1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "NativeProcessLinux.h"
11 
12 // C Includes
13 #include <errno.h>
14 #include <semaphore.h>
15 #include <string.h>
16 #include <stdint.h>
17 #include <unistd.h>
18 
19 // C++ Includes
20 #include <fstream>
21 #include <mutex>
22 #include <sstream>
23 #include <string>
24 #include <unordered_map>
25 
26 // Other libraries and framework includes
27 #include "lldb/Core/EmulateInstruction.h"
28 #include "lldb/Core/Error.h"
29 #include "lldb/Core/Module.h"
30 #include "lldb/Core/ModuleSpec.h"
31 #include "lldb/Core/RegisterValue.h"
32 #include "lldb/Core/State.h"
33 #include "lldb/Host/common/NativeBreakpoint.h"
34 #include "lldb/Host/common/NativeRegisterContext.h"
35 #include "lldb/Host/Host.h"
36 #include "lldb/Host/ThreadLauncher.h"
37 #include "lldb/Target/Platform.h"
38 #include "lldb/Target/Process.h"
39 #include "lldb/Target/ProcessLaunchInfo.h"
40 #include "lldb/Target/Target.h"
41 #include "lldb/Utility/LLDBAssert.h"
42 #include "lldb/Utility/PseudoTerminal.h"
43 
44 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
45 #include "Plugins/Process/Utility/LinuxSignals.h"
46 #include "Utility/StringExtractor.h"
47 #include "NativeThreadLinux.h"
48 #include "ProcFileReader.h"
49 #include "Procfs.h"
50 
51 // System includes - They have to be included after framework includes because they define some
52 // macros which collide with variable names in other modules
53 #include <linux/unistd.h>
54 #include <sys/socket.h>
55 
56 #include <sys/syscall.h>
57 #include <sys/types.h>
58 #include <sys/user.h>
59 #include <sys/wait.h>
60 
61 #include "lldb/Host/linux/Personality.h"
62 #include "lldb/Host/linux/Ptrace.h"
63 #include "lldb/Host/linux/Signalfd.h"
64 #include "lldb/Host/linux/Uio.h"
65 #include "lldb/Host/android/Android.h"
66 
67 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS  0xffffffff
68 
69 // Support hardware breakpoints in case it has not been defined
70 #ifndef TRAP_HWBKPT
71   #define TRAP_HWBKPT 4
72 #endif
73 
74 using namespace lldb;
75 using namespace lldb_private;
76 using namespace lldb_private::process_linux;
77 using namespace llvm;
78 
79 // Private bits we only need internally.
80 
81 static bool ProcessVmReadvSupported()
82 {
83     static bool is_supported;
84     static std::once_flag flag;
85 
86     std::call_once(flag, [] {
87         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
88 
89         uint32_t source = 0x47424742;
90         uint32_t dest = 0;
91 
92         struct iovec local, remote;
93         remote.iov_base = &source;
94         local.iov_base = &dest;
95         remote.iov_len = local.iov_len = sizeof source;
96 
97         // We shall try if cross-process-memory reads work by attempting to read a value from our own process.
98         ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
99         is_supported = (res == sizeof(source) && source == dest);
100         if (log)
101         {
102             if (is_supported)
103                 log->Printf("%s: Detected kernel support for process_vm_readv syscall. Fast memory reads enabled.",
104                         __FUNCTION__);
105             else
106                 log->Printf("%s: syscall process_vm_readv failed (error: %s). Fast memory reads disabled.",
107                         __FUNCTION__, strerror(errno));
108         }
109     });
110 
111     return is_supported;
112 }
113 
114 namespace
115 {
116     const UnixSignals&
117     GetUnixSignals ()
118     {
119         static process_linux::LinuxSignals signals;
120         return signals;
121     }
122 
123     Error
124     ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch)
125     {
126         // Grab process info for the running process.
127         ProcessInstanceInfo process_info;
128         if (!platform.GetProcessInfo (pid, process_info))
129             return Error("failed to get process info");
130 
131         // Resolve the executable module.
132         ModuleSP exe_module_sp;
133         ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
134         FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ());
135         Error error = platform.ResolveExecutable(
136             exe_module_spec,
137             exe_module_sp,
138             executable_search_paths.GetSize () ? &executable_search_paths : NULL);
139 
140         if (!error.Success ())
141             return error;
142 
143         // Check if we've got our architecture from the exe_module.
144         arch = exe_module_sp->GetArchitecture ();
145         if (arch.IsValid ())
146             return Error();
147         else
148             return Error("failed to retrieve a valid architecture from the exe module");
149     }
150 
151     void
152     DisplayBytes (StreamString &s, void *bytes, uint32_t count)
153     {
154         uint8_t *ptr = (uint8_t *)bytes;
155         const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
156         for(uint32_t i=0; i<loop_count; i++)
157         {
158             s.Printf ("[%x]", *ptr);
159             ptr++;
160         }
161     }
162 
163     void
164     PtraceDisplayBytes(int &req, void *data, size_t data_size)
165     {
166         StreamString buf;
167         Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
168                     POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
169 
170         if (verbose_log)
171         {
172             switch(req)
173             {
174             case PTRACE_POKETEXT:
175             {
176                 DisplayBytes(buf, &data, 8);
177                 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
178                 break;
179             }
180             case PTRACE_POKEDATA:
181             {
182                 DisplayBytes(buf, &data, 8);
183                 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
184                 break;
185             }
186             case PTRACE_POKEUSER:
187             {
188                 DisplayBytes(buf, &data, 8);
189                 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
190                 break;
191             }
192             case PTRACE_SETREGS:
193             {
194                 DisplayBytes(buf, data, data_size);
195                 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
196                 break;
197             }
198             case PTRACE_SETFPREGS:
199             {
200                 DisplayBytes(buf, data, data_size);
201                 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
202                 break;
203             }
204             case PTRACE_SETSIGINFO:
205             {
206                 DisplayBytes(buf, data, sizeof(siginfo_t));
207                 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
208                 break;
209             }
210             case PTRACE_SETREGSET:
211             {
212                 // Extract iov_base from data, which is a pointer to the struct IOVEC
213                 DisplayBytes(buf, *(void **)data, data_size);
214                 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
215                 break;
216             }
217             default:
218             {
219             }
220             }
221         }
222     }
223 
224     //------------------------------------------------------------------------------
225     // Static implementations of NativeProcessLinux::ReadMemory and
226     // NativeProcessLinux::WriteMemory.  This enables mutual recursion between these
227     // functions without needed to go thru the thread funnel.
228 
229     Error
230     DoReadMemory(
231         lldb::pid_t pid,
232         lldb::addr_t vm_addr,
233         void *buf,
234         size_t size,
235         size_t &bytes_read)
236     {
237         // ptrace word size is determined by the host, not the child
238         static const unsigned word_size = sizeof(void*);
239         unsigned char *dst = static_cast<unsigned char*>(buf);
240         size_t remainder;
241         long data;
242 
243         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
244         if (log)
245             ProcessPOSIXLog::IncNestLevel();
246         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
247             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__,
248                     pid, word_size, (void*)vm_addr, buf, size);
249 
250         assert(sizeof(data) >= word_size);
251         for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
252         {
253             Error error = NativeProcessLinux::PtraceWrapper(PTRACE_PEEKDATA, pid, (void*)vm_addr, nullptr, 0, &data);
254             if (error.Fail())
255             {
256                 if (log)
257                     ProcessPOSIXLog::DecNestLevel();
258                 return error;
259             }
260 
261             remainder = size - bytes_read;
262             remainder = remainder > word_size ? word_size : remainder;
263 
264             // Copy the data into our buffer
265             for (unsigned i = 0; i < remainder; ++i)
266                 dst[i] = ((data >> i*8) & 0xFF);
267 
268             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
269                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
270                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
271                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
272             {
273                 uintptr_t print_dst = 0;
274                 // Format bytes from data by moving into print_dst for log output
275                 for (unsigned i = 0; i < remainder; ++i)
276                     print_dst |= (((data >> i*8) & 0xFF) << i*8);
277                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
278                         (void*)vm_addr, print_dst, (unsigned long)data);
279             }
280             vm_addr += word_size;
281             dst += word_size;
282         }
283 
284         if (log)
285             ProcessPOSIXLog::DecNestLevel();
286         return Error();
287     }
288 
289     Error
290     DoWriteMemory(
291         lldb::pid_t pid,
292         lldb::addr_t vm_addr,
293         const void *buf,
294         size_t size,
295         size_t &bytes_written)
296     {
297         // ptrace word size is determined by the host, not the child
298         static const unsigned word_size = sizeof(void*);
299         const unsigned char *src = static_cast<const unsigned char*>(buf);
300         size_t remainder;
301         Error error;
302 
303         Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
304         if (log)
305             ProcessPOSIXLog::IncNestLevel();
306         if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
307             log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__,
308                     pid, word_size, (void*)vm_addr, buf, size);
309 
310         for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
311         {
312             remainder = size - bytes_written;
313             remainder = remainder > word_size ? word_size : remainder;
314 
315             if (remainder == word_size)
316             {
317                 unsigned long data = 0;
318                 assert(sizeof(data) >= word_size);
319                 for (unsigned i = 0; i < word_size; ++i)
320                     data |= (unsigned long)src[i] << i*8;
321 
322                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
323                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
324                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
325                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
326                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
327                             (void*)vm_addr, *(const unsigned long*)src, data);
328 
329                 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data);
330                 if (error.Fail())
331                 {
332                     if (log)
333                         ProcessPOSIXLog::DecNestLevel();
334                     return error;
335                 }
336             }
337             else
338             {
339                 unsigned char buff[8];
340                 size_t bytes_read;
341                 error = DoReadMemory(pid, vm_addr, buff, word_size, bytes_read);
342                 if (error.Fail())
343                 {
344                     if (log)
345                         ProcessPOSIXLog::DecNestLevel();
346                     return error;
347                 }
348 
349                 memcpy(buff, src, remainder);
350 
351                 size_t bytes_written_rec;
352                 error = DoWriteMemory(pid, vm_addr, buff, word_size, bytes_written_rec);
353                 if (error.Fail())
354                 {
355                     if (log)
356                         ProcessPOSIXLog::DecNestLevel();
357                     return error;
358                 }
359 
360                 if (log && ProcessPOSIXLog::AtTopNestLevel() &&
361                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
362                                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
363                                         size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
364                     log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
365                             (void*)vm_addr, *(const unsigned long*)src, *(unsigned long*)buff);
366             }
367 
368             vm_addr += word_size;
369             src += word_size;
370         }
371         if (log)
372             ProcessPOSIXLog::DecNestLevel();
373         return error;
374     }
375 } // end of anonymous namespace
376 
377 // Simple helper function to ensure flags are enabled on the given file
378 // descriptor.
379 static Error
380 EnsureFDFlags(int fd, int flags)
381 {
382     Error error;
383 
384     int status = fcntl(fd, F_GETFL);
385     if (status == -1)
386     {
387         error.SetErrorToErrno();
388         return error;
389     }
390 
391     if (fcntl(fd, F_SETFL, status | flags) == -1)
392     {
393         error.SetErrorToErrno();
394         return error;
395     }
396 
397     return error;
398 }
399 
400 // This class encapsulates the privileged thread which performs all ptrace and wait operations on
401 // the inferior. The thread consists of a main loop which waits for events and processes them
402 //   - SIGCHLD (delivered over a signalfd file descriptor): These signals notify us of events in
403 //     the inferior process. Upon receiving this signal we do a waitpid to get more information
404 //     and dispatch to NativeProcessLinux::MonitorCallback.
405 //   - requests for ptrace operations: These initiated via the DoOperation method, which funnels
406 //     them to the Monitor thread via m_operation member. The Monitor thread is signaled over a
407 //     pipe, and the completion of the operation is signalled over the semaphore.
408 //   - thread exit event: this is signaled from the Monitor destructor by closing the write end
409 //     of the command pipe.
410 class NativeProcessLinux::Monitor
411 {
412 private:
413     // The initial monitor operation (launch or attach). It returns a inferior process id.
414     std::unique_ptr<InitialOperation> m_initial_operation_up;
415 
416     ::pid_t                           m_child_pid = -1;
417     NativeProcessLinux              * m_native_process;
418 
419     enum { READ, WRITE };
420     int        m_pipefd[2] = {-1, -1};
421     int        m_signal_fd = -1;
422     HostThread m_thread;
423 
424     // current operation which must be executed on the priviliged thread
425     Mutex            m_operation_mutex;
426     const Operation *m_operation = nullptr;
427     sem_t            m_operation_sem;
428     Error            m_operation_error;
429 
430     unsigned   m_operation_nesting_level = 0;
431 
432     static constexpr char operation_command   = 'o';
433     static constexpr char begin_block_command = '{';
434     static constexpr char end_block_command   = '}';
435 
436     void
437     HandleSignals();
438 
439     void
440     HandleWait();
441 
442     // Returns true if the thread should exit.
443     bool
444     HandleCommands();
445 
446     void
447     MainLoop();
448 
449     static void *
450     RunMonitor(void *arg);
451 
452     Error
453     WaitForAck();
454 
455     void
456     BeginOperationBlock()
457     {
458         write(m_pipefd[WRITE], &begin_block_command, sizeof operation_command);
459         WaitForAck();
460     }
461 
462     void
463     EndOperationBlock()
464     {
465         write(m_pipefd[WRITE], &end_block_command, sizeof operation_command);
466         WaitForAck();
467     }
468 
469 public:
470     Monitor(const InitialOperation &initial_operation,
471             NativeProcessLinux *native_process)
472         : m_initial_operation_up(new InitialOperation(initial_operation)),
473           m_native_process(native_process)
474     {
475         sem_init(&m_operation_sem, 0, 0);
476     }
477 
478     ~Monitor();
479 
480     Error
481     Initialize();
482 
483     void
484     Terminate();
485 
486     Error
487     DoOperation(const Operation &op);
488 
489     class ScopedOperationLock {
490         Monitor &m_monitor;
491 
492     public:
493         ScopedOperationLock(Monitor &monitor)
494             : m_monitor(monitor)
495         { m_monitor.BeginOperationBlock(); }
496 
497         ~ScopedOperationLock()
498         { m_monitor.EndOperationBlock(); }
499     };
500 };
501 constexpr char NativeProcessLinux::Monitor::operation_command;
502 constexpr char NativeProcessLinux::Monitor::begin_block_command;
503 constexpr char NativeProcessLinux::Monitor::end_block_command;
504 
505 Error
506 NativeProcessLinux::Monitor::Initialize()
507 {
508     Error error;
509 
510     // We get a SIGCHLD every time something interesting happens with the inferior. We shall be
511     // listening for these signals over a signalfd file descriptors. This allows us to wait for
512     // multiple kinds of events with select.
