux/NativeProcessLinux.h" 14 #include "Plugins/Process/Linux/Procfs.h" 15 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 16 #include "Plugins/Process/Utility/RegisterInfoPOSIX_arm.h" 17 #include "lldb/Utility/DataBufferHeap.h" 18 #include "lldb/Utility/Log.h" 19 #include "lldb/Utility/RegisterValue.h" 20 #include "lldb/Utility/Status.h" 21 22 #include <elf.h> 23 #include <sys/socket.h> 24 25 #define REG_CONTEXT_SIZE (GetGPRSize() + sizeof(m_fpr)) 26 27 #ifndef PTRACE_GETVFPREGS 28 #define PTRACE_GETVFPREGS 27 29 #define PTRACE_SETVFPREGS 28 30 #endif 31 #ifndef PTRACE_GETHBPREGS 32 #define PTRACE_GETHBPREGS 29 33 #define PTRACE_SETHBPREGS 30 34 #endif 35 #if !defined(PTRACE_TYPE_ARG3) 36 #define PTRACE_TYPE_ARG3 void * 37 #endif 38 #if !defined(PTRACE_TYPE_ARG4) 39 #define PTRACE_TYPE_ARG4 void * 40 #endif 41 42 using namespace lldb; 43 using namespace lldb_private; 44 using namespace lldb_private::process_linux; 45 46 #if defined(__arm__) 47 48 std::unique_ptr<NativeRegisterContextLinux> 49 NativeRegisterContextLinux::CreateHostNativeRegisterContextLinux( 50 const ArchSpec &target_arch, NativeThreadProtocol &native_thread) { 51 return std::make_unique<NativeRegisterContextLinux_arm>(target_arch, 52 native_thread); 53 } 54 55 #endif // defined(__arm__) 56 57 NativeRegisterContextLinux_arm::NativeRegisterContextLinux_arm( 58 const ArchSpec &target_arch, NativeThreadProtocol &native_thread) 59 : NativeRegisterContextRegisterInfo( 60 native_thread, new RegisterInfoPOSIX_arm(target_arch)) { 61 assert(target_arch.GetMachine() == llvm::Triple::arm); 62 63 ::memset(&m_fpr, 0, sizeof(m_fpr)); 64 ::memset(&m_gpr_arm, 0, sizeof(m_gpr_arm)); 65 ::memset(&m_hwp_regs, 0, sizeof(m_hwp_regs)); 66 ::memset(&m_hbr_regs, 0, sizeof(m_hbr_regs)); 67 68 // 16 is just a maximum value, query hardware for actual watchpoint count 69 m_max_hwp_supported = 16; 70 m_max_hbp_supported = 16; 71 m_refresh_hwdebug_info = true; 72 } 73 74 RegisterInfoPOSIX_arm &NativeRegisterContextLinux_arm::GetRegisterInfo() const { 75 return static_cast<RegisterInfoPOSIX_arm &>(*m_register_info_interface_up); 76 } 77 78 uint32_t NativeRegisterContextLinux_arm::GetRegisterSetCount() const { 79 return GetRegisterInfo().GetRegisterSetCount(); 80 } 81 82 uint32_t NativeRegisterContextLinux_arm::GetUserRegisterCount() const { 83 uint32_t count = 0; 84 for (uint32_t set_index = 0; set_index < GetRegisterSetCount(); ++set_index) 85 count += GetRegisterSet(set_index)->num_registers; 86 return count; 87 } 88 89 const RegisterSet * 90 NativeRegisterContextLinux_arm::GetRegisterSet(uint32_t set_index) const { 91 return GetRegisterInfo().GetRegisterSet(set_index); 92 } 93 94 Status 95 NativeRegisterContextLinux_arm::ReadRegister(const RegisterInfo *reg_info, 96 RegisterValue ®_value) { 97 Status error; 98 99 if (!reg_info) { 100 error.SetErrorString("reg_info NULL"); 101 return error; 102 } 103 104 const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB]; 105 106 if (IsFPR(reg)) { 107 error = ReadFPR(); 108 if (error.Fail()) 109 return error; 110 } else { 111 uint32_t full_reg = reg; 112 bool is_subreg = reg_info->invalidate_regs && 113 (reg_info->invalidate_regs[0] != LLDB_INVALID_REGNUM); 114 115 if (is_subreg) { 116 // Read the full aligned 64-bit register. 117 full_reg = reg_info->invalidate_regs[0]; 118 } 119 120 error = ReadRegisterRaw(full_reg, reg_value); 121 122 if (error.Success()) { 123 // If our read was not aligned (for ah,bh,ch,dh), shift our returned 124 // value one byte to the right. 125 if (is_subreg && (reg_info->byte_offset & 0x1)) 126 reg_value.SetUInt64(reg_value.GetAsUInt64() >> 8); 127 128 // If our return byte size was greater than the return value reg size, 129 // then use the type specified by reg_info rather than the uint64_t 130 // default 131 if (reg_value.GetByteSize() > reg_info->byte_size) 132 reg_value.SetType(reg_info); 133 } 134 return error; 135 } 136 137 // Get pointer to m_fpr variable and set the data from it. 138 uint32_t fpr_offset = CalculateFprOffset(reg_info); 139 assert(fpr_offset < sizeof m_fpr); 140 uint8_t *src = (uint8_t *)&m_fpr + fpr_offset; 141 switch (reg_info->byte_size) { 142 case 2: 143 reg_value.SetUInt16(*(uint16_t *)src); 144 break; 145 case 4: 146 reg_value.SetUInt32(*(uint32_t *)src); 147 break; 148 case 8: 149 reg_value.SetUInt64(*(uint64_t *)src); 150 break; 151 case 16: 152 reg_value.SetBytes(src, 16, GetByteOrder()); 153 break; 154 default: 155 assert(false && "Unhandled data size."); 156 error.SetErrorStringWithFormat("unhandled byte size: %" PRIu32, 157 reg_info->byte_size); 158 break; 159 } 160 161 return error; 162 } 163 164 Status 165 NativeRegisterContextLinux_arm::WriteRegister(const RegisterInfo *reg_info, 166 const RegisterValue ®_value) { 167 if (!reg_info) 168 return Status("reg_info NULL"); 169 170 const uint32_t reg_index = reg_info->kinds[lldb::eRegisterKindLLDB]; 171 if (reg_index == LLDB_INVALID_REGNUM) 172 return Status("no lldb regnum for %s", reg_info && reg_info->name 173 ? reg_info->name 174 : "<unknown register>"); 175 176 if (IsGPR(reg_index)) 177 return WriteRegisterRaw(reg_index, reg_value); 178 179 if (IsFPR(reg_index)) { 180 // Get pointer to m_fpr variable and set the data to it. 181 uint32_t fpr_offset = CalculateFprOffset(reg_info); 182 assert(fpr_offset < sizeof m_fpr); 183 uint8_t *dst = (uint8_t *)&m_fpr + fpr_offset; 184 switch (reg_info->byte_size) { 185 case 2: 186 *(uint16_t *)dst = reg_value.GetAsUInt16(); 187 break; 188 case 4: 189 *(uint32_t *)dst = reg_value.GetAsUInt32(); 190 break; 191 case 8: 192 *(uint64_t *)dst = reg_value.GetAsUInt64(); 193 break; 194 default: 195 assert(false && "Unhandled data size."); 196 return Status("unhandled register data size %" PRIu32, 197 reg_info->byte_size); 198 } 199 200 Status error = WriteFPR(); 201 if (error.Fail()) 202 return error; 203 204 return Status(); 205 } 206 207 return Status("failed - register wasn't recognized to be a GPR or an FPR, " 208 "write strategy unknown"); 209 } 210 211 Status NativeRegisterContextLinux_arm::ReadAllRegisterValues( 212 lldb::DataBufferSP &data_sp) { 213 Status error; 214 215 data_sp.reset(new DataBufferHeap(REG_CONTEXT_SIZE, 0)); 216 error = ReadGPR(); 217 if (error.Fail()) 218 return error; 219 220 error = ReadFPR(); 221 if (error.Fail()) 222 return error; 223 224 uint8_t *dst = data_sp->GetBytes(); 225 ::memcpy(dst, &m_gpr_arm, GetGPRSize()); 226 dst += GetGPRSize(); 227 ::memcpy(dst, &m_fpr, sizeof(m_fpr)); 228 229 return error; 230 } 231 232 Status NativeRegisterContextLinux_arm::WriteAllRegisterValues( 233 const lldb::DataBufferSP &data_sp) { 234 Status error; 235 236 if (!data_sp) { 237 error.SetErrorStringWithFormat( 238 "NativeRegisterContextLinux_x86_64::%s