513     sigset_t signals;
514     sigemptyset(&signals);
515     sigaddset(&signals, SIGCHLD);
516     m_signal_fd = signalfd(-1, &signals, SFD_NONBLOCK | SFD_CLOEXEC);
517     if (m_signal_fd < 0)
518     {
519         return Error("NativeProcessLinux::Monitor::%s failed due to signalfd failure. Monitoring the inferior will be impossible: %s",
520                     __FUNCTION__, strerror(errno));
521 
522     }
523 
524     if (pipe2(m_pipefd, O_CLOEXEC) == -1)
525     {
526         error.SetErrorToErrno();
527         return error;
528     }
529 
530     if ((error = EnsureFDFlags(m_pipefd[READ], O_NONBLOCK)).Fail()) {
531         return error;
532     }
533 
534     static const char g_thread_name[] = "lldb.process.nativelinux.monitor";
535     m_thread = ThreadLauncher::LaunchThread(g_thread_name, Monitor::RunMonitor, this, nullptr);
536     if (!m_thread.IsJoinable())
537         return Error("Failed to create monitor thread for NativeProcessLinux.");
538 
539     // Wait for initial operation to complete.
540     return WaitForAck();
541 }
542 
543 Error
544 NativeProcessLinux::Monitor::DoOperation(const Operation &op)
545 {
546     if (m_thread.EqualsThread(pthread_self())) {
547         // If we're on the Monitor thread, we can simply execute the operation.
548         return op();
549     }
550 
551     // Otherwise we need to pass the operation to the Monitor thread so it can handle it.
552     Mutex::Locker lock(m_operation_mutex);
553 
554     m_operation = &op;
555 
556     // notify the thread that an operation is ready to be processed
557     write(m_pipefd[WRITE], &operation_command, sizeof operation_command);
558 
559     return WaitForAck();
560 }
561 
562 void
563 NativeProcessLinux::Monitor::Terminate()
564 {
565     if (m_pipefd[WRITE] >= 0)
566     {
567         close(m_pipefd[WRITE]);
568         m_pipefd[WRITE] = -1;
569     }
570     if (m_thread.IsJoinable())
571         m_thread.Join(nullptr);
572 }
573 
574 NativeProcessLinux::Monitor::~Monitor()
575 {
576     Terminate();
577     if (m_pipefd[READ] >= 0)
578         close(m_pipefd[READ]);
579     if (m_signal_fd >= 0)
580         close(m_signal_fd);
581     sem_destroy(&m_operation_sem);
582 }
583 
584 void
585 NativeProcessLinux::Monitor::HandleSignals()
586 {
587     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
588 
589     // We don't really care about the content of the SIGCHLD siginfo structure, as we will get
590     // all the information from waitpid(). We just need to read all the signals so that we can
591     // sleep next time we reach select().
592     while (true)
593     {
594         signalfd_siginfo info;
595         ssize_t size = read(m_signal_fd, &info, sizeof info);
596         if (size == -1)
597         {
598             if (errno == EAGAIN || errno == EWOULDBLOCK)
599                 break; // We are done.
600             if (errno == EINTR)
601                 continue;
602             if (log)
603                 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor failed: %s",
604                         __FUNCTION__, strerror(errno));
605             break;
606         }
607         if (size != sizeof info)
608         {
609             // We got incomplete information structure. This should not happen, let's just log
610             // that.
611             if (log)
612                 log->Printf("NativeProcessLinux::Monitor::%s reading from signalfd file descriptor returned incomplete data: "
613                         "structure size is %zd, read returned %zd bytes",
614                         __FUNCTION__, sizeof info, size);
615             break;
616         }
617         if (log)
618             log->Printf("NativeProcessLinux::Monitor::%s received signal %s(%d).", __FUNCTION__,
619                 Host::GetSignalAsCString(info.ssi_signo), info.ssi_signo);
620     }
621 }
622 
623 void
624 NativeProcessLinux::Monitor::HandleWait()
625 {
626     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
627     // Process all pending waitpid notifications.
628     while (true)
629     {
630         int status = -1;
631         ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG);
632 
633         if (wait_pid == 0)
634             break; // We are done.
635 
636         if (wait_pid == -1)
637         {
638             if (errno == EINTR)
639                 continue;
640 
641             if (log)
642               log->Printf("NativeProcessLinux::Monitor::%s waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG) failed: %s",
643                       __FUNCTION__, strerror(errno));
644             break;
645         }
646 
647         bool exited = false;
648         int signal = 0;
649         int exit_status = 0;
650         const char *status_cstr = NULL;
651         if (WIFSTOPPED(status))
652         {
653             signal = WSTOPSIG(status);
654             status_cstr = "STOPPED";
655         }
656         else if (WIFEXITED(status))
657         {
658             exit_status = WEXITSTATUS(status);
659             status_cstr = "EXITED";
660             exited = true;
661         }
662         else if (WIFSIGNALED(status))
663         {
664             signal = WTERMSIG(status);
665             status_cstr = "SIGNALED";
666             if (wait_pid == m_child_pid) {
667                 exited = true;
668                 exit_status = -1;
669             }
670         }
671         else
672             status_cstr = "(\?\?\?)";
673 
674         if (log)
675             log->Printf("NativeProcessLinux::Monitor::%s: waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG)"
676                 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i",
677                 __FUNCTION__, wait_pid, status, status_cstr, signal, exit_status);
678 
679         m_native_process->MonitorCallback (wait_pid, exited, signal, exit_status);
680     }
681 }
682 
683 bool
684 NativeProcessLinux::Monitor::HandleCommands()
685 {
686     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
687 
688     while (true)
689     {
690         char command = 0;
691         ssize_t size = read(m_pipefd[READ], &command, sizeof command);
692         if (size == -1)
693         {
694             if (errno == EAGAIN || errno == EWOULDBLOCK)
695                 return false;
696             if (errno == EINTR)
697                 continue;
698             if (log)
699                 log->Printf("NativeProcessLinux::Monitor::%s exiting because read from command file descriptor failed: %s", __FUNCTION__, strerror(errno));
700             return true;
701         }
702         if (size == 0) // end of file - write end closed
703         {
704             if (log)
705                 log->Printf("NativeProcessLinux::Monitor::%s exit command received, exiting...", __FUNCTION__);
706             assert(m_operation_nesting_level == 0 && "Unbalanced begin/end block commands detected");
707             return true; // We are done.
708         }
709 
710         switch (command)
711         {
712         case operation_command:
713             m_operation_error = (*m_operation)();
714             break;
715         case begin_block_command:
716             ++m_operation_nesting_level;
717             break;
718         case end_block_command:
719             assert(m_operation_nesting_level > 0);
720             --m_operation_nesting_level;
721             break;
722         default:
723             if (log)
724                 log->Printf("NativeProcessLinux::Monitor::%s received unknown command '%c'",
725                         __FUNCTION__, command);
726         }
727 
728         // notify calling thread that the command has been processed
729         sem_post(&m_operation_sem);
730     }
731 }
732 
733 void
734 NativeProcessLinux::Monitor::MainLoop()
735 {
736     ::pid_t child_pid = (*m_initial_operation_up)(m_operation_error);
737     m_initial_operation_up.reset();
738     m_child_pid = child_pid;
739     sem_post(&m_operation_sem);
740 
741     while (true)
742     {
743         fd_set fds;
744         FD_ZERO(&fds);
745         // Only process waitpid events if we are outside of an operation block. Any pending
746         // events will be processed after we leave the block.
747         if (m_operation_nesting_level == 0)
748             FD_SET(m_signal_fd, &fds);
749         FD_SET(m_pipefd[READ], &fds);
750 
751         int max_fd = std::max(m_signal_fd, m_pipefd[READ]) + 1;
752         int r = select(max_fd, &fds, nullptr, nullptr, nullptr);
753         if (r < 0)
754         {
755             Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
756             if (log)
757                 log->Printf("NativeProcessLinux::Monitor::%s exiting because select failed: %s",
758                         __FUNCTION__, strerror(errno));
759             return;
760         }
761 
762         if (FD_ISSET(m_pipefd[READ], &fds))
763         {
764             if (HandleCommands())
765                 return;
766         }
767 
768         if (FD_ISSET(m_signal_fd, &fds))
769         {
770             HandleSignals();
771             HandleWait();
772         }
773     }
774 }
775 
776 Error
777 NativeProcessLinux::Monitor::WaitForAck()
778 {
779     Error error;
780     while (sem_wait(&m_operation_sem) != 0)
781     {
782         if (errno == EINTR)
783             continue;
784 
785         error.SetErrorToErrno();
786         return error;
787     }
788 
789     return m_operation_error;
790 }
791 
792 void *
793 NativeProcessLinux::Monitor::RunMonitor(void *arg)
794 {
795     static_cast<Monitor *>(arg)->MainLoop();
796     return nullptr;
797 }
798 
799 
800 NativeProcessLinux::LaunchArgs::LaunchArgs(Module *module,
801                                        char const **argv,
802                                        char const **envp,
803                                        const FileSpec &stdin_file_spec,
804                                        const FileSpec &stdout_file_spec,
805                                        const FileSpec &stderr_file_spec,
806                                        const FileSpec &working_dir,
807                                        const ProcessLaunchInfo &launch_info)
808     : m_module(module),
809       m_argv(argv),
810       m_envp(envp),
811       m_stdin_file_spec(stdin_file_spec),
812       m_stdout_file_spec(stdout_file_spec),
813       m_stderr_file_spec(stderr_file_spec),
814       m_working_dir(working_dir),
815       m_launch_info(launch_info)
816 {
817 }
818 
819 NativeProcessLinux::LaunchArgs::~LaunchArgs()
820 { }
821 
822 // -----------------------------------------------------------------------------
823 // Public Static Methods
824 // -----------------------------------------------------------------------------
825 
826 Error
827 NativeProcessLinux::LaunchProcess (
828     Module *exe_module,
829     ProcessLaunchInfo &launch_info,
830     NativeProcessProtocol::NativeDelegate &native_delegate,
831     NativeProcessProtocolSP &native_process_sp)
832 {
833     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
834 
835     Error error;
836 
837     // Verify the working directory is valid if one was specified.
838     FileSpec working_dir{launch_info.GetWorkingDirectory()};
839     if (working_dir &&
840             (!working_dir.ResolvePath() ||
841              working_dir.GetFileType() != FileSpec::eFileTypeDirectory))
842     {
843         error.SetErrorStringWithFormat ("No such file or directory: %s",
844                 working_dir.GetCString());
845         return error;
846     }
847 
848     const FileAction *file_action;
849 
850     // Default of empty will mean to use existing open file descriptors.
851     FileSpec stdin_file_spec{};
852     FileSpec stdout_file_spec{};
853     FileSpec stderr_file_spec{};
854 
855     file_action = launch_info.GetFileActionForFD (STDIN_FILENO);
856     if (file_action)
857         stdin_file_spec = file_action->GetFileSpec();
858 
859     file_action = launch_info.GetFileActionForFD (STDOUT_FILENO);
860     if (file_action)
861         stdout_file_spec = file_action->GetFileSpec();
862 
863     file_action = launch_info.GetFileActionForFD (STDERR_FILENO);
864     if (file_action)
865         stderr_file_spec = file_action->GetFileSpec();
866 
867     if (log)
868     {
869         if (stdin_file_spec)
870             log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'",
871                     __FUNCTION__, stdin_file_spec.GetCString());
872         else
873             log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__);
874 
875         if (stdout_file_spec)
876             log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'",
877                     __FUNCTION__, stdout_file_spec.GetCString());
878         else
879             log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__);
880 
881         if (stderr_file_spec)
882             log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'",
883                     __FUNCTION__, stderr_file_spec.GetCString());
884         else
885             log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__);
886     }
887 
888     // Create the NativeProcessLinux in launch mode.
889     native_process_sp.reset (new NativeProcessLinux ());
890 
891     if (log)
892     {
893         int i = 0;
894         for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i)
895         {
896             log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
897             ++i;
898         }
899     }
900 
901     if (!native_process_sp->RegisterNativeDelegate (native_delegate))
902     {
903         native_process_sp.reset ();
904         error.SetErrorStringWithFormat ("failed to register the native delegate");
905         return error;
906     }
907 
908     std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior (
909             exe_module,
910             launch_info.GetArguments ().GetConstArgumentVector (),
911             launch_info.GetEnvironmentEntries ().GetConstArgumentVector (),
912             stdin_file_spec,
913             stdout_file_spec,
914             stderr_file_spec,
915             working_dir,
916             launch_info,
917             error);
918 
919     if (error.Fail ())
920     {
921         native_process_sp.reset ();
922         if (log)
923             log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
924         return error;
925     }
926 
927     launch_info.SetProcessID (native_process_sp->GetID ());
928 
929     return error;
930 }
931 
932 Error
933 NativeProcessLinux::AttachToProcess (
934     lldb::pid_t pid,
935     NativeProcessProtocol::NativeDelegate &native_delegate,
936     NativeProcessProtocolSP &native_process_sp)
937 {
938     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
939     if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
940         log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
941 
942     // Grab the current platform architecture.  This should be Linux,
943     // since this code is only intended to run on a Linux host.
944     PlatformSP platform_sp (Platform::GetHostPlatform ());
945     if (!platform_sp)
946         return Error("failed to get a valid default platform");
947 
948     // Retrieve the architecture for the running process.
949     ArchSpec process_arch;
950     Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch);
951     if (!error.Success ())
952         return error;
953 
954     std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ());
955 
956     if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate))
957     {
958         error.SetErrorStringWithFormat ("failed to register the native delegate");
959         return error;
960     }
961 
962     native_process_linux_sp->AttachToInferior (pid, error);
963     if (!error.Success ())
964         return error;
965 
966     native_process_sp = native_process_linux_sp;
967     return error;
968 }
969 
970 // -----------------------------------------------------------------------------
971 // Public Instance Methods
972 // -----------------------------------------------------------------------------
973 
974 NativeProcessLinux::NativeProcessLinux () :
975     NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
976     m_arch (),
977     m_supports_mem_region (eLazyBoolCalculate),
978     m_mem_region_cache (),
979     m_mem_region_cache_mutex ()
980 {
981 }
982 
983 //------------------------------------------------------------------------------
984 // NativeProcessLinux spawns a new thread which performs all operations on the inferior process.