invalid data_sp provided", 239 __FUNCTION__); 240 return error; 241 } 242 243 if (data_sp->GetByteSize() != REG_CONTEXT_SIZE) { 244 error.SetErrorStringWithFormat( 245 "NativeRegisterContextLinux_x86_64::%s data_sp contained mismatched " 246 "data size, expected %" PRIu64 ", actual %" PRIu64, 247 __FUNCTION__, (uint64_t)REG_CONTEXT_SIZE, data_sp->GetByteSize()); 248 return error; 249 } 250 251 uint8_t *src = data_sp->GetBytes(); 252 if (src == nullptr) { 253 error.SetErrorStringWithFormat("NativeRegisterContextLinux_x86_64::%s " 254 "DataBuffer::GetBytes() returned a null " 255 "pointer", 256 __FUNCTION__); 257 return error; 258 } 259 ::memcpy(&m_gpr_arm, src, GetRegisterInfoInterface().GetGPRSize()); 260 261 error = WriteGPR(); 262 if (error.Fail()) 263 return error; 264 265 src += GetRegisterInfoInterface().GetGPRSize(); 266 ::memcpy(&m_fpr, src, sizeof(m_fpr)); 267 268 error = WriteFPR(); 269 if (error.Fail()) 270 return error; 271 272 return error; 273 } 274 275 bool NativeRegisterContextLinux_arm::IsGPR(unsigned reg) const { 276 if (GetRegisterInfo().GetRegisterSetFromRegisterIndex(reg) == 277 RegisterInfoPOSIX_arm::GPRegSet) 278 return true; 279 return false; 280 } 281 282 bool NativeRegisterContextLinux_arm::IsFPR(unsigned reg) const { 283 if (GetRegisterInfo().GetRegisterSetFromRegisterIndex(reg) == 284 RegisterInfoPOSIX_arm::FPRegSet) 285 return true; 286 return false; 287 } 288 289 uint32_t NativeRegisterContextLinux_arm::NumSupportedHardwareBreakpoints() { 290 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 291 292 LLDB_LOGF(log, "NativeRegisterContextLinux_arm::%s()", __FUNCTION__); 293 294 Status error; 295 296 // Read hardware breakpoint and watchpoint information. 297 error = ReadHardwareDebugInfo(); 298 299 if (error.Fail()) 300 return 0; 301 302 LLDB_LOG(log, "{0}", m_max_hbp_supported); 303 return m_max_hbp_supported; 304 } 305 306 uint32_t 307 NativeRegisterContextLinux_arm::SetHardwareBreakpoint(lldb::addr_t addr, 308 size_t size) { 309 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 310 LLDB_LOG(log, "addr: {0:x}, size: {1:x}", addr, size); 311 312 // Read hardware breakpoint and watchpoint information. 313 Status error = ReadHardwareDebugInfo(); 314 315 if (error.Fail()) 316 return LLDB_INVALID_INDEX32; 317 318 uint32_t control_value = 0, bp_index = 0; 319 320 // Setup address and control values. 321 // Use size to get a hint of arm vs thumb modes. 322 switch (size) { 323 case 2: 324 control_value = (0x3 << 5) | 7; 325 addr &= ~1; 326 break; 327 case 4: 328 control_value = (0xfu << 5) | 7; 329 addr &= ~3; 330 break; 331 default: 332 return LLDB_INVALID_INDEX32; 333 } 334 335 // Iterate over stored breakpoints and find a free bp_index 336 bp_index = LLDB_INVALID_INDEX32; 337 for (uint32_t i = 0; i < m_max_hbp_supported; i++) { 338 if ((m_hbr_regs[i].control & 1) == 0) { 339 bp_index = i; // Mark last free slot 340 } else if (m_hbr_regs[i].address == addr) { 341 return LLDB_INVALID_INDEX32; // We do not support duplicate breakpoints. 342 } 343 } 344 345 if (bp_index == LLDB_INVALID_INDEX32) 346 return LLDB_INVALID_INDEX32; 347 348 // Update breakpoint in local cache 349 m_hbr_regs[bp_index].real_addr = addr; 350 m_hbr_regs[bp_index].address = addr; 351 m_hbr_regs[bp_index].control = control_value; 352 353 // PTRACE call to set corresponding hardware breakpoint register. 