985 // Refer to Monitor and Operation classes to see why this is necessary.
986 //------------------------------------------------------------------------------
987 void
988 NativeProcessLinux::LaunchInferior (
989     Module *module,
990     const char *argv[],
991     const char *envp[],
992     const FileSpec &stdin_file_spec,
993     const FileSpec &stdout_file_spec,
994     const FileSpec &stderr_file_spec,
995     const FileSpec &working_dir,
996     const ProcessLaunchInfo &launch_info,
997     Error &error)
998 {
999     if (module)
1000         m_arch = module->GetArchitecture ();
1001 
1002     SetState (eStateLaunching);
1003 
1004     std::unique_ptr<LaunchArgs> args(
1005         new LaunchArgs(module, argv, envp,
1006                        stdin_file_spec,
1007                        stdout_file_spec,
1008                        stderr_file_spec,
1009                        working_dir,
1010                        launch_info));
1011 
1012     StartMonitorThread ([&] (Error &e) { return Launch(args.get(), e); }, error);
1013     if (!error.Success ())
1014         return;
1015 }
1016 
1017 void
1018 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, Error &error)
1019 {
1020     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1021     if (log)
1022         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
1023 
1024     // We can use the Host for everything except the ResolveExecutable portion.
1025     PlatformSP platform_sp = Platform::GetHostPlatform ();
1026     if (!platform_sp)
1027     {
1028         if (log)
1029             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid);
1030         error.SetErrorString ("no default platform available");
1031         return;
1032     }
1033 
1034     // Gather info about the process.
1035     ProcessInstanceInfo process_info;
1036     if (!platform_sp->GetProcessInfo (pid, process_info))
1037     {
1038         if (log)
1039             log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): failed to get process info", __FUNCTION__, pid);
1040         error.SetErrorString ("failed to get process info");
1041         return;
1042     }
1043 
1044     // Resolve the executable module
1045     ModuleSP exe_module_sp;
1046     FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths());
1047     ModuleSpec exe_module_spec(process_info.GetExecutableFile(), process_info.GetArchitecture());
1048     error = platform_sp->ResolveExecutable(exe_module_spec, exe_module_sp,
1049                                            executable_search_paths.GetSize() ? &executable_search_paths : NULL);
1050     if (!error.Success())
1051         return;
1052 
1053     // Set the architecture to the exe architecture.
1054     m_arch = exe_module_sp->GetArchitecture();
1055     if (log)
1056         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
1057 
1058     m_pid = pid;
1059     SetState(eStateAttaching);
1060 
1061     StartMonitorThread ([=] (Error &e) { return Attach(pid, e); }, error);
1062     if (!error.Success ())
1063         return;
1064 }
1065 
1066 void
1067 NativeProcessLinux::Terminate ()
1068 {
1069     m_monitor_up->Terminate();
1070 }
1071 
1072 ::pid_t
1073 NativeProcessLinux::Launch(LaunchArgs *args, Error &error)
1074 {
1075     assert (args && "null args");
1076 
1077     const char **argv = args->m_argv;
1078     const char **envp = args->m_envp;
1079     const FileSpec working_dir = args->m_working_dir;
1080 
1081     lldb_utility::PseudoTerminal terminal;
1082     const size_t err_len = 1024;
1083     char err_str[err_len];
1084     lldb::pid_t pid;
1085     NativeThreadProtocolSP thread_sp;
1086 
1087     lldb::ThreadSP inferior;
1088 
1089     // Propagate the environment if one is not supplied.
1090     if (envp == NULL || envp[0] == NULL)
1091         envp = const_cast<const char **>(environ);
1092 
1093     if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1))
1094     {
1095         error.SetErrorToGenericError();
1096         error.SetErrorStringWithFormat("Process fork failed: %s", err_str);
1097         return -1;
1098     }
1099 
1100     // Recognized child exit status codes.
1101     enum {
1102         ePtraceFailed = 1,
1103         eDupStdinFailed,
1104         eDupStdoutFailed,
1105         eDupStderrFailed,
1106         eChdirFailed,
1107         eExecFailed,
1108         eSetGidFailed
1109     };
1110 
1111     // Child process.
1112     if (pid == 0)
1113     {
1114         // FIXME consider opening a pipe between parent/child and have this forked child
1115         // send log info to parent re: launch status, in place of the log lines removed here.
1116 
1117         // Start tracing this child that is about to exec.
1118         error = PtraceWrapper(PTRACE_TRACEME, 0);
1119         if (error.Fail())
1120             exit(ePtraceFailed);
1121 
1122         // terminal has already dupped the tty descriptors to stdin/out/err.
1123         // This closes original fd from which they were copied (and avoids
1124         // leaking descriptors to the debugged process.
1125         terminal.CloseSlaveFileDescriptor();
1126 
1127         // Do not inherit setgid powers.
1128         if (setgid(getgid()) != 0)
1129             exit(eSetGidFailed);
1130 
1131         // Attempt to have our own process group.
1132         if (setpgid(0, 0) != 0)
1133         {
1134             // FIXME log that this failed. This is common.
1135             // Don't allow this to prevent an inferior exec.
1136         }
1137 
1138         // Dup file descriptors if needed.
1139         if (args->m_stdin_file_spec)
1140             if (!DupDescriptor(args->m_stdin_file_spec, STDIN_FILENO, O_RDONLY))
1141                 exit(eDupStdinFailed);
1142 
1143         if (args->m_stdout_file_spec)
1144             if (!DupDescriptor(args->m_stdout_file_spec, STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
1145                 exit(eDupStdoutFailed);
1146 
1147         if (args->m_stderr_file_spec)
1148             if (!DupDescriptor(args->m_stderr_file_spec, STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
1149                 exit(eDupStderrFailed);
1150 
1151         // Close everything besides stdin, stdout, and stderr that has no file
1152         // action to avoid leaking
1153         for (int fd = 3; fd < sysconf(_SC_OPEN_MAX); ++fd)
1154             if (!args->m_launch_info.GetFileActionForFD(fd))
1155                 close(fd);
1156 
1157         // Change working directory
1158         if (working_dir && 0 != ::chdir(working_dir.GetCString()))
1159               exit(eChdirFailed);
1160 
1161         // Disable ASLR if requested.
1162         if (args->m_launch_info.GetFlags ().Test (lldb::eLaunchFlagDisableASLR))
1163         {
1164             const int old_personality = personality (LLDB_PERSONALITY_GET_CURRENT_SETTINGS);
1165             if (old_personality == -1)
1166             {
1167                 // Can't retrieve Linux personality.  Cannot disable ASLR.
1168             }
1169             else
1170             {
1171                 const int new_personality = personality (ADDR_NO_RANDOMIZE | old_personality);
1172                 if (new_personality == -1)
1173                 {
1174                     // Disabling ASLR failed.
1175                 }
1176                 else
1177                 {
1178                     // Disabling ASLR succeeded.
1179                 }
1180             }
1181         }
1182 
1183         // Execute.  We should never return...
1184         execve(argv[0],
1185                const_cast<char *const *>(argv),
1186                const_cast<char *const *>(envp));
1187 
1188         // ...unless exec fails.  In which case we definitely need to end the child here.
1189         exit(eExecFailed);
1190     }
1191 
1192     //
1193     // This is the parent code here.
1194     //
1195     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1196 
1197     // Wait for the child process to trap on its call to execve.
1198     ::pid_t wpid;
1199     int status;
1200     if ((wpid = waitpid(pid, &status, 0)) < 0)
1201     {
1202         error.SetErrorToErrno();
1203         if (log)
1204             log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s",
1205                     __FUNCTION__, error.AsCString ());
1206 
1207         // Mark the inferior as invalid.
1208         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1209         SetState (StateType::eStateInvalid);
1210 
1211         return -1;
1212     }
1213     else if (WIFEXITED(status))
1214     {
1215         // open, dup or execve likely failed for some reason.
1216         error.SetErrorToGenericError();
1217         switch (WEXITSTATUS(status))
1218         {
1219             case ePtraceFailed:
1220                 error.SetErrorString("Child ptrace failed.");
1221                 break;
1222             case eDupStdinFailed:
1223                 error.SetErrorString("Child open stdin failed.");
1224                 break;
1225             case eDupStdoutFailed:
1226                 error.SetErrorString("Child open stdout failed.");
1227                 break;
1228             case eDupStderrFailed:
1229                 error.SetErrorString("Child open stderr failed.");
1230                 break;
1231             case eChdirFailed:
1232                 error.SetErrorString("Child failed to set working directory.");
1233                 break;
1234             case eExecFailed:
1235                 error.SetErrorString("Child exec failed.");
1236                 break;
1237             case eSetGidFailed:
1238                 error.SetErrorString("Child setgid failed.");
1239                 break;
1240             default:
1241                 error.SetErrorString("Child returned unknown exit status.");
1242                 break;
1243         }
1244 
1245         if (log)
1246         {
1247             log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP",
1248                     __FUNCTION__,
1249                     WEXITSTATUS(status));
1250         }
1251 
1252         // Mark the inferior as invalid.
1253         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1254         SetState (StateType::eStateInvalid);
1255 
1256         return -1;
1257     }
1258     assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) &&
1259            "Could not sync with inferior process.");
1260 
1261     if (log)
1262         log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
1263 
1264     error = SetDefaultPtraceOpts(pid);
1265     if (error.Fail())
1266     {
1267         if (log)
1268             log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
1269                     __FUNCTION__, error.AsCString ());
1270 
1271         // Mark the inferior as invalid.
1272         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1273         SetState (StateType::eStateInvalid);
1274 
1275         return -1;
1276     }
1277 
1278     // Release the master terminal descriptor and pass it off to the
1279     // NativeProcessLinux instance.  Similarly stash the inferior pid.
1280     m_terminal_fd = terminal.ReleaseMasterFileDescriptor();
1281     m_pid = pid;
1282 
1283     // Set the terminal fd to be in non blocking mode (it simplifies the
1284     // implementation of ProcessLinux::GetSTDOUT to have a non-blocking
1285     // descriptor to read from).
1286     error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
1287     if (error.Fail())
1288     {
1289         if (log)
1290             log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
1291                     __FUNCTION__, error.AsCString ());
1292 
1293         // Mark the inferior as invalid.
1294         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
1295         SetState (StateType::eStateInvalid);
1296 
1297         return -1;
1298     }
1299 
1300     if (log)
1301         log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid);
1302 
1303     thread_sp = AddThread (pid);
1304     assert (thread_sp && "AddThread() returned a nullptr thread");
1305     std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP);
1306     ThreadWasCreated(pid);
1307 
1308     // Let our process instance know the thread has stopped.
1309     SetCurrentThreadID (thread_sp->GetID ());
1310     SetState (StateType::eStateStopped);
1311 
1312     if (log)
1313     {
1314         if (error.Success ())
1315         {
1316             log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
1317         }
1318         else
1319         {
1320             log->Printf ("NativeProcessLinux::%s inferior launching failed: %s",
1321                 __FUNCTION__, error.AsCString ());
1322             return -1;
1323         }
1324     }
1325     return pid;
1326 }
1327 
1328 ::pid_t
1329 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error)
1330 {
1331     lldb::ThreadSP inferior;
1332     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1333 
1334     // Use a map to keep track of the threads which we have attached/need to attach.
1335     Host::TidMap tids_to_attach;
1336     if (pid <= 1)
1337     {
1338         error.SetErrorToGenericError();
1339         error.SetErrorString("Attaching to process 1 is not allowed.");
1340         return -1;
1341     }
1342 
1343     while (Host::FindProcessThreads(pid, tids_to_attach))
1344     {
1345         for (Host::TidMap::iterator it = tids_to_attach.begin();
1346              it != tids_to_attach.end();)
1347         {
1348             if (it->second == false)
1349             {
1350                 lldb::tid_t tid = it->first;
1351 
1352                 // Attach to the requested process.
1353                 // An attach will cause the thread to stop with a SIGSTOP.
1354                 error = PtraceWrapper(PTRACE_ATTACH, tid);
1355                 if (error.Fail())
1356                 {
1357                     // No such thread. The thread may have exited.
1358                     // More error handling may be needed.
1359                     if (error.GetError() == ESRCH)
1360                     {
1361                         it = tids_to_attach.erase(it);
1362                         continue;
1363                     }
1364                     else
1365                         return -1;
1366                 }
1367 
1368                 int status;
1369                 // Need to use __WALL otherwise we receive an error with errno=ECHLD
1370                 // At this point we should have a thread stopped if waitpid succeeds.
1371                 if ((status = waitpid(tid, NULL, __WALL)) < 0)
1372                 {
1373                     // No such thread. The thread may have exited.
1374                     // More error handling may be needed.
1375                     if (errno == ESRCH)
1376                     {
1377                         it = tids_to_attach.erase(it);
1378                         continue;
1379                     }
1380                     else
1381                     {
1382                         error.SetErrorToErrno();
1383                         return -1;
1384                     }
1385                 }
1386 
1387                 error = SetDefaultPtraceOpts(tid);
1388                 if (error.Fail())
1389                     return -1;
1390 
1391                 if (log)
1392                     log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
1393 
1394                 it->second = true;
1395 
1396                 // Create the thread, mark it as stopped.
1397                 NativeThreadProtocolSP thread_sp (AddThread (static_cast<lldb::tid_t> (tid)));
1398                 assert (thread_sp && "AddThread() returned a nullptr");
1399 
1400                 // This will notify this is a new thread and tell the system it is stopped.
1401                 std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal (SIGSTOP);
1402                 ThreadWasCreated(tid);
1403                 SetCurrentThreadID (thread_sp->GetID ());
1404             }
1405 
1406             // move the loop forward
1407             ++it;
1408         }
1409     }
1410 
1411     if (tids_to_attach.size() > 0)
1412     {
1413         m_pid = pid;
1414         // Let our process instance know the thread has stopped.
1415         SetState (StateType::eStateStopped);
1416     }
1417     else
1418     {
1419         error.SetErrorToGenericError();
1420         error.SetErrorString("No such process.");
1421         return -1;
1422     }
1423 
1424     return pid;
1425 }
1426 
1427 Error
1428 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
1429 {
1430     long ptrace_opts = 0;
1431 
1432     // Have the child raise an event on exit.  This is used to keep the child in
1433     // limbo until it is destroyed.