354 error = WriteHardwareDebugRegs(eDREGTypeBREAK, bp_index); 355 356 if (error.Fail()) { 357 m_hbr_regs[bp_index].address = 0; 358 m_hbr_regs[bp_index].control &= ~1; 359 360 return LLDB_INVALID_INDEX32; 361 } 362 363 return bp_index; 364 } 365 366 bool NativeRegisterContextLinux_arm::ClearHardwareBreakpoint(uint32_t hw_idx) { 367 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 368 LLDB_LOG(log, "hw_idx: {0}", hw_idx); 369 370 // Read hardware breakpoint and watchpoint information. 371 Status error = ReadHardwareDebugInfo(); 372 373 if (error.Fail()) 374 return false; 375 376 if (hw_idx >= m_max_hbp_supported) 377 return false; 378 379 // Create a backup we can revert to in case of failure. 380 lldb::addr_t tempAddr = m_hbr_regs[hw_idx].address; 381 uint32_t tempControl = m_hbr_regs[hw_idx].control; 382 383 m_hbr_regs[hw_idx].control &= ~1; 384 m_hbr_regs[hw_idx].address = 0; 385 386 // PTRACE call to clear corresponding hardware breakpoint register. 387 error = WriteHardwareDebugRegs(eDREGTypeBREAK, hw_idx); 388 389 if (error.Fail()) { 390 m_hbr_regs[hw_idx].control = tempControl; 391 m_hbr_regs[hw_idx].address = tempAddr; 392 393 return false; 394 } 395 396 return true; 397 } 398 399 Status NativeRegisterContextLinux_arm::GetHardwareBreakHitIndex( 400 uint32_t &bp_index, lldb::addr_t trap_addr) { 401 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 402 403 LLDB_LOGF(log, "NativeRegisterContextLinux_arm64::%s()", __FUNCTION__); 404 405 lldb::addr_t break_addr; 406 407 for (bp_index = 0; bp_index < m_max_hbp_supported; ++bp_index) { 408 break_addr = m_hbr_regs[bp_index].address; 409 410 if ((m_hbr_regs[bp_index].control & 0x1) && (trap_addr == break_addr)) { 411 m_hbr_regs[bp_index].hit_addr = trap_addr; 412 return Status(); 413 } 414 } 415 416 bp_index = LLDB_INVALID_INDEX32; 417 return Status(); 418 } 419 420 Status NativeRegisterContextLinux_arm::ClearAllHardwareBreakpoints() { 421 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 422 423 LLDB_LOGF(log, "NativeRegisterContextLinux_arm::%s()", __FUNCTION__); 424 425 Status error; 426 427 // Read hardware breakpoint and watchpoint information. 428 error = ReadHardwareDebugInfo(); 429 430 if (error.Fail()) 431 return error; 432 433 lldb::addr_t tempAddr = 0; 434 uint32_t tempControl = 0; 435 436 for (uint32_t i = 0; i < m_max_hbp_supported; i++) { 437 if (m_hbr_regs[i].control & 0x01) { 438 // Create a backup we can revert to in case of failure. 439 tempAddr = m_hbr_regs[i].address; 440 tempControl = m_hbr_regs[i].control; 441 442 // Clear breakpoints in local cache 443 m_hbr_regs[i].control &= ~1; 444 m_hbr_regs[i].address = 0; 445 446 // Ptrace call to update hardware debug registers 447 error = WriteHardwareDebugRegs(eDREGTypeBREAK, i); 448 449 if (error.Fail()) { 450 m_hbr_regs[i].control = tempControl; 451 m_hbr_regs[i].address = tempAddr; 452 453 return error; 454 } 455 } 456 } 457 458 return Status(); 459 } 460 461 uint32_t NativeRegisterContextLinux_arm::NumSupportedHardwareWatchpoints() { 462 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 463 464 // Read hardware breakpoint and watchpoint information. 465 Status error = ReadHardwareDebugInfo(); 466 467 if (error.Fail()) 468 return 0; 469 470 LLDB_LOG(log, "{0}", m_max_hwp_supported); 471 return m_max_hwp_supported; 472 } 473 474 uint32_t NativeRegisterContextLinux_arm::SetHardwareWatchpoint( 475 lldb::addr_t addr, size_t size, uint32_t watch_flags) { 476 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 477 LLDB_LOG(log, "addr: {0:x}, size: {1:x} watch_flags: {2:x}", addr, size, 478 watch_flags); 479 480 // Read hardware breakpoint and watchpoint information. 481 Status error = ReadHardwareDebugInfo(); 482 483 if (error.Fail()) 484 return LLDB_INVALID_INDEX32; 485 486 uint32_t control_value = 0, wp_index = 0, addr_word_offset = 0, byte_mask = 0; 487 lldb::addr_t real_addr = addr; 488 489 // Check if we are setting watchpoint other than read/write/access Also 490 // update watchpoint flag to match Arm write-read bit configuration. 491 switch (watch_flags) { 492 case 1: 493 watch_flags = 2; 494 break; 495 case 2: 496 watch_flags = 1; 497 break; 498 case 3: 499 break; 500 default: 501 return LLDB_INVALID_INDEX32; 502 } 503 504 // Can't watch zero bytes 505 // Can't watch more than 4 bytes per WVR/WCR pair 506 507 if (size == 0 || size > 4) 508 return LLDB_INVALID_INDEX32; 509 510 // Check 4-byte alignment for hardware watchpoint target address. Below is a 511 // hack to recalculate address and size in order to make sure we can watch 512 // non 4-byte aligned addresses as well. 513 if (addr & 0x03) { 514 uint8_t watch_mask = (addr & 0x03) + size; 515 516 if (watch_mask > 0x04) 517 return LLDB_INVALID_INDEX32; 518 else if (watch_mask <= 0x02) 519 size = 2; 520 else if (watch_mask <= 0x04) 521 size = 4; 522 523 addr = addr & (~0x03); 524 } 525 526 // We can only watch up to four bytes that follow a 4 byte aligned address 527 // per watchpoint register pair, so make sure we can properly encode this. 528 addr_word_offset = addr % 4; 529 byte_mask = ((1u << size) - 1u) << addr_word_offset; 530 531 // Check if we need multiple watchpoint register 532 if (byte_mask > 0xfu) 533 return LLDB_INVALID_INDEX32; 534 535 // Setup control value 536 // Make the byte_mask into a valid Byte Address Select mask 537 control_value = byte_mask << 5; 538 539 // Turn on appropriate watchpoint flags read or write 540 control_value |= (watch_flags << 3); 541 542 // Enable this watchpoint and make it stop in privileged or user mode; 543 control_value |= 7; 544 545 // Make sure bits 1:0 are clear in our address 546 addr &= ~((lldb::addr_t)3); 547 548 // Iterate over stored watchpoints and find a free wp_index 549 wp_index = LLDB_INVALID_INDEX32; 550 for (uint32_t i = 0; i < m_max_hwp_supported; i++) { 551 if ((m_hwp_regs[i].control & 1) == 0) { 552 wp_index = i; // Mark last free slot 553 } else if (m_hwp_regs[i].address == addr) { 554 return LLDB_INVALID_INDEX32; // We do not support duplicate watchpoints. 555 } 556 } 557 558 if (wp_index == LLDB_INVALID_INDEX32) 559 return LLDB_INVALID_INDEX32; 560 561 // Update watchpoint in local cache 562 m_hwp_regs[wp_index].real_addr = real_addr; 563 m_hwp_regs[wp_index].address = addr; 564 m_hwp_regs[wp_index].control = control_value; 565 566 // PTRACE call to set corresponding watchpoint register. 567 error = WriteHardwareDebugRegs(eDREGTypeWATCH, wp_index); 568 569 if (error.Fail()) { 570 m_hwp_regs[wp_index].address = 0; 571 m_hwp_regs[wp_index].control &= ~1; 572 573 return LLDB_INVALID_INDEX32; 574 } 575 576 return wp_index; 577 } 578 579 bool NativeRegisterContextLinux_arm::ClearHardwareWatchpoint( 580 uint32_t wp_index) { 581 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 582 LLDB_LOG(log, "wp_index: {0}", wp_index); 583 584 // Read hardware breakpoint and watchpoint information. 