1434     ptrace_opts |= PTRACE_O_TRACEEXIT;
1435 
1436     // Have the tracer trace threads which spawn in the inferior process.
1437     // TODO: if we want to support tracing the inferiors' child, add the
1438     // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
1439     ptrace_opts |= PTRACE_O_TRACECLONE;
1440 
1441     // Have the tracer notify us before execve returns
1442     // (needed to disable legacy SIGTRAP generation)
1443     ptrace_opts |= PTRACE_O_TRACEEXEC;
1444 
1445     return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts);
1446 }
1447 
1448 static ExitType convert_pid_status_to_exit_type (int status)
1449 {
1450     if (WIFEXITED (status))
1451         return ExitType::eExitTypeExit;
1452     else if (WIFSIGNALED (status))
1453         return ExitType::eExitTypeSignal;
1454     else if (WIFSTOPPED (status))
1455         return ExitType::eExitTypeStop;
1456     else
1457     {
1458         // We don't know what this is.
1459         return ExitType::eExitTypeInvalid;
1460     }
1461 }
1462 
1463 static int convert_pid_status_to_return_code (int status)
1464 {
1465     if (WIFEXITED (status))
1466         return WEXITSTATUS (status);
1467     else if (WIFSIGNALED (status))
1468         return WTERMSIG (status);
1469     else if (WIFSTOPPED (status))
1470         return WSTOPSIG (status);
1471     else
1472     {
1473         // We don't know what this is.
1474         return ExitType::eExitTypeInvalid;
1475     }
1476 }
1477 
1478 // Handles all waitpid events from the inferior process.
1479 void
1480 NativeProcessLinux::MonitorCallback(lldb::pid_t pid,
1481                                     bool exited,
1482                                     int signal,
1483                                     int status)
1484 {
1485     Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
1486 
1487     // Certain activities differ based on whether the pid is the tid of the main thread.
1488     const bool is_main_thread = (pid == GetID ());
1489 
1490     // Handle when the thread exits.
1491     if (exited)
1492     {
1493         if (log)
1494             log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %"  PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not");
1495 
1496         // This is a thread that exited.  Ensure we're not tracking it anymore.
1497         const bool thread_found = StopTrackingThread (pid);
1498 
1499         if (is_main_thread)
1500         {
1501             // We only set the exit status and notify the delegate if we haven't already set the process
1502             // state to an exited state.  We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
1503             // for the main thread.
1504             const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed);
1505             if (!already_notified)
1506             {
1507                 if (log)
1508                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ()));
1509                 // The main thread exited.  We're done monitoring.  Report to delegate.
1510                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
1511 
1512                 // Notify delegate that our process has exited.
1513                 SetState (StateType::eStateExited, true);
1514             }
1515             else
1516             {
1517                 if (log)
1518                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
1519             }
1520         }
1521         else
1522         {
1523             // Do we want to report to the delegate in this case?  I think not.  If this was an orderly
1524             // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
1525             // and we would have done an all-stop then.
1526             if (log)
1527                 log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
1528         }
1529         return;
1530     }
1531 
1532     // Get details on the signal raised.
1533     siginfo_t info;
1534     const auto err = GetSignalInfo(pid, &info);
1535     if (err.Success())
1536     {
1537         // We have retrieved the signal info.  Dispatch appropriately.
1538         if (info.si_signo == SIGTRAP)
1539             MonitorSIGTRAP(&info, pid);
1540         else
1541             MonitorSignal(&info, pid, exited);
1542     }
1543     else
1544     {
1545         if (err.GetError() == EINVAL)
1546         {
1547             // This is a group stop reception for this tid.
1548             // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the
1549             // tracee, triggering the group-stop mechanism. Normally receiving these would stop
1550             // the process, pending a SIGCONT. Simulating this state in a debugger is hard and is
1551             // generally not needed (one use case is debugging background task being managed by a
1552             // shell). For general use, it is sufficient to stop the process in a signal-delivery
1553             // stop which happens before the group stop. This done by MonitorSignal and works
1554             // correctly for all signals.
1555             if (log)
1556                 log->Printf("NativeProcessLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64 ". Transparent handling of group stops not supported, resuming the thread.", __FUNCTION__, GetID (), pid);
1557             Resume(pid, signal);
1558         }
1559         else
1560         {
1561             // ptrace(GETSIGINFO) failed (but not due to group-stop).
1562 
1563             // A return value of ESRCH means the thread/process is no longer on the system,
1564             // so it was killed somehow outside of our control.  Either way, we can't do anything
1565             // with it anymore.
1566 
1567             // Stop tracking the metadata for the thread since it's entirely off the system now.
1568             const bool thread_found = StopTrackingThread (pid);
1569 
1570             if (log)
1571                 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
1572                              __FUNCTION__, err.AsCString(), pid, signal, status, err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
1573 
1574             if (is_main_thread)
1575             {
1576                 // Notify the delegate - our process is not available but appears to have been killed outside
1577                 // our control.  Is eStateExited the right exit state in this case?
1578                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
1579                 SetState (StateType::eStateExited, true);
1580             }
1581             else
1582             {
1583                 // This thread was pulled out from underneath us.  Anything to do here? Do we want to do an all stop?
1584                 if (log)
1585                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid);
1586             }
1587         }
1588     }
1589 }
1590 
1591 void
1592 NativeProcessLinux::WaitForNewThread(::pid_t tid)
1593 {
1594     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1595 
1596     NativeThreadProtocolSP new_thread_sp = GetThreadByID(tid);
1597 
1598     if (new_thread_sp)
1599     {
1600         // We are already tracking the thread - we got the event on the new thread (see
1601         // MonitorSignal) before this one. We are done.
1602         return;
1603     }
1604 
1605     // The thread is not tracked yet, let's wait for it to appear.
1606     int status = -1;
1607     ::pid_t wait_pid;
1608     do
1609     {
1610         if (log)
1611             log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid);
1612         wait_pid = waitpid(tid, &status, __WALL);
1613     }
1614     while (wait_pid == -1 && errno == EINTR);
1615     // Since we are waiting on a specific tid, this must be the creation event. But let's do
1616     // some checks just in case.
1617     if (wait_pid != tid) {
1618         if (log)
1619             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid);
1620         // The only way I know of this could happen is if the whole process was
1621         // SIGKILLed in the mean time. In any case, we can't do anything about that now.
1622         return;
1623     }
1624     if (WIFEXITED(status))
1625     {
1626         if (log)
1627             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid);
1628         // Also a very improbable event.
1629         return;
1630     }
1631 
1632     siginfo_t info;
1633     Error error = GetSignalInfo(tid, &info);
1634     if (error.Fail())
1635     {
1636         if (log)
1637             log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid);
1638         return;
1639     }
1640 
1641     if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log)
1642     {
1643         // We should be getting a thread creation signal here, but we received something
1644         // else. There isn't much we can do about it now, so we will just log that. Since the
1645         // thread is alive and we are receiving events from it, we shall pretend that it was
1646         // created properly.
1647         log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid);
1648     }
1649 
1650     if (log)
1651         log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32,
1652                  __FUNCTION__, GetID (), tid);
1653 
1654     new_thread_sp = AddThread(tid);
1655     std::static_pointer_cast<NativeThreadLinux> (new_thread_sp)->SetRunning ();
1656     Resume (tid, LLDB_INVALID_SIGNAL_NUMBER);
1657     ThreadWasCreated(tid);
1658 }
1659 
1660 void
1661 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid)
1662 {
1663     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1664     const bool is_main_thread = (pid == GetID ());
1665 
1666     assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!");
1667     if (!info)
1668         return;
1669 
1670     Mutex::Locker locker (m_threads_mutex);
1671 
1672     // See if we can find a thread for this signal.
1673     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
1674     if (!thread_sp)
1675     {
1676         if (log)
1677             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
1678     }
1679 
1680     switch (info->si_code)
1681     {
1682     // TODO: these two cases are required if we want to support tracing of the inferiors' children.  We'd need this to debug a monitor.
1683     // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
1684     // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
1685 
1686     case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
1687     {
1688         // This is the notification on the parent thread which informs us of new thread
1689         // creation.
1690         // We don't want to do anything with the parent thread so we just resume it. In case we
1691         // want to implement "break on thread creation" functionality, we would need to stop
1692         // here.
1693 
1694         unsigned long event_message = 0;
1695         if (GetEventMessage (pid, &event_message).Fail())
1696         {
1697             if (log)
1698                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, pid);
1699         } else
1700             WaitForNewThread(event_message);
1701 
1702         Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
1703         break;
1704     }
1705 
1706     case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
1707     {
1708         NativeThreadProtocolSP main_thread_sp;
1709         if (log)
1710             log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP);
1711 
1712         // Exec clears any pending notifications.
1713         m_pending_notification_up.reset ();
1714 
1715         // Remove all but the main thread here.  Linux fork creates a new process which only copies the main thread.  Mutexes are in undefined state.
1716         if (log)
1717             log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__);
1718 
1719         for (auto thread_sp : m_threads)
1720         {
1721             const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID ();
1722             if (is_main_thread)
1723             {
1724                 main_thread_sp = thread_sp;
1725                 if (log)
1726                     log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ());
1727             }
1728             else
1729             {
1730                 // Tell thread coordinator this thread is dead.
1731                 if (log)
1732                     log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ());
1733             }
1734         }
1735 
1736         m_threads.clear ();
1737 
1738         if (main_thread_sp)
1739         {
1740             m_threads.push_back (main_thread_sp);
1741             SetCurrentThreadID (main_thread_sp->GetID ());
1742             std::static_pointer_cast<NativeThreadLinux> (main_thread_sp)->SetStoppedByExec ();
1743         }
1744         else
1745         {
1746             SetCurrentThreadID (LLDB_INVALID_THREAD_ID);
1747             if (log)
1748                 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ());
1749         }
1750 
1751         // Tell coordinator about about the "new" (since exec) stopped main thread.
1752         const lldb::tid_t main_thread_tid = GetID ();
1753         ThreadWasCreated(main_thread_tid);
1754 
1755         // NOTE: ideally these next statements would execute at the same time as the coordinator thread create was executed.
1756         // Consider a handler that can execute when that happens.
1757         // Let our delegate know we have just exec'd.
1758         NotifyDidExec ();
1759 
1760         // If we have a main thread, indicate we are stopped.
1761         assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked");
1762 
1763         // Let the process know we're stopped.
1764         StopRunningThreads (pid);
1765 
1766         break;
1767     }
1768 
1769     case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
1770     {
1771         // The inferior process or one of its threads is about to exit.
1772         // We don't want to do anything with the thread so we just resume it. In case we
1773         // want to implement "break on thread exit" functionality, we would need to stop
1774         // here.
1775 
1776         unsigned long data = 0;
1777         if (GetEventMessage(pid, &data).Fail())
1778             data = -1;
1779 
1780         if (log)
1781         {
1782             log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
1783                          __FUNCTION__,
1784                          data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
1785                          pid,
1786                     is_main_thread ? "is main thread" : "not main thread");
1787         }
1788 
1789         if (is_main_thread)
1790         {
1791             SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
1792         }
1793 
1794         Resume(pid, LLDB_INVALID_SIGNAL_NUMBER);
1795 
1796         break;
1797     }
1798 
1799     case 0:
1800     case TRAP_TRACE:  // We receive this on single stepping.
1801     case TRAP_HWBKPT: // We receive this on watchpoint hit
1802         if (thread_sp)
1803         {
1804             // If a watchpoint was hit, report it
1805             uint32_t wp_index;
1806             Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index, (lldb::addr_t)info->si_addr);
1807             if (error.Fail() && log)
1808                 log->Printf("NativeProcessLinux::%s() "
1809                             "received error while checking for watchpoint hits, "
1810                             "pid = %" PRIu64 " error = %s",
1811                             __FUNCTION__, pid, error.AsCString());
1812             if (wp_index != LLDB_INVALID_INDEX32)
1813             {
1814                 MonitorWatchpoint(pid, thread_sp, wp_index);
1815                 break;
1816             }
1817         }
1818         // Otherwise, report step over
1819         MonitorTrace(pid, thread_sp);
1820         break;
1821 
1822     case SI_KERNEL:
1823 #if defined __mips__
1824         // For mips there is no special signal for watchpoint
1825         // So we check for watchpoint in kernel trap
1826         if (thread_sp)
1827         {
1828             // If a watchpoint was hit, report it
1829             uint32_t wp_index;
1830             Error error = thread_sp->GetRegisterContext()->GetWatchpointHitIndex(wp_index, LLDB_INVALID_ADDRESS);
1831             if (error.Fail() && log)
1832                 log->Printf("NativeProcessLinux::%s() "
1833                             "received error while checking for watchpoint hits, "
1834                             "pid = %" PRIu64 " error = %s",
1835                             __FUNCTION__, pid, error.AsCString());
1836             if (wp_index != LLDB_INVALID_INDEX32)
1837             {
1838                 MonitorWatchpoint(pid, thread_sp, wp_index);
1839                 break;
1840             }
1841         }
1842         // NO BREAK
1843 #endif
1844     case TRAP_BRKPT:
1845         MonitorBreakpoint(pid, thread_sp);
1846         break;
1847 
1848     case SIGTRAP:
1849     case (SIGTRAP | 0x80):
1850         if (log)
1851             log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), pid);
1852 
1853         // Ignore these signals until we know more about them.
1854         Resume(pid, LLDB_INVALID_SIGNAL_NUMBER);
1855         break;
1856 
1857     default:
1858         assert(false && "Unexpected SIGTRAP code!");
1859         if (log)
1860             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%d",
1861                     __FUNCTION__, GetID (), pid, info->si_code);
1862         break;
1863 
1864     }
1865 }
1866 
1867 void
1868 NativeProcessLinux::MonitorTrace(lldb::pid_t pid, NativeThreadProtocolSP thread_sp)
1869 {
1870     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1871     if (log)
1872         log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)",
1873                 __FUNCTION__, pid);
1874 
1875     if (thread_sp)
1876         std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace();
1877 
1878     // This thread is currently stopped.
1879     ThreadDidStop(pid, false);
1880 
1881     // Here we don't have to request the rest of the threads to stop or request a deferred stop.
1882     // This would have already happened at the time the Resume() with step operation was signaled.
1883     // At this point, we just need to say we stopped, and the deferred notifcation will fire off
1884     // once all running threads have checked in as stopped.
1885     SetCurrentThreadID(pid);
1886     // Tell the process we have a stop (from software breakpoint).