585 Status error = ReadHardwareDebugInfo(); 586 587 if (error.Fail()) 588 return false; 589 590 if (wp_index >= m_max_hwp_supported) 591 return false; 592 593 // Create a backup we can revert to in case of failure. 594 lldb::addr_t tempAddr = m_hwp_regs[wp_index].address; 595 uint32_t tempControl = m_hwp_regs[wp_index].control; 596 597 // Update watchpoint in local cache 598 m_hwp_regs[wp_index].control &= ~1; 599 m_hwp_regs[wp_index].address = 0; 600 601 // Ptrace call to update hardware debug registers 602 error = WriteHardwareDebugRegs(eDREGTypeWATCH, wp_index); 603 604 if (error.Fail()) { 605 m_hwp_regs[wp_index].control = tempControl; 606 m_hwp_regs[wp_index].address = tempAddr; 607 608 return false; 609 } 610 611 return true; 612 } 613 614 Status NativeRegisterContextLinux_arm::ClearAllHardwareWatchpoints() { 615 // Read hardware breakpoint and watchpoint information. 616 Status error = ReadHardwareDebugInfo(); 617 618 if (error.Fail()) 619 return error; 620 621 lldb::addr_t tempAddr = 0; 622 uint32_t tempControl = 0; 623 624 for (uint32_t i = 0; i < m_max_hwp_supported; i++) { 625 if (m_hwp_regs[i].control & 0x01) { 626 // Create a backup we can revert to in case of failure. 627 tempAddr = m_hwp_regs[i].address; 628 tempControl = m_hwp_regs[i].control; 629 630 // Clear watchpoints in local cache 631 m_hwp_regs[i].control &= ~1; 632 m_hwp_regs[i].address = 0; 633 634 // Ptrace call to update hardware debug registers 635 error = WriteHardwareDebugRegs(eDREGTypeWATCH, i); 636 637 if (error.Fail()) { 638 m_hwp_regs[i].control = tempControl; 639 m_hwp_regs[i].address = tempAddr; 640 641 return error; 642 } 643 } 644 } 645 646 return Status(); 647 } 648 649 uint32_t NativeRegisterContextLinux_arm::GetWatchpointSize(uint32_t wp_index) { 650 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 651 LLDB_LOG(log, "wp_index: {0}", wp_index); 652 653 switch ((m_hwp_regs[wp_index].control >> 5) & 0x0f) { 654 case 0x01: 655 return 1; 656 case 0x03: 657 return 2; 658 case 0x07: 659 return 3; 660 case 0x0f: 661 return 4; 662 default: 663 return 0; 664 } 665 } 666 bool NativeRegisterContextLinux_arm::WatchpointIsEnabled(uint32_t wp_index) { 667 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 668 LLDB_LOG(log, "wp_index: {0}", wp_index); 669 670 if ((m_hwp_regs[wp_index].control & 0x1) == 0x1) 671 return true; 672 else 673 return false; 674 } 675 676 Status 677 NativeRegisterContextLinux_arm::GetWatchpointHitIndex(uint32_t &wp_index, 678 lldb::addr_t trap_addr) { 679 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 680 LLDB_LOG(log, "wp_index: {0}, trap_addr: {1:x}", wp_index, trap_addr); 681 682 uint32_t watch_size; 683 lldb::addr_t watch_addr; 684 685 for (wp_index = 0; wp_index < m_max_hwp_supported; ++wp_index) { 686 watch_size = GetWatchpointSize(wp_index); 687 watch_addr = m_hwp_regs[wp_index].address; 688 689 if (WatchpointIsEnabled(wp_index) && trap_addr >= watch_addr && 690 trap_addr < watch_addr + watch_size) { 691 m_hwp_regs[wp_index].hit_addr = trap_addr; 692 return Status(); 693 } 694 } 695 696 wp_index = LLDB_INVALID_INDEX32; 697 return Status(); 698 } 699 700 lldb::addr_t 701 NativeRegisterContextLinux_arm::GetWatchpointAddress(uint32_t wp_index) { 702 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 703 LLDB_LOG(log, "wp_index: {0}", wp_index); 704 705 if (wp_index >= m_max_hwp_supported) 706 return LLDB_INVALID_ADDRESS; 707 708 if (WatchpointIsEnabled(wp_index)) 709 return m_hwp_regs[wp_index].real_addr; 710 else 711 return LLDB_INVALID_ADDRESS; 712 } 713 714 lldb::addr_t 715 NativeRegisterContextLinux_arm::GetWatchpointHitAddress(uint32_t wp_index) { 716 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS)); 717 LLDB_LOG(log, "wp_index: {0}", wp_index); 718 719 if (wp_index >= m_max_hwp_supported) 720 return LLDB_INVALID_ADDRESS; 721 722 if (WatchpointIsEnabled(wp_index)) 723 return m_hwp_regs[wp_index].hit_addr; 724 else 725 return LLDB_INVALID_ADDRESS; 726 } 727 728 Status NativeRegisterContextLinux_arm::ReadHardwareDebugInfo() { 729 Status error; 730 731 if (!m_refresh_hwdebug_info) { 732 return Status(); 733 } 734 735 unsigned int cap_val; 736 737 error = NativeProcessLinux::PtraceWrapper(PTRACE_GETHBPREGS, m_thread.GetID(), 738 nullptr, &cap_val, 739 sizeof(unsigned int)); 740 741 if (error.Fail()) 742 return error; 743 744 m_max_hwp_supported = (cap_val >> 8) & 0xff; 745 m_max_hbp_supported = cap_val & 0xff; 746 m_refresh_hwdebug_info = false; 747 748 return error; 749 } 750 751 Status NativeRegisterContextLinux_arm::WriteHardwareDebugRegs(int hwbType, 752 int hwb_index) { 753 Status error; 754 755 lldb::addr_t *addr_buf; 756 uint32_t *ctrl_buf; 757 758 if (hwbType == eDREGTypeWATCH) { 759 addr_buf = &m_hwp_regs[hwb_index].address; 760 ctrl_buf = &m_hwp_regs[hwb_index].control; 761 762 error = NativeProcessLinux::PtraceWrapper( 763 PTRACE_SETHBPREGS, m_thread.GetID(), 764 (PTRACE_TYPE_ARG3)(intptr_t) - ((hwb_index << 1) + 1), addr_buf, 765 sizeof(unsigned int)); 766 767 if (error.Fail()) 768 return error; 769 770 error = NativeProcessLinux::PtraceWrapper( 771 PTRACE_SETHBPREGS, m_thread.GetID(), 772 (PTRACE_TYPE_ARG3)(intptr_t) - ((hwb_index << 1) + 2), ctrl_buf, 773 sizeof(unsigned int)); 774 } else { 775 addr_buf = &m_hbr_regs[hwb_index].address; 776 ctrl_buf = &m_hbr_regs[hwb_index].control; 777 778 error = NativeProcessLinux::PtraceWrapper( 779 PTRACE_SETHBPREGS, m_thread.GetID(), 780 (PTRACE_TYPE_ARG3)(intptr_t)((hwb_index << 1) + 1), addr_buf, 781 sizeof(unsigned int)); 782 783 if (error.Fail()) 784 return error; 785 786 error = NativeProcessLinux::PtraceWrapper( 787 PTRACE_SETHBPREGS, m_thread.GetID(), 788 (PTRACE_TYPE_ARG3)(intptr_t)((hwb_index << 1) + 2), ctrl_buf, 789 sizeof(unsigned int)); 790 } 791 792 return error; 793 } 794 795 uint32_t NativeRegisterContextLinux_arm::CalculateFprOffset( 796 const RegisterInfo *reg_info) const { 797 return reg_info->byte_offset - GetGPRSize(); 798 } 799 800 Status NativeRegisterContextLinux_arm::DoReadRegisterValue( 801 uint32_t offset, const char *reg_name, uint32_t size, 802 RegisterValue &value) { 803 // PTRACE_PEEKUSER don't work in the aarch64 linux kernel used on android 804 // devices (always return "Bad address"). To avoid using PTRACE_PEEKUSER we 805 // read out the full GPR register set instead. This approach is about 4 times 806 // slower but the performance overhead is negligible in comparison to 807 // processing time in lldb-server. 