1887     StopRunningThreads(pid);
1888 }
1889 
1890 void
1891 NativeProcessLinux::MonitorBreakpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp)
1892 {
1893     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
1894     if (log)
1895         log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64,
1896                 __FUNCTION__, pid);
1897 
1898     // This thread is currently stopped.
1899     ThreadDidStop(pid, false);
1900 
1901     // Mark the thread as stopped at breakpoint.
1902     if (thread_sp)
1903     {
1904         std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByBreakpoint();
1905         Error error = FixupBreakpointPCAsNeeded(thread_sp);
1906         if (error.Fail())
1907             if (log)
1908                 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s",
1909                         __FUNCTION__, pid, error.AsCString());
1910 
1911         if (m_threads_stepping_with_breakpoint.find(pid) != m_threads_stepping_with_breakpoint.end())
1912             std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByTrace();
1913     }
1914     else
1915         if (log)
1916             log->Printf("NativeProcessLinux::%s()  pid = %" PRIu64 ": "
1917                     "warning, cannot process software breakpoint since no thread metadata",
1918                     __FUNCTION__, pid);
1919 
1920 
1921     // We need to tell all other running threads before we notify the delegate about this stop.
1922     StopRunningThreads(pid);
1923 }
1924 
1925 void
1926 NativeProcessLinux::MonitorWatchpoint(lldb::pid_t pid, NativeThreadProtocolSP thread_sp, uint32_t wp_index)
1927 {
1928     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
1929     if (log)
1930         log->Printf("NativeProcessLinux::%s() received watchpoint event, "
1931                     "pid = %" PRIu64 ", wp_index = %" PRIu32,
1932                     __FUNCTION__, pid, wp_index);
1933 
1934     // This thread is currently stopped.
1935     ThreadDidStop(pid, false);
1936 
1937     // Mark the thread as stopped at watchpoint.
1938     // The address is at (lldb::addr_t)info->si_addr if we need it.
1939     lldbassert(thread_sp && "thread_sp cannot be NULL");
1940     std::static_pointer_cast<NativeThreadLinux>(thread_sp)->SetStoppedByWatchpoint(wp_index);
1941 
1942     // We need to tell all other running threads before we notify the delegate about this stop.
1943     StopRunningThreads(pid);
1944 }
1945 
1946 void
1947 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited)
1948 {
1949     assert (info && "null info");
1950     if (!info)
1951         return;
1952 
1953     const int signo = info->si_signo;
1954     const bool is_from_llgs = info->si_pid == getpid ();
1955 
1956     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1957 
1958     // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
1959     // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
1960     // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
1961     //
1962     // IOW, user generated signals never generate what we consider to be a
1963     // "crash".
1964     //
1965     // Similarly, ACK signals generated by this monitor.
1966 
1967     Mutex::Locker locker (m_threads_mutex);
1968 
1969     // See if we can find a thread for this signal.
1970     NativeThreadProtocolSP thread_sp = GetThreadByID (pid);
1971     if (!thread_sp)
1972     {
1973         if (log)
1974             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid);
1975     }
1976 
1977     // Handle the signal.
1978     if (info->si_code == SI_TKILL || info->si_code == SI_USER)
1979     {
1980         if (log)
1981             log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
1982                             __FUNCTION__,
1983                             GetUnixSignals ().GetSignalAsCString (signo),
1984                             signo,
1985                             (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
1986                             info->si_pid,
1987                             is_from_llgs ? "from llgs" : "not from llgs",
1988                             pid);
1989     }
1990 
1991     // Check for new thread notification.
1992     if ((info->si_pid == 0) && (info->si_code == SI_USER))
1993     {
1994         // A new thread creation is being signaled. This is one of two parts that come in
1995         // a non-deterministic order. This code handles the case where the new thread event comes
1996         // before the event on the parent thread. For the opposite case see code in
1997         // MonitorSIGTRAP.
1998         if (log)
1999             log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification",
2000                      __FUNCTION__, GetID (), pid);
2001 
2002         thread_sp = AddThread(pid);
2003         assert (thread_sp.get() && "failed to create the tracking data for newly created inferior thread");
2004         // We can now resume the newly created thread.
2005         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2006         Resume (pid, LLDB_INVALID_SIGNAL_NUMBER);
2007         ThreadWasCreated(pid);
2008         // Done handling.
2009         return;
2010     }
2011 
2012     // Check for thread stop notification.
2013     if (is_from_llgs && (info->si_code == SI_TKILL) && (signo == SIGSTOP))
2014     {
2015         // This is a tgkill()-based stop.
2016         if (thread_sp)
2017         {
2018             if (log)
2019                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped",
2020                              __FUNCTION__,
2021                              GetID (),
2022                              pid);
2023 
2024             // Check that we're not already marked with a stop reason.
2025             // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that
2026             // the kernel signaled us with the thread stopping which we handled and marked as stopped,
2027             // and that, without an intervening resume, we received another stop.  It is more likely
2028             // that we are missing the marking of a run state somewhere if we find that the thread was
2029             // marked as stopped.
2030             std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp);
2031             assert (linux_thread_sp && "linux_thread_sp is null!");
2032 
2033             const StateType thread_state = linux_thread_sp->GetState ();
2034             if (!StateIsStoppedState (thread_state, false))
2035             {
2036                 // An inferior thread has stopped because of a SIGSTOP we have sent it.
2037                 // Generally, these are not important stops and we don't want to report them as
2038                 // they are just used to stop other threads when one thread (the one with the
2039                 // *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the
2040                 // case of an asynchronous Interrupt(), this *is* the real stop reason, so we
2041                 // leave the signal intact if this is the thread that was chosen as the
2042                 // triggering thread.
2043                 if (m_pending_notification_up && m_pending_notification_up->triggering_tid == pid)
2044                     linux_thread_sp->SetStoppedBySignal(SIGSTOP, info);
2045                 else
2046                     linux_thread_sp->SetStoppedBySignal(0);
2047 
2048                 SetCurrentThreadID (thread_sp->GetID ());
2049                 ThreadDidStop (thread_sp->GetID (), true);
2050             }
2051             else
2052             {
2053                 if (log)
2054                 {
2055                     // Retrieve the signal name if the thread was stopped by a signal.
2056                     int stop_signo = 0;
2057                     const bool stopped_by_signal = linux_thread_sp->IsStopped (&stop_signo);
2058                     const char *signal_name = stopped_by_signal ? GetUnixSignals ().GetSignalAsCString (stop_signo) : "<not stopped by signal>";
2059                     if (!signal_name)
2060                         signal_name = "<no-signal-name>";
2061 
2062                     log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is",
2063                                  __FUNCTION__,
2064                                  GetID (),
2065                                  linux_thread_sp->GetID (),
2066                                  StateAsCString (thread_state),
2067                                  stop_signo,
2068                                  signal_name);
2069                 }
2070                 ThreadDidStop (thread_sp->GetID (), false);
2071             }
2072         }
2073 
2074         // Done handling.
2075         return;
2076     }
2077 
2078     if (log)
2079         log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo));
2080 
2081     // This thread is stopped.
2082     ThreadDidStop (pid, false);
2083 
2084     if (thread_sp)
2085         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStoppedBySignal(signo, info);
2086 
2087     // Send a stop to the debugger after we get all other threads to stop.
2088     StopRunningThreads (pid);
2089 }
2090 
2091 namespace {
2092 
2093 struct EmulatorBaton
2094 {
2095     NativeProcessLinux* m_process;
2096     NativeRegisterContext* m_reg_context;
2097 
2098     // eRegisterKindDWARF -> RegsiterValue
2099     std::unordered_map<uint32_t, RegisterValue> m_register_values;
2100 
2101     EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) :
2102             m_process(process), m_reg_context(reg_context) {}
2103 };
2104 
2105 } // anonymous namespace
2106 
2107 static size_t
2108 ReadMemoryCallback (EmulateInstruction *instruction,
2109                     void *baton,
2110                     const EmulateInstruction::Context &context,
2111                     lldb::addr_t addr,
2112                     void *dst,
2113                     size_t length)
2114 {
2115     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2116 
2117     size_t bytes_read;
2118     emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
2119     return bytes_read;
2120 }
2121 
2122 static bool
2123 ReadRegisterCallback (EmulateInstruction *instruction,
2124                       void *baton,
2125                       const RegisterInfo *reg_info,
2126                       RegisterValue &reg_value)
2127 {
2128     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2129 
2130     auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]);
2131     if (it != emulator_baton->m_register_values.end())
2132     {
2133         reg_value = it->second;
2134         return true;
2135     }
2136 
2137     // The emulator only fill in the dwarf regsiter numbers (and in some case
2138     // the generic register numbers). Get the full register info from the
2139     // register context based on the dwarf register numbers.
2140     const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo(
2141             eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
2142 
2143     Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
2144     if (error.Success())
2145         return true;
2146 
2147     return false;
2148 }
2149 
2150 static bool
2151 WriteRegisterCallback (EmulateInstruction *instruction,
2152                        void *baton,
2153                        const EmulateInstruction::Context &context,
2154                        const RegisterInfo *reg_info,
2155                        const RegisterValue &reg_value)
2156 {
2157     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
2158     emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value;
2159     return true;
2160 }
2161 
2162 static size_t
2163 WriteMemoryCallback (EmulateInstruction *instruction,
2164                      void *baton,
2165                      const EmulateInstruction::Context &context,
2166                      lldb::addr_t addr,
2167                      const void *dst,
2168                      size_t length)
2169 {
2170     return length;
2171 }
2172 
2173 static lldb::addr_t
2174 ReadFlags (NativeRegisterContext* regsiter_context)
2175 {
2176     const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo(
2177             eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
2178     return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS);
2179 }
2180 
2181 Error
2182 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadProtocolSP thread_sp)
2183 {
2184     Error error;
2185     NativeRegisterContextSP register_context_sp = thread_sp->GetRegisterContext();
2186 
2187     std::unique_ptr<EmulateInstruction> emulator_ap(
2188         EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr));
2189 
2190     if (emulator_ap == nullptr)
2191         return Error("Instruction emulator not found!");
2192 
2193     EmulatorBaton baton(this, register_context_sp.get());
2194     emulator_ap->SetBaton(&baton);
2195     emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
2196     emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
2197     emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
2198     emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
2199 
2200     if (!emulator_ap->ReadInstruction())
2201         return Error("Read instruction failed!");
2202 
2203     bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
2204 
2205     const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
2206     const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
2207 
2208     auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
2209     auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
2210 
2211     lldb::addr_t next_pc;
2212     lldb::addr_t next_flags;
2213     if (emulation_result)
2214     {
2215         assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated");
2216         next_pc = pc_it->second.GetAsUInt64();
2217 
2218         if (flags_it != baton.m_register_values.end())
2219             next_flags = flags_it->second.GetAsUInt64();
2220         else
2221             next_flags = ReadFlags (register_context_sp.get());
2222     }
2223     else if (pc_it == baton.m_register_values.end())
2224     {
2225         // Emulate instruction failed and it haven't changed PC. Advance PC
2226         // with the size of the current opcode because the emulation of all
2227         // PC modifying instruction should be successful. The failure most
2228         // likely caused by a not supported instruction which don't modify PC.
2229         next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
2230         next_flags = ReadFlags (register_context_sp.get());
2231     }
2232     else
2233     {
2234         // The instruction emulation failed after it modified the PC. It is an
2235         // unknown error where we can't continue because the next instruction is
2236         // modifying the PC but we don't  know how.
2237         return Error ("Instruction emulation failed unexpectedly.");
2238     }
2239 
2240     if (m_arch.GetMachine() == llvm::Triple::arm)
2241     {
2242         if (next_flags & 0x20)
2243         {
2244             // Thumb mode
2245             error = SetSoftwareBreakpoint(next_pc, 2);
2246         }
2247         else
2248         {
2249             // Arm mode
2250             error = SetSoftwareBreakpoint(next_pc, 4);
2251         }
2252     }
2253     else if (m_arch.GetMachine() == llvm::Triple::mips64
2254             || m_arch.GetMachine() == llvm::Triple::mips64el
2255             || m_arch.GetMachine() == llvm::Triple::mips
2256             || m_arch.GetMachine() == llvm::Triple::mipsel)
2257         error = SetSoftwareBreakpoint(next_pc, 4);
2258     else
2259     {
2260         // No size hint is given for the next breakpoint
2261         error = SetSoftwareBreakpoint(next_pc, 0);
2262     }
2263 
2264     if (error.Fail())
2265         return error;
2266 
2267     m_threads_stepping_with_breakpoint.insert({thread_sp->GetID(), next_pc});
2268 
2269     return Error();
2270 }
2271 
2272 bool
2273 NativeProcessLinux::SupportHardwareSingleStepping() const
2274 {
2275     if (m_arch.GetMachine() == llvm::Triple::arm
2276         || m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el
2277         || m_arch.GetMachine() == llvm::Triple::mips || m_arch.GetMachine() == llvm::Triple::mipsel)
2278         return false;
2279     return true;
2280 }
2281 
2282 Error
2283 NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
2284 {
2285     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
2286     if (log)
2287         log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
2288 
2289     bool software_single_step = !SupportHardwareSingleStepping();
2290 
2291     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
2292     Mutex::Locker locker (m_threads_mutex);
2293 
2294     if (software_single_step)
2295     {
2296         for (auto thread_sp : m_threads)
2297         {
2298             assert (thread_sp && "thread list should not contain NULL threads");
2299 
2300             const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
2301             if (action == nullptr)
2302                 continue;
2303 
2304             if (action->state == eStateStepping)
2305             {
2306                 Error error = SetupSoftwareSingleStepping(thread_sp);
2307                 if (error.Fail())
2308                     return error;
2309             }
2310         }
2311     }
2312 
2313     for (auto thread_sp : m_threads)
2314     {
2315         assert (thread_sp && "thread list should not contain NULL threads");
2316 
2317         const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
2318 
2319         if (action == nullptr)
2320         {
2321             if (log)
2322                 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64,
2323                     __FUNCTION__, GetID (), thread_sp->GetID ());
2324             continue;
2325         }
2326 
2327         if (log)
2328         {
2329             log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
2330                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
2331         }
2332 
2333         switch (action->state)
2334         {
2335         case eStateRunning:
2336         {
2337             // Run the thread, possibly feeding it the signal.