808 assert(offset % 4 == 0 && "Try to write a register with unaligned offset"); 809 if (offset + sizeof(uint32_t) > sizeof(m_gpr_arm)) 810 return Status("Register isn't fit into the size of the GPR area"); 811 812 Status error = ReadGPR(); 813 if (error.Fail()) 814 return error; 815 816 value.SetUInt32(m_gpr_arm[offset / sizeof(uint32_t)]); 817 return Status(); 818 } 819 820 Status NativeRegisterContextLinux_arm::DoWriteRegisterValue( 821 uint32_t offset, const char *reg_name, const RegisterValue &value) { 822 // PTRACE_POKEUSER don't work in the aarch64 linux kernel used on android 823 // devices (always return "Bad address"). To avoid using PTRACE_POKEUSER we 824 // read out the full GPR register set, modify the requested register and 825 // write it back. This approach is about 4 times slower but the performance 826 // overhead is negligible in comparison to processing time in lldb-server. 827 assert(offset % 4 == 0 && "Try to write a register with unaligned offset"); 828 if (offset + sizeof(uint32_t) > sizeof(m_gpr_arm)) 829 return Status("Register isn't fit into the size of the GPR area"); 830 831 Status error = ReadGPR(); 832 if (error.Fail()) 833 return error; 834 835 uint32_t reg_value = value.GetAsUInt32(); 836 // As precaution for an undefined behavior encountered while setting PC we 837 // will clear thumb bit of new PC if we are already in thumb mode; that is 838 // CPSR thumb mode bit is set. 839 if (offset / sizeof(uint32_t) == gpr_pc_arm) { 840 // Check if we are already in thumb mode and thumb bit of current PC is 841 // read out to be zero and thumb bit of next PC is read out to be one. 842 if ((m_gpr_arm[gpr_cpsr_arm] & 0x20) && !(m_gpr_arm[gpr_pc_arm] & 0x01) && 843 (value.GetAsUInt32() & 0x01)) { 844 reg_value &= (~1ull); 845 } 846 } 847 848 m_gpr_arm[offset / sizeof(uint32_t)] = reg_value; 849 return WriteGPR(); 850 } 851 852 Status NativeRegisterContextLinux_arm::ReadGPR() { 853 #ifdef __arm__ 854 return NativeRegisterContextLinux::ReadGPR(); 855 #else // __aarch64__ 856 struct iovec ioVec; 857 ioVec.iov_base = GetGPRBuffer(); 858 ioVec.iov_len = GetGPRSize(); 859 860 return ReadRegisterSet(&ioVec, GetGPRSize(), NT_PRSTATUS); 861 #endif // __arm__ 862 } 863 864 Status NativeRegisterContextLinux_arm::WriteGPR() { 865 #ifdef __arm__ 866 return NativeRegisterContextLinux::WriteGPR(); 867 #else // __aarch64__ 868 struct iovec ioVec; 869 ioVec.iov_base = GetGPRBuffer(); 870 ioVec.iov_len = GetGPRSize(); 871 872 return WriteRegisterSet(&ioVec, GetGPRSize(), NT_PRSTATUS); 873 #endif // __arm__ 874 } 875 876 Status NativeRegisterContextLinux_arm::ReadFPR() { 877 #ifdef __arm__ 878 return NativeProcessLinux::PtraceWrapper(PTRACE_GETVFPREGS, m_thread.GetID(), 879 nullptr, GetFPRBuffer(), 880 GetFPRSize()); 881 #else // __aarch64__ 882 struct iovec ioVec; 883 ioVec.iov_base = GetFPRBuffer(); 884 ioVec.iov_len = GetFPRSize(); 885 886 return ReadRegisterSet(&ioVec, GetFPRSize(), NT_ARM_VFP); 887 #endif // __arm__ 888 } 889 890 Status NativeRegisterContextLinux_arm::WriteFPR() { 891 #ifdef __arm__ 892 return NativeProcessLinux::PtraceWrapper(PTRACE_SETVFPREGS, m_thread.GetID(), 893 nullptr, GetFPRBuffer(), 894 GetFPRSize()); 895 #else // __aarch64__ 896 struct iovec ioVec; 897 ioVec.iov_base = GetFPRBuffer(); 898 ioVec.iov_len = GetFPRSize(); 899 900 return WriteRegisterSet(&ioVec, GetFPRSize(), NT_ARM_VFP); 901 #endif // __arm__ 902 } 903 904 #endif // defined(__arm__) || defined(__arm64__) || defined(__aarch64__) 905