2338             const int signo = action->signal;
2339             ResumeThread(thread_sp->GetID (),
2340                     [=](lldb::tid_t tid_to_resume, bool supress_signal)
2341                     {
2342                         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetRunning ();
2343                         // Pass this signal number on to the inferior to handle.
2344                         const auto resume_result = Resume (tid_to_resume, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2345                         if (resume_result.Success())
2346                             SetState(eStateRunning, true);
2347                         return resume_result;
2348                     },
2349                     false);
2350             break;
2351         }
2352 
2353         case eStateStepping:
2354         {
2355             // Request the step.
2356             const int signo = action->signal;
2357             ResumeThread(thread_sp->GetID (),
2358                     [=](lldb::tid_t tid_to_step, bool supress_signal)
2359                     {
2360                         std::static_pointer_cast<NativeThreadLinux> (thread_sp)->SetStepping ();
2361 
2362                         Error step_result;
2363                         if (software_single_step)
2364                             step_result = Resume (tid_to_step, (signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2365                         else
2366                             step_result = SingleStep (tid_to_step,(signo > 0 && !supress_signal) ? signo : LLDB_INVALID_SIGNAL_NUMBER);
2367 
2368                         assert (step_result.Success() && "SingleStep() failed");
2369                         if (step_result.Success())
2370                             SetState(eStateStepping, true);
2371                         return step_result;
2372                     },
2373                     false);
2374             break;
2375         }
2376 
2377         case eStateSuspended:
2378         case eStateStopped:
2379             lldbassert(0 && "Unexpected state");
2380 
2381         default:
2382             return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
2383                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
2384         }
2385     }
2386 
2387     return Error();
2388 }
2389 
2390 Error
2391 NativeProcessLinux::Halt ()
2392 {
2393     Error error;
2394 
2395     if (kill (GetID (), SIGSTOP) != 0)
2396         error.SetErrorToErrno ();
2397 
2398     return error;
2399 }
2400 
2401 Error
2402 NativeProcessLinux::Detach ()
2403 {
2404     Error error;
2405 
2406     // Tell ptrace to detach from the process.
2407     if (GetID () != LLDB_INVALID_PROCESS_ID)
2408         error = Detach (GetID ());
2409 
2410     // Stop monitoring the inferior.
2411     m_monitor_up->Terminate();
2412 
2413     // No error.
2414     return error;
2415 }
2416 
2417 Error
2418 NativeProcessLinux::Signal (int signo)
2419 {
2420     Error error;
2421 
2422     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2423     if (log)
2424         log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
2425                 __FUNCTION__, signo,  GetUnixSignals ().GetSignalAsCString (signo), GetID ());
2426 
2427     if (kill(GetID(), signo))
2428         error.SetErrorToErrno();
2429 
2430     return error;
2431 }
2432 
2433 Error
2434 NativeProcessLinux::Interrupt ()
2435 {
2436     // Pick a running thread (or if none, a not-dead stopped thread) as
2437     // the chosen thread that will be the stop-reason thread.
2438     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2439 
2440     NativeThreadProtocolSP running_thread_sp;
2441     NativeThreadProtocolSP stopped_thread_sp;
2442 
2443     if (log)
2444         log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__);
2445 
2446     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
2447     Mutex::Locker locker (m_threads_mutex);
2448 
2449     for (auto thread_sp : m_threads)
2450     {
2451         // The thread shouldn't be null but lets just cover that here.
2452         if (!thread_sp)
2453             continue;
2454 
2455         // If we have a running or stepping thread, we'll call that the
2456         // target of the interrupt.
2457         const auto thread_state = thread_sp->GetState ();
2458         if (thread_state == eStateRunning ||
2459             thread_state == eStateStepping)
2460         {
2461             running_thread_sp = thread_sp;
2462             break;
2463         }
2464         else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true))
2465         {
2466             // Remember the first non-dead stopped thread.  We'll use that as a backup if there are no running threads.
2467             stopped_thread_sp = thread_sp;
2468         }
2469     }
2470 
2471     if (!running_thread_sp && !stopped_thread_sp)
2472     {
2473         Error error("found no running/stepping or live stopped threads as target for interrupt");
2474         if (log)
2475             log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ());
2476 
2477         return error;
2478     }
2479 
2480     NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp;
2481 
2482     if (log)
2483         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target",
2484                      __FUNCTION__,
2485                      GetID (),
2486                      running_thread_sp ? "running" : "stopped",
2487                      deferred_signal_thread_sp->GetID ());
2488 
2489     StopRunningThreads(deferred_signal_thread_sp->GetID());
2490 
2491     return Error();
2492 }
2493 
2494 Error
2495 NativeProcessLinux::Kill ()
2496 {
2497     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2498     if (log)
2499         log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
2500 
2501     Error error;
2502 
2503     switch (m_state)
2504     {
2505         case StateType::eStateInvalid:
2506         case StateType::eStateExited:
2507         case StateType::eStateCrashed:
2508         case StateType::eStateDetached:
2509         case StateType::eStateUnloaded:
2510             // Nothing to do - the process is already dead.
2511             if (log)
2512                 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
2513             return error;
2514 
2515         case StateType::eStateConnected:
2516         case StateType::eStateAttaching:
2517         case StateType::eStateLaunching:
2518         case StateType::eStateStopped:
2519         case StateType::eStateRunning:
2520         case StateType::eStateStepping:
2521         case StateType::eStateSuspended:
2522             // We can try to kill a process in these states.
2523             break;
2524     }
2525 
2526     if (kill (GetID (), SIGKILL) != 0)
2527     {
2528         error.SetErrorToErrno ();
2529         return error;
2530     }
2531 
2532     return error;
2533 }
2534 
2535 static Error
2536 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
2537 {
2538     memory_region_info.Clear();
2539 
2540     StringExtractor line_extractor (maps_line.c_str ());
2541 
2542     // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode   pathname
2543     // perms: rwxp   (letter is present if set, '-' if not, final character is p=private, s=shared).
2544 
2545     // Parse out the starting address
2546     lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
2547 
2548     // Parse out hyphen separating start and end address from range.
2549     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
2550         return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
2551 
2552     // Parse out the ending address
2553     lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
2554 
2555     // Parse out the space after the address.
2556     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
2557         return Error ("malformed /proc/{pid}/maps entry, missing space after range");
2558 
2559     // Save the range.
2560     memory_region_info.GetRange ().SetRangeBase (start_address);
2561     memory_region_info.GetRange ().SetRangeEnd (end_address);
2562 
2563     // Parse out each permission entry.
2564     if (line_extractor.GetBytesLeft () < 4)
2565         return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
2566 
2567     // Handle read permission.
2568     const char read_perm_char = line_extractor.GetChar ();
2569     if (read_perm_char == 'r')
2570         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
2571     else
2572     {
2573         assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" );
2574         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2575     }
2576 
2577     // Handle write permission.
2578     const char write_perm_char = line_extractor.GetChar ();
2579     if (write_perm_char == 'w')
2580         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
2581     else
2582     {
2583         assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" );
2584         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2585     }
2586 
2587     // Handle execute permission.
2588     const char exec_perm_char = line_extractor.GetChar ();
2589     if (exec_perm_char == 'x')
2590         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
2591     else
2592     {
2593         assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" );
2594         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2595     }
2596 
2597     return Error ();
2598 }
2599 
2600 Error
2601 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
2602 {
2603     // FIXME review that the final memory region returned extends to the end of the virtual address space,
2604     // with no perms if it is not mapped.
2605 
2606     // Use an approach that reads memory regions from /proc/{pid}/maps.
2607     // Assume proc maps entries are in ascending order.
2608     // FIXME assert if we find differently.
2609     Mutex::Locker locker (m_mem_region_cache_mutex);
2610 
2611     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2612     Error error;
2613 
2614     if (m_supports_mem_region == LazyBool::eLazyBoolNo)
2615     {
2616         // We're done.
2617         error.SetErrorString ("unsupported");
2618         return error;
2619     }
2620 
2621     // If our cache is empty, pull the latest.  There should always be at least one memory region
2622     // if memory region handling is supported.
2623     if (m_mem_region_cache.empty ())
2624     {
2625         error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
2626              [&] (const std::string &line) -> bool
2627              {
2628                  MemoryRegionInfo info;
2629                  const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
2630                  if (parse_error.Success ())
2631                  {
2632                      m_mem_region_cache.push_back (info);
2633                      return true;
2634                  }
2635                  else
2636                  {
2637                      if (log)
2638                          log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
2639                      return false;
2640                  }
2641              });
2642 
2643         // If we had an error, we'll mark unsupported.
2644         if (error.Fail ())
2645         {
2646             m_supports_mem_region = LazyBool::eLazyBoolNo;
2647             return error;
2648         }
2649         else if (m_mem_region_cache.empty ())
2650         {
2651             // No entries after attempting to read them.  This shouldn't happen if /proc/{pid}/maps
2652             // is supported.  Assume we don't support map entries via procfs.
2653             if (log)
2654                 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
2655             m_supports_mem_region = LazyBool::eLazyBoolNo;
2656             error.SetErrorString ("not supported");
2657             return error;
2658         }
2659 
2660         if (log)
2661             log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
2662 
2663         // We support memory retrieval, remember that.
2664         m_supports_mem_region = LazyBool::eLazyBoolYes;
2665     }
2666     else
2667     {
2668         if (log)
2669             log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2670     }
2671 
2672     lldb::addr_t prev_base_address = 0;
2673 
2674     // FIXME start by finding the last region that is <= target address using binary search.  Data is sorted.
2675     // There can be a ton of regions on pthreads apps with lots of threads.
2676     for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
2677     {
2678         MemoryRegionInfo &proc_entry_info = *it;
2679 
2680         // Sanity check assumption that /proc/{pid}/maps entries are ascending.
2681         assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
2682         prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
2683 
2684         // If the target address comes before this entry, indicate distance to next region.
2685         if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
2686         {
2687             range_info.GetRange ().SetRangeBase (load_addr);
2688             range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
2689             range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2690             range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2691             range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2692 
2693             return error;
2694         }
2695         else if (proc_entry_info.GetRange ().Contains (load_addr))
2696         {
2697             // The target address is within the memory region we're processing here.
2698             range_info = proc_entry_info;
2699             return error;
2700         }
2701 
2702         // The target memory address comes somewhere after the region we just parsed.
2703     }
2704 
2705     // If we made it here, we didn't find an entry that contained the given address. Return the
2706     // load_addr as start and the amount of bytes betwwen load address and the end of the memory as
2707     // size.
2708     range_info.GetRange ().SetRangeBase (load_addr);
2709     switch (m_arch.GetAddressByteSize())
2710     {
2711         case 4:
2712             range_info.GetRange ().SetByteSize (0x100000000ull - load_addr);
2713             break;
2714         case 8:
2715             range_info.GetRange ().SetByteSize (0ull - load_addr);
2716             break;
2717         default:
2718             assert(false && "Unrecognized data byte size");
2719             break;
2720     }
2721     range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2722     range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2723     range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2724     return error;
2725 }
2726 
2727 void
2728 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
2729 {
2730     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2731     if (log)
2732         log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
2733 
2734     {
2735         Mutex::Locker locker (m_mem_region_cache_mutex);
2736         if (log)
2737             log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2738         m_mem_region_cache.clear ();
2739     }
2740 }
2741 
2742 Error
2743 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr)
2744 {
2745     // FIXME implementing this requires the equivalent of
2746     // InferiorCallPOSIX::InferiorCallMmap, which depends on
2747     // functional ThreadPlans working with Native*Protocol.
2748 #if 1
2749     return Error ("not implemented yet");
2750 #else
2751     addr = LLDB_INVALID_ADDRESS;
2752 
2753     unsigned prot = 0;
2754     if (permissions & lldb::ePermissionsReadable)
2755         prot |= eMmapProtRead;
2756     if (permissions & lldb::ePermissionsWritable)
2757         prot |= eMmapProtWrite;
2758     if (permissions & lldb::ePermissionsExecutable)
2759         prot |= eMmapProtExec;
2760 
2761     // TODO implement this directly in NativeProcessLinux
2762     // (and lift to NativeProcessPOSIX if/when that class is
2763     // refactored out).
2764     if (InferiorCallMmap(this, addr, 0, size, prot,
2765                          eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
2766         m_addr_to_mmap_size[addr] = size;
2767         return Error ();
2768     } else {
2769         addr = LLDB_INVALID_ADDRESS;
2770         return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
2771     }
2772 #endif
2773 }
2774 
2775 Error
2776 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
2777 {
2778     // FIXME see comments in AllocateMemory - required lower-level
2779     // bits not in place yet (ThreadPlans)
2780     return Error ("not implemented");
2781 }
2782 
2783 lldb::addr_t
2784 NativeProcessLinux::GetSharedLibraryInfoAddress ()
2785 {
2786 #if 1
2787     // punt on this for now
2788     return LLDB_INVALID_ADDRESS;
2789 #else
2790     // Return the image info address for the exe module
2791 #if 1
2792     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2793 
2794     ModuleSP module_sp;
2795     Error error = GetExeModuleSP (module_sp);
2796     if (error.Fail ())
2797     {
2798          if (log)
2799             log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ());
2800         return LLDB_INVALID_ADDRESS;
2801     }
2802 
2803     if (module_sp == nullptr)
2804     {
2805          if (log)
2806             log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__);
2807          return LLDB_INVALID_ADDRESS;
2808     }
2809 
2810     ObjectFileSP object_file_sp = module_sp->GetObjectFile ();
2811     if (object_file_sp == nullptr)
2812     {
2813          if (log)
2814             log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__);
2815          return LLDB_INVALID_ADDRESS;
2816     }
2817 
2818     return obj_file_sp->GetImageInfoAddress();
2819 #else
2820     Target *target = &GetTarget();
2821     ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile();
2822     Address addr = obj_file->GetImageInfoAddress(target);
2823 
2824     if (addr.IsValid())
2825         return addr.GetLoadAddress(target);
2826     return LLDB_INVALID_ADDRESS;
2827 #endif
2828 #endif // punt on this for now
2829 }
2830 
2831 size_t
2832 NativeProcessLinux::UpdateThreads ()
2833 {
2834     // The NativeProcessLinux monitoring threads are always up to date
2835     // with respect to thread state and they keep the thread list
2836     // populated properly. All this method needs to do is return the
2837     // thread count.
2838     Mutex::Locker locker (m_threads_mutex);
2839     return m_threads.size ();
2840 }
2841 
2842 bool
2843 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
2844 {
2845     arch = m_arch;
2846     return true;
2847 }
2848 
2849 Error
2850 NativeProcessLinux::GetSoftwareBreakpointPCOffset (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size)
2851 {
2852     // FIXME put this behind a breakpoint protocol class that can be
2853     // set per architecture.  Need ARM, MIPS support here.
2854     static const uint8_t g_i386_opcode [] = { 0xCC };
2855 
2856     switch (m_arch.GetMachine ())
2857     {
2858         case llvm::Triple::x86:
2859         case llvm::Triple::x86_64:
2860             actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
2861             return Error ();
2862 
2863         case llvm::Triple::arm:
2864         case llvm::Triple::aarch64:
2865         case llvm::Triple::mips64:
2866         case llvm::Triple::mips64el:
2867         case llvm::Triple::mips:
2868         case llvm::Triple::mipsel:
2869             // On these architectures the PC don't get updated for breakpoint hits
2870             actual_opcode_size = 0;
2871             return Error ();
2872 
2873         default:
2874             assert(false && "CPU type not supported!");
2875             return Error ("CPU type not supported");
2876     }
2877 }
2878 
2879 Error
2880 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
2881 {
2882     if (hardware)
2883         return Error ("NativeProcessLinux does not support hardware breakpoints");
2884     else
2885         return SetSoftwareBreakpoint (addr, size);
2886 }
2887 
2888 Error
2889 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint,
2890                                                      size_t &actual_opcode_size,
2891                                                      const uint8_t *&trap_opcode_bytes)
2892 {
2893     // FIXME put this behind a breakpoint protocol class that can be set per
2894     // architecture.  Need MIPS support here.
2895     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
2896     // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
2897     // linux kernel does otherwise.
2898     static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 };
2899     static const uint8_t g_i386_opcode [] = { 0xCC };
2900     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
2901     static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 };
2902     static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde };
2903 
2904     switch (m_arch.GetMachine ())
2905     {
2906     case llvm::Triple::aarch64:
2907         trap_opcode_bytes = g_aarch64_opcode;
2908         actual_opcode_size = sizeof(g_aarch64_opcode);
2909         return Error ();
2910 
2911     case llvm::Triple::arm:
2912         switch (trap_opcode_size_hint)
2913         {
2914         case 2:
2915             trap_opcode_bytes = g_thumb_breakpoint_opcode;
2916             actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
2917             return Error ();
2918         case 4:
2919             trap_opcode_bytes = g_arm_breakpoint_opcode;
2920             actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
2921             return Error ();
2922         default:
2923             assert(false && "Unrecognised trap opcode size hint!");
2924             return Error ("Unrecognised trap opcode size hint!");
2925         }
2926 
2927     case llvm::Triple::x86:
2928     case llvm::Triple::x86_64:
2929         trap_opcode_bytes = g_i386_opcode;
2930         actual_opcode_size = sizeof(g_i386_opcode);
2931         return Error ();
2932 
2933     case llvm::Triple::mips:
2934     case llvm::Triple::mips64:
2935         trap_opcode_bytes = g_mips64_opcode;
2936         actual_opcode_size = sizeof(g_mips64_opcode);
2937         return Error ();
2938 
2939     case llvm::Triple::mipsel:
2940     case llvm::Triple::mips64el:
2941         trap_opcode_bytes = g_mips64el_opcode;
2942         actual_opcode_size = sizeof(g_mips64el_opcode);
2943         return Error ();
2944 
2945     default:
2946         assert(false && "CPU type not supported!");
2947         return Error ("CPU type not supported");
2948     }
2949 }
2950 
2951 #if 0
2952 ProcessMessage::CrashReason
2953 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
2954 {
2955     ProcessMessage::CrashReason reason;
2956     assert(info->si_signo == SIGSEGV);
2957 
2958     reason = ProcessMessage::eInvalidCrashReason;
2959 
2960     switch (info->si_code)
2961     {
2962     default:
2963         assert(false && "unexpected si_code for SIGSEGV");
2964         break;
2965     case SI_KERNEL:
2966         // Linux will occasionally send spurious SI_KERNEL codes.
2967         // (this is poorly documented in sigaction)
2968         // One way to get this is via unaligned SIMD loads.
2969         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
2970         break;
2971     case SEGV_MAPERR:
2972         reason = ProcessMessage::eInvalidAddress;
2973         break;
2974     case SEGV_ACCERR:
2975         reason = ProcessMessage::ePrivilegedAddress;
2976         break;
2977     }
2978 
2979     return reason;
2980 }
2981 #endif
2982 
2983 
2984 #if 0
2985 ProcessMessage::CrashReason
2986 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
2987 {
2988     ProcessMessage::CrashReason reason;
2989     assert(info->si_signo == SIGILL);
2990 
2991     reason = ProcessMessage::eInvalidCrashReason;
2992 
2993     switch (info->si_code)
2994     {
2995     default:
2996         assert(false && "unexpected si_code for SIGILL");
2997         break;
2998     case ILL_ILLOPC:
2999         reason = ProcessMessage::eIllegalOpcode;
3000         break;
3001     case ILL_ILLOPN:
3002         reason = ProcessMessage::eIllegalOperand;
3003         break;
3004     case ILL_ILLADR:
3005         reason = ProcessMessage::eIllegalAddressingMode;
3006         break;
3007     case ILL_ILLTRP:
3008         reason = ProcessMessage::eIllegalTrap;
3009         break;
3010     case ILL_PRVOPC:
3011         reason = ProcessMessage::ePrivilegedOpcode;
3012         break;
3013     case ILL_PRVREG:
3014         reason = ProcessMessage::ePrivilegedRegister;
3015         break;
3016     case ILL_COPROC:
3017         reason = ProcessMessage::eCoprocessorError;
3018         break;
3019     case ILL_BADSTK:
3020         reason = ProcessMessage::eInternalStackError;
3021         break;
3022     }
3023 
3024     return reason;
3025 }
3026 #endif
3027 
3028 #if 0
3029 ProcessMessage::CrashReason
3030 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
3031 {
3032     ProcessMessage::CrashReason reason;
3033     assert(info->si_signo == SIGFPE);
3034 
3035     reason = ProcessMessage::eInvalidCrashReason;
3036 
3037     switch (info->si_code)
3038     {
3039     default:
3040         assert(false && "unexpected si_code for SIGFPE");
3041         break;
3042     case FPE_INTDIV:
3043         reason = ProcessMessage::eIntegerDivideByZero;
3044         break;
3045     case FPE_INTOVF:
3046         reason = ProcessMessage::eIntegerOverflow;
3047         break;
3048     case FPE_FLTDIV:
3049         reason = ProcessMessage::eFloatDivideByZero;
3050         break;
3051     case FPE_FLTOVF:
3052         reason = ProcessMessage::eFloatOverflow;
3053         break;
3054     case FPE_FLTUND:
3055         reason = ProcessMessage::eFloatUnderflow;
3056         break;
3057     case FPE_FLTRES:
3058         reason = ProcessMessage::eFloatInexactResult;
3059         break;
3060     case FPE_FLTINV:
3061         reason = ProcessMessage::eFloatInvalidOperation;
3062         break;
3063     case FPE_FLTSUB:
3064         reason = ProcessMessage::eFloatSubscriptRange;
3065         break;
3066     }
3067 
3068     return reason;
3069 }
3070 #endif
3071 
3072 #if 0
3073 ProcessMessage::CrashReason
3074 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
3075 {
3076     ProcessMessage::CrashReason reason;
3077     assert(info->si_signo == SIGBUS);
3078 
3079     reason = ProcessMessage::eInvalidCrashReason;
3080 
3081     switch (info->si_code)
3082     {
3083     default:
3084         assert(false && "unexpected si_code for SIGBUS");
3085         break;
3086     case BUS_ADRALN:
3087         reason = ProcessMessage::eIllegalAlignment;
3088         break;
3089     case BUS_ADRERR:
3090         reason = ProcessMessage::eIllegalAddress;
3091         break;
3092     case BUS_OBJERR:
3093         reason = ProcessMessage::eHardwareError;
3094         break;
3095     }
3096 
3097     return reason;
3098 }
3099 #endif
3100 
3101 Error
3102 NativeProcessLinux::SetWatchpoint (lldb::addr_t addr, size_t size, uint32_t watch_flags, bool hardware)
3103 {
3104     // The base SetWatchpoint will end up executing monitor operations. Let's lock the monitor
3105     // for it.
3106     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
3107     return NativeProcessProtocol::SetWatchpoint(addr, size, watch_flags, hardware);
3108 }
3109 
3110 Error
3111 NativeProcessLinux::RemoveWatchpoint (lldb::addr_t addr)
3112 {
3113     // The base RemoveWatchpoint will end up executing monitor operations. Let's lock the monitor
3114     // for it.
3115     Monitor::ScopedOperationLock monitor_lock(*m_monitor_up);
3116     return NativeProcessProtocol::RemoveWatchpoint(addr);
3117 }
3118 
3119 Error
3120 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
3121 {
3122     if (ProcessVmReadvSupported()) {
3123         // The process_vm_readv path is about 50 times faster than ptrace api. We want to use
3124         // this syscall if it is supported.
3125 
3126         const ::pid_t pid = GetID();
3127 
3128         struct iovec local_iov, remote_iov;
3129         local_iov.iov_base = buf;
3130         local_iov.iov_len = size;
3131         remote_iov.iov_base = reinterpret_cast<void *>(addr);
3132         remote_iov.iov_len = size;
3133 
3134         bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
3135         const bool success = bytes_read == size;
3136 
3137         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3138         if (log)
3139             log->Printf ("NativeProcessLinux::%s using process_vm_readv to read %zd bytes from inferior address 0x%" PRIx64": %s",
3140                     __FUNCTION__, size, addr, success ? "Success" : strerror(errno));
3141 
3142         if (success)
3143             return Error();
3144         // else
3145         //     the call failed for some reason, let's retry the read using ptrace api.
3146     }
3147 
3148     return DoOperation([&] { return DoReadMemory(GetID(), addr, buf, size, bytes_read); });
3149 }
3150 
3151 Error
3152 NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
3153 {
3154     Error error = ReadMemory(addr, buf, size, bytes_read);
3155     if (error.Fail()) return error;
3156     return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
3157 }
3158 
3159 Error
3160 NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written)
3161 {
3162     return DoOperation([&] { return DoWriteMemory(GetID(), addr, buf, size, bytes_written); });
3163 }
3164 
3165 Error
3166 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo)
3167 {
3168     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
3169 
3170     if (log)
3171         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " with signal %s", __FUNCTION__, tid,
3172                                  GetUnixSignals().GetSignalAsCString (signo));
3173 
3174 
3175 
3176     intptr_t data = 0;
3177 
3178     if (signo != LLDB_INVALID_SIGNAL_NUMBER)
3179         data = signo;
3180 
3181     Error error = DoOperation([&] { return PtraceWrapper(PTRACE_CONT, tid, nullptr, (void*)data); });
3182 
3183     if (log)
3184         log->Printf ("NativeProcessLinux::%s() resuming thread = %"  PRIu64 " result = %s", __FUNCTION__, tid, error.Success() ? "true" : "false");
3185     return error;
3186 }
3187 
3188 Error
3189 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo)
3190 {
3191     intptr_t data = 0;
3192 
3193     if (signo != LLDB_INVALID_SIGNAL_NUMBER)
3194         data = signo;
3195 
3196     return DoOperation([&] { return PtraceWrapper(PTRACE_SINGLESTEP, tid, nullptr, (void*)data); });
3197 }
3198 
3199 Error
3200 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo)
3201 {
3202     return DoOperation([&] { return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); });
3203 }
3204 
3205 Error
3206 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
3207 {
3208     return DoOperation([&] { return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); });
3209 }
3210 
3211 Error
3212 NativeProcessLinux::Detach(lldb::tid_t tid)
3213 {
3214     if (tid == LLDB_INVALID_THREAD_ID)
3215         return Error();
3216 
3217     return DoOperation([&] { return PtraceWrapper(PTRACE_DETACH, tid); });
3218 }
3219 
3220 bool
3221 NativeProcessLinux::DupDescriptor(const FileSpec &file_spec, int fd, int flags)
3222 {
3223     int target_fd = open(file_spec.GetCString(), flags, 0666);
3224 
3225     if (target_fd == -1)
3226         return false;
3227 
3228     if (dup2(target_fd, fd) == -1)
3229         return false;
3230 
3231     return (close(target_fd) == -1) ? false : true;
3232 }
3233 
3234 void
3235 NativeProcessLinux::StartMonitorThread(const InitialOperation &initial_operation, Error &error)
3236 {
3237     m_monitor_up.reset(new Monitor(initial_operation, this));
3238     error = m_monitor_up->Initialize();
3239     if (error.Fail()) {
3240         m_monitor_up.reset();
3241     }
3242 }
3243 
3244 bool
3245 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
3246 {
3247     for (auto thread_sp : m_threads)
3248     {
3249         assert (thread_sp && "thread list should not contain NULL threads");
3250         if (thread_sp->GetID () == thread_id)
3251         {
3252             // We have this thread.
3253             return true;
3254         }
3255     }
3256 
3257     // We don't have this thread.
3258     return false;
3259 }
3260 
3261 NativeThreadProtocolSP
3262 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id)
3263 {
3264     // CONSIDER organize threads by map - we can do better than linear.
3265     for (auto thread_sp : m_threads)
3266     {
3267         if (thread_sp->GetID () == thread_id)
3268             return thread_sp;
3269     }
3270 
3271     // We don't have this thread.
3272     return NativeThreadProtocolSP ();
3273 }
3274 
3275 bool
3276 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
3277 {
3278     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3279 
3280     if (log)
3281         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread_id);
3282 
3283     bool found = false;
3284 
3285     Mutex::Locker locker (m_threads_mutex);
3286     for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
3287     {
3288         if (*it && ((*it)->GetID () == thread_id))
3289         {
3290             m_threads.erase (it);
3291             found = true;
3292             break;
3293         }
3294     }
3295 
3296     // If we have a pending notification, remove this from the set.
3297     if (m_pending_notification_up)
3298     {
3299         m_pending_notification_up->wait_for_stop_tids.erase(thread_id);
3300         SignalIfAllThreadsStopped();
3301     }
3302 
3303     return found;
3304 }
3305 
3306 NativeThreadProtocolSP
3307 NativeProcessLinux::AddThread (lldb::tid_t thread_id)
3308 {
3309     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
3310 
3311     Mutex::Locker locker (m_threads_mutex);
3312 
3313     if (log)
3314     {
3315         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
3316                 __FUNCTION__,
3317                 GetID (),
3318                 thread_id);
3319     }
3320 
3321     assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
3322 
3323     // If this is the first thread, save it as the current thread
3324     if (m_threads.empty ())
3325         SetCurrentThreadID (thread_id);
3326 
3327     NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id));
3328     m_threads.push_back (thread_sp);
3329 
3330     return thread_sp;
3331 }
3332 
3333 Error
3334 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp)
3335 {
3336     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
3337 
3338     Error error;
3339 
3340     // Get a linux thread pointer.
3341     if (!thread_sp)
3342     {
3343         error.SetErrorString ("null thread_sp");
3344         if (log)
3345             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
3346         return error;
3347     }
3348     std::shared_ptr<NativeThreadLinux> linux_thread_sp = std::static_pointer_cast<NativeThreadLinux> (thread_sp);
3349 
3350     // Find out the size of a breakpoint (might depend on where we are in the code).
3351     NativeRegisterContextSP context_sp = linux_thread_sp->GetRegisterContext ();
3352     if (!context_sp)
3353     {
3354         error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
3355         if (log)
3356             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
3357         return error;
3358     }
3359 
3360     uint32_t breakpoint_size = 0;
3361     error = GetSoftwareBreakpointPCOffset (context_sp, breakpoint_size);
3362     if (error.Fail ())
3363     {
3364         if (log)
3365             log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
3366         return error;
3367     }
3368     else
3369     {
3370         if (log)
3371             log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
3372     }
3373 
3374     // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
3375     const lldb::addr_t initial_pc_addr = context_sp->GetPCfromBreakpointLocation ();
3376     lldb::addr_t breakpoint_addr = initial_pc_addr;
3377     if (breakpoint_size > 0)
3378     {
3379         // Do not allow breakpoint probe to wrap around.
3380         if (breakpoint_addr >= breakpoint_size)
3381             breakpoint_addr -= breakpoint_size;
3382     }
3383 
3384     // Check if we stopped because of a breakpoint.
3385     NativeBreakpointSP breakpoint_sp;
3386     error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
3387     if (!error.Success () || !breakpoint_sp)
3388     {
3389         // We didn't find one at a software probe location.  Nothing to do.
3390         if (log)
3391             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
3392         return Error ();
3393     }
3394 
3395     // If the breakpoint is not a software breakpoint, nothing to do.
3396     if (!breakpoint_sp->IsSoftwareBreakpoint ())
3397     {
3398         if (log)
3399             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
3400         return Error ();
3401     }
3402 
3403     //
3404     // We have a software breakpoint and need to adjust the PC.
3405     //
3406 
3407     // Sanity check.
3408     if (breakpoint_size == 0)
3409     {
3410         // Nothing to do!  How did we get here?
3411         if (log)
3412             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
3413         return Error ();
3414     }
3415 
3416     // Change the program counter.
3417     if (log)
3418         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_sp->GetID (), initial_pc_addr, breakpoint_addr);
3419 
3420     error = context_sp->SetPC (breakpoint_addr);
3421     if (error.Fail ())
3422     {
3423         if (log)
3424             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_sp->GetID (), error.AsCString ());
3425         return error;
3426     }
3427 
3428     return error;
3429 }
3430 
3431 Error
3432 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec)
3433 {
3434     char maps_file_name[32];
3435     snprintf(maps_file_name, sizeof(maps_file_name), "/proc/%" PRIu64 "/maps", GetID());
3436 
3437     FileSpec maps_file_spec(maps_file_name, false);
3438     if (!maps_file_spec.Exists()) {
3439         file_spec.Clear();
3440         return Error("/proc/%" PRIu64 "/maps file doesn't exists!", GetID());
3441     }
3442 
3443     FileSpec module_file_spec(module_path, true);
3444 
3445     std::ifstream maps_file(maps_file_name);
3446     std::string maps_data_str((std::istreambuf_iterator<char>(maps_file)), std::istreambuf_iterator<char>());
3447     StringRef maps_data(maps_data_str.c_str());
3448 
3449     while (!maps_data.empty())
3450     {
3451         StringRef maps_row;
3452         std::tie(maps_row, maps_data) = maps_data.split('\n');
3453 
3454         SmallVector<StringRef, 16> maps_columns;
3455         maps_row.split(maps_columns, StringRef(" "), -1, false);
3456 
3457         if (maps_columns.size() >= 6)
3458         {
3459             file_spec.SetFile(maps_columns[5].str().c_str(), false);
3460             if (file_spec.GetFilename() == module_file_spec.GetFilename())
3461                 return Error();
3462         }
3463     }
3464 
3465     file_spec.Clear();
3466     return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
3467                  module_file_spec.GetFilename().AsCString(), GetID());
3468 }
3469 
3470 Error
3471 NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef& file_name, lldb::addr_t& load_addr)
3472 {
3473     load_addr = LLDB_INVALID_ADDRESS;
3474     Error error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
3475         [&] (const std::string &line) -> bool
3476         {
3477             StringRef maps_row(line);
3478 
3479             SmallVector<StringRef, 16> maps_columns;
3480             maps_row.split(maps_columns, StringRef(" "), -1, false);
3481 
3482             if (maps_columns.size() < 6)
3483             {
3484                 // Return true to continue reading the proc file
3485                 return true;
3486             }
3487 
3488             if (maps_columns[5] == file_name)
3489             {
3490                 StringExtractor addr_extractor(maps_columns[0].str().c_str());
3491                 load_addr = addr_extractor.GetHexMaxU64(false, LLDB_INVALID_ADDRESS);
3492 
3493                 // Return false to stop reading the proc file further
3494                 return false;
3495             }
3496 
3497             // Return true to continue reading the proc file
3498             return true;
3499         });
3500     return error;
3501 }
3502 
3503 Error
3504 NativeProcessLinux::ResumeThread(
3505         lldb::tid_t tid,
3506         NativeThreadLinux::ResumeThreadFunction request_thread_resume_function,
3507         bool error_when_already_running)
3508 {
3509     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3510 
3511     if (log)
3512         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ", error_when_already_running: %s)",
3513                 __FUNCTION__, tid, error_when_already_running?"true":"false");
3514 
3515     auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
3516     lldbassert(thread_sp != nullptr);
3517 
3518     auto& context = thread_sp->GetThreadContext();
3519     // Tell the thread to resume if we don't already think it is running.
3520     const bool is_stopped = StateIsStoppedState(thread_sp->GetState(), true);
3521 
3522     lldbassert(!(error_when_already_running && !is_stopped));
3523 
3524     if (!is_stopped)
3525     {
3526         // It's not an error, just a log, if the error_when_already_running flag is not set.
3527         // This covers cases where, for instance, we're just trying to resume all threads
3528         // from the user side.
3529         if (log)
3530             log->Printf("NativeProcessLinux::%s tid %" PRIu64 " optional resume skipped since it is already running",
3531                     __FUNCTION__,
3532                     tid);
3533         return Error();
3534     }
3535 
3536     // Before we do the resume below, first check if we have a pending
3537     // stop notification that is currently waiting for
3538     // this thread to stop.  This is potentially a buggy situation since
3539     // we're ostensibly waiting for threads to stop before we send out the
3540     // pending notification, and here we are resuming one before we send
3541     // out the pending stop notification.
3542     if (m_pending_notification_up && log && m_pending_notification_up->wait_for_stop_tids.count (tid) > 0)
3543     {
3544         log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, tid, m_pending_notification_up->triggering_tid);
3545     }
3546 
3547     // Request a resume.  We expect this to be synchronous and the system
3548     // to reflect it is running after this completes.
3549     const auto error = request_thread_resume_function (tid, false);
3550     if (error.Success())
3551         context.request_resume_function = request_thread_resume_function;
3552     else if (log)
3553     {
3554         log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
3555                          __FUNCTION__, tid, error.AsCString ());
3556     }
3557 
3558     return error;
3559 }
3560 
3561 //===----------------------------------------------------------------------===//
3562 
3563 void
3564 NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid)
3565 {
3566     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3567 
3568     if (log)
3569     {
3570         log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")",
3571                 __FUNCTION__, triggering_tid);
3572     }
3573 
3574     DoStopThreads(PendingNotificationUP(new PendingNotification(triggering_tid)));
3575 
3576     if (log)
3577     {
3578         log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__);
3579     }
3580 }
3581 
3582 void
3583 NativeProcessLinux::SignalIfAllThreadsStopped()
3584 {
3585     if (m_pending_notification_up && m_pending_notification_up->wait_for_stop_tids.empty ())
3586     {
3587         Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
3588 
3589         // Clear any temporary breakpoints we used to implement software single stepping.
3590         for (const auto &thread_info: m_threads_stepping_with_breakpoint)
3591         {
3592             Error error = RemoveBreakpoint (thread_info.second);
3593             if (error.Fail())
3594                 if (log)
3595                     log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s",
3596                             __FUNCTION__, thread_info.first, error.AsCString());
3597         }
3598         m_threads_stepping_with_breakpoint.clear();
3599 
3600         // Notify the delegate about the stop
3601         SetCurrentThreadID(m_pending_notification_up->triggering_tid);
3602         SetState(StateType::eStateStopped, true);
3603         m_pending_notification_up.reset();
3604     }
3605 }
3606 
3607 void
3608 NativeProcessLinux::RequestStopOnAllRunningThreads()
3609 {
3610     // Request a stop for all the thread stops that need to be stopped
3611     // and are not already known to be stopped.  Keep a list of all the
3612     // threads from which we still need to hear a stop reply.
3613 
3614     ThreadIDSet sent_tids;
3615     for (const auto &thread_sp: m_threads)
3616     {
3617         // We only care about running threads
3618         if (StateIsStoppedState(thread_sp->GetState(), true))
3619             continue;
3620 
3621         static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop();
3622         sent_tids.insert (thread_sp->GetID());
3623     }
3624 
3625     // Set the wait list to the set of tids for which we requested stops.
3626     m_pending_notification_up->wait_for_stop_tids.swap (sent_tids);
3627 }
3628 
3629 
3630 Error
3631 NativeProcessLinux::ThreadDidStop (lldb::tid_t tid, bool initiated_by_llgs)
3632 {
3633     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3634 
3635     if (log)
3636         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ", %sinitiated by llgs)",
3637                 __FUNCTION__, tid, initiated_by_llgs?"":"not ");
3638 
3639     // Ensure we know about the thread.
3640     auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
3641     lldbassert(thread_sp != nullptr);
3642 
3643     // Update the global list of known thread states.  This one is definitely stopped.
3644     auto& context = thread_sp->GetThreadContext();
3645     const auto stop_was_requested = context.stop_requested;
3646     context.stop_requested = false;
3647 
3648     // If we have a pending notification, remove this from the set.
3649     if (m_pending_notification_up)
3650     {
3651         m_pending_notification_up->wait_for_stop_tids.erase(tid);
3652         SignalIfAllThreadsStopped();
3653     }
3654 
3655     Error error;
3656     if (initiated_by_llgs && context.request_resume_function && !stop_was_requested)
3657     {
3658         // We can end up here if stop was initiated by LLGS but by this time a
3659         // thread stop has occurred - maybe initiated by another event.
3660         if (log)
3661             log->Printf("Resuming thread %"  PRIu64 " since stop wasn't requested", tid);
3662         error = context.request_resume_function (tid, true);
3663         if (error.Fail() && log)
3664         {
3665                 log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
3666                         __FUNCTION__, tid, error.AsCString ());
3667         }
3668     }
3669     return error;
3670 }
3671 
3672 void
3673 NativeProcessLinux::DoStopThreads(PendingNotificationUP &&notification_up)
3674 {
3675     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3676     if (m_pending_notification_up && log)
3677     {
3678         // Yikes - we've already got a pending signal notification in progress.
3679         // Log this info.  We lose the pending notification here.
3680         log->Printf("NativeProcessLinux::%s dropping existing pending signal notification for tid %" PRIu64 ", to be replaced with signal for tid %" PRIu64,
3681                    __FUNCTION__,
3682                    m_pending_notification_up->triggering_tid,
3683                    notification_up->triggering_tid);
3684     }
3685     m_pending_notification_up = std::move(notification_up);
3686 
3687     RequestStopOnAllRunningThreads();
3688 
3689     SignalIfAllThreadsStopped();
3690 }
3691 
3692 void
3693 NativeProcessLinux::ThreadWasCreated (lldb::tid_t tid)
3694 {
3695     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
3696 
3697     if (log)
3698         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, tid);
3699 
3700     auto thread_sp = std::static_pointer_cast<NativeThreadLinux>(GetThreadByID(tid));
3701     lldbassert(thread_sp != nullptr);
3702 
3703     if (m_pending_notification_up && StateIsRunningState(thread_sp->GetState()))
3704     {
3705         // We will need to wait for this new thread to stop as well before firing the
3706         // notification.
3707         m_pending_notification_up->wait_for_stop_tids.insert(tid);
3708         thread_sp->RequestStop();
3709     }
3710 }
3711 
3712 Error
3713 NativeProcessLinux::DoOperation(const Operation &op)
3714 {
3715     return m_monitor_up->DoOperation(op);
3716 }
3717 
3718 // Wrapper for ptrace to catch errors and log calls.
3719 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
3720 Error
3721 NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, long *result)
3722 {
3723     Error error;
3724     long int ret;
3725 
3726     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
3727 
3728     PtraceDisplayBytes(req, data, data_size);
3729 
3730     errno = 0;
3731     if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
3732         ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
3733     else
3734         ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
3735 
3736     if (ret == -1)
3737         error.SetErrorToErrno();
3738 
3739     if (result)
3740         *result = ret;
3741 
3742     if (log)
3743         log->Printf("ptrace(%d, %" PRIu64 ", %p, %p, %zu)=%lX", req, pid, addr, data, data_size, ret);
3744 
3745     PtraceDisplayBytes(req, data, data_size);
3746 
3747     if (log && error.GetError() != 0)
3748     {
3749         const char* str;
3750         switch (error.GetError())
3751         {
3752         case ESRCH:  str = "ESRCH"; break;
3753         case EINVAL: str = "EINVAL"; break;
3754         case EBUSY:  str = "EBUSY"; break;
3755         case EPERM:  str = "EPERM"; break;
3756         default:     str = error.AsCString();
3757         }
3758         log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str);
3759     }
3760 
3761     return error;
3762 }
3763